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Abstract: Modeling and predicting detachment of cohesive particles and consequently 

erosion of cohesive soil mass remains an unconquered problem. The linear excess shear 

stress model and the non-linear Wilson model are some of the prominent process based 

models used extensively. The parameters of these models can be statistically estimated 

from various experimental methods like the Jet Erosion Test (JET). A miniaturized 

version of the JETS called the mini-JETs has added advantage of portability and in-situ 

use. However, lack of a standard operating procedure can lead to wide variability in 

estimation of the parameters of the erodibility equation. Besides the operation of the 

device, analysis procedure of the data obtained from the JETs is also not adequately 

established. This study focused on the mini-JET device and the parameters of the 

erodibility equation. Precision of the mini-JET in terms of the parameters of the 

erodibility models was calculated. Recommendations were made regarding the head 

setting, initial interval and termination interval to establish uniformity in operation of the 

mini-JET. The influence of vegetation roots on the parameters of the erodibility equations 

was also quantified using the mini-JET and correlations between root properties and the 

erodibility parameters were identified. The influence of the moisture content on the soil 

erodibility was investigated in terms of the parameters of the erodibility equation using 

the mini-JET. Different solution techniques to derive the parameters of the linear model 

were compared with respect to the variability of the parameters. The performance of the 

linear model and non-linear model was applied in a reach scale stream bank stability 

simulation in order to evaluate their performance in an application setting. The non-linear 

model was shown to be more appropriate than the linear model in predicting the erosion 

rates at a wider range of applied shear stress. This research highlighted the usefulness of 

the mini-JET in modeling the detachment of cohesive soil and advantages of using the 

non-linear model in modeling long term streambank retreat. This study also identified the 

critical areas of research to further improve the process based approach to modeling the 

erosion of cohesive soil. 
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CHAPTER 1  
 

INTRODUCTION 

 

Erosion is a key process in geomorphology. It is a natural watershed process and 

determines the formation and evolution of channels such as rills, gullys and streambanks. 

It is also inherently associated with quality of the floodplain environment, habitat and 

ecological functions. Streambank erosion is combination of three separate erosion 

processes: sub-aerial erosion, fluvial erosion and mass failure.  

Sub-aerial processes contribute in loosening, weathering and weakening particles 

from the parent material. This process mostly depends on climatic factors such as surface 

temperature, precipitation, wind, etc. This process acts on large scales (watershed scale) 

and is continuous temporally. Mass failure is an episodic process which occurs at much 

smaller scale (site scale) due to a lack of equilibrium between driving and resisting 

forces. The process depends mostly on intrinsic properties of the parent material such as 

weight, moisture content, texture and permeability. Fluvial erosion acts a precursor to 

mass failure (ASCE, 1998; Rinaldi and Darby, 2008). Fluvial erosion occurs due to 

detachment of particles from parent material of a bank when acted upon by a fluvial 

force. It is a quasi-continuous process which is initiated when a threshold of fluvial force 

is exceeded in a particular flow event. It is dependent on the hydraulic forces acting on 

the bank as well as physical properties of the bank (Simon et al., 2000).
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Inherent variability of different fluvial forces acting on a streambank and heterogeneity of 

the physical properties of the bank material make measurement, modeling and prediction 

of fluvial erosion complex and challenging. Streambank erosion is one of the most 

abundant and prominent manifestations of the fluvial erosion in nature. Streambank 

erosion, while a natural process, also can be driven by anthropogenic factors and 

contribute significantly to pollution of natural streams. The sediment detached from the 

streambanks can be a significant source of excessive sediments, nutrients and other 

pollutants which can lead to problems of eutrophication, loss of habitat and overall 

degradation of ecological functions. Streambank erosion has been identified as a 

significant source of sediment both in UK (Walling et al, 1999) and USA (USEPA, 

2011). Hence, reliable measurement and modeling of the sediment detachment from 

streambanks as well as other natural channels is of great concern to engineers, 

geomorphologists and water managers. 

Different attempts have been made to model and predict cohesive particle 

detachment due to fluvial forces. Earliest attempts at such modeling have focused on 

deriving the hydraulic variables that act to detach and transport (Knapen et al, 2007). 

Other attempts have focused on empirically estimating the amount of sediment loss from 

large scales with a multiplying factor, for example, the K factor in USLE and RUSLE 

(Renard et. al., 1997). The most popular model to quantify fluvial erosion remains the 

excess shear stress equation (Partheniades, 1965): 

    ( )a

r d ck         (1.1) 
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where εr is the erosion rate (cms-1), kd is coefficient of erodibility (cm3N-1s-1), τ is the 

applied shear stress (Pa), τc is the critical shear stress (Pa), and a is an exponent usually 

assumed to be unity.  

An alternative to the excess shear stress model is Wilson’s model (Wilson, 1993a, 

b). Wilson’s model is based on the balance of all the forces and moments driving and 

resisting detachment of a two dimensional representation of a particle or an aggregate of 

particle:  

   
1

0 1 exp exp 3r

b
b 



   
      

   
    (1.2)  

where ɛr is the erosion rate (cms-1), τ is the applied shear (Pa), and Wilson’s model has 

two parameters; b0 (gm-1s-1N0.5) and b1 (Pa). These parameters, unlike parameters of the 

excess shear stress equation, are mechanistically defined.  

The main difference between these models is the relation between the τ and 

predicted ɛr. In most of applications of the excess shear stress equation, the value of the 

exponent is assumed to be unity. Consequently, the relationship between τ and ɛr 

predicted by the excess shear stress equation is linear. Wilson’s model describes that 

relation to be non-linear. While both models have their advantages and disadvantages, 

there have been  no studies in which application of the two models have been compared. 

Several different techniques are employed to estimate the erodibility parameters 

of these equations. Such techniques include flumes (Hanson 1990a), hole erosion tests 

(Wan and Fell, 2004), cohesive strength meter (Tollhurst et al, 1999), and submerged jet 

test (Hanson 1990b). The submerged jet test or the jet erosion test (JET) is a relatively 

new technique. It was primarily developed for in-situ testing. Since the development, the 
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JET has evolved in form and function. Recently, a miniature version of the JET called the 

mini-JET was developed and employed in several laboratory and field studies. It has 

proven to be advantageous over the original JET due it’s small and light design. The 

mini-JET has a great potential to be a useful tool in studying fluvial erosion. However, 

absence of standard operating guidelines for the apparatus has caused confusion about 

appropriate procedures to conduct JETs. Users still lack information on optimum head 

setting, appropriate time interval for reading data and appropriate length of time for each 

test. This introduces uncertainty in values of estimated erodibility parameters due to user 

dependent choices of head setting, time interval and test length. 

Large variability has been observed in the values of parameters of these equations 

when the mini-JET was used in field conditions (Daly et. al., 2013, 2015). This was 

attributed to variety of different factors such as soil moisture, presence of vegetation, 

macropores and heterogeneity of soil texture as well as complex interactions between 

these factors. Isolating variability caused by individual factors and quantifying their 

effect in terms of the value of erodibility parameters is a difficult prospect as these factors 

cannot be controlled in situ. Laboratory mini-JETs can be performed with controls on 

many of these factors in order to quantify variability of the JET and isolate the effect of 

specific factors.   

The main objectives of this research are as follows: 

1. To make recommendations about the standard operating procedure of the 

mini-JET by investigating the effect of pressure head, reading interval and test 

length of JETs on the erodibility parameters and to quantify the precision of 
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mini-JET device with respect to the erodibility parameters derived from 

different solution methodologies proposed  in literature. 

2. To investigate influence of moisture content on erodibility parameters derived 

from the mini-JETs under controlled laboratory conditions. 

3. To investigate the effect of vegetation roots on the erodibility parameters 

derived from the mini-JETs under controlled laboratory conditions and 

relationship between the erodibility parameters and root properties. 

4. To compare the performance of the linear and non-linear models by applying 

these models in a reach scale streambank stability study.  
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CHAPTER 2  
 

VARIABILITY OF ERODIBILITY PARAMETERS FROM LABORATORY MINI JET 

EROSION TESTS1 

 

Abstract 

Application of jet erosion tests (JETs) to study in-situ erodibility is gaining 

popularity. New versions of the JET (original JET versus mini-JET) and new data 

analysis techniques have introduced questions regarding their operation and data 

collection procedures. One of the major issues regarding JETs is the high degree of 

variability of the erodibility parameters (i.e., erodibility coefficient, kd, and critical shear 

stress, c). This variability has been attributed to heterogeneity in different soil properties 

under natural field conditions, but limited research has quantified variability under 

controlled laboratory conditions, especially for the newer mini-JET. This study uniquely 

conducted 20 mini-JETs under controlled laboratory conditions on each of two soil types 

of contrasting texture. JETs were conducted in-situ on these same soils in previous 

research. The laboratory JETs predicted similar values of most parameters with much less 

variability than in the field. Three to five JETs conducted in the laboratory estimated 

1Published as: 

Khanal, A., Fox, G., Al-Madhhachi, A. T. (2015). “Variability of Erodibility parameters 

from Laboratory mini jet erosion tests”.  Journal of HydrologicEngineering 

doi:10.1061/(ASCE)HE.1943-5584.0001401.
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erodibility parameters with a precision of 25% at a 95% confidence level. Laboratory 

JETs on disturbed, remolded samples provided baseline estimates of in-situ erodibility 

parameters. Additional JETs were conducted at three different head settings on the two 

soil types.  

The influence of the head setting was dependent on the soil type, solution 

technique, and detachment model. In general, variability in derived erodibility parameters 

increased at larger head settings especially for the less erodible soil. Existing JET data 

were resampled to evaluate the effect of the initial time interval and termination time 

interval of data collection on derived erodibility parameters. Both initial and termination 

time intervals were most influential at larger head settings. An initial time interval of 30 s 

and a termination time interval of at least 300 s was recommended especially for less 

erodible soils. 

 

 Introduction 

The quantification of soil detachment has remained a challenging prospect in the 

field of applied geomorphology. It is especially important in process-based modeling of 

streambank erosion. It is equally pertinent in studying and modeling fluvial features in 

non-riparian areas.  As streambank erosion is identified as one of the main non-point 

sources of sediment pollution of natural streams, estimating streambank erosion rates is 

of significant importance. Therefore, quantifying sediment detachment is one of the most 

important problems for estimating watershed sediment loads. 

Sediment detachment rates are most often estimated in the laboratory using 

various experimental techniques. These techniques include flumes, Rotating cylinder 

apparatus (Moore and Masch, 1962), hole erosion tests (HET) (Wan and Fell, 2004) and 
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jet erosion tests (JET) (Hanson and Hunt, 2007; Al-Madhhachi et al., 2013a, 2013b). 

Flumes and their variations are the most traditional techniques. Special flumes called the 

SEDflume were developed for  measurement of the sediment detachment (McNeil et al., 

1996). Erosion Function Apparatus is another example of flume modified for the purpose 

of measuring sediment scouring (Briaud et al., 2001).   The HET and JET are relatively 

newer techniques. In all tests, a soil specimen of known properties (for example, texture 

and moisture content) is packed at a known density and subjected to shear forces by 

applying known pressure heads. The pressure heads exert a shear stress (τ) on the soil 

specimen inducing detachment of soil particles. The detachment is periodically measured 

in terms of depth of erosion or mass of detached sediment, which is converted into an 

erosion depth based on the bulk density. The observed erosion rate is then fit to a 

mathematical model, which relates the  exerted by the applied pressure head to the rate 

of particle detachment (εr).  

 

Jet Erosion Tests 

The JET is a relatively novel technique used in studying the erosion properties of 

a soil specimen. It was developed by the USDA-ARS in Stillwater, OK (Hanson et al., 

1990). A jet of water generated by a constant pressure impinges on a soil surface in 

submerged conditions. The jet exerts a certain shear force on the soil surface creating a 

scour hole. Two versions of JETs are in existence: the original JET and the mini-JET 

(Figure 2.1). Analytical procedures were derived for obtaining the erodibility parameters 

(i.e., erodibility coefficient, kd, and critical shear stress, c) based on the hydraulics of the 

submerged jet (Hanson and Cook, 1997; Hanson et al, 2002). The apparatus, general test 
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methodology and procedure to analyze the data for obtaining erodibility parameters of the 

excess shear stress equation are described in detail by Hanson and Cook (2004).  

The mini-JET is a smaller version of the original JET apparatus. The use of mini-

JET device was first described by Simon et al. (2010). The study presented a comparison 

of the erodibility parameters measured from the original and the mini-JET devices under 

field conditions and reported differences. A comparative study of the original JET and 

mini-JET devices in laboratory conditions was later conducted by Al-Madhhachi et al. 

(2013a). The study concluded that, with an adjustment to account for the differences in 

the size of the nozzles of the two JET devices, the original JET and the mini-JET 

provided equivalent measures of the erodibility coefficients. A corresponding study by 

Al-Madhhachi et al. (2013b) suggested no statistically significant differences for the 

erodibility parameters when estimated from flume tests and JET devices.  

 

Estimation of Erodibility Parameters  

The JET data can be fit to two different types of mathematical models to describe 

the erosion characteristics of a soil specimen: linear and nonlinear models. The linear 

model, also known as the excess shear stress equation (Partheniades, 1965), is the most 

frequently used sediment detachment model in the literature to date. The model states that 

the erosion rate is proportional to the difference between  and the critical shear stress: 

    
( )a

r d ck   
    (2.1) 

where εr is the detachment rate (m s-1), kd is the erodibility coefficient (m3 N-1 s-1), τc is the 

critical shear stress (Pa), and a is an exponent. The τc is the minimum  required to 

initiate particle detachment. The kd and τc are collectively called the erodibility 
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parameters of the excess shear stress equation. The value of the exponent (a) is usually 

assumed to be one (Hanson et al., 2002).       

Currently, there are three approaches in analyzing data from JETs to estimate the 

erodibility parameters of the excess shear stress equation. The most popular method of 

analysis, called Blaisdell’s solution (BL), was developed by Hanson and Cook (1997, 

2004). The solution method was based on principles of fluid diffusion presented by Stein 

and Nett (1997) and a hyperbolic function modeling the depth progression of the scour 

hole developed by Blaisdell et al. (1981): 
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 , is  used to predict the  equilibrium depth (Je) of the scour hole. 

The equilibrium depth is defined as the maximum depth of the scour hole beyond which 

the water jet cannot erode further. This solution method first determines the τc parameter 

based on the Je of scour hole as predicted by Blaisdell’s function as follows: 
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where τo is the maximum boundary  due to the jet velocity at the orifice, and Jp is the 

potential core length. The velocity at the jet centerline is equivalent to jet velocity at 

orifice through Jp (Hanson and Cook, 2004). The Jp is constant for the given JET 
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apparatus and τo is constant for a given head setting, h. The Je depends on both the head 

setting and the fit of the observed data to the hyperbolic function. The kd is then 

determined by solving for the least squared deviation between the observed scour time (t) 

and predicted time (tm) as defined as follows:   
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where 
JeTr k cd


  is a reference time, *
J

J
Je

 is a dimensionless scour depth, and * i
i

J
J

Je
  is 

a dimensionless measure of the initial distance between the jet orifice and soil surface. 

Alternatives to Blaisdell’s solution have been suggested recently (Simon et al., 

2010; Daly et al., 2013). One of these solution methods is called the scour depth solution 

(SD). This method simultaneously searches for kd and τc which provide the best fit of 

observed JET data on the scour depth versus time curve predicted by the excess shear 

stress equation. The other approach was presented by Simon et al. (2010), and referred to 

as the iterative solution (IT). This method is initialized using the values of erodibility 

parameters determined by Blaisdell’s solution. The scour hole is assumed to reach the Je 

at the end of each test. An upper bound on τc is fixed by substituting this Je in equation 

(2.3). Then the values of τc and kd which minimize the root mean square deviation 

between the observed t and predicted time (tm) is searched for iteratively.   

A nonlinear model describing detachment of soil particles or aggregates due to 

fluvial forces was proposed by Wilson (1993a, 1993b). The model is based on balance of 

all the forces and moments driving and resisting detachment of a two-dimensional 

representation of a particle or aggregate. The equation of the model is given as follows:  
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where b is the bulk density and Wilson’s model has two parameters b0 (g m-1 s-1 N-0.5) 

and b1 (Pa). These parameters, unlike parameters of the excess shear stress equation, are 

mechanistically defined. As seen from the equation, the relationship between εr and τ is 

nonlinear. Note that b0 is similar to kd but with a different magnitude and units.; b1 is 

similar to τc. 

Al-Madhhachi et al. (2013b) incorporated the hydraulics of both the original and 

mini-JET device in Wilson’s model and demonstrated that the parameters of Wilson’s 

model can also be determined from the experimental data obtained from the JETs. The 

observed particle detachment rate data is fitted to equation (2.5) by minimizing the sum 

of squared differences between the observed and modeled scour depth. Hence, the 

parameters of the model can be determined statistically from observed JET data similar to 

the linear model. 

 

JET Procedures 

Portability and in-situ testing capability are the main advantages of the JETs, 

making them ideally suitable for field studies (Hanson and Cook, 2004; Hanson and 

Simon, 2001; Simon et al., 2010; Daly et al., 2015b). The in-situ variability in these 

parameters has been attributed to heterogeneity in different intrinsic (soil texture) and 

extrinsic (moisture content, vegetation, macropores, and bio-chemical processes) factors. 

The variability can also be caused by complex interactions of these factors such that the 

effect of each of these factors is difficult to isolate. However, some degree of variability 

is to be expected due to the apparatus itself and the operation of the device. The precision 
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of the mini-JET apparatus has not been thoroughly established. The variability associated 

with the mini-JET apparatus itself can be a benchmark against which the variability 

observed at the field can be compared.  

In absence of a standard procedure, the operation of the original JET and mini-

JET can differ in many aspects from user to user. For example, different users can select 

different pressure head settings, which control the jet velocity and mechanics of the jet 

creating the scour hole, or choose to take readings at different time intervals including 

both how long to initiate the jet prior to the first set of readings (referred to herein as the 

initial time interval) and at what time interval to terminate the test when two or more 

subsequent readings are similar (referred to herein as the termination time interval). The 

effect of such user dependent variables on the estimation of parameters has also not been 

studied. Hanson and Cook (2004) recommended that the head setting be chosen so that 

the peak  applied by the JET is similar to the peak  in a natural open channel 

environment. This  can be difficult to achieve during testing, and in some cases, such as 

erodible soils, can lead to tests that erode so quickly that quality measurements cannot be 

obtained. The gauge readings are taken following a protocol which starts out at a certain 

initial time interval. The initial time interval is kept small to be as conservative as 

possible and obtain high resolution early time data when the applied shear is highest and 

scouring is most rapid. This initial time interval is then increased periodically when two 

or three consecutive readings at the current interval are the same. The test is terminated 

when two or three consecutive readings are the same at a certain final or termination time 

interval. In absence of standard guidelines, the choices of the initial time interval at which 

the gauge readings are taken and termination time interval at which the test is completed 
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depends on the judgement and experience of the user. This may lead to discrepancies in 

derived erodibility parameters and make them incomparable from one test to another. 

 

Objectives 

JETs have evolved in form and function over last two decades. They have been 

adopted by researchers to investigate erodibility properties of natural features like 

streambanks as well as to aid in designs of artificial constructs like earthen embankments. 

A review of the literature shows that most of the studies have been focused on exploring 

the effect of soil properties on the erodibility parameters. There have been limited studies 

which have investigated the effect of user dependent factors such as applied pressure 

head and choices of initial time interval and termination time interval on derived 

erodibility parameters. This study hypothesized that the user dependent factors outlined 

above have a significant effect on the estimation of erodibility parameters from 

laboratory JETs performed on soil samples of the same texture, bulk density, and 

moisture content. The objectives of this study were as follows: 

1. To estimate the precision of the mini-JET apparatus and variability in 

erodibility parameters (i.e., erodibility coefficient, kd, and critical shear stress, 

c) associated with the apparatus under controlled laboratory conditions and 

with respect to various solution methodologies proposed in the literature. 

2. To investigate the effect of applied pressure head on the values of the 

erodibility parameters derived from three different solution methods for the 

linear excess shear stress model (BL, SD, and IT) and also for the Wilson 

model (WL).  
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3. To investigate the effect of the selected initial time interval and termination 

time intervals on the erodibility parameters derived from three different 

solution methods (BL, SD, and IT) for the linear excess shear stress model 

and the Wilson model (WL). 

 

Methods and Materials 

Mini-JETs were performed on remolded samples of two soils of contrasting 

texture. The construction and operation of the mini-JETs are described in detail in Al-

Madhhachi et al. (2013a). The two soils utilized for the remolded samples were a sandy 

loam soil obtained from a streambank of Cow Creek in Stillwater, Oklahoma, and a clay 

loam soil obtained from the B horizon of a streambank of Five Mile Creek near Fort 

Cobb, Oklahoma. The particle size distribution of both soils was analyzed following 

ASTM standard D422. Liquid limit and plastic limit of the soils were performed 

following ASTM standard D4318. Standard compaction tests were performed on the soils 

using ASTM standard D698A. The characteristics of each soil are presented Table 2.1.  

Each soil  was air dried, sieved through a no. 4 sieve (4.75 mm), and mixed with 

water to achieve uniform water content.  The sandy loam soil was mixed with water to 

obtain a water content of 10%; the clay loam soil was mixed with water to obtain  water 

content of 16%. The water contents were chosen to be on the drier side of the optimum 

moisture content curve derived from the standard compaction test. The samples for the 

JETs were prepared by packing the soil in a standard mold.All the  samples prepared with 

sandy loam soil was compacted to a dry density of 1.7 Mg m-3, and the clay loam soil was 

compacted to dry density of 1.4 Mg m-3. These densities were chosen to be closest to 

maximum dry density while being convenient enough to achieve the desired uniform dry 
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density. Attempts to achieve larger density, especially for clay loam soil resulted in non-

uniform compaction.  Total mass of the soil required to achieve the aforementioned dry 

density was calculated. The mass was divided in three equal portions. Each portion of soil 

was packed into separate layer consecutively to achieve a uniform dry density through 

the sample. Uniform packing was chosen to avoid layering effects as mentioned in Al-

Madhhachi et al. (2013a).  

 Twenty mini-JETs were conducted on each of two soil types. The JETs on the 

more erodible sandy loam were conducted at a smaller head of 46 cm (H1); JETs on the 

less erodible clay loam soil were conducted at larger head of 109 cm (H3). This was done 

to mimic field mini-JETs as it is a common practice to conduct JETs at larger heads on 

more resistant soils. The JET data were analyzed to derive erodibility parameters for both 

linear and nonlinear models. The parameters of the linear model were estimated using 

three different solution techniques: Blaisdell’s solution (BL), scour depth solution (SD), 

and iterative solution (IT) using the spreadsheet tool developed by Daly et al. (2013). The 

parameters of the Wilson model (WL) were also determined using the spreadsheet tool 

described by Al-Madhhachi et al. (2013b). 

 The estimated erodibility parameters were assumed to be either normally or log-

normally distributed for the purpose of quantifying variability. This assumption was 

checked with an Anderson-Darling Test using MiniTab 16 (MiniTab, Inc.). The 

Anderson Darling test statistic (AD) and the P-value associated with the test were 

reported for each erodibility parameter. Smaller values of the AD statistic and P-values 

larger than the selected level of significance indicate normality. The AD statistics were 
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calculated with logarithms of the erodibility parameters to check the assumption of log 

normal distribution. 

 The variability of the normally distributed erodibility parameters were quantified 

first by calculating the sample size (n) required to estimate the given parameter within 

given precision level  at a certain confidence level based on the standard deviation (S):  

    

2
ZS

n
 

  
 

     (2.6) 

 where Z is the normal deviate corresponding to the upper percentage point for a 

specified level of confidence. Here, it is assumed that S equals the population standard 

deviation. Also, it must be noted that the precision (Δ) is expressed in terms of the 

percentage deviation from the average (P). The variability of the log-normally distributed 

erodibility parameters were quantified by calculating the n required to estimate a true 

mean within a predetermined fraction and a given level of confidence is given as follows 

(Hale, 1972): 
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where S is the standard deviation of the logarithms of the observation and P is the 

fraction of the observed geometric mean by which it can deviated from the true mean. P 

expressed in terms of percentage in this study. Daly et al. (2015a) conducted a variability 

study of the erodibility parameters derived from mini-JETs; they conducted in the field 

on streambanks of Cow Creek in northern Oklahoma, which was the source of the sandy 

loam soil, and on a streambank of Five Mile Creek in southwestern Oklahoma, which 

was the source of clay loam soil. It was the intent to use this field measured data from 

Daly et al. (2015a) to compare to the laboratory mini-JETs since soils tested in the 
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laboratory were extracted from the same streambanks. Daly et al. (2015) observed 

variability of approximately three orders of magnitude in the erodibility parameters. 

Other researchers report similar findings with original JETs under in-situ conditions 

(Wynn et al., 2008; Karmaker and Dutta, 2011).   

Five additional JETs were performed each at two different head settings of 79 cm 

(H2) and 109 cm (H3) on the sandy loam soil. Similarly, five additional JETs were 

performed each at two different head settings of 46 (H1) cm and 79 cm (H3) on the clay 

loam soil. For each test, the same mini-JET device was used and a strict protocol was 

applied to collect the data. As per the protocol, an initial reading was taken before 

wetting of the surface. Then, gauge readings were taken every 15 s. The reading time 

interval was increased to 30 s when two consecutive gauge readings had the same value. 

The reading interval was increased in a similar fashion to 60 s, 120 s, and 300 s. The test 

was terminated when the same value was recorded for two gauge readings at a 300 s 

interval (Figure 2.2a). The erodibility parameters were estimated from the additional 

JETs with the aforementioned techniques. Analysis of variance (ANOVA) was 

performed to quantify statistical difference across the three different head settings on the 

erodibility parameters. Pairwise comparison tests were performed on the erodibility 

parameters shown to be significantly different by ANOVA at a significance level of = 

0.05.  

In order to test the influence of the initial time interval, existing JET data 

conducted at the lowest (46 cm) and highest (109 cm) head settings were resampled at 

four different initial time intervals of 30 s, 60 s, 120 s, and 240 s. A shorter initial time 

interval results in collection of more early time data during the mini-JET when scouring 
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is most rapid (Figures 2.2a, 2.2b, and 2.2c). Resampling was accomplished by extracting 

a subset of original data in whichthe gauge readings recorded at each of these initial 

intervals were retained. For example, to resample the data at 60 s intervals, only the 

gauge readings recorded at intervals of 60 s or higher were retained in the resampled data 

(Figure 2.2b). Resampled data were analyzed using the spreadsheet tool and the 

erodibility parameters were estimated again. Similarly, in order to test the influence of 

the termination time interval at which the tests are completed, existing JET data 

conducted at lowest and highest head settings were resampled so that they were 

completed at three different intervals of 120 s, 60 s, and 30 s instead of the original 300 s. 

A shorter termination time corresponded to a shorter duration mini-JET and a shallower 

scour hole (Figures 2.2d, 2.2e, and 2.2f).  This was accomplished by extracting a subset 

of original data which retained the data recorded before the recording interval reached 

each of these intervals. For example, to resample the data for termination interval of 60 s, 

only guage readings recorded before the collection interval reached 60s were retained and 

rest of the data was left out in the resampled data (Figure 2.2e). ANOVA was used to 

assess the statistical significance of these factors at = 0.05. 

 

Results and Discussion 

Variability of Erodibility Parameters  

Mini-JET variability under controlled laboratory conditions was much smaller 

than reported in field studies on the same soils (Daly et al., 2015a). In general, the 

variability in the erodibility parameters for the clay loam soil was greater than the 

variability for the sandy loam soil for both the linear and nonlinear models (Figure 2.3a). 

The parameters of the non-linear model were more variable than the parameters of the 
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linear model (Figure 2.3b). Also similar to previous research findings, τc estimated from 

BL (τc-BL) and kd estimated from BL (kd-BL) were two and one order of magnitude smaller 

than the corresponding parameters estimated by the SD and IT solutions, respectively 

(Figure 2.3a).  

 The AD tests suggested normal distributions for all but one of the derived 

erodibility parameters for sandy loam soil, and log normal distributions for most of the 

erodibility parameters for the clay loam soil  (Table 2.2). Therefore, a normal distribution  

for sandy loam soil and log normal distributions for clay loam soil were assumed in 

calculating sample sizes required to appropriately characterize the erodibility parameters’ 

distributions. The sample sizes required for deriving the erodibility parameters at a 

confidence level of 95% and precisions of 5%, 10% and 25% are provided in Table 2.3. 

Conducting three to five JETs to quantify the erodibility of a soil in the laboratory will 

typically provide a good estimate of the mean with 25% precision at a 95% confidence. 

Estimating erodibility parameters for the clay loam soil required larger sample sizes than 

for the sandy loam soil for both linear and nonlinear models. Using SD and IT solution 

techniques typically reduced the sample sizes, especially for τc.  

Charanko et al. (2010) conducted 11 original JETs on a clay loam soil under 

laboratory conditions. They reported an average τc-BL of 0.48 Pa with precision of 59% 

and average kd-BL of 2.3 cm3N-1s-1 with 19% precision. They concluded the  original JETs 

in the laboratory to be repeatable with a smaller variation in comparison to field original 

JETs.  It should be noted that the τc-BL estimated from the original JET in the Charanko et 

al. (2010) study on clay loam soils was one order of magnitude greater than that 

estimated from the mini-JETs on the clay loam soil in this study. Al-Madhhachi et al. 
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(2013a) made similar observations. They hypothesized that the difference in scales of the 

original JET and mini-JET was the reason for the difference and introduced an 

adjustment coefficient to match the τc-BL. Recent research by Ghaneeized et al. (2015) on 

the original JET hypothesized that confinement may be an issue with the original JET 

assumptions. They developed a semi-empirical equation to predict the applied  for the 

original JET and suggested the apparatus coefficients and equation to be reevaluated for 

the confined conditions of both the original and mini-JETs. 

The laboratory mini-JETs  reported herein showed much less variability than 

reported in field studies such as the Daly et al. (2015a) study. Daly et al. (2015) observed 

variability of approximately three orders of magnitude in the erodibility parameters. 

Other researchers report similar findings with original JETs under in-situ conditions 

(Wynn et al., 2008; Karmaker and Dutta, 2011).   In fact, variability of the erodibility 

parameters estimated from the laboratory mini-JETs was two to three orders of 

magnitude less than those estimated from mini-JET field tests. The expected deviation in 

erodibility parameters from the mean value was much smaller for the laboratory mini-

JETs (Table 2.4). The average values of kd derived from the laboratory mini-JETs on 

disturbed and repacked soil samples and the in-situ field mini-JETs were remarkably 

similar. It should also be noted that Daly et al. (2015a) conducted the field mini-JETs at 

much larger head setting (244 cm) than the laboratory mini-JETs (106 cm). Factors like 

heterogeneity in soil texture, disturbance and repacking, moisture content, bulk density, 

and presence of roots along with the different head setting all contribute to the differences 

in estimation of erodibility parameters between the field and laboratory mini-JETs. 

However, the similarity in the average erodibility parameters and smaller variability 
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suggested that the laboratory mini-JETs were valuable for quantifying the expected 

erodibility properties.  

 

Pressure Head Setting 

The mini-JETs were carried out with three distinct head setting in this study. 

General properties of the jet hydraulics are given in Table 2.5.  The influence of the head 

setting on Je was statistically significant for both soil types and for all three solution 

techniques (P-values < 0.01). The average Je increased consistently with increased head 

for both soil types and all solution techniques. The increase in Je with respect to applied 

pressure head was larger for the BL technique. The sandy loam soil showed a larger 

increase in Je with increase in head setting. The SD and IT techniques showed a similar 

increase in Je with increase in head setting for both soils. 

ANOVA showed τc-BL, τc-SD and τc-IT parameters of the sandy loam soil were 

significantly different across different head settings (P-values < 0.01) (Figure 2.4). 

Pairwise comparison tests showed that τc-BL at H1 was significantly larger than τc-BL at H2 

and H3. The τc-SD and τc-IT at H3 were significantly larger than the parameters at H1 and 

H2. The τc-SD and τc-IT of the sandy loam soil increased when using larger applied pressure 

heads.  

No general pattern was observed relative to the influence of head setting on the 

erodibility parameters of the clay loam soil (Figure 2.5). This was probably due to the 

magnitude of variability in erodibility parameters observed during the laboratory mini-

JETs. ANOVA showed kd-SD, kd-IT and τc-SD parameters of the clay loam were significantly 

different across the head settings (P-values < 0.01) (Figure 2.5). Pairwise comparison 

tests showed kd-SD at H2 to be significantly larger than kd-SD at H3, but no significant 
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differences were observed between the other two pairs (H1-H2 and H1-H3). Similarly, kd-

IT at H1 was significantly larger than kd-IT at H2 but no significant differences were 

observed between other pairs of head settings. The τc-SD at H2 was significantly larger 

than τc-SD at H3 but no significant differences were observed between the other two pairs 

of head settings (H1-H2 and H1-H3).  

No general pattern was observed between the nonlinear erodibility parameters and 

the head setting (Figure 2.6). The b1 of the sandy loam soil was significantly larger at H3 

than at H1. No significant differences in b1 were observed between other two pairs of 

head settings. Similarly, b0 for the clay loam soil was significantly larger at H2 than at 

H1, but no significant differences were observed in b1 between the other two pairs of 

head settings. The b1 parameter of the clay loam soil was observed to be significantly 

larger at H2 and H3 (Figure 2.6). These observations are again influenced by the 

magnitude of variability in parameters of the nonlinear model, especially for the clay 

loam soil.   

These analyses by themselves suggest that the  head setting within the range used 

in this study do not make substantial difference in the values of estimated erodibility 

parameter and therefore may be appropriate for mini-JETs. Hanson et al. (1990) noted the 

need to conduct original JETs at a head setting that mimics the range of applied  

expected in the field, but this is not always possible for erodible soils typical of many 

streambanks expecting rapid erosion and migration.  Furthermore, the estimation of the 

erodibility parameter is highly dependent on the quality and quantity of data itself. 

Hence, it is necessary to examine the interaction effect of head setting relative to the data 

collection intervals and length of the test.  
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Initial Time Interval 

For the more erodible sandy loam soil, the initial time interval influenced the 

estimation of erodibility parameters (Figure 2.2a, 2.2b, and 2.2c). The average τc-BL 

increased with longer initial time intervals at H1, and this trend was observed to be more 

pronounced when using a larger applied pressure head, H3 (Figure 2.7). When a shorter 

initial time interval was used more early time data was available closer to the vertex of 

the hyperbolic function in equation (2.2). This shifted the asymptotes of the hyperbola 

away from the curve and increased the estimate of f0, which in turn increased the 

estimated Je. This effect ultimately resulted in smaller τc-BL at shorter initial time intervals. 

The range of τc-BL predicted with five mini-JETs differed significantly from the range of 

the parameter predicted with larger sample size of 20 mini-JETs when the initial time 

interval was greater than 30 s. The kd-BL decreased marginally with an increase in initial 

time interval, which was attributed to the fit of t versus tm in equation (2.3). The average 

and range in kd-SD decreased significantly with longer initial time intervals for the more 

erodible sandy loam soil. This trend was observed at both smaller and larger head settings 

but was more prominent at the larger head setting, H3 (Figure 2.7). The scour depth 

method requires averaging of depths recorded at each interval in order to predict erosion 

rate. Averaging across smaller initial time intervals predicted greater erosion rates than 

averaging across larger initial time intervals. Hence, smaller erosion rates were estimated 

at the same  when longer initial time intervals were used. This resulted in smaller 

estimated kd-SD values. The kd-SD values predicted with five mini-JETs in this analysis 

were significantly smaller than those values estimated from 20 mini-JETs when the initial 

time interval was increased to 30 s. The τc-SD was not significantly influenced by initial 
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time interval as the final scour depth did not change with the initial time interval for this 

analysis technique. The τc-IT decreased marginally with increased initial time intervals and 

stabilized at initial time intervals longer than 60 s. This was due to slight differences in 

the fit of the data as more data points were available at smaller initial time intervals. No 

significant influence of the initial time interval was observed on kd-IT.  

For the less erodible clay loam soil, the influence of the initial time interval was 

also dependent on the head setting. A significant influence of starting time interval was 

not observed at H1; however, at H3, τc-BL decreased significantly with longer initial time 

intervals (Figure 2.8). This was attributed to more data points on the vertex end of the 

hyperbola at smaller initial time intervals. Unlike the sandy loam soil, the greater number 

of data points closer to the vertex end of the hyperbola shifted the asymptotes closer to 

the vertex decreasing the value of f0. This also decreased the value of estimated Je and 

ultimately increased the estimated τc-BL at smaller initial time intervals. The kd-BL was not 

influenced by the initial time interval as the fit of t versus tm in equation (2.3) remained 

same across the initial time intervals. The fit between t and tm was significantly better for 

the clay loam soil than the sandy loam soil. The kd-SD and τc-SD decreased slightly, 

especially at longest time intervals of 120 s and 240 s. The effect on kd-SD was attributed 

to less available data when resampled at time intervals of 120 s and 240 s. The kd-IT and 

τc-IT were equivalent at all initial time intervals as the final scour depth of the tests did not 

change with the initial time intervals.  

For the nonlinear detachment model, the b0 decreased with longer initial time 

intervals for both the more erodible sandy loam and less erodible clay loam soils at both 

H1 and H3 (Figure 2.9). The b1 for the clay loam soil decreased with longer initial time 
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intervals only at H3. Both b0 and kd-SD decreased with increased initial time interval; note 

that both the SD solution and Wilson model were based on same solution concept, and 

therefore the reasons for the observed changes in the Wilson Model parameters were 

equivalent to those previously described for the SD solution.  

 

Termination Time Interval 

For the sandy loam soil, the termination time interval highly influenced the 

variation in the erodibility parameters derived using the BL solution (τc-BL and kd-BL) and 

was most pronounced for H3, as shown in Figure 2.10. The kd-BL decreased with longer 

termination intervals, and τc-BL increased with longer termination intervals. Longer 

termination intervals added data on the hyperbola towards its extremity which shifted the 

asymptotes towards the curve and decreased the value of f0. This decreased the estimated 

Je and consequently increased the τc-BL. The range of τc-BL predicted with five mini-JETs 

was observed to be closest to the range of τc-BL predicted from sample size of 20 mini-

JETs when the termination time interval was 300 s. Running mini-JETs to termination 

intervals of 300 s was necessary for obtaining the most precise estimates of τc-BL on these 

soils. The kd-BL decreased marginally with increased termination time intervals, which was 

attributed to the fit of t versus tm in equation (2.3). Most of the scouring of the sandy loam 

soil occurred early and erosion rates became insignificant as the termination interval 

increased. There was no significant difference in the scour depth at later times. This 

caused the τc-SD to vary marginally with the termination time interval. The variability of 

τc-SD was smaller with an increase in termination time interval (Figure 2.10e). The 

termination time interval had no influence on the estimated kd-SD. Therefore, if early time 

data are available and indicate the general trend between scour depth and time, the 
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termination time interval will have less influence on the derived parameters of more 

erodible soils for the SD solution technique.   

The influence of the termination time interval was more pronounced for the less 

erodible clay loam soil. The kd-BL decreased rapidly with longer termination time intervals 

at both H1 and H3, and the τc-BL showed similar trends at H3 (Figure 2.11). At a larger 

head, the scouring of the sample continued for a longer time. This added more data points 

on the hyperbola towards its extremity. Unlike in case of the sandy loam soil, this shifted 

the asymptotes away from the curve increasing the f0 ordinate. Consequently, the Je 

values increased and the τc-BL decreased. At smaller heads, this effect was not strong 

enough to significantly decrease the value of τc-BL, but the variability in estimation of τc-BL 

did decrease at longer termination intervals. The kd-SD and τc-SD decreased significantly 

with longer termination time intervals at H1. This was attributed to the fact that the depth 

of the scour hole continued to increase at longer termination times. This increased the 

concentration of data points at smaller  and smaller erosion rates, which consequently 

decreased the slope as well as the x-intercept of the linear model.  The kd-IT and τc-IT were 

strongly influenced by termination interval both at H1 and H3, rapidly decreasing at 

longer termination time intervals. This was expected as the final depth of the scour hole, 

which was assumed as Je by the IT method, continued to increase with the duration of the 

test. This significantly decreased the τc-IT. The fit of t versus tm was also observed to 

change with the termination time interval. The deviation between t and tm increased with 

longer termination time intervals decreasing the kd-IT values. 

For the nonlinear model, most of the erodibility parameters for the two soils were 

significantly impacted by termination time interval based on statistical tests (Figure 2.12), 
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but with much less noticeable effects compared to the linear model.  At H3, both b0 and 

b1 for the clay loam soil decreased with longer termination time intervals while the b1 for 

the sandy loam soil changed nominally (Figure 2.12).  The nonlinear model uses the same 

solution procedure as the scour depth model.  The smaller b0 and b1 values of the clay 

loam soil can be explained by the concentration of data points at smaller  and smaller 

erosion rates.  

 

Summary and Conclusions  

Mini-JETs were performed on remolded samples of two distinct soil types under 

controlled laboratory conditions to quantify the variability of erodibility parameters of 

linear and nonlinear detachment models. The tests controlled for soil texture, compaction 

density, moisture content, applied pressure, and data collection protocol. The tests 

revealed that the erodibility parameters of the more erodible sandy loam soil were much 

less variable than the less erodible clay loam soil. In general, the erodibility parameters of 

the linear model were estimated with the least variability when using the SD solution 

technique. The b0 parameter of the nonlinear model was more variable than the 

corresponding kd in the linear excess shear stress model, with similar variability between 

b1 and τc. A comparison to previously published field tests showed that the average 

values of the parameters of the linear model, especially kd, from laboratory tests were 

remarkably similar to those predicted from in-situ mini-JETs in the field. Laboratory 

mini-JETs on disturbed and repacked soil samples may be used to establish benchmark 

values of the erodibility parameters. Variability of the erodibility parameters estimated 

from the laboratory tests was two to three orders of magnitude less than those estimated 

from the field tests. Conducting three to five mini-JETs to quantify the erodibility of a 
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soil in the laboratory will typically provide a good estimate of the mean with 25% 

precision at a 95% confidence. No specific patterns were observed in terms of the 

influence of the selected applied pressure head and the derived erodibility parameters. 

However, when the effect of the applied head setting was coupled with the initial time 

interval and termination time interval of data collection during the mini-JET, certain 

patterns emerged. For example, selection of the initial and termination time intervals 

were most influential at larger applied pressure heads.  An initial time interval of at least 

30 s is recommended for mini-JETs for easily erodible sandy soils; on less erodible soils, 

a time interval of 30 s may yield no scour and therefore longer time intervals will need to 

be used. A smaller applied head is preferred to a larger applied head from a data analysis 

perspective; however, one must also ensure that the applied head is representative of the 

expected applied shear stress to be modeled or predicted with the derived erodibility 

parameters. Hence, a termination time interval of 300 s is recommended for less erodible 

soils if circumstances require the use of larger applied pressure heads. 
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Figure 2.1. (a) Illustration of submerged JET setup and (b) water jet and scour depth parameters 

used by Hanson and Cook (2004). 
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Figure 2.2. Sample data collected for clay loam soil at (a) original initial time interval of 15 s and termination time interval of 

300 s and resampled data at (b) initial time interval of 60 s, (c) initial time interval of 240 s, (d) termination time interval of 

120 s, (e) termination time interval of 60 s, and (f) termination time interval of 30 s; solid lines depicts the predicted scour 

depth using the scour depth method.
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Figure 2.3. Derived erodibility parameters from laboratory mini-JETS for the (a) linear 

detachment model (τc is the critical shear stress and kd is the erodibility coefficient) and 

(b) nonlinear detachment model (b0 and b1 are nonlinear detachment model parameters). 

BL = Blaisdell, SD = scour depth, and IT = iterative solution
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Figure 2.4. Linear detachment model erodibility parameters (τc is the critical shear stress 

and kd is the erodibility coefficient) derived from mini JETs at head settings of H1 (46 

cm), H2 (79 cm), and H3 (109 cm) for sandy loam soil. BL = Blaisdell solution, SD = 

scour depth solution, and IT = iterative solution. Note that (a), (b) and (c) depict same 

variable but vertical scales of (b) and (c) are different from (a). The same applies for (d), 

(e) and (f). This was necessary as BL derived erodibility parameters were typically one 

order of magnitude lower than SD and IT derived parameters. 
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Figure 2.5. Linear detachment model erodibility parameters (τc is the critical shear stress 

and kd is the erodibility coefficient) derived from mini JET at head settings of H1 (46 

cm), H2 (79 cm), and H3 (109 cm) for the clay loam soil. BL = Blaisdell solution, SD = 

scour depth solution, and IT = iterative solution. . Note that (a), (b) and (c) depict same 

variable but vertical scales of (b) and (c) are different from (a). The same applies for (d), 

(e) and (f). This was necessary as BL derived erodibility parameters were typically one 

order of magnitude lower than SD and IT derived parameters
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Figure 2.6. Nonlinear detachment model erodibility parameters (b0 and b1) derived from 

mini JETs at head settings of H1 (46 cm), H2 (79 cm), and H3 (109 cm). 
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Figure 2.7. Influence of initial time interval of data collection on linear detachment 

model erodibility parameters (τc is the critical shear stress and kd is the erodibility 

coefficient) derived from mini JETs for sandy loam soil at H3 (109 cm). BL = Blaisdell 

solution, SD = scour depth solution, and IT = iterative solution. Note that (d), (e) and (f) 

depict same variable but vertical scales of (b) and (c) are different from (a). This was 

necessary as τc-BL was typically one order of magnitude lower than τc-SD and τc-IT.
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Figure 2.8. Influence of initial time interval of data collection on linear detachment 

model erodibility parameters (τc is the critical shear stress and kd is the erodibility 

coefficient) derived from mini JETs for clay loam soil at H3 (109 cm). BL = Blaisdell 

solution, SD = scour depth solution, and IT = iterative solution. Note that (d), (e) and (f) 

depict same variable but vertical scales of (b) and (c) are different from (a). This was 

necessary as τc-BL was typically one order of magnitude lower than τc-SD and τc-IT.



 

38 

 

Figure 2.9. Influence of initial time interval of data collection on nonlinear detachment 

model erodibility parameters (b0 and b1) derived from mini JETs for the sandy loam and 

clay loam soils at H3 (109 cm).
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Figure 2.10. Influence of termination time interval of data collection on linear 

detachment model erodibility parameters (τc is the critical shear stress and kd is the 

erodibility coefficient) derived from mini JETs for the sandy loam soil at H3 (109 cm). 

BL = Blaisdell solution, SD = scour depth solution, and IT = iterative solution. Note that 

(d), (e) and (f) depict same variable but vertical scales of (b) and (c) are different from 

(a). This was necessary as τc-BL was typically one order of magnitude lower than τc-SD and 

τc-IT.
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Figure 2.11. Influence of termination time interval of data collection on linear 

detachment model erodibility parameters (τc is the critical shear stress and kd is the 

erodibility coefficient) derived from mini JETs for the clay loam soil at H3 (109 cm). BL 

= Blaisdell solution, SD = scour depth solution, and IT = iterative solution. Note that (d), 

(e) and (f) depict same variable but vertical scales of (b) and (c) are different from (a). 

This was necessary as τc-BL was typically one order of magnitude lower than τc-SD and τc-

IT. 
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Figure 2.12. Influence of initial time interval of data collection on nonlinear detachment 

model erodibility parameters (b0 and b1) derived from mini JETs for the sandy loam and 

clay loam soils at H3 (109 cm). 
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Table 2.1. Properties of soils used for the JETs. 

  Soil texture  Standard Compaction 

Source 
USCS 

classification 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Plasticity 

Index 

Maximum 

Density 

Optimum 

water 

content (%) 

Cow Creek  Sandy loam 54 
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8 Non-plastic 1.78 15 

Five Mile 

Creek  
Clay loam 30 33 36 6 1.61 20 

 

 

 

Table 2.2. Anderson-Darling test statistic (AD) and respective P-values for the 

erodibility parameters (n =20). P-values > 0.05 indicate acceptable distribution fit. 

  Erodibility Parameters*  

  

τc-BL τc-SD τc-IT kd-BL kd-SD kd-IT b0 b1 

  

(Pa) (Pa) (Pa) (cm3N-1s-1) (cm3N-1s-1) (cm3N-1s-1) (gm-1s-1N-0.5) (Pa) 

Sandy loam 

         Normal          

AD 

 

0.47 0.50 0.59 0.18 0.30 0.38 0.19 0.92 

P-value 

 

0.23 0.19 0.11 0.90 0.55 0.38 0.89 <0.05 

Log-normal          

AD  0.48 0.55 0.46 0.28 0.51 0.58 0.21 1.01 

P-value  0.20 0.13 0.24 0.58 0.17 0.11 0.84 <0.05 

Clay loam 

         Normal          

AD 

 

1.03 0.80 1.34 0.15 0.21 0.15 1.32 0.28 

P-value 

 

<0.05 0.03 <0.05 0.95 0.83 0.95 < 0.05 0.58 

Log-normal          

AD  0.47 0.64 0.85 0.35 0.73 0.59 0.37 0.60 

P-value  0.21 0.08 <0.05 0.43 <0.05 0.10 0.37 0.10 

* τc is the critical shear stress, kd is the erodibility coefficient, and b0 and b1 are nonlinear 

detachment model parameters; BL is the Blaisdell solution, SD is the scour depth solution, and 

IT is the iterative solution of the linear detachment model. 
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Table 2.3. Sample size required to estimate erodibility parameters within given 

error percentage of the mean at a 95% confidence level (Z = 1.645). 

    kd  (cm-3N-1s-1)* τc (Pa) b0 (gm-1s-1N-0.5) b1 (Pa) 

Error 

Sandy 

loam 

Clay 

loam Sandy Loam Clay loam 

Sandy 

Loam 

Clay 

loam 

Sandy 

Loam 

Clay 

loam 

5% 

         

 

BL* 25 278 109 836 96 871 9 90 

 

SD 56 613 4 106 

    

 

IT 88 338 16 48 

    10% 

         

 

BL 7 73 28 219 24 340 3 46 

 

SD 14 161 1 28 

    

 

IT 22 89 4 13 

    25% 

         

 

BL 1 13 5 40 4 62 1 8 

 

SD 3 29 1 5 

      IT 4 16 1 2         

* τc is the critical shear stress, kd is the erodibility coefficient, and b0 and b1 are nonlinear 

detachment model parameters; BL is the Blaisdell solution, SD is the scour depth solution, and 

IT is the iterative solution of the linear detachment model. 
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Table 2.4. Comparison between field and laboratory data of mean estimated 

erodibility parameters and percentage deviation from the mean obtained with a 

sample size of five JETs. 

  

Laboratory –  

Sandy Loam 

 In-Situ Tests –  

Cow Creek 

Laboratory –  

Clay Loam  

In-Situ Tests –  

Five Mile Creek 

  (Daly et.al., 2015a)  (Daly et.al., 2015a) 

Parameter* Mean P Mean P Mean P Mean P 

    %   %   %   % 

τc-BL (Pa) 0.05 28 0.1 120 0.04 88 3.81 551 

τc-SD (Pa) 1.47 5 1.05 23 1.78 25 11.3 60 

τc-IT (Pa) 1.31 10 0.95 28 1.62 16 8.03 42 

kd-BL (cm3N-1s-1) 26.02 13 39.5 75 5.13 44 2.9 86 

kd-SD (cm3N-1s-1) 108.39 20 245 107 13.14 72 19.2 88 

kd-IT (cm3N-1s-1) 169.54 25 170 81 17.47 49 17.3 57 
* τc is the critical shear stress, kd is the erodibility coefficient; BL is the Blaisdell solution, SD is 

the scour depth solution, and IT is the iterative solution of the linear detachment model. 

 

 

Table 2.5. General properties of jet hydraulics where H is head setting, d0 is the 

nozzle diameter, C is coefficient of discharge, U is jet velocity and Re is the jet 

Reynolds number.  

H  

(m) 

d0  

(mm) 

C 

 

U 

(m s-1) 

Re 

 

0.46 3.18 0.74 3.37 7768 

0.79 3.18 0.74 2.91 10180 

1.09 3.18 0.74 2.27 11923 
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CHAPTER 3  
 

EFFECT OF MOISTURE CONTENT ON ERODIBILITY PARAMETERS DERIVED 

FROM MINI-JETS 

 

Abstract 

 Soil moisture has been identified as one of the major factors influencing the 

erodibility of soil. Interaction of the soil moisture with other soil properties has 

complicated predicting the erosion of cohesive soil. This study conducted mini-JETs on 

two soils of contrasting texture; sandy loam and clay loam. The tests were controlled for 

the applied pressure head, texture and packing density and the moisture content profiles 

of the test samples were varied uniformly after compaction. Mini-JETs were conducted 

on the remolded samples with two moisture content profiles different from the 

compaction moisture content. The parameters of a linear excess shear stress equation 

derived from Blaisdell, Scour Depth and Iterative methods and a non-linear detachment 

equation were compared. The soil moisture influenced the parameters of each soil type 

differently. The influence of moisture content also varied according the solution 

methodology, suggesting that results of the JETs should be interpreted relative to the 

solution method used to derive the parameters. In general, the kd parameter increased by 

one order of magnitude with moisture content for both soil types. The b0 parameter 

increased by up to two orders of magnitude with moisture content for the clay loam soil.  

 



 

46 

Interestingly, simultaneous increases in τc and b1 were also observed at higher moisture 

content. This may be due to changes in the internal structure of the soil. 

 

Introduction 

Soil moisture has been noted to influence various properties of soil including 

shear strength, aggregation, infiltration capacity, and inter-particle cohesion. Soil 

erodibility depends on various factors, one of them being moisture content. The role of 

antecedent moisture in various erosion processes such as rain-splash erosion and rill 

erosion have been established (Govers et.al., 1993), especially in the case of cohesive 

soils with high clay content. The rain-splash erosion was shown to increase exponentially 

with antecedent soil moisture in a field study carried out with a rainfall simulator (Luk, 

1985). In a rill erosion test, the sediment detachment was shown to decrease four to 15 

times when the rill was pre-wetted before applying the flow. Higher moisture contents are 

linked with increased cohesion between particles, decreased infiltration into the soil 

mass, increased aggregation, and crust formation which increase the resistance to erosion. 

It should be noted that these studies were carried out in field and water was applied to 

initially dry soil well short of saturation.  

The effect of moisture content on erodibility is also highly dependent on its 

interaction with other soil properties and atmospheric conditions. Bissonnais et al (1995) 

report increased erodibility on wet plots in comparison to dry plots but decreased 

erodibility on re-wetted plots. The authors also point out that soil with highest clay 

content had the lowest erosion rate when rewetted and soil with highest organic carbon 

content had the lowest erosion rate when rewetted. Hence, the complexity of predicting 

erodibility of soil is further complicated by interaction of moisture content and other soil 
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properties. Isolating the influences of moisture content from other factors would provide 

an invaluable insight. 

Typically, the erosion rate of a cohesive soil is predicted using a model which 

relates soil erodibility to a measure of hydraulic forces on the soil. The most common 

model is known as the excess shear stress equation: 

( )a

r d ck      (3.1) 

where εr is the detachment rate (m s-1), kd is the erodibility coefficient (m3 N-1 s-1), τc is the 

critical shear stress (Pa), and a is an exponent. The τc is the minimum  required to 

initiate particle detachment (Partheniades, 1965). The kd and τc are collectively called the 

erodibility parameters of the excess shear stress equation. The value of the exponent (a) 

is usually assumed to be one (Hanson et al., 2002).       

Currently, there are three approaches in analyzing data from JETs to estimate the 

erodibility parameters of the excess shear stress equation. The most popular method of 

analysis, called Blaisdell’s solution (BL), was developed by Hanson and Cook (1997, 

2004). The solution method was based on principles of fluid diffusion presented by Stein 

and Nett (1997) and a hyperbolic function modeling the depth progression of the scour 

hole developed by Blaisdell et al. (1981): 
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  , J is the depth of scour hole recorded at each 

time (t), d0 is the diameter of jet orifice, and U0 is the velocity of the jet at the origin. The 

function represents a rectangular hyperbola with A as both the semi-transverse and semi-

conjugate and center at (0, f0) in a Cartesian plane. The ordinate of the center of the 
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hyperbola,  log 
0 

0

Jef
d

 
 
 
 

 , is  used to predict the  equilibrium depth (Je) of the scour hole. 

The equilibrium depth is defined as the maximum depth of the scour hole beyond which 

the water jet cannot erode further. This solution method first determines the τc parameter 

based on the Je of scour hole as predicted by Blaisdell’s function as follows: 

2

0

p

c

e

J

J
 

 
  

 

 (3.3) 

where τo is the maximum boundary  due to the jet velocity at the orifice, and Jp is the 

potential core length. The velocity at the jet centerline is equivalent to jet velocity at 

orifice through Jp (Hanson and Cook, 2004). The Jp is constant for the given JET 

apparatus and τo is constant for a given head setting, h. The Je depends on both the head 

setting and the fit of the observed data to the hyperbolic function. The kd is then 

determined by solving for the least squared deviation between the observed scour time (t) 

and predicted time (tm) as defined as follows: 

                       
1 *1 *0.5ln * 0.5ln *

1 * 1 *

JJ it T J Jm r iJ J
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                                      (3.4) 

where 
JeTr k cd


  is a reference time, *
J

J
Je

 is a dimensionless scour depth, and * i
i

J
J

Je
  is 

a dimensionless measure of the initial distance between the jet orifice and soil surface. 

Alternatives to Blaisdell’s solution have been suggested recently (Simon et al., 

2010; Daly et al., 2013). One of these solution methods is called the scour depth solution 

(SD). This method simultaneously searches for kd and τc which provide the best fit of 

observed JET data on the scour depth versus time curve predicted by the excess shear 

stress equation. The other approach was presented by Simon et al. (2010), and referred to 
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as the iterative solution (IT). This method is initialized using the values of erodibility 

parameters determined by Blaisdell’s solution. The scour hole is assumed to reach the Je 

at the end of each test. An upper bound on τc is fixed by substituting this Je in equation 

(3.3). Then the values of τc and kd which minimize the root mean square deviation 

between the observed t and predicted time (tm) is searched for iteratively.   

 An alternative to the excess shear stress model is the Wilson mode1 (1993a, 

1993b). The model is based on balance of all the forces and moments driving and 

resisting detachment of a two-dimensional representation of a particle or aggregate. The 

equation of the model is given as follows:  

 
0 11 exp exp 3r

b

b b


 

   
      

   
                                                (3.5) 

where b is the bulk density and Wilson’s model has two parameters: b0 (g m-1 s-1 N-0.5) 

and b1 (Pa). These parameters, unlike parameters of the excess shear stress equation, are 

mechanistically defined, but several variables are unknown. As seen from the equation, 

the relationship between εr and τ is nonlinear. Note that b0 is similar to kd but with a 

different magnitude and units; b1 is similar to τc. 

Al-Madhhachi et al. (2013a, b) incorporated the hydraulics of both the original 

and mini-JET device in Wilson’s model and demonstrated that the parameters of 

Wilson’s model can also be determined from the experimental data obtained from the 

JETs. The observed particle detachment rate data is fit to equation (3.5) by minimizing 

the sum of squared differences between the observed and modeled scour depth. Hence, 

the parameters of the model can be determined statistically from observed JET data 

similar to the linear model. 
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The model parameters kd, τc, b0, b1 can be estimated experimentally using various 

techniques like flumes, hole erosion tests and jet erosions tests (JETs). JETs were initially 

designed and have been extensively used in investigating the erosion properties of soil in 

situ. They also have been employed in laboratory settings on remolded samples to 

investigate the effects of soil properties on soil erodibility. Hanson and Hunt (2007) 

employed original JETs on remolded samples of two different types of soil. They packed 

the soil at different compaction efforts and moisture contents to achieve the range of dry 

density and moisture content that described the compaction curve of the soils. They 

compared the results of the JET test with the results of a large-scale embankment breach 

testing. The results of this study showed that the kd parameter decreased by as much as 

two orders of magnitude when the samples were packed at the optimum moisture content 

(OMC). The kd values also increased slightly when samples were packed above the 

OMC. The authors concluded that compaction water content played a major role in 

determining erodibility. However, it should be noted that this study was carried out to 

determine the acceptable specifications of compaction efforts and moisture content for 

designing and constructing earthen embankments. The erosion process active in an 

earthen embankment can be widely different than the erosion processes active in a natural 

setting. The compaction of soil in construction of the embankments and also remolding of 

the samples changes the internal structure of the soil particles. Cetin et al. (2007) 

conducted a study to investigate the changes in internal structure and physical properties 

of remolded samples when compacted at a range of dry densities and moisture contents 

encompassing both dry side and wet side of the OMC. They used samples prepared by 

mixing natural clay with 33.1% muscovite mica sand. The authors found that the 
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randomness in orientation of soil particles decreased and the inter-particle contact 

increased as the dry density and moisture content approached the peak of OMC. Beyond 

the OMC, the internal structure of soil was characterized by increased inter-particle 

contact and long strings and packets of particles with random orientation. 

Remolding samples at different moisture contents is not an appropriate approach 

to test the effect of moisture content on erodibility of soil. In natural settings, the 

moisture content of soil usually increases by processes of infiltration and/or capillary rise 

of subsurface water. In this study we hypothesize that changing the moisture content of a 

remolded sample after compaction influences the erodibility of the soil and that the mini-

JETs can detect the influences. We assume that allowing water to enter the soil mass 

without disturbing the soil changes the cohesion between soil particles and that in turn 

decreases the soil erodibility. The objectives of this study were to conduct mini-JETs on 

two soils of contrasting texture in controlled laboratory conditions to derive the 

erodibility parameters of soil samples that have been wetted after compaction. The 

erodibility parameters will be compared against erodibility parameters of dry remolded 

samples and saturated remolded samples.  

 

Methods and Materials 

 Remolded samples were prepared from the sandy loam soil obtained from surface 

of streambank of Cow Creek in Stillwater, Oklahoma and clay loam soil obtained from B 

horizons of the streambank of Five Mile Creek near Fort Cobb, Oklahoma. The particle 

size distribution of both soils was analyzed following ASTM standard D422. Liquid limit 

and plastic limit of the soils were performed following ASTM standard D4318. Standard 
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compaction test were performed on the soils using ASTM standard D698A (ASTM, 

2006). The properties of each soil are presented Table 3.1.  

Each soil sample was air dried, sieved through no 4 sieve (4.75 mm) and mixed 

with water to achieve uniform water content.  The sandy loam soil was mixed with water 

to water content of 10% and the clay loam soil was mixed with water to water content of 

16%. The water contents were chosen to be on the drier side of the OMC. The samples 

for the JETs were prepared by packing the soil in a standard mold. Packing was done in 

three equal layers to achieve uniform dry density through the sample. Uniform packing 

was chosen to avoid layering effects as mentioned in Al-Madhhachi et al. (2013a). Sandy 

loam soil was compacted to dry density of 1.7 Mg/m3 and clay loam was compacted to 

dry density of 1.4 Mg/m3. These densities were chosen to be closest to maximum dry 

density while being convenient enough to achieve the desired uniform dry density. 

Attempts to achieve a higher dry density, especially for the clay loam soil resulted in non-

uniform compaction. The moisture content profiles of the remolded samples were 

assumed to be uniform through the depth of the mold. The moisture content profiles are 

denoted as M1S for the sandy loam soil and as M1C for the clay loam soil in Figure 3.1a 

and 3.1b, respectively. 

In order to increase the moisture content of the packed samples, the molds were 

encased in an apparatus as shown in Figure 3.2. The apparatus held a porous plate at one 

end and geo-textile at other end. This end was connected to water inlet. The porous plate 

ensured even contact with the soil surface and uniform flow through the cross section of 

soil sample. The geo-textile ensured flow of water out of the soil sample. The water was 

allowed to flow into the mold steadily under small hydrostatic pressure. This uniformly 
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changed the moisture content profile inside the mold. The mold was taken out of the 

apparatus after the water fully penetrated through the mold and water was observed at the 

other end. A core was driven through the mold and a sample of wetted soil was obtained. 

The core sample was cut into segments of 2 cm length and moisture content of each 

segment was measured using the gravimetric method. The average moisture content 

profiles of soil samples subjected to this procedure are shown as M2S for the sandy loam 

soil and M2C for the clay loam soil in Figure 3.1a and 3.1b. The average moisture 

content of sandy loam soil was raised to 17% and that of clay loam soil was raised to 

27%.    

The moisture content of the sandy loam soil was further raised by subjecting the 

remolded samples to a seepage column. The seepage column apparatus is described in 

Al-Madhhachi et al. (2013). The seepage was stopped after the sample was thoroughly 

saturated and ponding of water was observed on the surface. A core was driven through 

the mold and a sample of wetted soil was obtained. The core sample was cut into four 

equal segments and moisture content of each segment was measured using the 

gravimetric method. The average moisture content profiles of soil samples subjected to 

this procedure are shown as M3S in Figure 3.1a. The average moisture content of the 

remolded sample was 20%. 

The moisture content of the clay loam soil was further increased by simply 

immersing the remolded samples in water for 5 to 7 days. Then the samples were taken 

out, wrapped in plastic foil and stored in an ice-box for 24 hours. This was done to let the 

moisture concentration profile inside the soil mass to equilibrate to obtain as uniform 

moisture content profile as possible. Then a core was driven through the molds and a 
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sample of wet soil was obtained. The core sample was cut into five equal samples and 

moisture content of each segment was obtained using the gravimetric method. The 

average moisture content profiles of soil samples subjected to this procedure are shown 

as M3C in Figure 3.1b. The average moisture content of the remolded sample was 30%. 

Additional remolded samples were prepared for conducting the mini-JETs. 

Twenty mini-Jets were performed on the remolded samples with moisture profile M1S. 

Five mini-JETs were performed on the remolded samples with moisture profile M2S and 

M3S each. Five mini-JETs were performed on the remolded samples of clay loam soil 

with moisture content profiles M1C, M2C and M3C. 

The data obtained from each tests were analyzed to estimate the parameters of the 

linear excess shear stress equation and non-linear Wilson model equation. The parameters 

of the excess shear stress were estimated from three different solutions methods, the BL, 

SD and IT solutions using the spreadsheet tool developed by Daly et al (2013). Analysis 

of variance (ANOVA) was performed to identify difference between the erodibility 

parameters estimated at the three different moisture contents and pair-wise Tukey tests 

were performed to identify differences between erodibility parameters of each pair of 

moisture content profiles.  

 

Results  

Sandy Loam Soil 

Significant differences were observed between the erodibility parameters of the 

sandy loam estimated at three different moisture content profiles (Figure 3.3). The only 

exception was the kd estimated from IT solution kd-IT. A non-linear trend with increase in 

moisture content was observed for the kd estimated from the BL (kd-BL) and the kd-IT  as the 
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average of both parameters increased at M2S and decreased at M3S. The average kd 

estimated from the SD method (kd-SD) and the average b0 increased linearly with increased 

moisture content. A Nonlinear trend was observed in the average τc estimated by all the 

solution techniques and b1, as these parameters decreased at M2S and increased at M3S 

(Figures 3.3 and 3.5).  

 

Clay Loam Soil 

Significant differences were observed between the erodibility parameters of the 

clay loam soil estimated at the three different moisture content profiles (Figure 3.4). The 

average kd-BL and kd-IT decreased at M2C and increased at M3C (Figure 3.4a ).  The 

average kd-SD increased linearly with the moisture content and most noticeably it increased 

by about three times at M3C as compared to M1C (Figure 3.4c). The average b0 

increased two times from M1C to M2C and six times from M2C to M3C. The variability 

in b0 also increased at M3C.  The average τc estimated from all the solution techniques 

increased linearly with increase in moisture content (Figure 3.4). Average b1 also 

increased with increased moisture content (Figure 3.5d).  

 

Discussion 

The influence of the moisture content on the erodibility parameter depended on 

the soil type, the solution technique, and the erodibility parameter. The BL and IT 

predicted similar effects of the moisture content on kd on the same soil type. The effect 

predicted by SD was different from these two other solution techniques. The effect of the 

moisture content on τc was uniform across the solution techniques. 
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 A significant increase in τc-BL for both soil types at the highest moisture content 

was counter intuitive. The sandy loam soil was saturated and more fluid at M3S; the clay 

loam was also softer at M3C. Both soils were expected to have a lower threshold of τ for 

initiating particle detachment. Most previous studies predicted a negative correlation 

between kd-BL and τc-BL; in fact Hanson and Hunt (2007) limited their discussion to the 

influence of the water content on kd-BL assuming τc-BL to be function of kd-BL . The BL 

method estimated τc-BL as a function of Je which in turn was modeled by a hyperbolic 

function (equation 3.2). The Je estimated by the hyperbolic function was directly 

proportional to the final depth of scour hole, and the τc-BL was inversely proportional to 

the square of the estimated Je. On closer examination, it can be observed that the average 

final scour depth of JETs conducted at M3S (2.87 cm) was significantly lower than those 

conducted at M1S (4.01 cm) or M2S (4.75 cm). Similarly, the average final scour depths 

of JETs conducted at M3C (2.74 cm), M2C (3.07 cm) and M1C (3.56 cm) were in 

ascending order. ANOVA on the average of final scour depths of JETs showed that the 

final depths at each moisture content profiles were significantly different at  = 0.05. 

Hence, the slightly deeper scour holes of the JETs at M2S translated to lower τc-BL and 

shallow scour holes at M3S translated to higher τc-BL. The ascending order of the scour 

depths translated to ascending order of the τc-BL for the clay loam as well. Similar increase 

in τc-BL  with moisture content estimated from submerged JETs with moisture content was 

also observed by Hanson and Cook (2002). However, the authors also observed that the 

kd-BL decreased uniformly with the moisture content. It should be noted that the moisture 

content of samples in the Hanson and Cook (2002) study was increased before 

compaction.  
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 The kd-BL was estimated by solving for the least squared deviation between the 

observed scour time (t) and predicted time (tm) as defined in equation 3.4. The tm is a 

function of the parameters (kd-BL, τc-BL), the Je and the dimensionless scour depth. This 

translates to strong positive correlation between the kd-BL and overall rate of the scouring 

in a particular JET. The overall rate was defined as the ratio of total scour depth to total 

time of test. In the case of sandy loam soil, the overall rates at M1S, M2S and M3S were 

0.16 cm/min, 0.20 cm/min and 0.13 cm/min respectively. In case of the clay loam soil, 

the overall rates conducted at M1C, M2C and M3C were 0.07 cm/min, 0.06 cm/min and 

0.08 cm/min, respectively. Regazzoni et al. (2010) performed JETs on remolded samples 

of highly plastic and clayey soil and compared the estimated kd-BL and τc-BL with the same 

estimated for remolded samples which were saturated after the compaction. The authors 

reported higher kd-BL and τc-BL for the saturated samples in comparison to the unsaturated 

samples. These results are consistent with the results in this study. However, the authors 

did not present any evidence of the saturation and uniformity of the moisture content 

profiles. 

The τc-SD was estimated as the measure of the  at which the erosion rate was zero 

and kd-SD was the rate of change of the erosion rate with the applied  (Figure 3.6). Hence, 

the final depth of the scour holes was also most influential in estimation of the τc-SD and 

this fact is observed in the average values of τc-SD estimated at M1S, M2S and M3S as 

well as those estimated at M1C, M2C and M3C. The τc-SD did not depend on the square of 

a equilibrium depth and hence the variability of τc-SD was significantly less than the 

variability of τc-BL (Figure 3.3d and Figure 3.4d). The kd-SD was mostly influenced by the 

data points recorded early in the test when the erosion rate was most rapid (Figure 3.6).  
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 The trend of τc-IT closely resembled the trend of τc-SD. Estimation of τc-IT also 

depended on the final depth of the scour hole at the end of the each JET as the IT 

assumes the final depth of the scour hole to be the equilibrium depth and sets an upper 

limit on the τc . Both kd-IT and the τc-IT were then estimated by solving for the least squared 

deviation between the observed scour time (t) and predicted time (tm) as defined in 

equation 3.4. This procedure produces estimated τc-IT higher than τc-SD. The procedure is 

also responsible for the trend of kd-IT which resembles the trend of the kd-BL. Hence, the kd-

IT of both the sandy loam and clay loam soil were dependent on the overall rates of the 

JETs. However, the kd-IT was a magnitude higher than the kd-BL as IT did not predict the Je 

based on the hyperbolic function. 

The final depth of scour and the rate of erosion at high applied  are most 

influential in determining the b1 and b0 for both soils (Figure 3.7). The nonlinear model 

predicted the sandy soil to be slightly more erodible at M2S. At M3S, increase in b0 

suggested the increase in erodibility of soil, but simultaneous increase in b1 also 

suggested a higher threshold for initiating detachment. The simultaneous increases in b0 

and b1 parameters for the clay loam soil also suggested a similar influence of moisture 

content on the more cohesive soil.  

The increase in erodibility of the sandy soil at M2S was predicted by all the 

solution techniques of the linear model as well as the non-linear model. This prediction 

was consistent with observation by Hanson and Hunt (2007) where the values of sandy 

soil increased when packed at water contents above the OMC. The can be attributed to an 

increase in pore water pressure decreasing the inter particle cohesion. At M3S, the pore 

water pressure further increased and inter-particle cohesion decreased. The rate of erosion 
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increased but there was also simultaneous increase in entrainment of particles in the fluid 

flow. This decreased the eroding capacity of water. The resettlement of heavier sand 

particles also increased as the applied  decreased towards the end of the tests. Although 

the initial erosion rates were greater than that M1S or M2S, the overall rate of erosion 

decreased due to shallow scour holes. This caused the BL and IT solution to predict lower 

kd at M3S. The scour depth and the nonlinear model, however, reflected the increase in 

the initial rate of erosion, when the applied  was highest, in their higher values of the kd 

(Figure 3.6). 

The decreased erodibility of the clay loam soil at M2C compared to that at M1C 

and predicted by BL and IT solutions can be attributed to small increase in cohesion 

between the soil particles. The increase in cohesion was discernible at low  towards the 

end of the test. At M3C, however, the clay soil becomes more plastic and more 

deformable. Increase in τc at M3C can be attributed to increase in plasticity. Simultaneous 

increase in pore water pressure increased the kd as well. The SD method and non-linear 

model both predicted higher kd at M3C as the estimation of these parameters was most 

influenced by high erosion rates predicted at high  at this moisture content.  

It is also interesting to observe the disparity between the increase in water 

contents and magnitude of changes in the erodibility parameter. For example, the average 

water content of sandy loam soil increased by 7% from M1S to M2S and about 3% from 

M2S to M3S. However, larger and significant differences in the erodibility parameters 

were observed between M2S and M3S. Similarly, the average water content of clay loam 

soil increased by 9% from M1C to M2C and by 3% from M2C and M3C, but more 

significant differences in the magnitudes of the erodibility parameters were observed 
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between M2C and M3C. This can be attributed to changes in soil structure at the highest 

water contents. The sandy loam soil was subjected to steady water flow at small positive 

pressure in a confined space to raise its water content to M2S but seepage force was 

applied to raise its water content to that of M3S. The seepage force can be expected to 

break down the internal soil structure more than that of a slow steady infiltration. 

Similarly, the clay loam soil was also subjected to slow steady flow in a confined space 

under small positive pressure in raising its water content to M2C. No swelling was 

observed in the remolded sample due to this treatment. However, when moisture content 

was raised to M3C, it was simply left to saturate under higher positive pressure in an 

unconfined space. This allowed the clay loam soil to swell. Swelling most likely changed 

the internal structure of the soil making it more erodible. 

The results presented in this study allow us make an comparison of the solution 

techniques used to derive the parameters of the linear equation. As it has been discussed, 

the BL and IT iterate to find the least squared deviation between the time to reach the 

equilibrium depth, and the SD solution iterates to find the least squared deviation 

between the erosion rates to estimate the parameters. Hence, the kd-SD is most influenced 

by the data collected at high applied . However, the kd-BL and kd-IT take into account more  

data collected at low  (Figure 3.7). This might be more helpful in discerning the subtle 

influences on erodibility, especially of more cohesive soils, when there are subtle changes 

in moisture content as seen Figures 3.4a and 3.4e. The SD does not possess this 

capability. 

This suggests that there might not be one most appropriate solution technique and 

the choice of solution technique should depend on the application. Many researchers have 



 

61 

concluded that BL severely under predicted the c (Simon et al, 2010; Cossette et al, 

2012; Daly et al, 2013) and SD and IT methods were developed as alternatives to BL 

method. The choice between SD and IT technique however does not seem to be so clear. 

The SD technique follows the literal definition of the excess shear stress equation and 

might be more suitable when comparisons have be made with the parameters derived 

from other experimental techniques such as the flume and the HET. The BL and IT 

techniques have their advantages as well. 

 

Conclusions  

Moisture content is broadly identified as one of the major influencing factors in 

the erodibility of cohesive soil. However, few studies have been able to isolate the effect 

of moisture content on the erodibility. This study conducted mini-JETs under controlled 

laboratory conditions on two soil types of contrasting texture. A set of controlled mini-

JETs were conducted by packing sandy soil and clay loam soil at varying initial moisture 

content profiles.  The moisture content profiles of packed samples of each soil were 

raised from the initial packing moisture content to higher moisture content profiles by 

allowing a steady flow of water under moderate positive pressure. The moisture content 

of the packed sandy loam soil was increased further by subjecting it to seepage force and 

the moisture content of the clay loam soil samples were increased further by simply 

allowing them soak in water for over a week. Mini-JETs were performed on the soil 

samples. The data from the mini-JETs were analyzed to derive the parameters of linear 

model using three different solution techniques and also to derive the parameters of the 

non-linear model. The estimation of the parameters varied with soil type and the solution 

technique. The BL and IT solution techniques reflected the change in overall erosion rate 
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due to changes in the moisture content in their estimation of the kd parameter. The kd-BL 

and kd-IT of the sandy loam increased at M2S and decreased at M3S. Hence, the sandy 

loam soil was predicted to be less erodible at the highest moisture content. The kd-BL and 

kd-IT of the clay loam soil decreased at M2C and then increased at M3C. The BL and IT 

solution methods predicted a decrease in the erodibility of the clay loam soil with 

increased moisture content alone. The SD solution reflected the changes in erosion rate at 

high values of τ in the estimation of the kd parameter and predicted both the soil to be 

more erodible with increased moisture content. The non-linear model also made similar 

predictions as the SD solution.  The τc and b1 increased significantly at the highest 

moisture contents of both soil types. This was attributed to shallower scour holes of the 

JETs conducted at those moisture content profiles. The shallow scour holes were caused 

by increased resettlement of the particles in case of the sandy loam soil and increased 

plasticity in case of the clay loam soil. The change in internal structure of sandy loam soil 

at M3S and swelling of clay loam soil at M3C caused significant increases in b0 and kd-SD. 

Increasing moisture content of packed soil influences the erodibility of the soil and the 

influence can be detected in the estimated of the parameters of the linear and non-linear 

models. The detection of the influence of moisture content also varied with the solution 

techniques used to derive the parameters of the linear model. Hence the change in 

parameters of linear model should be interpreted according to the solution technique. 

This study attributed this phenomenon to a change in the internal soil structure at those 

moisture contents. 
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Figure 3.1. Moisture content profiles of the soil samples used for the mini-JETs
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Figure 3.2. (a) Schematic of the apparatus used for raising the moisture content of the 

remolded soil samples to M2S and M2C. (b) Photograph of the apparatus setup. 

 

Remolded Soil 

Sample 

Plexiglas End Piece 
Water source 

Porous Plate 

Porous Geo Textile 

(a) (b) 



 

65 

 

Figure 3.3. ANOVA and Pair-wide Tukey tests performed on erodibility parameters of the linear 

model for the sandy loam soil derived from mini-JETs conducted at three different moisture 

contents (M1S, M2S and M3S as defined in Figure 1). Presence of same alphabet (A, B and C) 

on top of the box plots denotes lack of significant difference between each pair of moisture 

contents. BL= Blaisdell solution, SD = Scour Depth Solution and IT = Iterative solution.
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Figure 3.4. ANOVA and Pair-wide Tukey tests performed on erodibility parameters of the linear 

model for the clay loam soil derived from mini-JETs conducted at three different moisture 

contents (M1S, M2S and M3S as defined in Figure 1). Presence of same alphabet (A, B and C) 

on top of the box plots denotes lack of significant in difference between each pair of moisture 

contents. BL= Blaisdell solution, SD = Scour Depth Solution and IT = Iterative solution.
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Figure 3.5. ANOVA and Pair-wide Tukey tests performed on erodibility parameters of the 

nonlinear model for the sandy loam soil and clay loam soil derived from mini-JETs conducted at 

three different moisture contents (M1S, M2S and M3S as defined in Figure 1). Presence of same 

alphabet (A, B and C) on top of the box plots denotes lack of significant difference between each 

pair of moisture contents. BL= Blaisdell solution, SD = Scour Depth Solution and IT = Iterative 

solution.  
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Figure 3.6. Influence of the moisture content profiles (M1S, M2S and M3S as defined in Figure 1) on the fit of the observed data to 

the linear model. BL= Blaisdell solution, SD = Scour Depth solution, and IT = Iterative solution.  
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Figure 3.7. Iinfluence of the moisture content profiles (M1S, M2S and M3S as defined in Figure 1) on the fit of the observed data on 

the non-linear model. 
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Table 3.1. Properties of soils used for the JETs. 

  Soil texture  Standard Compaction 

Source 
USCS 

classification 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Plasticity 

Index 

Maximum 

Density 

(Mg m-3) 

Optimum 

water 

content (%) 

Cow Creek  Sandy loam 54 

 

38 

 

8 Non-plastic 1.78 15 

Five Mile 

Creek  
Clay loam 30 33 36 6 1.61 20 
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CHAPTER 4  
 

INVESTIGATION OF DETACHMENT CHARACTERISTICS OF VEGETATED SOIL 

USING LABORATORY MINI-JETS 

 

Abstract 

The influence of vegetation on flow and sediment dynamics at various spatial and 

temporal scales has been well documented. Vegetation has been proven as one of the 

most effective measures in streambank stabilization. Traditionally, research on the 

influence of vegetation roots on streambank stabilization has focused on mechanical 

reinforcement and reduced applied shear stress due to above ground biomass. Few studies 

have investigated the effect of roots on fluvial detachment of sediment. This study 

conducted 36 mini-JETs on bare soil samples and 29 mini-JETs on vegetated soil 

samples and estimated the parameters of the linear excess shear stress model and a 

nonlinear detachment model (Wilson model). This study also investigated the 

correlations between parameters of the two models and root characteristics. The root 

traits were found to be highly correlated to each other. This is indicative of interaction 

effect of different root traits. The τc and b1 parameters were on average higher for the 

vegetated samples than the bare soil samples. The b0 and kd parameters were negatively 

related to root diameter through power functions. Significant correlations were observed 

among the parameters of the excess shear stress model and the nonlinear detachment 
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model; especially high correlation was observed between τc and b1 for the vegetated 

samples. Mini-JETs can be a useful method to study detachment characteristics of 

vegetated soils and should be expanded to other soil types and vegetation. 

 

Introduction 

A delicate feedback exists between riparian vegetation and fluvial systems which 

determines the form and function of the fluvial environment (Reinhardt et al., 2010; 

Darby, 2010; Gurnell, 2013). The influence of vegetation on flow and sediment dynamics 

at various spatial and temporal scales has been well documented (Curran and Hession, 

2013). The influence of vegetation on the sediment dynamics of a river determines the 

stability of the banks and supply of sediment load in the river (Lawler 2008, Wynn and 

Mostaghimi, 2006). Streambank erosion, a natural process (Florsheim et al., 2008) can be 

intensified by various anthropogenic activities (Goodwin et al., 1997; Trimble, 1997; 

Belsky et al., 1999). This can lead to significant impairment of natural river channels 

(Simon et al., 2000; Fox and Wilson, 2010).   Recent restoration efforts have focused on 

bank stabilization to mitigate such detrimental effects (Bernhardt et al., 2005; Palmer et 

al. 2005).  

Vegetation has been proven as one of the most effective measures in streambank 

stabilization (Thorne, 1982; Simon and Darby, 1999). The above ground biomass 

intercepts the precipitation and protects the soil from detachment on impact (Osborn, 

1954), adds to the roughness and resistance against flow, and alters the velocity profile 

and shear stress patterns (Curran and Hession, 2013). Loss of soil due to splash and rill 

erosion has been observed to decrease exponentially with percentage of vegetation cover 

(Poesen et al., 1994). Vegetation roots are known to have a wide range of influence on 
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various intrinsic properties of soil such as bulk density (Lipiec, 1990), aggregate stability 

(Amezketa, 1999), infiltration capacity, and shear strength (Gary and Sotir, 1996). These 

intrinsic properties are important factors which contribute to bank stability. Traditionally, 

the focus of utilizing vegetation in streambank stabilization has been on bio-mechanical 

reinforcement of the roots. As roots are strong in tension, roots act similar to steel 

reinforcement in concrete structures and provide resistance against shear (Waldron, 1977; 

Wu et al., 1979; Andersen and Richards, 1987; Gray and Leiser, 1987; Simon and 

Collison, 2002).  

The bio-mechanical reinforcement provided by the roots was initially modeled as 

added shear strength in a modified form of the Coulomb equation (Waldron, 1977). It 

was assumed that that all the roots extended vertically and provided resistance against 

shearing in a horizontal plane. The Coulomb equation was modified to following form: 

tanNS c S        (4.1) 

(sin cos tan )( )r
r

A
S T

A
         (4.2) 

where S is the shearing resistance of the soil, c is the cohesion, σN is the normal stress 

applied on shear plane, ϕ is the internal angle of friction, Tr is the tensile strength of the 

roots and Ar/A is the ratio of root area and area of the shear plane. Gray (1974) carried out 

a sensitivity analysis and demonstrated that the term (sinθ+cosθtanϕ) varied from 1.0 to 

1.3 for normal values of the angles. Wu et al. (1979) adopted value of 1.2 to simplify 

equation (4.2). The final form of the simple perpendicular model for root reinforcement 

was as follows:  
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Waldron and Dakessian (1981) suggested this equation overestimated the 

reinforcement provided by the roots as it assumes that all the roots in shear plane are 

mobilized to their maximum strength during shearing. This hypothesis of overestimation 

was verified by various field and laboratory tests carried out by Pollen et al. (2004). The 

authors pointed to the fact that the full tensile strength of the roots is mobilized only at 

high displacement of soil mass and full tensile strength of roots is not utilized before the 

failure of the soil mass. Pollen and Simon (2005) suggested using a fiber bundle model 

called RipRoot which assumes that roots with in soil mass have different tensile strength 

and the load is redistributed among the remaining intact roots. This model accounts for 

progressive failure of roots and was found to be more accurate than the perpendicular 

model suggested by Wu et al. (1979). Other processes like straightening of the roots to 

overcome their tortuosity also take place within the root permeated soil mass. These 

processes mobilize the energy to frictional bonds between the root and soil mass. In order 

to account for such processes, Pollen (2007) recognized two basic modes of root failure: 

root breaking and root pullout. The author measured the pullout forces as a function of 

the shear strength of the soil matrix. The study showed soil moisture conditions, root 

diameter and shear strength of soil matrix determined whether the tensile strength of 

roots were mobilized or they simply pulled out without contributing to streambank 

stabilization.   

Most of the research on the influence of vegetation roots on streambank 

stabilization have been focused on mechanical reinforcement and estimation of ΔS 

(Simon and Collison, 2002; Fan and Su, 2008; Adhikari et al., 2013). Some studies have 

incorporated the Riproot model in bank stabilization models like Bank Stability and Toe 
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Erosion Model (BSTEM) to investigate the contribution of roots to the factor of safety 

(Pollen-Bankhead and Simon, 2009; Polvi et al., 2014). However, all of these studies 

have ignored the effect of roots on hydrologic and hydraulic processes that play an 

important role in stability of the streambank. Roots exert significant control on the 

subsurface moisture condition of the streambanks, create and maintain macropores and 

determine seasonal variations in pore water pressure and matric suction of soil (Pollen-

Bankhead and Simon, 2010). The hydraulic forces in a channel first act on the toe  and 

undercut the banks which leads to instability. The mass failure of banks is caused by the 

initial fluvial erosion of the bank materials (Carson and Kirby, 1972; Thorne, 1982). 

Vegetation roots have been successfully employed to protect the bank toe and reduce 

erosion of the exposed bank face. However, quantification of the erosion reduction has 

proven to be difficult (Pollen-Bankhead and Simon, 2010). 

Most of the research how roots on influence fluvial erosion have focused on 

deriving statistical relationships between the particle detachment rate with few specific 

roots traits. Gyssels et al. (2005) provided a list of studies which tried to incorporate the 

effect of roots by expressing erodibility coefficients or changes in the erodibility 

coefficient as function of mean root diameter and/or root length density. In this review 

study, Gyssels et al. (2005) also pointed to a few studies on  concentrated flow erosion, 

which observed the effect of root diameter, root length density and root type (tap root or 

fibrous) on erodibility coefficients. However, these studies failed to develop any 

statistical or predictive models. Flume experiments have been conducted to quantify the 

effect of roots on fluvial erosion. Da Baets et al. (2010) report results of a flume 

experiment carried out on 192 bare and 192 root permeated topsoil samples. The authors 
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measured the absolute sediment detachment rate using an excess shear stress type 

equation which had an erodibility coefficient (kc). They developed several regression 

models which predicted the kc coefficient as function of root diameter, soil bulk density 

and soil moisture. The authors defined a relative sediment detachment rate as the ratio of 

absolute detachment rates of bare soil and root permeated soil. They performed multiple 

regression analysis and developed statistical models which predicted relative sediment 

detachment rates as function of root diameter and root density along with other soil and 

flow properties. The authors also observed differences in erosion reducing effects for tap 

root systems versus fibrous root systems. The authors concluded that model validation 

contained unexplained variance and called for a process-based model.  

A similar study carried out by Burylo et al. (2012) focused on roots of two grass 

species and one tree species. They also used relative sediment detachment rate as a 

measure of the erosion reducing effect of roots. The authors of this study investigated a 

larger set of root variables which influenced the soil erosion rates. These root traits 

included root to shoot biomass ratio, root density, root volume, root mean diameter, root 

length density, root surface area, specific root length, root tissue density, percentage of 

fine roots and root tensile strength. One way analysis of variance and analysis of co-

variance was used to investigate variance in relative sediment detachment rate and the 

root traits. The authors also performed a principle component analysis (PCA) on all 

different root traits of the three species. The study identified mean root diameter and 

percentage of fine roots (percentage of root lengths with diameters less than 0.5 mm) to 

be most influential in relative sediment detachment rate. The study concluded that 

relative sediment detachment rate increased with increased mean root diameter and 
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decreased with an increase in percentages of finer roots. This also implied that grass 

species with smaller mean root diameters and a higher percentage of finer roots were 

better at resisting erosion. 

Most of these studies have called for a more mechanistic and process-based 

approach to quantify the detachment reducing effects of roots (De Baetes and Poesen., 

2010; Burlyo et al., 2012). Fluvial erosion was quantified with empirical models like the 

excess shear stress model. The application of these models is limited as they are specific 

to particular vegetation and site conditions.  

Erodibility equations provide process-based approach to estimate soil detachment 

rates. The most frequently used erodibility model is known as the excess shear stress 

equation (Partheniades, 1965). This model states that the erosion rate is proportional to 

the difference between the applied shear stress and the critical shear stress: 

   ( )a

r d ck        (4.4) 

where εr is the detachment rate (cms-1), kd is the coefficient of erodibility (cm3N-1s-1), τ is 

the applied shear stress (Pa), τc is the critical shear stress (Pa), and a is an exponent. The 

τc is the minimum pressure head required to initiate particle detachment. The kd and τc are 

collectively called the erodibility parameters of the excess shear stress equation. The 

value of the exponent (a) is usually assumed to be one (Hanson et al., 2002)  

The model parameters (kd, τc) can be estimated experimentally using various 

techniques like flumes, hole erosion tests and jet erosions tests (JETs). The JET is a 

relatively novel technique used in studying the erosion properties of a soil specimen. It 

was developed by the USDA-ARS in Stillwater, OK (Hanson et al., 1990). The 

apparatus, general test methodology and procedure to analyze the data for obtaining 
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erodibility parameters of the excess shear stress equation is described in detail by Hanson 

and Cook (2004). A jet of water generated by a constant pressure impinges on a soil 

surface in submerged conditions. The JET exerts a certain shear force on the soil surface 

creating a scour hole. The depth of the scour hole is measured periodically and recorded. 

This observed data is then fit to equation (4.4) to estimate the respective erodibility 

parameters. There are three approaches in analyzing data from JETs to estimate the 

erodibility parameters of the excess shear stress equation. The most popular method of 

analysis, called Blaisdell’s solution (BL), was developed by Hanson and Cook (1997) and 

Hanson (2004). The solution method was based on principles of fluid diffusion presented 

by Stein and Nett (1997) and a hyperbolic-logarithmic function modeling progression of 

depth of scour hole developed by Blaisdell et al. (1981). Alternatives to Blaisdell’s 

solution have been suggested recently (Simon et al., 2010; Daly et al., 2013). One of 

these solution methods is called scour depth solution (SD). This method simultaneously 

searches for kd and τc which provide the best fit of observed JET data on the scour depth 

versus time curve predicted by the excess shear stress equation. The other approach was 

presented by Simon et al. (2010), and referred to as the iterative solution (IT). This 

method is initialized using the values of erodibility parameters determined by Blaisdell’s 

solution. An upper bound on τc is fixed to prevent it from exceeding the value 

corresponding to equilibrium depth. Then the values of τc and kd which minimize the root 

mean square deviation between measured and predicted dimensionless times is searched 

for iteratively. 

Two versions of JETs are in existence: the original JET and the mini-JET. The 

mini-JET is the miniaturized version of the original JET apparatus. The use of mini-JET 
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device was first described by Simon et al. (2010). A comparative study of the original 

JET and mini-JET devices in laboratory conditions was later conducted by Al-Madhhachi 

et.al. (2013a). The study concluded that, with certain adjustment coefficient to account 

for the difference in size of the nozzles of the two JET devices, original JETs and mini-

JETs provided equivalent measures of the erodibility coefficients. 

Another approach to estimate the sediment detachment rate is a mechanistic 

model called Wilson’s model (Wilson, 1993a, 1993b). Wilson’s model was developed to 

predict detachment of cohesive soil particles or aggregates on the basis of balance of 

forces and moments which drive and resist detachment. The mathematical expression for 

the model is as follows: 

1
0 1 exp{ exp(3 )}

r

b
b 



 
    

 
   (4.5) 

where ɛr is the particle detachment rate (cms-1), τ is the applied shear (Pa), and Wilson’s 

model has two parameters: b0 (gm-1s-1N-0.5) and b1 (Pa). These parameters, unlike 

parameters of the excess shear stress equation, are mechanistically defined.  The model 

was found to predict detachment as well as or better than the excess shear stress model. 

Al-Madhhachi et al. (2013b) incorporated the hydraulics of both the original and 

mini-JET device into Wilson’s model and demonstrated that the parameters of Wilson’s 

model can also be determined from the experimental data obtained from the JETs. The 

observed particle detachment rate data was fit to equation (4.5) by minimizing the sum of 

squared differences between observed and predicted scour depth. 

Mini-Jets have proven to be popular for investigating the erosion properties of soil 

in situ. They also have been employed in laboratory settings on remolded samples to 
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investigate the effects of soil properties such as packing moisture content and packing 

density. However, there are limited studies which have conducted JETs on root 

permeated soils. Pollen-Bankhead and Simon (2010) carried out 20 JETs on root 

permeated soil in a switch grass plot using the original JET device. The authors reported 

linear power relationships between the volume of the scour hole and root volume, root 

length density and root biomass. The results of this study showed that the JETs can be 

used to show the influence of roots on the scouring. However, they did not present any 

findings on the parameters of the erodibility equations and their correlation with the root 

properties. This limits the possibility of using the JET derived parameters for modeling 

the detachment of root-permeated soil over certain range of the applied shear stress. 

The main hypothesis of the study was that the erosion characteristics of root 

permeated soils could be distinguished from bare soil in terms of parameters of the 

erodibility equations. These parameters can be derived from mini-JETs conducted in 

controlled laboratory settings. The objectives of the study were as follows: 

1. To demonstrate significant differences in the erodibility coefficients of root 

permeated soil versus bare soil. 

2. To investigate the correlations between erodibility coefficients of two different 

sediment detachment models. 

3. To investigate the correlations between root characteristics and erodibility 

coefficients. 

 

Methods and materials  

Mini-JETs were conducted in the laboratory to estimate erodibility coefficients. 

Soil was obtained in bulk from banks of Cow Creek in Stillwater, Oklahoma. It was air 
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dried and sieved through a no. 4 sieve (4.75 mm). The particle size distribution of the soil 

was analyzed following ASTM standard D422. Liquid limit and plastic limit of the soil 

were performed following ASTM standard D4318. Standard compaction tests were 

performed on the soils using ASTM standard D698A (ASTM, 2006). The basic soil 

properties are outlined in Table 4.1. 

Samples were prepared by compacting the soil in standard proctor molds at 

constant moisture content of 10% and dry density of 1.5 Mg m-3. The samples were tested 

in four batches. In each batch, a few molds were left bare and remaining molds were 

vegetated with seeds of Sprangletop grass (Leptochola dubia). Sprangletop is grass 

species native to Oklahoma and has been extensively used in streambank restoration 

projects (Lovern et al., 2013). The seeds were sown in the periphery of the samples as the 

middle was left bare at the surface for conducting JETs. Different numbers of seeds were 

sown in each vegetated sample in various patterns to achieve variable root densities 

(Figure 4.1). The samples were then placed in a greenhouse to allow the grass to grow. 

The bare samples were placed alongside the vegetated samples so that they were 

subjected to the same environmental conditions as the vegetated samples. 

The vegetated samples were kept in the green house until the roots penetrated 

through the bottom of the molds. The above-ground biomass was then cutoff at the soil 

surface in order to not disturb the hydraulics of the submerged JETs. The roots were 

recovered from the vegetated samples by washing and sieving after the JETs. The 

recovered roots were scanned using WinRHIZOTM (Regents Instruments Inc.,2014) 

software to determine average root diameter (D), total root length (L), root surface area 

(SA) and root volume (RV). The percentages of total length (FL), surface area (FSA) and 
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volume (FV) of roots with less than 0.5 mm diameter were determined as fine root traits. 

Examples of the scans are shown in Figure 4.2. Then three of the most developed root 

fibers were chosen from each sample and the peak load required to break the individual 

fiber was measured using an INSTRON universal testing machine. The median of these 

three values were recorded as the peak load (PKL). The tensile strength (TS) of the root 

was calculated by dividing the PKL by the average cross sectional area of the roots. The 

measured root characteristics are presented in Table 4.2. The data from the JETs were 

analyzed using a spreadsheet tool developed by Daly et al (2013). The model parameters 

derived from Blaisdell solution were reported as kd-BL and τc-BL, and model parameters 

derived from Scour depth solution were reported as kd-SD and τc-SD. The parameter values 

derived from iterative method were not reported as they were found to be similar to 

parameters derived from scour depth method in magnitude. 

ANOVA was performed to test the significant differences in the erodibility 

parameters estimated between the batches. The parameters of the erodibility equations 

derived from all the JETs were not normally distributed. The non-parametric Mann-

Whitney rank sum tests were performed to determine the statistical differences in the 

model parameters between the bare and vegetated samples. The Mann-Whitney rank sum 

test was performed on each batch of samples as well as the compiled data. The median 

values of each model parameter along with the interquartile range were reported. 

Pearson’s correlation coefficients (r) were calculated to investigate correlations among 

the erodibility parameters as well as the correlations between erodibility parameters and 

root traits. 
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Results and Discussion 

The erodibility parameters of the samples in different batches differed 

significantly. Although the samples were prepared in similar conditions, the season and 

time period in which they were in the greenhouse differed. Although the efforts were 

made to maintain consistency in watering and tending of the samples, the samples are 

bound to develop differently. The difference in the batches can be attributed to difference 

in evolution of internal structure of soil samples in response to factors like water 

absorption, temperature and seasonality. Hence, the Mann-Whitney rank sum test was 

performed on the results obtained from each batch separately (Table 4.3). However, the 

differences between the batches also illustrate the influence of extrinsic factors in 

generating high degree of variability in the erodibility characteristics of soil. The role of 

these factors can be expected to be even more dominant in natural conditions. Mann-

Whitney rank sum test was also performed on the combined data set to test the effect of 

the vegetation while taking the inherent variability into consideration (Table 4.3).  

The τc and b1 values were higher for the root permeated samples in most batches 

and in the combined data set (Table 4.3). The kd and b0 values were lower for the 

vegetated soil in all batches except batch 3 in which the kd-SD and b0 values increased 

significantly (p =0.05) for the vegetated soil. This was an anomalous observation. The 

combined data set did show decreased kd values for the vegetated samples. The b0, 

however, increased for the combined data set. This observation was counter-intuitive. 

However, variability in b0 was observed to be higher than any other parameter. Such 

variability in b0 was consistent with observations of other studies (Daly et al 2015; 

Khanal et al 2016). 
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The kd-BL and kd-SD were positively correlated with each other as well as to the b0 

with p-values less than 0.01 (Table 4.4). The τc-BL and τc-SD were also found to be highly 

correlated with each other (r = 0.9) and with the b1 parameter (r = 0.9) and significant (p 

< 0.01). The kd and τc estimated from each solution routine were negatively correlated (r 

= 0.46, 0.49) and significant (p < 0.01). This is comparable to correlation trends reported 

by Simon et.al. (2010) and Al-Madhhachi et al (2013a). The parameters of the Wilson’s 

equation (b0 and b1) were not found to be significantly correlated (Table 4.4). 

The kd-BL and kd–SD were negatively correlated to D, L, RV and    (Table 4.5). The 

correlation coefficients were observed to range from -0.2 to -0.49. The correlations (p 

<0.01) between kd-BL and D and between kd-BL and SA (p < 0.03) were statistically 

significant. The kd-BL and kd-SD were found to be positively and strongly correlated to 

percentage of finer root traits with p-values less than 0.01. The b0 was negatively 

correlated with D (p < 0.05). Exploring the correlations further revealed that relationships 

between b0 and D, kd-BL and D and kd-SD and D were best explained by linear power 

functions. This is consistent with other studies which have correlated soil detachment 

rates and scour volumes with root diameters (De Baets et al., 2006; Pollen-Bankhead and 

Simon, 2010). The relationships between erodibility parameters and D can be especially 

useful in simulating the effect of roots on fluvial erosion in process based models as these 

relationships express such effects in more quantitative terms. 

The τc and b1 parameters were not significantly correlated to any of the root traits. 

However, as noted earlier, these parameters were consistently higher for the root 

permeated soil and the most easily distinguishing factor between the bare and vegetated 

samples. This could be either due to the higher compaction of the vegetated samples or 
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improvements in soil structure due to vegetation. Unfortunately, we could not test the 

vegetated samples for the compaction or the structural stability without destroying the 

samples in this study. Nevertheless, this sets one of many directions towards which this 

study can be expanded. 

The b0 had significant positive correlation with the percentage of finer root traits 

with r = 0.4 and p-values less than 0.05 (Table 4.5). Burlyo et al (2012) reported negative 

correlation between the relative detachment rate and percentage of finer roots and 

concluded that a higher percentage of fine roots contributed significantly to reducing soil 

detachment. This contradicts the observations made in this study as a positive correlation 

between kd and b0 parameters and percentage of fine root traits was observed. However, 

the variability in kd and b0 parameters in this study also must be noted.   

It is interesting to note that there was no significant correlation observed between 

the TS of the roots and the erodibility parameters of both models. In root reinforcement 

models, the cohesion provided by the roots is a function of TS (Wu et al., 1979; Pollen, 

2007). Tensile strength of the roots has been the most prominently measured root trait in 

studying mass stabilization due to roots. However, this study shows that TS of the roots 

may not be significant in adding resistance against particle detachment due to fluvial 

forces.  

The root traits were highly correlated with each other (Table 4.6). Correlations 

coefficients between D, L, SA and RV were observed to be range from 0.70 to 0.95 and all 

the correlations were statistically significant (p < 0.01). A linear power relation was 

observed between the TS and D (Figure 4.4). This observation is in agreement with 

observations made by most of similar studies (Adhikari et al, 2013; Burlyo et al 2012).  



 

86 

The fine root traits (FL, FSA, FV) were found to be negatively correlated with D, L and 

SA. All of these correlations were statistically significant. This is indicative of the fact 

that the percentage of the finer root decreases as the roots get more developed. This 

explains the positive correlations between b0 and kd and the fine root traits. Such 

correlations exist because a high percentage of fine roots were indicative of less 

developed roots and hence higher erodibility coefficients of the soil samples.  

This study has limitations of scale. The vegetation was grown in molds of 10 cm 

diameter. This imposed restrictions on the growth and development of the roots limiting 

their scale. Hence, the ranges of root traits (L, D, SA) are limited in comparison to the 

natural environment. Similarly, the mini-JETs were conducted in controlled laboratory 

settings. Translating the findings of laboratory studies to the natural field conditions is 

challenging. However, a recent study has observed that JETs conducted in controlled 

laboratory conditions can serve as useful guides for the field tests (Khanal et al., 2016).  

This scope of this study was also limited to the influence of the roots. However, 

there are other hydrologic and hydraulic processes active in the soil matrix which may 

cause the soil to erode differently (Pollen-Bankhead and Simon, 2010). These processes 

can explain some of the anomalous observations made in this study. In this study we did 

not monitor the hydrologic changes such as matric suction and pore-water pressure in 

samples. Future studies should consider the hydrologic changes and develop ways to 

monitor aforementioned factors. 

 

Conclusions 

This study conducted 36 mini-JETs on bare soil samples and 29 mini-JETs on 

vegetated soil samples and estimated the parameters of the excess shear stress model and 
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Wilson model. The results showed that the mini-JETs conducted in controlled laboratory 

conditions can be useful in detecting and quantifying the influence of the roots on 

erodibility parameters of vegetated soil. This study also investigated the correlations 

between parameters of two different models and correlations between different root traits 

and these parameters. Significant correlations were observed among the parameters of the 

excess shear stress model and the Wilson’s model; especially high correlation was 

observed between τc and b1 parameters for the vegetated samples. Root traits like average 

diameter, length and surface area were negatively correlated with the kd and b0 

parameters. The percentage of finer roots was positively correlated with these parameters. 

Linear power relationships between the kd and root traits, especially with root diameter, 

were observed. Despite some limitations, results obtained in this can prove to be useful in 

simulating the erodibility of root permeated soil in process based models as the 

parameters of the erodibility models can be adjusted in relation to the root properties. 

Current practice of neglecting the effect of roots on particle detachment and considering 

only mass stability ignores one of the most important processes and introduces 

considerable uncertainty in design and analysis of streambank erosion. Findings of this 

study are important as first steps towards incorporating the effect of roots in process-

based models of fluvial erosion. Continuing this study with different vegetation and soil 

types in larger samples may alleviate the limitations of scale. A vegetation type which 

can develop roots faster in limited time will be beneficial.  
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 Figure 4.1. Samples prepared for JETs. Bare samples were used as controls 
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Figure 4.2. Examples of scanned images of roots. These images were analyzed using WinRhizo to obtain root 

characteristics 
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Figure 4.3. Non-linear relationship between the root diameter and (a) b0, a parameter of Wilson’s model, (b) kd  of excess shear 

stress equation derived from the blaisdell’s solution and (c) kd  of excess shear stress equation derived from the scour depth 

solution. 
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Figure 4.4. Non-linear relationship between the root diameter and tensile strength of the 

roots. 
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Table 4.1. Soil properties used for preparing the JET samples 

  Soil texture  Standard Compaction 

Source 
USCS 

classification 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Plasticity 

Index 

Maximum 

Density 

(Mg/m3) 

Optimum Moisture 

Content (%) 

Cow Creek  Sandy loam 54 38 8 Non-plastic 1.78 15 
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Table 4.2. Root properties obtained from the JET samples and measured by WinRHIZO 

SN D L SA RV FL FSA FV PKL TS 

 
mm cm cm2 cm3 % % % N N mm-2 

1 0.7 340.2 71.2 1.2 60.4 26.3 5.1 
  

2 0.8 226.5 54.1 1.0 55.0 22.2 4.5 
  

3 0.7 351.0 77.8 1.4 58.1 25.3 5.7 
  

4 1.0 1318.1 431.4 11.2 49.7 14.0 1.0 
  

5 0.9 1082.4 289.0 6.1 50.3 17.6 2.4 
  

6 1.0 1674.9 511.8 12.4 46.4 13.9 1.6 
  

7 0.5 636.5 99.7 1.2 72.6 47.4 20.5 0.4 1.9 

8 0.5 80.0 11.7 0.1 80.3 60.7 34.1 0.3 2.0 

9 0.5 97.4 16.4 0.2 62.8 39.8 16.7 2.6 11.7 

10 0.5 615.5 95.0 1.2 74.0 49.3 22.0 0.4 2.0 

11 0.5 670.5 105.5 1.3 73.2 46.3 17.0 0.4 1.9 

12 0.8 1632.4 427.5 8.9 54.2 19.9 2.6 2.1 3.9 

13 0.7 1530.8 354.6 6.5 57.5 23.8 3.0 2.4 5.6 

14 0.8 1378.7 360.0 7.3 52.2 18.1 2.7 2.3 4.3 

15 0.9 1627.1 442.7 9.6 52.6 18.1 1.9 4.3 7.4 

16 1.0 1295.5 410.4 10.3 51.5 15.7 1.2 2.7 3.4 

17 1.1 1889.8 667.3 18.8 48.3 12.7 0.8 4.6 4.6 

18 1.0 1157.1 370.3 9.4 51.3 15.5 1.3 3.4 4.1 

19 0.8 777.8 184.8 3.5 56.9 22.2 3.6 2.8 6.1 

20 1.2 903.0 348.9 10.7 48.7 11.8 0.7 1.7 1.4 

21 1.2 955.5 371.8 11.5 47.6 11.7 0.6 4.2 3.5 

22 1.1 1230.6 425.9 11.7 50.3 13.4 1.0 7.0 7.4 

23 0.5 132.0 22.1 0.3 71.3 45.8 17.3 0.1 0.5 

24 1.0 889.3 275.9 6.8 49.0 14.6 1.3 2.8 3.6 

25 1.3 1276.2 530.7 17.6 46.4 11.8 0.6 4.1 3.0 

26 1.7 1806.0 950.0 39.8 42.9 7.9 0.3 6.9 3.1 

27 1.7 1361.5 718.3 30.2 50.2 11.2 3.0 6.2 2.8 

28 1.5 1684.6 775.4 28.4 44.4 9.9 0.4 4.1 2.4 

29 1.5 1460.9 689.8 25.9 49.5 10.9 0.4 1.2 0.7 

SN = Test Number D = Average diameter, L = Total length, SA = Surface area, RV = 

Root volume, FL =  Length of fine root, FSA = Surface area of fine root, FV = volume of 

fine root, PKL = Peak load, TS = Tensile strength 
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Table 4.3. Results of Mann-Whitney rank sum tests for differences in median kd (cm3N-

1s-1), τc (Pa), b0 (gm-1s-1N-0.5) and b1 (Pa) parameters between the bare soil samples and 

vegetated samples at   = 0.05 . BL = Blaisdell Solution and SD = Scour Depth Solution 

technique for estimation of parameters of the excess shear stress equation; IQR = 

interquartile range, defined as the difference between 25th and 75th percentile. 

Batch No. Parameter Bare soil Vegetated soil  
  Median values (IQR) p-value 

1 

(n bare = 6) 

(n vegetated = 6) 

kd-BL 16.7 (11.1) 7.1 (2.3) 0.06 

τc-BL 0.1 (0.01) 0.3 (0.3) 0.01* 

kd-SD 81.4 (56.6) 37.0 (55.0) 0.24 

τc-SD 1.7 (0.8) 2.1(0.6) 0.02* 

b0 197.6 (67.3) 131.0 (347.4) 0.69 

b1 11.5 (5.0) 16.7 (8.4) 0.01* 

2 

(n bare = 8) 

(n vegetated = 7) 

kd-BL 55.5 (21.2) 45.6 (22.8) 0.15 

τc-BL 0.03 (0.04) 0.04 (0.07) 0.46 

kd-SD 256.5 (124.2) 248.8 (129.3) 0.23 

τc-SD 0.9 (0.1) 1.1 (0.18) 0.02* 

b0 593.2(283.8) 569.4 (501.6) 0.78 

b1 6.4 (1.2) 7.9 (2.0) 0.04* 

3 

(n bare = 5) 

(n vegetated = 5) 

kd-BL 6.5 (0.9) 6.9 (2.9) 0.79 

τc-BL 0.2 (0.1) 0.3 (0.2) 0.43 

kd-SD 36.7 (13.9) 58.6 (28.9) 0.05* 

τc-SD 1.9 (0.4) 2.1 (0.3) 0.12 

b0 197.9 (88.5) 342.6 (404.6) 0.05* 

b1 16.1 (3.5) 18.7 (4.4) 0.17 

4 

(n bare = 17) 

(n vegetated = 10) 

kd-BL 13.8 (6.5) 12.1 (6.9) 0.20 

τc-BL 0.03 (0.03) 0.03 (0.02) 0.43 

kd-SD 65.5 (25.5) 58.6 (26.6) 0.27 

τc-SD 1.2 (0.3) 1.3 (0.1) 0.28 

b0 195.6 (74.0) 146.0 (14.8) 0.20 

b1 8.2 (3.5) 9.15 (1.7) 0.40 

Combined 

(n bare = 36) 

(n vegetated = 29) 

kd-BL 15.3 (30.1) 10.1 (16.2) 0.09 

τc-BL 0.04 (0.04) 0.05 (0.2) 0.02* 

kd-SD 70.4 (66.7) 62.2 (58.8) 0.44 

τc-SD 1.2 (0.7) 1.3 (0.9) 0.01* 

b0 205.8 (137.4) 213.6 (338.1) 0.90 

b1 8.3 (5.1) 9.7 (9.3) 0.01* 
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Table 4.4. Pearson's correlation coefficients (p-values) between parameters of the Wilson 

model (b0 and b1), Excess shear stress equation estimated from Blaisdell’s solution (kd-BL 

and τc-BL ) and from scour depth solution (kd-SD and τc-SD ) 

 
b0  b1  kd-BL  kd-SD  τc-BL  τc-SD  

b0 1.0 - - - - - 

b1 0.1 (0.5) 1.0 - - - - 

kd-BL 0.5 (0.01) -0.6 (<0.01) 1.0 - - - 

kd-SD 0.7 (<0.01) -0.4 (0.02) 0.9 (< 0.01) 1.0 - - 

τc-BL 0.2 (0.4) 0.9 (<0.01) -0.5  (0.01) -0.3 (0.1) 1.0 - 

τc-SD -0.1 (0.7) 0.9 (<0.01) -0.6 (< 0.01) -0.5 (0.01) 0.9 (< 0.01) 1.0 

 

 

Table 4.5. Pearson's correlation coefficients (p-values)  between parameters of the 

Wilson model (b0 and b1), Excess shear stress equation estimated from Blaisdell’s 

solution (kd-BL and τc-BL ) and from Scour Depth solution (kd-SD and τc-SD ) and measured 

root traits. 

 b0 b1 kd-BL kd-SD τc-BL τc-SD 

D -0.5 (0.01) -0.1 (0.7) -0.5 (0.01) -0.5 (0.01) -0.1 (0.5) -0.07 (0.7) 

L -0.1 (0.7) 0.2 (0.3) -0.3 (0.06) -0.2 (0.21) 0.2 (0.4) 0.1 (0.5) 

SA -0.3 (0.2) 0.02 (0.9) -0.4 (0.03) -0.3 (0.06) -0.01 (0.9) -0.03 (0.9) 

RV -0.3 (0.1) -0.1 (0.6) -0.3 (0.06) -0.3 (0.08) -0.1 (0.5) -0.1 (0.5) 

FL 0.5 (0.01) -0.2 (0.2) 0.7 (< 0.01) 0.7 (<0.01) -0.2 (0.3) -0.3 (0.2) 

FSA 0.4 (0.02) -0.3 (0.1) 0.7 (< 0.01) 0.6 (<0.01) -0.2 (0.3) -0.3 (0.1) 

FV 0.4 (0.03) -0.3 (0.1) 0.7 (< 0.01) 0.6 (<0.01) -0.3 (0.2) -0.3 (0.06) 

PKL -0.4 (0.05) 0.01(0.06) -0.5 (0.02) -0.5 (0.01) 0.03 (0.9) 0.01 (0.7) 

TS -0.03 (0.9) 0.1 (0.7) 0.1 (0.5) -0.1 (0.7) 0.2 (0.5) 0.1 (0.8) 

D = Average diameter, L = Total length, SA = Surface area, RV = Root volume, FL = % 

length of fine root, FSA = % Surface area of fine root, FV = % volume of fine root, PKL 

= Peak load, TS = Tensile strength 
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Table 4.6. Pearson’s correlation coefficient (p-values) between the measured root traits. 

 D L SA RV FL FSA FV PKL TS 

D 1.00 - - - - - - - - 

L 0.7 (<0.01) 1.00 - - - - - - - 

SA 0.9 (<0.01) 0.9 (<0.01) 1.00 - - - - - - 

RV 0.9 (<0.01) 0.7 (<0.01) 0.9 (<0.01) 1.00 - - - - - 

FL - 0.8 (<0.01) -0.7 (<0.01) -0.8 (<0.01) -0.7 (<0.01) 1.00 - - - - 

FSA -0.8 (<0.01) -0.7 (<0.01) -0.8 (<0.01) -0.7 (<0.01) 0.9 (<0.01) 1.00 - - - 

FV -0.7 (< 0.01) -0.7 (<0.01) -0.6 (<0.01) -0.5 (<0.01) 0.9 (<0.01) 0.9 (<0.01) 1.00 - - 

PKL 0.7 (<0.01) 0.6 (<0.01) 0.7 (<0.01) 0.7 (<0.01) -0.7 (<0.01) -0.7 (<0.01) -0.6 (<0.01) 1.00 - 

TS -0.2 (0.4) 0.02 (0.9) -0.1 (0.6) -0.2 (0.4) -0.1 (0.5) -0.1 (0.6) -0.1 (0.5) 0.4 (0.06) 1.00 

D = Average diameter, L = Total length, SA = Surface area, RV = Root volume, FL = % length of fine root, FSA = % Surface area of 

fine root, FV = % volume of fine root, PKL= Peak load, TS = Tensile strength 
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CHAPTER 5  
 

APPLICATION OF A NON-LINEAR DETACHMENT MODEL FOR COHESIVE SOIL 

IN BANK STABILITY AND TOE EROSION MODEL2 

 

Abstract 

Cohesive sediment detachment is typically modeled for channels, levees, spillways, 

earthen dams, and internal erosion using a linear excess shear stress approach. However, 

mechanistic nonlinear detachment models, such as the Wilson model, have recently been 

proposed in the literature. Questions exist as to the appropriateness of nonlinear 

relationships between applied shear stress and the erosion rate. Therefore, the objective of 

this research was to test the appropriateness of linear and nonlinear detachment models 

for cohesive sediment detachment using streambank erodibility as quantified by jet 

erosion tests (JETs) for the linear excess shear stress equation and the nonlinear Wilson 

model across a small range of shear stress (1 to 4 Pa). The Wilson model was also 

incorporated into the Bank Stability and Toe Erosion Model (BSTEM) as an option for 

simulating fluvial erosion and used to simulate bank retreat in the streambank erodibility 

study The Wilson model was shown to be an appropriate particle detachment rate model. 

 

2Published as: 

Khanal, A., Kalvon, K., Fox, G., Daly, E.(2015) “Comparison of Linear and Nonlinear 

Models for Cohesive Sediment Detachment: Rill Erosion, Hole Erosion Test, and 

Streambank Erosion Studies”. Journal of Hydraulic Engineering. doi: 

10.1061/(ASCE)HY.1943-7900.000147
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The use of a nonlinear detachment model alleviated questions about the .most appropriate 

solution technique for deriving erodibility parameters from JETs. In situ and laboratory 

tests sometimes use a limited range of applied shear stress, and therefore, users of these 

measurement techniques should be aware of the potential nonlinear behavior of cohesive 

sediment detachment especially at higher shear stress. 

 

Introduction 

Many water management issues, including river channel degradation, bank 

stability, bridge scour, culvert scour, earthen spillway erosion, and levee and earthen dam 

overtopping, stem from excessive sedimentation and erosion. Therefore, the ability to 

accurately predict cohesive soil erosion is a significant necessity for engineers 

worldwide. Prediction is a challenge due to numerous factors influencing soil erodibility 

such as soil texture, structure, unit weight, water content, swelling potential, clay 

mineralogy, and pore water chemistry (Utley and Wynn, 2008).  

Typically, the erosion rate of a cohesive soil is predicted using using a model that 

relates soil erodibility to a measure of hydraulic forces on the soil. The most common 

model is known as the excess shear stress equation (Partheniades 1965). The model states 

that the erosion rate is proportional to the difference between the applied boundary shear 

stress and the critical shear stress 

( )a

r d ck      (5.1) 

where εr is the detachment rate (m s-1), kd is the erodibility coefficient (m3 N-1 s-1), τ is the 

applied shear stress (Pa), and a is an exponent. The value of the exponent (a) is usually 

assumed to be one (Hanson et al., 2002). . The kd and τc are collectively called the 

erodibility parameters of the excess shear stress equation. The τc is defined as the 
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hydraulic stress at which erosion will initiate. The τc was originally defined for non-

cohesive soils. There is no precise definition of τc for a cohesive soil as there is rarely a 

defining τ at which erosion of a cohesive soil starts (Utley and Wynn, 2008).  

 

Linear Detachment Rate Assumption 

This linearization of the τ versus εr relationship is typically justified as a necessary 

condition to simplify the complex description of the detachment process (Zhu et al., 

2001; Knapen et al., 2007). However, whether or not the assumption of linearity holds 

over the entire range of possible τ in experiments still remains unanswered. In their 

comprehensive study of all available data relating soil erodibility and concentrated flow, 

Knapen et al. (2007) found that few authors attempt to search for the equation that best 

fits their experimental results. Some authors found that the linear relationship proved to 

fit well for a narrow range of τ (e.g., Ghebreiyessus et al., 1994; Prosser et al., 1995; 

Ghidey and Alberts, 1997; van Klaveren and McCool, 1998); while other authors found a 

power relation better described εr (e.g., Hollick, 1976; Knisel, 1980; van Liew and 

Saxton, 1983; Franti et al., 1999; Zhu et al., 2001). Most research has concluded that 

although the linear model has the advantage of being simple in application, it suffers 

from significant lack of fit when applied to experimental data encompassing a wide range 

of τ. Some authors (e.g., Lyle and Smerdon, 1965; Parker et al., 1995; Zhu et al., 1995, 

2001) proposed using two different linear models by splitting the range into separate 

sections to overcome the deficiency of the linear model (Knapen et al., 2007). In 

summary, there is no consensus among researchers on the nature of the relation between 

εr and τ. Theoretical assumptions for linearity or nonlinearity have not been tested 
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completely. Nevertheless, the type of relationship chosen has important consequences for 

the values of erodibility parameters and estimation of εr (Knapen et al., 2007). 

Wilson (1993a, b) introduced an alternative to the excess shear stress model, and 

Al-Madhhachi et al. (2014a, b) modified the model to account for additional forces that 

influence detachment. The model, hereafter called the Wilson model, is based on the 

balance of all the forces and moments driving and resisting detachment of a two-

dimensional particle or aggregate 

0 11 exp exp 3r

b

b b


 

   
      

   
                                       (5.2) 

where b is the bulk density and Wilson’s model has two parameters b0 (g m-1 s-1 N-0.5) 

and b1 (Pa). These parameters, unlike parameters of the excess shear stress equation, are 

mechanistically defined. The parameters of the Wilson model (b0 and b1) require 

knowledge of several soil particle and aggregate paramteres that are difficult to estimate. 

According to the excess shear stress equation, once the thresh old of τc is 

exceeded, εr increases linearly with applied τ. The Wilson model predicts no such critical 

threshold but does predict a similar increase in εr at lower applied τ . At higher τ, εr 

increases with the square root of applied τ. This nonlinear shape of the Wilson model has 

proven to fit observed data from rill erosion studies better than the linear excess shear 

stress equation (Wilson 1993b). 

 

Estimating erodibility parameters 

Different techniques such as large flumes, small flumes, HETs, and JETs have 

been employed to obtain experimental data required for quantifying erodibility 
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parameters. Flumes are the most traditional and frequently used technique for studying 

erosion characteristics of natural channels (Hanson, 1990b). 

The JET has proven to be among the most useful instruments because the test can 

be carried out in situ. JETs consist of a submerged jet of water impinging upon a soil 

surface creating a scour hole. The depth of scour hole is measured at different time 

intervals. Details of the apparatus and methods employed for JETs are described by 

Hanson (1990b). The experimental data obtained from the JETs can be analyzed using 

three different solution routines to derive the erodibility parameters of the linear excess 

shear stress model. The most popular method of analysis, referred to as Blaisdell’s 

solution (Blaisdell et al., 1981), was developed by Hanson and Cook (1997, 2004). The 

solution method was based on principles of fluid diffusion presented by Stein and Nett 

(1997) and a hyperbolic-logarithmic function modeling the progression of the scour hole 

depth as developed by Blaisdell et al. (1981). This solution method first determines the c 

based on the equilibrium depth of the scour hole. The equilibrium depth is defined as the 

maximum depth beyond which the water jet cannot further erode the soil and is 

determined by using the hyperbolic curve fit to estimate the scour depth as time 

approaches infinity. The kd is then iteratively solved for to minimize the error between 

the measured time and predicted time based on an integrated solution of the excess shear 

stress equation.  

Two alternatives to the Blaisdell solution have been suggested recently: the 

iterative solution (Simon et al., 2010) and the scour depth solution (Daly et al., 2013). In 

contrast to the Blaisdell solution, the scour depth and iterative solutions solve for both c 

and kd simultaneously through iterations. The scour depth solution simultaneously solves 
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for kd and c values to minimize the squared errors between the observed JET scour 

depths and the predicted scour depths computed by the excess shear stress equation (Daly 

et al., 2013).  The iterative solution is initialized using the values of erodibility 

parameters determined by the Blaisdell solution (Simon et al., 2010). The scour hole is 

assumed to reach the equilibrium depth at the end of each test. An upper bound on c is 

calculated using this equilibrium depth and is set as a constraint preventing the final 

estimated c from exceeding this value. The final value of c and kd are then solved for 

simultaneously by minimizing the squared errors between the measured time to reach 

observed scour depths and the times calculated to reach the observed depths using the 

excess shear stress equation.  Note that the parameters (b0, b1) of Wilson’s model are also 

estimated from the JET data by minimizing the sum of squared error between the 

predicted scour depth data and observed data from the JET. The details of the procedure 

are described in Al-Madhhachi et al. (2013). 

Previous research has indicated that the Blaisdell solution estimates lower c than 

the scour depth and iterative solutions (Simon et al., 2010; Daly et al., 2013).  Because 

each method assumes that the -kd relation is linear, the estimation of kd by the Blaisdell 

solution is also lower than that estimated by scour depth and iterative solutions. At higher 

applied , εr predicted by the scour depth solution and the iterative solution are thus much 

higher due to their higher estimated kd values. When used in stability models such as 

BSTEM, kd is frequently used as a calibration parameter, and it has been observed that kd 

estimated from JETs using the scour depth and iterative solutions requires significant 

scaling down to match the predicted and observed bank retreat (Daly et al., 2015). This 

necessity raises questions about the assumption of linearity between εr and  
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Objectives 

The range of shear applied during a JET depends on the constant head under 

which the test is carried out. The range of shear stress applied in a channel simulation 

depends upon the river stage. The range of applied shear stress during JETs is usually 

smaller than the range of applied shear stress in a simulation, especially if the simulation 

is carried out for a long time period with extreme events. A narrower range of applied 

shear stresses are used to estimate kd but then applied across a wider range of shear stress 

in stability models. This study proposes that the linearity of excess shear stress causes 

inflation of the erosion rate when using scour depth and iterative solutions at higher 

applied shear stress caused by high river stages.  

The objectives of this study are to demonstrate that the non-linear detachment rate 

models like Wilson’s model provide improved predictions of fluvial erosion when used in 

stability models. This study carried out BSTEM simulations with three different 

erodibility parameters derived from different solution routines and with Wilson’s model 

in place of the excess shear stress equation. Predictions from all simulations were 

compared with the observed bank retreat. 

 

Methods and Materials 

The Bank Stability and Toe Erosion Model (BSTEM) is one of the most popular 

process-based models for simulating streambank erosion and failure (Simon et al., 2000). 

This model was developed by the National Sedimentation Laboratory in Oxford, 

Mississippi. The model is implemented as a spreadsheet application for one-dimensional 

stability modeling of a composite streambank under a continuous flow event defined by a 

stage hydrograph. The importance of incorporating bank heterogeneity into a model has 
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been shown in previous research (Sutarto et al., 2014). BSTEM addresses this issue by 

enabling user input of up to five soil layers. At each time step of the hydrograph, BSTEM 

evaluates bank stability as a combination of two processes: fluvial erosion and 

geotechnical erosion. The model first simulates the fluvial erosion of the bank face and 

determines the extent of bank undercutting.  

The model also evaluates overall stability of the bank by calculating a factor of 

safety (FOS) as a ratio of resisting forces to driving forces. BSTEM computes the FOS 

using three different limit equilibrium-method models of the bank: horizontal layers, 

vertical slices, and cantilever shear failure. The FOS is calculated across all horizontal 

soil layers as follows: 

1

1
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(5.3) 

 

where ci’ is effective cohesion of ith layer (kPa),a  is the air pressure, μw is the pore-

water pressure (kPa), b is an angle that describes the relationship between shear strength 

and matric suction (degrees) (Fredlund and Rahardjo, 1993), Li is the length of the failure 

plane incorporated within the ith layer (m), Wi is weight of the ith layer (kN), Pi is the 

hydrostatic confining force due to external water level (kN m-1) acting on the ith layer, β 

is failure-plane angle (degrees from horizontal), α’ is local bank angle (degrees from 

horizontal), ϕ’i is the soil internal angle of friction of the ith layer (degrees from 

horizontal), and I is the number of layers. Failure is assumed to occur when the driving 

forces exceed the resisting forces (i.e., when FOS is less than one), and various 
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combinations of the failure plane angle and shear emergence elevation (on the bank face) 

are considered within the model in order to determine the failure plane with the lowest 

FOS. A more detailed description of the model is provided by Simon et al. (2000) and 

Simon et al. (2011). 

BSTEM simulations were carried out for a streambank on Barren Fork Creek 

located in eastern Oklahoma and previously modeled with the linear excess shear stress 

equation by Midgley et al. (2012) and Daly et al. (2015). Barren Fork Creek is a fourth 

order stream that originates in northwestern Arkansas and flows through Boston 

Mountains and Ozark Highland ecoregions before meeting the Illinois River at Lake 

Tenkiller near Tahlequah, Oklahoma (Miller et al., 2014). The modeled bank was located 

2.2 km downstream from Eldon Bridge USGS gage station (35.90◦N, 94.85◦W) (Midgley 

et al., 2012). The composite bank consisted of Razort and Elsah silt loam topsoil 

overlying an unconsolidated gravel deposit (Miller et al., 2014). The depth of topsoil 

layer varied across the 146 m reach. Following Midgley et al. (2012), the height of bank 

at the site was 3.15 m. The depths of top soil layer and gravel layer were taken as 0.74 m 

and 2.41 m, respectively. The slope of the stream reach was 0.002 m m-1.  

Bank location surveys were carried out between April 18th and October 15th, 2009 

using a TOPCON HiperLite Plus global positioning system configured with a base station 

and rover unit (Midgley et al., 2012). Borehole shear tests were carried out to estimate 

cohesion (c’ = 0.7 kPa) and friction angle (ϕ’ = 22.7o), and the values used in the model 

matched those used by Midgley et al. (2012). Soil samples were collected to estimate the 

bulk density and median particle size (d50). Ground water elevations were collected from 

shallow groundwater monitoring wells (Fuchs et al., 2009; Heeren et al., 2010) and 
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default soil hydraulic parameters were used for the silt loam topsoil layer. The discharge 

hydrograph for the stream was collected from Eldon Bridge U.S. Geological survey gage 

station. The discharge hydrograph was converted to a stage hydrograph using a stage-

discharge rating curve and the gage reading was assumed to be the same at the study site 

(Midgley et al., 2012). 29  JETs weres carried out on the cohesive layer using a mini-JET 

device (Al-Madhhachi et al., 2013, 2014a, 2014b) to estimate the erodibility parameters 

on the same location (Daly et.al., 2015). Unique to this research, erodibility parameters 

(kd, c) for the cohesive soil layer were estimated from the JET data with three different 

solution routines using the spreadsheet tool described in Daly et al. (2013). Average of 

the erodibility parameters derived from these JETs was used for the BSTEM simulations. 

The goodness of fit of each detachment model to the observed data was quantified 

using the Normalized objective function (NOF). NOF is defined as the ratio of root mean 

squared deviation of each solution routine and overall mean of the observed data: 
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    (5.4) 

where xi and yi are the observed data, respectively, N is the number of observations and 

Xa is the mean of observed data. Smaller the values of the NOF, better is the goodness of 

fit of predictions of a particular model to the observed data. (Fox et al., 2006; Al-

Madhhachi et al., 2013, 2014a,b).  

 

Inclusion of Wilson’s model in BSTEM 

. In order to run BSTEM simulations with the nonlinear detachment model, the 

excess shear stress equation in BSTEM was replaced with the Wilson model in the ‘Shear 
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stress’ module. The performance of BSTEM with the Wilson model was initially 

evaluated by running several simulations with a range of Wilson model input parameters 

(b0 and b1) for a fictitious streambank and flow event to test whether the model was stable 

and output was reasonable. BSTEM was stable across the range of input parameters and 

predicted reasonable bank retreat. 

The τc for the noncohesive soil was estimated using following equation developed 

by Millar and Quick (1993): 
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     (5.5) 

where ϕ’ is the effective internal angle, ρ is the density of water, g is gravitational 

acceleration, s is the specific gravity, d50 is the mean particle diameter of soil and θ is the 

bank angle (assumed to be 25◦ for the gravel toe or the streambank). Following Hanson 

and Simon (2001), the kd was then estimated based on the estimated τc using the following 

relationship described by Criswell et al. (2015): 

  
0.52.23d ck  

      (5.6) 

The kd and c derived from equations (5.5) and (5.6) were adjusted based on the 

stream curvature following Daly et al. (2015). In order to estimate the Wilson model 

parameter, b1, of the gravel layer, the following relationship between c and b1 was used, 

as reported by Wilson (1993a, 1993b) for noncohesive particles: 

    



61 v

c

Cb
       (5.7) 

where Cv is the coefficient of variation due to turbulence. 
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To estimate b0 for the gravel layer, separate BSTEM simulations were carried out 

with just the gravel layer and b0 was changed in these simulations until the predicted 

retreat of the gravel layer matched the retreat predicted with excess shear stress equation. 

This calibration process was deemed reasonable because the focus of the simulations was 

on the erodibility of the cohesive topsoil layer of the streambank. Therefore, the b0 from 

this calibration process and b1 obtained from equation (5.7) were used in the BSTEM 

simulation with the Wilson Model.  

The stage hydrograph with a time step of one hour spanned across seven years 

(July 2003 to August 2010) and covered flow events producing applied  ranging from 

0.3 to 32.7 Pa.  The corresponding range in the applied for the JETs on the cohesive soil 

layer were 1 to 4 Pa. The groundwater elevation was assumed to be 1.73 m at the start of 

the simulation based on observed water levels in observation wells. The groundwater 

elevation was then updated by BSTEM as the simulation progressed.  

A total of four simulations were performed. Three uncalibrated simulations for the 

cohesive topsoil layer were carried out with different erodibility parameters (Blaisdell, 

scour depth solution, and iterative solution) for the linear excess shear stress equation. 

One uncalibrated simulation for the cohesive topsoil layer was carried out with the 

Wilson Model. The final bank profile at the end of each simulation was extracted from 

BSTEM. Distance between the top of the original bank profile and the final bank profile 

were calculated as the bank retreat and compared to observed bank retreat.  
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Results and Discussion 

The JET-estimated values of kd, c, and the Wilson model parameters are shown 

in Tables 5.1 and 5.2 . The scour depth progression predicted by the scour depth and 

iterative solutions more closely fit the observed scour depth data measured during the 

JET based on NOF values. Figures 5.1 and 5.2 show the extrapolated values of r 

obtained by applying the excess shear stress equation and Wilson model to a wide range 

of applied , using parameters shown in Tables 5.1 and 5.2. Note that Figure 5.2b 

highlights the range of applied  typically measured during the JETs, which was much 

smaller than the range of applied  simulated by BSTEM in the streambank stability 

study. The Blaisdell solution predicted erosion to begin at much lower c. In comparison, 

the scour depth and iterative solutions predicted a higher c of 1.8 and 1.6 Pa 

respectively. The kd predicted by the Blaisdell solution was lower than those predicted by 

the scour depth and iterative solutions (Table 5.1). 

Previous research has suggested that the c estimated by the scour depth solution 

and iterative solution were more representative of the actual applied  at which the 

particle detachment was initiated in flow events (Daly et al., 2013The c estimated from 

the Blaisdell solution was 0.6 Pa which was closer to the reported minimum average  

applied across the Barren Fork Creek (0.3 Pa) . This led to over prediction of r  at low  

and under prediction of r at high . The scour depth and iterative solutions estimated c 

to be 1.8 Pa and 1.6 Pa, respectively. This estimation was closer to the mean of the 

average applied shear across the bank (1.8 Pa). However, they also estimated higher kd 

which led to over prediction of r at higher . The Wilson model does not have the 

threshold value of the c. At smaller values of the applied , r increased almost linearly 
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and followed close to the iterative solution (Figures 5.1 and 5.2 ). At larger values of 

applied , the predicted r increased with the square root of the applied shear and almost 

scaled to r predicted by the Blaisdell solution at high  (Figure 5.1 and 5.2).  

Final bank profiles predicted by BSTEM simulation runs with uncalibrated topsoil 

erodibility parameters are presented in Figure 5.3. The original bank profile and base of 

cohesive soil layer are also shown for reference. Observed bank retreat during the 

simulation period was 34.6 m. As expected, all BSTEM simulations predicted similar 

retreats of the gravel layer at the base because of the calibration process for the gravel 

layer. The retreat of the cohesive layer depended on the solution routines used to derive 

the erodibility parameters. The Blaisdell, iterative, and scour depth solutions predicted 

bank retreats of 18.04 m, 50.75 m, and 83.23 m, respectively. The Wilson model 

predicted a retreat of 21.35 m, closest to the observed retreat. The smaller bank retreat 

predicted by the Wilson model and the Blaisdell solution of the linear excess shear stress 

equation was due to the prediction of retreat by the Blaisdell solution at small  (< 1.0 Pa. 

The erodibility parameters derived from the linear detachment models, especially with 

the iterative and scour depth solvers, over predicted the bank retreat. The magnitude of 

the over prediction was proportional to the derived kd values. Also, note that even greater 

differences may be observed in longer simulations. 

 

 Conclusions 

In many cases, erodibility tests are performed across a small range of applied 

shear stress in which a linear detachment model appears appropriate. Measurement 

techniques that utilize greater applied shear stress illustrate the nonlinear behavior of 
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cohesive sediment detachment especially at higher applied shear stress. Erodibility 

parameters from these tests are typically used in erosion models that may simulate 

detachment under conditions of much greater applied stress. The Wilson model was 

shown to be an appropriate erosion rate model as it alleviated questions regarding the 

most appropriate analysis technique for in situ jet erosion tests, as demonstrated by the 

modeling of a composite streambank in this study. Interestingly in the reach-scale 

streambank stability modeling, the linear excess shear stress approach with erodibility 

parameters derived with the Blaisdell solution predicted similar bank retreat as 

simulations with the Wilson model. Such results suggest the advantageous nature of the 

nonlinear Wilson detachment model, but also identify the need for additional research to 

evaluate the various detachment models for laboratory HETs and in situ JETs across a 

wider range of soil types and additional reach-scale streambank erosion studies.  
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Figure 5.1. Theoretical erosion rates predicted with the average erodibility parameters 

from 29 JETs (a) erosion rates predicted at wider range of applied shear stress and (b) 

erosion rates predicted at lower values of applied shear stress. (Data from Daly et al. 

2015b).
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Figure 5.2. Theoretical erosion rates predicted with the erodibility parameters reported in 

Table 5.2. (a) Erosion rates predicted at wider range of applied shear stress and (b) 

erosion rates predicted at lower values of applied shear stress. An example of measured 

JET data is shown in (b).
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Figure 5.3. Bank profiles predicted by BSTEM for different solution routines of the 

linear excess shear stress model and Wilson’s model.
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Table 5.1. Average values of erodibility parameters for the Barren Fork Creek cohesive 

streambank layer derived from JETs (n = 29). 

 kd 

(cm3 N-1 s-1) 
c 

(Pa) 

Blaisdell Solution 20.04 0.62 

Scour Depth 163.3 1.82 

Iterative Solution 85.22 1.59 

 b0 

(g m-1 s-1 N-0.5) 
b1 

(Pa) 

Wilson Model 176.2 12.1 

 

 

Table 5.2. Erodibility parameters for the Barren Fork Creek cohesive streambank layer 

derived from one example JETs and NOF values for the fit to the erosion rate data 

observed during the JET. 

 kd 

(cm3 N-1 s-1) 
c 

(Pa) 

NOF 

Blaisdell Solution 23 0.1 3.4 

Scour Depth 121 1.4 0.1 

Iterative Solution 79 1.2 0.2 

 b0 

(g m-1 s-1 N-0.5) 
b1 

(Pa) 
 

Wilson Model 255 9.0 0.1 
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CHAPTER 6  
 

CONCLUSION AND RECOMMENDATIONS 

 

Modeling and predicting detachment of cohesive particles and consequently 

erosion of cohesive soil remains an unconquered problem. The complexity of the 

problem has led early attempts of modeling the cohesive soil erosion to take an empirical 

approach. However, many studies in recent years have showed that the empirical models 

do a poor job of estimating the erosion rates for natural conditions and call for a process 

based approach. The excess shear stress model and the Wilson model are two of the 

prominent process based models used extensively. The parameters of these models can be 

statistically estimated from various experimental methods. Most of these experimental 

methods, such as the flumes and HET, are limited in their application as they cannot be 

used in situ. The in situ measurement of the erodibility of cohesive soil is important as it 

is influenced by a number of factors which cannot be adequately resembled in laboratory 

conditions. The Jet Erosion Test (JET) is a relatively novel method that can be used to 

estimate the parameters of these models. The interest in application of JETs has been 

growing since they were introduced in 1990, primarily to measure the erodibility of 

earthen dams. The JET has also evolved in form and function over the last two decades. 

A miniaturized version of the JET called the mini-JET was introduced in 2010. Mini-

JETs have the added advantage of portability and in-situ use. However, there is no 
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uniformity in operation of the device due to lack of a standard operating procedure. This 

can lead to wide variability in estimation of the parameters of the erodibility equation. 

Besides the operation of the device, data analysis procedures are also not adequately 

established.  

There are three different solution techniques in current practice that can be used to 

estimate the parameters of the linear model and there is no consensus on which is the best 

solution technique. The variability of the parameters estimated from the JET data is also 

one of the major concerns. The variability in field conditions is attributed to 

heterogeneity of different intrinsic properties of the soil and the extrinsic environmental 

factors. However, the influence of these factors on the JET data has not been studied in 

isolated and controlled conditions. There is also a broader discussion on the 

appropriateness the linear model for predicting the erodibility of the cohesive soil and 

possibility of replacing it with a non-linear model. This study focused on the operation of 

the mini-JET device and the solution techniques to derive the parameters of the 

erodibility models from the mini-JET, added new information to the discussion, and 

answered the aforementioned questions. The major conclusions drawn from this 

dissertation are as follows: 

1. The erodibility parameters of more erodible sandy loam soil were less variable 

than less erodible clay loam soil. 

2. In general, the erodibility parameters of the linear model were estimated with the 

least variability when using the scour depth (SD) solution technique. 
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3. The b0 parameter of the nonlinear model was more variable than the 

corresponding kd in the linear excess shear stress model, with similar variability 

between b1 and τc. 

4. Laboratory mini-JETs on disturbed and repacked soil samples may be used to 

establish benchmark values of in situ erodibility parameters. 

5. Variability of the erodibility parameters estimated from the laboratory tests was 

two to three orders of magnitude less than those estimated from the field tests. 

6. Conducting three to five mini-JETs to quantify the erodibility of a soil in the 

laboratory will typically provide a good estimate of the mean with 25% precision 

at a 95% confidence. 

7. Selection of the initial and termination time intervals were most influential at 

larger applied pressure heads.   

8. An initial time interval of at least 30 s is recommended for mini-JETs for easily 

erodible sandy soils. 

9. A termination time interval of 300 s is recommended for less erodible soils. 

10. Smaller head setting should be preferred to higher head setting if the field 

conditions permit. 

11. The influence of moisture content on the erodibility of soil varies with the 

solution technique used to derive the parameters. 

12. The τc and b1 increased significantly at the highest moisture contents of both soil 

types. 
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13. Increasing moisture content of packed soil influences the erodibility of soil and 

the influence can be detected in the estimated parameters of the linear and non-

linear models. 

14. The τc and b1 were higher on average for vegetated samples than bare soil 

samples. 

15. Significant correlations were observed among the parameters of the excess shear 

stress model and the Wilson’s model; especially high correlation was observed 

between τc and b1 parameters for vegetated samples. 

16. Root traits like average diameter, length and surface area were negatively 

correlated with the kd and b0 parameters. 

17. The percentage of finer roots was positively correlated with these parameters 

which were attributed to limited development of roots. 

18. Power relationships between the kd and root traits, especially with root diameter, 

were observed which can prove to be useful in simulating the erosion mitigation 

abilities of roots in process based models. 

19. The Wilson model was shown to be the most appropriate erosion rate model 

from used in a reach scale streambank modeling study.  

 

Recommendations for Future Studies 

The operation of mini-JET should be standardized so that this very useful device 

can be used universally and results from the JETs can be interpreted with uniformity. 

This study has provided a basis to standardize the JET with respect to the precision of the 

apparatus, applied head, initial time interval and the termination time interval. The 
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recommendations from this study should be verified on other soil types and expanded to a 

larger sample set, both in field and in laboratory.  

A lot of confusion seems to stem from the options of the solution methods 

available for the estimation of the parameters of the linear model. The traditional BL 

method has been shown to severely under-predict the τc parameter due to it’s reliance on 

the equilibrium scour depth. The SD and IT techniques, alternatives to the BL technique, 

estimate a more representative value of the τc. However, the kd parameter estimated from 

these techniques was shown to over predict the erosion rate at higher values of the 

applied shear stress. The SD technique was most consistent as the variability of the 

parameters estimated from this technique was the least. Hence, further discussion should 

concentrate on a consensus of the best solution technique to estimate the parameters of 

the linear model. 

The modeling of cohesive soil erosion is complicated by the interaction effect of 

many factors. This study tried to isolate the effect of two of those factors: vegetation 

roots and moisture content. Application of the mini-JET in a controlled laboratory study 

was useful in reducing the complexity of the problem. More research is required in 

quantifying the effect of the roots on fluvial erosion. The τc and b1 increasing effect with 

increasing moisture content was counter intuitive and unexpected. Further research is 

required on whether this is due to a limitation of the mini-JET or can be physically 

explained.  

The non-linear model was shown as a sound alternative to the linear model from 

an application point of view of. The validity and appropriateness of the linear model 
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should be debated further and more research is required to establish the non-linear model 

in common practice.  



 

122 
 

CHAPTER 7  
 

REFERENCES 

 

Adhikari, A. R., M. R. Gautam, Z. Yu, S. Imada, and K. Acharya. 2013. Estimation of root 

cohesion for desert shrub species in the Lower Colorado riparian ecosystem and its 

potential for streambank stabilization. Ecological Engineering, 51, 33-44. 

Al-Madhhachi, A. T., G. J. Hanson, G. A. Fox, A. K. Tyagi, and R. Bulut. 2013b. Deriving 

parameters of a fundamental detachment model for cohesive soils from flume and jet 

erosion tests. Transactions of the ASABE, 56(2), 489-504. 

Al-Madhhachi, A., G. Hanson, G. Fox, A. Tyagi, and R. Bulut. 2013a. Measuring soil erodibility 

using a laboratory “mini” JET. Transaction of the ASABE, 56(3), 901-910. 

Amezketa, E. 1999. Soil aggregate stability: a review. Journal of Sustainable Agriculture, 14(2-

3), 83-151. 

Anderson, M. G., and K. S. Richards. 1987. Slope stability: Geotechnical Engineering and 

Geomorphology. John Wiley & Sons. 

ASCE Task Committee on Hydraulics, Bank Mechanics, and Modeling of River Width 

Adjustment. 1998. River width adjustment. I: Processes and mechanisms. Journal of  

Hydraulic Engineering, 124(9), 881-902.



 

123 
 

ASTM. 2006. Annual Book of ASTM Standards, Section 4: Construction. Philadelphia, PA, 

ASTM. 

Belsky, A., A. Matzke, and S. Uselman. 1999. Survey of livestock influences on stream and 

riparian ecosystems in the western United States. Journal of Soil and Water 

Conservation, 54(1), 419-431. 

Bernhardt, E. S., M. Palmer, J. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. 

Dahm, and J. Follstad-Shah. 2005. Synthesizing U. S. river restoration efforts. Science 

(Washington), 308(5722), 636-637. 

Blaisdell, F. W., G. G. Hebaus, and C. L. Anderson. 1981. Ultimate dimensions of local scour. 

Journal of the Hydraulics Division: 107(3). 327-337. 

Burylo, M., F. Rey, N. Mathys, and T. Dutoit. 2012. Plant root traits affecting the resistance of 

soils to concentrated flow erosion. Earth Surface Processes and Landforms, 37(14),1463-

1470. 

Carson, M. A., and M. J. Kirkby. 1972. Hillslope form and process. Cambridge University Press 

Cambridge. 

Cossette, D., K. A. Mazurek, and C. D. Rennie. 2012. Critical shear stress from varied methods 

of analysis of a submerged circular turbulent impinging jet test for determining erosion 

resistance of cohesive soils. 6th International. Conference on Scour and Erosion 

(ICSE6), 11-18. Paris, France: Société Hydrotechnique de France (SHF). 

Cetin, H., M. Fener, M. Söylemez, and O. Günaydin. 2007. Soil structure changes during 

compaction of a cohesive soil. Engineering  Geology , 92(1), 38-48. 

Curran, J. C., and W. C. Hession. 2013. Vegetative impacts on hydraulics and sediment 

processes across the fluvial system. Journal of Hydrology, 505, 364-376. 



 

124 
 

Daly, E. R., G. A. Fox, A.-S. T. Al-Madhhachi, and D. E. Storm. 2015. Variability of fluvial 

erodibility parameters for streambanks on a watershed scale. Geomorphology, 231, 281-

291. 

Daly, E., G. Fox, A. Al-Madhhachi, and R. Miller. 2013. A scour depth approach for deriving 

erodibility parameters from jet erosion tests. Transactions of the ASABE , 56(6), 1343-

1351. 

Darby, S. E. 2010. Reappraising the geomorphology‐ecology link. Earth Surface Processes and 

Landforms, 35(3), 368-371. 

De Baets, S., and J. Poesen. 2010. Empirical models for predicting the erosion-reducing effects 

of plant roots during concentrated flow erosion. Geomorphology, 118(3), 425-432. 

De Baets, S., J. Poesen, G. Gyssels, and A. Knapen. 2006. Effects of grass roots on the 

erodibility of topsoils during concentrated flow. Geomorphology, 76(1), 54-67. 

Fan, C.C. and  C.F. Su. 2008. Role of roots in the shear strength of root-reinforced soils with 

high moisture content. Ecological Engineering, doi 10.1016/j.ecoleng.2008.02.013, 

33(2), 157-166.  

Florsheim, J. L., J. F. Mount, and A. Chin. 2008. Bank erosion as a desirable attribute of rivers. 

BioScience, 58(6), 519-529. 

Fox, G.A., Wilson, G.V. 2010. The role of subsurface flow in hillslope and stream bank erosion: 

a review. Soil Science Society of America Journal, 74(1),  717-733.  

Franti, T., J. Laflen, and D. Watson. 1999. Predicting soil detachment from high-discharge 

concentrated flow. Transactions of the ASAE, 42(2), 329-335. 

Fredlund, D. G., and H. Rahardjo. 1993. Soil mechanics for unsaturated soils. John Wiley & 

Sons. 



 

125 
 

Fuchs, J. W., G. A. Fox, D. E. Storm, C. J. Penn, and G. O. Brown. 2009. Subsurface transport of 

phosphorus in riparian floodplains: Influence of preferential flow paths. Journal of 

Environmental Quality, 38(2), 473-484. 

Ghebreiyessus, Y., C. Gantzer, E. Alberts, and R. Lentz. 1994. Soil erosion by concentrated 

flow: shear stress and bulk density. Transactions of the ASAE, 37(6), 1791-1797. 

Ghidey, F., and E. Alberts. 1997. Plant root effects on soil erodibility, splash detachment, soil 

strength, and aggregate stability. Transactions of the ASAE, 40(1), 129-135. 

Goodwin, C. N., C. P. Hawkins, and J. L. Kershner. 1997. Riparian restoration in the western 

United States: overview and perspective. Restoration Ecology, 5(4S), 4-14. 

Govers, G., and R. Loch. 1993. Effects of initial water content and soil mechanical strength on 

the runoff erosion resistance of clay soils. Soil Research, 31(5), 549-566. 

Gray, D. H. 1974. Reinforcement and stabilization of soil by vegetation. Journal of the 

Geotechnical Engineering Division, 100(6), 695-699. 

Gray, D. H., and A. T. Leiser. 1982. Biotechnical slope protection and erosion control. Van 

Nostrand Reinhold Company Inc. 

Gurnell, A. 2013. Plants as river system engineers. Earth Surface Processes and Landforms, 

39(1), 4-25. 

Gyssels, G., J. Poesen, E. Bochet, and Y. Li. 2005. Impact of plant roots on the resistance of soils  

to erosion by water: a review. Progress in Physical Geography, 29(2), 189-217. 

Hanson, G. J., K. M. Robinson, and D. M. Temple. 1990. Pressure and stress distributions due to 

a submerged impinging jet. ASCE National Conference on Hydraulic Engineering, New 

York, 525-530. 



 

126 
 

Hanson, G. J., K. Robinson, and K. Cook. 2002. Scour below an overfall: Part II. Prediction. 

Transactions of the ASAE, 45(4), 957-964. 

Hanson, G., and K. Cook. 1997. Development of excess shear stress parameters for circular jet 

testing. ASAE Paper, St Joseph, MI, 972227. 

Hanson, G., and K. Cook. 2004. Apparatus, test procedures, and analytical methods to measure 

soil erodibility in situ. Applied engineering in agriculture, 20(4), 455-462. 

Hanson, G., and K. Robinson. 1993. The influence of soil moisture and compaction on spillway 

erosion. Transactions of the ASAE, 36(5), 1349-1352.  

Hanson, G., and S. Hunt. 2007. Lessons learned using laboratory JET method to measure soil 

erodibility of compacted soils. Applied engineering in agriculture, 23(3), 305-312. 

Heeren, D. M., R. B. Miller, G. A. Fox, D. E. Storm, T. Halihan, and C. J. Penn. 2010. 

Preferential flow effects on subsurface contaminant transport in alluvial floodplains. 

Transaction of the ASAE, 53(1), 127-136. 

Hollick, M. 1976. Towards a routine test for the assessment of the critical tractive forces of 

cohesive soils [Erosion of cohesive soils by flowing water]. Transactions of the ASAE, 

19(6), 1076-1081. 

Khanal. A., K. Klavon, G.A. Fox, and E.R. Daly. 2015. Nonlinear Detachment Model for 

Cohesive Sediment Detachment: Application to Laboratory, Rill and Streambank 

Erodibility Studies. Journal of Hydraulic Engineering , doi:10.1061/(ASCE)HY.1943-

7900.0001147. 

Khanal, A., Fox, G., Al-Madhhachi, A. T. 2016b. “Variability of Erodibility parameters from 

Laboratory mini jet erosion tests”. Journal of Hydrologic Engineering. 

doi:10.1061/(ASCE)HE.1943-5548.0001404. 



 

127 
 

Knapen, A., J. Poesen, G. Govers, G. Gyssels, and J. Nachtergaele. 2007. Resistance of soils to 

concentrated flow erosion: A review. Earth-Science Reviews, 80(1), 75-109. 

Knisel, W. G. (1980). CREAMS, A field-scale model for chemicals, runoff, and erosion from 

agricultural management systems. Conservation Rep. No. 26. USDA Agricultural 

Research Service, Washington, D.C.  

Lawler, D. M. 2008. Advances in the continuous monitoring of erosion and deposition dynamics: 

Developments and applications of the new PEEP-3T system. Geomorphology, 93(1), 17-

39. 

Le Bissonnais, Y., B. Renaux, and H. Delouche. 1995. Interactions between soil properties and 

moisture content in crust formation, runoff and interrill erosion from tilled loess soils. 

Catena, 25(1), 33-46. 

Lipiec, J. 1990. Soil physical conditions and plant growth. CRC Press Inc. 

Lovern, S., G. Fox, and R. Miller. 2013. Quantifying the erodibility and geotechnical strength of 

cohesive alluvial soils following streambank reconstruction.  American Society of Civil 

Engineers Environmental Water Resources Institute Annual Meeting, May 19–23, 2000-

2008. 

Luk, S.-h. 1985. Effect of antecedent soil moisture content on rainwash erosion. Catena, 12(1), 

129-139. 

Lyle, W., and E. Smerdon. 1965. Relation of compaction and other soil properties to erosion 

resistance of soils. Transactions of the ASAE, 8(3), 419-422. 

Midgley, T. L., G. A. Fox, and D. M. Heeren. 2012. Evaluation of the bank stability and toe 

erosion model (BSTEM) for predicting lateral retreat on composite streambanks. 

Geomorphology, 145, 107-114. 



 

128 
 

Millar, R. G. 2000. Influence of bank vegetation on alluvial channel patterns. Water Resources 

Research, 36(4), 1109-1118. 

Millar, R. G., and M. C. Quick. 1993. Effect of bank stability on geometry of gravel rivers. 

Journal of Hydraulic Engineering, 119(12), 1343-1363. 

Miller, R. B., G. A. Fox, C. J. Penn, S. Wilson, A. Parnell, R. A. Purvis, and K. Criswell. 2014. 

Estimating sediment and phosphorus loads from streambanks with and without riparian 

protection. Agriculture, Ecosystems & Environment, 189, 70-81. 

Osborn, B. 1954. Effectiveness of cover in reducing soil splash by raindrop impact. Journal of 

Soil and water Conservation, 9, 70-76. 

Palmer, M., E. Bernhardt, J. Allan, P. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C. 

Dahm, and J. Follstad Shah. 2005. Standards for ecologically successful river restoration. 

Journal of Applied Ecology, 42(2), 208-217. 

Parker, D. B., T. G. Michel, and J. L. Smith. 1995. Compaction and water velocity effects on soil 

erosion in shallow flow. Journal of Irrigation and Drainage Engineering, 121(2), 170-

178. 

Partheniades, E. 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics 

Division, ASCE,  91(1), 105-139. 

Poesen, J., D. Torri, and K. Bunte. 1994. Effects of rock fragments on soil erosion by water at 

different spatial scales: a review. Catena, 23(1), 141-166. 

Pollen, N. 2007. Temporal and spatial variability in root reinforcement of streambanks: 

accounting for soil shear strength and moisture. Catena, 69(3), 197-205. 



 

129 
 

Pollen, N., A. Simon, and A. Collison. 2004. Advances in assessing the mechanical and 

hydrologic effects of riparian vegetation on streambank stability. Riparian Vegetation 

and Fluvial Geomorphology, doi: 10.1029/008WSA10, 125-139. 

Pollen, N., and A. Simon. 2005. Estimating the mechanical effects of riparian vegetation on 

stream bank stability using a fiber bundle model. Water Resources Research, 

doi:10.1029/2004WR003801,  41(7). 

Pollen‐Bankhead, N., and A. Simon. 2009. Enhanced application of root‐reinforcement 

algorithms for bank‐stability modeling. Earth Surface Processes and Landforms, 34(4), 

471-480. 

Pollen-Bankhead, N., and A. Simon. 2010. Hydrologic and hydraulic effects of riparian root 

networks on streambank stability: Is mechanical root-reinforcement the whole story? 

Geomorphology, 116(3–4), 353-362. 

Polvi, L. E., E. Wohl, and D. M. Merritt. 2014. Modeling the functional influence of vegetation 

type on streambank cohesion. Earth Surface Processes and Landforms, 39(9), 1245-

1258. 

Prosser, I. P., W. E. Dietrich, and J. Stevenson. 1995. Flow resistance and sediment transport by 

concentrated overland flow in a grassland valley. Geomorphology, 13(1), 71-86. 

Regazzoni, P. L., G. J. Hanson, T. Wahl, D. Marot, and J. R. Courivaud. 2008. The influence of 

some engineering parameters on the erosion of soils.  4th International Conference on 

Scour and Erosion (ICSE-4). Tokyo, Japan: Japanese Geotechnical Society 

Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. 1997. Predicting 

soil erosion by water: a guide to conservation planning with the revised universal soil loss 



 

130 
 

equation (RUSLE). Agriculture Handbook no. 703 Washington, D.C.: U.S. Dept. of 

Agriculture, Agricultural Research Service. 

Reinhardt, L., D. Jerolmack, B. J. Cardinale, V. Vanacker, and J. Wright. 2010. Dynamic 

interactions of life and its landscape: feedbacks at the interface of geomorphology and 

ecology. Earth Surface Processes and Landforms, 35(1), 78-101. 

Regents Instruments Inc.. 2014. WinRHIZO introduction manual and reference manual. 

www.regentinstruments.com/assets/images_winrhizo/WinRHIZO2014.pdf 

Simon, A., A. Curini, S. E. Darby, and E. J. Langendoen. 2000. Bank and near-bank processes in 

an incised channel. Geomorphology, 35(3), 193-217. 

Simon, A., and A. J. Collison. 2002. Quantifying the mechanical and hydrologic effects of 

riparian vegetation on streambank stability. Earth Surface Processes and Landforms 

27(5), 527-546. 

Simon, A., and S. Darby. 1999. The nature and significance of incised river channels. Incised 

River Channels: Processes, Forms, Engineering and Management. John Wiley & Sons, 

Chichester:3-18. 

Simon, A., R. Thomas, and L. Klimetz. 2010. Comparison and experiences with field techniques 

to measure critical shear stress and erodibility of cohesive deposits. 2nd Joint Federal 

Interagency Conference, Las Vegas, NV. 

Stein, O., and D. Nett. 1997. Impinging jet calibration of excess shear sediment detachment 

parameters. Transactions of the ASAE,40(6), 1573-1580. 

Thorne, C. 1982. Processes and mechanisms of river bank erosion. Gravel-bed rivers, Wiley, 

Chichester, England (1982), 227-259. 



 

131 
 

Trimble, S. W. 1997. Contribution of stream channel erosion to sediment yield from an 

urbanizing watershed. Science, 278(5342), 1442-1444. 

Utley, B., and Wynn, T. M. 2008. Cohesive soil erosion: Theory and practice. Proc., World 

Environmental and Water Resources Congress, doi: 10.1061/40976(316)289. 

Van Klaveren, R., and D. McCool. 1998. Erodibility and critical shear of a previously frozen 

soil. Transactions of the ASAE, 41(5), 1315-1321. 

Van Liew, M., and Saxton, K. (1983). Slope steepness and incorporated residue effects on rill 

erosion. Tranaction of the. ASABE, 26, 1738-1743. 

Waldron, L. 1977. The shear resistance of root-permeated homogeneous and stratified soil. Soil 

Science Society of America Journal, 41(5), 843-849. 

Waldron, L., and S. Dakessian. 1981. Soil reinforcement by roots: calculation of increased soil 

shear resistance from root properties. Soil Science , 132(6), 427-435. 

Wan, C.F., and R. Fell. 2004. Laboratory test on the rate of piping erosion od soils in 

embankment dams. Geotechnical Testing Journal, 27(3), 295-303. 

Wilson, B. 1993a. Development of a fundamentally based detachment model. Transactions of 

the ASAE, 36(4), 1105-1114. 

Wilson, B. 1993b. Evaluation of a fundamentally based detachment model. Transactions of the 

ASAE, 36(4), 1115-1122. 

Wu, T. H., W. P. McKinnell III, and D. N. Swanston. 1979. Strength of tree roots and landslides 

on Prince of Wales Island, Alaska. Canadian Geotechnical Journal, 16(1), 19-33. 

Wynn, T., and S. Mostaghimi. 2006. Effects of riparian vegetation on stream bank subaerial 

processes in southwestern Virginia, USA. Earth Surface Processes and Landforms, 

31(4), 399-413. 



 

132 
 

Zhu, J., C. Gantzer, S. Anderson, R. Peyton, and E. Alberts. 1995. Simulated small-channel bed 

scour and head cut erosion rates compared. Soil Science Society of America Journal, 

59(1), 211-218. 

Zhu, J., C. Gantzer, S. Anderson, R. Peyton, and E. Alberts. 2001. Comparison of concentrated-

flow detachment equations for low shear stress. Soil and Tillage Research,  61(3), 203-

212. 

 



 

 
 

VITA 

 

Anish Khanal 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

 

Thesis:  A COMPARATIVE STUDY OF ERODIBILITY MODELS AND 

INVESTIGATION OF INFLUENTIAL FACTORS IN ESTIMATION OF THEIR 

PARAMETERS FROM LABORATORY MINI-JETS 

   

Major Field: Biosystems Engineering 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy in Biosystems 

Engineering at Oklahoma State University, Stillwater, Oklahoma in May, 2016. 

 

Completed the requirements for the Master of Science in Civil Engineering at 

Southern Illinois University Carbondale in 2012. 

  

Completed the requirements for the Bachelor of Science in Civil Engineering at 

Tribuvan University, Nepal in 2008. 

 

Experience:   

2012 -2016 Graduate Research Assistant, Oklahoma State University 

2010 -2012 Graduate Research Assistant, Southern Illinois University 

Carbondale 


