
A FRAMEWORK FOR TRANSFER LEARNING: MAXIMIZATION

OF QUADRATIC MUTUAL INFORMATION TO CREATE

DISCRIMINATIVE SUBSPACES

By

MOHAMMAD NAZMUL ALAM KHAN

Bachelor of Science in Computer Science & Engineering
Bangladesh University of Engineering & Technology

Dhaka, Bangladesh
2007

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

July, 2016



COPYRIGHT c©

By

MOHAMMAD NAZMUL ALAM KHAN

July, 2016



A FRAMEWORK FOR TRANSFER LEARNING: MAXIMIZATION

OF QUADRATIC MUTUAL INFORMATION TO CREATE

DISCRIMINATIVE SUBSPACES

Dissertation Approved:

Dr. Douglas Heisterkamp

Dissertation Advisor

Dr. Blayne Mayfield

Dr. Nohpill Park

Dr. Guoliang Fan

iii



ACKNOWLEDGMENTS

The completion of PhD is a great achievement and a milestone in my life. When I

first left my country and joined Computer Science department of OSU, it was a whole

new experience and change of my career. Now that I am at the verge of a successful

competition of my degree, firstly I will be ever grateful and thankful to the Almighty

who blessed me with enthusiasm, perseverance, courage and all necessary calibers for

which I have been able to complete this long journey of almost seven years. Secondly,

my final dissertation topic is fully supervised by the chair of my PhD committee and

my research advisor Dr. Douglas Heisterkamp. I feel lucky and honored to have the

opportunity to work under his supervision. It was him who guided me to the proper

direction and helped me stick to the desired goal. He is an open-minded, visionary,

extra-ordinary mentor and sometimes I feel that I might not be quite able to fulfill his

level of vision. I would like to express my heartiest gratitude and thanks to him. Also

a major part of my PhD study was guided by Dr. Guoliang Fan, a person to whom I

will be ever grateful for teaching me how to do research. He is a very caring mentor

and supported me a lot, specially when I was about to give up. Last but not the least,

I was very much thankful to my department (Computer Science) for providing me

with continuous assistantship through out my study. Now I will take the opportunity

to thank my family: my wife (Zahra Maria), my parents and also my in-laws. I admit

this accomplishment was not very smooth, but I did not lose hope and it was because

of my wife who always tries to motivate me to reach my goal. It is not possible to

acknowledge enough to her in this limited space. I am also very much delighted that

I did not fail my family members, specially my parents. I feel accomplished to fulfill

iv



their dream. I was not very confident to leave them and start a whole new life long

away from my home country. They inspired me, always kept me in their prayers and

always beside me, whenever I faced any difficulty in my life. Lastly, I will always

remember the support and advice from my in-laws and be grateful to them. I would

also like to thank whole heartedly to all my friends, relatives and well-wishers who

was beside me directly or indirectly during this toughest period of my life. I apologize

not to mention everyone’s name here because of space limitation.

Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

v



Name: Mohammad Nazmul Alam Khan

Date of Degree: July, 2016

Title of Study: A FRAMEWORK FOR TRANSFER LEARNING: MAXI-
MIZATION OF QUADRATIC MUTUAL INFORMATION
TO CREATE DISCRIMINATIVE SUBSPACES

Major Field: Computer Science

In the area of pattern recognition and computer vision, Transfer learning has become
an emerging topic in recent years. It is motivated by the mechanism of human vision
system that is capable of accumulating previous knowledge or experience to unveil a
novel domain. Learning an effective model to solve a classification or recognition task
in a new domain (dataset) requires sufficient data with ground truth information.
Visual data are being generated in an enormous amount every moment with the ad-
vance of photo capturing devices. Most of these data remain unannotated. Manually
collecting and annotating training data by human intervention is expensive and hence
the learned model may suffer from performance bottleneck because of poor general-
ization and label scarcity. Also an existing trained model may become outdated if the
distribution of training data differs from the distribution where the model is tested.
Traditional machine learning methods generally assume that training and test data
are sampled from the same distribution. This assumption is often challenged in real
life scenario. Therefore, adapting an existing model or utilizing the knowledge of a
label-rich domain becomes inevitable to overcome the issue of continuous evolving
data distribution and the lack of label information in a novel domain. In other words,
a knowledge transfer process is developed with a goal to minimize the distribution di-
vergence between domains such that a classifier trained using source dataset can also
generalize over target domain. In this thesis, we propose a novel framework for trans-
fer learning by creating a common subspace based on maximization of non-parametric
quadratic mutual information (QMI) between data and corresponding class labels. We
extend the prior work of QMI in the context of knowledge transfer by introducing
soft class assignment and instance weighting for data across domains. The proposed
approach learns a class discriminative subspace by leveraging soft-labeling. Also by
employing a suitable weighting scheme, the method identifies samples with underly-
ing shared similarity across domains in order to maximize their impact on subspace
learning. Variants of the proposed framework, parameter sensitivity, extensive ex-
periments using benchmark datasets and also performance comparison with recent
competitive methods are provided to prove the efficacy of our novel framework.

vi



TABLE OF CONTENTS

Chapter Page

1 Introduction 1

1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Definition: Transfer Learning . . . . . . . . . . . . . . . . . . 7

1.2 Cases of Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Settings of transfer learning . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 History of transfer learning . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Instance based transfer . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Feature representation based transfer/ subspace learning . . . 14

1.4.3 Parameter transfer approach . . . . . . . . . . . . . . . . . . . 16

1.5 Comparison methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Subspace Learning Based On Quadratic Mutual Information In-

duced With Soft-labeling 20

2.1 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Estimating MI: non-parametric approach . . . . . . . . . . . . 22

2.1.2 QMI with uniform instance weighting (UQMI) . . . . . . . . . 25

2.1.3 Subspace Learning By Maximizing QMI-S . . . . . . . . . . . 29

2.1.4 QMI-S as a trace ratio problem . . . . . . . . . . . . . . . . . 31

2.1.5 Solving QMI-S objective function . . . . . . . . . . . . . . . . 32

2.1.6 Iterative update of soft-labeling and maximization of QMI-S . 34

2.1.7 Classification in target domain . . . . . . . . . . . . . . . . . . 37

2.2 Dataset and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



2.2.1 Experiment A . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Experiment B . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.3 Experiment C . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.4 Experiment D . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Subspace Learning Based on Mutual Information Induced With Soft-

labeling and Instance Weighting 52

3.1 Weighted Quadratic Mutual Information with Soft Labeling (WQMI-S) 53

3.1.1 Subspace Learning By Maximizing WQMI-S . . . . . . . . . . 57

3.1.2 Iterative update of instance weighting and soft-label prediction 57

3.2 Proposed Weighting Scheme: weight transfer approach . . . . . . . . 62

3.2.1 Unsupervised Parameter Adaptation (UPA) . . . . . . . . . . 70

3.2.2 Convergence criterion . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Weighting scheme: source-target imbalance . . . . . . . . . . . . . . . 74

3.4 Classification in target domain . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Classification using source candidate points . . . . . . . . . . . 77

3.5.2 Weight distribution in source domain . . . . . . . . . . . . . . 80

3.5.3 Weighting scheme to control source-target imbalance . . . . . 84

4 Linear Transformation By Optimizing Individual Projection Direc-

tion 87

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Optimization with labeled and unlabeled data . . . . . . . . . . . . . 92

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Applying ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Applying Non-linear Method for QMI Maximization 98

5.1 Newton-Lanczos algorithm . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusion and Future Work 105

REFERENCES 109

A List of Symbols 120

ix



LIST OF TABLES

Table Page

1.1 Different settings of Transfer Learning. The table is adopted from [1] 10

2.1 Classification accuracy(%) of target data for 12 different sub-problems.

Each sub-problem is in the form of source→ target, where C(Caltech-

256), A(Amazon), W(Webcam) and D(DSLR) indicate four different

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Comparative results in terms of classification accuracy(%) of target

data for 12 different sub-problems. Each sub-problem is in the form

of source → target, where C(Caltech-256), A(Amazon), W(Webcam)

and D(DSLR) indicate four different domains. . . . . . . . . . . . . . 43

2.3 Classification accuracy(%) of target domain data for 12 different sub-

problems using SVM classifier (QMI-S [B]) andK-NN classifier (QMI-S

[A]), both trained using projected source data. Each sub-problem is

in the form of source → target, where C(Caltech-256), A(Amazon),

W(Webcam) and D(DSLR) indicate four different domains. . . . . . . 45

2.4 Classification accuracy(%) of target data for 12 different sub-problems

using K-nn classifier with K=1. Second row (QMI-S[A + du]) rep-

resents accuracies where target predictions are obtained by adding a

uniform uncertainty which is diminished through out the iterations

(decayed uniform uncertainty). Third row (QMI-S[A+ cu]) represents

accuracies where target predictions are obtained with constant uniform

uncertainty (γ = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



2.5 Average classification accuracy over all 12 sub-problems for different

values of smoothing parameter (ρ) . . . . . . . . . . . . . . . . . . . . 51

3.1 Comparative results in terms of classification accuracy(%) of target do-

main data for 7 different sub-problems using nearest neighbor classifier.

Each sub-problem is in the form of source→ target, where C(Caltech-

256), A(Amazon), W(Webcam) and D(DSLR) indicate four different

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Classification accuracy (%) for target domain data using K-NN clas-

sifier trained with (I) all projected source points, (II) only projected

source candidate points, (III) projected non-candidate source points. 78

3.3 Comparative results in terms of classification accuracy(%) of target

data for 12 different sub-problems using the weighting scheme of source/target

balancing. Each sub-problem is in the form of source→ target, where

C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR) indicate four

different domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Some possible partitions of a set 5 classes into two pseudo labels . . . 89

4.2 Classification accuracy (%) for target domain data in 7 different sub-

problems of Office+Caltech dataset. The last row represents the accu-

racies achieved with the method described in this chapter. . . . . . . 94

4.3 att . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Classification accuracy(%) of target data for 12 different sub-problems

along with MI between data and corresponding labels using Newton-

Lanzcos based nonlinear optimization . Each sub-problem is in the

form of source→ target, where C(Caltech-256), A(Amazon), W(Webcam)

and D(DSLR) indicate four different domains. . . . . . . . . . . . . . 103

xi



LIST OF FIGURES

Figure Page

1.1 An example of transfer learning problem [1]. . . . . . . . . . . . . . . 2

1.2 Samples from different domains are represented by different features,

where red crosses, blue strips, orange triangles and green circles denote

source positive samples, source negative samples, target positive sam-

ples and target negative samples, respectively. By using two projection

matrices P and Q, we transform the heterogenous samples from two

domains into an augmented feature space. This picture is taken from [2]. 16

2.1 Proposed domain adaptation framework with two main steps. . . . . 35

2.2 Sample images from three different domains. . . . . . . . . . . . . . . 39

2.3 Number of target domain data (%) with reduced uncertainty of class

labels, upon convergence of iterative QMI-S. Each bar represents one

sub-problem (source→ target) indexed by {1, 2, . . . , 12}. . . . . . . 42

2.4 For each of 12 sub-problems, distance between 2 subspaces in succe-

sive iterations being decreased through out the iterations. Proposed

algorithm reaches convergence when subspace distance is negligible. . 43

2.5 Assesing the quality of feature subspace by constructing similarity ma-

trix using projected source and target domain data (from 5 different

classes) for sub-problem C → A using (a) original feature space, (b)

TJM and (c) iterative QMI-S. . . . . . . . . . . . . . . . . . . . . . . 45

xii



2.6 Similarity matrices S constructed with K nearest neighbors in learned

subspaces for all 12 sub-problems. For each sub-problem, projected

data (source and target) from 5 different classes are used to construct

S according to Equation (2.15). . . . . . . . . . . . . . . . . . . . . . 46

2.7 Simulated annealing schedule for γ with the increase of iteration count. 48

3.1 Final subspace learned from Xs (blue shapes) and Xt (red shapes).

Circle, Rectangle and Star shapes represent three different object classes.

Out-of-distribution source samples(light blue color) are distanlty lo-

cated in the projected subspace. . . . . . . . . . . . . . . . . . . . . . 59

3.2 Class label distribution (with four classes) for each source and target

domain datum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Weighted K nearest neighbor approach to update a label prediction

of a target sample (marked as yellow). ‘S’and ‘T’represent source

and target samples respectively. The updated label prediction will

be p(c|x) =
∑4

i=1 wip(c|xi ), where wi is the corresponding weight of

each neighboring sample. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 3-step iterative approach of the proposed framework based on maxi-

mization of WQMI-S. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Formation of candidate list Ω. . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Proposed weighting scheme to be applied in iterative WQMI-S algo-

rithm for domain adaptation. . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Plot of r vs. β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 3-step iterative approach of the proposed framework with intermediate

UPA approach at each iteration. In Step C, for each possible value of τ

(say τ [i]), corresponding weight vector w[i] and M [i] are constructed

to learn a subspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiii



3.9 Comparison of source candidate size, source domain size and target

domain size for each sub-problem. . . . . . . . . . . . . . . . . . . . . 79

3.10 Distribution of source candidate points (%) among ten different classes

for each sub-problem. Each row represents one sub-problem and i-th

column denotes percentile of source candidate from i-th class over all

source candidate points. . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.11 Scatter plots of dm vs. weight of source domain data for 4 different

sub-problems. Source candidate points are higher weighted than non-

candidate ones. The mean of dm distribution is idicated with red line

which is lower (higher) for source candidate (non-candidate) points. . 82

3.12 Illustration of distance vector constructed with dm values and corre-

sponding weight vector of 50 randomly selected source samples using

colormap. Each sub-figure is representing one sub-problem. In each

vector, a single stripe represents dm or weight of one sample. Higher

value of dm is associated with lower value of corresponding weight and

vice versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.13 Illustration of projected data on WQMI-S subspace in 2d using t-sne

method [3]. The left column of sub-figures is for the sub-problem A→D

and the right one for A→W. Each sub-figure is a two-dimensional vi-

sualization of the learned subspace. (a and d) source and target point

distributions in WQMI-S subspace , (b and e) same distributions with

data annotated with class labels (represented as color) in WQMI-S sub-

space, (c and f) class data distributions in TJM subspace. To assess

the class discriminative nature of each subspace quantitatively, total

scatter metric G is also reported. . . . . . . . . . . . . . . . . . . . . 85

xiv



4.1 Block diagram of the proposed method. Binary partiton of class labels

is created and for each partition, a projection vector is learned inde-

pendently by an iterative approach of WQMI-S maximization. Finally,

all the projection vectors are stacked column wise to form a projection

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Histogram plot of six randomly selected projection vector optimized

with binary class labels. Each sub-figure plots the 1-dimensional pro-

jection of data along a projection direction which shows a well-defined

class separation of {C+, C−}. . . . . . . . . . . . . . . . . . . . . . . . 95

xv



CHAPTER 1

Introduction

In computer vision, object class detection or classification has been studied in both

supervised and unsupervised settings. Traditional machine learning techniques try to

learn a model based on a training data set and it is assumed that i) training and test

data follow the same distribution, and ii) they are in the same feature space [4, 5].

These assumptions are often challenged in real life scenario. One major prerequisite of

building most of these models is the availability of abundant labeled training images

which might create a bottleneck, as it involves manual labor to annotate data. Also

distribution of data changes over time. It is quite usual if the dataset on which a

model is trained vary significantly from the data distribution during testing time

[6–9]. This may cause poor model performance in terms of classification accuracy

on the test set. Nevertheless, with the advance of image capturing and sensory

devices e.g. DSLR (Digital Single-Lens Reflex) camera, webcam, mobile camera etc.,

enormous amount of image data are being generated at every moment. Therefore,

the need for transfer learning may arise when the data can be easily outdated. In

this case, the labeled data obtained in one time period may not follow the same

distribution in a later time period. Hence, one of the challenges for building a model

is to cope up with the emerging and ever-changing nature of dataset. Moreover, it is

also assumed in traditional machine learning approach that the availability of labeled

training examples in a dataset will be sufficient to build a model which will not

face any novel category/instance or any variation or mutation of data during future

testing. As for example, a model which is trained using indoor images captured
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from canonical viewpoints of objects or categories, might perform poorly in outdoor

settings. An example setting is provided in Figure 1.1. Therefore, a learning technique

should be able to adapt to the changes across data distributions without requiring

to train the model from scratch every time a new challenge appears. An adaptation

method is required to reuse or transfer previously achieved knowledge for dealing with

unknown samples or variation in test data distribution. In general, this research area

is widely known as “Transfer Learning”.

Figure 1.1: An example of transfer learning problem [1].

In our research, we will investigate some issues of transfer learning problem and

propose an efficient framework to deal with them. In this article, we will refer domain

and dataset interchangeably. It is worth mentioning that this area is also known as

domain adaption in literature [1, 10]. In a typical setting, there is a source domain

where abundant labeled data are available or a trained model with available training

samples are available for a specific task like classification, regression etc. There is

another domain referred to as target where any combination of the following three

cases may arise,

1. labeled data are in short supply.

2. the calibration effort is very expensive.
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3. the learning process is time consuming and costly.

In this situation, sharing or transferring previous knowledge/experience from the

source domain might be helpful to build a model in the target domain. The goal is to

overcome the difficulties of the target domain to accomplish the task of interest. We

already mentioned why these three situations may occur. This is a very interesting

and challenging topic in current machine learning and vision based research which

has direct impact on real life scenario. Therefore, I have decided to explore some of

the issues in this area that can be dealt from different perspective or might need more

attention for improvement. This type of topic is also exercised in Natural Language

Processing (NLP), Sentiment classification and many other areas. It is assumed that

although the data distributions in different domains is different, they share some com-

mon characteristics in underlying low-dimensional manifold. The main challenge is to

explore this underlying common structure or manifold across domains. Our research

deals with the transfer learning problem and we propose an iterative framework to

propagate knowledge from source to target domain in the form of class identity in-

formation. The idea is to learn a common feature subspace such that data sharing

underlying similarity (across domains) can be projected in close proximity on the

learned subspace. This way, the divergence between source and target data can be

minimized and then the labeled source data can be utilized to predict unlabeled tar-

get domain data.

There are three main questions that need to be answered in the transfer learning

area [1],

1. What to transfer? Before using previous experience or knowledge, we should

be aware of what information we should utilize to learn a model that is suffer-

ing from fewer training examples. This knowledge may come in various forms

depending on the nature of the target task. Not all the information from an

3



available source domain might be effective in knowledge adaptation and this

may affect the system performance. Identifying the source information as use-

ful or non-useful might be a challenging task. In this research, we investigated

this issue and provide a very simple but elegant approach to deal with this.

2. How to transfer? The next issue is how to efficiently apply the transferred

knowledge in order to facilitate model building in the target domain. This

question is about the methodology that can connect the source knowledge to-

wards target domain so as to efficiently explore the unknown or unlabeled target

domain data.

3. When to transfer? This issue deals with the appropriate choice of the source

knowledge that has been selected as a candidate for transfer. As for exam-

ple, a model built on indoor home object images or office supply images is not

a suitable candidate for learning a model that will identify school or campus

decor objects, as these two domains do not share any features or characteris-

tics among them. It is already mentioned that the domain difference might

occur due to variability in capturing devices, images captured in different time

domain, different resolutions, different surrounding environments and also dif-

ferent canonical viewpoints. Whether the transferred knowledge is worthwhile

in the target domain is another prime issue to address. In some cases, trans-

ferring knowledge might cause performance bottleneck if we fail to apply it

appropriately and when needed.

In our research, we propose a framework that will deal with these three issues inher-

ently. The motivation was to utilize the underlying common shared structure to learn

a low-dimensional subspace and propagate the source information towards unlabeled

target data gradually. Our formulation is a ‘knowledge propagation’approach where

‘knowledge’refers to discriminative identity information of the available source model.
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1.1 Terminology

In this section, some definitions and notifications are introduced that will be used

through out this article. This section is highly influenced by the work of Pan and

Yang [1].

Domain: A domain (D) or dataset is referred to as a collection of visual data.

Each image is represented in a high-dimensional feature space X as a data point and

a marginal distribution of data points is associated with a domain. In this research

area, it is generally assumed that one domain follows a single marginal distribution.

Thus a domain can be defined as D = {X , P (x)}. A domain might be referred to

as source or target depending on the direction of knowledge transfer. Usually source

domain is rich with label information i.e. each image is correctly annotated, whereas

target domain suffers the availability of annotations and hence training a classification

or regression model using only target domain data becomes impossible. Therefore,

source domain data along with label information are utilized to explore the novel

target domain in a transfer learning based approach.

Task: Given a specific domain, D = {X , P (X)}, a task is referred to as learning

a model f(.) (classification, regression etc.) to annotate unknown data in a label

space Y . Therefore, a task T is defined as a tuple T = {Y , f(.)}. f(.) is generally

an objective predictive function that is leaned using the domain data x ∈ X and

corresponding label information y ∈ Y . For a single domain, data are sampled as

training and testing set where training set contains data from different object cat-

egories. The model is tested using the test data. Another approach is to partition

the whole data set into three subsets: training, validation and testing set, where val-

idation set is used to fine-tune the model parameter. This setting is used for various

tasks, for example, object category detection, scene recognition, padestrian detection,
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face recognition [11, 12] etc. It is worth noting that both training and testing data

are sampled from the same marginal distribution, this setting might be challenged in

real life scenario, e.g. if testing data come from a different distribution. Although the

set of class labels is same across training and testing distributions, the marginal data

distributions are different. This entails a bottleneck for a learned model to correctly

identify the unknown test data.

In this research, we focus on this domain difference problem. It has been proven ex-

perimentally that trained model performs poorly if the testing data are sampled from

a different distribution. Therefore, it will be impractical to deploy a trained model

without considering variability of unknown data. This necessitates model adaptation

such that divergence difference is minimized. There are mainly two approaches for

this adaptation:

1. Adapting a trained model by developing an adaptation layer on top of the

model which will minimize the dataset bias. One popular approach is to utilize

a Convolutional Neural Network model [13]. Usually a CNN is trained to learn

a hierarchical features for images where intermediate layers represent mid-level

image features. These mid-level features posses the characteristics of shared

common structure. Therefore these features can be utilized to minimize the

divergence gap between two different distributions.

2. Utilizing a label-rich large dataset for transferring knowledge i.e. if the labeled

source and unlabeled target domain data are available, then they can be pro-

jected in a common low-dimensional manifold subspace with a goal to utilizing

their underlying common structure. On that projected space, the labeled source

domain data can be used to predict the class identity of the unknown target

domain data.
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1.1.1 Definition: Transfer Learning

. Given a source domain Ds and learning task Ts, a target domain Dt and learning

task Tt, transfer learning aims to help improve the learning of the target predictive

function ft(.) in Dt using the knowledge of Ts in Ds, where Ds 6= Dt or Ts 6= Tt [1].

According to the definition, as domain is defined as a pair D = {X , P (X)}, the

condition Ds 6= Dt implies that either Xs 6= Xt or Ps(X) 6= Pt(X). For example, in

a task of document classification, there are both source document set and a target

document set and either the term features are different between the two sets (e.g.,

they use different languages), or their marginal distributions are different. Similarly,

a task is defined as a pair T = {Y , P (Y |X)}. Thus, the condition Ts 6= Tt implies

that either Ys 6= Yt or P (Ys|Xs) 6= P (Yt|Xt) [1]. When the target and source domains

are same, i.e. Ds = Dt and their learning tasks are same, i.e., Ts = Tt, the learning

problem becomes a traditional machine learning problem.

Given specific domains Ds and Dt, when the tasks Ts and Tt are different, then

either the label spaces between domains are different i.e. Ys 6= Yt or the conditional

probability distributions of theses domains are different i.e. P (Ys|Xs) 6= P (Yt|Xt).

In the document classification example, the former case corresponds to the situation

where source domain has binary document classes whereas the target domain has 10

classes to classify the documents to. The latter case corresponds to the imbalanced

situation in class distribution in source and target domains. In addition, the two

domains are considered to be related if there exists some underlying shared structural

similarity among the two domains.
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1.2 Cases of Transfer Learning

Let source and target domains are represented by Ds and Dt respectively. In the

same way, source and target domain tasks are represented as Ts and Tt respectively,

their corresponding predictive functions are represented as fs(.) and ft(.) respectively

and also their corresponding label spaces as Ys and Yt respectively. According to the

definition of domain, the domain difference or distribution shift occurs (i.e Ds 6= Dt)

when either Xs 6= Xt or P (xs ) 6= P (xt ). Therefore, transfer learning deals with the

scenario where Ds 6= Dt and tries to learn a predictive function ft(.) by using the

knowledge in Ds and the source predictive function fs(.).

Based on the definition of transfer learning, the following four cases are the possible

scenarios where the transfer of previous knowledge is necessary,

Xs 6= Xt In this case, feature encodings across domains are different i.e. the feature

space where a model is trained is different from the feature space of the novel

target domain. This difference might be the result of mismatch in dimensionality

across domains or using different image representations. As for example, the

same image or object can be represented as multiple feature representations, this

line of research is also known as Heterogeneous Feature Adaptation (HFA) [14].

Usually a set of pivot features are detected across feature spaces to connect the

two different feature distribution into a common shared feature set.

P (xs ) 6= P (xt ) In this case, the marginal distributions of two different domains

(i.e. training and testing) are different. This scenario is commonly known

as domain adaptation, distribution shift or dataset bias [10, 15, 15, 16]. Our

research is focused on this issue with a goal to minimize the shift between

this two marginal distributions. Here images from source and target domains

are represented with the same feature encoding and also the label space are
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same across domains. The goal is to identify the target domain data with a

classification model that is mainly trained with the source domain data. This

also minimizes the necessity of label information in target domain and adapts

an already existing model to cope up with continuous evolving data set.

Ys 6= Yt This scenario is possible when the class data distribution is imbalanced.

In other words, if the source domain consists of p number of classes and the

target domain consists of q number of classes, where p 6= q. Here the label

space is different across domains. In the literature, this scenario is also known

as zero-shot learning [17] or one-shot learning [18]. In zero-shot learning, no

training data is available for the novel category in the target domain, whereas in

one-shot learning, only one labeled training datum is available during training

phase. Usually auxiliary information is harnessed to extract the underlying

features existing in the novel category. This setting will be considered as a

future extension of our current research so that the current proposed algorithm

can handle the scenario of facing novel category that was not present during

the training phase.

1.3 Settings of transfer learning

Based on the information available in source and target domain, several settings

of transfer learning is possible, among them three common settings are: inductive

transfer learning, transductive transfer learning and unsupervised transfer learning.

Table 1.1 summarizes these three different scenarios. This table has been quoted

from [1]. Here is a brief description of each of these settings.

Inductive transfer learning: In this setting, Ts 6= Tt i.e. the predictive target

function ft(.) is different from the one in the source domain. Therefore, source

model can’t be directly utilized for the target domain task, rather the infor-
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Table 1.1: Different settings of Transfer Learning. The table is adopted from [1]

.

Transfer Learning

Setting

Related Areas Source Domain

Labels

Target Domain

Labels

Inductive TL Multi-task Learning Available Available

Self-taught Learning Unavailable Available

Transductive TL Domain Adaptation, Sample

Selection Bias, Co-variate Shift

Available Unavailable

Unsupervised TL Unavailable Unavailable

mation used in training a source model can be used as an auxiliary data for

the target model. Although the target domain might not suffer from labeled

data, researchers have been utilizing related auxiliary data from a different do-

main to boost up the robustness or performance of the model. One example

of this setting is to use semantic feature space for the corresponding object or

image dataset and build a connection between image feature space and semantic

feature space to enhance the quality of the trained model [19]. Based on the

availability of the labled data in the source domain, this inductive setting can

be further categorized into following two settings:

a. Labeled data in the source domain are available in plenty of amount. This

scenario is often referred to as multi-task learning [20]. A significant dif-

ference between multi-task learning and inductive transfer learning is that

multi-task learning tries to optimize the function for both source and target

task whereas inductive learning tries to learn a predictive function using

target domain data along with utilizing the information available from the

source domain data.

b. No labeled data are available in the source domain, this scenario is widely

known as self-taught learning [21]. Raina et al. first proposed a framework

to utilize the knowledge of unlabeled source data that come from the same

distribution as the labeled target domain data. Also the label distribu-
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tion P (y) might be different across domains. This implies that unlabeled

data might not be directly employed to learn a predictive model for the

target domain, rather this information might act as a connecting auxiliary

knowledge to help learn the target model.

Transductive transfer learning: In this setting, Ts = Tt but Ds 6= Dt i.e. the

tasks across domains are similar whereas the source and target domains are

different either in terms of feature space or marginal probability distribution of

data. Usually, target domain suffers from lack of labeled data causing difficulty

to build a classification or regression model. This requires exploiting related

source domain where plenty of labeled data are available. The term ‘transfer

learning’is used for this setting in general. Based on the type of distribution of

source and target domains, this setting is further categorized into following two

sub-settings:

a. Here domain difference implies P (xs) 6= P (xt) although the images are

represented in the same feature space i.e. Xs = Xt. Also the two domains

have the same label space. This area is widely known as domain adapta-

tion. In this research, we will mainly focus on this issue. Two different

settings in domain adaptation (DA) are usually considered: i)unsupervised

domain adaptation [7, 8, 22, 23], where no labeled data available in target

domain; and ii) semi-supervised domain adaptation [24, 25], where only

a few labeled data are available in target domain along with abundant

labeled data of source domain. Some other related topics in the liter-

ature that deal with domain adaptation include domain adaptation for

knowledge transfer in text classification [26] , sample selection bias [27] or

covariate shift [28].

b. This scenario happens when the target domain includes a novel category
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data which was not present in the source domain during training phase.

This implies that label space is different across domains i.e. Ys 6= Yt. The

goal is to identify the features that have similar characteristics distribu-

tion among available source categories and the novel ones. Often a set of

auxiliary information from web search is used in training to enhance the

feature space for fitting novel category in the target domain [17,29,30].

Unsupervised transfer learning: This setting is similar to inductive transfer

learning except that this is an unsupervised learning method i.e. the task in

target domain includes clustering, dimensionality reduction, density estimation

etc [31,32]. In this case, no labeled data are needed in the target domain, hence

source data are used in an unsupervised way to help train a model dedicated

for the target task.

Our research will be focused on second setting of transductive case where P (Xs) 6=

P (Xt) and P (Ys|Xs) 6= P (Yt|Xt). The label space will be same across domains i.e.

Ys = Yt. Nevertheless, in our research, we consider the tasks across domains be same

i.e. mainly focusing on classification or object recognition task across domains.

1.4 History of transfer learning

Broadly, three different types of approaches are found in the literature to deal with the

above three cases of transfer learning settings. As our focus is on the trunsductive

scenario, we performed our literature review based on that case only. Researchers

have proposed a vast number of approaches to deal with the transfer learning issue,

they can be roughly categorized as the following three approaches,

1. Instance based transfer.

2. Feature representation (subspace learning) based transfer.
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3. Model parameter transfer.

The first context can be referred to as instance-based transfer learning (or instance

transfer/ instance reweighting) approach [33–37], which assumes that a certain por-

tion of the source domain can be potential candidate for knowledge transfer, hence

source domain data are weighted based on their relevance with target domain data.

In this scheme, the impact of non-relevant data are minimized by down-weighting

them as they share the least common characteristics with target data. A second case

can be referred to as feature-representation transfer learning approach [38, 39]. This

can be also referred to as subspace learning based approach. The idea here is to

learn a common ‘good’feature representation that can be used to encode both source

and target domain image. Therefore the knowledge that will be transferred from

source domain will be encoded in the feature encoding. This is intuitive as although

the marginal distributions are different across domains, their underlying structure

should be similar in a low-dimensional manifold. A third case can be referred to as

parameter-transfer approach [13, 40] which reuse the parameter space learned using

a label-rich source domain data. In this case the knowledge is transferred in the pa-

rameter space. A fine-tuning step might be necessary to align the parameter set to

work for the target domain task, therefore available labeled data in the target domain

is used to fine-tune this ’‘adaptation”layer.

1.4.1 Instance based transfer

This approach is based on correspondence relationship across domains using some

pivot instances which are used to build a common shared model. Therefore, instance

relationship should be known as prior information. In [19], a instance similarity has

been applied along with some external semantic knowledge to propagate the source

information for learning a target predictive function. Hoffman et al. propose a class

invariant transformation function that projects the data points from one subspace to
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another (source or target) with the help of instant constraints. This method uses both

low-dimensional manifold structure and instance constraints to learn a feature space.

A different approach is applied by Lim who tries to augment the source training data

by for each class by borrowing example samples from other classes and learns a trans-

formation function with the augmented set [41]. In [42,43], authors propose to learn

a similarity function using both source and target domain data and source label infor-

mation both in linear and kernel form. This similarity function is plugged in various

established classification models such that labeled source data are used for classifier

training and unlabeled data are used for testing. Similar type of approach has been

proposed by Donahue et al. [24] who tried to learn a smoothness regularizer to plug

into an existing classification model. This smoothing function is learned with the help

of instance relationship across domains. A geometric relationship among instances

in the target domain is utilized by [44] which is known as low-rank reconstruction.

The idea is that a point with same neighborhood class points in target domain can

be reconstructed by the same neighboring class points in the source domain.

1.4.2 Feature representation based transfer/ subspace learning

In this category, a common image representation is sought in order to minimize the

distribution divergence across domains and hence source data can be used to predict

the identity of unknown target domain data. One of the case is, if data in differ-

ent domains are encoded with different image representations or they have different

dimensionality across domains. This scenario is known as Heterogeneous Domain

Adaptation (HDA) [45]. Another approach is based on Heterogeneous Feature Aug-

mentation (HFA) [2]. Here source and target domain data are represented with

different feature spaces and hence two different projection matrices P and Q are

learned for projecting them into a common feature space. This augmented feature

space takes into account the original feature set and learned feature set with a goal to

14



build a large feature vector that will incorporate both common and individual char-

acteristics among source and target domains (see Figure 1.2). A Feature Replication

(FR) based approach has been applied in [39] i.e. each data x ∈ Rd is augmented

by extending its dimension upto three times x ∈ R3d. Therefore two different feature

transformation function are learned to map the data as following, φs(x) = [x, x, 0]T

and φs(x) = [x, 0, x]T where φs(.) and φt(.) are learned for source and target domain

data respectively. This is also a feature augmentation based approach similar to [2]

except that no projection or mapping was applied in this augmentation, only original

raw feature space is used to augment the feature space. Although seems surprising,

they provided promising results to support their framework.

Hoffman et al. proposes a domain-invariant feature representation with a goal to

minimize the effect of distribution shift in the feature space [46]. As a part of the

classification training process, they learn a feature mapping function that aligns the

target domain features towards source domain. They propose a generic framework

by optimizing feature space and classification jointly. Their method also supports

large scale problem, heterogeneous domain adaptation and multi-class representation

learning. Fei-fei et al. reused an old model built on unrelated categories to minimize

the necessity of labeled images for the novel categories during training phase [47].The

authors employed a Bayesian probabilistic framework to model the object categories

along with prior information available in the source domain. Another line of work

based on discriminative learning is widely used in NLP area [38]. A structural learning

framework based on feature correspondence is proposed to establish a shared classifi-

cation model across domains. Another issue of domain adaptation is the continuous

evolving of data through out the time. Hoffman et al. deals with this issue where

target data are considered to be samples from different subspaces and propose a novel

framework for continuous manifold adaptation.
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Figure 1.2: Samples from different domains are represented by different features, where red crosses, blue strips, orange

triangles and green circles denote source positive samples, source negative samples, target positive samples and target

negative samples, respectively. By using two projection matrices P and Q, we transform the heterogenous samples

from two domains into an augmented feature space. This picture is taken from [2].

Recently subspace learning based methods have gain popularity because of their

simplicity and effectiveness in learning process [7, 22, 48]. In these cases, authors

utilize both source and target training data to learn a common low-dimensional sub-

space with a goal to bring the two different distributions close together. Our work

is somewhat related to this category, we propose a framework of subspace learning

based on information theoretic perspective. Unlike others’ approach, we not only used

the marginal distribution of source and target data, but also take the advantage of

class conditional distribution of source domain data to build a discriminative common

subspace.

1.4.3 Parameter transfer approach

In this approach, two major lines of work are widely practiced: one is to reuse the

parameter set of an existing trained model as a initializer of the training process for

the target domain task model, another is to employ the model parameters as a reg-

ularization function in the objective function of target task model. Usually a model

built using a large scale database is a suitable candidate for transfer learning using

parameter transfer approach. Oquab et al. showed how a convolutional neural net-
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work model trained with large image database can be efficiently applied to different

tasks or different domains where labeled data is not sufficient to build a classification

model. Mid-level image representations have been proved effective in transfer learn-

ing scenario as they possess the common shared features across domains, therefore,

the authors propose to train an adaptation layer by reusing the previously learned

layer. This can alleviate the necessity of labeled target data even if the source task is

completely different from the target domain task. Tommasi et al. proposed a model

adaptation framework based on both parameter transfer and instance weighting ap-

proach. Their work focuses on extending an SVM based model along with weighting

previous knowledge in order to align the source domain with the target one. The

work of Ayter et al. is also based on parameter transfer approach where they pro-

pose to transfer the training of a detector model to identify a novel category in the

target domain [40]. The previously learned object template has been adapted to act

as a regularizer for the training of novel categories. Some other notable research in

this category include hierarchical classification model to incorporate object hierar-

chy structure [49], one shot learning utilizing class relevance metrics [50], adapting a

Naive Bayes Nearest Neighbor classifier [51] etc.

1.5 Comparison methods

In next chapters, we propose our domain adaptation framework with exhaustive ex-

perimental evaluations. We have used several benchmark datasets to prove the effi-

cacy of the proposed model. We show that the proposed framework surpasses state-

of-the-art approaches in most of the cases by a significant margin. We also conduct

detailed experiments by varying parameter setting and analyzed the effect of them on

the proposed method. Here we will provide a brief description of each of the method

that are used for comparison, thanks to the authors of these methods to publish their

codes online. Same experimental protocol has been followed to test the performance
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by each method along with ours for a fair comparison. According to DA setting,

labeled source data and unlabeled target data are applied to learn a common sub-

space. Finally, the projected source data are utilized to annotate the unlabeled target

domain data. In the following, the methods to be compared are described briefly.

1. Geodesic flow kernel [22]: This approach is based on finding a low-

dimensional feature representation. The authors propose a kernel based method that

model the underlying low-dimensional structure along the geodsic path from source

to target domain. The model integrates an infinite number of subspaces which char-

acterizes the domain shift in geometrical and structural properties along the path

from source to target.

2. Subspace alignment [7]: In this method, source and target domain is rep-

resented by their corresponding eigen spaces. An optimization function is designed

to align the source domain with the target one. This mapping function projects

cross-domain data into a low-dimensional subspace such that a classifier trained us-

ing projected source data can be efficiently applied to projected unlabeled target

data.

3. Transfer feature learning [23]: The authors propose a dimensionality

reduction framework with a goal to minimize the distribution divergence between

source and target domain data. Their method, known as Joint Distribution Adap-

tation, jointly optimizes both the marginal and conditional distribution between

domains. Their optimization criterion is the non-parametric Maximum Mean Dis-

crepency (MMD) that measures the difference between the sample means of source

and target data. The MMD criterion is integrated with PCA formulation to learn a

low-dimensional subspace.

Transfer jont matching [8]: The authors propose a cross-domain feature rep-

resentation which is invariant to both the distributions across domains and also the
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irrelevant instances. They employ a feature matching and instance reweighting based

technique to identify closely distributed source samples with target ones. The idea

is to assign higher weights to source samples that are more relevant to the target

domain data in order to minimize the impact of irrelevant data existing in the source

domain.

Transfer component analysis [9]: Here the authors also use MMD metric to

learn transfer components in a reproducing kernel Hilbert space. These transfer com-

ponents will act as connecting landmarks between source and target domains such

that in the projected subspace the difference in domain distributions is minimized.

The authors prove that this new feature representation is suitable to use in traditional

machine learning methods in order to classify unknown target domain data.

Principal component analysis [52]: This method is not intended for domain

adaptation but has been used as a benchmark method for our proposed algorithm.

PCA is an unsupervised dimensionality reduction technique with a goal to preserve

maximum data variance in low-dimensions. We will project both source and target

data into a PCA subspace and evaluate the classification accuracy achieved by a clas-

sifier trained using projected source data. The performance evaluation will serve as

a benchmark criterion for the need of domain adaptation or transfer learning.

A list of notations/symbols used in this thesis is provided in the Appendix section.
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CHAPTER 2

Subspace Learning Based On Quadratic Mutual Information Induced

With Soft-labeling

In this chapter, a domain adaptation framework based on maximization of mutual

information induced with soft-labeling has been proposed. In this problem setting,

a source domain dataset with corresponding class labels and an unlabeled target do-

main dataset are available. The goal is to learn a low-dimensional common feature

subspace using both source and target domain data so that a classifier trained using

projected source data can be applied to predict class labels for the unlabeled target

domain data.

It is assumed that source and target data of a same class will be closely located in

an ideal common subspace. A supervised technique based on maximization of non-

parametric mutual information (MI) between data and corresponding class labels

has been proved effective in learning such discriminative subspace [53–56]. Now to

extend the prior work in domain adaptation setting, we induced soft assignment of

class labels (probability that a point belongs to a class) into the objective function

[53] of MI maximization. In the learned subspace, target data will be labeled softly

using neighboring labeled source data. These two steps: i) finding MI-maximized

subspace and ii) updating target data predictions will continue in an iterative fashion

till converging to a final feature space. This iterative approach will aid to learn

a domain-adaptive discriminative subspace utilizing both source and target domain

data. In summary, our contributions in this work will be,
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• utilizing class label distribution of source data along with all data across do-

mains to develop a domain adaptation framework.

• extending supervised method of MI to support unlabeled target data by induc-

ing soft-labeling and

• proposing an iterative approach of common subspace learning based on maxi-

mization of non-parametric MI with soft-labeling.

2.1 Mutual Information

According to information theoretic literature, Mutual Information (MI) is defined as

a measures of independence between random variables [56, 57]. Assume a random

variable X representing d-dimensional data points x ∈ Rd and another discrete ran-

dom variable C representing class labels from c ∈ {1, 2, . . . , Nc}, where Nc is the total

number of classes. Also let p(x) is the marginal probability density function for the

data samples, P (c) is the class prior probability and p(c) marginal distribution of

class labels. Then MI is defined as,

I(X,C) = H(C)−H(C|X). (2.1)

where H(C) denotes the Shanon’s entropy or uncertainty of class labels [57] which is

defined as,

H(C) = −
∑
c

P (c) log(P (c)). (2.2)

and H(C|X) is the class conditional entropy which is defined as,

H(C|X) = −
∫
x

p(x)

(∑
c

p(c|x) log(p(c|x))

)
dx (2.3)

Therefore, I(X,C) can be written as,

I(X,C) = −
∑

c P (c) logP (c) +
∫
x
p(x) (

∑
c p(c|x) log p(c|x)) (2.4)
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Using the identities, p(c,x) = p(c|x)p(x) and P (c) =
∫
x
p(c,x)dx, we can further

simplify the above equation,

I(X,C) = −
∑
c

∫
x

p(c,x) logP (c) +
∑
c

∫
x

p(c,x) log p(c|x)

= −
∑
c

∫
x

p(c,x) logP (c) +
∑
c

∫
x

p(c,x) log
p(c,x)

p(x)

=
∑
c

∫
x

p(c,x) log
p(c,x)

P (c)p(x)

=
∑
c

∫
x

p(x, c) log
p(x, c)

P (c)p(x)

= KL
(
p(x, c), P (c)p(x)

)
(2.5)

When p(x, c) = P (c)p(x), then the MI between C and X equals zero which essentially

proves their independence of each other. MI can also be interpreted as the Kullback-

Leibler divergence KL(, ) between p(x, c) and the product of two distributions P (c)

and p(x) [54].

2.1.1 Estimating MI: non-parametric approach

Estimating MI is a non-trivial task. Histogram-based approach is suitable for low-

dimensional data and performs poorly in high-dimansional case [54]. The sparse

nature of high-dimensional data makes it difficult for histogram based estimation. To

overcome this, a non-parametric estimation based on parzen window has been pro-

posed [54] following the formulation of Renyi’s non-parametric entropy [58]. Torkkola

proposed a non-parametric quadratic measure of MI estimation, named as Quadratic

Mutual Information (QMI). His proposed derivation of MI is inspired by Kapur [59].

Kapur argues that the third axiom of Shanon’s entropy can be relaxed in certain cir-

cumstances. He tries to establish that instead of evaluating entropy of a distribution,

we often focus on finding a distribution dm that minimizes/maximizes that entropy.

In this situation, the axioms for deriving the divergence measure (MI) can be relaxed

and that optimization process can generate the desired distribution dm. This theory
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leverages the options of a large number of entropy measure, one such outcome is

Renyi’s entropy.

Following the above relaxation approach, Kapur also presented several non-parametric

estimates of MI. Among those measures presented in [59], one is the following,

Dα(P1, P2) = 1
α(α−1)

∑n
i=1[pαi − αpiqα−1

i + (α− 1)qαi ], α 6= 0, α 6= 1

(2.6)

where P1, P2 are two discrete random variables. Now under the following conditions:

α = 2, ignore a constant and extend the discrete distributions to continuous ones

as f1(x) and f2(x) respectively, the above equation of divergence measure becomes

(following [54]),

D2(f1(x), f2(x)) =

∫
x

(f1(x)− f2(x))2dx (2.7)

It is possible to substitute f1(x) = p(x, c) and f2(x) = p(x), P (c) to derive a quadratic

divergence measure between a joint distribution p(x, c) and a product of two distribu-

tions P (c) and p(x). Torkkola [54] also justified that D2(, ) eventually maximizes the

lower bound of KL(p(x, c), P (c)p(x)), that results in maximization of MI. Therefore,

using Equation (2.7), QMI can be formulated as follows,

I(X,C) =
∑
c

∫
x

(p(x, c)− p(x)P (c))2dx

=
∑
c

∫
x

p(x, c)2dx+
∑
c

∫
x

p(x)2P (c)2dx− 2
∑
c

∫
x

p(x, c)p(x)P (c)dx

(2.8)

The probability distributions used in I(X,C) can be estimated by Parzen window

method with a Gaussian kernel [60, 61]. A Gaussian function with mean µ and

covariance matrix Σ is defined as,

N (x;µ,Σ) =
1√

2π|Σ|
e

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
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We need to find expressions for P (c), p(x, c) and p(x) to compute MI according to

equation (2.8). We will derive these expressions using Parzen window based density

estimator [60]. Parzen-windowing estimates a probability density function (PDF)

p(x) from which samples were derived. Each observation is examined underneath a

window function and size of the window determines the influence of that observation

towards other samples inside that window. In this way, each sample x contributes to

the PDF estimate. While doing this, each sample is considered with equal importance.

This assumption can be challenged in domain adaptation setting as we need to deal

with two different distributions and our final feature space will be constructed with

samples sharing similar underlying structures across two domains. Therefore, the

approach will be not to assign equal importance (weight) for each sample. The

closed form expression of MI presented in [53] is extended to a generalized version

incorporating instance weighting and soft class assignment for target domain data.

Hence, the main contribution to address domain adaptation problem using mutual

information will be i) inducing soft class assignment into MI formulation for target

domain data and ii) inducing instance weighting into QMI formulation to reduce

the impact of unrelated samples (from both source and target domain) in learning a

common subspace. Based on these attempts, we will derive closed-form expressions

for,

a. Quadratic Mutual Information with Uniform Weighting of samples (UQMI)

b. Quadratic Mutual Information with Non-uniform Weighting of samples (WQMI).

In this chapter, the formulation of UQMI between data and corresponding class labels

is presented. The goal is to learn a common subspace based on maximization of QMI

between projected data and corresponding class labels. In next chapter, we will

elaborately discuss about the WQMI approach. Each of this approach involves soft-

labeling of samples i.e. instead of hard label annotation, each data point is associated
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with a distribution of class labels.

2.1.2 QMI with uniform instance weighting (UQMI)

As stated earlier, we will now expand Equation (2.8) by substituting appropriate

estimations of P (c), p(x, c) and p(x).

Evaluating P (x): A Parzen window density estimation of p(x) using IID drawn

samples xi is,

p(x) =
n∑
i=1

P (xi )N
(
x;xi , σ

2I
)

where n is the cardinality of data set. As the samples are un-weighted or uniformly

weighted, P (xi ) for each data sample can be expressed as P (xi ) = 1
n

and therefore

p(x) becomes,

p(x) =
n∑
i=1

1

n
N
(
x;xi , σ

2I
)

Evaluating P (c): P (c) is the prior class probability for class c ∈ {1, 2, . . . , Nc}

which can be expressed as,

P (c) =
n∑
i=1

P (c | xi )P (xi )

Now P (c|xi ) is the probability that xi belongs to a class c. Therefore, it indicates a

sample’s soft class labeling (probability of a datum being classified as class c). P (c)

represents each sample’s class conditional probability, summed over all samples. We

will denote this measure as Sc now on for notational convenience, that is,

P (c) =
n∑
i=1

P (c|xi )
1

n
= Sc

Evaluating p(x, c): A Parzen window estimate of the class data distribution p(x|c)

is,

p(x | c) =
1

P (c)

n∑
i=1

P (c,xi )N
(
x;xi , σ

2I
)

=
1

P (c)

n∑
i=1

P (c | xi )P (xi )N
(
x;xi , σ

2I
)
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=
1

Sc

n∑
i

P (c|xi )
(

1

n

)
N
(
x;xi , σ

2I
)

Finally, the estimate of p(x, c) i.e. joint pdf of xi and c takes the following form,

p(x, c) = p(x | c)P (c)

=

(
1

Sc

n∑
i=1

P (c|xi )
(

1

n

)
N
(
x;xi , σ

2I
))

Sc

=
n∑
i=1

P (c|xi )
(

1

n

)
N
(
x;xi , σ

2I
)

=
1

n

n∑
i=1

P (c|xi )N
(
x;xi , σ

2I
)

Using the expressions for p(x), P (c) and p(x, c) derived above, a closed form for

Equation (2.8) will be formulated. As Gaussian kernel is used, we can define a

centralized kernel matrix K∈ Rn×n as K = K̃ −En K̃ − K̃En +En K̃En , where

K̃i,j = N (xi − xj ; 0, 2σ2I) and En is an n × n matrix with all elements equal

to 1/n. Let Φ∈ Rn×m represents the mapped data points from raw feature space

to a kernel Hilbert space using the mapping function ψ : X → H, where m is the

dimension of kernel space (which is usually equals to infinity). Therefore, K = ΦΦT .

Following [53], Equation (2.8) can be represented as,

I(X,C) = Vin + Vall − 2Vbtw (2.9)

where

Vin =
∑
c

∫
x

p(x, c)2dx

=
1

n2

∑
c

(
n∑
i=1

P (c|xi )N
(
x;xi , σ

2I
))2

=
1

n2

∑
c

n∑
i=1

n∑
j=1

P (c|xi )P (c|xj )N
(
xi − xj ; 0, 2σ2I

)
=

1

n2

∑
c

n∑
i=1

n∑
j=1

P (c|xi )P (c|xj )Ki,j
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=
1

n2

∑
c

zc
TKzc

=
1

n2

∑
c

tr
{
Kzc zc

T
}

=
1

n2
tr

{
ΦΦT

∑
c

zc z
T
c

}

=
1

n2
tr

{
ΦT

(∑
c

zc z
T
c

)
Φ

}

Here zc = [P (c|x1 ), P (c|x2 ), . . . , P (c|xn )]T ∈ Rn×1. Vin essentially represents within

class potential [54] i.e. interactions between pairs of samples inside a class, summed

over all classes. Therefore, maximizing I(X,C) will result in maximizing interactions

between every pair of samples within a class c irrespective of their originating domains.

Hence, this term will play a vital role in bridging data distributions of a specific

class from two domains i.e. minimizing divergence in class conditional distributions

(alternatively, divergence between Ps(c|xs ) and Pt(c|xt ) will be reduced between

source and target domains).

Vall =
∑
c

∫
x

p(x)2P (c)2dx

=
∑
c

(
n∑
i=1

1

n
N
(
x;xi , σ

2I
))2

S2
c

=
∑
c

S2
c

n∑
i=1

n∑
j=1

1

n2
N
(
xi ;xi , σ

2I
)
N
(
xj ;xi , σ

2I
)

=
∑
c

S2
c

n∑
i=1

n∑
j=1

1

n2
N
(
xi − xj ; 0, 2σ2I

)
=

1

n2

(∑
c

S2
c

)
n∑
i=1

j=1∑
j=1

Ki,j

=
1

n2

(∑
c

S2
c

)
1TK1

=
1

n2

(∑
c

S2
c

)
tr
{
K11T

}
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=
1

n2

(∑
c

S2
c

)
tr
{
ΦΦT 11T

}
=

1

n2

(∑
c

S2
c

)
tr
{
ΦT 11T Φ

}
where 1= [1, 1, . . . , 1]T ∈ Rn×1. Vall will control interactions between every pair

of samples weighted by squared sum of class prior probability, irrespective of their

class labels and originating domains which will eventually ensure interactions between

source and target domain data in our domain adaptaion setting.

Vbtw =
∑
c

∫
x

p(x, c)P (c)p(x)dx

=
∑
c

(
1

n

n∑
i=1

P (c|xi )N
(
x;xi , σ

2I
))

Sc

(
n∑
j=1

1

n
N
(
x;xj , σ

2I
))

=
∑
c

Sc

n∑
i=1

n∑
j=1

1

n2
P (c|xi )N

(
x;xi , σ

2I
)
N
(
x;xj , σ

2I
)

=
∑
c

Sc

n∑
i=1

n∑
j=1

1

n2
P (c|xi )N

(
xi − xj ; 0, 2σ2I

)
=
∑
c

Sc

n∑
i=1

n∑
j=1

1

n2
P (c|xi )Ki,j

=
1

n2

∑
c

Sc zc
TK · 1

=
1

n2

∑
c

tr
{
Sc
(
K · 1 · zTc

)}
=

1

n2
tr

{∑
c

Sc
(
ΦΦT · 1 · zTc

)}

=
1

n2
tr

{
ΦΦT · 1 ·

∑
c

Scz
T
c

}

=
1

n2
tr

{
ΦT

(
1 ·
∑
c

Scz
T
c

)
Φ

}

Vbtw essentially represents interactions between class data points against all points.

In other words, it corresponds to interactions of a specific class c and all the available

samples weighted by the prior of class c. According to Equation (2.9), minimizing this
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term will eventually maximize MI between data points and corresponding class labels.

Substituting the expressions for Vin, Vall and Vbtw into Equation (2.9), the closed

form expression of QMI will be,

I(X,C) =
1

n2
tr

{
ΦT

(∑
c

zc z
T
c

)
Φ

}
+

1

n2

(∑
c

S2
c

)
tr
{

ΦT 11T Φ
}
−

2

n2
tr

{
ΦT

(
1 ·
∑
c

Scz
T
c

)
Φ

}

= tr

{
ΦT

(
(

1

n2
)

(∑
c

zc z
T
c

)
+

(∑
c

S2
c

n2

)
11T − 2 · 1

(∑
c

Sc

n2

)
zT
c

)
Φ

}

= tr
{

ΦT MΦ
}
. (2.10)

where

M = (
1

n2
)

(∑
c

zc z
T
c

)
+

(∑
c

S2
c

n2

)
11T − 2 · 1

(∑
c

Sc
n2

)
zTc . (2.11)

M matrix is the core of the proposed subspace learning procedure. It essentially

characterizes the subspace which is optimized based on maximization of mutual in-

formation. The soft-labeling has been induced to original QMI formulation of [53] by

the vector zc = [P (c|x1 ), P (c|x2 ), . . . , P (c|xn )]T ∈ Rn×1, we refer to this formulation

as QMI-S. Now maximizing QMI will eventually boils down to a trace optimization

problem. In the next section, we will provide the objective function for learning a

feature subspace cast as a trace ratio optimization approach.

2.1.3 Subspace Learning By Maximizing QMI-S

Now we can describe the objective function of the proposed algorithm for subspace

learning based on the maximization of QMI between data and corresponding class la-

bels, where instead of using hard labeling for each data point, a class label distribution

(soft labeling) is used. Our formulation is inspired by the approach in [53]. Given a set

of labeled data Xs ∈ Rn×d from source domain (Ds) and unlabeled data Xt ∈ Rn×d

from target domain (Dt), our input data matrix consists of X = [Xs,Xt] ∈ Rn×d,

where n = ns + nt and ns and nt represent source and target data size respectively.

Note that both Xs and Xt are sampled from the same d-dimensional feature space.
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Computing QMI requires labeled data, whereas our target domain data is unlabeled.

To overcome this issue, soft assignment of class labels for target data points are used.

Each of these label distributions are initialized with uniform distribution of class la-

bels (described in Section 2.1.6) and updated gradually in an iterative fashion.

As stated earlier, MI between X and C is measured in kernel space using mapped

data points Φ. Therefore, data are first transformed into kernel space. Kernel matrix

K will be computed using kernel trick, K(xi ,xj ) =< φ(xi ), φ(xj ) >, where φ(x)

is a mapped datum from original feature space to a reproducing kernel Hilbert space

using the mapping function ψ : X → H. We have mainly used Gaussian kernel in

our thesis. By kernelizing the data matrix X, the goal is to find a k-dimensional

feature subspace (k << m) using a linear transformation such that the QMI be-

tween projected data and corresponding class labels (according to Equation (2.10))

is maximized. In other words, we need to find a projection matrix W ∈ Rm×k for

this transformation. W will transform the input data from kernel space to a low-

dimensional feature space. Let wi is a projection vector from W with wi ∈ Rm. We

can impose a constraint on wi ’s to be in the range of Φ i.e. they will span the kernel

feature space. Therefore, wi can be expressed as a linear combination of φ(x) i.e.

wi =
∑n

j=1 ai,jφ(xj ) = ΦT ai , where ai ∈ Rn×1 is a coefficient vector. Projection

matrix W can be constructed by arranging each wi vector in columns such that

W = [w1 ,w2 , . . . ,wn ] = ΦTA, where A = {ai }ni=1 ∈ Rn×k. Each column of A is

ai , that is, Ai = ai . Using W , the projected data, XP ∈ Rn×k can be obtained by

XP = ΦW . Our goal is to maximize QMI in the projected space. Therefore, the

QMI between data and corresponding class distributions in the learned space will be

following,

Ip(Xp , C) = tr
{

(Xp )TMXp

}
= tr

{
(ΦW )TM (ΦW )

}
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= tr
{
W TΦTMΦW

}
= tr

{
ATΦΦTMΦΦTA

}
= tr

{
ATKMKA

}
(2.12)

Finding an optimal W now boils down to finding A with a goal to maximizing

QMI. Hence the objective function for learning the QMI-maximized subspace can be

represented as,

A∗ = arg max
AT KA=I

tr
{
ATKMKA

}
(2.13)

The constraint in Equation (2.13) is derived from the orthogonality of the projection

matrix W [53]. Here I represents identity matrix. This constraint can be deduced

as, W TW = I ⇒ (ΦTA)T (ΦTA) = I ⇒ AT ΦΦTA = I ⇒ ATKKA = I. We

will focus on casting the optimization problem in Equation (2.13) into a trace ratio

optimization problem. In the next section, a brief overview on trace ratio optimization

is provided.

2.1.4 QMI-S as a trace ratio problem

In the area of machine learning and pattern recognition, dimensionality reduction

methods have been practiced and widely used. There exists a good number of su-

pervised and unsupervised dimensionality reduction techniques such as Linear Dis-

criminant Analysis (LDA) [62], Principal Component Analysis (PCA) [52], Local

Linear Embedding (LLE) [63], ISOMAP [64] and so on. Almost all of these meth-

ods can be generalized as a trace ratio optimization problem which has been an

active research topic in this area. This unified approach involves searching for a

transformation matrix W that maximizes or minimizes a trace ratio of the form

tr
{
W T SaW

}
/tr
{
W T SbW

}
where Sa and Sb are symmetric positive definite

matrices which are derived from the corresponding dimensionality reduction method.
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Therefore, the trace ratio problem will take the following form,

A∗ = arg max
WT W=I

tr
{
W T SaW

}
tr{W T SaW }

This optimization problem suffers from an optimal closed form solution. Researchers

have come up with an approximate solution by casting the above problem into an

alternative ratio trace problem [65] defines as follows,

A∗ = arg max
WT W=I

tr
{

(W T SaW )−1(W T SaW )
}

The ratio trace problem can be solved by generalized eigen value decomposition

(GEVD) method as Sa ul = βlSb ul , where ul is the eigen vector corresponding

to l-th largest/smallest eigen value. The projection matrix W will be formed by the

desired number of eigen vectors.

Researchers have argued that the above approximation approach is often far from

optimal and tried to find a better solution. Besides GEVD approach, a number of

other non-linear iterative techniques to the trace ratio problem has also been proposed

in the literature [65–67]. In our work, the GEVD based solution is utilized because

of its simplicity and fast implementation for the QMI-S optimization problem. Later

in the thesis, we will incorporate a non-linear approach based on Newton’s method

to solve the trace ratio problem in the proposed domain adaptation framework.

2.1.5 Solving QMI-S objective function

In order to cast the QMI-S optimization as a trace ratio optimization problem dis-

cussed above, the following two constraints have been applied to Equation (2.13)

according to [53],

i. Constraint 1: Often the class data happen to be imbalanced in either domains

which makes the M matrix non-symmetric. To cast Equation (2.13) into a trace
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ratio problem, M needs to be symmetric. For a real valued square matrix M ∈

Rn×n and x ∈ Rn, the identity xTMx = xTM ′x holds, where M ′ = M+MT

2

is a symmetric form of M . Therefore, M can be symetricized as M ′ = M+MT

2

and M ′ will be used instead of M from now on.

ii. Constraint 2: To make the optimization problem in Equation (2.13) well-posed,

an additional constraint has been imposed, which is, to ensure the embedding

data vectors have unit covariance. In other words, (1/n)(ΦW )T (ΦW ) = I ⇒

(ΦΦTA)T (ΦΦTA) = nI ⇒ (KA)T (KA) = nI ⇒ ATKKA = nI. This is

to ensure that the embedding data points are different from each other, a much

similar approach used in PCA.

Applying the above two modifications in to Equation (2.13), the final objective func-

tion for subspace learning will take the following form,

A∗ = arg max
AT KA=I

tr
{
ATKM ′KA

}
tr{ATKKA}

(2.14)

The above equation is in the form of trace ratio optimization problem and hence an

approximate solution can be generated by generalized eigen value decomposition as

follows,

KM ′KU = KKUΛ

where Λ is the diagonal matrix of eigen values in decreasing order and U is a ma-

trix with colums as the corresponding eigen vectors. Also to satisfy the constraint

ATKA = I, each eigen vector u or column of U is divided by
√
uKu to get a

normalized eigen vector. The columns of U will constitute the optimal A∗ . Fi-

nally, we can generate the projected data onto the QMI-S maximixed subspace by

Xp = ΦW = ΦΦTA = KA∗. As the rank of M ′ is Nc− 1, the first Nc− 1 number

of columns in U will be used to create the projected data i.e. A∗ = {ul}Nc−1
l=1 . This

approach for maximizing MI in the projected subspace has been proposed by Bouzas
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et al [53].

Alternative solution: Besides the above mentioned method, a more robust

approach for finding A∗ is provided, which will give us numerical stability in precise

computation of eigen decomposition. See Algorithm 1 for the detailed procedure. The

projected data in QMI-S subspace is, Xp = KA∗ = KK−
1
2 V = K

1
2 V . Therefore,

the computation of A∗ in obtaining projected data Xp is implicitly avoided .

Algorithm 1 Procedure for finding optimal A∗

1: Re-write Equation (2.14) as, KM ′KU = KKUΛ.

2: Substituting KU with a new variable V i.e. KU = V

and multiplying both sides of above equation by K−1 , we get,

M ′V = V Λ.

3: Solve the above eigen value decomposition problem, where Λ is the diagonal

matrix containing eigen values in descending order and V is the matrix of corre-

sponding eigen vectors.

4: Select the Nc − 1 eigen vectors from V with the largest eigen values.

5: The optimal A∗ that satisfies ATKA = I will be K−
1
2 V . This can be verified

as, ATKA = V TK−
1
2 KK

1
2 V = V T V = I, where V is orthogonal matrix.

2.1.6 Iterative update of soft-labeling and maximization of QMI-S

The proposed framework for domain adaptation is an iterative approach based on

soft-labeling induced QMI maximization. At each iteration, target data predictions

will be updated with the help of labeled source data and this will eventually update

the M matrix for the next iteration. As stated earlier, input data consists of both

source and target domain samples. The intension is to align these two distributions

such that a classifier trained using projected source data can be applied to predict

labels of target data. Therefore, the proposed iterative framework consists of two
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main steps described below (see Figure 2.1).

Construct kernel 
matrix K from input 

data X

Step-I
Compute M to find a 

low-dimensional 
subspace to project 𝐗
by QMI maximization 

Step-II
Update label 

predictions for 
projected target data

Projected source 
and target data

convergence

Figure 2.1: Proposed domain adaptation framework with two main steps.

The input to our proposed method are source and target samples, where source

samples are associated with corresponding class labels (which are assumed to be

known in the domain adaptation setting) and target samples are initialized with

uniform uncertainty of class labels. Source and target data belong to the same d-

dimensional feature space. Let Xs ∈ Rns×d represent ns samples from source domain

and Xt represent nt samples from target domain. Hence the data matrix consists

of X = [Xs ;Xt ] ∈ Rn×d, where n = ns + nt. As an initialization of the proposed

iterative algorithm, each target sample is assigned a discrete uniform distribution of

class labels i.e for each target sample xi ∈Xt , the label distribution is,

p(cj|xi ) =
1

Nc

, for each cj ∈ {1, 2, . . . Nc}.

On other hand, the source samples are annotated with true labels, representing as

a label vector, Ys = [y1, y2, . . . , yns ]
T . To be consistent with the target samples,

each xi ∈ Xs can also be associated with a label distribution using the following

representation,

p(cj|xi ) =


1 if cj = yi

0 otherwise

Therefore, for source data, the label distribution is skewed and for target data, it is

flat. The expectation is to convert the flat label distribution biased towards its true

label i.e. at the end of learning process, a skewed label distribution is expected for
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each target sample. The two major steps involved in the subspace learning are,

Step I: After initialization of data with corresponding label distributions, this

step involves in learning a low-dimensional subspace using a linear transformation.

This transformation has been designed to maximize QMI-S between data and cor-

responding class labels in the projected space. The optimization objective has been

provided in Equation 2.14.

Step II: Once we get the set of projected source and target samples, the target

label predictions are updated. A K-nn classifier is trained using projected source

data and applied to projected target data in order to obtain target label predictions.

Usually, K > 1 is chosen for the classifier so that each target point is predicted with

a probability distribution of class labels.

With this approach, the distribution divergence between source and target domain

is eventually minimized in the projected subspace. According to Equation (2.14), at

the beginning of this iterative process, X is mapped from its original feature space

X to a kernel space using Gaussian kernel. The contribution of this kernel mapping

in DA context is two-fold:

1. It will help capture the non-linear structure of data and

2. choosing sufficiently large kernel size (σ), kernel matrix K will help project the

data (across domains) with similar underlying structure to a close proximity in

the learned subspace.

The proposed methodology is summarized in Algorithm 2.

Convergence criterion: The proposed algorithm will reach convergence when sub-
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space change in two successive iterations will be negligible. The subspace is defined by

the basis vectors V according to Algorithm 1. Hence, this change of two k-dimensional

subspaces in successive iterations can be approximated as a subspace distance on a

Grassmannian [68]. One such distance metric measures the principal angle θ between

Vi and Vi+1 of iterations i and i + 1 respectively [68, 69]. A convergence threshold

ε is set and the algorithm terminates when θ ≤ ε. At this state, class predictions for

target data become stabilized and exhibit no changes in following iterations.

Algorithm 2 Subspace learning based on iterative QMI-S.

1: Input: Data matrix X=[Xs ;Xt ]∈ Rn×d where source data Xs ∈ Rns×d and target data Xt ∈

Rnt×d, source data labels Y = [y1, y2, . . . , ys]
T .

2: Output: Xp ∈ Rn×k, k-dimensional projected data.

3: Initialization: For xi ∈Xt , P (c|xi ) = 1
Nc

for each c ∈ {1, 2, . . . Nc}. For xi ∈Xs , P (c|xi ) =

1 if c = yi and P (c|xi ) = 0 otherwise, for each c ∈ {1, 2, . . . Nc}.

4: Compute a centralized Gaussian kernel matrix, K∈ Rn×n.

5: repeat

Step-I:

6: Compute M matrix using Eq.(2.11).

7: Compute M ′ as M ′ = M+MT

2 .

8: Solve standard eigen problem, M ′V = V Λ.

9: Compute projected data Xp = K
1
2 V .

Step-II:

10: Train a classifier f using projected source data Xs
p and apply it to update P (c|xt

i ) with

soft-labeling.

11: until convergence.

2.1.7 Classification in target domain

Once the projected source and target data in the QMI-S optimized subspace are

obtained, a classifier is trained with projected source data and corresponding class

labels. The object classes are same across domains. Therefore, the classifier can be
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trained with projected source data and tested against the target domain data for

classification. In the experiment section, we will try with two different classifiers, i)

K nearest neighbor classifier and ii) support vector machine (SVM).

2.2 Dataset and Experiments

The proposed method is implemented and tested against popular benchmark datasets.

Office is a widely used image database for domain adaptation [42]. It contains three

different domains (Amazon, DSLR, Webcam) of images captured with varied settings

and image conditions. It contains a total of 4652 images with 31 image categories. A

brief description of each domain is following,

Amazon: Images of Amazon domain are downloaded from online merchant site

amazon.com. These images are usually captured in white background using studio

lighting environment and typically posed in a canonical point of view. On an average,

90 images per category are collected from this site.

DSLR: It contains images captured with high-resolution DSLR camera in natural

environment setting with resolution 42888 × 28848. On average, each object is cap-

tured 3 times from each viewpoint. This domain contains a total of 423 images.

Webcam: It contains images captured with low-resolution web camera. The reso-

lution of each image is 640 × 480. Images also suffer from noise and other artifacts

because of the environment. This domain contains a total of 795 images.

Sample images from three domains are shown in Figure 2.2. These three do-

mains of images show significant variations from each other and provide a substantial

ground for studying domain adaptation problem. It has been tested that if a classi-

fier is trained using one domain (source) and applied to another domain (target), the

classification accuracy is adversely affected. Additionally, we will use Caltech-256

which is a standard dataset for object recognition [70]. It has 30,607 images of 256
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Amazon

DSLR

Webcam

Figure 2.2: Sample images from three different domains.

categories. Therefore, experiments are conducted using these 4 domains with 10 com-

mon categories selected from each of them. The 10 common categories selected are

Bike, BackPack, Calculator, Headphone, Keyboard, Laptop, Monitor, Mouse, Mug,

Projector. From these 4 domains, a total of 12 domain adaptation sub-problems can

be created, each of which involves one source(Ds) and one target(Dt) domain. The

total number of samples from each domain is 958 (Amazon), 295 (Webcam), 157

(DSLR), 1123 (Caltech).

Data preparation: We will use the image representation published by Gong et

al. [22]. SURF features are extracted from images and a codebook of 800 visual

words is computed by K-means clustering on a subset of Amazon images. Each im-

age is encoded as a 800-dimensional histogram. The histogram is normalized using

z-scoring along each dimension to maintain zero mean and unit variance. We will

follow the experimental protocol of [8, 23].
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Parameter setup: Input data are whitened with PCA preserving 95% of the data

variance. Following heuristic in the literature [6], σ of Gaussian kernel is set to me-

dian of the pair-wise distances of data in raw feature space. To update target data

labels inside the repeat loop of Algorithm 2, we used K-nn classifier with K set to

log(ns) + 1 [71]. Also for convergence, ε = 1× 10−4 is used.

In next sections, experiments are conducted with different types of setup and

analyzed the effect of each of them on the proposed itrative QMI-S algorithm. Each

type of experiment has been abbreviated with letters (A,B, C etc.) and the result

tables are organized using these letter references. This will ensure a comparative

picture of each different settings along with their contributions to the framework.

2.2.1 Experiment A

Here, the data and parameter are set up using the procedure mentioned above. After

obtaining the projected data, the classification is conducted on target domain using

a K-nn classifier with K = 1. Each subproblem is denoted as source→ target mean-

ing source classifier is applied to target data in QMI-S subspace. C, A, W and D

represent Caltech-256, Amazon, Webcam and DSLR domains respectively. Also to

prove the superiority of the iterative QMI-S method, another experiment is conducted

where target data are assigned with hard class labels during label predictions i.e. each

target point is assigned a unique class label in STEP-II of the proposed algorithm.

The Table 2.1 shows the comparative results where hard labeling based approach

is denoted as QMI-H. The result shows that soft label assignment is effective over

hard class labeling. The reason is that iterative QMI-S smoothly updates target data

labels, whereas QMI-H is aggressive and once a target point is falsely labeled, it is

prone to stick with this label in following iterations. Nevertheless, applying Gaussian
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Table 2.1: Classification accuracy(%) of target data for 12 different sub-problems. Each sub-problem is in the form

of source→ target, where C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR) indicate four different domains.

Methods C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W Avg

QMI-H 55.95 49.49 45.86 42.12 42.71 37.58 30.37 35.8 80.89 35.71 38.31 61.02 46.32

QMI-S 57.72 55.93 48.41 41.76 46.44 38.85 30.72 36.74 83.44 38.38 42.48 77.63 49.88

kernel with sufficiently large kernel size (large σ) helped to capture the underlying

shared structure of similar data across domains.

Finally, we observe that the class label uncertainty of target data is greatly re-

duced, when the algorithm reaches convergence. As each target data is assigned

soft-labeling (assigning class labels with probability), we can approximate the un-

certainty measure as u(xi ) = max(P (c|xi )) for each target datum. Higher u(xi )

will indicate lower uncertainty. We reported target data count(%) in projected sub-

space with u(xi ) ≥ 0.6 (see Figure 2.3) for each of the 12 sub-problems. Using this

criterion, we find that at least 70% of the target data have achieved reduced label

uncertainty (increased bias towards a class label) for all of the 12 cases.

In terms of computational cost, the proposed method mainly involves matrix com-

putation and solving generalized eigen value decomposition which can be efficiently

implemented using any good software package. The average iteration count of our

iterative approach till convergence is 24.67, over all 12 sub-problems. Figure 2.4

shows the convergence behavior of the framework. As the algorithm proceeds, the

distance between learned subspaces (defined in Section 2.1.5) in two successive iter-

ations reaches below a minimum threshold.

Comparison with state-of-the-art methods: The proposed algorithm is com-

pared with 7 different DA methods (Table 2.2). These can be categorized as follows,

• Without adaptation: Origfeat and PCA indicate the classification accuracy
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Figure 2.3: Number of target domain data (%) with reduced uncertainty of class labels, upon convergence of iterative

QMI-S. Each bar represents one sub-problem (source→ target) indexed by {1, 2, . . . , 12}.

of target data in original 800-dimensional feature space and PCA subspace

respectively. The classification in the original feature space and PCA subspace

without adaptation is investigated in order to imply the necessity of developing

DA methods.

• Adaptation based on subspace alignment: This category of methods focus on

learning a shared low-dimensional subspace between source and target domain

in order to minimize their divergence difference. In other words, they align

the two domains of data such that a classifier trained on projected source data

can also classify unlabeled target domain data. It includes geodesic flow kernel

(GFK) [22], unsupervised subspace alignment (SA) [7], transfer component

analysis (TCA) [9] and transfer feature learning (TFL) [23].

• Adaptation based on subspace alignment+instance re-weighting: This approach

resembles our proposed framework which mainly focuses on finding similarly

distributed source and target data in order to utilize them in subspace learning.

It includes transfer joint matching (TJM) [8].
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Figure 2.4: For each of 12 sub-problems, distance between 2 subspaces in succesive iterations being decreased through

out the iterations. Proposed algorithm reaches convergence when subspace distance is negligible.

Table 2.2: Comparative results in terms of classification accuracy(%) of target data for 12 different sub-problems.

Each sub-problem is in the form of source→ target, where C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR)

indicate four different domains.

Methods C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W Avg

Origfeat 23.70 25.76 25.48 26.00 29.83 25.48 19.86 22.96 59.24 26.27 28.5 63.39 31.37

PCA 36.95 32.54 38.22 34.73 35.59 27.39 26.36 29.35 77.07 29.65 32.05 75.63 39.65

GFK 41.02 40.68 38.85 40.25 38.98 36.31 30.72 29.75 80.89 30.28 32.05 75.59 42.95

SA 42.07 32.2 45.86 39.8 37.63 36.94 28.76 34.34 88.54 32.5 34.24 88.47 45.11

TCA 45.82 30.51 35.67 40.07 35.25 34.39 29.92 28.81 85.99 32.06 31.42 86.44 43.03

TFL 44.78 41.69 45.22 39.36 37.97 39.49 31.17 32.78 89.17 31.52 33.09 89.49 46.31

TJM 46.76 38.98 44.59 39.45 42.03 45.22 30.19 29.96 89.17 31.43 32.78 85.42 46.33

QMI-H 55.95 49.49 45.86 42.12 42.71 37.58 30.37 35.8 80.89 35.71 38.31 61.02 46.32

QMI-S 57.72 55.93 48.41 41.76 46.44 38.85 30.72 36.74 83.44 38.38 42.48 77.63 49.88

For each of the 12 sub-problems with source-target combination (C→A, C→W etc.),

the classification accuracy(%) of target domain data using our proposed iterative

framework (Table 2.2) is reported. Iterative QMI-S shows improved performance

compared to others and outperforms other methods in 8 out of 12 sub-problems.

Also in terms of average accuracy over all 12 cases, our method is 3.61% ahead of the

closest average accuracy obtained by TJM. Also ours approach outperforms GFK

and SA by a large margin that have been considered state-of-the-art approaches so

far. We believe, the enhanced performance comes from this fact that our learned
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feature space exhibits better class separation along with reducing the distribution

difference between source and target domains. Among these methods, only TFL

utilized conditional label distribution of data, but they updated target data itera-

tively with hard labeling, which seems to be an aggressive approach compared to our

soft-labeling solution. Nevertheless, applying Gaussian kernel with large kernel size

(large σ) helped to capture the underlying shared structure of similar data. We used

σ as median of the pair-wise distances of data in raw feature space. Small σ caused

degraded performance as the kernel matrix might not capture accurate similarity

across domains. We have also tried with much higher values of σ (e.g. median×102,

median×103 etc.) and found little impact on learning subspace, which was verified

by negligible change in classification performance with change of σ.

Similarity embedding on the projected space: Figure 2.5 shows the similarity

embedding in the learned feature space for three different methods including ours.

For better illustration, we took 1051 projected data samples from 5 different classes

among which 584 data are from source domain with their true labels and 467 data

from target domain with their predicted labels. Then we formed the similarity matrix

S with 25-nearest neighbors in the projected space (see Figure 2.5). S ∈ Rn×n is

constructed as follows,

S(i, j) =


1 if xp (i) ∈ Lk(xp (j)) ∧ xp (j) ∈ Lk(xp (i))

0 otherwise

(2.15)

Here Lk(x) denotes the set of K nearest neighbors of x. The top-left and bottom-

right sub-matrices of each sub-figure represent within-class similarity inside a domain

(source or target). It is noticed that QMI-S method exhibits more compact block

diagonal structure (Figure 2.5(c)) compared to TJM (Figure 2.5(b)) that has the

closest accuracy with ours in this sub-problem. On the contrary, the top-right and

bottom-left sub-matrices represent within-class similarity across domains. Here, also
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Figure 2.5: Assesing the quality of feature subspace by constructing similarity matrix using projected source and

target domain data (from 5 different classes) for sub-problem C → A using (a) original feature space, (b) TJM and

(c) iterative QMI-S.

Table 2.3: Classification accuracy(%) of target domain data for 12 different sub-problems using SVM classifier (QMI-S

[B]) and K-NN classifier (QMI-S [A]), both trained using projected source data. Each sub-problem is in the form of

source→ target, where C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR) indicate four different domains.

Methods C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W Avg

QMI-S [A] 57.72 55.93 48.41 41.76 46.44 38.85 30.72 36.74 83.44 38.38 42.48 77.63 49.88

QMI-S [B] 61.9 56.61 48.41 42.56 45.76 43.95 31.26 36.53 83.44 38.29 41.96 76.61 50.61

we see better compact block diagonal structure generated by QMI-S method com-

pared to TJM. It requires a careful look to realize that off-diagonal entries are more

cluttered in TJM compared to our method. Figure 2.5(a) shows similarity matrix

for Origfeat which involves no adaptation and hence evidently displays no pattern in

the data similarity. The similarity embeddings for all 12 sub-problems are displayed

in Figure 2.6.

2.2.2 Experiment B

In this section, classification on the projected space is conducted using Support Vector

Machine (SVM) classifier [72]. SVM has been proved to be a robust classifier in the

area of classification or regression. It can also generate predicted labels along with a

label distribution of each test datum. Therefore, SVM classifier can also be adopted to

update label predictions inside the repeat loop of Algorithm 2 (line 11). In table 2.3,

the classification accuracies for each of the 12 sub-problems have been provided. Using

45



Subproblem: 1 Subproblem: 2 Subproblem: 3 Subproblem: 4

Subproblem: 5 Subproblem: 6 Subproblem: 7 Subproblem: 8

Subproblem: 9 Subproblem: 10 Subproblem: 11 Subproblem: 12

Src Trg
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Figure 2.6: Similarity matrices S constructed with K nearest neighbors in learned subspaces for all 12 sub-problems.

For each sub-problem, projected data (source and target) from 5 different classes are used to construct S according

to Equation (2.15).
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SVM classifier yields better classification accuracies compared to K-nn classifier. To

train the SVM, linear kernel has been used. The same protocol is maintained for

SVM training i.e. all source domain data are used for training and target domain

data are used for testing. An efficient implementation of SVM is libsvm [73]. This

software package is publicly available and used in this research work.

2.2.3 Experiment C

Another investigation is conducted in the label prediction phase (Step-II) of Algo-

rithm 2. It is worth noting that target data are predicted using neighboring source

data in projected space. This entails a question that what if a target domain datum

is incorrectly classified?. One safeguard to overcome this scenario is using soft class

labeling. Instead of using hard label annotation for a target domain datum, a prob-

ability distribution of labels is used in prediction. Assigning target points with hard

labels is an aggressive approach, whereas soft labeling will ensure a smooth update

of the target predictions.

We experimented with the target prediction process by adding a uniform un-

certainty to each prediction. This uncertainty is added initially to each prediction

and gradually removed through out the iterations using a simulated annealing sched-

ule [74]. An uniform uncertainty is defined as U(c|x) = 1
Nc

for each c ∈ 1, 2, . . . , Nc.

Therefore, each target prediction will adopt the following rule,

Pf (c|x) = (1− γ)P (c|x) + γU(c|x). (2.16)

where P (c|x) is the prediction using a classifier trained with projected source data

(see Algorithm 2 line 11) and γ is a balancing co-efficient between classifier predic-

tion and uniform uncertainty. Pf (c|x) is the final prediction for each target point.

Through out the iterations, γ will be faded away using a simulated annealing sched-

ule. The intension behind this is, during the initial stage of the learning process, the
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label predictions for the target data might be incorrectly biased and hence we induce

a uniform uncertainty to each prediction in order to avoid misclassification of target

data as much as possible. As the algorithm reaches towards convergence, the target

predictions become more confident and correctly biased. Hence, we prefer to remove

the uncertainty gradually from the prediction process (Equation (2.16)) by decreas-

ing γ using a cooling schedule. A good number of simulated annealing schedules is

available in the literature [74,75]. The schedule used in this work is γ = γ0exp(−bT ),

where γ0 is the initial value of γ and T is the iteration count. In this experiment,

γ0 = 0.5 and b = 0.4 have been used. This value of γ0 ensures an equal contribution

of the two terms involved in the target prediction (Equation (2.16)). The coefficient

b will control the decay speed of γ. This annealing of γ will follow a smooth decay as

shown in Figure 2.7.

Figure 2.7: Simulated annealing schedule for γ with the increase of iteration count.

The uncertainty is removed gradually through out the iterations. Inducing a con-

stant uncertainty (e.g. γ = 0.5) at every iteration may affect the discriminative nature
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Table 2.4: Classification accuracy(%) of target data for 12 different sub-problems using K-nn classifier with K=1.

Second row (QMI-S[A + du]) represents accuracies where target predictions are obtained by adding a uniform un-

certainty which is diminished through out the iterations (decayed uniform uncertainty). Third row (QMI-S[A+ cu])

represents accuracies where target predictions are obtained with constant uniform uncertainty (γ = 0.5).

Methods C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W Avg

QMI-S [A] 57.72 55.93 48.41 41.76 46.44 38.85 30.72 36.74 83.44 38.38 42.48 77.63 49.88

QMI-S [A+ du] 57.1 54.92 49.04 41.23 46.78 40.76 31.17 34.86 83.44 38.29 42.48 75.93 49.67

QMI-S[A+ cu] 41.23 35.93 38.85 37.13 31.53 32.48 21.10 19.31 64.33 16.47 14.61 45.42 33.20

of target data. Also for a correctly classified data point, the addition of uniform noise

will only lessen its contribution to maximize QMI-S in the following iterations. Our

goal was to achieve a biased label distribution for each target point whereas adding

constant uniform noise will always somewhat flatten the label distribution. This

eventually affects the discriminative subspace learning in following iterations. The

uniform uncertainty can be thought of as a safeguard against the effect of misclassified

data in earlier stages of the learning process. In Table 2.4, a comparative analysis is

shown on how the introduction of uniform uncertainty will behave in our framework.

According to the results shown in Table 2.4, it is evident that inducing uncertainty

helps in some of the cases, although the overall average accuracy is comparable to

A. This implies the power of soft-class labeling into the proposed subspace learn-

ing technique. The similar performances in classification accuracy with and without

using uncertainty indicates that soft-labeling can efficiently handle the impact of ini-

tial misclassified target data. Another interesting observation from this experiment

is that constant uniform uncertainty might be detrimental in learning a discrimi-

native common subspace. At each iteration, each target datum is predicted using

Pf (c|x) = 0.5 ∗ P (c|x) + 0.5 ∗ U(c|x) i.e. a constant uncertainty is added with the

label distribution predicted by the source classifier. The average accuracy in this case

for all 12 subproblems is only 33.20%.
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2.2.4 Experiment D

Inducing exponential smoothing in target predictions:

According to Algorithm 2, target data predictions at each iteration are memoryless i.e.

the label predictions for the target data at i-th iteration are ignorant of predictions

at (i− 1)-th iteration. Therefore, this label update is independent from one iteration

to the next. It would be interesting to see if we update target label distribution P i of

each point at iteration i using a linear combination of Pi and P i−1 (label prediction at

(i− 1)-th iteration). Therefore, the label prediction for each datum at i-th iteration

would be,

P i(c|x) = ρP i(c|x) + (1− ρ)P i−1(c|x)

= ρP i(c|x) + (1− ρ)(ρP i−1(c|x) + (1− ρ)P i−2(c|x))

= ρP i(c|x) + ρ(1− ρ)P i−1(c|x) + (1− ρ)2P i−2(c|x) + . . . .

Each prediction will combine the prediction at its current iteration and the one at the

previous iteration and so forth. Therefore, an exponential growth in label prediction

will take place for each target datum. The parameter ρ will control the depth level of

the previous predictions in predicting current prediction. Higher value of ρ indicates

that we are enforcing more importance to current predictions rather than previous

ones, as only a small number of previous predictions will be involved in predicting

the current one. On other hand, smaller value of ρ will cause the prediction process

to traverse deep down the path of previous predictions. This process can be referred

to as exponential smoothing of target label predictions.

In Table 2.5, we report the average accuracy over all 12 sub-problems along with the

average loop count for convergence for different ρ values. It is worth noting that in

terms of classification accuracy, there exists little difference than the original pro-

posed method (A). We believe using soft-labeling based approach has caused the
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Table 2.5: Average classification accuracy over all 12 sub-problems for different values of smoothing parameter (ρ)

ρ
Avg. accuracy

(%)

Avg. loop

count

0.1 47.66 30

0.2 49.35 33.5

0.3 49.34 41.5

0.4 49.55 64.17

0.5 49.79 49.08

0.6 49.83 62.83

0.7 49.93 29.5

0.8 49.79 46.58

0.9 49.6 55.08

target predictions and hence the subspace learning process smoothly optimize. The

only difference from the original method is the convergence time. Average conver-

gence time changes based on the ρ values selected.

In this chapter, we proposed a domain adaptation algorithm based on soft-labeling

induced quadratic mutual information. Unlike other subspace alignment methods, our

goal was to utilize class conditional distribution of source domain to learn a common

subspace with better class separation such that a classifier trained with projected

source data can be applied to annotate target data. In next chapter, we propose

to incorporate instance weighting into this framework in order to facilitate subspace

learning using data samples with shared underlying similarity across domains along

with minimizing the impact of unrelated source samples.
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CHAPTER 3

Subspace Learning Based on Mutual Information Induced With

Soft-labeling and Instance Weighting

In previous chapter, a domain adaptation framework based on soft-labeling induced

mutual information (QMI-S) is proposed. In the projected subspace, target domain

data are predicted using labeled source data. This process involves all the source

and target domain data to learn the common subspace. In this chapter, we will ad-

dress this question, Are all source data important for transfer learning?. It is already

discussed in Introduction chapter that there is a tendency of negative transfer in

learning process. Not all the source data are relevant for transfer learning i.e. not all

of them share similarity with target domain data. These source points are considered

to be similarly distributed with target domain data. Hence we can introduce instance

weighting that will assign weights based on their importance or relevance in learning

a common subspace.

In the literature, very few works have been involved to deal with this issue [6, 8].

Most of these works focus on finding closely distributed source data. We argue that

both source and target data should be weighted based on their mutual relevance on

the subspace learning process. Our idea is to learn a common subspace by maximizing

QMI-S with weighted data samples. Source data will be weighted based on their dis-

tribution on the projected space. Source data that are closely distributed with respect

to target data can be considered as highly resembled with target domain, hence they

will gain higher weights than other source data. A nearest neighbor based approach
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is employed to find this source data distribution. Our proposed approach is iterative

and the weights are dynamically updated through out the iterations. This will ensure

that similarly distributed samples (across domains) will be projected closely on the

learned subspace. Thus source data whose underlying structures are not similar with

target domain data are down weighted eventually. On the other hand, target data will

be predicted using their neighboring points (source or target) and they are weighted

based on their confidence in class label distribution. The confidence is measured us-

ing the max value of a sample’s posterior class probability. Target points with higher

confidence will be weighted higher than other target points.

We introduced instance weighting into the formulation of QMI-S. In previous

chapter, a definition for soft-labeling induced mutual information is proposed based

on [53]. Now the previous work is extended by inducing instance weighting into

QMI-S formulation, we refer to this approach as weighted QMI-S or WQMI-S.

3.1 Weighted Quadratic Mutual Information with Soft Labeling

(WQMI-S)

The definition of mutual information (MI) is provided in previous chapter. To review

it, MI is defined as follows,

I(X,C) =
∑
c

∫
x

(p(x, c)− p(x)P (c))2dx

=
∑
c

∫
x

p(x, c)2dx+
∑
c

∫
x

p(x)2P (c)2dx− 2
∑
c

∫
x

p(x, c)p(x)P (c)dx

(3.1)

The probability distributions used in I(X,C) can be estimated by Parzen window

method with a Gaussian kernel. P (c), p(x, c) and p(x) are derived with Parzen win-

dow based density estimator [60] for weighted instances. In last chapter, QMI-S with

uniform weighting or no weighting of instances is discussed. In this chapter, an ex-
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pression involving non-uniform weighting of instances is formulated. This is a general

formulation that can support both weighted and unweighted instances.

Finding p(x): A Parzen window density estimation of p(x) using IID drawn

samples xi is,

p(x) =
n∑
i=1

P (xi )N
(
x;µ, σ2I

)
where n is the cardinality of data set. With non-uniform weighting, P (xi ) = wi.

Here wi denotes individual weight of each data point. Hence, p(x) becomes,

p(x) =
n∑
i=1

wiN
(
x;µ, σ2I

)
Therefore WQMI is a generalized representation of MI between two random variables.

The expression for UQMI can be obtained by choosing wi = 1
n

for all xi .

Finding P (c): The prior class probability for class c ∈ {1, 2, . . . , Nc} using non-

uniform weighting is,

P (c) =
n∑
i=1

P (c | xi )wi (3.2)

With hard class labeling, P (c) =
∑

i:P (c|xi )=1wi, whereas using soft labeling (proba-

bility of a datum being classified as class c), P (c) =
∑n

i=1 P (c|xi )wi. Hence, in case

of non-uniform weighting and soft class labeling, P (c) represents the sum of weighted

class prior probabilities of class c, we will denote this as Sc for future use,

P (c) =
n∑
i=1

P (c|xi )wi = Sc

Finding p(x, c): Parzen window estimate of the class data distribution p(x|c)

is,

p(x | c) =
1

P (c)

n∑
i=1

P (c,xi )N
(
x;µ, σ2I

)
=

1

P (c)

n∑
i=1

P (c | xi )P (xi )N
(
x;µ, σ2I

)
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With non-uniform weighting of samples and soft class labeling, p(x|c) takes the fol-

lowing form,

p(x|c) =
1

Sc

n∑
i

P (c|xi )wiN
(
x;µ, σ2I

)
Finally, the estimate of the joint pdf of xi and c using non-uniform weighting of

samples and soft class labeling will be,

p(x, c) = P (c)p(x | c)

=
n∑
i=1

P (c|xi )wiN
(
x;µ, σ2I

)
=

n∑
i=1

zc,iN
(
x;µ, σ2I

)
where zc,i = P (c|xi )wi. As discussed in previous chapter, a centralized Gaussian

kernel matrix K∈ Rn×n is defined as K = K̃ − En K̃ − K̃En + En K̃En , where

K̃i,j = N (xi − xj ; 0, 2σ2I) and En is an n × n matrix with all elements equal to

1/n. Let Φ∈ Rn×m represents the projected data points from raw feature space

to a kernel Hilbert space using the mapping function ψ : X → H, where m is the

dimension of kernel space (which is usually equals to infinity). Therefore, K = ΦΦT .

Following [53], we can define Vin, Vall and Vbtw of Equation (2.9) as follows,

Vin =
∑
c

∫
x

p(x, c)2dx

=
∑
c

n∑
i=1

n∑
j=1

zc,izc,jN
(
xi − xj ; 0, 2σ2I

)
=
∑
c

zc
TKzc

=
∑
c

tr
{
Kzc zc

T
}

= tr

{
ΦΦT

∑
c

zc z
T
c

}
where zc = [zc,1, zc,2, . . . , zc,n]T ∈ Rn×1.

Vall =
∑
c

∫
x

p(x)2P (c)2dx
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=
∑
c

S2
c

n∑
i=1

n∑
j=1

wiwjN
(
xi − xj ; 0, 2σ2I

)
=

(∑
c

S2
c

)
n∑
i=1

j=1∑
j=1

wiwjKi,j

=

(∑
c

S2
c

)
tr
{
KwwT

}
=

(∑
c

S2
c

)
tr
{
ΦΦTwwT

}
=

(∑
c

S2
c

)
tr
{
ΦTwwT Φ

}
where w= [w1, w2, . . . , wn]T ∈ Rn×1.

Vbtw =
∑
c

∫
x

p(x, c)p(x)P (c)dx

=
∑
c

Sc

n∑
i

n∑
j

zc,iwjN
(
xi − xj ; 0, 2σ2I

)
=
∑
c

Sc

n∑
i

n∑
j

zc,iwjKi,j

=
∑
c

sc zc
TKw

=
∑
c

tr
{
ScKwz

T
c

}
= tr

{∑
c

ScΦΦTwzTc

}

= tr

{
ΦΦTw

∑
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}
Substituting the expressions for Vin, Vall and Vbtw into Equation (2.9), the closed form

expression of WQMI-S takes the following form,

I(X,C) = tr

{
ΦT

(∑
c

zc z
T
c

)
Φ

}
+

(∑
c

S2
c

)
tr
{
ΦTwwT Φ

}
− 2tr

{
ΦT

(
w
∑
c

Scz
T
c

)
Φ

}

= tr

{
ΦT

(∑
c

zc z
T
c +

(∑
c

S2
c

)
wwT − 2w

∑
c

Scz
T
c

)
Φ

}
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= tr
{
ΦTMΦ

}
(3.3)

where M=(
∑

c zc z
T
c + (

∑
c S

2
c )ww

T − 2w
∑

c Scz
T
c ) is the design matrix.

3.1.1 Subspace Learning By Maximizing WQMI-S

A low-dimensional subspace will be learned by maximizing WQMI-S. This subspace

learning procedure is similar to one discussed in previous chapter. To recap, the

objective function maximizing WQMI-S for learning a common subspace will be,

A∗ = arg max
AT KA=I

tr
{
ATKMKA

}
(3.4)

Here A∗ can be obtained by applying Algorithm 1. Once we have the learned sub-

space, the projected data are computed as, Xp = ΦW = ΦΦTA = KA∗.

3.1.2 Iterative update of instance weighting and soft-label prediction

As stated earlier, input data consists of both source and target samples which will be

utilized for finding the desired subspace. The intension is to align these two distri-

butions such that a classifier trained on source samples can also be applied in target

domain. Therefore, our proposed framework consists of three main stages. They will

be discussed elaborately in following paragraphs.

Like the iterative QMI-S based approach, source samples are initialized with cor-

responding class labels and target samples are initialized with uniform uncertainty

of class labels. In other words, each target sample is assigned a discrete uniform

distribution of class labels i.e for xi ∈Xt , the label distribution will be,

p(cj|xi ) =
1

Nc

, where cj ∈ {1, 2, . . . Nc}.

On the contrary, source samples are annotated with corresponding ground truth la-

bels, say they are represented as a label vector, Ys = [y1, y2, . . . , yns ]
T . To be con-
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sistent with the target samples, each xi ∈ Xs can also be associated with a label

distribution using the following expression,

p(cj|xi ) =


1 if cj = yi

0 otherwise

Another prerequisite of the proposed method is the initialization of instance weight-

ing. All the sample weights are represented as a weight vector w = [w1, w2, . . . , wn]T

where
∑n

i=1wi = 1. The effects of instance weighting in DA framework are twofold,

Firstly, Not all the source data are useful for transfer learning i.e. some source

samples might be out-of-distribution with the target data i.e. they share very

little structural similarity with target domain data. By down-weighting those

points, they are enforced to be less effective in the subspace learning process.

Identifying those samples is a challenging task. It is reasonable to assume

that those source samples will be mapped to distant places in an ideal common

subspace with respect to target samples. The subspace is learned via an iterative

fashion and all source samples contribute equally towards the learning process

in the first iteration. While the algorithm proceeds towards convergence, out-

of-distribution source samples are identified in the projected space and hence

down-weighted through out the iterations. Figure 3.1 shows the final subspace

learned using Xs and Xt where some source points are distantly mapped with

respect to target ones because of their underlying structure dissimilarity.

Secondly, Target data are initialized with zero weights as their labels are unknown

resulting in high label uncertainty. Through out the iterations, target samples

will obtain weights based on their confidence in class predictions. Although

target samples are weighted gradually through out the iterations, this weight

assignment is not uniform i.e. a target sample having higher confidence in

class prediction will achieve higher weight than the one with lower confidence.
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Figure 3.1: Final subspace learned from Xs (blue shapes) and Xt (red shapes). Circle, Rectangle and Star shapes

represent three different object classes. Out-of-distribution source samples(light blue color) are distanlty located in

the projected subspace.

This will ensure target samples having shared structural similarity with source

samples to gain higher weights than those having less shared similarity.

Now a brief description for each stage of our proposed iterative framework shown in

Figure 3.4 is provided as follows,

Step A: After initialization of data with corresponding label distributions and

weights, this step involves in learning a low-dimensional subspace using a linear trans-

formation. This transformation is designed to maximize quadratic mutual informa-

tion QMI between data and corresponding class labels in the projected space. The

optimization objective is provided in Equation 2.14. This subspace is different from

the one discussed in previous chapter, as it involves both soft class assignment and

weighted instances. In this case, the contribution of higher weighted instances in sub-

space learning will be more than the lower weighted ones, which is our expectation,

as according to the hypothesis, not all source or target data might be equally useful

to learn the common subspace.

Step B: Once the set of projected source and target samples is obtained, the target

label predictions need to be updated. Initially, the label prediction for each target
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of target data

Expected label 
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Figure 3.2: Class label distribution (with four classes) for each source and target domain datum.

sample is set to a uniform distribution of labels i.e. each target datum is assigned

a uniform probability distribution of class labels. Through out the iterations, this

uniform distribution is expected to be biased towards its true label (see Figure 3.2).

Therefore, at each iteration, the label distributions are updated either using,

i. a classifier trained with projected source data and applied to projected target

data to update their label distributions or

ii. a K nearest neighbor approach is applied to update the label prediction of each

target sample (see Figure 3.3).

In the second approach, a target point is predicted by its neighboring source and

target samples. The intuition is that projected source samples will influence nearby

target points with their true labels. These target points (along with source ones) then

eventually influence other unannotated nearby target points in predicting label dis-

tributions. This process will continue iteratively causing label information propagate

through highly confident data points to lower ones. This scheme is somewhat similar

to label propagation scheme [76] which is widely used in semi-supervised learning.

Step C: Apply a weighing scheme This is the last step of an iteration loop.

This step plays a vital role in the subspace learning process. Through out the iter-

ations, we will maintain this invariant,
∑n

i=1 wi = 1. Also in the initialization step,

equal weights are assigned to all source samples and zero weights to all target ones
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Figure 3.3: Weighted K nearest neighbor approach to update a label prediction of a target sample (marked as

yellow). ‘S’and ‘T’represent source and target samples respectively. The updated label prediction will be p(c|x) =∑4
i=1 wip(c|xi ), where wi is the corresponding weight of each neighboring sample.

such that
∑ns

i=1wi = 1 and
∑nt

i=1wi = 0. With this assignment, the initial WQMI-S

subspace is dominated by source data and the learned projection matrix (A∗ ) maps

target data onto this subspace. In each following iteration, this process is repeated

with updated instance weights resulting in a common domain adaptive WQMI-S sub-

space. Instance weighting is a generic approach and any appropriate weighting scheme

can be employed based on the task at hand. One great advantage of our WQMI-S

based subspace learning is that it can adapt a variety of weighting schemes. We will

discuss 2 different weighting schemes in domain adaptation context. Generally, the

motivation behind using a instance weighting approach is,

(i) To locate relevant samples across domain to assign them higher importance than

others in learning a common feature space.

(ii) To overcome the imbalance nature of the dataset, e.g. imbalance in source and

target domain data size, imbalance in class data distribution etc.

The overall framework is summarized in Figure 3.4. The weight vector w is induced

into the original QMI formulation of [53]. If all the entries of w is equal i.e. all

instances are assigned constant equal weights, then WQMI-S boils down to QMI-S

approach discussed in previous chapter.
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Compute M and find a low-dimensional subspace 
to project X = 𝑋𝑠, 𝑋𝑡 by a linear transformation 

based on WQMI-S maximization 
Step A

Update label predictions for 
projected target data

Step B

Update instance weights Step C

Figure 3.4: 3-step iterative approach of the proposed framework based on maximization of WQMI-S.

3.2 Proposed Weighting Scheme: weight transfer approach

We propose a scheme where instance weights will propagate from source domain

towards target domain. Like label propagation in semi-supervised learning framework,

source data weights along with label information will be propagated towards unlabeled

target domain data. In DA setting, only source data are labeled and target data are

unlabeled initially. Therefore, total weight mass distribution will be centered to

source data and hence target data will be assigned negligible amount of weight (u 0)

initially. The total weight of all samples is constant and re-distributed among relevant

samples across domains in an iterative fashion. The goal is to conduct the weight

re-adjustment at each iteration such that,

1. Out-of-distribution source samples are down-weighted so that only relevant

source samples can contribute in the subspace learning process.

2. Each target sample can gain weight based on its label uncertainty i.e. higher

confident (in terms of label prediction) target points will be assigned with higher

weights than less confident ones.
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With this approach, the distribution divergence between source and target domains

is eventually minimized in the projected subspace as all target data and only relevant

source data contribute effectively in the transformation. To do this, a fraction of

weights from the total weight mass is subtracted and re-distributed among a candidate

list of samples at each iteration. This causes the total weight mass gradually shifted

towards target domain and the process of weight re-adjustment stops when change

of instance weights in successive iterations is negligible. This can also be thought of

an energy re-distribution scheme where at each iteration, a certain amount of energy

is taken away from a system and then re-distributed among the candidate points of

that system. Similarly in DA setting, at each iteration, α% amount is deducted from

total weight and then re-distributed among candidate points. After some iterations,

a convergence state is reached where the target weights are stabilized. We define

a candidate set, Ω consisting of source and target samples. All the target samples

are included in the candidate list. Source samples that are among the K nearest

neighbors of any target point, are included in Ω. Denoting Lk(x) as the set of K

nearest neighbors of a data point x, we can define Ω as follows,

Ω = {x|x ∈Xt ∪ (x ∈Xs ∩ x ∈ Lk(xt ),∃xt ∈Xt )}.

According to above rule for candidate list creation, a source sample that is in the

neighboring region of any target point in the learned subspace will be considered as a

candidate point (source candidate). The weight re-adjustment will take place among

the candidate list members. The weighting process consists of two main steps,

1. Weight shrinking: A fraction of weight is deducted from each instance weight

(both source and target instance).

2. Weight re-distribution: The subtracted weight is re-distributed among the

candidate list members.
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At each iteration, the above two steps are employed to adjust the weight mass dis-

tribution among prospective samples. In other words, the goal is to align the weight

mass such that source samples having less similarity with target ones are subject to

be down-weighted and thus they have minimal influence on the learned subspace. Say

at a certain iteration, α is the fraction of weight that is subtracted from the data set

and needs to be re-assigned among the members of Ω. This weight adjustment is

non-uniform. As for example, target candidate sample with higher label uncertainty

should get less weight than the one with lower uncertainty (higher confidence) in la-

bel prediction. For simplicity, this confidence is measured with a simple probabilistic

metric, u(x) defined as,

u(x) = max(P (c|x))

u(x) is utilized in weight re-assignment process among target data points. Higher

u(x) indicates lower uncertainty in class prediction and vice versa. Source points

that are members of the candidate list are treated uniformly i.e. equal amount of

weight is assigned to all source candidate points.

As stated earlier, the goal is to learn a low-dimensional subspace that represents

the commonality among source and target data points. Also our assumption is labeled

source data size is larger than unlabeled target one, this is intuitive in practical sense.

Considering this assumption, a balance in weight re-adjustment is maintained among

source and target domain. In other words, α amount of weight is shrinked which is

then re-distributed among candidate list members such that a balance is maintained

among source candidate and target candidate points. Target candidate points are

further categorized on their label prediction uncertainty. In summary, the candidate

list Ω consists of three subsets which are,

Ωs : It contains source domain data that are considered as candidate i.e. a source

point residing in the neighboring region of any target point in the projected
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Ω𝑠 Ω𝑡

Ω𝑡𝑎 Ω𝑡ℎ

Figure 3.5: Formation of candidate list Ω.

space. Ωs = {(x|x ∈Xs ) ∩ (x ∈ Lk(xi ), ∃xi ∈Xt )}, where Lk(xi ) is the set

of K nearest neighbors of xi .

Ωta : All target data points are included in this subset. Ωta = {x|x ∈Xt }

Ωth : Target data points having high confidence in class label predictions are included

in this subset. Ωth = {x|x ∈Xt ∩u(x) ≥ τ}, where τ is a confidence threshold.

Finally the formation of Ω will take the following form (see Figure 3.5),

Ω = {Ωs ∪ Ωta ∪ Ωth}

Now α amount of weight will be distributed among the members of Ω. Therefore, the

equations to implement our weighting scheme will be,

Shrinking weight: w′i = wi − αwi, for each xi ∈X. (3.5)

Redistributing weight: wnewi =


w′i + ηα

|Ωs| , if xi ∈ Ωs.

w′i + (1−η)βα
|Ωth|

, if xi ∈ Ωth.

w′i + (1−η)(1−β)α
|Ωta| , if xi ∈ Ωta.

(3.6)

Here η and β are balancing coefficients that control the distribution of weights among

Ωs and Ωt and also among Ωta and Ωth respectively. Each of these parameters are in

the range from 0 to 1 i.e. 0 < η ≤ 1 and 0 < β ≤ 1. We will describe each of these

parameters and their effect in the weight distribution. The above process of weight

update takes place at each iteration.
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Shrinking weight

According to Equation 3.5, a fraction α amount of weight is subtracted from each

instance weight at each iteration. A weight invariant is maintained as
∑

iwi = 1. As

αwi is extracted from each xi, the weight allotted for re-distribution will be α
∑

iwi =

α.

Re-distributing weight

Now α amount of weight is adjusted among the members of Ω. First, α is allotted

among Ωs and Ωt such that ηα + (1− η)α = α. The parameter η controls the parti-

tion of α. Concretely, η controls the fraction of weight to be transferred from source

towards target domain.

The parameter β controls the weight re-assignment among the members of Ωt.

Target data points are weighted based on their confidence in class label prediction.

The idea is to assign higher weights to highly confident (less uncertain) target points

and assign less weights to others. (1 − η)α amount of weights is allotted for distri-

bution among members of Ωt. This amount is further divided into two fractions such

that β(1−η)α+(1−β)(1−η)α = (1−η)α. The third line of Equation (3.6) indicates

that a fraction of (1− η)α is distributed to all the target data points uniformly. The

second line indicates that members of Ωth gain a ‘bonus’weight because of their high

confidence in label predictions. Eventually these confident points can make effective

contribution towards subspace learning and update of target data predictions for the

following iteration.

The above approach is a generic weighting scheme for weighted QMI-S based

subspace learning in domain adaptation setting. Any appropriate weighting scheme

can be incorporated in our proposed framework. In this case, the parameters α,
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η and β control the behavior of the weighting scheme. We propose an unsupervised

parameter setup approach (referred to as Unsupervised Parameter Adaptation, UPA)

in following discussions.

Parameter setting in weighting scheme for domain adaptation

The first parameter needed to be set is α which is defined as the fraction of weight

shrinked from each instance weight. Therefore, the range of α is 0 < α ≤ 1.0.

Extracting αwi from each sample weight wi shrinks a total of α weight from all the

data points. This α is later re-assigned among the candidate points to hold the

weight invariant (
∑n

i=1wi = 1) true. As stated earlier, target points are initially

zero weighted and are assigned with weights through out the iterations. Also a set

of confident target points Ωth gain some ‘bonus’weights. We argue that α is linearly

proportional to the size of Ωth, that is,

α = max(υ
|Ωth|
|Ωta|

, ζ)

Here ζ is a constant of very small value (usually in the range of u 10−3). This con-

stant is used to avoid the scenario of |Ωth| = 0 causing infinite loop of the algorithm.

In our implementation, υ = 0.5 is used. The intuition behind the above formulation

is that if Ωth is large in any iteration, then a large number of target points have be-

come highly confident and hence the necessity of weight allotment to target domain

becomes high. In this situation, α should be large enough to assign target points

with sufficient weights according to Equation (3.6). Concretely, If α is large (as Ωth

is large), then large amount of weight is shrinked in order to provide confident target

points sufficient weights. This weight adjustment in target domain data is further

described in details later.

Next concern is η and β. From Equation (3.6), it is evident that the shrinked

weight α is re-adjusted among candidate points in two main steps utilizing these two
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Combine

Figure 3.6: Proposed weighting scheme to be applied in iterative WQMI-S algorithm for domain adaptation.

parameters. They are described as follows. Also see Figure 3.6 for an overview of the

proposed weighting scheme.

i. Weight re-adjustment among Ωs and Ωt: As the final goal is to learn a com-

mon feature subspace that minimizes the divergence between source and target

domain, the α is distributed among Ωs and Ωt in an equal share, that is,η = 0.5.

Such partition of α will protect transferring of excessive weights towards target

domain as the idea is to construct the subspace with equal contribution from

source and target domain. At each iteration of the iterative framework, weight is

adjusted among source and target candidate points and this way, target points

are weighted gradually through out the iterations. In summary, each source

candidate point will be weighted according to following equation,

wnewΩs
= w′Ωs

+
0.5α

|Ωs|
(3.7)

ii. Weight re-adjustment among target candidate points: As 0.5α is devoted

for target data points, all of them are assigned weights from the allotted 0.5α

based on their confidence in class label prediction which is measured by u(x).
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Two sub-steps are involved in this allotment process. In first sub-step, a fixed

portion of 0.5α i.e. 0.5α(1 − β) amount of weight is distributed among all

target points. The remaining 0.5αβ is alloted to points that are confident in

their class label predictions. In other words, confident points will gain some

‘bonus’weights. This is intuitive, as in practical scenario, source and target

domain data do not share underlying common characteristics in a fairly equal

proportion. From a narrow point of view, a single source point xs may not pos-

sess exactly same structural property as that of any target point xt. Therefore,

each data point will have its own unique contribution towards the subspace

learning process. In summary, the weight adjustment of each target point will

be as following,

wnewΩth
= w′Ωth

+
0.5αβ

|Ωth|
(3.8)

wnewΩta
= w′Ωta

+
0.5α(1− β)

|Ωta|
(3.9)

The above equations require the setup of Ωth and β. Ωth is constructed by choos-

ing the threshold τ . A reasonable choice might be τ ≥ 0.7. In our research, we

propose a unsupervised parameter setup approach (referred to as Unsupervised

Parameter Adaptation) to fix this cutoff threshold. Concretely, target domain

data are considered as confident in their class label predictions, when u(x) ≥ τ

for x ∈Xt .

Finally, we propose a decision rule to setup β which decides what fraction of

0.5α is allotted for ‘bonus’. The rest of 0.5α i.e. 0.5(1 − β)α is re-distributed

among all target points. Equal partition of 0.5α might be a simple choice i.e.

β = 0.5. In this work, we propose the following rule for β,

r =
Ωth

|Ωta|
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Figure 3.7: Plot of r vs. β.

β = max(r, exp(−r)).

It is noted that min(β) = 0.57 and max(β) = 1.0. The intuition is to set a

minimum bound for ‘bonus’ fraction. Two possible extreme cases are also han-

dled here: i) if r is small, most points are uncertain and hence they are assigned

with very small weights and ii) if r is high, number of uncertain points will be

low and in this case, these points should receive smaller weights. The behavior

of r and β will follow the behavior plotted in Figure 3.7.

One potential question might be why not the bonus weights always high?. Based

on our analysis we found that if we set the bonus weight fraction always high

(say β ≥ 0.8 or so), then false-positive points (i.e. points that are highly confi-

dent to incorrect class labels) will always be assigned with higher weights and

this scenario might propagate through out the iterations resulting in erroneous

weight adjustment which will affect M matrix formulation for the following

iteration.

3.2.1 Unsupervised Parameter Adaptation (UPA)

In this section, an adaptation method to choose the appropriate value of the confi-

dence threshold τ that is used to construct the set Ωth. As our domain adaptation
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framework is an iterative approach, appropriate choice of this parameter will even-

tually effect the following iterations. Instead of manually choosing τ , we propose

an unsupervised parameter adaptation method (referred to as UPA). Each iteration

conducts this adaptation process which involves learning multiple weighted QMI-S

subspaces. In this approach, w is constructed according to Equation (3.5) and (3.6)

for each possible value of τ to learn multiple WQMI-S subspaces. In each case, the

remaining parameters are used according to above description. The idea is to select

the best subspace learned using w with corresponding τ . We propose an intuitive

idea to select among these subspaces. Assuming projected target data will be tightly

clustered around their class means in an ideal subspace, K-means clustering is ap-

plied to them in each WQMI-S subspace, where K is set to the number of unique

categories. From this clustering, a scatter metric G = Jb
Jw

is computed with Jw and

Jb representing within-cluster scatter and between-cluster scatter respectively [77].

The WQMI-S subspace with maximum G is chosen which will be eventually utilized

in following iteration. The overall DA framework is summarized in Figure 3.8. G is

defined as,

Jb =
∑
k

nk|µk − µ|

Jw =
∑
k

∑
x∈Pk

|µk − x|

G =
Jb
Jw

(3.10)

where nk is the number of points belonging to cluster k, µk is the k-th cluster centroid

and Pk is the partition of data points belonging to cluster k. The goal is to choose

the subspace where the total scatter G is maximized for using corresponding τ .

As shown in Figure 3.8, at Step-C, for each possible value of τ , a unique weight

vector is generated which is eventually used in constructing M matrix. Therefore,

for each M matrix, a separate WQMI-S subspace can be learned and the scatter
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Step A
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Figure 3.8: 3-step iterative approach of the proposed framework with intermediate UPA approach at each iteration.

In Step C, for each possible value of τ (say τ [i]), corresponding weight vector w[i] and M [i] are constructed to learn

a subspace.

measure G is computed. The subspace is chosen based on the maximum G value. The

detailed process of UPA has been summarized in Algorithm 3.
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Algorithm 3 Unsupervised Parameter Adaptation (UPA)

1: Choose a set of possible values for τ e.g. τ = {0.55, 0.6, 0.65, 0.7, 0.75}

2: for each τ do

3: Construct Ωs as Ωs = {x|x ∈Xs ∩ (x ∈ Lk(xt ),∃xt ∈Xt )}

4: Construct Ωth as Ωth = {x|x ∈Xt ∩ u(x) ≥ τ}

5: Construct Ωta as Ωta = {x|x ∈Xt }

6: Apply Equation (3.5) and (3.6) to construct (or update) the weight vector w.

7: Compute M according to Equation (3.3) and make it symmetric as M ′ =

M+MT

2
.

8: Solve standard eigen problem, M ′V = V Λ.

9: Compute projected data Xp = K
1
2 V , where K is the centralized Gaussian

kernel matrix.

10: Apply K-means clustering to the projected target domain data with K set to

the number of unique class labels.

11: Measure total data scatter G using within-cluster scatter and between-cluster

scatter (Equation (3.10)).

12: end for

13: Choose the WQMI-S subspace (alternatively, eigen matrix V ) for which G is

maximized.

Therefore, our proposed domain adaptation framework showed in Figure 3.4 is

revised with the inclusion of UPA module, revised framework is showed in Figure 3.8.

The final overall algorithm is summarized in Algorithm 4.

3.2.2 Convergence criterion

Algorithm 4 will iteratively learn a subspace by maximization of quadratic mutual

information with weighted instances. The convergence state is defined as the steady

state when i) weight re-adjustment for target data in successive iterations is negligi-
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ble or ii)
∑ns

i=1wi =
∑nt

j=1wj with sum of weights for non-candidate source points is

negligible. At this state, a stable low-dimensional subspace is found and the weight

shifting from source domain data towards target domain reaches equilibrium. In the

experimental evaluation, difference between target data weights in successive itera-

tions is compared with a threshold. Representing current and previous weight for

target points as two vectors wcurr
i and wold

i , the proposed algorithm will be con-

verged or stopped when |wnew
i −wnew

i | ≤ εw, where εw is a small value to be chosen

for the stopping criterion.

3.3 Weighting scheme: source-target imbalance

Another weighting scheme is provided here with a different perspective than the one

described above. Usually source domain data size will be higher than the target do-

main data. Our goal was to learn a common subspace that represents the underlying

common structure between source and target domain data. If the source domain

data is much larger than target domain, then it can overwhelm and dominate over

the target domain signal. In that case, the idea of common feature subspace is com-

promised. To overcome this issue, we propose to distribute total weight mass among

source and target domain with a fare share. Initially all the samples will be weighted

and through out the iterations this weight assignment will remain unchanged. There-

fore, this weighting scheme will follow
∑ns

i=1wi = 0.5 and
∑nt

i=1wi = 0.5.

Each data point will be weighted according to the following equations,

wi =


0.5
ns
, if xi ∈Xs .

0.5
nt
, if xi ∈Xt .

(3.11)
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Algorithm 4 Iterative domaina adaptation algorithm based on subspace learning

with maximization of WQMI-S.

1: Input: Data matrix X=[Xs ,Xt ] where source domain data Xs ∈ Rns×d and

target domain data Xt ∈ Rnt×d, label vector for source data Ys ∈ Rns×1

2: Output: Xp ∈ Rn×k, projected data with a linear transformation in k-

dimensional subspace. Here n = ns + nt

Initialization:

3: E = 1; Weight vector w = [w1, w2, . . . , wn]T

4: wi = E
ns

, for each xi ∈Xs

5: wj = 1−E
nt

, for each xj ∈Xt

Initialize label distribution P (c|x) as follows,

6: For each xi ∈Xs , P (cj|xi ) = 1
Nc
, where c ∈ {1, 2, . . . Nc}

7: For each xi ∈Xt ,

P (cj|xi ) =


1 if cj = yi

0 otherwise

8: Compute centralized kernel matrix, K∈ Rn×n computed as follows, K = K̃ −

En K̃ − K̃En + En K̃En , where K̃i,j = N (xi − xj ; 0, 2σ2I) and En is an

n× n matrix with all elements equal to 1/n.

Step-A:

9: ComputeM according to Equation (3.3) and make it symmetric asM ′ = M+MT

2
.

10: Solve standard eigen problem, M ′V = V Λ.

Step-B:

11: repeat

12: Compute projected data Xp = K
1
2 V .
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13: for all xi ∈Xt do

14: Find a set Lk consisting of K nearest neighbors of xi .

15: Update P (c|xi ) as
∑

xj ∈Lk
wjP (c|xj ).

16: end for

Step-C:

17: Apply Algorithm 3 to choose an optimal WQMI-S subspace. Use the V matrix

returned from Algorithm 3 for next iteration.

18: until convergence

3.4 Classification in target domain

Once the projected source and target data are obtained after terminating Algorithm

4, we can train a classifier with projected source data and corresponding class labels.

This classifier is tested against the target domain data for classification. In the

experiment section, K-nn classifier is used with K = 1.

3.5 Experiments

The same Office and Caltech-256 dataset are used to test the weighted QMI-S

framework. The four domains or datasets involved here are Amazon (A), DSLR (D),

Webcam (W) and Caltech-256 (C). The experiments are conducted under the set-

ting ns > nt or at least there exists a balance in sizes between source and target

domain. As before, all the labeled source domain data and unlabeled target do-

main data are used as input for the algorithm and the projected source data will

be used as a training set to learn a classifier upon convergence of the algorithm. In

Table 3.1, the classification accuracy for target domain data is reported using our

proposed methods: QMI-S (DA method using soft-labeling induced maximization of

mutual information), QMI-H (DA method with maximization of mutual information)
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and WQMI-S (DA method with maximization of mutual information using instance

weighted soft-labeling). In that table, a comparative result is also provided with other

state-of-the-art approaches. For fair comparison, K-NN classifier is used with K=1

to classify target domain data for all the DA methods including ours.

From Table 3.1, it is noted that our WQMI-S algorithm surpasses other methods

by a significant margin (on average 3.59% higher than the QMI-S approach and 7.35%

higher than TJM approach which is the best reported result among other state-of-the-

art approaches). The performance improves in 5 out of the 7 sub-problems from QMI-

S approach by a large margin and very close in other two cases. This performance

is a reflection of the contribution of both soft-class labeling and instance weighting.

Iterative update of target prediction using soft-labeling generates a discriminative

subspace. The soft-labeling smoothly updates the target data labeling towards a

confident prediction upon convergence of the algorithm. On other hand, instance

weighted soft-labeling scales the contribution of each sample towards the subspace

learning process. We show that although source domain data is larger than target

one, not all the source data have similar contribution in the subspace. Weighting

data instances using the weighting scheme described above adjusts instance weights

at each iteration in an unsupervised fashion. This also helps protect the scenario of

negative transfer which is known as a critical problem in transfer learning scenario.

3.5.1 Classification using source candidate points

The proposed weighting scheme adjusts weights among source and target domain data

using separate criteria. For source domain, higher weights are assigned to those which

are closely located with respect to target data on the projected subspace. Concretely,

a set of neighboring points is selected for each target sample on the projected space

and source points that belongs to any of these sets are considered as source candi-
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Table 3.1: Comparative results in terms of classification accuracy(%) of target domain data for 7 different sub-

problems using nearest neighbor classifier. Each sub-problem is in the form of source→ target, where C(Caltech-256),

A(Amazon), W(Webcam) and D(DSLR) indicate four different domains.

Methods C → A C → W C → D A → C A → W A → D W → D Avg

1123 → 958 1123 → 295 1123 → 157 958 → 1123 958 → 295 958 → 157 295 → 157

Origfeat 23.70 25.76 25.48 26.00 29.83 25.48 59.24 30.78

PCA 36.95 32.54 38.22 34.73 35.59 27.39 77.07 40.36

GFK 41.02 40.68 38.85 40.25 38.98 36.31 80.89 45.28

SA 42.07 32.2 45.86 39.8 37.63 36.94 88.54 46.15

TCA 45.82 30.51 35.67 40.07 35.25 34.39 85.99 43.96

TFL 44.78 41.69 45.22 39.36 37.97 39.49 89.17 48.24

TJM 46.76 38.98 44.59 39.45 42.03 45.22 89.17 49.46

QMI-H 55.95 49.49 45.86 42.12 42.71 37.58 80.89 50.66

QMI-S 57.72 55.93 48.41 41.76 46.44 38.85 83.44 53.22

WQMI-S 56.99 62.71 52.87 41.59 53.56 46.5 83.44 56.81

Table 3.2: Classification accuracy (%) for target domain data using K-NN classifier trained with (I) all projected

source points, (II) only projected source candidate points, (III) projected non-candidate source points.

C→A C→W C→D A→C A→W A→D W→D

WQMI-S (I) 56.16 60.00 50.32 41.23 49.15 47.77 83.44

WQMI-S (II) 56.06 60.00 50.32 41.23 49.15 47.77 83.44

WQMI-S (III) 45.62 45.76 44.59 39.36 50.51 44.59 82.8

date points. This attempt will gradually identify source samples that share similar

underlying structures and properties with target samples. Therefore, instead of using

all the source points, we can train a classifier with only source candidate points and

apply it to classify target domain data. The experimental result is provided in Table

3.2 where each row represents classification accuracy for 7 different sub-problems us-

ing a classifier trained with (I) all the projected source samples, (II) projected source

candidate samples and (III) source samples that are not in the candidate list.

From Table 3.2, it is noted that source candidate points are sufficient for classifying
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Figure 3.9: Comparison of source candidate size, source domain size and target domain size for each sub-problem.

target domain data. The classification accuracies with a classifier trained with all

source data and with only candidate source data are almost similar. Therefore, our

approach can significantly reduce the need for labeled training data for classifier

training. Figure 3.9 shows the distribution of source candidate size compared to source

and target domain data size, computed after termination of the iterative algorithm.

Here we can see that the size of source candidate points is almost linearly proportional

to the size of target domain data which is quite expected. Source candidate list will

grow with the size of the target points. In an ideal discriminative subspace, data with

the same class labels will be grouped together or tightly clustered. Here each cluster

consists data from both source and target domain. The weighting scheme assigns

higher weights to neighboring source points resulting in non-neighboring source points

located distantly in the subspace. Therefore, in the projected space, target data are

clustered along with their neighboring source domain data (see Figure 3.13).

Figure 3.10 shows the distribution of source candidate points in each class. It

shows a balanced distribution of the source candidate points among classes and there-

fore, training a classifier only with the source candidate points yield similar perfor-

mance as with training a classifier using all source points. It is worth noting that the
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Figure 3.10: Distribution of source candidate points (%) among ten different classes for each sub-problem. Each row

represents one sub-problem and i-th column denotes percentile of source candidate from i-th class over all source

candidate points.

source candidate points contain most of the weights alloted for source domain data as

at each iteration, the shrinked weight is re-distributed among source candidate points

and target points. This also ensures that the learned subspace is dominated by the

data samples that share underlying structural similarity and hence closely located on

the projected space.

3.5.2 Weight distribution in source domain

In this section, we will closely analyze the weight assignment among source domain

data. According to the proposed weighting scheme, source points residing in the

neighborhood of target domain data are assigned with higher weights compared to

other source points. This will cause source points that are not structurally similar

with target ones to be placed at distant locations on the projected space. Hence

the distance between each of these non-candidate points and any target point also

increases through out the iterations as they share least similar structure with target

domain data. We can analyze this phenomena by measuring the minimum of the

distances between each source point and all the target points, that is,

dm(xs ) = min dist(xs ,xi ), for xi ∈Xt
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Here dist(.) measures the distance between two points and dm is the minimum distance

among pair-wise distances between a source point and all target points. According

to the proposed weighting scheme, dm(xs ) and the weight of xs are inversely pro-

portional that is, the increase of dm(xs ) will result in smaller instance weight and

vice versa. This behavior is illustrated in Figure 3.11 for four different sub-problems

of Office+Caltech dataset. For each source sample, (dm(xs ), w) pair is rendered

using scatter plot, where w is a sample weight. As expected according to the pro-

posed weighting scheme of iterative WQMI-S method, source candidate points are

mapped in close proximity of target points as they share underlying similarity with

target ones. Hence they are assigned with higher weights than non-candidate source

points, also the mean (red indicator in Figure 3.11) of associated dm distribution is

comparatively smaller than non-candidate ones. The opposite behavior hold for non-

candidate source samples i.e. their associated weights are very small and the mean of

dm distribution is comparatively higher than candidate ones. This proves the desired

phenomena offered by our weighting scheme.

Another illustration is provided in Figure 3.12 that also expresses the behavior

of dm of a source sample vs. corresponding weight. 50 source samples are randomly

selected and constructed a distance vector with corresponding dm values. Distance

and weight vectors are placed side by side where a single stripe represents one sample

in either vector. Higher value is mapped with dark color and lower value with light

color in the colormap. From this figure, it is observed that when a source point is

mapped closely with target points in WQMI-S subspace (i.e. smaller dm and light

stripe), corresponding instance weight is higher (dark stripe) and vice versa.

Finally, Figure 3.13 shows the final output subspace generated by the proposed

WQMI-S framework and the current best work in the literature (TJM). Our goal
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𝐴 → 𝑊 𝐴 → 𝐷

𝐶 → 𝑊 𝐶 → 𝐷

Figure 3.11: Scatter plots of dm vs. weight of source domain data for 4 different sub-problems. Source candidate

points are higher weighted than non-candidate ones. The mean of dm distribution is idicated with red line which is

lower (higher) for source candidate (non-candidate) points.

was to learn a domain adaptive discriminative subspace where source and target

domain data with same class label will be tightly clustered. The figure is generated

using a popular high dimensional data visualization software, known as t-SNE [3].

The projected data generated from the learned subspace are transformed into two

dimensional data using t-SNE and shown as a scatter plot in Figure 3.13. The two

columns of the figure represent two different sub-problems A→D and A→W. In part

(a) and (d) of Figure 3.13, source and target domain data distributions are visualized

for two different sub-problems. We can see that target points are clustered with a well-

separated margin along with source points that share similar underlying structure.

In part (b) and (e) of the figure, we can see the same data distributions annotated

with corresponding class labels, where source points are known a priori and target

data are annotated with predicted labels. In part (c) and (f) of the figure, we see the

same scenario generated using TJM approach. It is worth noting that projected data
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Figure 3.12: Illustration of distance vector constructed with dm values and corresponding weight vector of 50 randomly

selected source samples using colormap. Each sub-figure is representing one sub-problem. In each vector, a single

stripe represents dm or weight of one sample. Higher value of dm is associated with lower value of corresponding

weight and vice versa.
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Table 3.3: Comparative results in terms of classification accuracy(%) of target data for 12 different sub-problems

using the weighting scheme of source/target balancing. Each sub-problem is in the form of source → target, where

C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR) indicate four different domains.

Methods C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W Avg

Origfeat 23.70 25.76 25.48 26.00 29.83 25.48 19.86 22.96 59.24 26.27 28.5 63.39 31.37

PCA 36.95 32.54 38.22 34.73 35.59 27.39 26.36 29.35 77.07 29.65 32.05 75.63 39.65

QMI-H 55.95 49.49 45.86 42.12 42.71 37.58 30.37 35.8 80.89 35.71 38.31 61.02 46.32

QMI-S 57.72 55.93 48.41 41.76 46.44 38.85 30.72 36.74 83.44 38.38 42.48 77.63 49.88

WQMI-S(S≡T) 57.93 55.25 48.41 41.59 47.12 39.49 32.77 36.74 83.44 37.49 40.92 77.97 49.93

are more tightly clustered around class center in the WQMI-S subspace than TJM

subspace resulting in better classification accuracy. The visualization of the scatter

plot also provides a practical proof of the efficacy of our proposed iterative subspace

learning approach based on maximization of WQMI-S.

3.5.3 Weighting scheme to control source-target imbalance

In this section, experiments are conducted by implementing the second weighting

scheme provided in Section 3.3. This process was intended to protect the imbalance

in learning a common subspace between source and target domain such that source

signal cannot overwhelm the target one and vice versa. See Table 3.3 for a compara-

tive performance of the methods. The last row of this table represents the proposed

WQMI-S subspace learning approach with weighting scheme to balance source and

target domain size. In some cases where source domain size is very small compared

to target domain (e.g. W(ns=295)→C(nt=1123)), this type of weight balancing is

effective in transfer learning scenario as the source information is too small compared

to target domain size. Therefore, boosting the source information to a balanced level

such that source and target domain contribute uniformly to the subspace learning, is

an effective process in terms of dealing with data size imbalance in source and target

domains.

In this chapter, a subspace learning framework is proposed which is incorporated
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G = 90.16 G = 126.76

G = 20.64 G = 44.66

Figure 3.13: Illustration of projected data on WQMI-S subspace in 2d using t-sne method [3]. The left column of sub-

figures is for the sub-problem A→D and the right one for A→W. Each sub-figure is a two-dimensional visualization

of the learned subspace. (a and d) source and target point distributions in WQMI-S subspace , (b and e) same

distributions with data annotated with class labels (represented as color) in WQMI-S subspace, (c and f) class data

distributions in TJM subspace. To assess the class discriminative nature of each subspace quantitatively, total scatter

metric G is also reported.
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with both instance weighting and soft-class assignment. The experimental evaluation

proves the usefulness of weighted instances along with soft-labeling based approach

described in previous chapter. Instance weighting is effective in minimizing the impact

of unrelated samples in the learning process. In this work, object categories in both

domains are same. In future, this work can be extended to recognize novel object

category in the target domain with the help of source domain data. A possible outline

of such work is provided in the Conclusion chapter of this report.
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CHAPTER 4

Linear Transformation By Optimizing Individual Projection Direction

In this chapter, a procedure for linear transformation is proposed where each projec-

tion vector of the projection matrix is optimized independently. In linear transforma-

tion based dimensionality reduction techniques, projection matrix W is learned that

maps the original data into a low-dimensional manifold subspace. Say, X ∈ Rn×m

represents a data matrix, where each row represents an m dimensional data point.

Then a projection matrix W ∈ Rm×k is derived that will project the data into a

low-dimensional manifold optimizing an objective function. Therefore, the embedded

data Y ∈ Rn×k in the k dimensional space (k << m) will be,

Y = XW

And the generic optimization problem for this linear transformation will be,

W = arg max
condition

f(x)

where f(x) is the objective function. Therefore, in a k dimensional space, there

will be k number of projection directions (projection vector). In previous chapters,

such optimization problem is proposed that tries to find a projection matrix with

the optimization criterion: maximization of mutual information between data and

corresponding class labels in the projected subspace. According to Equation 2.13,

the problem formulation is as follows,

A∗ = arg max
AT KA=I

tr
{
ATKMKA

}
The above equation is a supervised dimensionality reduction technique and the num-

ber of projection directions will be Nc − 1, where Nc is the total number of classes.
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A∗ was solved by formulating Equation 4 as a trace ratio optimization problem.

In this chapter, an alternative approach is formulated to find the matrix A∗ (in

kernel case) or W (in linear case). As discussed in previous chapters, the projected

data in QMI-S space will be Xp = KA∗ and W = ΦTA. Therefore, we need to

solve for A∗ that will be used to yield projected data. A∗ is matrix of size n × k,

where n is the data size and k is the dimension of learned projected space. Therefore,

each column A∗i of the matrix A∗ is a projection vector. Traditionally, projection

matrix is learned using an optimization of a single objective function and multiply-

ing this projection matrix with data (in original feature space) or kernel (for data

projected in kernel space), we can get the final low-dimensional projected data. Our

idea in this research is to optimize each projection direction individually. Each pro-

jection direction will be optimized by applying 2-class optimization problem using

the optimization objective mentioned in Equation (4). The only difference is instead

of using Nc class labels associated with the data, we will generate a pseudo label set

+1,−1. The original label set C ∈ {1, 2, . . . , Nc} will be randomly partitioned into

two subsets and each subset of original labels will assume one pseudo label (+1 or -1).

The partition will be generated randomly. An example of some possible partitions

are provided in Table 4.1. Therefore, each datum is annotated with either +1 or -1.

As for example, assume we have a dataset corresponding to 5 classes and one

random partition yields {1, 2}/{3, 4, 5}. Say, the subset of classes 1, 2 is represented

with a pseudo-label of +1 and the other one {3, 4, 5} is represented with a pseudo-

label of -1. Thus, data corresponding to class labels 1 and 2 will be annotated with +1

and data corresponding to class labels 3, 4, 5 will be annotated with -1. According to

the QMI-S optimization problem, the final feature space will be Nc − 1 dimensional,

where Nc is the total number of classes. In the two class problem, the final subspace
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Table 4.1: Some possible partitions of a set 5 classes into two pseudo labels

Pseudo label +1 -1

Partition of

original label

1,2 3,4,5

1 2,3,4,5

3,4 1,2,3

2,4,5 1,3

1,2,3,4 5

dimension will be 1. Thus in effect, we are trying to optimize one projection vector

as an individual optimization problem with binary class data.

The intuition behind this approach is two fold:

Firstly, The optimization of a single projection direction based on two class problems

has leveraged the benefit of discriminative binary feature space [12, 78]. Each

vector is optimized with a binary decision function: which pseudolabel does a

data sample belong to?. Therefore, if nb is the total number of possible binary

partitions, then a feature space will be generated with nb dimensions. This

feature space is analogous to nb dimensional binary features. Also this will

effectively generate a class discriminative feature space and ease the task of

classification in that space.

Secondly, The object categories are usually organized in a hierarchical formation.

This hierarchical category structure is quite practical, as for example, three

object classes ‘sedan’, ‘SUV’and ‘van’all can be grouped under a parent cate-

gory ‘motor vehicle’. Therefore, it is intuitive to build a model following this

hierarchical structure of object categories i.e. learning a model to be capable of

differentiating among high-level object classes and then the next lower level and

so on. The proposed partition of class labels considers all possible formation of
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object categories into two meta groups. Our conjecture is, the proposed binary

partition of classes serves as a proxy to the hierarchical object category struc-

ture, as it optimizes a projection vector (or feature) based on a binary grouped

categories. The creation of object grouping is totally unsupervised and each

optimized feature in the learned feature space is responsible for differentiating

between the corresponding binary category groups.

4.1 Problem formulation

We will apply the similar methodology of subspace learning described in previous

chapters. The only difference is the partitioning of data. The dimension of final

feature subspace is dependent on the number of classes available. Say, there is a set

of Nc number of classes available and this set is partitioned randomly. The total

number of possible unique partitions will be,

nb =

(
Nc

1

)
+

(
Nc

2

)
+ · · ·+ q

(
Nc

bNc

2
c

)
= 2Nc−1 − 1

Here
(
.
.

)
denotes binomial coefficient operator. The last term is multiplied by q =

1
2−(Nc mod 2)

to break the symmetry for even number of classes. nb number of opti-

mization problems need to be resolved. This seems a little bit costly, but as each

optimization problem is independent of each other, we can take the advantage of par-

allel programming. For a specific binary partition, each data point is assigned with a

pseudo-label of +1 or -1 based on its original class label. Therefore, the set of class

labels C ∈ {1, 2, . . . , Nc} is cast as Cb ∈ {+1,−1}. We will apply the weighted QMI-

S version of the DA framework with a different weighting scheme. Source data and

target data are weighted differently. The soft-labeling is still applicable for this two-

class optimization problem except that the label distributions will be of dimension

2. The M matrix is constructed accordingly. One main advantage of this proposed

approach is that, the core computation of the optimization problems discussed in
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previous chapters is not altered here, rather it will be used as a functional module for

optimizing each projection direction. Therefore, the final optimization objective for

each projection direction will be (based on the formulation of Chapter 2),

A∗i = arg max
AT

i KAi=I

tr
{
AT

i KM
′KAi

}
tr{AT

i KKAi}
(4.1)

Here K is the Gaussian kernel matrix and Ai is a projection vector. nb number of

Ai need to be learned and all these Ai will form the desired A matrix. A will be

constructed by stacking all the optimized projection vectors in a matrix in column

order i.e. A = [A1 |A2 | . . . |Anb
]. The projected data will be obtained byXp = KA.

Concretely, the original data are encoded with dense binary features where each fea-

ture element is an indicator if a point belongs to a pseudo-class label (+1 or -1). If a

projection vector is optimized based on a binary partition {C+, C−}, that vector en-

codes the discriminative information of a point with respect to {C+, C−}. Hence this

feature encoding reveals the discriminative information corresponding to the available

class labels. Also we argue that the feature space is decorrelated and statistically in-

dependent as each projection direction corresponding to a specific feature is optimized

separately and independently. Each direction is representing a feature learned with

binary partition C+ or C−.

Weighting scheme Each projection vector is learned using maximization of

weighted QMI-S. Therefore, each data point is assigned weight to participate in the

learning process for each projection vector independently i.e. for each optimization

problem, instance weighting is applied separately. Assume the optimization of a pro-

jection vector for a binary partition of class labels Ci
b = {C+, C} and the data are

partitioned using this binary partition as Xb = [X+X− ] i.e. if yi is the class label of

xi and yi ∈ C+, then x belongs toX+ and the same true for C−. As the optimization

is based on a binary class partition, we employ a balanced weight distribution among
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X+ and X− . The following equation for instance weighting is applied,

wi =


0.5
|X+ | , if xi ∈X+ .

0.5
|X− | , if xi ∈X− .

(4.2)

where |X+ | and |X− | represent the size of the corresponding data partition. It is

worth noting that
∑n

i=1 wi = 1 i.e. the total weight of the dataset is normalized to

one. This weighting will prevent the imbalance in the size of data partition and learn

a projection vector with respect to the corresponding binary partition and one set of

the data partition will not overwhelm the other one during learning.

4.2 Optimization with labeled and unlabeled data

In this section, we will discuss how to optimize a projection direction independently

with labeled source domain data and unlabeled target domain data. The same pro-

cedure is employed as in Chapter 2 to incorporate unlabeled target domain data into

the optimization framework. The target domain data are initialized with uniform

class label distribution. The optimization of each projection vector is an iterative

process where the target label predictions are updated at each iteration using one

of the pseudo-label {C+, C−} with soft-labeling. The iterative optimization will con-

verge or stop, when the subspace distance between successive iterations fall below a

negligible threshold (as described in Chapter 2). Here the subspace is one-dimensional

consisting of one projection vector. The weighting scheme will be different than the

one described earlier. The equations for the weighting scheme will be,

wi =



0.25
|X+ | , if xi ∈X+ .

0.25
|X− | , if xi ∈X− .

0.50
|Xt | , if xi ∈Xt .

(4.3)

The above scheme controls the datasize imbalance among source and target domain

and also the imbalance in the data size of binary partition. It is noted that in this

92



scheme, the target data weights are kept fixed as they are unknown in unsupervised

domain adaptation case. Many other weighting schemes can be designed to incorpo-

rate labeled and unlabeled data in the optimization process. Therefore, it will be a

3-step optimization process for each projection vector, summarized as follows,

Step 1: Create a binary partition of class labels {C+, C−} and partition the source

domain data based on this binary labels.

Step 2: Learn a one dimensional subspace using weighted QMI-S maximization.

Step 3: Update target label prediction using binary class labels, update the data

partition |X+ | and |X− | and repeat Step-3 till convergence.

The above procedure is similar to the optimization process described in Chapter 2. It

is worth noting that the unlabeled target domain data will not be involved in the first

iteration of the optimization process. After the 1st iteration, they are projected into

the learned subspace and assigned with class label predictions. From the subsequent

iterations, the target domain data are involved in the learning process with their

predicted class labels. The overall procedure is summarized using a block diagram in

Figure 4.1.

4.3 Experiments

In this section, we will verify the proposed method of domain adaptive subspace

learning using the previously described Office+Caltech dataset. After learning the

projection matrix, all source and target domain data are transformed into the learned

vector space. Afterwards, a K-NN classifier is trained with the projected source do-

main data to apply it for annotating unlabeled target domain data. The classification

accuracy is also compared with the methods proposed in previous chapter. We refer

the method proposed in this chapter as WQMI-Sib to differentiate it (individual op-

timization using binary partition of labels) from other approaches. See Figure 4.2 for
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Set of class 
labels, 𝐶

Create a binary partition 
of 𝐶 as 𝐶𝑏 = {𝐶+, 𝐶−}

Annotate 𝑋 with 𝐶𝑏 to 
partition data as 𝑋𝑏 =

{𝑋+, 𝑋−}

Update 𝑃(𝑐|𝑥𝑡)
with 𝐶𝑏 for target 

data

Refine the partition 
{𝑋+, 𝑋−}

1-dimensional 
Subspace projection

Combine

Multi-dimensional subspace

Block for 1-dimensional subspace 
learning with iterative approach

Figure 4.1: Block diagram of the proposed method. Binary partiton of class labels is created and for each partition,

a projection vector is learned independently by an iterative approach of WQMI-S maximization. Finally, all the

projection vectors are stacked column wise to form a projection matrix.

Table 4.2: Classification accuracy (%) for target domain data in 7 different sub-problems of Office+Caltech dataset.

The last row represents the accuracies achieved with the method described in this chapter.

Methods C→A C→W C→D A→C A→W A→D W→D

QMI-S 57.72 55.93 48.41 41.76 46.44 38.85 83.44

WQMI-S 56.16 60.00 50.32 41.23 49.15 47.77 83.44

WQMI-Sib 51.98 50.17 48.41 43.10 44.07 43.95 78.34

a detailed comparative results in classification accuracy.

From Table 4.2, it can be noted that the proposed approach can perform similarly

well as other approaches proposed in previous chapters. Therefore, this method ef-

fectively generates a class discriminative feature encoding which is as good as the

original WQMI-S or QMI-S subspace in terms of classification accuracy. Figure 4.2

shows the visualization of the 1 dimensional data projection along a specific projec-

tion direction. It is noted that projected data are well separated based on the pseudo

class labels {C+, C−}. Hence the data set X are projected by well separated margin

that separates X+ from X− . Hence from the figure, it can be implied that each pro-

jection vector optimizes the corresponding binary partition problem and generates

a class discriminative 1-dimensional space which can well-separate the two pseudo-
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Figure 4.2: Histogram plot of six randomly selected projection vector optimized with binary class labels. Each

sub-figure plots the 1-dimensional projection of data along a projection direction which shows a well-defined class

separation of {C+, C−}.

classes of the binary partition. The figure shows six randomly selected projection

vector.

4.3.1 Applying ICA

Considering each multi-dimensional projection vector as a multi-dimensional signal,

we can apply Independent Component Analysis (ICA) [79, 80] to the generated sig-

nals in order to decorrelate and extract the original signals. In other words, by

applying ICA, the underlying low-dimensional manifold can be extracted from the

large number of binary signals or projection vectors. The motivation is intuitive as

each individual projection vector is optimized with a binary partition of class labels

where each member of a partition contains set of original class labels. Therefore, this

projection vector can be considered as a binary signal and the same is true for all

other projection vectors. Although each projection vector is an outcome of a binary

optimization, the underlying originating signals will be much less than the number of

multi dimensional features (as small as the number of original class labels). In Table

4.3, the classification accuracy is reported for different dimensional ICA space. We
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Table 4.3: Dimensionality reduction by ICA and PCA to the WQMI-Sib subspace and measuring classification accuracy

on the reduced dimensional subspace. Here ‘dim’represents the dimension of the final subspace after applying PCA

or ICA.

Methods C→A C→W C→D A→C A→W A→D W→D

WQMI-Sib+ICA

dim=10 52.30 46.78 44.59 41.76 46.10 44.59 82.17

dim=20 49.58 40.34 46.50 42.03 39.32 35.67 86.62

dim=30 49.58 37.97 47.77 43.19 40.68 41.40 89.81

dim=50 48.33 38.31 44.59 42.83 38.31 33.12 91.72

WQMI-Sib+PCA

dim=10 49.06 46.78 46.50 42.12 45.08 42.04 80.25

dim=20 49.16 47.12 46.50 42.12 44.75 42.04 80.89

dim=30 49.06 47.12 45.86 42.21 45.08 42.68 80.89

dim=50 49.16 47.12 46.50 42.21 44.75 42.04 80.89

WQMI-Sib 49.16 47.46 46.50 42.03 45.08 42.68 80.89

also reported the classification accuracy for PCA subspace where multi-dimensional

data are transformed into PCA space instead of ICA. From Table 4.3, it is noted

that ICA can be helpful to leverage the underlying discriminative features and gener-

ate a ‘better’subspace in terms of class discrimination. This is quite intuitive as the

features generated by all the projection vectors is a dense representation of binary

features [12, 81] that may encode abundant irrelative information from the originat-

ing image signals. ICA can successfully decorrelate the originating multi-dimensional

signals (here referred to as projection vectors for the transform matrix) and therefore

classification accuracy in this low-dimensional ICA space is higher than the original

high dimensional binary feature space. To understand the efficacy of ICA, we also

report the classification accuracy by projecting WQMI-Sib data into PCA space. In

some of the cases, PCA results are almost comparable to that of ICA.

In future work, investigation can be carried out to develop a process for determin-

ing the dimension of the final low-dimensional subspace that can i) minimize entropy
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along each feature direction and ii) maximize entropy across all features or projection

directions simultaneously.
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CHAPTER 5

Applying Non-linear Method for QMI Maximization

Subspace learning based on non-parametric quadratic mutual information involves

solving an objective function which is a trace ratio optimization problem (elaborately

discussed in previous chapters). In machine learning literature, there are similar

problems that deal with trace ratio optimization, one popular example is Fisher Lin-

ear Discriminant Analysis (LDA) [82]. Essentially, it is a dimensionality reduction

technique which takes the following form,

arg max
V T CV =I

tr
{
V TAV

}
tr{V TBV }

(5.1)

Here ’tr’ refers to trace of a matrix, A ∈ Rn×n is a symmetric matrix and B and C is

symmetric positive-definite matrices of size n × n. The above expression reaches its

maximum (or minimum) when V is an orthogonal basis of the eigen space associated

with A subject to a normalization constraint for V . This problem is intractable.

A widely used resolution is to cast this as a ratio trace problem which is stated as

follows,

arg max
V T CV =I

tr
{

(V TAV )−1(V TBV )
}

(5.2)

The ratio trace problem can be solved by applying generalized eigen value decompo-

sition method (GEVD). As A is symmetric and B is positive definite, there exists n

real eigen values corresponding to the generalized eigen value problem, AΛ = BUΛ.

Λ is a diagonal matrix of eigen values and U is a matrix of corresponding eigen vec-

tors. For simplicity, C is often used as identity matrix I and the condition defines

the orhogonality of the projection matrix V . U comprises of a set of eigen vectors
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[u1 ,u2 , . . . ,up ] with p largest (or smallest) eigen values. Concretely, the GEVD

maximizes tr
{
V TAV

}
subject to a constraint tr

{
V TBV

}
= I and the solution

can be expressed as follows,

tr
{
UTAU

}
= tr

{
V TAV

}
= λ1 + λ2 + λ3 + · · ·+ λp

Here λi is e eigen value. Although this is a very effective solution, it has been proved

in the literature that this simplified version of trace ratio problem often diverges from

its true optimization solution [65, 83]. Researchers have proposed a good number of

approaches to deal with this issue from different perspective. In our work, we adopt

one such solution, known as Newton-Lanczos algorithm and plug in this module into

our iterative domain adaptation framework with a hope to yield better classification

performance. To recall, the proposed domain adaptation framework tries to learn a

low-dimensional subspace by maximizing the following objective function,

A∗ = arg max
AT KA=I

tr
{
ATKM ′KA

}
tr{ATKKA}

(5.3)

Here K is the kernel matrix and A is the desired matrix to obtain the projection

matrix W = ΦTA. In previous chapters, this optimization problem is resolved

based on generalized eigen value solution and we found that GEVD approach shows

a competitive performance in term of classification accuracy for the unlabeled target

domain data. In this chapter, we will investigate the issue of applying non-linear

Newton-Lanczos method to solve the above trace ratio problem. Therefore, the only

focus is to deal with the trace ratio problem in our framework, other modules of the

proposed DA algorithm will remain same.

5.1 Newton-Lanczos algorithm

Following [83], we will provide a brief overview of the Newton-Lanczos algorithm.

The algorithm deals with a ratio of two traces, therefore the final ratio output is a
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scalar value. It is proved that there must be an optimum ratio value β∗ for which the

trace ratio will reaches its maximum or minimum. Therefore, the ratio of two traces

will follow this upper bound,

tr
{
V TAV

}
tr{V TBV }

≤ β∗ (5.4)

This implies that tr
{
V TAV

}
− β∗tr

{
V TBV

}
≤ 0 i.e. for an optimal β∗ we can

have tr
{
V T (A− β∗B)V

}
≤ 0 for any orthogonal V . However, the maximum of a

trace is the sum of the largest eigen values. Therefore, we can have a maximum β∗

when trace of A − β∗B reaches zero, in other words, when the sum of the largest

p eigen values of A − β∗B equals zero, we can have the optimal β∗. Here, p is

the dimension of the projected space. Therefore, according to [83], the trace ratio

optimization problem can be stated as,

f(β) = max
V T V =I

tr
{
V T (A− βB)V

}
= λ1 + λ2 + · · ·+ λp (5.5)

It has been proved that function f is a non-increasing function of β and f(β) = 0 iff

β = β∗. In their work, they proposed a non-linear method for finding the optimal β∗.

The search for the optimal β is a root finding problem for the function f . This in-

volves solving eigen value problems for the matrix A−βB several times. The authors

employed newton’s fixed point iteration method along with the Lanczos procedure to

make the overall procedure simpler. They derived the derivative function of f(p) in

details. Readers are suggested to go through [83] for a detailed explanation and deriva-

tions of the method. The derivative of f has been derived as −tr
{
V (β)TBV (β)

}
,

where V (β) is the matrix of eigen vectors for a specific root β. Using this formula-

tion, Newton’s method involves a fixed point iteration formula for finding the optimal

β which takes the following form,

βnew = β −
tr
{
V (β)T (A− βB)V (β)

}
−tr{V (β)TBV (β)}
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=
tr
{
V (β)TAV (β)

}
tr{V (β)TAV (β)}

According to the algorithm provided in [83], an iterative loop takes place to update β

till convergence. At each iteration, two main steps are implemented, they are i) Ap-

plying Lanczos algorithm to compute p largest eigen vectors and eigen values for the

matrix A− β∗B, ii) Update β using the above mentioned rule of Newton’s method.

Therefore, their algorithm is an iterative approach involving Lanczos method to ob-

tain eigen solution of A− β∗B and Newton’s method to update the root of f(β) i.e.

the ratio of two traces β. The convergence criterion is also provided in their work and

it has be guaranteed that if A is a symmetric matrix and B is a symmetric positive-

definite matrix, then their iterative approach to solve trace ratio problem reaches its

optimal value.

Our contribution here to utilize this alternative solution of trace ratio problem

into our DA framework. We can use this procedure for both unweighted and weighted

version of QMI-S approach as both of them require solving trace ratio optimization

problem. As an example, here we will plug-in Newton-Lanczos algorithm of trace

ratio optimization to our proposed DA method (see Algorithm 2) and analyze how

the performance in terms of classification accuracy for target domain data is effected.

To do this, we need to transform Equation (5.3) as follows, ATK
1
2 can be substituted

by another variable V T i.e. ATK
1
2 = V T to cast this equation into the standard

from of trace ratio optimization (Equation (5.1)). Therefore, Equation (5.3) takes

the following form,

V ∗ = arg max
V T V =I

tr
{
V TK

1
2 M ′K

1
2 V
}

tr{V TKV }
(5.6)

Now consideringK
1
2 M ′K

1
2 = A andK = B, we can apply Newton-Lanczos method

to solve the above optimization problem. Once we get V , we can obtain our desired
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matrix A as follows,

ATK
1
2 = V T

A = K−
1
2 V

After learning A, the projected data is computed as, Xp = KA = K
1
2 V . It is

noted that, computation of the inverse square root of the kernel matrix is not needed

which is essentially an expensive operation. As the projected data is computed, the

other modules of the proposed DA framework should be same. We hope that applying

non-linear method for finding a low-dimensional discriminative subspace will produce

better outcome compared to the traditional generalized eigen vector method. Using

this approach, the updated procedure is described in Algorithm 5.

The convergence criterion in this algorithm is same as before defined in Chapter

2. That is, distance between two subspaces in a Grassmannian manifold is used as

a stopping criterion for this algorithm. If this distance (measured as angle between

two subspaces) falls below a minimum threshold, then the algorithm will stop. For

details of the convergence criterion, readers are suggested to review Chapter 2.

5.2 Experiments

Office dataset is used to verify the efficacy of this non-linear optimization method.

As before, there are four domains involved: Webcam (W), DSLR (D), Amazon (A)

and Caltech (C). The experimental protocol will be same as was followed in previous

chapters. All the projected source data will be used to learn a classifier which is

applied to detect the class labels of the target data in projected space.

Table 5.1 shows the performance of two different approaches: QMI-S (soft-labeling

induced maximization of quadratic mutual information described in Chapter 2) and

QMI-SN-L (soft-labeling induced quadratic mutual information maximized with Newton-
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Algorithm 5 Applying Newton-Lanzcos method for Subspace learning based on

iterative QMI-S (QMI-SN-L)

1: Input: Data matrix X=[Xs ;Xt ]∈ Rn×d where source data Xs ∈ Rns×d and target data Xt ∈

Rnt×d, source data labels [y1, y2, . . . , ys]
T .

2: Output: Xp ∈ Rn×k, k-dimensional projected data.

3: Initialization: For xt
i ∈ Xt , P (c|xt

i ) = 1
Nc

for each c ∈ {1, 2, . . . Nc}. For xs
i ∈ Xs ,

P (c|xs
i ) = 1 if c = yi and P (c|xs

i ) = 0 otherwise, for each c ∈ {1, 2, . . . Nc}.

4: Compute a centralized Gaussian kernel matrix, K∈ Rn×n.

5: repeat

Step-I:

6: Compute M matrix using Eq.(2.11).

7: Set M ′ = M+MT

2

8: repeat

9: Assign K
1
2 M ′K

1
2 = A and K = B

10: Solve standard eigen problem, (A− βB)V = V Λ.

11: Update β as β =
tr{V T AV }
tr{V T BV }

12: until convergence (β)

13: Compute projected data Xp = K
1
2 V .

Step-II:

14: Train a classifier f using projected source data Xs
p and apply it to update P (c|xt

i ) with

soft-labeling.

15: until convergence.

Table 5.1: Classification accuracy(%) of target data for 12 different sub-problems along with MI between data and

corresponding labels using Newton-Lanzcos based nonlinear optimization . Each sub-problem is in the form of

source→ target, where C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR) indicate four different domains.

C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W

QMI-S
Acc 57.72 55.93 48.41 41.76 46.44 38.85 30.72 36.74 83.44 38.38 42.48 77.63

MI(×10−5) 0.099 0.0883 0.093 0.1241 0.1481 0.162 0.1584 0.1904 0.2569 0.1515 0.1953 0.2491

QMI-SN-L
Acc 49.37 46.1 43.95 39.63 42.71 36.94 30.10 35.49 82.17 38.56 ↑ 41.65 82.37 ↑

MI(×10−5) 0.1501 0.1405 0.1506 0.1664 0.196 0.2124 0.1886 0.2273 0.2968 0.1671 0.2095 0.2845
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Lanczos method of nonlinear optimization). It is worth noting that for each of the

subproblems, the QMI between data and corresponding labels (after final annota-

tion of target domain data) is increased compared to the GEVD approach applied in

QMI-S algorithm. The classification accuracies are comparable to that of the orig-

inal QMI-S approach. The iterative QMI-SN-L helps improve the maximization of

mutual information. The classification performance is not improved in accordance

with increased QMI. Newton-Lanczos optimization causes the target data to be more

expanded nearing source data on the learned subspace from the beginning of the it-

erative algorithm. This causes the label predictions of target data to become freeze

very fast, may be in couple of initial iterations.

As future work, an interleaved approach involving prediction for target data and

Newton-Lanczos optimization can be applied. Concretely, line 11 to line 14 of Algo-

rithm 5 is dedicated for the Newton-Lanczos optimization which has been adopted

from [83] and we have used the software package provided by the authors. From the

algorithm, it is noted that M ′ matrix is being updated at every iteration and hence

A matrix is learned. After the convergence of Newton-Lanczos algorithm, target

data predictions are updated resulting in update of M ′ matrix eventually. In the

interleaving approach, we can move this target prediction and M ′ computation in-

side the optimization loop of Newton-Lanczos process. Therefore, instead of delaying

the update of A till maximization of trace ratio is reached, by conducting this ad-

vanced update, it is possible to enhance the iterative approach resulting in the overall

convergence of the framework faster.
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CHAPTER 6

Conclusion and Future Work

In computer vision and machine learning area, solving a classification, detection or

regression task depends on an effective model which is trained to deal with that task.

Training a model efficiently has been a challenging task as it needs to generalize over

varied testing environment which might be significantly different from the training

domain. With the advancement of image capturing devices like cellular phones, web

camera, DSLR camera etc. enormous amount of visual data are being generated

at every moment. Most of these data remain unannotated. Manual annotation of

these huge number of images by human intervention is often infeasible and creates

a bottleneck to train an effective supervised model for the task at hand. Transfer

learning has evolved as a rescue to overcome this scenario. In our research, we focus

on a specific case of transfer learning, widely known as ‘Domain Adaptation’. We

focused on the classification task in DA context, the proposed framework can also be

extended to other vision tasks like detection, regression etc. which will be considered

as a future research direction from here. The main challenge was to overcome the

distribution divergence between source and target domain data such that a classifier

trained using source information can be deployed effectively in the unknown target

environment. If all the target domain data are unlabeled, then it becomes more chal-

lenging to establish a knowledge transfer from source to target domain. One intuitive

hypothesis is that if the set of object classes is same across domains, then source and

target data share some underlying common structural properties in a low-dimensional

manifold. Utilizing this hypothesis, researchers have proposed a good number of al-
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gorithms based on learning a shared subspace using source and target data, where

the distribution divergence has been minimized. In our research, we investigate one

step ahead and try to learn a class discriminative subspace resulting in minimization

of differences in marginal and conditional distributions across domains.

We have been able to successfully integrate soft class labeling and instance weight-

ing into the subspace learning framework based on non-parametric quadratic mutual

information, referred to as WQMI-S. We also show that applying an iterative process

of label prediction of target data, each target point along with neighboring source

points can influence its neighboring unlabeled target samples for label prediction on

the learned subspace. Thus label information from source domain gradually prop-

agates towards target domain with a goal to predict the unknown target data and

these newly annotated data eventually influence the construction of QMI maximized

subspace for the next iteration. Instance weighting into the QMI formulation has also

been proved effective as not all the source domain data share similar structural prop-

erties with target domain data. Hence instances are weighted based on their shared

relevance with a very intuitive weighting scheme that automatically adjusts instance

weights through out the iterations. In our research, we used trace ratio optimization

to learn the subspace and apply eigen value decomposition method to generate the

basis of the subspace as an approximate solution of trace ratio optimization.

Future work

We investigated some alternative learning processes of QMI subspace in Chapter 4

and Chapter 5 and provided intuitive analysis to shed light on future research direc-

tion. In Chapter 4, we proposed an alternative subspace learning methodology based

on a binary task optimization along each projection direction. The intuition was to

generate a class discriminative dense feature subspace such that the raw data can be
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encoded using class discriminative information. This is a generic paradigm for dense

feature generation, which has been also adapted in domain adaptation context. We

showed that the performance of this process in DA framework is comparable to other

proposed methods. As a future work, applying Independent Component Analysis

(ICA) to the generated projection vectors in order to separate the originating source

signals will be an intuitive approach to try. In the experiment section of Chapter 4,

an experimental analysis to support application of ICA is provided. Each projection

vector is optimized based on a binary partition of class labels. Therefore, each of

them represents a multidimensional signal that is optimized to discriminate between

two components of the binary partition. Each partition is actually constructed from

the original label set. This is the motivation to apply ICA with a goal to unravel

the originating source signals, where the number of originating source signals is same

as the number of class labels used to generate binary partitions. Determining the

dimensionality of the final ICA subspace is till an open issue.

In Chapter 5, non-linear Newton-Lanczos process is used in QMI-S maximization

instead of generalized eigen vector decomposition. As future work, an interleaved

approach involving prediction for target data and optimization of Newton-Lanczos

algorithm can be applied. Non-liner Newton-Lanczos iteratively search for a sub-

space till trace ratio is maximized and multiple intermediate subspaces are generated

in this process. In our domain adaptation framework, target data predictions need to

be updated at each iteration. Therefore, this prediction process can be coupled with

the Newton-Lanczos optimization by updating the M matrix after each intermediate

learned subspace involved in Newton-Lanczos. Lastly, we propose another research

direction to extend our work for unseen or novel classes in the target domain which

are not present during training phase or in source domain. The question to ask here

is how to recognize an object that is not seen during training phase of a classification
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model. Researchers in this area are also dealing with this issue and try to overcome

the difficulties of facing novel object category with the help of auxiliary data related

to novel class, this line of research is often referred to as zero shot learning. One

possible direction is to learn separate manifolds for each class in source domain and

project each target data onto these manifolds to construct a class relevance vector.

These vectors might be further clustered to form pseudo labels for target data that

will serve as an auxiliary data for the novel class.

In summary, we deal with a very challenging but interesting topic of recent com-

puter vision research that has a valuable and significant impact in building efficient

models for an AI task. Algorithms and variants that are optimized to overcome bot-

tlenecks usually faced during the learning process of a robust adaptive model, have

been proposed with extensive analysis .
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APPENDIX A

List of Symbols

In this thesis, boldface lowercase letters are used to represent vectors, e.g. x, and

boldface uppercase letters for matrices, e.g., M . Italicized letters are reserved for

scalars, e.g., i, n.

Ds,Dt source and target domain.

n total number of data points.

ns, nt number of data points from source and target domain respectively ns+nt = n.

k dimensionality of learned subspace.

d dimensionality of raw input feature space.

Xs ,Xt data matrix of source and target domain data respectively, Xs ∈ Rns×d,

Xt ∈ Rnt×d.

X input data matrix constructed with Xs and Xt , X = [Xs ;Xt ] ∈ Rn×d

x a general data point in Rd.

C set of class labels.

Nc number of unique object categories.

p(x) marginal data density distribution.
∫
p(x)dx = 1.

P (c) prior probability of class c.
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p(x, c) joint probability density function.

p(c|x) the class conditional distribution.

w weight vector consisting of individual sample weight, w = [w1, w2, · · · , wn]T ∈

Rn×1.

Sc a shorthand notation for P (c).

N (x;µ,Σ) is a Gaussian distribution with mean µ and covariance matrix Σ.

N (x;µ,Σ) =
1√

2π|Σ|
e

(
−1

2
(x− µ)T Σ−1 (x− µ)

)

where |Σ| is the determinate of the covariance matrix and e is the base of the

natural logarithm.

V matrix of eigen vectors (in column order) associated with standard eigen decom-

position of matrix M .

K centralized Gaussian kernel matrix.

Φ matrix with data mapped in Kernel space, Φ ∈ n×m.

W projection matrix for linear transformation by maximizing QMI.

A matrix of coefficients for representing W in terms of Φ, W = ΦTA,A ∈ Rn×k.

α fraction of weight subtracted from each instance weight, wi.

Ω set of candidate data (both source and target domain) that go through weight

re-adjustment.

Ωs,Ωt sets of candidate source and target domain data respectively.

Ωth set of target domain data that are confident in corresponding class label predic-

tions.

121



β fraction of weight used as ‘bonus’to be distributed among members of Ωth (Chapter

3).
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