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Major Field: NATURAL RESOURCE ECOLOGY AND MANAGEMENT 

 

Abstract: The shortleaf pine (Pinus echinata Mill.) population is consistently declining in 

southeastern United States. Shortleaf pine forests are thinned frequently to improve the 

growth and development of residual stands. But, the effect of thinning on growth and 

development of understory woody-plants in long term has not been extensively studied. 

We assessed the effects of thinning, overstory shortleaf pine characteristics, climatic, and 

topographic factors on shortleaf pine regeneration applying various predictive modeling 

techniques. We applied decision tree models to predict shortleaf pine regeneration. We 

also developed, evaluated, and compared the performance of three other predictive 

models to predict shortleaf pine regeneration. We used understory shortleaf pine data that 

were collected from shortleaf pine forests of Arkansas and Oklahoma spanning a period 

of 25 years following thinning and hardwood control treatments. The shortleaf pine 

densities have declined in every subsequent measurement since the first measurement of 

understory trees in 1996. Thinning treatments played a significant role on the understory 

shortleaf pine density. The decision tree model using the Gini criteria as the splitting rule 

to predict the shortleaf pine regeneration had a low misclassification rate of 7.6 percent. 

The decision tree model can be an efficient tool to make shortleaf pine stand management 

decisions. The best performing logistic regression model showed precipitation, plot age, 

site index, and overstory thinning were the significant inputs affecting shortleaf pine 

regeneration with validation misclassification rate of 8 percent. The best performing 

artificial neural network model predicted the shortleaf pine regeneration with validation 

misclassification rate of 7.6 percent, and cumulative lift of 5, 2.5 and 1.66 at depth of 20, 

40 and 60 respectively. An artificial neural network model performed best to predict the 

shortleaf pine regeneration. Poor shortleaf pine regeneration performance over decades in 

study sites suggests the future of shortleaf pine dominated forests is questionable unless 

further regular silvicultural treatments are applied. We recommend continual hardwood 

removal every 10-15 years to obtain the satisfactory understory shortleaf pine 

regeneration in shortleaf pine forests of Arkansas and Oklahoma. 
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CHAPTER I 

INTRODUCTION 

Historically, shortleaf pine (Pinus echinata Mill.) has been one of the most common 

forest types in the southeastern United States (McWilliams et al., 1986; Kabrick et al., 2010), and 

it  is second only to loblolly pine (Pinus taeda L.) among southern pines in standing volume 

(Budhathoki, et al., 2008). It grows in 22 states over more than 1,139,600 km2, ranging from 

southeastern New York to eastern Texas (Willet, 1986), covering the broadest range among the 

southern pines (Williston and Balmer, 1980). Indeed, shortleaf pine is one of the most important 

tree species in Arkansas and eastern Oklahoma (Zhang et al., 2012). The Ouachita Mountains 

cover 6.6 million acres of area, and nearly 40 percent of total forested areas in Ouachita 

Mountains are shortleaf pine dominated forests (Guldin et al., 2004). Despite its wide 

distribution in the region, shortleaf pine is the least understood species among the four major 

pines (Guldin, 2007). Shortleaf pine grows well in areas having the mean annual temperature 

from 9 ºC to 21 ºC, with minimums of -30 ºC and maximums of 39 ºC (Williston and Balmer, 

1980).   

 Shortleaf pine has been desirable in the region in terms of timber production for southern 

pine lumber which is typically used in building and home construction. It is also a source of 

southern pine pulpwood for the pulp and paper industry. Shortleaf pine is relatively more 

resistant to surface fire, and capable of re-sprouting than hardwoods or loblolly pine (Pinus taeda 

L.) after the fire incidents. This resistance to fire makes shortleaf pine desirable for restoration
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efforts that feature controlled burning such as restoration to the shortleaf pine-bluestem grass 

ecosystem. Shortleaf pine stands are particularly desirable for red-cockaded woodpecker habitats 

(Zhang et al., 2012) from the wildlife management perspective. The esthetic values of shortleaf 

pine are also important for tourism and recreation (Lawson and Kitchens, 1983). In spite of these 

beneficial aspects of shortleaf pine forests, shortleaf pine populations have been declining in 

recent years (Moser et al., 2006; KC et al., 2015). KC et al. (2015) suggested that the current rate 

of regeneration of shortleaf pine seedlings is not adequate to maintain the shortleaf pine 

dominated forests in the long-term in Ozark-St. Francis and Ouachita Mountains of Arkansas and 

Oklahoma.  

Most previous studies of naturally-regenerated shortleaf pine forests have focused on the 

growth and development of overstory shortleaf pine stands after thinning. Studies conducted by 

Budhathoki et al. (2006, 2008 a, 2008 b) are some examples. In some circumstances it is possible 

that the total cost for thinning could be higher than the value of the resulting benefits. In such 

cases, the entire thinning process becomes economically unrealistic. However, in many cases, 

thinning can be profitable (Larson and Mirth, 2004). Many wildlife and game species prefer 

shortleaf pine-bluestem habitat over shortleaf pine-hardwood habitats. Many studies in recent 

past focused on assessing the effect of shortleaf pine-bluestem restoration for red-cockaded 

woodpeckers (see, Masters et al., 1998; Conner et al., 2002; Thill et al., 2004). Thinning to 

appropriate levels of shortleaf overstory and control of understory hardwoods using fire are 

essential features to restore the shortleaf-pine bluestem ecosystem.  These studies suggest there 

has been a renewed interest on restoring the shortleaf pine-bluestem grass habitat (Kabrick et al. 

2011).   
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Thinning is a common practice in shortleaf pine forest to maximize productivity of 

residual stocks. Pre-commercial thinning of natural stands is sometimes beneficial and its 

importance is well documented in previous studies. Thinning increases residual individual tree 

volume and reduces competition with other hardwoods (Jhang et al., 2012). Though thinning can 

be used to maximize the amount of volume that a stand produces, it is not economically feasible 

to do so in all cases.  Overstory growth and development is not always the sole purpose of 

thinning. Thinning promotes understory shortleaf pine and hardwood regeneration  and offers 

better habitat for wildlife such as red-cockaded woodpecker, bobwhite quail (Colinus 

virginianus), Bachman’s sparrow (Aimophila aestivalis), and eastern wild turkey (Meleagris 

gallopavo) (Bukenhofer and Hedrick 1997; Guldin et al., 2004). Thinning also increases the 

amount and palatability of wildlife food plants in the thinned stands (Lawson and Kitchens, 

1983).  

Lawson and Kitchens (1983) reported shortleaf pine stands can be managed using single 

tree selection silvicultural systems. The selection system is especially attractive for the managers 

of small tracts, and the selection harvesting system also supports the regeneration. Guldin et al. 

(2004) recommended that reducing the overstory basal area to 18.36-17.21 m2 ha-1 (75-80 ft2 

acre-1) creates better habitat for wildlife. Lynch et al (2003) and Nkouka (1999) studied effects of 

multiple overstory factors on shortleaf pine regeneration and reported that higher levels of 

overstory basal area affect the shortleaf pine regeneration negatively. Lawson (1986), Nkouka et 

al. (1999), and Lynch et al. (2003) assessed the effect of overstory shortleaf pine and reported 

that higher site indices affect the shortleaf pine regeneration negatively. 
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Shortleaf pine is a shade-intolerant (Baker et al., 1996) species, and hardwoods are the 

climax vegetation in many areas of the southeastern United States. Baker (1992) indicated that 

young shortleaf pine seedlings tolerate shade relatively well; however, it becomes more 

intolerant as the stand gets older. When a shade intolerant or moderately tolerant species like 

shortleaf pine fails in response to the intense competition and rapid height growth of competing 

trees to remain in top canopy, they lag behind and succumb to hardwood competition (Baker et 

al., 1996). When a dense hardwood understory is expected to hinder natural pine regeneration, 

eliminating hardwoods in combination with pine thinning is an excellent management practice 

(Rogers and Brinkman, 1965; Stevenson et al., 2010). Controlling hardwoods along with 

thinning increases the productivity of residual shortleaf pine (Lowery, 1986). This practice also 

increases shortleaf pine seed production (Phares and Rogers, 1962). Competition control 

measures should be implemented when the competition for water and light becomes critical to 

newly established seedlings. This allows extra space and resources for adequate natural shortleaf 

pine regeneration. Single-stem injection, foliar spray, or soil application of herbicides are 

effective measures to eliminate hardwoods; especially when the hardwood tree sizes are small 

(Loyd et al., 1978). Mechanical methods, such as hand cutting and shearing also temporarily 

reduce hardwood competition, but may cause problems with sprouting. Maple (1965) found that 

brush cutting provided higher survival percentages of shortleaf pine seedlings (2.9) and stocking 

levels than chemical treatment (1.3) and burning (0.4).  Crow and Shilling (1980) reported 

beginning a burning program several years before the harvest/regeneration cut reduces hardwood 

competition for newly established seedlings. Rapid regrowth of most hardwoods is possible after 

conducting the mechanical control method (Lowery, 1986). 
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Lilly et al. (2012) reported that the shortleaf pine population is declining in southeastern 

United States. Recent studies (Nkouka 1999; Lynch et al., 2003, KC et al., 2015; KC et al., 2016) 

show the shortleaf pine regeneration in Arkansas and Oklahoma is not satisfactory on the study 

sites that they examined. Those findings reveal both understory and overstory shortleaf pine 

populations are not as prolific as might be desired. Because many studies conducted in the past 

focused on overstory shortleaf pine, there is a gap of knowledge concerning the understory of 

shortleaf pine stands. In addition to the response of the residual overstory post thinning, it is 

equally important to assess how the understory of shortleaf pine stands responds to overstory or 

understory treatments. Certainly, there is not just one single factor responsible for the decline of 

shortleaf pine in the region. But, selective removal of shortleaf pine, intense hardwood 

competition, short fire intervals (<3 years) before and after logging, no surface fire treatments, 

and global climate change are major factors making the situation more adverse for shortleaf pine 

abundance and regeneration. This study assesses how the understory shortleaf pine stands 

response the overstory thinning treatments in long-term.  Here, we answer questions that are 

related to the understory regeneration, growth and development.  

The general objective of this study is to study the development of understory shortleaf 

pine density and associated hardwood understory development in Arkansas and southeastern 

Oklahoma. We try to shed some light on factors that affect the understory shortleaf pine survival 

and development and on what measures can be applied to promote the understory shortleaf pine 

regeneration in the region. To achieve these goals, we conducted three studies with specific 

objectives, which are described below. 
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Firstly, we assess understory shortleaf pine and hardwoods densities and their 

development in long-term. We assessed how the understory shortleaf pine and hardwoods 

interact to each other after conducting the thinning treatments to the overstory shortleaf pine at 

four thinning levels. Specifically, we (1) quantified the species richness, dominance, and 

diversity of the woody plants. We (2) also assessed densities and relative frequencies of 

understory woody plants and shortleaf pine for approximately 25 years. We (3) assessed the 

effect of four thinning treatment levels on understory shortleaf pine density. And, we (4) 

assessed whether the shortleaf pine, oaks, and red maple densities at various dbh levels differ in 

long-term. 

Secondly, in light of the fact that shortleaf pine regeneration is low in the region (KC et 

al., 2016), this study evaluates the effects of overstory stand level variables (site index, plot age, 

overstory basal area hectare-1) and other climatic (precipitation) and topographic (slope, aspect, 

altitude) factors on shortleaf pine regeneration in Ozark and Ouachita National Forests in 

Arkansas and Oklahoma. We predict the chance of shortleaf pine regeneration at satisfactory 

levels using several decision tree (DT) models representing various limitation or growth 

conditions. We also compared the predictive performance of the selected DT models to logistic 

regression (LR) models. Specifically, we apply the decision tree model to assess the shortleaf 

pine regeneration response to overstory thinning in the long term. Additionally, we illustrate an 

interactive DT where the forest managers can interactively change the inputs to achieve the 

desired number of shortleaf pine regeneration stems in their forests. Furthermore, we examine 

the association between shortleaf pine regeneration and thinning level over the period of 25 

years. We expect this study to be helpful to manage the shortleaf pine forests not only in 

Arkansas and Oklahoma but also in the entire southeastern United States. Most importantly, this 
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study will establish a precedent that the predictive models are helpful in forest management 

related research which supports stakeholder decision making. 

Thirdly, we compared multiple forms of logistic regression (LR), artificial neural 

network (ANN) and support vector machine (SVM) models to predict the shortleaf pine 

regeneration in Ozark and Ouachita national forests in Arkansas and Oklahoma. To the best of 

our knowledge, this study is first in kind to use and compare predictive modeling techniques to 

assess shortleaf pine regeneration in the southeastern United States. It is important to develop the 

efficient statistical/ predictive models that assess the major factors influencing shortleaf pine 

regeneration. Our data are the widest ranging study of shortleaf pine response to thinning with 

the longest monitoring period for understory tree development of which we are aware.  We 

expect this study will help to better understand the present and future status of shortleaf pine 

forests in Arkansas and Oklahoma and to develop efficient management programs in shortleaf 

pine forests.  
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CHAPTER II 

Long-term response of understory shortleaf pine (Pinus echinata Mill.) and hardwoods to 

thinning in natural shortleaf pine-oak stands in Arkansas and Oklahoma 

 

Abstract 

Shortleaf pine (Pinus echinata Mill.) is considered one of the most important tree species in 

Arkansas and eastern Oklahoma, and it has been used for southern pine lumber. Recent studies 

suggest that shortleaf pine population is consistently declining in the region, but there have been 

relatively few studies conducted in past to assess the long-term understory response of shortleaf 

pine-oak stands in southeastern United States. This study assessed the effects of thinning on 

understory woody-plant density and regeneration dynamics. It also assessed the trend of density 

change at five dbh classes for understory shortleaf pine, oaks and red maple. The understory 

regeneration data were collected since 1996. The study plots were located in Arkansas and 

Oklahoma. Ecological metrics including species richness, evenness, relative densities, and  

relative frequencies were calculated. We found understory shortleaf pine densities are declining 

in every subsequent measurement since the first measurement in 1996. The thinning treatment 

played a significant role on the understory shortleaf pine density (P<0.001). Plots with the 

heaviest thinning treatment (overstory residual basal area <10 m2 ha-1) had significantly high
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 numbers of understory shortleaf pine densities in all measurement years (P<0.001). Thinning did 

not show a significant effect on understory oak densities (P>0.05). The results revealed overstory 

thinning can have a positive impact on understory shortleaf pine growth and development. But, 

heavy thinning (overstory residual basal area <10 m2 ha-1 in present case) is required to establish 

the desired level of understory shortleaf pine densities. We concluded that one time thinning is 

not sufficient to maintain the desired level of understory shortleaf pine densities in the absence of 

hardwood control measures. The continual control of hardwood every 10-15 years interval is 

recommended to ascertain the satisfactory understory shortleaf pine densities in shortleaf pine 

forests of Arkansas and Oklahoma. 
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1. Introduction 

Shortleaf pine-oak forests are a common forest type in southeastern United States 

(McWilliams et al., 1986; Kabrick et al., 2011), and thinning is a common practice in those 

stands to promote the growth and development of residual shortleaf pine (Pinus echinata Mill.) 

trees (Wittwer et al., 1996; Sabatia et al., 2009, 2010). Thinning is not primarily focused on 

understory regeneration; however, it helps to promote the understory regeneration and 

development (Shelton and Cain, 2000; Elliot and Vose, 2005) by increasing light, nutrient and 

water availability. Overstory thinning also frequently enhances habitat for wildlife such as red-

cockaded woodpecker, bobwhite quail (Colinus virginianus), Bachman’s sparrow (Aimophila 

aestivalis), and eastern wild turkey (Meleagris gallopavo) (Bukenhofer and Hedrick, 1997; 

Guldin et al., 2004). Thinning increases the amount and palatability of wildlife food plants 

(Lawson and Kitchens, 1983). Thinning improves the esthetical value of shortleaf pine for the 

visitors and recreationists (Lawson and Kitchens, 1983). Therefore, many forest land owners in 

Arkansas and Oklahoma prefer to grow shortleaf pine or shortleaf-hardwood mixed stands in 

their private lands.   

Shortleaf pine is considered one of the most important tree species in Arkansas and 

eastern Oklahoma (Zhang et al., 2012). It can be used for southern pine lumber. These products 

are often used in housing industry. In southeast Oklahoma, paper mills use shortleaf pine 

pulpwood for paper production. Shortleaf pine is more valuable in this region than low-quality 

hardwood timber. Shortleaf pine is important ecologically as a dominant component of the “pre-

settlement” forest in the Ouachita region (Guldin et al., 2004). Shortleaf pine is also particularly 

desirable for red cockaded woodpecker habitat (Zhang et al., 2012). Poor regeneration 

performance of shortleaf pine in the region (KC et al., 2015) is one of the major factors for a 
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sharp decline in the shortleaf pine stocking. Consistent shortleaf pine regeneration is essential to 

establish a sound shortleaf pine-oak forest; Lynch et al (2003) and Guldin et al. (2004) have 

described in detail what level of shortleaf pine regeneration is considered sufficient for stand 

establishment. 

Although the high woody plant regeneration following thinning is a common 

phenomenon (Nagai and Yoshida, 2006; Royo and Carson, 2006), not all woody plants, 

including shortleaf pine, that regenerate following thinning survive in the long-term (KC et al., 

2015). At present, we lack information, specifically for shortleaf pine-oak forest, on what 

percentage of early regeneration gets established. It is important to assess whether an excellent 

response of understory shortleaf pine following thinning (KC et al., 2015) helps to establish a 

long-term shortleaf pine dominated forest. The regenerated woody-vegetation community that is 

initiated by thinning is often composed of species groups that compete with each other for 

resources. This competition affects the establishment of understory shortleaf pine in later years 

(Kuehne and Puettmann, 2008). Shade tolerant understory species already present in the canopy 

hinder the development of shade intolerant species like shortleaf pine even after the thinning 

(Alaback and Herman, 1988). The long-term effects of thinning on forests, in particular the 

shortleaf pine-oak forest in this case, need to be assessed with large-scale data driven studies to 

fully understand the shifting dynamic of woody understory plants (Vallauri et al., 2002; Larsen 

2006; Ares et al., 2010). Ecological metrics such as species richness, evenness, relative density, 

relative frequency, and diversity have been utilized in past (Sagar and Singh, 2006) to assess 

how vegetation dynamics changes over time. These metrics should provide the useful 

information for understory shortleaf pine-oak forests dynamics on long term data.  
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Recent studies suggest that shortleaf pine population is consistently declining in the 

region in recent years (Moser et al., 2006; KC et al., 2015). These considerations underline the 

importance of study on status of understory shortleaf pine in the region. However, relatively few 

studies have been conducted in past to assess the long-term understory response of shortleaf 

pine-oak stands in southeastern United States. Therefore, we assessed the long-term response of 

understory shortleaf pine and hardwood to overstory thinning. The findings will help the forest 

managers to manage and improve their shortleaf pine stands by achieving satisfactory understory 

shortleaf pine densities in future. In this study, (1) we quantified the species richness, dominance, 

and diversity of the woody plants. We expect this objective to show how the understory woody-

plant combinations and dominance change in the long term after thinning treatment. We assessed 

(2) densities and relative frequencies of understory woody plants and shortleaf pine for 

approximately 25 years. Thirdly (3), we assessed the effect of four thinning treatment levels on 

understory shortleaf pine density. The null hypothesis was that the thinning treatment levels have 

no significant effect on understory shortleaf pine density. This will also provide insights into 

how much should we thin and at what time interval to achieve certain understory shortleaf pine 

densities. We assessed (4) whether the shortleaf pine, oak, and red maple densities at various dbh 

levels differ in long-term. We expect to find the major understory species density distribution at 

multiple dbh levels and to examine their transitions among dbh classes. And, at last, we assessed 

(5) how the overstory thinning, overstory shortleaf pine characteristics, climatic, and topographic 

factors affect the shortleaf pine density and at what level. Here, we expect to investigate which 

factors that have a major effect on understory shortleaf pine density and at what level.  

2. Material and Methods 

2.1. Study area  
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The USDA Forest Service Southern Research Station and the Department of Forestry, 

Oklahoma State University (now part of the Department of Natural Resource Ecology and 

Management) jointly established 180 permanent study plots in Ozark-St. Francis National Forest 

(OZNF) (then named the Ozark National Forest) and Ouachita National Forests (OUNF) during 

the period from 1985 to 1987. Study plot locations ranged from OZNF near Russellville, 

Arkansas (latitude 35.3º N, longitude 93.1º W) to areas on the OUNF near Broken Bow (latitude 

34.0º N, longitude 94.7º W) in southeastern Oklahoma (Lynch et al., 2003). Out of 180 plots, 

133 plots were from OUNF and 47 plots were from OZNF. Plots were circular, 809.37 m2 in area 

and 16.06 m radius. A 10.05 m isolation buffer was created outside each plot. Study plots and the 

buffer area were thinned from below at the time of plot establishment in 1985-86 to create four 

distinct overstory basal area levels: <10, 10–17, 17–24 and ≥24 m2 ha-1 (Table II-1). Most 

overstory shortleaf pine plots were thinned for second time after third overstory measurement in 

1996. The purpose of second thinning was to return overstory shortleaf pine basal area to levels 

similar to those after the first thinning in 1985. The overstory basal area details of the four 

thinning treatment levels at over four measurement periods are shown in figure (II-1). 

Hardwoods greater than 2.54 cm in diameter at ground level were removed from study plots and 

buffer areas using herbicides at the time of plot establishment but there was no hardwood control 

at the second thinning during the 1996 measurement. 

2.2. Overstory, climatic and topographic data 

Overstory shortleaf pine trees were measured for diameter at breast height (dbh) 

immediately after establishment of the plots in 1985-86 and thereafter, at 4-5 year intervals. All 

shortleaf pine trees and saplings present in 1985 after creating the thinning levels were 
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considered the overstory. Subsamples of shortleaf pine tree heights and crown lengths were also 

obtained on each plot.  Dominant shortleaf pine trees were measured for height and age to 

determine site index base age 50 years. Mean annual precipitation (mm), elevation (m), slope 

and aspect were determined using the GPS locations of the study plots. Aspect values were 

transformed into northness and eastness using trigonometric functions as described by Roberts 

(1986). 

2.3. Understory data 

 In 1996, two 20.23 m2 subplots were created inside the 809.37 m2 plot to measure 

understory trees and shrubs. Both plots were on a line crossing the plot center and equidistant 

between plot center and plot boundary.  Two more subplots of same size were created in 2001. 

These were on a line perpendicular to the line joining the other two understory plots and also 

equidistant between plot center and plot radius.  Understory trees and shrubs were counted, and 

the dbhs were measured four times: 1996, 2001, 2006 and 2013. Measured dbhs were divided 

into five dbh classes: <1.27 cm, 1.27–3.81cm, 3.81–6.35 cm, 6.35–8.89 cm, and 8.89–25.4 cm. 

All shortleaf pine and hardwoods that regenerated after the chemical treatment of 1985 were 

considered the understory. The maximum dbh of understory shortleaf pine measured in 1996, 

2001, 2006, and 2013 were 7.62, 12.7, 12.7, and 17.78 cm respectively. At the same time, the 

maximum dbh for oaks were 7.62, 10.16, 12.7, and 17.78 cm.  

2.4. Data analysis 

2.4.1. Ecological metrics  
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We calculated species richness, the Shannon-Wiener index, dominance and evenness of 

understory woody plants. The understory woody-plants were measured and counted only in two 

subplots in first understory measurement (1996) and in four subplots thereafter. Species richness 

is the number of species per unit area. Shannon-Weiner index is used to characterize species 

diversity in a community (McArthur 1965). We used a two sample t-test to assess the mean 

difference in species richness over measurement periods between two sites. Species diversity 

was calculated applying the Shannon-Weiner diversity index ( 'H  ) as described by Steen et al 

(2010): 

' ln (1)H p pi i   

where
ip = proportion of individuals found in species i.  The maximum possible diversity (

maxH ) 

was calculated as described by Boyce (2005): 

max ln( ) (2)H S  

where S = Species richness.   The Shannon-Weiner index was used to calculate the evenness of 

species distributions (E) in two sites according to Pielou (1966): 

'

max

(3)
H

E
H

  

Evenness assumes values between 0, implying completely heterogeneous, and 1, implying 

completely homogenous. Relative density provided the numerical strength of a species in 

relation to the total number of individuals of all the species: 
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Number of individuals of the species     
Relative Density= 100% (4)

Number of individuals of all the species


 

At the same time, relative frequency provided the degree of dispersion of individual species in an 

area in relation to the number of all the species occurred: 

Number of occurrences of the species     
Relative Frequency= 100% (5)

Number of occurrences of all the species


 

2.4.2. Two-way and repeated measured ANOVAs 

The goodness of fit test (Kolmogorov-Smirnov test) was applied to check the normality 

of all the covariates. If the continuous predictor variables were not normal, we applied the proper 

transformations to reduce the skewness and the kurtosis of the variables. The correlations 

between the covariates were calculated to assess whether there were high correlations between 

the covariates. Two-way ANOVAs were used to assess if the overstory thinning levels and the 

sites (OZNF vs OUNF) had significant effects on mean understory shortleaf pine and oak basal 

area at each measurement levels. Further, Tukey’s post hoc tests were applied whenever needed. 

The repeated measured ANOVA was used to assess if the mean shortleaf pine counts were 

different over all measurement periods. P-values of Wilks’ lambda tests were used to determine 

the level of significance. Similar tests were conducted to assess whether the understory oak 

densities were significantly different among measurement periods. Observations with at least one 

missing value were dropped by SAS PROC GLM as a standard procedure of analyzing repeated 

measured ANOVA. The P-value of 0.05 was considered as the cutoff point for significance level 

throughout all tests. 
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2.4.3. Logistic Regression model  

We applied binomial logistic regression model to predict the probability of satisfactory 

understory shortleaf pine density. Previous studies (Lynch et al., 2003) suggested that the 

shortleaf pine density of 1730 stem ha-1 was satisfactory density to establish a shortleaf pine 

dominated forest. Therefore, we categorized the understory shortleaf pine densities (stems ha-1) 

into two classes; less than 1730 stems ha-1 and 1730 or more stems ha-1. Splitting the densities 

exactly at 1730 stem ha-1 kept present study consistent with earlier research (see, Lynch et al., 

2003). The stepwise selection method was used to select the best fitted logistic regression model. 

The Hosmer and Lemeshow goodness of fit test (see, Hosmer et al., 2013) was used to check the 

adequacy of the fitted model for the data set used. Again, the P-value of 0.05 was considered as 

the cutoff point for significance level. 

3. Results 

3.1. Understory species richness, dominance and diversity  

A total of 68 understory tree and shrubs species were recorded in all study sites and 

times. The lowest numbers of understory woody plant species, 33 in OZNF and 37 in OUNF, 

were recorded in 1996. The highest number of understory woody plant species, 43 in OZNF and 

57 in OUNF, were recorded in 2006. No significant difference was found between sites in terms 

of species richness (P<0.05). The Shannon-Wiener diversity index (H) consistently increased 

over measurement periods for OUNF; however, there was not a similar increase in the index on 

the OZNF (Table II-2). The evenness index decreased over measurement periods for both sites 

(Table II-2). Individually, shortleaf pine was the most dominant understory species, in terms of 

densities, in 1996. However, the dominance of shortleaf pine decreased during the following 
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measurement periods. Red maple (Acer rubrum) and oaks, mostly southern red oak (Quercus 

falcata), white oak (Quercus alba) and northern red oak (Quercus rubra), were consistently 

dominant in both sites in following years (Table II-3). Red maple and oaks were the most 

dominant species in OZNF. However, oaks only were the most dominant species group in 

OUNF.   Shortleaf pine declined from 1996 to 2013 and the oaks and maple increased. 

3.2. Relative frequency, stem counts and densities 

Hickory species (Carya spp.) had the highest relative frequency (13.18±2.86) percent in 

OZNF in 1996. Red maple dominated the understory woody-vegetation (15.46±3.79 in 2001, 

17.97±2.92 in 2006 and 22.68±3.79 in 2013) in terms of relative frequency in rest of the 

measurement periods. Similarly, blackjack oak (Quercus marilandica) was the most dominant 

species, in terms of relative frequency, (12.12±1.95 in 1996, 9.28±1.34 in 2006, 10.40±1.68 and 

10.72±1.60 in 2013) in OUNF region throughout the measurement periods. Relative frequency 

of red maple has increased consistently over the past 25 years in both sites. The relative 

frequency of shortleaf pine has declined consistently in both sites since the first measurement, 

and it is closely followed by the flowering dogwood (Cornus florida). Shortleaf pine had the 

highest average density of any particular species in OZNF with an average of 1205±471 stem ha-

1 in 1996. After that, red maple had the highest average density in 2001, 2006 and 2013 

respectively (Table II-3). Similarly, in the case of OUNF, shortleaf pine had the highest average 

density of any particular species in 1996 and 2001 respectively. Red maple and blackjack oak 

had the highest average densities in 2006 and 2013. White oak, southern red oak, winged elm 

(Ulmus alata), sparkleberry (Vaccinium arboreum) etc. were some other major species in terms 

of stem density. Further details for all species densities are displayed in table (II-3). 
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The mean numbers of understory shortleaf pine stems have changed significantly over 

four measurement time periods (P<0.001). The changes in numbers of shortleaf pine stems at 

different measurement time periods were site (OZNF and OUNF) dependent (P<0.05). The 

measurement time periods and the thinning levels together affected the overall shortleaf pine 

densities (P<0.001). Similarly, the mean understory oak stems were significantly different over 

four measurement periods (P<0.001), but not between two sites (P>0.05).  

3.3. Response of understory shortleaf pine, oaks, and red maple at four thinning treatment levels 

Treatment levels resulting from thinning from below had a significant effect on 

understory shortleaf pine density (P<0.001). Thinning treatment plots with basal area less than 

10 m2 ha-1 had significantly higher number of understory shortleaf pine density (P<0.001) 

compared to other three treatment levels in all measurement years (Fig. II-2). Thinning treatment 

plots with basal area between 10 m2 ha-1 and 17 m2 ha-1 had the significantly higher number of 

understory shortleaf pine density (P<0.001) compared to thinning treatment levels that had basal 

area greater than 27 m2 ha-1 . However, thinning treatment levels with basal area of 10 m2 ha-1 to 

17 m2 ha-1 had no significant difference with levels 17 m2 ha-1 to 24 m2 ha-1, and level 17 m2 ha-1 

to 24 m2 ha-1 had no significantly different density with greater than 27 m2 ha-1 (P>0.05). The 

total shortleaf pine density in thinning treatment level with basal area less than 10 m2 ha-1 has 

declined in subsequent measurement periods (Fig. II-2). Understory shortleaf pine density was 

significantly higher in 1996 (P>0.05) compared to 2006 and 2013. But, the density difference 

was not significant in 1996 and 2001.   

The results were little different for understory oak density. Firstly, the oak density was 

significantly different between two sites (P=0.002). None of the thinning treatment levels were 
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significantly different from each other (P>0.05) except for the thinning treatment level of less 

than 10 m2 ha-1” with greater than 24 m2 ha-1. Figure II-3 shows the understory densities of oaks 

over four measurement periods for both sites at four thinning treatment levels. Analyzing the oak 

densities at different measurement years, the understory oak density at 2006 was significantly 

higher than the densities from any other measurement years. There was no significant difference 

in oak densities at other measurement years; for example, 1996 vs 2001, 1996 vs 2013, and 2001 

vs 2013. The understory densities of the red maple at four thinning levels are shown in Figure II-

5. 

    3.4. Understory shortleaf pine, oaks, and red maple density distribution at five dbh levels 

The understory shortleaf pine densities declined with increasing dbh classes in 1996 in 

both sites. The trend was similar in 2001 measurement. However, the shortleaf pine densities 

were higher in dbh class “1.27-3.81 cm” than in dbh class “<1.27 cm” for measurement years 

2006 and 2013 for both sites (Fig. II-5). Newly regenerated shortleaf pine stem densities were 

highest in dbh class “<1.27” in 2001 for both sites (Fig. II-5). The densities in dbh class “<1.27” 

for measurement years 2006 and 2013 are significantly lower (P<0.05) than in 1996 and 2001 

(Fig. II-4). On the other hand, understory oaks are distributed well in all dbh classes. Densities 

are low in higher dbh classes, but oaks are regenerating well even in recent measurement years 

(Fig. II-5).  Red maple densities are lower in higher dbh classes except for dbh class “1.27-3.81” 

in 2013 (Fig. II-6). 

3.5. Effect of overstory characteristics, climatic, and topographic factors on understory shortleaf 

pine 
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Plots thinned to low basal area levels at establishment period consistently showed better 

understory shortleaf pine density over all four measurements. Basal area levels less than 10 m2 

ha-1 have the highest percentage of plots with high densities (>1730 stems ha-1) for both sites. 

Table (II-4) lists detailed information about plots with high and low regeneration percentages 

over four measurement periods. A logistic regression model showed that the average annual 

precipitation, overstory residual shortleaf pine basal area and site index were the significant 

independent variables with negative effects on understory shortleaf pine density (P<0.001). Plot 

age (Average ages of the residual shortleaf pine trees) was the only significant variable that 

affected understory shortleaf pine density positively (P<0.05). The odds ratios for average annual 

precipitation, plot age, overstory basal area and site index were 0.988, 1.018, 0.896, and 0.703 

respectively.  

4. Discussion 

After thinning shortleaf pine, studies are often focused on overstory residual growth and 

development and ignore the understory vegetation dynamics. This is because the primary 

objective of overstory shortleaf pine thinning is to improve the growth and development of 

residual trees. But, consistent understory shortleaf pine density at satisfactory level is key to 

developing and maintaining a long-term, sustainable, naturally regenerated shortleaf pine forest. 

In the southeastern USA, the land area in Shortleaf pine forests has been declining in recent 

years (Moser et al., 2006; Lilly et al., 2012; KC et al., 2015; KC et al., 2016). Industrial and 

private non-industrial land owners increasingly prefer fast growing loblolly pine over shortleaf 

pine. But, some landowners prefer shortleaf pine because it maintains natural forest aesthetics 

and offer less expensive establishment cost (Shortleaf pine: Land Manager’s Guide, 2014).  

Shortleaf pine forests also have reduced the risk from climate change and are associated with 
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native trees and habitats (Shortleaf pine: Land Manager’s Guide, 2014). Despite several benefits 

of shortleaf pine, lack of understory shortleaf response to overstory thinning treatment can 

damage the future sustainability of naturally regenerating shortleaf pine stands.  

Species richness, diversity, evenness, species densities, and relative frequencies provide 

detailed insight regarding current understory density and regeneration trends using longitudinal 

data. Statistically insignificant changes in species richness over four measurements in 25 years 

reveal no boom or bust pattern of woody-plants. The numbers of woody-plants have not changed 

substantially over time in either of the sites. However, a consistent increment in Shannon-Weiner 

diversity index in OUNF shows species composition is changing over time (Table II-2). Single 

species dominance or the concentration (density) has decreased over time, and the woody-plant 

species distributions are more balanced today than 25 years ago. Obviously, shortleaf pine is the 

species of a major interest that has sharply declined in recent years (Fig. II-2), and other woody-

plants became more dominant in recent years. The Shannon-Weiner diversity index does not 

show increasing or decreasing trends of woody-plant abundance concentration in OZNF (Table 

II-2) suggesting that species composition is not changing as much as in OUNF. Single species 

dominance or the concentration (density) has not decreased at the same rate as in OUNF. The 

woody-plant species distributions are not consistently getting more balanced over time. 

Therefore, understory shortleaf pine population has not plummeted in OZNF as sharply as in 

OUNF. Figure (II-2) shows understory shortleaf pine density is better in OZNF. This study 

reveals although study sites in the two national forests were treated similarly, the understory 

growth and development dynamics after thinning treatment are different in OZNF and OUNF. 
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Shortleaf pine regeneration remained consistently relatively good throughout all 

measurement periods on plots that were thinned to lowest overstory basal area levels (<10 m2 ha-

1) (Fig. II-2). Significantly better density of shortleaf pine in the highest thinned plots (<10 m2 ha-

1) and lowest density in the lowest thinned plots (≥24 m2 ha-1) suggests that, indeed, thinning has 

a strong effect on shortleaf pine regeneration. Maintaining the overstory shortleaf pine basal area 

below certain level, below 17 m2 ha-1 in this case, helps shortleaf pine forest to regenerate well 

and maintain a healthy understory shortleaf pine population for the long term. This study 

suggests thinning is an important option to consider for maintaining the future sustainability of 

natural shortleaf pine forests in the region by obtaining relatively better regeneration. In case of 

oaks, they regenerated well and maintained a healthy density irrespective of thinning levels (Fig. 

II-3). These results suggest that the oaks will regenerate well in these areas even if the 

silvicultural treatments are not applied in the shortleaf pine overstory. In fact, high understory 

oak density in all thinning treatment levels is not a surprising result. Even the lowest density of 

oaks is a lot higher than the shortleaf pine density on both sites. Ice storms that occurred in 

winter of 2000 (Stevenson et al., 2016) severely damaged some of the study plots in OUNF 

(Stevenson et al., 2016). Ice storms caused some of shortleaf pine overstory mortality, and that 

opened up the overstory a little on the affected plots. Bragg et al. (2003) suggested the severe 

winter storms such as ice and snow are some of the most important causes of forest disturbance. 

The highest number of woody plant counts in 2006 measurement period is the reflection of the 

overstory damage caused by ice storm in 2000. We presume both understory hardwoods and 

shortleaf pine were damaged to some extent by the ice storms in 2000. Hardwoods, especially 

oaks, recovered well in later years. However, shortleaf pine density did not increase in later years 

too. Shortleaf pine density has decreased in 2006 at all thinning treatment levels indicating that 
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ice storms definitely hit hard at least to shortleaf pine seedlings and saplings. Shortleaf pine 

seedlings and saplings which regenerated after thinning had difficulty surviving in plots with 

thinning treatments that had high residual basal area after thinning. Moser et al. (2006) stated 

that they observed the shortleaf pine regeneration in many states, except for Arkansas and 

Oklahoma, in smaller quantities, and suggested that the shortleaf pine regeneration in 

southeastern U.S. is declining in recent years. This study covered the sites from Arkansas and 

Oklahoma, and showed the similar result. Indeed, the shortleaf pine regeneration is critically low 

in Arkansas and Oklahoma. Here, the reported understory shortleaf pine densities were only 

from the thinned plots. We presume the status can be even worse where the thinning has not been 

performed for a long time.  

Assessing understory shortleaf pine and oaks densities at multiple dbh classes (<1.27 cm, 

1.27-3.81 cm, 3.81-6.35 cm, 6.35-8.89 cm, and ≥8.89 cm) for four measurements reveals some 

interesting regeneration and then establishment patterns. Firstly, relatively high shortleaf pine 

densities at dbh level “<1.27 cm” and “1.27-3.81 cm” in 1996 for both sites shows that shortleaf 

pine responded well to overstory thinning in early years (Fig. II-5). The shortleaf pine densities 

in higher dbh classes (3.81-6.35 cm, 6.35-8.89 cm, and ≥8.89 cm) in 1996 are very low. This is 

because all the understory woody plants were eliminated using herbicide from the understory in 

1985.  Disturbance of the litter layer due to logging at the time of thinning probably enhanced 

conditions for shortleaf regeneration.  Exposure of bare mineral soil is favorable to shortleaf pine 

regeneration (Clabo and Clatterbuck, 2005). The newly regenerated shortleaf pine cohorts after 

thinning in 1985 were not large enough to move into higher dbh levels in 1996. The data 

measured in 2001 followed trends similar to those in 1996. The density in dbh class “<1.27 cm” 

is less in 2001 revealing that the shortleaf pine did not regenerate well and it might also have 
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died. The shortleaf pine density at dbh level “<1.27 cm” in 2006 and 2013 are critically low (Fig. 

II-5) in both sites. High understory shortleaf pine density in dbh class “1.27-3.81 cm” and “3.81-

6.35 cm” in measurement year 2006 and 2013 shows that some of the newly regenerated 

shortleaf pine are being established in the forest, and they are shifting to the bigger dbh classes. 

The only problem is shortleaf pine regeneration is critically low in recent measurements, and at 

the same time, densities in higher dbh classes are also far below the satisfactory level. These 

results suggest that shortleaf pine is not regenerating well on these study sites. The majority of 

newly regenerated shortleaf pine saplings have died after few years instead of transitioning to the 

higher dbh classes. On the other hand, oaks are regenerating well in both sites (Fig II-6). They 

are also transitioning from smaller dbh classes to the higher dbh classes in a good numbers 

overall. Successful transitioning of understory oaks to higher dbh levels, and mortality of 

understory shortleaf pine instead of movement to higher dbh level indicates that forest will not 

have the sufficient shortleaf pine trees in future. The shortleaf dominant stands of today on these 

sites will shift to the oak dominant forests in future. These trends indicate that additional control 

of hardwood understory competition though controlled burning or herbicides would be needed 

on these sites to enhance survival and growth of the shortleaf pine understory. 

Increased hardwood regeneration hinders the growth and development of understory 

shortleaf pine (Phares and Rogers, 1962). The results of the present study where we used long-

term data to examine these trends suggests a similar conclusion. Here, oaks and red maple are the 

major species hindering the growth and development of shortleaf pine. Shortleaf pine is shade 

intolerant (Lilly et al., 2012) and cannot compete with hardwoods in terms of regeneration 

(Lowery, 1986). This study finds that thinning from below does promote the shortleaf pine 

regeneration. However, the intense competition of shortleaf pine with hardwoods for resource 
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utilization inhibits the development and establishment of shortleaf pine regeneration (Rogers and 

Brinkman, 1965; Stevenson et al., 2010). Relatively high shortleaf pine regeneration densities in 

heavily thinned plots indicate similar results (Table II-4). Interestingly, shortleaf pine densities 

are more favorable in plots with poor site indices. This occurs because the hardwoods regenerate 

aggressively in sites with better site indices, and shortleaf pine regeneration and development is 

hindered by this competition. Lawson (1986) and Lynch et al (2003) described similar results 

concerning the effect of site index on shortleaf regeneration. Overstory basal area and plot age 

are other major factors that can be used predict the success of shortleaf pine regeneration (Lynch 

et. al. 2003). This study is in agreement with those results. Additionally, average annual 

precipitation also plays an important role in understory shortleaf pine density; but negatively. 

However, the effect is not very strong (odds ratio=0.988 based on the logistic regression 

analysis). An odds ratio value of less than 1 suggests the negative effect of the independent 

factor and a value greater than 1 suggests a positive effect, in this case of obtaining adequate 

shortleaf pine regeneration. This negative effect of precipitation in understory shortleaf pine 

density may occur because understory hardwoods regenerate and develop more aggressively 

when there is ample precipitation, and understory shortleaf pine is further stressed by this 

competition. This study show that shortleaf pine only regenerates adequately on sites where 

understory hardwoods don’t proliferate. This study clearly demonstrates the importance of 

controlling hardwoods to obtain the satisfactory shortleaf pine regeneration. Maintaining the 

overstory basal area 10m2ha-1 or less by using a heavy thinning from below is also a key factor 

for the success of understory shortleaf pine establishment. Even maintaining overstory shortleaf 

pine basal area below 17m2ha-1 provides positive results for maintaining understory shortleaf 

pine population at certain level. Otherwise, significant number of understory shortleaf pine 
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saplings will die, even before attaining a dbh of 2-3 cm, due to intense competition posed by the 

understory hardwoods.    

5. Conclusion 

The decline of shortleaf pine regeneration raises a serious concern for the future of 

shortleaf pine-oak mixed forests in Arkansas and Oklahoma unless forest managers and 

landowners actively control the hardwood understory in shortleaf pine stands. Single tree 

selection thinning of shortleaf pine and oaks in shortleaf pine-hardwood mixed stands at an 

interval of around 10-15 years would strongly improve the understory shortleaf pine density. 

But, absence of silvicultural treatments to control understory hardwoods in shortleaf pine stands 

for 25 years or long nullifies the benefits that we would receive from the first thinning in terms 

of regeneration. This study suggests the continual intervention is mandatory to achieve healthy 

shortleaf pine regeneration naturally. Here, understory regeneration dynamics change 

significantly in later years. Therefore, short term understory count data may provide misleading 

results as we report good shortleaf pine regeneration in 1996. However, the status of understory 

shortleaf pine in 2013 is in a critically poor condition. Therefore, we recommend further 

silvicultural interventions to stimulate and strengthen the understory shortleaf pine regeneration. 

Treatments including thinning from below, controlled burning, selective understory hardwood 

clearance could be the possibilitieswhere these are economical and feasible. We conclude 

thinning from below at sufficient levels every 10-15 years to keep the overstory basal area 

below17 m2ha-1 would provide sufficient understory shortleaf pine in the long-term if combined 

with measures to control understory hardwoods. 
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Table II-1 Overstory basal area (m2 ha-1) levels of permanent plots after thinning in 1985-1986 

in Ozark-St. Francis National Forest and Ouachita National Forests 

Ozark-St. Francis National Forest (OZNF)  

Basal Area Class Total Plot Mean BA± SD  Skewness AOTC ha-1 

Less than 10 (A) 10 7.08±0.27 0.21 145 

Between 10 and 17 (B) 8 14.49±1.01 2.43 312 

Between 17 and 24 (C) 10 20.90±0.81 1.14 981 

Greater than 24 (D) 12 27.27±0.73 -0.58 1080 

Ouachita National Forest (OUNF)  

Less than 10 (A) 36 7.15±0.50 0.88 201 

Between 10 and 17 (B) 39 14.16±0.63 1.19 391 

Between 17 and 24 (C) 39 21.08±1.50 0.09 446 

Greater than 24 (D) 29 27.40±0.87 0.13 971 

Note: Mean BA=Mean overstory basal area (m2 ha-1) after conducting the single tree selection 

thinning in 1985, AOTC ha-1=Average overstory shortleaf pine tree counts ha-1 after thinning in 

1985-1986  
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Table II-2 Characteristics of regenerated woody-vegetation at various measurement periods. 

Site OUNF OZNF 

Year 1996 2001 2006 2013 1996    2001 2006 2013 

Species richness 37 41 57 46 33 33 43 34 

Shannon-Wiener diversity index (H) 3.01 3.10 3.26 3.80 2.81 2.75 2.92 2.74 

Evenness (E) 0.84 0.84 0.80 0.80 0.80 0.79 0.78 0.78 
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Table II-3 Density of understory woody-plants with their standard error (SE) per hectare at four measurement periods in Ozark-St. 

Francis and Ouachita National Forests 

 Ozark-St. Francis National Forest Ouachita National Forest 

Year      ------> 1996 2001 2006 2013 1996 2001 2006 2013 

Scientific name (Species)          

Acer rubrum (Red maple) 1169±410* 1318±319* 1616±296* 1425±270* 565±85* 424±62* 665±96* 514±67* 

Amelanchier arborea (Serviceberry) 58±52 27±22 52±45 - 58±21 303±76 39±12 19±8 

Carpinus caroliniana (American hornbeam) - 2±2 5±5 28±21 56±25 62±24 56±28 48±25 

Carya spp (Hickory species) 808±141* 724±114* 388±62 714±142* 409±52 423±44* 373±64 305±50 

Celtis laevigata (Hackberry) 5±5 - 5±3 3±3 50±24 4±2 12±11 7±5 

Celtis laevigata (Sugarberry) - - - 18±12 - 2±1 2±1 - 

Cercis canadensis (Eastern redbud) - 2±2 10±10 10±6 45±19 20±8 17±7 9±3 

Cornus florida (Flowering dogwood) 813±245* 371±73 371±80 224±45 1156±193* 491±71* 481±64* 291±42 

Crataegus spp. (Hawthorn) 137±48 116±34 84±22 45±15 - 36±16 14±6 7±3 

Diospyros virginiana (Common persimmon) 268±103 155±39 111±50 48±39 41±13 17±5 8±3 1±1 

Fraxinus americana (White ash) 200±83 82±45 86±22 53±17 186±45 49±16 92±19 101±31 

Fraxinus pennsylvanica (Green ash) - 15±6 67±40 71±50 - 81±17 74±22 17±6 

Ilex opaca (American holly) - 15±8 27±27 3±3 30±15 44±25 81±56 54±33 

Juniperus virginiana (Eastern redcedar) 16±9 56±22 59±23 53±20 95±29 95±21 149±34 131±32 

Liquidambar styraciflua (Sweetgum) 131±51 162±55 143±49 126±49 256±61 259±60 261±64 264±73 

Morus alba (White mulberry) 21±12 10±6 - - 11±6 11±5 - - 

Nyssa sylvatica (Black tupelo) 615±192* 494±158* 319±77 270±67 379±55 258±41 360±58 266±48 

Ostrya virginiana (Eastern hophornbeam) 152±94 143±60 180±85 139±63 260±80 87±21 202±44 190±49 

Pinus echinata (Shortleaf pine) 1205±471* 707±323* 316±127 262±112 689±163* 534±118* 390±81 319±68 

Prunus americana (Wild plum) 5±5 53±30 52±25 98±54 35±22 2±1 30±12 38±12 

Prunus serotina (Black cherry) 89±28 107±24 86±20 43±11 110±22 91±16 106±17 49±10 

Quercus alba (White oak) 294±72 191±50 472±93* 419±80* 217±39 184±32 272±38 284±48 

Quercus falcata (Southern red oak) 358±94 - 539±138* 590±140* 152±36 - 194±37 124±34 

Quercus marilandica (Blackjack oak) 452±72 148±35 111±32 245±49 468±59* 357±41* 489±62* 536±75* 

Quercus nigra (Water oak) - 44±18 5±3 13±7 - 99±27 223±56 121±35 
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Quercus rubra (Northern red oak) 284±88 22±17 343±76 416±100* 113±24 53±12 130±23 108±35 

Quercus stellate (Post oak) 358±88 162±41 133±34 91±29 253±42 210±32 340±54 227±36 

Quercus velutina (Black oak)  47±24 392±75 339±57 35±14 32±11 180±25 145±29 82±20 

Qurecus phellos (Willow oak) 16±11 19±13 - - 59±29 11±4 60±33 1±1 

Rhamnus spp (Buckthorn) 5±5 - 62±20 - 9±8 74±26 19±11 2±2 

Rhus coriaria (Sumac) 321±100 414±83 408±91* 184±94 440±66 266±40 362±59 130±35 

Sassafras albidum (Sassafras) 163±70 44±14 109±32 18±8 30±13 18±6 38±14 7±4 

Ulmus alata (Winged elm) 279±111 216±38 395±128 411±130 494±79* 347±58 538±83* 396±66* 

Ulmus americana (American elm) - 12±7 - - 4±4 40±12 3±2 - 

Ulmus rubra (Slippery elm) 26±21 - 2±2 - 45±20 1±1 - 7±7 

Vaccinium arboreum (Sparkleberry) - - 168±48 177±71 - 60±17 488±78* 344±64* 

Vaccinium spp (Blueberry) 116±42 10±8 - - 299±75 29±15 - - 

Viburnum spp (Viburnum) 11±7 - 20±10 3±3 37±23 1±1 36±15 7±5 

Note: 

* represents that it is one of the five most common understory vegetation of that site at that measurement time 

- represents that the species did not present at any plot at that measurement year 

± sign separates the standard deviation (SE) with mean values 

Note: Species which had missing records for entire measurement periods either in Ozark-St. Francis National Forest or in Ouachita 

National Forests or the species which had density less than 5 stem ha-1 for all measurement periods are not included in the table. Those 

species are Platanus occidentalis (American sycamore), Robinia pseudoacacia (Black locust), Juglans nigra (Black walnut), Rubus 

fruticosus (Blackberry), Ceanthus cuneatus (Buckbrush), Quercus prinus (Chestnut oak), Quercus muehlenbergii (Chinkapin oak), 

Bumelia lanuginosa (Gum bumelia), Gleditsia triacanthos (Honey locust), Lonicera caprifolium (Honeysuckle), Quercus rugosa 

(Netleaf oak), Maclura pomifera (Osage orange), Castanea ozarkensis (Ozark chinquapin), Asiminia triloba (Paw paw), 
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Toxicodendron radicans (Poison ivy), Ilex decidua (Possumhaw), Zanthoxylum americanum (Prickly ash), Morus rubra (Red 

mulberry), Betula nigra (River birch), Quercus shumardii (Shumard oak), Ulmus pumila (Siberian elm), Oxydendrum arboretum 

(Sourwood), Parthenocissus quinquefolia (Virginia creeper), and Salix alba (White willow)
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Table II-4 Percent of plots with high (≥1730 stems ha-1) shortleaf pine density m2 ha-1 at each 

thinning level in Ozark-St. Francis National Forest (OZNF) and Ouachita national forests 

(OUNF) 

 Percent of plots with adequate shortleaf pine regeneration  

TL* (OZNF) 1996 2001 2006 2013 

<10 40 30 40 30 

Between 10 and 17 20 0 0 0 

Between 17 and 24 10 0 0 0 

≥24 0 0 0 0 

TL* (OUNF) 1996 2001 2006 2013 

<10 15.04 3.76 2.26 2.92 

Between 10 and 17 15.04 2.26 2.26 1.46 

Between 17 and 24 3 1.50 0.75 1.46 

≥24 6 1.50 0 0 

Note: TL=Overstory basal area thinning treatment level. These are the four levels designed to 

study the shortleaf pine regeneration performance at multiple overstory thinning levels 
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Fig. II-1 Mean residual overstory basal area (m2 ha-1) of shortleaf pine over various measurement 

periods at four thinning treatment levels. First thinning was conducted in 1985 to create plots 

with four distinct thinning levels. Plots were thinned second time after 1996 measurement period 

to maintain the overstory basal area level similar at 1985. A represents Ozark St-Francis National 

Forest (OZNF) and B represents Ouachita National Forest (OUNF) 
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Fig. II-2 Regeneration density of shortleaf pine at four thinning treatment levels over four 

measurement periods in Ozark-St. Francis National Forest (A) and Ouachita National Forests 

(B). Four thinning treatment levels are created based on the overstory shortleaf pine basal area 

(m2 ha-1) after thinning.  
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Fig. II-3 Regeneration density of oaks at four thinning levels over four measurement periods in 

Ozark-St. Francis National Forest (A) and Ouachita National Forests (B). 
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Fig. II-4 Regeneration density of red maple at four thinning levels over four measurement 

periods in Ozark-St. Francis National Forest (A) and Ouachita National Forests (B). 
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Fig. II-5 Density of shortleaf pine regeneration at various dbh classes over four measurement 

periods in Ozark-St. Francis National Forest (A) and Ouachita National Forests (B). Horizontal 

axis represents five dbh classes (cm) and the vertical axis represents shortleaf pine density (ha-1) 

at particular dbh for that measurement year.  
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Fig. II-6 Density of oak regeneration at various dbh classes over four measurement periods in 

Ozark-St. Francis National Forest (A) and Ouachita National Forests (B). Horizontal axis 

represents five dbh classes (cm) and the vertical axis represents oak density (ha-1) at particular 

dbh for that measurement year.  
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Fig. II-7 Density of red maple regeneration at various dbh classes over four measurement 

periods in Ozark-St. Francis National Forest (A) and Ouachita National Forests (B). Horizontal 

axis represents five dbh classes (cm) and the vertical axis represents red maple density (ha-1) at 

particular dbh for that measurement year.  
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CHAPTER III 

Predicting shortleaf pine regeneration (Pinus echinata Mill.) after thinning the overstory in 

Ozark and Ouachita mountain Forests: A Decision Tree Model Approach 

Abstract 

 

We propose the decision tree and logistic regression models to predict the shortleaf pine (Pinus 

echinata Mill.) regeneration in Ozark and Ouachita mountain forests of Arkansas and Oklahoma, 

and compare their performances using various fit statistics. We apply 3 forms of logistic 

regression (LR) and decision tree (DT) models to assess the effects of overstory shortleaf pine 

characteristics in association of climatic and topographic factors on shortleaf pine regeneration. 

We use shortleaf pine regeneration count data collected from the natural shortleaf pine forests of 

Arkansas and Oklahoma and spanning a period of 25 years after overstory forest plot 

establishment. Fit statistics such as misclassification rate (MR) and average square error (ASE) 

are used to select the best performing model that predicts the shortleaf pine regeneration. The 

overstory thinning levels, precipitation, site index, and age are the significant factors affecting 

shortleaf pine regeneration. The DT model using the Gini criteria as the splitting rule performed 

better than the LR models to predict the shortleaf pine regeneration with the lowest MR of 7.6 

percent. The satisfactory shortleaf pine regeneration density (>1730 stems ha-1) was considerably 

high in the plots (20.47%) with high thinning level than the plots (1.64%) with low thinning 

levels. Though the primary purpose of thinning is not to improve the understory regeneration, the 
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present study suggests that thinning has a strong positive impact on shortleaf pine regeneration. 

Poor shortleaf pine regeneration performance over decades in study sites suggests the future of 

shortleaf pine dominated forest is questionable unless further regular silvicultural treatments are 

applied. The DT model can be a simple, efficient and accurate method to assess the effect of 

multitude of factors on shortleaf pine regeneration and to make the best possible shortleaf pine 

stands management decisions.  

 

Keywords: decision tree, logistic regression, shortleaf pine regeneration, misclassification rate, 

thinning 
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1. Introduction 

In recent years, predictive modeling/ machine learning techniques have emerged as 

alternatives to traditional regression modeling approaches because of their flexibility, speed and 

accuracy (Aquino et al., 2008). These techniques use several artificial intelligence (AI) 

algorithms, such as classification and regression trees (CART), artificial neural networks (ANN), 

support vector machines (SVM), ensemble models, and others to obtain the better fits (Aquino et 

al., 2008). Predictive modeling techniques also facilitate the data collection, management and 

cleaning process (Piramuthu, 2004). Large-size, longitudinal data collection and model 

development in a limited time and with limited resources is a significant challenge to 

researchers. In many studies with relatively larger data sizes, researchers use around 80% of their 

time and resources on data cleaning and preprocessing (Piramuthu, 2004; Tirelli and Pessani, 

2011). The application of predictive modeling techniques not only offers better fit but also 

provides simple and precise methods that solve complex data management and modeling issues. 

These models have substantial future promise in assessment and interpretation of non-linear 

patterns that we often encounter in forest measurements data.  

Decision tree (DT) models as a predictive modelling approach  have been successfully 

applied for various purposes such as predicting plant ecological properties (e.g. Lees and 

Rittman, 1991), soil abiotic properties (e.g. Bui et al., 2006; Kim and Park, 2009; Kim et al., 

2011) and rainfall runoff studies (e.g. Valipour et al., 2013; Valipour, 2015). These models offer 

an advantage of splitting the complex data into groups. To the best of our knowledge, DT models 

have not been used in any kind of shortleaf pine (Pinus echinata Mill.) regeneration prediction 

studies despite their simplicity and advantages. Therefore, we introduce the DT model to assess 

the effects of overstory shortleaf pine characteristics and other climatic and topographic factors 
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in shortleaf pine regeneration in Ozark and Ouachita mountain forests located in Arkansas and 

Oklahoma. We hypothesized that the DT model will provide a better fit and simpler approach to 

predict the shortleaf pine regeneration in the region. 

Historically, shortleaf pine forests have been one of the most common forest types in 

southeastern United States (Kabrick et al., 2010; McWilliams et al., 1986). Shortleaf pine is 

considered one of the most important tree species in Arkansas and eastern Oklahoma (Zhang et 

al., 2012). Shortleaf pine has been desirable in the region in terms of timber production for 

southern pine lumber, which is primarily used in the housing industry. Shortleaf pine is also 

particularly desirable for red cockaded woodpecker habitat (Zhang et al., 2012) from the wildlife 

management perspective. Despite its importance, shortleaf pine populations have been declining 

in recent years (Moser et al., 2006; Lilly et al., 2012; KC et al., 2015; KC et al., 2016). KC et al. 

(2015) suggested that the current rate of shortleaf pine regeneration is not adequate to maintain 

the shortleaf pine dominated forests in long-term in Ozark and Ouachita Mountains of Arkansas 

and Oklahoma. In many shortleaf pine-hardwood mixed natural forests, hardwood regeneration 

is dominant compared to that of shortleaf pine. Low levels of shortleaf pine regeneration for the 

long term and, meantime, dominance of hardwood tree species as the understory vegetation 

greatly affects the sustainability of shortleaf pine dominated forests.  

In light of the fact that shortleaf pine regeneration is low in the region, this study 

evaluates the effects of overstory stand level variables (site index, plot age, overstory basal area 

per hectare) and other climatic (precipitation) and topographic (slope, aspect, altitude) factors on 

shortleaf pine regeneration in Ozark and Ouachita National Forests in Arkansas and Oklahoma. 

We predict the chance of shortleaf pine regeneration at satisfactory levels using several decision 

tree models representing various circumstances.We also compared the predictive performance of 
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the selected DT models to LR models. Specifically, we apply the decision tree model to assess 

the shortleaf pine regeneration response to overstory thinning in the long term. Additionally, we 

illustrate an interactive DT where the forest managers can interactively change the inputs to 

achieve the desired number of shortleaf pine regeneration stems in their forests. Furthermore, we 

examine the association between shortleaf pine regeneration and thinning level over a period of 

20 years. We expect this study to be helpful to manage the shortleaf pine forests not only in 

Arkansas and Oklahoma but also in the entire southeastern United States. Most importantly, this 

study will establish a precedent that the predictive models are helpful in forest management 

related research which supports stakeholder decision making.  

2. Materials and Methods 

 

2.1. Study area and data collection 

The USDA Forest Service Southern Research Station and the Department of Forestry (now part 

of the Department of Natural Resource Ecology and Management) at Oklahoma State University 

jointly established permanent study plots in the Ozark and Ouachita National Forests during 

1985 to 1987. Study plot locations range from the Ozark National Forest near Russellville, 

Arkansas (latitude 35.3º N, longitude 93.1º W) to areas on the Ouachita National Forest near 

Broken Bow (latitude 34.0º N, longitude 94.7º W) in southeastern Oklahoma (Lynch et al., 

2003). This study was established to assess the effect of thinning on the growth and development 

of overstory and understory shortleaf pine forests. Results based on the overstory characteristics 

only (Budhathoki et al., 2006; Budhathoki et al., 2008; Budhathoki and Lynch, 2008; Budhathoki 

et al., 2010) have been published in past. To date, one study has utilized the understory data 
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(Lynch et al., 2003) to predict shortleaf pine regeneration that used two measurement periods 

data only.   

Two 20.23 m2 subplots were established in 1996 within each 0.081 ha overstory measurement 

plot to measure the understory woody-vegetation. Hardwoods and shortleaf pine regeneration 

located inside the subplots and taller than 1.37 m in height were measured. Only two subplots 

were measured in 1996 however during all subsequent measurements a total of four subplots 

were measured within each 0.081 ha overstory measurement plot. Hereafter, the 1996 

measurement of understory is termed the first measurement, 2001 as the second, 2006 as the 

third and 2013 as the fourth measurement. We used 182 permanent plots for this study which 

include 133 plots from Ouachita National Forest and the 47 plots from Ozark National Forest. 

We eliminated two plot records from the dataset because of the missing overstory information. In 

the winter of 2000, ice storms heavily damaged the shortleaf pine study plots in Ouachita 

National Forests (Stevenson et al., 2016). Therefore, we eliminated 22 study plots from the 

subsequent measurements that had the overstory shortleaf pine damage greater than 40 percent as 

described by Saud et al. (2016).  

Overstory measurement plots were circular and 0.081 ha in area with a 16.06 m radius. 

While establishing the plots, the understory hardwoods greater than 2.54 cm in diameter at 

ground level were eliminated using chemical herbicide. The measurement plots were isolated 

with 10.06 m buffer area. The isolation buffers had the same thinning and herbicide treatments as 

the measurement plots. This was done so that the entire interior measurement plots experienced 

similar levels of competition. Understory woody-vegetation including shortleaf pine started 

regenerating a few years after the plot establishment.  At establishment period, each plot was 

thinned from below to specified residual basal areas ranging from 3.97 m2 ha-1 to 48.68 m2 ha-1. 
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Most plots were thinned for second time after third overstory measurement in 1996. The purpose 

of second thinning was to reduce overstory shortleaf pine basal area levels to levels similar to 

those after the first thinning in 1985. Overstory shortleaf pine characteristics including diameter 

at breast height (DBH), age, site index were measured at approximately five year intervals from 

the time of plot establishment to the most recent measurement ending in 2013. We used the 

geographical positioning system (GPS) location of each plot to extract the topographic 

information such as altitude, slope and aspect. Similarly, GPS locations were used to access 

climatic information including precipitation amount for each plot. Table III-1 provides a list of 

all variables used for modeling the shortleaf pine regeneration along with scale and their range of 

values. 

2.2. Model building process 

The main objective of the present study is to build an accurate predictive model for shortleaf pine 

regeneration. In the predictive modeling literature, there are several alternative models which we 

can use to achieve this objective. A common feature among all predictive modeling techniques is 

that they try to find the best fitting rules for predicting the values of one or more variables in a 

data set, usually called outputs, from the values of other variables in the same data set, 

commonly referred to as inputs. This study focuses on the usage of two well-known predictive 

modeling techniques, namely, Logistic Regression (LR) and Decision Tree (DT) models. In the 

following two subsections, we provide a general description for each of the two modeling 

techniques and summarize the steps of model generation. 

2.2.1. Logistic Regression (LR) Models 



 

59 

 

Regression analysis is one of the most popular techniques used for predictive modeling. When 

the output (also called; target or response) variable is categorical, the LR model is often used. 

The theory of both binomial (for binary targets) and multinomial (for categorical targets with 

more than two categories) LR models is well-established and used in ecological, medical, 

business studies, and in many other research studies. Since the target variable for the present 

study is binary (Low/High) as it will described latter in coming sections, we focus on binomial 

LR models. A LR model with more than one input variable (also called explanatory or 

independent variable) has the following form: 

i
0 1 1i 2 2i k ki

i

p
log = β +β x +β x +.....+β x (1)

1- p

 
 
 

 

Where, 
i 1i 1i ki kip ( 1| X x ,........,X x )iP Y    , Y is the binary target variable taking values 0 or 

1, the X ’s are input variables, β ’s are model parameters to be estimated. Using the parameter 

estimates of the model for any given set of values for input variables, we can estimate the 

probability (pi) that the target is 1 (Y) and hence we can classify new observations into one of 

two categories. The estimation of parameters in the LR model is performed using the maximum 

likelihood method. Several variable selection techniques, including stepwise, forward or 

backward selection, can be used to determine which inputs should be retained in the final LR 

model.  

2.2.2. Decision Tree (DT) Model 

A DT maps observations (inputs) about an item to conclusions about the item's target value. 

There are several types of DT models, including classification and regression tree (CART), chi-

squared automatic interaction detector (CHAID), C4.5 and MARS. Both classification trees and 
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C4.5 are mainly used to model categorical target variables while regression trees are structured 

to model numerical targets (Dhar, 2011). CHAID models perform multi-level splits while 

generating the decision tree and hence they are more complicated than CART models. And, 

MARS models were developed to generate more accurate decision trees for numerical targets 

(Dhar, 2011).  

In general, a DT is a flowchart-like structure consisting of nodes and directed edges. A simple 

hypothetical DT is displayed in Fig. III-1. There are three types of nodes in the chart, namely 

root node, internal node and leaf (terminal) node. The root node has no incoming edges and it 

has zero or more outgoing edges. An internal node has exactly one incoming age and it has two 

or more outgoing edges. Leaf (terminal) node has exactly one incoming edge with no outgoing 

edges, and it represents class label; assuming the target variable is coded as classes. Each internal 

node represents a test on one of the inputs whereas each directed edge (branch) represents the 

outcome of the test. The path from the root node to a leaf node represents classification rules. 

 “There are exponentially many DTs that can be constructed from a given set of attributes. While 

some of the trees are more accurate than others, finding the optimal tree is computationally 

infeasible because of the exponential size of the search space” (Tan et al., 2006). However, 

efficient DT models can be developed using well-established algorithms. Almost all existing DT 

models use the split-search algorithm (also called Hunt’s algorithm) to grow DTs (Tan et al., 

2006). This algorithm cultivates DTs by performing two steps repeatedly. Letting Dt
denote the 

set of training observations that reach at node t and 
1 2( , ,....., )mc c c denote the class labels: i = 1 to 

m, the algorithm can be summarized in the following: 

https://en.wikipedia.org/wiki/Flowchart
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Step 1. If all records in Dt
belong to one class, 

ic , then t is a leaf node assigned label 
ic . Another 

case where we stop splitting, so that the node is considered to be a leaf node occurs if Dt
has a 

small number of records. 

Step 2. If the records in Dt
belong to more than one class, a test on one of the inputs is applied to 

partition the records into subsets. Steps 1 & 2 are done in every generated node until all nodes 

are leaf nodes or the maximum number of splits is reached.  

In order to grow an efficient DT model in a reasonable amount of time, one should find a way to 

determine the best split of the records in each node. There are many measures to identify the best 

split. For categorical targets, Gini, entropy and chi-squared logworth are three commonly used 

measures for evaluating split worth (Tan et al., 2006). Variance and ProbF logworth are designed 

for interval targets (Tan et al., 2006). In this section, we will describe the first three measures for 

developing DT models because our target variable is binary.  

The Gini and entropy are based on the degree of impurity of splits and hence are defined in terms 

of the class distribution of the records before and after splitting. The more skewed the class 

distribution, the smaller the degree of impurity. For instance, a node with class distribution (0, 1) 

has zero impurity whereas a node with class distribution (0.5, 0.5) has the highest impurity. 

Since each criterion uses a different philosophy to determine the best split, each grows a different 

style of tree.  

The Gini measure attempts to separate classes by focusing on one class at a time. Once the first 

split is made, Gini continues attempting to split the data that require further segmentation. Since 

Gini is so often the best splitting rule, it is the default rule in CART. Let ( | )ip c t denote the 
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proportion (p) of records in the data belonging to class 
ic at node t . For binary targets (0, 1), we 

have only two classes (c1, c2) at any node and we can use the notation 
0 1( | )p p c t and 

1 2( | )p p c t to represent the fraction of records belonging to each class. Using this notation, for 

a target variable with m classes, Gini is calculated as follows: 

2

1
Gini 1 [ ( | )] (2)

m

ii
p c t


   

where, m is 2 due to binary classification, Gini varies between 0 to 0.5; where, Gini equals 0 if 

the node is perfectly pure and equals 0.5 if the class distribution is uniform
0 1( 1 0.5)p p   .  

On the other hand, the philosophy of entropy is different. Rather than initially pulling out a 

single class, entropy first segments the classes into two groups, attempting to find groups that 

together add up to 50 percent of the data. Entropy then searches for a split to separate the two 

subgroups. Entropy can take any value in the range (0,1) where the smaller the value of entropy, 

the smaller the impurity of the split. Entropy can be calculated using the following formula: 

1

20
Entropy ( | ) log ( | ) (3)

m

i
p i t p i t




                                                                       

where, 
20log 0 0 ; other notations are as described above. 

Finally, the goodness of each test condition should be evaluated using some objective measure. 

A natural way to determine how well a test condition performs is to compute the difference 

between the degree of impurity of the parent node and the degree of impurity of the child nodes. 

This difference is called the gain. Good test conditions are expected to have higher gain value. 

Let t be the parent node under splitting, 
1 2( , ,....., )kt t t be the resulting child nodes, ( )N t the 



 

63 

 

number of records in the parent node and ( )iN t is the number of records in the ith child node. The 

gain, , can be calculated using the following formula: 

1
( ) ( ) (4)

k

i ii
I t w I t


    

Where, ( )I t is the impurity measure (i.e. Gini or Entropy) of a given node and w ( ) / ( )i iN t N t is 

the weight of the ith child node. 

2.2.3. Model comparison 

There are many criteria to compare the performance of competing models, including 

Misclassification rate (MR) and average squared error (ASE). The MR is defined as the 

proportion of disagreement between the predicted outcome and the actual outcome, i.e. the 

number of misclassified records divided by the total number of records, while the ASE is given 

by 

2

1

1
ˆASE ( ) (5)

n

j jj
y y

n 
                                                                                                         

Where, 
jy is the actual jth value of the target output y, ˆ

jy is the predicted jth value for the target 

output y and n is the total number of records of the target output in the data. Smaller values of 

MR or ASE provide better model performance. Both measures are used for model selection in 

section 4. Additionally, the MR is utilized to detect overfitting when growing DT models. 

Overfitting happens when the MR of validation data exceeds the MR of training data. Splitting of 

the DT must be stopped before the overfitting starts. 
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Since our target output has a binary response, we used the receiver-operating-characteristics 

(ROC) curve to investigate the relative performance of different candidate models. The ROC 

graph is a two-dimensional plot with (1-specificity) on the x-axis and sensitivity on the y-axis 

and the area under the cure (AUC) measures the model discrimination ability. Sensitivity 

measures the ability of the model to correctly classify subjects with positive target output as 

positive whereas specificity measures the resistance of the model against misclassifying subjects 

with negative target output as positive. Denoting true positive (true negative) by TP (TN) and 

false positive (false negative) by FP (FN), sensitivity=TP/(TP+FN) and 

specificity=TN/(TN+FP). The trade-off between model sensitivity and specificity is represented 

by the ROC curve. The AUC is used as a measure of model accuracy in many applications 

(Swets 1988).The closer the curve to the top left corner of the ROC space, the higher the 

accuracy of the model.  

2.3. Data preparation 

We used SAS Enterprise Miner version 12.3, SAS EM hereafter, for data preparation and model 

development. We assigned the regenerated shortleaf pine stem density ha-1 as a target variable. 

Other variables such as plot age, overstory basal area, measurement years, thinning class, site 

class, annual precipitation (mm) , altitude (m) and aspect were assigned as the input variables 

(Table III-1). Site, thinning class and year of measurement were assigned as categorical inputs. 

Originally, the target variable (SLP) contained the shortleaf pine regeneration density ranged 

from 0 to 13,344 stems ha-1 (Table III-1). Later, we assigned densities into two classes so that 

response variable can fit into binary LR and DT models. Regeneration densities of 1730 stems 

ha-1 or less were assigned “low regeneration” and the densities greater than 1730 stems ha-1 were 
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assigned as “high regeneration”, and the new binary variable is denoted as SLPN. A previous 

study has suggested that the regeneration of shortleaf pine greater than 1730 stems ha-1 is a 

satisfactory regeneration, and anything less than 1730 represents a poor regeneration (Lynch et 

al., 2003) for naturally-occurring shortleaf pine. Aspect was transformed into NORTHNESS and 

EASTNESS using trigonometric functions (Roberts, 1986) where NORTHNESS is cosine and 

EASTNESS is sine of aspect. We assigned four thinning levels (A, B, C, D): less than 10.332 m2 

ha-1 as A, between 10.332 and 17.22 m2 ha-1 as B, between 17.22 and 24.108 m2 ha-1 as C, and 

greater than 24.108 m2 ha-1 as D respectively based on the residual overstory shortleaf pine basal 

area at the time of plot establishment period 1985-1987 (see, Lynch et al., 1999). Eight of the 

plots had missing information on climatic and topographic variables. Those values were imputed 

using the mean value. Table III-2 introduces some descriptive measures of interval variables in 

the data.  

Additionally, the symmetry assumption has been checked using measures of skewness and 

kurtosis. The symmetry for the interval inputs was not violated except for the variable slope 

which has the skewness of -2.943 (Table III-2). Therefore, we conducted a transformation for 

slope using max-normal technique in SAS EM which automatically selects the most appropriate 

transformation and creates new transformed variable. The transformed slope (SLOPEN) had a 

roughly symmetric distribution with skewness of -0.96. 

We randomly separated the original dataset into training and validation datasets, and assigned 

70% of the data into the training and the 30% to validation data set as described by Tan et al. 

(2006) and Sarma (2013). Later, the training data set was used to develop the predictive models 

throughout the model building process, and the validation data set was used to evaluate the 
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performance of models built using the training data set. Fig. III-2 summarizes the main points 

discussed in section 2.2 & 2.3 diagrammatically. 

3. Data analysis 

In order to identify the major factors affecting the shortleaf pine regeneration level, both LR and 

DT models are developed using the data described in section 2.1. As mentioned earlier, all 

models are built using the training data, then their relative performance is evaluated using the 

validation data. In all models, the binary variable SLPN is set as the target. Variables, BA, AGE, 

SI, SITE, YEAR, THINNING, ALTITUDE, PRECIPITATION, SLOPEN, EASTNESS and 

NORTHNESS, described in Tables III-1 and III-2, are considered as potential inputs in each 

model. In this section, we will describe all models that we have built for predicting the shortleaf 

pine regeneration.  

As for LR models, three models were developed and called as LR1, LR2 and LR3 models. The 

logit link function, introduced in Eq. 1, was used in all three models. In LR1 model, all inputs 

(Table III-2) were entered. Similarly, in LR2 model, we used all inputs as in LR1 but the 

stepwise selection method (𝛼 = 0.05) was applied for selecting significant inputs to be kept in 

the final model. In the third model, LR3, two factor interaction and polynomial terms were tested 

using the stepwise method. Both validation ASE and MR were used to determine the best 

performing model among the three LR models.  

Alternatively, two DT models were developed for the same objective. The first model (DT1) 

used Gini as the splitting criteria and the second one (DT2) used entropy. At each partitioning 

opportunity, the maximum number of splits was controlled at 2. One may want to increase the 

maximum number of splits to obtain additional modeling resolution. The maximum tree depth 
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was controlled at the default level, 5. Therefore, we did not get any DT with more than 2 

branches and a depth more than 5. The steps of data preparation and analysis in SAS EM are 

displayed in Fig. III-3. Sarma (2013) has described the DT model development methods in 

detail. In the following section, we introduce the results of the five models and select the best 

model to be applied for future predictions.  

4. Results 

This section summarizes the main results of all models described in section 3. First, we introduce 

the relative performance of the LR models and report the results of the best LR model. The 

results of DT models are reported in a similar fashion. Next, we compare the accuracy of best 

DT and LR models. We further emphasize the effect of thinning on the shortleaf pine 

regeneration.  

4.1. Results of LR models 

The performance of LR1, LR2 and LR3 models are summarized in Table III-3. All three models 

are statistically significant (P<0.001) but the stepwise LR2 model has the smallest validation MR 

and ASE (Table III-3). The LR2 model shows that the additive effect of AGE, SI, and 

PRECIPITATION in conjunction to thinning levels has the significant influence on shortleaf 

pine regeneration (Table III-4). Estimated coefficients, odds ratios and significance levels of 

each of the four factors are presented in Table III-4. The odd ratios of obtaining better shortleaf 

pine regeneration in the plots with low residual basal area (thinning level A) was 8.0 times 

higher than in the plots with high residual basal area (thinning level D)  

4.2. Results of DT models 
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The default decision tree (DT1) model for the classification of shortleaf pine regeneration is 

displayed in Fig. III-4. To build the DT1model, all 11 input variables from training data set are 

used. The accuracy of the model is then assessed using the validation data set. From Fig. III-4, it 

is readily seen that this tree includes a total of 9 nodes from which 5 are leaf nodes; nodes 3, 5, 7 

& 8 are true leafs, where no further splitting was performed as the nodes have a high purity level, 

while node 9 is stopping node. Summary statistics from both training and validation data sets are 

given for each node. The main statistic is the Gini value which reflects the purity level of each 

node. This DT uses only three input variables as given in Table III-5. Using these variables, four 

splits were made resulting in the validation MR of 7.6% which was computed by applying the 

DT1 model on the validation data. Classification details of DT1 model are given in Table III-6. 

Using entropy as the splitting criterion (DT2) gives the exact same results as DT1 (Table III-5).  

Table III-7 summarizes the decision rules extracted from DT1 model. According to these rules, 

the shortleaf pine regeneration rate for a given plot can be classified as low or high after 

checking the status of three inputs (BA, SI and PRECIPITATION). Suppose, for example, a 

forest manager wants to predict the shortleaf pine regeneration level of a plot that has basal area 

of 15m2 ha-1, site index of 12 m and average annual precipitation of 1200 mm. Then using Fig. 

(III-4), starting from node 1, we see that the basal area test is satisfied (i.e., BA<18.771 m2 ha-1) 

and that leads us to node 2. Next, checking SI at node 2, DT shows the condition holds (i.e., 

SI<19.501m) and thus we move to node 4.  Since the precipitation level is 1200 mm, the 

precipitation test at node 4 leads us to node 6. Finally, using the SI as the splitting criterion 

directs us to node 8 because the given site index is below 15.804m. As a result, the model DT1 

predicts the given plot will have a high level of shortleaf pine regeneration with the MR of 7.6%. 
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The result of interactive DT can vary based on the interest of the forest managers. Here let’s 

imagine an example. A forest manger somewhere in eastern Oklahoma has a shortleaf pine stand 

with the site index of less than 25 m and overstory basal area of less than 20 m2 ha-1. He/she 

assumes that the average annual precipitation is below 1100 mm year-1 in the region. Here, the 

manager would like to estimate how different will be the regeneration in this site compared to the 

other sites where the basal area, site index and the precipitation are higher. We developed an 

interactive DT, utilizing the provided variable information, to estimate the shortleaf pine 

regeneration. Fig. III-5 shows the results of this hypothetical scenario.  

4.3. Comparison of DT and LR models 

In this section we compared the performance of all five models which have been discussed in the 

previous two sections. Using the validation MR as our criterion, we conclude, from Tables III-3 

and III-5, that the default Gini decision tree (DT1) is the best model since it has the lowest MR 

among the five models. Another popular tool for model comparison is called the ROC curve 

which has been described in section 2.2.3. Fig. III-6 compares the ROC curves for two models 

(LR2 and DT1) for training and validation data. For the training data, DT1 performed slightly 

better. Model DT1 outperforms the model LR2 under the validation data. Thus, the results 

suggest that, in general, the decision tree models are viable alternatives to the logistic regression 

models to understand shortleaf pine regeneration patterns and in predicting its levels.   

4.4. Effect of thinning on shortleaf pine regeneration  

In section 4.1, thinning appeared as an important input for predicting shortleaf pine 

regeneration in the model LR2. As we mentioned earlier, plots in thinning level A (A= 
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BA<10.332 m2 ha-1) are about nine times more likely to have high regeneration than plots in 

thinning level D (D=BA≥ 24.108 m2 ha-1). For further exploration of the association between the 

SLPN and THINNING, we used Gamma (Γ) test as the measure of the strength of association 

between ordinal variables (Agresti, 2007). The percentage distribution of shortleaf pine 

regeneration levels (low regeneration vs high regeneration) along the thinning levels (A, B, C, 

and D) are displayed in Table III-8. For the distribution in Table III-8, the value of this measure 

is Γ = −0.5474 (𝑃 < 0.001) which implies that there exists a moderate but significant negative 

relationship between thinning levels and the shortleaf pine regeneration level. It suggests 

thinning level A has the highest and the level D has the lowest shortleaf pine regeneration.  

4.5. Effect of thinning and time factor on shortleaf pine regeneration  

Here, we applied the interactive DT model to assess how different the regeneration patterns are 

at various thinning levels over four measurement periods. Firstly, the DT was split based on the 

thinning levels. Overall, shortleaf pine regenerated at satisfactory level (High regeneration) in 

20.49%, 7.83%, 6.03% and 4.08% of plots at thinning levels A, B, C and D respectively. Further 

we split the nodes based on the measurement years. Plots with high regeneration are a lot higher 

in thinning level A compared to the thinning level B, C and D (Fig. III-7). There is no single plot 

in thinning class D in third (2006) and fourth (2013) measurements that has the high regeneration 

(Fig. III-7). 

5. Discussion 

In the present study, we mainly assessed what factors have the most important effects on 

shortleaf pine regeneration in the long-term, and which model structure is the most accurate and 

potentially easiest to use. Undoubtedly, sufficient shortleaf pine stems need to be regenerated to 
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assure the future of shortleaf pine dominant forests in southeastern United States. Current data 

shows that shortleaf pine regeneration on the sites in this study is critically low. Only 7.80 

percent of the plots have shortleaf pine regeneration more than 1730 stems ha-1.  

Logistic regression models are commonly used to predict the probability of a categorical 

response variable in ecological studies (e.g. Lynch et al., 2003; Perry and Thill, 2008; Bisquert et 

al., 2012). On the other hand, DTs and ANNs are the most frequently used AI algorithms in 

ecological and environmental studies (Kim and Park, 2009; Kim et al., 2011). These algorithms 

are relatively accurate and stable (Vayssieres et al., 2000; Yang et al., 2003; Zhang et al., 2005; 

Moret et al., 2006; Sesnie et al., 2008). Successful past DT applications to ecological and 

environmental problems provide the motivation to strongly consider the DT models to study the 

effect of thinning and other inputs on shortleaf pine regeneration. Developing multiple forms of 

LR and DT models and comparing their performances provides insight on assessing the shortleaf 

pine regeneration in Arkansas and Oklahoma, USA. 

The LR2 model (Table III-4) indicates a slightly negative effect of precipitation (odds 

ratio=0.989) but a highly negative effect of site index (odds ratio=0.682) in reducing the odds of 

high regeneration of shortleaf pine. As the site index increases by one unit, the odds of high 

regeneration decrease by 31.8%. Lawson (1986) and Lynch et al (2003) described similar 

negative effect of SI on shortleaf regeneration. This may be the case because high site index 

indicates better site which favors growth of a hardwood understory relative to shortleaf pine. 

Though it seems counterintuitive that higher precipitation amount would reduce the odds of 

shortleaf regeneration, this too may occur because higher precipitation levels favor growth of the 

hardwood understory at the expense of shortleaf regeneration. Plot age shows a slight but 
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positive effect on shortleaf pine regeneration (odds ratio=1.024) which implies that the older the 

trees in the plot, the higher the odds of having high regeneration. Lynch et al. (2003) described 

that the plot age is another factor that can be used predict the success of shortleaf pine 

regeneration. Similarly, plots located in thinning level A are 8.703 times more likely to have high 

regeneration than plots located in thinning level D. Plots located in thinning levels B or C do not 

differ significantly, with respect to regeneration rate, from plots located in thinning level D. 

Lynch et al. (2003) mentioned that increasing amounts of overstory basal area affects the 

shortleaf pine regeneration negatively. The present study shows similar results. Here, we not 

only evaluate the effect of overstory basal area on regeneration but also at four thinning levels.  

If we apply only the decision rules from default DT, the percentage of plots with high 

regeneration increases to 15.89%, 28.45%, 43.06% and 92.31%  respectively at node 2, node 4, 

node 6, and node 8 (Fig.  III-4). An MR of 7.6% is impressively low for the data of this kind. 

There are some variables, like PRECIPITATION that can’t be controlled. But, model still 

provides the idea how the precipitation affects the shortleaf pine regeneration. Apparently 

intensive silvicultural treatments including aggressive hardwood control would be needed to be 

applied by forest managers to substantially increase regeneration levels. Therefore, DT models 

are simple and helpful to assess the present status of shortleaf pine regeneration, and also to 

determine the factors that are affecting the regeneration. Applying the rules suggested by the 

selected default DT model implies that thinning to sufficient levels and aggressive hardwood 

control could increase shortleaf pine regeneration in Arkansas and Oklahoma. We can always 

skip a variable that is not feasible to apply and try another one to achieve the similar results. An 

additional virtue of the DT is that it can be presented as a simple flow chart that is rather easy for 

forest managers to understand even if they have a limited statistical background. 
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The DT model can be modified in several ways to predict the target variable. The 

flexibility of the model makes the results managerially appealing. Here, an interactive DT (Fig. 

III-5) with variables SI, BA and PRECIPITATION is an example where we select what input 

variables to use and at what point to split. There is no single concrete DT model with fixed 

parameters. Forest managers can build the best DT model possible to answer their own sets of 

questions. By contrast, LR models do not offer such flexibilities. Here, as a forest manager, we 

focus on what variables play the most important role on shortleaf pine regeneration. The DT 

evaluates the importance of variables splits the tree on this basis. Fig. III-5 shows that if the site 

index is less than 25 m, overstory basal area is less than 20 m2 ha-1 and if that particular site gets 

annual precipitation of less than 1100 mm, there is 60 percent chance that the plot has shortleaf 

pine density more than 1730 stems ha-1. In many cases, the default model simply provides the 

best splitting options with lowest MR because machine selects the best possible purity of Gini. 

However, a forest manager might have other questions that are not specifically answered by the 

default DT model. In that case, the DT building process can be adjusted until the manager 

obtains the most desired result. 

Thinning is a common silvicultural practice to manage the forests, but the primary 

purpose of thinning is not to promote the understory regeneration. However, this study indicates 

thinning has a great importance on overall understory regeneration. The declining percentages of 

“high regeneration” with plots thinned to low levels of residual basal area demonstrate the 

importance of overstory thinning on shortleaf pine regeneration. It is important to report how the 

time factor after thinning affects the shortleaf pine regeneration. Many plots with high thinning 

levels (low residual basal area) have consistently maintained “high regeneration” for 25 years. 

But, plots that were thinned at lower levels (high residual basal area) have critically low 
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percentages of plots with “high regeneration”. Interestingly, not a single plot has “high 

regeneration” after around 20 years of thinning in thinning level D (Fig. III-7). This clearly 

reflects the importance of thinning, and of course time interval after thinning, in maintaining 

high shortleaf pine regeneration. A significant impact of overstory shortleaf pine thinning over 

understory shortleaf pine is undeniable; moreover, thinning levels and time interval for thinning 

also have a significant impact on shortleaf pine regeneration. LR models did not show the 

significant effect of time (YEAR) after thinning on shortleaf pine regeneration. However, the 

time interval effect can be used in DT models to assess the high and low shortleaf pine 

regeneration patterns at various thinning levels. This demonstrates the advantage of DT models 

over the traditional LR models to predict shortleaf pine regeneration.   

Shortleaf pine is shade intolerant species, and heavy thinning opens up more soil surface 

area for regeneration. When site index is good, other hardwood species utilize the regeneration 

opportunity more vigorously that shortleaf pine. We often find shortleaf pine regeneration better 

in poor sites where hardwood competition is less intense. A similar pattern may be occurring 

with precipitation trends. The effect of site index is high. The logistic regression model (LR2) 

did not indicate a significant difference on thinning level D compared to level B and C. But, the 

regeneration trend is different among these classes. In contrast to the LR2 model, the DT models 

clearly show how different the regeneration pattern is based on the thinning levels. This supports 

the contention that predictive modeling techniques such as DT have the potential to be useful to 

better understand the forestry data in general. 
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6. Conclusions 

The DT models have many attractive attributes and performed better than LR models for 

prediction of shortleaf pine regeneration in Ozark and Ouachita national forests of Arkansas and 

Oklahoma. The models demonstrated that overstory shortleaf pine thinning positively affects the 

understory shortleaf pine regeneration. Site index, annual precipitation and overstory basal area 

are other important variables that affect the regeneration negatively. Regeneration prediction 

using DT models can be an attractive alternative method for forest managers who prefer faster, 

purer, and easier data driven solutions to manage their shortleaf pine forests. Incorporation of 

inputs such as seed production rates, edaphic properties of study sites, hardwood regeneration 

data, and ice damage records in future applications can make the DT model even more accurate 

for predicting the shortleaf pine regeneration levels. In addition the DT approach can also be 

applied in similar ecological studies where data contain nominal or ordinal target variables. 
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Table III-1 General description of inputs showing assigned variable names, minimum and 

maximum values.  

S.N. Variable description (Unit) Variable name Values [Min, max] 

1 Shortleaf pine regeneration (density ha-1) SLP [0, 13344] 

2 Overstory basal area (m2 ha-1) BA [3.97, 48.68] 

3 Average age of the sample plot (years) AGE [33, 119] 

4 Site Index (m) SI [12.33, 26.64] 

5 Site  SITE Ozark/Ouachita 

6 Years after thinning YEAR 1996/2001/2006/2010 

7 Thinning levels THINNING A/B/C/D 

8 Altitude of the plot (m)  ALTITUDE [177, 481] 

9 Average annual precipitation (mm) PRECIPITATION [987, 1491] 

10 Slope of the plot SLOPE [89.90, 90.00] 

11 Aspect of the plot ASPECT [0, 354] 

a. Residual basal area (Thinning levels) are: A= (BA<10.332 m2 ha-1); B= (10.332 m2 ha-1≤ 

BA<17.22 m2 ha-1); C= (17.22 m2 ha-1 ≤ BA<24.108 m2 ha-1); and D= (BA≥ 24.108 m2 ha-1). 

Note: Overstory basal area (m2 ha-1) has not been used together with Thinning levels. 
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Table III-2 Input variables of interval and ratio scale with imputed values and other descriptive 1 

summary statistics.      2 

S.N. Input Imputed value Mean(SD) Skewness Kurtosis 

1 ALTITUDE 291.52 291.51(71.28) 0.63 -0.26 

2 PRECIPITATION 1265.1 1265.18(106.35) -0.20 0.02 

3 SLOPE 89.990 89.98(0.01) -2.94 -24.56 

4 EASTNESS 0.060 0.06(0.73) -0.12 -1.56 

5 NORTHNESS 0.070 0.07(0.67) -0.10 -1.42 

6 SLOPENb NAa 0.66 (0.24) -0.97 0.36 

7 SI NA 18.98(3.20) 0.14 -0.67 

8 AGE NA 76.28(20.64) -0.09 -1.05 

9 BA NA 21.21(9.21) 0.19 -0.79 

a. No imputation was performed. 3 

b. 
4[max(SLOPE 89.90,0) / 0.094] .SLOPEN     4 



 

84 

 

Table III-3 Fit statistics, model significance and significant variables for three logistic 

regression (LR) models. 

Model Validation MR Validation ASE  P-valuea Significant variables  

LR1 0.1052 0.0915 <0.001 PRECIPITATION, AGE, SI 

LR2 0.0861 0.0871 <0.001 PRECIPITATION, AGE, SI, THINNING 

LR3 0.1052 0.0876 <0.001 PRECIPITATION, THINNING, SI2, 

EASTNESS2, SLOPE2, SLOPE*AGE 

a. P-value from the Likelihood ratio test for the model significance. 

MR= Misclassification Rate 

ASE= Average Square Error
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Table III-4 Summary statistics of the best performing logistic regression model (LR2)  

Variable Coefficient (SE) Odds ratio P-value  

INTERCEPT 15.807 (3.554) - <0.001 

PRECIPITATION -0.011 (0.002) 0.989 <0.001 

AGE 0.024 (0.009) 1.024 0.0130 

SI -0.383 (0.085) 0.682 <0.001 

THINNING CLASS A vs D 2.164 (0.410) 8.703 <0.001 

THINNING CLASS B vs D 0.421 (0.420) 1.523 0.3168 

THINNING CLASS C vs D -1.587 (0.802) 0.205 0.0477 
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Table III-5 Fit statistics of the three Decision Tree (DT) models. 

DT model Validation MR Validation ASE Input variables 

DT1 0.076 0.069 SI, PRECIPITATION, BA 

DT2 0.076 0.069 SI, PRECIPITATION, BA 

Interactive (Gini) 0.090 0.077 PRECIPITATION, SI, BA, AGE 
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Table III-6 Prediction results from the application of the default Decision Tree (DT1) model on 

validation data.  

Actual Target Predicted Target Result Count Percentage 

High regeneration High regeneration TP 5 2.392 

Low regeneration High regeneration FP 2 0.956 

High regeneration Low regeneration FN 14 6.698 

Low regeneration Low regeneration TN 188 89.95 
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Table III-7 Decision rules derived from the default Decision Tree (DT) model (DT1). 

Node ID Condition Decision 

3 If BA ≥ 18.77 Low regeneration 

5 If BA <18.77 and SI ≥19.50 Low regeneration 

7 If BA <18.77, SI <19.50 and PRECIPITATION ≥1271.09 Low regeneration 

8 If BA <18.77, PRECIPATION <1271.09 and SI <15.80   High regeneration 
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Table III-8 Percentage distribution of response variable (SLPN) in four thinning levels 

Thinning Class SLPN (Low) SLPN (High) Total (%) 

A 20.83 4.45 25.29 

B 23.28 2.16 25.43 

C 25.29 1.01 26.29 

D 22.41 0.57 22.99 

Total 91.81 8.19 100 

Note: Low and High represent “Low Regeneration” and “High Regeneration” respectively.
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Fig. III-1 Schematic illustration of a hypothetical Decision Tree. Two hypothetical inputs 

(Thinning and Precipitation) are used to split the Decision Tree. Any node that is not further 

splitting is leaf node.
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Fig. III-2 Schematic presentation of the predictive model building process. 
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Fig. III-3 Flow diagram for model development and comparison on SAS Enterprise Miner 12.3. 

SLP is the name of a dataset that we used to build all the models. Arrows make the connections 

between nodes, and the data analysis process moves a step forward. Graph Explore and 

StatExplore were used to conduct the descriptive analysis of the data before building the 

Decision Tree and Logistic Regression models.  
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Fig. III-4 Default Decision Tree (DT1) model to predict the shortleaf pine regeneration. Class A 

and B are number of plots with low (<1730 stems ha-1) and high (≥1730 stems ha-1) regeneration 

respectively. Results from training data (Train %) on DT1 has been validated using validation 

data (Valid%).  
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Fig. III-5 An example of an interactive DT model where the model split three times using three 

input variables (Site index, Overstory basal area and Precipitation). Because it is an interactive 

DT model, the values of input variables were selected by the authors. 
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Fig. III-6 ROC (Receiver Operating Characteristics) curves comparing the performances of 

default Decision Tree (DT1) model with the best performing Logistic Regression (LR2) model. 

Sensitivity and the specificity are described in methods section.   
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Fig. III-7 Percent of plots with high shortleaf pine regeneration (B>1730 stems ha-1) over four 

measurement periods at four thinning levels (A<10 m2 ha-1, 10 m2 ha-1 ≤B< 17 m2 ha-1, 17 m2 ha-1 

≤C< 24 m2 ha-1, and D≥ 24 m2 ha-1). These four thinning levels were created using the shortleaf 

pine residual basal area. Results were extracted using the interactive Decision Tree (DT2) model.   
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CHAPTER IV 

Predicting shortleaf pine regeneration after thinning in Arkansas and Oklahoma USA: A 

comparison of logistic regression, artificial neural network, and support vector machine methods 

Abstract 

Shortleaf pine (Pinus echinata Mill.) forests have been one of the most common forest types in 

the southeastern United States. But in recent years, the standing volume of the shortleaf pine is 

declining in the region. This study aimed to develop, evaluate, and compare the performance of 

logistic regression, artificial neural network, and support vector machine models to predict 

shortleaf pine regeneration in Arkansas and Oklahoma, USA. The predictors were multiple 

overstory shortleaf pine characteristics, climatic and topographic information, and the target 

variable was the understory shortleaf pine density. The best performing logistic regression model 

showed precipitation, plot age, site index, and overstory thinning were the significant inputs 

affecting understory shortleaf pine density with validation misclassification rate of 8 percent. 

The best performing artificial neural network model predicted the shortleaf pine density with 

validation misclassification rate of 7.6 percent, and cumulative lift of 5, 2.5 and 1.66 at depth of 

20, 40 and 60 respectively. Similarly, the best performing support vector machine model 

predicted the shortleaf pine density with validation misclassification rate of 9 percent, and 

cumulative lift of 3.79, 2.10 and 1.39 at depth of 20, 40 and 60 respectively. An artificial neural 

network model performed best to predict the shortleaf pine density in Arkansas and Oklahoma.
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 The authors presume the results from this study can be extrapolated to the other naturally 

occurring shortleaf pine-oak mixed forests in southeastern United States.   

 

Keywords: 

Shortleaf pine, regeneration, logistic regression, artificial neural network, support vector 

machine, cumulative depth
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1. Introduction  

Historically, shortleaf pine (Pinus echinata Mill.) forests were one of the most common 

forest types in the southeastern United States (McWilliams et al., 1986; Kabrick et al., 2010), and 

shortleaf pine is considered one of the most important tree species in Arkansas and eastern 

Oklahoma, USA (Zhang et al., 2012). Shortleaf pine has been desirable in the region in terms of 

timber production for southern pine lumber which is typically used in building and home 

construction. It is also a source of southern pine pulpwood for the pulp and paper industry. 

Shortleaf pine is particularly desirable for red cockaded woodpecker habitat (Zhang et al., 2012), 

and it is also important from the tourism and recreation perspectives (Lawson and Kitchens, 

1983). Despite its importance, shortleaf pine populations have been declining in recent years 

(Moser et al., 2006; KC et al., 2015; KC et al., 2016). KC et al. (2015) suggested that the current 

rate of regeneration of shortleaf pine seedlings is not adequate to maintain the shortleaf pine 

dominated forests in the long-term in Ozark and Ouachita Mountains of Arkansas and 

Oklahoma. In many naturally occurring shortleaf pine-hardwood mixed forests, hardwood 

regeneration dominates shortleaf pine saplings. Long term low shortleaf pine regeneration 

coupled with the continual hardwood domination might substantially affect the sustainability of 

shortleaf pine forests in this region. Therefore, multi-aged understory shortleaf pine seedlings, 

saplings and trees are desired to offer better ecosystem restoration. This also helps forests to 

transition to uneven-aged forests from an even-aged condition. Therefore, continuous and 

consistent shortleaf pine regeneration is often desired in the shortleaf pine forests of Arkansas 

and Oklahoma, USA. 

In many ecological studies, data are complex and nonlinear (Lek et al., 1996; Gevrey et 

al., 2003; Ozesmi et al., 2006). Multiple studies conducted in the past suggested that predictive 
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modeling/ machine learning techniques are strong and effective tools for assessment of such 

complex nonlinear patterns from ecological data (Almeida, 2002; Ozesmi et al., 2006). Artificial 

intelligence (AI) algorithms, such as logistic regression (LR), classification and regression trees 

(CART), artificial neural network (ANN), support vector machines (SVM), random forests, and 

ensemble models have been widely used in recent years because of their flexibility, speed, and 

accuracy (Aquino et al., 2008). However, only few of these techniques have been used in forest 

management (e.g. Jensen et al., 1999; Bisquert et al., 2012).  

Initially, ANN models were perceived as black box models (Gevrey et al., 2003), and 

many ecologists were hesitant to apply these techniques. However, these models have been 

widely applied in recent years to answer the variety of ecology related questions. Frequently 

ANN models outperform the linear models (Ozesmi et al., 2006), because they detect non-linear 

patterns better than the linear and LR models. For example, ANN models have been applied in 

studies such as water quality (Awad, 2014), fisheries (Huse and Giske, 1998; Gebler et al., 

2014), modeling microbial community structures (Santos et al., 2014), among others. ANN 

models can extract the nonlinear patterns that exist in large and complex data sets (Noble et al., 

2000; Mele and Crowley, 2008; Santos et al., 2014), and do not need a priori hypotheses to 

guide model development. Similarly, LR models have been popular for prediction of 

regeneration for several forest tree species. For example, Larsen et al. (1997) used LR models to 

predict the probability of occurrence for oak regeneration in the Missouri Ozarks. Lynch et al. 

(2003) used LR models to predict the shortleaf pine (Pinus echinata Mill.) regeneration in 

Arkansas and Oklahoma, USA.  

SVM models are a supervised learning method based on statistical learning theory 

(Vapnik, 1998). These models have rarely if ever been used in forest management but are 
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popular in many other ecological studies. For example, Acevedo et al. (2009) applied an SVM 

model to classify the calls of nine frogs and three bird species, and reported that it performed 

best among all tested models by correctly classifying the calls 94.95 percent of the time. Hu and 

Davis (2005) applied SVM models to identify the plankton taxa and reported that the method 

reduced the classification error rate from 39 to 28 percent. SVM models often provide better fit 

statistics compared to traditional regression models (Gevrey et al., 2003; Aquino et al., 2008). 

In order to better understand the present and future status of shortleaf pine forests in 

Arkansas and Oklahoma and to develop efficient management programs, the development of an 

efficient statistical/ predictive model is needed to assess the major factors influencing shortleaf 

pine regeneration. In this study, we developed multiple forms of LR, ANN and SVM models that 

predicted shortleaf pine regeneration in Ozark and Ouachita national forests in Oklahoma and 

Arkansas, USA. Additionally, we compared the performance of LR, ANN and SVM models 

based on their fit statistics to select the best performing model to predict the shortleaf pine 

regeneration. To the best of our knowledge, this study is first in kind to use and compare 

predictive modeling techniques to assess shortleaf pine regeneration in the southeastern USA. 

2. Materials and Methods 

2.1. Study area and data collection 

The USDA Forest Service Southern Research Station and the then Department of 

Forestry, Oklahoma State University jointly established 180 permanent study plots in the Ozark 

and Ouachita National Forests during the period from 1985 to 1987. Study plots were located in 

the Ozark National Forest (latitude 35.3º N, longitude 93.1º W) and the Ouachita National Forest 

(latitude 34.0º N, longitude 94.7º W) in southeastern Oklahoma (Lynch et al., 2003). Out of 180 

plots, 133 plots were from the Ouachita National Forest and 47 plots were from the Ozark 
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National Forest. Overstory measurement plots were circular with 809.371 m2 in area and a 

16.063 m radius. The 10.05 m isolation buffers were created outside the plots and were treated 

similarly to the plots. 

Overstory shortleaf pine characteristics such as diameter at breast height (dbh), tree age, 

site index were measured when establishing the plots in 1985. Here, overstory represents all the 

shortleaf pine trees in plots that were remained after thinning in 1985. Shortleaf and hardwood 

understory trees are the cohort regenerated after thinning and hardwood control in 1985 and 

which were taller than 1.3m in 1995, hereafter these will be termed “understory”. Shortleaf pine 

overstory characteristics from all 180 plots have been measured at approximately 5 year intervals 

since they were established in 1985. While establishing the plots, understory hardwoods 

exceeding 2.54 cm in diameter at ground level were removed using herbicides. Hardwoods were 

also removed from the isolation buffer area to eliminate hardwood competition. The understory 

woody-vegetation started regenerating a few years after plot establishment. During the time of 

third overstory measurement in 1995, four 20.23 m2 subplots were created inside all of the 

809.371 m2 plots to measure the understory woody vegetation regeneration. All of the woody 

vegetation and shortleaf pine regeneration available inside the subplot larger than 1.37 m in 

height were measured. Only two subplots were measured within each overstory plot in 1995 but 

all four subplots were measured in each overstory plot in subsequent measurements. 

2.2. Data management and exploratory analysis 

We first assigned the understory shortleaf pine stem density ha-1 (SLP) as the target 

variable. Overstory shortleaf pine basal area, average tree age in plot, site index, sites, year of 

measurement, thinning classes, altitude and the average annual precipitation were assigned as the 

predictors. Site, thinning class and year of measurement were the only class predictor variables. 
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Four thinning classes were assigned based on the overstory basal area from 1985 (Table IV-1). 

Such basal area classes were created by thinning the overstory shortleaf pine from below in 

1985. Most plots were also thinned from below in 2000 to bring the overstory basal area level 

down to similar level of 1985. The target variable was understory shortleaf pine density. 

Hereafter, we call it shortleaf pine regeneration density. For the target variable, regeneration 

density < 1730 stems ha-1 were assigned to class A and ≥ 1730 stems ha-1 were assigned to class 

B, and the new binary variable was denoted as SLPN. These classes were created based on 

previous studies in which shortleaf pine regeneration density exceeding 1730 stems ha-1 was 

indicative of adequate or high regeneration, whereas, shortleaf pine regeneration density below 

1730 stems ha-1 were indicative of poor regeneration (Lynch et al., 2003). Climatic and 

topographic variables were extracted using the GPS locations of the plots from Arkansas and 

Oklahoma. All analyses were performed using SAS Enterprise Miner software version 12.3 

(SAS Institute Inc. USA; hereafter SAS EM).  

Additionally, we checked the symmetry assumption using measures of skewness and 

kurtosis. The symmetry for the interval inputs was not violated (Table IV-2). We conducted the 

Pearson’s product-moment correlation analysis to detect the correlation between the inputs, as 

well as their correlation with the target variable. Any predictor variable that had a correlation 

greater than 0.70 (Dormann et al., 2013) and the variance inflation factor greater than 10 

(O’brien, 2007) were excluded from the model building process. 

We randomly separated the original data into training and validation datasets, and 

assigned 70% (487 observations) of the data into the training and 30% (209 observations) to 

validation data set as described by Tan et al. (2006) and Sarma (2013). Later, the training data set 
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was used to develop LR, ANN and SVM models and the validation data set was used to evaluate 

the performance of models built using the training data set. 

2.3. Logistic Regression models 

We used logit as the link function (Eq. 1) to predict shortleaf pine regeneration as high or 

low. The link function can be algebraically reformulated as an event probability function (Eq. 2). 

We fitted models using the maximum likelihood method (McCullagh and Nelder, 1989) and used 

the stepwise selection method to select the best performing model. Various forms of LR models 

were developed using polynomial and interaction effects. We selected a simple yet good 

performing LR model to predict the shortleaf pine regeneration. Fit statistics such as Akaike’s 

information criterion (AIC), Schwarz’s Bayesian criterion (SBC), average square error (ASE), 

mean square error (MSE) and the misclassification rate (MR) were used to select the best 

performing model among various LR models. The validation dataset was used to control the 

overfitting of models. After selecting the best performing LR model, we tabulated parameter 

estimates and odds ratios obtained from the selected LR model and interpreted them accordingly.  
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2.4. Artificial Neural Network Models 

The level of regeneration of shortleaf pine was predicted using multi-layered feed 

forwarding neural network model (Fig. IV-1). ANN uses complex nonlinear transformations and 

provides the probability of target variables using mathematical functions (Sarma, 2013). This 
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powerful nonlinear regression technique (Bishop, 1995; Ripley, 1996) was inspired by theories 

about how the brain works (Kuhn and Johnson, 2013; Baesens, 2014). Baran et al. (1996) and 

Lek et al. (1996) have described ANN models in detail. The SAS EM software offers a node for 

ANN where variable transformation, filtering, composite variable creation and the model 

estimation are done simultaneously in such a way that a specified error function is minimized 

(Sarma, 2013). Technically, ANN is a sequence of input and output layers. There could be 

several hidden layers between the input and final output layers. Here, we used three hidden units 

inside the hidden layers. Every output layer was treated as the input layer at the next level to 

create another output layer until we obtained the final output layer.  

The target and output layers perform two operations: combination and activation. Units 

use the target layer formula to combine the inputs, and they are then called target layer 

combination functions, and formulas used for transforming the combined values are called target 

layer activation functions. The combination and the activation functions in both the hidden layers 

and in the target layer are key elements of the architecture of an ANN (Sarma, 2013). The final 

result of the neural network largely depends on the selection of the hidden layer combination 

functions, and SAS Enterprise Miner software has a wide range of choices for those functions. 

We used multilayer perception, generalized linear model, user, ordinary radial-equal width, 

ordinary radial-unequal width, and normalized radial-equal width architectures to construct the 

network. Sarma (2013) described these functions in detail. We assessed the fit statistics such as 

AIC, SBC, ASE, MSE, and MR and selected the best performing model among various ANN 

models.  

The cumulative lift chart is used to determine the predictive capability of the ANN 

models. Sometime, cumulative lift charts are also referred to as the gain chart. In the chart, x-axis 
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represents the percentile or depth and the y-axis represents the lift. Indeed, the x-axis contains 

the cumulative number of cases with decreasing probability. Cumulative depths are the 

percentile of the data after applying the model. Cumulative lift is an approach that selects the 

lowest possible samples and achieves the most impactful results. Therefore, the decision makers 

can use the lift chart to take the better management decisions.  

2.5. Support Vector Machine 

SVM is a supervised machine-learning method that can be used to perform regression 

and classification analysis (Base SAS 9.4 Procedures Guide, 2015). In many problems, finite 

dimensional space is not linearly separable and the original space needs to be mapped into a 

higher dimensional space (Kampichler et al., 2010). This makes the separation easier (Base SAS 

9.4 Procedures Guide, 2015). SVMs use sigmoidal nonlinear kernel (Gunn, 1998; Williams, 

2011; Were et al., 2015), polynomial, and radial basis kernel functions to project the data onto a 

new hyperspace where complex non-linear patterns can be represented in a simpler fashion. It 

aims to construct an optimal hyperplane in the new hyperspace that separates classes and creates 

the widest margin between their data (Were et al., 2015). SVM model is a binary classifier 

(Kampichler et al., 2010; Nathan et al., 2011). It has been used in past to assess the behavior of 

domestic animals such as cats (Watanabe et al., 2005) and cows (Martiskainen, et al., 2009). The 

data structure used in this analysis fits the SVM model assumptions quite well. Therefore, it is 

worthy to assess how SVM model performs on correctly classifying the two classes (A and B) of 

understory shortleaf pine densities compared to LR and ANN models. As described earlier in 

section 2.5, the cumulative lift chart can also be used to determine the predictive capability of the 

SVM models. 
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2.6. Model comparison 

Two layers of model comparison were created. Initially, we selected the best performing 

models in each group of LR, ANN and SVM. Then, we compared the performance of best 

performing models among each other. Receiver operating characteristics (ROC) curves and 

validation MR were used to compare selected models. The ROC curve is a graphical technique 

that describes and compares the accuracy of models by plotting the 1-specificity in X-axis and 

sensitivity on Y-axis (Akobeng, 2007). The area under the ROC curve represents the overall 

performance of the model (Akobeng, 2007). 

3. Results 

3.1. Logistic Regression models  

We developed four LR models and evaluated their performances based on fit statistics 

(Table IV-3). The LR2 model had the lowest validation MR and consisted of the following 

significant inputs: PRECIPITATION, AGE, SI and THINNING (Table IV-3). Based on the fit 

statistics, the LR2 model performed the best of the LR models (Table IV-3). The parameter 

estimates and the odds ratio of significant variables are presented in table IV-4. The effect of 

nominal variable YEAR is not statistically significant (P>0.05). However, it is important to 

assess how time factor after thinning the overstory affects the regeneration. Therefore, we also 

present the parameter estimates and odds ratios of YEAR (Table IV-4). 

3.2. Artificial Neural Network Models 

We developed six ANN models by applying the different architectures for each model 

(Table IV-5). The ANN models only used the inputs that were significant in the LR2 models. 

Thus, PRECIPITATION, AGE, SI, and THINNING were used to develop the ANN models. All 
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fit statistics suggested that the ANN3 model performed the best among all of the ANN models 

(Table IV-5). This model also had the lowest validation MSE and the highest AUC. The ANN3 

model had the cumulative lift of 5, 2.5 and 1.66 percent on the depth of 20, 40 and 60 

respectively.  

3.3. Support vector Machines 

We developed four SVM models by applying the different functions for each model 

(Table IV-6). Based on the fit statistics obtained from the validation data, the SVM2 model that 

used the Kernel polynomial function performed best among all the models (Table IV-6). The 

SVM2 model had a cumulative lift of 3.79, 2.10 and 1.39 percent on the depth of 20, 40 and 60 

respectively. 

3.4. Comparison of Model Performances 

Here, we compared the performances of the selected LR (LR2), ANN (ANN3), and SVM 

(SVM: K-Polynomial) models. The detailed fit statistics and receiver operating characteristics 

(ROC) curves show that the ANN3 model was the best at predicting shortleaf pine regeneration 

(Fig. IV- 3), having the lowest training and validation MRs (Table IV-5). In terms of validation 

MR, the ANN3 model, which was developed by using the training data to predict the shortleaf 

pine regeneration, outperformed all other models. Other fit statistics (Tables IV-3, IV-5 and IV-

6) also suggested that ANN3 performed better than other models for predicting shortleaf pine 

regeneration. Also, ANN3 provided the lowest number of false negatives (Table IV-7) compared 

to other models for both training and validation data. Hence, it was selected as the best 

performing model.  
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4. Discussion 

Various forms of LR models have been used in past for shortleaf pine regeneration 

prediction (Nkouka, 1999; Lynch et. al., 2003), risk assessment (Jalkanen and Mattila, 2000), 

vegetation distribution prediction (Hilbert and Ostendorf, 2001), habitat evaluation (Pearce and 

Ferrier, 2000) and so on. In the present study, among four significant variables (SI, AGE, 

PRECIPITATION, and THINNING) from LR2 model, THINNING levels show the strongest 

effect on shortleaf pine regeneration (Table IV-4). The odds of high regeneration density (≥1730 

stems ha-1) gets low consistently in thinning levels B, C and D. Odds of getting high regeneration 

density reduces by 72.3%,  77.9% and 91.5% in thinning levels B, C, and D respectively 

compared to thinning level A. This result reflects the importance of overstory basal area level 

and practice of thinning on shortleaf pine regeneration. Lynch et al (2003) and Nkouka (1999) 

stated that overstory basal area affects the shortleaf pine regeneration negatively. Here, the 

overstory basal area information has not been used directly on LR models; however, as 

mentioned earlier in methods section, the four thinning levels represent the residual overstory 

shortleaf pine basal area after thinning in 1985. The shortleaf pine is shade intolerant (Baker et 

al., 1996). When a shade intolerant species, like shortleaf pine, fails to pose the intense 

competition and rapid height growth to remain in top canopy, they lag behind and succumb to 

hardwood competition (Baker et al., 1996). This study shows highly thinned plots have higher 

chance of having high shortleaf pine regeneration density. Thinning is a positive driving factor to 

promote the shortleaf pine regeneration and restore shortleaf pine forests for a long term.  

The negative effect of site index on shortleaf pine regeneration density (Table IV-4) is 

not a surprising result. The finding is concordant with multiple studies conducted in past (e.g. 

Lawson 1986; Nkouka et al., 1999; Lynch et al., 2003). As the site index increases by one unit, 
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the odds of high regeneration density (≥1730 stems ha-1) decreases by 30.9 percent. The poor 

shortleaf pine regeneration in sites with higher site index is because such sites tend to be even 

more favorable for hardwood regeneration. Precipitation affects the shortleaf pine regeneration 

negatively (Table IV-4). With one unit increase in precipitation, the odds of high regeneration 

density decreases by 1.2 percent. This is not a strong effect; however, precipitation affecting the 

regeneration negatively is an interesting finding. We assume that hardwoods take more 

advantage of increased precipitation than t shortleaf pine. One of the reasons that shortleaf pine 

mostly grows on the sites with poor site quality is that hardwoods regenerate relatively poorly on 

such sites. As far as we know, this is the first study on shortleaf pine that asses the effect of 

precipitation on shortleaf pine regeneration. The age of the overstory shortleaf pine trees in plot 

is the only variable that has positive effect on understory shortleaf pine regeneration density. 

With one unit increase in age, the odds of high regeneration density increases by 3.8 percent.  

Explanatory variables showing importance or significant in LR models can be further 

assessed by applying the predictive modeling techniques such as ANN and SVM to achieve the 

better fits (Ozesmi et al., 2006). Using only the significant inputs from LR models in ANN and 

SVM models is a common practice (Zurada et al., 1994; Gevrey et al., 2003). We applied the 

similar approaches and only used the significant variables (PRECIPITATION, AGE, SI, 

THINNING) from selected LR (LR2) model to build the ANN and SVM models. The ANN and 

SVM models are often considered “black boxes” or “data mining tools” (Intrator and Intrator, 

2001), and detailed mathematical explanations of the predictive models are complex. ANN 

models are non-parametric in nature. While developing the ANN models, data do not require the 

transformation to match the desired distribution (Ozesmi and Ozesmi, 1999) because it goes 

through multiple transformations on various layers at model building process.   
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The cumulative lift charts generated by ANN and SVM models provide information on 

how much more likely we receive positive response (≥1730 stems ha-1) at certain deciles of data 

than if we select a random plot (Sayad 2016). Based on cumulative lift for model ANN3, 

selected 20, 40 and 60 percent of the plots can have 5, 2.5 and 1.66 times of lift on high 

regeneration (≥1730 stems ha-1) compared to selecting a random plot (Fig. IV- 4). That means, 

by selecting 20 percent of plots based on predictive model (ANN3 at present case) will provide 5 

times more plots with high regeneration, as if we use no model. Similarly, in the case of SVM2 

model, selected 20, 40 and 60 percent of the plots can have 3.79, 2.10 and 1.61 times of lift on 

high regeneration (≥1730 stems ha-1) (Fig. IV-4). The comparison of cumulative lift shows that 

ANN3 performed better than the SVM2 model in predicting shortleaf pine regeneration for 

certain depth of data. The lift chart result suggests that the ANN3 model is better than the SVM2 

model to predict shortleaf pine regeneration in plots. In this case, it detected higher percentage of 

plots (e.g. 1.66 times lift on 60 % plots for ANN3 vs 1.61 times lift on 60 % plots for SVM2) for 

a certain level of lift on high regeneration density.  

Using the ANN3 model, forest managers can focus on the sites that are not regenerating 

at the desired level. KC et al. (under review, 2016) described how shortleaf pine regeneration can 

be improved in certain sites by applying the decision tree model, but we need to be able to locate 

the exact sites that are not regenerating well and the cumulative lift data provides such 

information. The cumulative lift chart (Fig. IV- 4) provides the lift (in y-axis) at certain decile (in 

x-axis), and the data can be separated easily at any decile level. Indeed, this is already a popular 

technique in the medical and business research (Shen et al., 2007; Das, 2010). Mostly, the 

business and medical studies use cumulative lift chart the other way. They target the first few 

deciles to receive the maximum response. But, we target last few deciles where the regeneration 
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is critically low and plan accordingly so that shortleaf pine regenerate better on those sites too. 

To the best of our knowledge, this is the first paper stating that cumulative lift chart can be a 

helpful tool from a forest management perspective. Separating the poorly regenerating sites with 

satisfactorily regenerating sites using a cumulative lift chart helps to distribute the time and 

resources to sites where the interventions are needed to achieve certain shortleaf pine 

regeneration goals. Model ANN3 can be helpful in achieving such goals.   

5. Conclusions 

The ANN model (User as the architecture) predicted shortleaf pine regeneration with 

lowest validation misclassification rate. A cumulative lift chart provided an assessment of 

regeneration performance at various depths of data. The low MR of the ANN3 model on 

validation dataset further assures that the margin of error is low while drawing conclusions using 

the results from model ANN3. The selected predictive model (ANN3) can be an additional tool 

to the forest managers on making long term policy decisions on shortleaf pine forests 

management. Furthermore, we encourage future researchers to collect extra information such as 

seed distribution trends, hardwood regeneration, controlled burning, and edaphic factors that can 

affect shortleaf pine regeneration and reconstruct the ANN3 model. By doing so, we anticipate 

that the predictive power of the ANN3 will be further improved. This study can be a stepping 

stone for using predictive models to explore the non-linear patterns of ecological data 

particularly in the field of forest management in the future in the southeastern United States. 
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Table IV-1 Description of target and explanatory variables (inputs) and their assigned variable 

names, scale, maximum, and minimum values 

Variable description (Unit) Variable Values [min, max] 

Shortleaf pine regeneration (density ha-1) SLP [0,13344] 

Overstory basal area (m2 ha-1) BA [3.97,48.68] 

Age of the sample plot (years) AGE [33,119] 

Site Index (m) SI [12.33,26.64] 

Site  SITE Ozark/Ouachita 

Year of measurement YEAR 1996/2001/2006/2010 

Thinning classa (m2 ha-1) THINNING A/B/C/D 

Altitude of plot location(m)  ALTITUDE [177,481] 

Annual precipitation (mm) PRECIPITATION [987,1491] 

a. Thinning classes are:  A= (Overstory shortleaf pine basal area<10 m2 ha-1),  

B= (10 m2 ha-1≤ Overstory shortleaf pine basal area <17 m2 ha-1),  

C= (17 m2 ha-1≤ Overstory shortleaf pine basal area <24 m2 ha-1), and  

D= (Overstory shortleaf pine basal area≥ 24 m2 ha-1). 
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Table IV-2 Descriptive summary of interval inputs 

Variable Mean [SD] Skewness Kurtosis 

ALTITUDE 291.51 [71.28] 0.63 -0.26 

PRECIPITATION 1265.18 [106.35] -0.20 0.02 

SI 18.98 [3.20] 0.140 -0.67 

AGE 76.28 [20.64] -0.09 -1.05 

BA 21.21 [9.21] 0.19 -0.79 
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Table IV-3 Logistic regression models and their fit statistics 

Model Validation MR P-value Significant Variables 

LR1 0.11 <0.001 PRECIPITATION, AGE, SI 

LR2 0.08 <0.001 PRECIPITATION, AGE, SI, THINNING 

LR3 0.09 <0.001 PRECIPITATION, BA, AGE, SI, THINNING 

LR4 0.11 <0.001 PRECIPITATION, THINNING,  SI*SI 

LR1 uses none as the model selection criteria.  

LR2 doesn’t use polynomial and interaction terms in the model and stepwise is the selection criteria.  

LR3 uses interaction terms in the model and stepwise is the selection criteria. 

LR4 uses polynomial and interaction terms in the model and stepwise is the selection criteria.  
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Table IV-4 Parameter estimates and odds ratio of inputs from LR2 model  

 Parameter Estimate Standard Error P-value Odds Ratio 

INTERCEPT 15.158 2.78 <0.001  

PRECIPITATION -0.012 0.001 <0.001 0.988 

AGE 0.037 0.009 <0.001 1.038 

SI -0.370 0.009 <0.001 0.691 

THINNING (B vs A) 0.029 0.295 0.920 0.277 

THINNING (C vs A) -0.196 0.359 0.584 0.221 

THINNING (D vs A) -1.147 0.430 <0.001 0.085 

YEAR (2001vs 1996) 0.146 0.290 0.614 0.525 

YEAR (2006 vs 1996) -0.540 0.323 0.094 0.264 

YEAR (2013 vs 1996) -0.395 0.315 0.200 0.306 
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Table IV-5 Performance of ANN models on predicting shortleaf pine regeneration 

Model Architecture NPE Validation 

   MR MSE AUC NWC 

ANN1 MP 31 0.086 0.078 0.696 18 

ANN2 GLM 31 0.090 0.089 0.698 20 

ANN3 USER 29 0.086 0.076 0.753 18 

ANN4 OR-EW 31 0.090 0.076 0.668 19 

ANN5 OR-UW 30 0.095 0.082 0.683 20 

ANN6 NR-EW 31 0.105 0.083 0.670 22 

MP= Multilayer perception 

GLM=Generalized linear model 

OR-EW=Ordinary radial-equal width 

OR-UW=Ordinary radial-equal width 

NR-EW=Normalized radial- equal width  

NPE= Number of parameter estimates in the model 

AUC= Area under receiver operating curve (ROC) 

NWC= Number of wrong classification  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

126 

 

Table IV-6 Performance of SVM models on predicting shortleaf pine regeneration 

Model Function Validation 

  MR AUC NWC 

SVM1 Kernel Linear 0.09 0.695 19 

SVM2 Kernel Polynomial 0.09 0.720 19 

SVM3 Kernel RBF 0.09 0.683 19 

SVM4 Kernel sigmoidal 0.13 0.52 29 

Kernel RBF= Kernel Radial basis function  

AUC= Area under ROC curve for validation data set 

NWC= Number of wrong classification on the validation dataset  
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Table IV-7 Event classification for selected LR, ANN, and SVM models for validation data.     

Model Data Role FN TP FP TP Total Observation 

LR2 VALIDATE 18 190 0 1 209 

SVM:K-Polynomial VALIDATE 18 189 1 1 209 

ANN3 VALIDATE 9 183 7 10 209 

TP= True Positive [Classifying High regeneration (≥1730 stems ha-1) as High regeneration] 

FP= False Positive [Classifying High regeneration as Low regeneration (<1730 stems ha-1)] 

TN= True Negative [Classifying Low regeneration as Low regeneration] 

FN= False Negative [Classifying Low regeneration as High regeneration] 
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Fig. IV-1 Architecture of the MLP neural network for SLPN estimates. 
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Fig. IV-2 Process flow map of the model building processes, in SAS EM software 

version 12.3 interface, and their comparison among the group of similar models and the 

selected models. “SLP Data” is a dataset that is cleaned and ready to be analyzed. Then, 

data has been imputed for the missing values and transformed as required. “Data 

Partition” node randomly separated data into two sets as training and validation data sets. 

“Drop” node dropped all the variables from the dataset that are not used by ANN and 

SVM models. “Model Comparison” node compared the performances of the models.  
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Fig. IV-3 Receiver operating characteristics (ROC) curves to compare the performances of 

selected LR (LR2), ANN (ANN3), and SVM (SVM2) models for training and validation data.  
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Fig. IV-4 Cumulative lift charts for ANN3 and SVM2 models with baseline.  
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CHAPTER V 

 

CONCLUSIONS 

The low levels of understory shortleaf pine density in this study indicate that on 

many ownerships where active management activities such as controlled burning are not 

being practiced, it will be difficult to replace an existing shortleaf overstory.  This raises a 

serious concern for the future of shortleaf pine dominated-oak mixed forests in Arkansas 

and Oklahoma. Single tree selection thinning on uneven-aged shortleaf pine stands 

certainly improves the status of understory shortleaf pine density. Treatments to control 

competing hardwoods are essential at around 10-15 year intervals to maintain and 

develop shortleaf regeneration that is obtained from a previous single tree selection 

thinning. We propose 10-15 years interval because the understory shortleaf pine density 

level in present study was satisfactory until 1996. And, it sharply declined in 2001. This 

study concludes that not conducting any silvicultural treatment on the stands for around 

15 years or longer nullifies the benefits that we received from the first thinning in terms 

of regeneration. This study suggests the continual intervention is mandatory to achieve 

healthy shortleaf pine regeneration naturally. In the present study, understory woody-

plants dynamics changed significantly in later years. Understory shortleaf pine rarely 

survives to move to larger dbh classes if the silvicultural treatments are not applied 
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frequently. The short term understory density may provide misleading results as we 

report good shortleaf pine regeneration in 1996 for number of plots. The status of 

understory shortleaf pine in 2013 is in a critically poor condition. Treatments like 

thinning from below, controlled burning, selective understory hardwood clearance could 

be the possibilities; where economically feasible.  We conclude thinning from below 

every 10-15 years to keep the overstory basal area below17 m2ha-1 would provide 

sufficient understory shortleaf pine in long-term if competing hardwood vegetation can 

be controlled. 

The decision tree model is an attractive predictive modeling tool for prediction of 

shortleaf pine regeneration. These models demonstrated that overstory shortleaf pine 

thinning positively affects understory shortleaf pine regeneration. Site index, annual 

precipitation and overstory basal area are other important variables that affect the 

regeneration negatively. Regeneration prediction using DT models is an attractive 

alternative method for forest managers who prefer faster, purer, and easier data driven 

solutions to manage their shortleaf pine forests. The ANN model also predicted shortleaf 

pine regeneration with low validation misclassification rate. A cumulative lift chart 

provided an assessment of regeneration performance at various depths of data. The low 

MR of the ANN3 model on validation dataset further assures that the margin of error is 

low while drawing conclusions using the results from model ANN3. The selected 

predictive model (ANN3) can be an additional tool to the forest managers for making 

long term management decisions for shortleaf pine forests. 
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Incorporation of inputs such as seed production rates, edaphic factors, hardwood 

regeneration data, controlled burning, and ice damage records in future applications can 

make the DT and ANN models even more accurate for predicting the shortleaf pine 

regeneration levels. By adding extra information, we anticipate that the predictive power 

of the DT and ANN will be further improved. This study can be a stepping stone for 

using predictive models to explore the non-linear patterns of ecological data particularly 

in the field of forest management in the future in the southeastern United States. In 

addition the predictive modeling approach can also be applied in similar ecological 

studies. 
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