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Nanoindentation involves probing a hard diamond tip into a material, where the load
and the displacement experienced by the tip is recorded continuously. This load–
displacement data is a direct function of material’s innate stress–strain behavior.
Thus, theoretically it is possible to extract mechanical properties of a material through
nanoindentation. However, due to various nonlinearities associated with nanoinden-
tation the process of interpreting load–displacement data into material properties is
difficult. Although, simple elastic behavior can be characterized easily, a method
to characterize complicated material behavior such as nonlinear viscoelasticity is still
lacking. In this study, a nanoindentation-based material characterization technique is
developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoin-
dentation experiment was modeled in finite element analysis software (ABAQUS),
where a nonlinear viscoelastic behavior was incorporated using user-defined subrou-
tine (UMAT). The model parameters were calibrated using a process called inverse
analysis. In this study, a surrogate model-based approach was used for the inverse
analysis. The different factors affecting the surrogate model performance are analyzed
in order to optimize the performance with respect to the computational cost.
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CHAPTER 1

INTRODUCTION

The advent of 21st century has led to the development of several new materials for

different engineering applications. Metals or metallic alloys which have been predom-

inantly used for structural applications are being replaced by lighter and stronger

composite counterparts. Most often polymers are used as the matrix materials in

these composites. Polymers are also being increasingly used in thin film applica-

tions. Thin films have already found considerable industrial applications, e.g. in the

production of plane and automobile, as well as in electronic, optical, medical and

chemical devices. Unlike metals or ceramics, which exhibit simple elastic–plastic be-

havior, mechanical behavior of polymeric materials are very complex. Understanding

the mechanical behavior of polymers, which exhibit time–dependent responses under

applied load, is an important issue in predicting the performance of these materials

while in use.

Biomaterials are another important area where knowing the mechanical behavior

would greatly improve the quality of understanding of these material systems. The

onset of various diseases such as breast cancer [6, 7], atherosclerosis [8, 9], fibrosis [10],

and glaucoma [11] has been found to be related with change in tissue compliance.

The application of fast and reliable characterization of biomaterials would not only

be beneficial for disease progression, but also in designing improved artificial organs,

building virtual surgical simulators and automated robotic surgeon [12, 13].

Therefore, one of the most important question in today’s materials science is

understanding mechanical behavior of materials under different loading conditions
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at different length scales. Traditional mechanical testing methods such as tension,

compression, flexural, and bend tests can only provide the macroscale mechanical

behavior [14–17]. Macroscale test data often differs from the nanoscale test data if

the material system is non-homogeneous [1]. Moreover, these testing methods require

the specimen to be of certain size or shape, which is often difficult to obtain. Complex

fixture design and gripping issues are a few more challenges to overcome in case of

traditional testing methods.

Nanoindentation is one of the most promising material characterization technique

that has the potential to overcome the complexities of conventional testing methods.

Nanoindentation involves probing a material with a very small, hard diamond tip

of known geometry, while the load and the displacement experienced by the tip is

recorded continuously. This load and displacement data is a direct function of ma-

terial’s inherent mechanical properties, and thus makes it theoretically possible to

attain mechanical properties from nanoindentation data. The biggest advantage of

nanoindentation, which is driving the use of this technique, is that it removes the size

or shape restriction placed by the macro or bulk testing techniques.

However, indenting a material and recording loads and displacements is just the

preliminary step in obtaining mechanical properties from the nanoindentation process.

As loads and displacements are the only experimentally measurable variables, in order

to extract mechanical properties, suitable analytical or numerical methods that relate

indentation loads and displacements to material properties are required [18, 19]. This

is a challenging task because unlike traditional uniaxial testing methods, nanoinden-

tation load–displacement data comes from complex multi-axial loading, thus making

it much more difficult to analyze and subsequently interpret in terms of mechanical

properties.

Past developments in this area has reached to the point where nanoindentation

measurements could be related to mechanical properties for materials exhibiting sim-
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ple elastic or elastoplastic material behavior. However, for materials exhibiting com-

plex material behavior, such as time–dependent material behavior, suitable analysis

technique is not available. Understanding mechanical behavior of materials is a root

problem, and it carries forward to severely limit applications. For example, accu-

rate mathematical descriptions of the mechanical behavior of soft tissues remain the

limiting factor in the advancement of realistic medical simulations and non-invasive

diagnostic tools as soft tissues exhibit nonlinear stress-strain behavior at large defor-

mations.

Developing an analysis technique for nanoindentation of soft materials, such as,

polymers, gels, metals at high temperature, and biomaterials, is especially challeng-

ing due to the inherent time–dependent mechanical behavior [20]. Time-dependent

mechanical behavior, which is known as viscoelasticity or viscoplasticity needs to be

taken into consideration in order to accurately predict material behavior under ser-

vice [21]. In case of a viscoelastic or viscoplastic material, the stress state not only

depends on the strain, but also the strain rate.

In chapter 2, a comprehensive review of the existing nanoindentation-based anal-

ysis techniques is presented. This includes both analytical and inverse approach for

analysis of load–displacement nanoindentation data. Based on the state-of-the-art

review few questions are raised, the answers to which if known could significantly

improve the applicability of nanoindentation technique for material property charac-

terization.

In chapter 3, the development of a technique that can be used to characterize

nonlinear viscoelastic behavior of soft materials is described. The theories and chal-

lenges of the specific techniques is also provided to improve the understanding of the

effectiveness of each constituent of the overall technique.

In chapter 4, an application of the developed technique is presented for an elasto-

plastic material behavior. This case study is used to understand the overall numerical

3



technique in the context of the nanoindentation experiment. By extending this under-

standing of the numerical technique, the problem of determining nonlinear viscoelastic

constitutive model parameters is solved. Later part of chapter 5 is utilized to draw

a conclusion of the study, as well as to report about the possible future works that

could improve the robustness and the general applicability of this technique.
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CHAPTER 2

LITERATURE SURVEY

Nanoindentation, also known as depth-sensing indentation (DSI), is a very popular

technique for determination of mechanical properties such as elastic modulus and

hardness. It has been extensively used to study the behavior of metallic or ceramic

materials in the past couple of decades. Local mechanical properties at the micro-

and nanoscale can be effectively characterized by nanoindentation, which is the major

advantage of using this technique [22, 23]. This also makes it ideal to study materials

that are otherwise not characterizable by conventional testing methods e.g. thin films,

coatings, and localized surface modification of materials [24–26]. Nanoindentation has

also attracted interest for biological material characterization, since it may be used

to assess mechanical properties on the cellular scale [27].

Two different approaches have been primarily used for mechanical characterization

of materials by nanoindentation [28]. The first approach is based on analytical or semi-

analytical solutions arising from mathematical contact theories. The second approach,

which is popularly known as ‘inverse analysis ’, utilizes a combination of finite element

methods and numerical optimization algorithms. In inverse analysis the difference

between experimental and numerical nanoindentation data, called the objective or

error function, is minimized with respect to the material model parameters using

numerical optimization. Subsequently, the parameters of the constitutive models are

identified as the optimized material properties. Inverse analysis has been found to

be applicable in tackling a wide range of problems by the research community [29].

In the next few subsections, a brief review of the nanoindentation based studies is
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presented for both methods.

2.1 Nanoindentation Analysis: Oliver–Pharr Method

Theoretical studies to characterize the material properties by indentation were first

conducted by Hertz. He developed a relationship between the load and indentation

depth for spherical elastic bodies. Later Sneddon extended Hertz’s work to derive

expressions for load, displacement, and contact depth for elastic contacts between

a rigid, axisymmetric punch with an arbitrary smooth profile and an elastic half-

space [30]. The first study to use Sneddon’s analytical solution and measure the

mechanical properties from nanoindentation experiment was conducted by Doerner

and Nix [31]. Their study demonstrated that hardness and Young’s modulus could be

calculated based on the information provided by nanoindentation load–displacement

plot. They also pointed out that with the help of suitable analytical procedure plastic

properties of a material can also be obtained from nanoindentation.

In subsequent years, Oliver and Pharr modified the method proposed by Doerner

and Nix to find elastic properties of materials [2]. This method has since been cited for

more than 13000 times and became more of an unofficial standard for nanoindentation

testing. The underlying assumption of this method is that unloading curve of a

nanoindentation plot is purely dominated by the elastic properties of the material.

Using this method for time-dependent materials would provide inaccurate results since

the original assumption does not remain valid. To provide a better understanding

of nanoindentation technique a brief overview of this method is followed in next

paragraphs.

Figure 2.1 shows a typical nanoindentation load–displacement plot. In order to ex-

tract mechanical properties, such as Young’s modulus and hardness, values of contact

stiffness, contact depth, and area of contact are required from the nanoindentation

plot. The contact stiffness S is the slope of the unloading curve, while the contact
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analytical methodologies and how they can be used to
study hardness, elastic modulus, creep, and fatigue
properties for layered materials and nonhomogeneous
composites, especially those designed for use in
magnetic storage and microelectromechanical sys-
tems (MEMS) devices. Discussion on the CSM
results in conjunction with nanoindentation scratch
and wear data are also presented.

2. Experimental techniques

2.1. Hardness and elastic modulus measurements

The two mechanical properties measured most
frequently using indentation techniques are the hard-
ness, H, and the elastic modulus, E. As the indenter is
pressed into the sample, both elastic and plastic
deformation occurs, which results in the formation
of a hardness impression conforming to the shape of
the indenter. During indenter withdrawal, only the
elastic portion of the displacement is recovered,
which facilitates the use of an elastic solution in
modeling the contact process [2,5,6]. Fig. 1 shows
a typical load–displacement curve and the deforma-
tion pattern of an elastic–plastic sample during and
after indentation. In Fig. 1, hmax represents the
displacement at the peak load, Pmax. hc is the contact
depth and is defined as the depth of the indenter in
contact with the sample under load. hf is the final
displacement after complete unloading. S is the initial
unloading contact stiffness.

Nanoindentation hardness is defined as the
indentation load divided by the projected contact area
of the indentation. It is the mean pressure that a
material can support under load. From the load–
displacement curve, hardness can be obtained at the
peak load as

H ¼ Pmax

A
ð1Þ

where A is the projected contact area. Measurement
of the projected contact area from a load–displace-
ment curve requires the contact depth, hc, which will
be discussed later.

The elastic modulus of the indented sample can
be inferred from the initial unloading contact stiff-
ness, S = dP/dh, i.e., the slope of the initial portion
of the unloading curve. Based on relationships
developed by Sneddon [23] for the indentation of
an elastic half space by any punch that can be
described as a solid of revolution of a smooth
function, a geometry-independent relation involving

contact stiffness, contact area, and elastic modulus
can be derived as follows

S ¼ 2b

ffiffiffiffi

A

p

r

Er ð2Þ

where b is a constant that depends on the geometry
of the indenter (b = 1.034 for a Berkovich indenter)
[5] and Er is the reduced elastic modulus, which
accounts for the fact that elastic deformation occurs
in both the sample and the indenter. Er is given by

Er ¼
1$ v2

E
þ 1$ v2i

Ei
ð3Þ

where E and n are the elastic modulus and
Poisson’s ratio for the sample, respectively, and
Ei and ni are the same quantities for the indenter.
For diamond, Ei = 1141 GPa and ni = 0.07 [1,5].

To calculate elastic modulus, E, from Eqs. (2) and
(3), the contact stiffness and the projected contact
area need to be determined from the load–displace-
ment curve. Oliver and Pharr [5] found that the

Fig. 1. (a) A typical load–displacement curve and (b) the

deformation pattern of an elastic–plastic sample during and

after indentation [5].

X. Li, B. Bhushan / Materials Characterization 48 (2002) 11–36 13

Figure 2.1: a) Typical nanoindentation load-displacement plot, b) schematic of the

material surface before and after loading [2]
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depth hc (the depth of actual contact between the indenter and the material) is cal-

culated by Eq. 2.1.

hc = hmax − ε
Pmax
S

(2.1)

Here, hmax is the maximum depth of penetration including elastic deformation of

the surface under load, Pmax is the maximum force, and ε is a geometrical constant

associated with the geometry of the indenter [2]. This method of determining the

contact depth is commonly referred to as the Oliver–Pharr method; a schematic in

Fig. 2.1 shows hc and hmax.

Once hc is determined, the projected area A of actual contact can be calculated

using the cross-sectional shape of the indenter along its length. Determining accurate

contact area is found to be crucial for elastic analysis of nanoindentation data [32].

This area function could be determined by direct measurement of the imprint ge-

ometry under a scanning microscope [33], but in practice is normally determined

by indenting a reference sample and iteratively fitting the results. The relationship

between contact area, A and the contact depth, hc for a Berkovich tip is generally

expressed by the following equation–

A = 24.5h2
c + C1hc + C2h

0.5
c + C3h

0.25
c + . . . (2.2)

here, the coefficients Ci can be determined by iterative fitting to indentation measure-

ments conducted on reference material such as fused silica. The first term in Eq. 2.2

represents the area–depth relationship for a perfectly sharp Berkovich indenter, while

the other terms account for tip imperfections e.g. tip roundness. Once the area of

contact A is determined, hardness is found using a simple equation-

H =
Pmax
A

(2.3)

It is important to note that this hardness is defined using the projected area

of contact under load, while macroscopic definition of hardness is force divided by

8



the area of the residual imprint left by the indenter. For most materials the two

definitions yields very similar values. However, in case of a material showing little

to no plastic flow, the hardness calculated by Eq. 2.3 tends to be lower than the

macroscopic definition.

Once contact area, A and contact stiffness, S is known, Sneddon’s solution can

be adapted independent of the geometry of the punch, and Young’s modulus can be

calculated using the following equation for reduced modulus:

Er =
1

β

√
π

2

S√
A

=

(
1− ν2

i

Ei
+

1− ν2
s

Es

)−1

(2.4)

here, β is a small correction for the non-axisymmetric indenter shape (e.g. β = 1.034

for a Berkovich tip). For a perfectly elastic–plastic material with no other form of

deformation present, the unloading curve is purely dominated by the elastic recovery

of the material. As a result, Young’s modulus determination from an unloading curve

of a nanoindentation experiment becomes possible. Later Field and Swain developed

means of extracting both Young’s modulus and yield strength from load–displacement

curves of a spherical indentation [34].

Approximation of Sneddon’s solution is that the indenter is rigid, and therefore,

deformation of the indenter is small and insignificant compared to the material being

tested. As long as this approximation is valid Sneddon’s solution can yield good

results for the reduced modulus. However, in case of testing very hard materials, such

as diamond-like carbon the deformation experienced by the indenter is substantial,

thus violating the approximation Sneddon’s solution is based upon.

Oliver–Pharr method and subsequent developments provided a means for extract-

ing few key material parameters from a nanoindentation plot, namely Young’s modu-

lus, hardness, and yield strength. These were groundbreaking developments in terms

of characterizing elastic–plastic material behavior. However, these methods are unus-

able for viscoelastic materials as the underlying assumption of unloading curve purely

dominated by elastic recovery no longer holds for viscoelastic materials. In addition
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to that, hardness, modulus, and yield strength properties are inadequate to represent

the full spectrum of behavior for these materials.

2.2 Adaptation of Oliver–Pharr Method for Time–Dependent Behavior

The most widely used indenter load or displacement profiles are the triangular, where

the load or displacement is ramped at a certain rate to the maximum value and

then unloaded back to zero, as shown in Fig. 2.2. For elastoplastic material systems

(e.g. most metals and ceramics) exhibiting little to no time–dependent behavior, the

load–displacement nanoindentation curve is insensitive to loading or unloading rates;

thus, triangular profiles can be effectively used to characterize these materials.

However, this is not the case for testing of viscoelastic materials such as polymers

and biomaterials due to the fact that viscous behavior of these materials dramatically

affect the load–displacement curve. The inherent time–dependency in mechanical re-

sponse of these materials make the unloading curve of the nanoindentation experiment

noticeably different by producing a“nose” [33, 35].

Figure 2.3 shows a typical nanoindentation load–displacement plot for a viscoelas-

tic material. The nose results from excessive creep of a material under the indenter,

which dominates over the elastic recovery of the material as the tip retracts from the

surface. Applying Oliver–Pharr method on a nanoindentation plot exhibiting nose

often provides a negative value for contact stiffness, S, and prevents extracting elas-

tic modulus altogether. Even without the appearance of the nose, the presence of

viscoelasticity often leads to overestimation of Young’s modulus.

A trapezoidal load or displacement profile that implements a long enough hold

before the unloading has been found to suppress the creep behavior near the ini-

tial unloading part [35–39]. The holding period ensures complete relaxation of the

material, and minimizes the viscoelastic recovery during the unloading.

An useful modification to Oliver–Pharr method was proposed by Ngan et al. so

10



Figure 2.2: Load-displacement profiles a) triangular, b) trapezoidal [3]
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The phenomenon of creep is often observed in indentation 
testing for certain materials such as polymers and soft metals. 
Creep depends on the material and normally decreases to very 
low values within some seconds. Nevertheless, it influences 
the maximum depth and the unloading curve in a way that 
non negligible errors of modulus and hardness calculations 
may occur. This application note focuses on the investigation 
of creep behaviour for the following amorphous polymers: 
Polymethylmethacrylate (PMMA), Polycarbonate (PC) and Poly-
vinylchloride (PVC).

In an indentation test, creep often manifests itself as a bowing 
out or “nose” in the unloading portion of the force-displace-
ment curve, as shown on the curve without hold period in 
Fig. 1. For such material, when the force is held during a certain 
time at the maximum force, the indenter continues to penetrate, 
as shown in Fig. 1.
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The most common method of measuring creep is to maintain 
the applied force at a constant maximum value and measure 
the change in depth of the indenter as a function of time. The 
relative change of the indentation depth is referred to as the 
“creep” of the specimen material. Fig. 2 shows a creep com-
parison for the three amorphous polymers (PMMA, PVC and 
PC) tested with the same test parameters. PMMA is the sample 
exhibiting the highest creep followed by PVC and PC. 

CSM Instruments
Advanced Mechanical Surface Testing

APPLICATIONS BULLETIN
Investigation of creep behaviour using Micro or 
Nano Indentation Tester (MHT/NHT)

Figure 1: Force-displacement curves for PMMA. The curve without 
hold period at maximum force shows a nose in the upper part of the 
unloading curve whereas the curve with a 120 s hold period shows 
that the indenter continues to penetrate in the material.
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In a previous Application Bulletin (N°18) it has been shown 
that the indentation creep can be easily determined using the 
CSM Instruments Micro and Nano Indentation Tester (MHT 
and NHT). The indentation creep coefficient is defined as the 
relative change of the indentation depth whilst the applied 
force remains constant.

For the investigated polymers, a more empirical approach 
that yields information about the viscoelastic properties of 
the specimen is available through mechanical modelling. By 
modelling the sample to a Maxwell two-element model, the 
creep response (change in depth over time) at constant force 
can be expressed according to the following formula:

 

where F0 is the maximum load, Į is the cone semi angle, E* and 
Ș are fit parameters representing the bulk and shear moduli of 
the spring element, and the viscosity term that quantifies the 
time dependent property of the material, respectively.

Figure 2: Creep comparison of different amorphous polymers from 
10 mN indents with 20 mN/min loading rate.
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Figure 2.3: Typical nanoindentation plot for a viscoelastic material [4]

that true value of Young’s modulus for viscoelastic materials can be extracted from

nanoindentation experiment [35]. According to their study, for a load-controlled

indentation test with hold period prior to unloading, contact stiffness can be corrected

using the following equation—

1

Se
=

1

S
+
dh/dt|t=tm

vP
(2.5)

where dh/dt |t=tm is the indenter displacement rate at the end of the load hold just

prior to unloading, S is the contact stiffness found via original Oliver–Pharr method,

and vP = |dP/dt| is the initial unloading rate.

Although, Ngan et al.’s method provided an useful way to use Oliver–Pharr

method for characterizing viscoelastic solids, it simply cannot address the various

other important properties of a viscoelastic material [40]. As a result developing

dedicated analysis techniques for viscoelastic material characterization via nanoin-

dentation has been one of the most popular research area of the past decade.
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2.3 Analytical Approaches for Viscoelastic Materials

Analytical solutions capable of characterizing viscoelastic material behavior from

nanoindentation load–displacement plot originated from the early works of Radok [41].

He was the first to tackle the linear viscoelastic contact problem using the method of

functional equations or hereditary integrals, which was later completed by Lee and

Radok [42]. This method of functional equations solved the viscoelastic problem by

replacing the elastic constant with their corresponding viscoelastic operators. This is

why this method is also known as ‘Correspondence Principal’. Radok extended the

‘Laplace transform method’ formulated by Lee to eliminate the explicit time depen-

dence of the viscoelastic contact problem and solved it in the Laplace domain [43].

Before Lee and Radok, Laplace method was only applicable to problems where dis-

placement and stress boundary conditions are unchanged e.g. flat punch indentation

problem.

The method of functional equations proved to be very successful in formulating

analytical solutions for viscoelastic bodies; however, the solutions were only valid as

long the penetration depth in a viscoelastic indentation monotonically increased [42].

Hence, this method is only valid for the loading portion of the nanoindentation plot.

Many researchers attempted to remove this restriction. Hunter was able to remove

it for spherical indentation, while Ting’s implicit equations were able to remove it

altogether for any linear viscoelastic material tested under any axisymmetric indenter

shape [44, 45]. However, except for few specific cases applying Ting’s formulation is

a challenge. As a result, closed form solutions for linear viscoelastic problems are still

being formulated using Radok’s method of functional equations.

In 1985, Johnson summarized the correspondence analysis of spherical indentation

replacing the elastic constants by the Boltzmann viscoelastic hereditary integral op-

erators. Based on these approaches, in several contributions [46–52], the viscoelastic

analytical solutions of nanoindentation with different indenter tips were presented.
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However, the ‘Correspondence Principal’ method is restricted by yielding accurate

identification only for specific linear viscoelastic models under fixed experimental

processes.

2.3.1 Spring–Dashpot Based Viscoelastic Models

A key aspect of viscoelasticity is that mechanical behavior of a material can be suc-

cessfully modeled using a combination of springs and dashpots. Viscoelastic materials

demonstrate both elastic and viscous behavior in the same material. If spring repre-

sents the elastic behavior and dashpot represents the viscous behavior, a combination

of two could be able to model the behavior of a viscoelastic material. The biggest

advantage of using spring–dashpot based model is that the viscoelastic models can

be tailored to suit specific observations [53].

By putting this idea to use several spring–dashpot model has been proposed in

the literature. For a viscoelastic material, stress level is related to both strain level

and strain rate in the following general form

A0 + A1
dσ

dt
+ A2

d2σ

dt2
+ · · · = B0 +B1

dε

dt
+B2

d2ε

dt2
+ . . . (2.6)

where, ε and σ are the strain and stress levels, respectively, and t is the time. Ai

and Bi are the coefficients that determine the linear or even non-linear stress–strain

behavior.

In the most simplest of forms, where one spring element and one dashpot element is

used to create a model, this technique leads to two well known models, namely Kelvin–

Voigt and Maxwell model. These models assume linear stress–strain relationship.

Figures 2.4 and 2.5 show Kevin–Voigt and Maxwell model, respectively.

Using the corresponding constitutive equations for spring and dashpot, the fol-

lowing equation can be developed for Kelvin–Voigt model.

σ = Eε+ ηε̇ (2.7)
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Figure 2.4: Kelvin-Voigt model

Figure 2.5: Maxwell model

here, σ=Eε is the creep part and ηε̇ is the recovery part of the model; ε̇=dε/dt is the

strain rate; E is the rigidity modulus, and η is the coefficient of viscosity.

Under constant stress conditions, the strain response of the material can then be

captured as an exponential decay function

ε =
σ0

E

(
1− e−Et/η

)
(2.8)

However, under constant strain rate conditions (stress relaxation part), the Kelvin–

Voigt provides unrealistic linear elastic behavior for the viscoelastic material. The

Maxwell model, however, povides better approximation for constant stress relaxation.

For Maxwell model, the constitutive equation comes in the following form-

ε̇ =
σ̇

E
+
σ

η
(2.9)

In case of stress relaxation (ε̇=0), an exponential decay of stress is found,

σ = σ0e
−Et/η (2.10)

while in a recovery experiment (σ̇=0), the model predicts the basic equation of pure

Newtonian flow.
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To make Eq. (1) independent from the elastic component, it
can be written in dimensionless form by normalizing with
respect to G0,

gRðtÞ ¼ 1− ∑
N

i ¼ 1
gi 1−exp −

t
τi

! "! "
ð2Þ

The terms gi and τi are the material constants. gi is the
normalized shear relaxation modulus at the time t and τi is
the relaxation time corresponding to the relevant gi.

Eq. (2) is known as Prony series expansion of the normal-
ized shear relaxation modulus. In order to study the stress
relaxation behaviour of the material, we performed uniaxial
tensile tests, rather than shear tests. Based on von Mises
criterion of principal stresses at small deformations, the
shear relaxation modulus for a material under tension can
be obtained by,

GRðtÞ ¼
ERðtÞ

2ð1þ υÞ
ð3Þ

where υ is Poissonʼs ratio and ERðtÞ is the elastic relaxation
modulus in respect to time that is obtained via

EðtÞ ¼
sðtÞ
ε

ð4Þ

where sðtÞ is the time dependent normal stress and ε is the
normal strain.

An advantage of this approach means that we can sepa-
rate the linear viscoelastic parameters for the cornea and can
attribute them individually to different microstructural com-
ponents, i.e. fibres and matrix. Parameter E can be used to
describe the combined response of the corneal fibres and
matrix (Dunn and Silver, 1983, Edmund, 1988), whereas when
appropriately transformed, gi and τi can describe corneal
matrix behaviour (Dunn and Silver, 1983, Crabb et al., 2006,
Zhou et al., 2011).

The above viscoelastic description was used in an isotro-
pic finite element model of the nano-indentation experiment.
Initially, a comparative numerical study was performed in
order to determine a corneal domain and ascertain the degree

of influence of the blue tack on the simulated results. Two
axisymmetric models were produced using Abaqus 6.11, one
with full corneal thickness and a supporting base layer of
blue tack and one with partial thickness. The result obtained
from the two models show a negligible effect of the blue tack
base and the full thickness. Therefore, the partial domain of
1.2%0.8 mm2 with 4500, quadratic quadrilateral elements
was used for further analysis (Fig. 5). The corneal domain
was assumed flat as the indentation area was very small in
comparison to the total corneal curvature. The indenter was
modelled as a rigid body with a radius of 0.6 mm. The cornea
was fixed along the axis of symmetry, y, for x translation and
along the base line for x and y rotation and translation.
Adaptive meshing was implemented for the region of the
cornea under the largest deformation. The contact was
assumed frictionless based on the observation of a thin layer
of water on the surface of the cornea.

3.2. Orthotropic finite element model

To extend the isotropic model, a 3D orthotropic model was
created to account for the composite microstructure of the
cornea and to allow for fibre orientations. Since the instanta-
neous elastic behaviour of the cornea could be separated
from the viscoelastic part, which could be obtained from the
procedure in Section 3.1, the orthotropic model was restricted
to the elastic part only. A corneal domain of 1.2%0.8%0.8
mm3 was meshed with 30,000 8-node quadratic brick ele-
ments using the mesh refinement region for the area under
indentation. The boundary conditions and the contact speci-
fications were defined in the same way as for the isotropic
model (Section 3.1).

The central region of cornea around the y-axis has an
orthotropic fibre orientation with fibres aligned orthogonally
in the xz plane (Fig. 6). It is assumed that the properties in the
orthogonal directions are equal.

The elastic behaviour of the cornea can be written in the
form of Hookeʼs law as,

ε¼ S s ð5Þ

where ε, s and S are strain, stress and compliance tensors.
An orthotropic, Hookean solid is characterized by 9 constants,
Ex, Ey, Ez, Gxy, Gyz, Gxz, υxy, υyz, and υxz. For the orthotropic
cornea, Ex and Ez are the moduli along the fibres directions,

Fig. 4 – Schematic of the Generalized Maxwell model for
linear viscoelastic material.

Fig. 5 – Finite element domain of the cornea in nano-
indentation, showing magnification of the refined
mesh area.
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Figure 2.6: Schematic of Generalized Maxwell model

Real world materials are much more complex in their behavior, and these simplistic

models are not sufficient in representing that. Previous studies show that modeling

creep and relaxation behavior of complex viscoelastic behavior requires an assembly of

multiple spring and dashpot in the model [54]. One such model is generalized Maxwell

model. Various studies have reported that generalized Maxwell model worked well

in terms of modeling the viscoelastic behavior [51, 55–58]. For this model relaxation

can be written in the general form

σ = Y (t) ε0 (2.11)

where, Y(t) is the relaxation function.

The relaxation function can be represented using Prony series having the following

expression:

Y (t) = E0

(
1−

n∑
i=1

pi(1− e−t/τi)

)
(2.12)

where, pi is the ith Prony constant, τ is the Prony retardation constant, E0 is the

instantaneous modulus. Prony coefficients are usually found by nonlinear regression,

which allow adjusting the model with respect to the observed behavior.
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2.4 Inverse Approach Based Material Behavior Modeling

Inverse problems are defined as the problems where the output is known and the

input or source of output remains to be determined. They are contrary to the di-

rect problems, in which output or response are determined using information from

input [59]. In order to analyze inverse problems, experimental data obtained under

known boundary conditions are compared with the calculated ones. The combina-

tion of nanoindentation and FEA has proved to be a powerful analysis tool for soft

polymers such as gels, and coatings, and for soft tissues [60–63].

Inverse analysis requires an optimization algorithm to extract the set of parame-

ters for which the objective function (difference between simulation and experimental

load-displacement data) attains the minimum value. The choice of the optimization

algorithm for minimizing an objective function is a topic of interest. Whenever possi-

ble it is better to employ global optimization techniques. There are many variants of

Simulated Annealing or Genetic Algorithm based global optimization scheme, such as

evolutionary algorithms, or deterministic algorithms like the Simplex method. These

algorithms have proven to be very useful in case of optimization problems where user

has no prior information about the location of the solution in the parameter space,

thus incapable of making a priori choices about the initial estimates.

However, in case of finite element analysis, where time required to run one single

analysis can range from few minutes to even days, the success of global optimiza-

tion methods come at a price of astronomical computational cost. In these cases,

local optimization algorithms could prove to be useful given that the quality of initial

estimates are good. However, these algorithms are gradient-based and involves com-

putationally costly calculations of second order partial derivatives of the objective

function. For an objective function f, Hessian matrix, H is defined by the Eq. 2.13.

Hi,j =
δ2f

δxi δxj
(2.13)
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Determining H often requires high computational cost. The cost involving calculation

of Hessian matrix can be reduced if it is approximated using the Jacobian matrix, J

(Eq. 2.15).

Ji,j =
δfi
δxj

(2.14)

Hi,j ≈ 2J
T
J (2.15)

The biggest disadvantage of gradient-based scheme is that algorithms can sometime

get trapped inside a local minima. In addition to that, due to the ill-conditioned

nature of inverse analysis, identifying the correct minima from a set of local minima

is troublesome. Singularity in approximated Hessian matrix and non-covergence are

few other problems that often trouble the local optimization techniques.

Figure 2.7: An illustration of trade-off between fidelity and computational cost [5]

2.5 Review of Existing Literature

2.5.1 Analytical Approach in Nanoindentation

A large number of studies have been conducted in an effort to determine viscoelastic

behavior using nanoindentation. Cheng et al. derived the analytical solutions for lin-
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early viscoelastic deformation and provided a method to measure viscoelastic proper-

ties described by a three-element standard linear solid (SLS) model using a flat-punch

indenter [46]. Hernandez-Jimenez et al. studied the viscoelastic behavior of PMMA

and PTFE using Maxwell model [64]. Lu et al. developed methods to measure the

creep compliance of PMMA and PC polymers using spherical or Berkovich indenter

by deducing closed form analytical solutions using Generalized Maxwell model [51].

Prony series parameters for the stress relaxation or creep compliance was found by

curve fitting only the loading portion of the nanoindentation plot. Measurement

of creep compliance from conventional tension and shear tests were compared with

the nanoindentation technique, where reasonable agreement between the values from

different techniques was observed. Fisher-Cripps developed creep compliance analyt-

ical closed form solutions for three-element Voigt model, four-element Maxwell–Voigt

model [23]. Gonda et al. spherical and conical indentations on a thin polymer film

on a substrate, where viscoelastic properties found by analytical equations through

correspondence principal and the results were verified using finite element model-

ing [65]. Vanlandingham et al. investigated linear viscoelastic material analytical

solutions for epoxy, PMMA and PDMS polymers, and compared the values obtained

from nanoindentation with values from rheometry measurements [52]. Cheng and

Cheng derived closed form solutions relating the initial unloading slope, instanta-

neous relaxation modulus, and contact depth for linearly viscoelastic material under

a rigid and arbitrary axisymmetric shape [66]. In another study, they also derived

the relationship between unloading slope, contact depth and instantaneous modulus

for conical indentation [47]. Three parameter Standard Linear Solid (SLS) model

has also been used to derive equations for spherical nanoindentation of viscoelastic

materials [67]. Cheng et al. addressed the linear viscoelastic material indentation

using three-parameter Maxwell solid [68]. Finite element simulations were conducted

using these relationships to verify the solutions. Zhou and Lu developed methods to
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measure creep compliance and relaxation modulus in both time and frequency do-

mains under constant and ramped loading conditions using a spherical indenter [69].

Vandamme et al. modeled using 3-parameter Maxwell model, the 4-parameter Kelvin-

Voigt model and the 5-parameter combined Kelvin-Voigt-Maxwell model and derived

the closed form analytical solution for conical indenter [70]. Wei et al. studied the

viscous behavior of PMMA and PU materials using a combination of Kelvin–Voigt

model and a dashpot [71]. Their model accounted for the irreversible delayed plas-

tic (viscoplastic) deformation, irreversible viscous deformation, and reversible delayed

elastic (viscoelastic) deformations. Oyen and Cook examined the creep displacements

as a function of time for PMMA and a few other polymers using constant loading

and unloading rates [72]. They also examined the effect of triangular and trapezoidal

loading profiles. For pyramidal indentation tests, a new method for estimation of

time-constant was proposed. Liu et al. developed a model based on Burgers model

and applied to understand the viscoelastic behavior of soft polymers like PMMA [54].

According to them, Burgers model provided the best agreement with the experimen-

tal data in comparison to simple Maxwell or Kelvin-Voigt model. In addition to that,

they also indicated that the nose formation at the beginning of the unloading stemmed

from the decrease of the viscosity parameter. Jager et al. characterized viscoelastic

properties of bitumen using different spring-dashpot models for real tip geometry of

the indenter [50]. Linear viscoelastic analysis based on spherical indentation experi-

ment has also been carried out on human tympanic membrane [58]. Lin et al. studied

viscoelastic behavior of PDMS micro pillars using uniaxial, DMA, nanoindentation

tests, where generalized Maxwell model was used to describe the viscoelastic behavior

of the material [57].

Mencik et al. analyzed the viscoelastic–viscoplastic behavior of material under

indentation for different indenter profiles [73]. They found that materials under sharp

indenter undergoes high stresses and exhibits viscoplastic effects. Chen et al. used
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dimensional analysis and finite element analysis to understand the effects of residual

stress, substrate, and creep behavior on the load-displacement data [74]. Through

development of some analytical solutions they showed that it is possible to obtain

not only Young’s modulus and hardness, but also viscoelastic properties and residual

stress.

2.5.2 Inverse Approach in Nanoindentation

The very first instance of applying inverse method for an indentation-based study was

probably by Knapp et al., where they studied the elastic–plastic behavior of Al under

nanoindentation [75]. Their study showed that it was possible to extract modulus,

yield strength, and hardening coefficient from the nanoindentation data of thin films

using FEA based inverse analysis independent of the effect of substrate. Later, Hu-

ber et al. employed Artificial Neural Network (ANN)-based inverse analysis to extract

material parameters from an indentation experiment of metals [76]. From that point

onwards, inverse FEA-based analysis has been used to extract material properties for

different classes of materials, such as, isotropic and anisotropic elastic–plastic ma-

terials [77–80], linear viscoelastic materials [81–84], hyper-elastic materials [85–88],

nonlinear viscoelastic materials [89, 90], etc.

After being introduced by Knapp et al., inverse FEA technique has been reported

in numerous publications dealing with material property extraction for elasto-plastic

materials. On the contrary, the number of studies that tackled viscoelastic nanoin-

dentation using inverse analysis is found to be very low. The probable reasons could

include the lack of understanding about the viscoelastic constitutive relationships, the

high number of model parameters needing to be optimized, etc. While elasto-plastic

behavior in materials has been studied for a long time, viscoelasticity is being studied

only recently fueled by the recent interests in understanding polymers and biomate-

rials. As we are interested in the viscoelastic materials, this part of the literature will
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only review the related studies in the area of viscoelasticity.

Ovaert et al. studied on viscoelastic properties of thin polymer coatings using

three- and four-parameter viscoelastic models using indentation and inverse analy-

sis [61]. Kim and Srinivasan et al. extracted Fung’s QLV model parameters for soft

tissues using two step parameter optimization process [91]. Hartmann et al. used

uniaxial test data for viscoplastic parameter identification and validated those using

indentation test data [92]. Samur et al. studied the viscoelastic behavior of pig liver

tissues using inverse analysis [93]. Resapu et al. extracted Prony series parameters

for the relaxation behavior of PVC and PE in indentation tests [94]. Guessasma et

al. determined viscoelastic properties of biopolymer composite materials [81]. Liu

et al. characterized viscoelastic behavior of soft gels using Kelvin–Voigt model [82].

Rauchs identified viscous hyper-elastic and elasto-viscoplastic material parameters

from indentation tests [88, 95]. Abyaneh et al. characterized porcine cornia using

linear viscoelastic model [84]. Viscoelastic Arruda–Boyce constitutive model has also

been studied with AFM indentation and inverse FE analysis for porcine zone pellu-

cida [96]. Rayleigh dissipative function has been used by Abetkovskaia et al. to de-

velop AFM based viscoelastic characterization of soft materials [97]. Valdez-Jasso et

al. used inverse analysis to characterize viscoelastic behaviors of ovine aorta, where

the viscoelastic behavior was modeled using arctangent and sigmoid viscoelastic mod-

els [83]. Recently, Kucuk et al. used nonlinear Burgers model to characterize the

nonlinear viscoelastic behavior of PMMA and PVAc [89, 90].

Inverse analysis of nanoindentation data is challenging due to various reasons. One

of this big challenge is to find out unique solution. In case of non-unique solutions, two

approaches were found to be effective. In the first approach, additional information

from the nanoindentation experiment is gathered, and used in the objective function.

These information can include imprint geometry [77, 98, 99] or pile-up/sink-in [80]

information. The other approach is to use multiple indenters with different geometry.
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This method has also been found to beneficial in providing unique solutions from the

inverse analysis [28, 78, 100].

2.6 Motivation and Objective of the Study

Nanoindentation has the potential to become a very effective material characterization

tool given that appropriate analysis technique with proper constitutive relationship

is used. In the last two or three decades this technique has come a long way in terms

of applicability for metallic or ceramic material characterization.

However, suitable analysis technique for materials such as polymer or soft tissues

is still lacking. Table 2.1 summarizes the results found from various studies that used

nanoindentation technique for characterizing soft tissues. It can be seen that, for

almost all the studied tissues the value of Young’s modulus varied by few orders of

magnitude. Part of the variability comes from the difference in experimental design

and sample preparation, while most of it stemmed from the fact that these materials

exhibited time–dependent deformation behavior [1]. If consistent strain rate were

to be used in the experiment a more consistent Young’s modulus could probably be

found.

Even if we consider that the Young’s modulus could be extracted reliably inde-

pendent of viscoelastic influence, it would only serve as a partial knowledge about

the material system. Young’s modulus only quantifies the intrinsic elastic behavior

of a material, which limits its usefulness only to metals or crystalline solids.

In the attempts to understand or characterize the time–dependent properties in-

herent to soft polymers and biomaterials, most researchers simplified the behavior of

these materials as linear viscoelastic. In fact most of the studies that used nanoinden-

tation to characterize viscoelastic materials used linear viscoelastic theory developed

through ‘Correspondence Principal’. In addition to the fact that material behavior is

simplified as linear viscoelastic, correspondence principal based analytical solutions
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Table 2.1: Young’s modulus of soft tissues, measured by indentation [1]

Tissue Range

(kPa)

Average

Young’s

modulus

(kPa)

Reference

Liver and Kidney 0.6-760 190 [101–103]

Artery and Vein 6.5-560 125 [104–106]

Skin 6-222 85 [101, 107, 108]

Cornea anterior base 7.5-50 29 [109]

Breast tissue 0.167-29 8 [6, 7, 110]

Muscle 2-12 7 [106, 111]

Spinal cord and gray matter 0.2-7 3 [112, 113]

has further limitations i.e. useful only till contact area increases monotonically (load-

ing portion of the nanoindentation plot). As a result, this method fails to address

how viscous behavior affects the unloading curve of the nanoindentation experiment,

although substantial amount of information about the material behavior is present in

the unloading portion of the curve.

To best of our knowledge, no analytical or closed-form solutions (in either differ-

ential or integral form) exist for indentation of quasi-linear or nonlinear viscoelastic

material. However, soft tissues and polymers are generally nonlinearly viscoelas-

tic [56, 114], where the creep compliance or relaxation modulus are a nonlinear func-

tion of both time and applied stress or strain. In these cases, an appropriate consti-

tutive law should be used to describe the distinct behaviors of these materials [115].

Due to the fact that, no closed form solution can be obtained for nonlinear viscoelastic

behavior, many researchers tried modeling the behavior of the material using Fung’s
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Quasilinear Viscoelastic (QLV) model [114]. Fung’s model however considers the ma-

terial to be nonlinear only with respect to strain [116], and fails to represent the full

spectrum of nonlinearity of the material.

The closest work that tackled nonlinear viscoelastic behavior of the material was

by Kucuk et al. [89, 90]. In these studies, a nonlinear viscoelastic model based on

modified Burgers model was used. The unknown model parameters were then ob-

tained using inverse analysis. However, the authors did not provided any information

about the inverse analysis procedure that was followed. Without such key information

obtaining the values of the model parameter for other material system is difficult. In

addition to that, their study utilized quite a high number of parameters in the nonlin-

ear model without providing any information about whether all the parameters were

required to capture the behavior or not.

To understand the full spectrum of mechanical behavior in soft biomaterials and

polymers, an study is thus required which would improve on the limitations of pre-

vious studies. Because without understanding the mechanical behavior, it would be

impossible to predict the behavior of these materials under complex loading scenarios.
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Figure 2.12. Stress σ versus strain ϵ at
constant time (isochronals) for linear
and nonlinear materials. In linear ma-
terials (a), the isochronals are straight
lines, and in nonlinear materials (b), the
isochronals are curved.

path for loading. Isochronals, or data at constant time, taken from creep curves, all
coincide in an elastic material, whether it be linear or nonlinear.

Consider an elastoplastic material. At sufficiently small strain the material be-
haves elastically, so there is no time-dependent creep or relaxation behavior, and
the material recovers fully and instantaneously. If the yield point is exceeded, there
is still no time dependent creep or relaxation behavior because time is not included
in elastoplasticity. However, recovery is incomplete: there is some residual strain
and the path for unloading differs from the path for loading. The residual strain is
constant in time.

Nonlinear viscoelasticity gives rise to curved isochronals in the stress–strain di-
agram in Figure 2.12. Several constitutive equations are available for the modeling
of nonlinear viscoelasticity. The simplest of these are restricted to describing creep.
A simple equation that is commonly used is the Bailey–Norton relation intended to
model primary and secondary creep:

ϵ(t, σ ) = Aσmtn. (2.100)

Creep formulations of this type do not account for recovery or history effects.

Nonlinear Superposition and QLV

The following simple, nonlinear relation allows for prediction of history depen-
dence. This single-integral form is called nonlinear superposition, which allows the
relaxation function to depend on strain level:

σ (t) =
∫ t

0
E(t − τ, ϵ(τ ))

dϵ

dτ
dτ. (2.101)

A similar equation may be written for stress-dependent creep in the compliance
formulation.

ϵ(t) =
∫ t

0
J (t − τ, σ (τ ))

dσ

dτ
dτ. (2.102)

If a series of relaxation tests is done at different strain levels, relaxation will be
observed, but the functional form of the relaxation curves will depend on the strain
level. It is also possible to consider a separable kernel, such as E(t, ϵ) = E(t) f (ϵ), in
which the kernel is a product of a time-dependent part E(t) and a strain-dependent
part f (ϵ). This is called quasilinear viscoelasticity (QLV), originally proposed by

Figure 2.8: Viscoelasticity a) linear and b) nonlinear

In order to develop a nonlinear viscoelastic model for soft materials, we propose

to implement finite element analysis with inverse analysis. The process is called the

inverse analysis because it is the opposite of an ordinary simulation (i.e. solving for
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forces or displacements given material parameters and boundary conditions). The

inverse method permit us to treat any material models with nonlinear properties

and to include further affecting factors in the numerical model. The rate-dependent

properties of materials can be more accurately identified using the inverse method.

The whole process of developing nonlinear viscoelastic model can be subdivided in

few steps. In the first step, a finite element model of the nanoindentation experiment

is required which can effectively simulate the experiment. For this work, we have

chosen commercially available finite element analysis software–ABAQUS. Confidence

was established on the ABAQUS representation of the nanoindentation experiment

by comparing the simulation results with the well established analytical solution from

contact theory.

In the next step, an appropriate spring–dashpot system for describing these kind

of materials needs to be developed. The associated mathematical model for the

spring–dashpot system has to be incorporated in the ABAQUS simulation of the

nanoindentation experiment via user-defined subroutine called UMAT.

In the final step, an optimization based algorithm needs to be established, which

will be able to minimize the difference between the simulated and experimentally

found load–displacement data. This study will use both the loading and unloading

portion of the nanoindentation experiment in the model development process; because

unloading curve would provide additional constraints which a successful model must

satisfy. In addition, this will provide additional validation of the viscoelastic model

parameters extracted from nanoindentation data.

One of the main issue in inverse analysis based model development is the high

computation cost associated with the optimization process. In case of a nonlinear

model, the number of model parameters that needs to be optimized is usually high.

In addition to that, nonlinear FEA analysis requires considerably higher computa-

tional cost due to the continuous updating procedure of global stiffness matrix. This
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updating process is a serious drawback for FEA-based realtime optimization applica-

tions [12]. That is why, improving the computational efficiency in the inverse analysis

process is another important objective of this study.
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CHAPTER 3

DEVELOPMENT OF THE TECHNIQUE

3.1 Nonlinear Viscoelastic Mathematical Model

There are a few nonlinear viscoelastic models in the literature but to date it appears

that none of these models can describe the nonlinearly viscoelastic behavior of a

polymer under all loading and environmental conditions [117]. Under a given set of

loading conditions, however, an appropriate nonlinearly constitutive model can be

used to model the viscoelastic response.

In this study, a spring–dashpot model suggested by Marin and Pao [118] was used.

In linear case this model is generally called four-parameter Burgers model [119] and

it is formed by a serial connection of a Maxwell element to a Voigt element as seen

in Fig. 3.1. For an increased relaxation spectrum, the viscoelastic response can be

modeled by increasing the number of Voigt elements.

The nonlinear characteristic is introduced when the dashpot constants (ms and

mt) take values other than unity. In the three-dimensional model, the total strains

are calculated as the summation of the elastic (εe), transient creep (εt), and steady

creep strains (εs) [120]. In this study, the nonlinear creep deformation is assumed

to be incompressible. Under these assumptions, the three-dimensional nonlinearly

viscoelastic law can be expressed as:

εeij =
1 + ν

E
σij −

ν

E
σkkδij (3.1)
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Figure 3.1: Schematic of nonlinear Burger’s model

ε̇sij = CsJ
ms
2 (t)sij(t) (3.2)

ε̇tij +
εtij
tε

=
Ct
tε
Jmt2 (t)sij(t) (3.3)

where E, ν are the Young’s modulus and Poisson ratio, respectively; J2 is the second

invariant of the deviator stress tensor s; Cs, Ct, ms, mt, tε are the nonlinear material

parameters. σ is the Cauchy stress tensor; i, j are the indices ranging among 1, 2

and 3. δij is the Kronecker delta which used in the context of summation convention

with the well-known property δij = 1 when i = j and δij = 0. Small deformations are

assumed in the formulation. When more than one Voigt element is included in the

model, the total strain components can be given as the sum of elastic, steady creep,

and transient creep components for all Voigt elements,
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εij = εeij + εsij + εtij = εeij + εsij +
n∑
i=1

εtiij (3.4)

where n is the number of Voigt elements shown in Fig. Equations 3.2 and 3.3 can

also be written in integral form:

εsij = Cs

∫ t

0

Jms2 (t′)sij(t
′)dt′ (3.5)

εtij =
Ct
tε
e(−t/tε)

∫ t

0

Jmt2 (t′)sij(t
′)e(−t′/tε)dt′ (3.6)

ABAQUS/Standard finite element code is used as the implementation platform.

Although ABAQUS has a rich material library for various applications, a nonlinearly

viscoelastic model suitable for this work was not available. In this study, a UMAT

was developed in order to implement the nonlinear Burgers model. UMAT requires

the tangent stiffness matrix of the material model for finite element calculations.

For implementation of the nonlinear Burgers viscoelastic model, the UMAT involves

mainly temporal discretization. This was done following the procedure implemented

by Kucuk et al. [89, 90].

A simple, stable integration operator for these equations is the central difference

operator:

ḟt+ 1
2

∆t =
∆f

∆t
, ft+ 1

2
∆t = ft +

∆f

2
(3.7)

where f is a function, ft is its value at the beginning of the increment, ∆f is the

change in the function over the increment, and ∆t is the time increment.

Tangent stiffness matrix δ∆σ/δ∆ε of the constitutive model, with ∆σ being the

stress increments and ∆ε the strain increments, can be derived by applying central

difference operator to the rate-dependent constitutive equations (Eq. 3.1–3.3).

Applying the central difference method to the elastic strain component as depicted
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in Eq. 3.1, yields

εeij +
1

2
∆εeij =

1 + ν

E

(
σij +

1

2
∆σij

)
− ν

E

(
σkk +

1

2
∆σkk

)
δij (3.8)

If the elastic Hooke’s law is defined by Eq. 3.9, the elastic compliance matrix, C

is defined by Eq. 3.10. 

εxx

εyy

εzz

εyz

εzx

εxy


= C



σxx

σyy

σzz

σyz

σzx

σxy


(3.9)

C =
δ∆εeij
δ∆εkk

=



1/E −ν/E −ν/E 0 0 0

1/E −ν/E 0 0 0

1/E 0 0 0

1+ν
E

0 0

1+ν
E

0

1+ν
E


symmetric

(3.10)

Similar procedure as applied to Eq. 3.2 for steady creep component gives

∆εsij
∆t

= CsJ
ms
2

(
t+

∆t

2

)(
sij(t) +

1

2
∆sij

)
(3.11)

Assuming J2(t) ≈ J2(t+ 1
2
∆t), we have

∆εs = ∆tCsJ
ms
2 (t)sij(t) +

1

2
∆tCsJ

ms
2 (t)∆sij (3.12)

δ∆εsij
δ∆σij

=
1

2
∆tCsJ

ms
2 (t) (3.13)

Since sij = σij − 1
3
σkkδij, we have

δ∆εsij
δ∆σij

=
δ∆εsij
δ∆sij

δ∆ssij
δ∆σij

=


1
3
∆tCsJ

ms
2 (t), if i = j,

1
2
∆tCsJ

ms
2 (t), if i 6= j.

(3.14)
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The compliance matrix of steady creep then can be written as

C = ∆tCsJ
ms
2 (t)



1/3 0 0 0 0 0

1/3 0 0 0 0

1/3 0 0 0

1/2 0 0

1/2 0

1/2


symmetric

(3.15)

Finally for the transient creep component as defined in Eq. 3.3, we have

∆εtij
∆t

+
1

tε

(
εij +

1

2
∆εij

)
=
Ct
tε
J
mt
2

(
t+

∆t

2

)(
sij(t) +

1

2
∆sij

)
(3.16)

∆εt =
1

2tε + ∆t
(2∆tCtJ

mt
2 (t)sij(t)− 2∆tεt + ∆tCtJ

mt
2 (t)∆sij) (3.17)

δ∆εtij
δ∆σij

=
∆t

2tε + ∆t
CtJ

mt
2 (t) (3.18)

The compliance matrix of transient creep can then be written as

C =
∆t

2tε + ∆t
CtJ

mt
2 (t)



2/3 0 0 0 0 0

2/3 0 0 0 0

2/3 0 0 0

1 0 0

1 0

1


symmetric

(3.19)

From Eq. 3.4, the total compliance is now

δ∆εij
δ∆σkl

=
δ∆εeij
δ∆σkl

+
δ∆εsij
δ∆σkl

+
δ∆εtij
δ∆σkl

(3.20)

By investigating the total compliance matrix, system tangent stiffness matrix

(Jacobian matrix) δ∆σij/δ∆εkl can be obtained from Eq. 3.20. It should be noted that
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the Jacobian matrix in Eq. 3.20 accounts only for the elastic deformation and creep

deformation caused by load or stress increment. It is seen from Eq. 3.12 and 3.17 that

the aforementioned creep strain is just a small part of the total steady and transient

creep strain. The rest of the creep strain is developed over the time period during the

time increment and controlled by the applied stress. An artificial stress increment

is introduced to include this creep strain in the system equation. This part of creep

strain can be extracted from Eq. 3.12 and 3.17 as

∆ε′ = ∆tCtJ
mt
2 (t)sij(t) +

1

2tε + ∆t
(2∆tCtJ

mt
2 (t)sij(t)− 2∆tεt) (3.21)

A stress increment ∆σ′ = C∆ε′ is then added into the system equation to account

for the creep strain in Eq. 3.21, with C being the Jacobian stiffness matrix calculated

from Eq. 3.20.

3.2 Finite Element Modeling

The 3D finite element model of nanoindentation experiment was constructed using

commercial finite element package ABAQUS (Dassault Systémes, Providence, RI).

The indenter in a nanoindentation experiment is made with diamond and possess

very high Young’s modulus. So, it is possible to model the indenter as analytical

rigid body. Finite element solver does not require calculating stress and strains in an

analytical rigid body, hence reduces the computational time.

Berkovich indenter can also be modeled as a 2D axisymmetric conical indenter

with an effective cone angle [23]. The effective cone angle is calculated in a manner so

that it provides the same area to depth relationship as the actual Berkovich indenter.

The benefit of using a 2D model is that it requires less computation time compared

to a 3D model. Nonetheless, a 3D model was implemented in this study to achieve

higher accuracy in simulating the nanoindentation experiment.

Even after adopting few simplifications, modeling nanoindentation experiment is
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still very challenging due to the several nonlinearities associated with the experiment

(boundary, geometrical and material nonlinearity). Studies showed that, in case of

modeling complex geometries, it is beneficial to model rigid elements as discrete rigid

body rather than analytical rigid body. So, the Berkovich indenter was modeled as

discrete rigid body, while the sample was modeled as deformable body.

To ensure accuracy of the simulation results, the sample was modeled with finer

mesh near the contact area where the stress and strain generated was much higher

due to the singularity dominated zone. The contact between the indenter and the

sample was defined as surface-to-surface contact, where the indenter was designated as

master surface and the sample was as designated as slave surface. The element types

for the sample was chosen from the eight-node brick element family (C3D8). Material

behavior of the sample was defined in the model using a subroutine called (UMAT).

The mathematical development of a nonlinear viscoelastic constitutive relationship

was required to code the UMAT, which development was covered in the previous

section.

3.3 Inverse Analysis

In order to facilitate the identification of global solution in the parameter space, our

study implemented surrogate modeling approach. Surrogate models, also known as

metamodels are particularly useful in case of finite element based inverse analysis.

Figure 3.2 shows the typical workflow of an inverse analysis for nanoindentation

based model parameter extraction. Due to the fact that in every iteration of the

inverse analysis one finite element analysis is required, the high computational cost

involving the inverse analysis becomes the limiting factor in determining the correct

solution. If finite element analysis can be replaced with a surrogate model, which is

a numerical approximation of the input–output relationship, the total computational

cost can be dramatically reduced. In a nutshell, use of surrogate model can effectively
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reduce the computational cost while still keeping the fidelity of the solution adequately

high.

Figure 3.2: Typical inverse method flowchart

In this study, surrogate model is built by utilizing two numerical techniques named

as Proper Orthogonal Decomposition (POD) and Radial Basis Function (RBF).

Proper Orthogonal Decomposition (POD), also known as Principal Component Anal-

ysis (PCA) technique can be used with either experimental or simulated field data

to derive a reduced-order set of basis functions capable of being used in a numeri-

cal representation of the system [121]. POD reduced-order approximation has been

shown to provide accurate numerical representations for complex systems with min-

imal computational cost [122–124]. In addition, POD has been applied to several

inverse problem methodologies, such as optimal control [125–128], and nondestruc-

tive testing and system identification [129–133]. However, work has yet to be shown

(to our knowledge) for using POD reduced-order modeling for inverse viscoelastic

material characterization from quasi-static indentation testing.

As a means of correlating unclear data using only spatial lines and planes, the

concept of proper orthogonal decomposition (POD) was first developed over a cen-
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tury ago as a statistical tool by Pearson [134]. Since then POD has been redeveloped

under various names and has been used in numerous different applications from signal

processing and control theory, human face recognition, data compression, parameter

estimation and many others [135]. POD is also known as Karhunen–Loeve Decompo-

sition (KLD), Principal Component Analysis (PCA) or Singular Value Decomposition

(SVD) [135–137]. In the recent past, POD has been increasingly used in many engi-

neering applications ranging from computational fluid dynamics (CFD) to modeling

of heat transfer problems due to its ability to reduce computational burden while

maintaining adequately high accuracy.

For simple understanding of the POD technique, one should imagine a collection

of vectors inside a Cartesian coordinate system. If these vectors are parallel to one an-

other it could be assumed that these are correlated. On the other hand, uncorrelated

would mean that these vectors are orthogonal (or perpendicular) to one another.

POD’s major objective is to rotate the coordinate system in such a manner so that

the least amount of coordinates can be used to define the system. As an example, we

know that a vector in cartesian coordinate system requires two projections (x- and y-

axis projection) to be effectively defined. However, if the coordinate system is rotated

only one projection can define the same vector. In case of complicated data sets, the

number of rotated coordinates would be higher for effective representation of the

data. In such cases, POD captures the maximum projection of the vectors in the first

rotated coordinate, which is commonly referred to as the first principal component.

The second axis in the POD frame, called the second principal component, captures

the next orthogonal direction with the largest projection and so on.

POD is completely data dependent and does not assume any prior knowledge of

the process that generates the data. This property is advantageous in situations where

a priori knowledge of the underlying process is insufficient. POD does not neglect the

nonlinearities of the original vector field. If the original system is nonlinear, then the
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resulting POD reduced order model will also be nonlinear.

3.3.1 Proper Orthogonal Decomposition (POD) Theory

If a function U(x) is needed to be approximated over some domain of interest, it

can be written as the following equation through a linear combination of few basis

functions ϕi(x).

U(x) ≈
M∑
i=1

ai.ϕi(x) (3.22)

Here ai represents the unknown coefficients. Once basis functions are known, the

coefficient values are obtained in a least square means.

min

∣∣∣∣∣
∣∣∣∣∣U(x)−

M∑
i=1

ai.ϕi(x)

∣∣∣∣∣
∣∣∣∣∣
L2

(3.23)

For any function U(x), number of choices can be made regarding the selection of

basis function. Based on one’s expertise and prior knowledge about the system being

represented, one can often opt for a basis constructed from polynomial, trigonomet-

ric, or exponential functions. Proper Orthogonal Decomposition (POD) is one such

technique that can be used to construct the optimal basis for a function under inves-

tigation in a least square sense.

The derivation of POD presented in subsequent paragraphs refers to arbitrary

case of vectors with dimensionality N>2. The notations presented in this section is

congruent with Buljak [138].

POD starts with the idea of snapshots. Snapshots can be defined as an one-to-

one relationship between the input and output of a system. In a typical scenario

of an inverse finite element nanoindentation simulation, snapshots are the relation

of material model parameters and output load–displacement data. In more concrete

definition, a snapshot will be a collection of N discrete values of a certain state

variable resulting from a simulation (which represents a system) collected in vector ui,

corresponding to some input parameters (collected in vector pi) on which the solution
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depends. A system can also be represented by an experiment, where snapshot will

store the measurements taken from an experiment.

Figure 3.3: Input output relationship in a typical system

Further, a set of M different snapshots, corresponding to different input parame-

ters, can be collected in a rectangular N×M matrix U, called the snapshot matrix.

U =



u1
1 u2

1 · · · uM1

u1
2 u2

2 · · · uM2
...

...
. . .

...

u1
N u2

N · · · uMN


Therefore, a snapshot matrix represents a collection of responses of one system,

under given conditions, corresponding to different values of parameters on which

the solution depends. This snapshot matrix can be interpreted as a set of M, N -

dimensional vectors. Each vector corresponds to one parameter combination. In the

context of inverse finite element analysis for model parameter extraction, it can be

said that the inputs to the system that are changing from one snapshot to another are

some parameters entering into the constitutive model of material, while the boundary

conditions and initial conditions are the same for all of the snapshots. So, ui contains

N number of individual displacement data for N number of corresponding load incre-

ments, while the whole snapshot matrix, U contains M number of individual finite

element simulations.

It is reasonable to expect that there will be a strong correlation between these

snapshot vectors since they represent the outputs of the same system where just some
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material model parameters are changed. The POD theory can be effectively applied

on the snapshot matrix, allowing to construct a new basis in which the dimensionality

can be drastically cut-down to K � N. POD finds the most accurate representation

in some subspace W with the dimension of K�N. If we denote ϕ1, ϕ2,. . . , ϕK as

the orthonormal basis of the subspace W, then each vector from the original set can

be written as

ui ≈
K∑
j=1

āij.ϕj, i = 1, . . . , N (3.24)

where āij are amplitudes corresponding to ith vector in new subspace W, and Φ̄ is

matrix that collects all the orthonormal basis of the subspace ϕj. In a least square

sense the error of approximation then becomes

error =

∣∣∣∣∣
∣∣∣∣∣ui −

K∑
j=1

āij.ϕ
i(x)

∣∣∣∣∣
∣∣∣∣∣
L2

(3.25)

Eq. 3.25 provides the error for only the ith vector. For all the vectors in the snapshot,

total error is expressed by the Eq. 3.26:

E =
N∑
i=1

∣∣∣∣∣
∣∣∣∣∣ui −

K∑
j=1

āij.ϕ
i(x)

∣∣∣∣∣
∣∣∣∣∣
L2

=
N∑
i=1

||ui||2− 2
N∑
i=1

K∑
j=1

aiju
T
i ϕj +

N∑
i=1

K∑
j=1

a2
ij (3.26)

The orthonormal basis has to be chosen in such a manner so that total error

is minimized. To do that, first order derivate of total error with respect to all the

unknowns (namely āij) are needed. Taking partial derivative of total error:

δE

δalm
= −2uTl ϕm + 2alm (3.27)

alm = uTl ϕm (3.28)

By substitution of alm in Eq. 3.26:

E =
N∑
i=1

||ui||2 − 2
N∑
i=1

K∑
j=1

(uTi ϕj)u
T
i ϕj +

N∑
i=1

K∑
j=1

(uTi ϕj)
2

(3.29)

Few more mathematical manipulation provides:

E =
N∑
i=1

||ui||2 −
N∑
i=1

K∑
j=1

(uTi ϕj)
2

=
N∑
i=1

||ui||2 −
K∑
j=1

ϕTj Cϕj (3.30)
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where C is called the covariance matrix defined as C = UUT . The first part of

Eq. 3.30 is a scalar constant which depends on the original set of snapshots. So, in

order to reduce the error of approximation one has to maximize
∑K

j=1ϕ
T
j Cϕj under

the constraint of orthonormality of the new basis ϕTj ϕj = 1, j = 1, . . . , K. By using

Lagrange multipliers method the constrained problem can be converted into

max
K∑
j=1

ϕTj Cϕj −
K∑
j=1

λj(ϕ
T
j Cϕj − 1) (3.31)

In order to maximize Eq. 3.31 first order derivatives with respect to ϕj is required.

By doing that we find

d

dϕj

K∑
j=1

ϕTj Cϕj −
K∑
j=1

λj(ϕ
T
j Cϕj − 1) = 2Cϕj − 2λjϕj = 0 (3.32)

Eq. 3.32 is only satisfied if ϕj is eigenvector and λj is the corresponding eigenvalue

of matrix C. Now from taking Eq. 3.32 and Eq. 3.30 into consideration the total error

equation can be changed to

E =
N∑
i=1

||ui||2 −
K∑
j=1

λj (3.33)

Recalling that the first term is a constant it results that the error of approximation

is minimized if the new basis is constructed of K eigenvectors that are corresponding

to the first K largest eigenvalues of covariance matrix C

Φ̄ = [ϕj], j = 1, . . . , K (3.34)

If the subspace W is constructed with all the eigenvectors of matrix C, there is

no error of approximation because in that case all the vectors ui are just expressed in

a different coordinate basis. Approximation in any other subspace that uses smaller

number of eigenvectors the error of approximation is found using the following equa-

tion

E = 1−
∑K

i=1 λi∑M
i=1 λi

(3.35)

40



which is the ratio between the summation of kept eigenvalues and summation of all

the eigenvalues.

In this study, POD is used to determine the displacement of the indenter tip inside

the material, by finding the correction from results of FE simulations of the nanoin-

dentation experiment with different material model parameter sets. This process is

called the method of snapshots [138]. The snapshot matrix, U then consists of the

resulting indenter displacement that are expected to be somewhat correlated.

3.3.2 Radial Basis Function Theory

Radial Basis Functions (RBF) are very effective in providing an output approximation

of a multivariable function for an unknown input point in the parameter space through

interpolation of information from the known points [139]. In this section a very brief

description of RBF is provided. The procedure through which RBFs can be combined

with the information from POD to solve the inverse problem is also be discussed in

the following paragraphs.

As mentioned earlier RBF is a very effective interpolation technique. To illustrate

the idea of RBF, let us assume a function f (x) for which we only know N number

of input–output relations. Let us also assume, x is a point in the parameter space

for which we want to approximate the function’s value, where x is a M -dimensional

vector. Classical interpolation methods use only the information around the point x

to provide the approximation. The biggest difference that RBF provides in a similar

scenario is that it uses all the N number of input–output relationship to build one

continuous function over the whole domain. Therefore, the actual function f (x) is

approximated as a linear combination of some function gi

f(x) =
N∑
i=1

βi.gi(x) (3.36)

where βi are coefficients of this combination. This equation is complete when the

basis functions gi and the coefficients βi are known. Various Radial Basis Functions
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can be chosen as basis function gi. Most notable few are given below—

Linear splines, ||x− xj|| (3.37)

Cubic splines, ||x− xj||3 (3.38)

Gaussian, exp

(
−||x− xj||

c2
j

)
(3.39)

Multiquadratic,

√
1 +
||x− xj||2

c2
j

(3.40)

Inverse Multiquadratic,
1√

||x− xj||2 + c2
j

(3.41)

For an unknown point x in parameter space, the linear spline RBF will provide

the basis gi using the following manner

gi(x) = g||x− xi||, i = 1, 2, . . . , N (3.42)

For determining the coefficients βi, known N values of the function in the xi nodes

are used in such a manner so that the RBFs approximate exact values of the function

at the known points. This is solved using the following equation

f(xj) = yj =
N∑
i=1

βi.gi(xj), j = 1, 2, . . . , N (3.43)

where yj are the known values of the function. In compact manner Eq. 3.43 can be

written as

β.G = Y (3.44)

where

G =



g1(x1) g2(x1) · · · gN(x1)

g1(x2) g2(x2) · · · gN(x2)

...
...

. . .
...

g1(xN) g2(xN) · · · gN(xN)
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β = [β1, β2, · · · , βN ]T

Y = [y1, y2, · · · , yN ]T

Eq. 3.44 can be solved for unknown interpolation coefficients βi, which can then

be used to obtain approximated values of the function in any given points in the

parameter space. For a particular sampling set N, βi is only need to be determined

once. In matrix notation Eq. 3.44 can be written as

B.G = Y (3.45)

As RBF takes into account the whole set of input–output relationship of a system, it

can provide much more informed approximation compared to the classical local inter-

polation schemes. Another important advantage of using RBF is that the sampling

of N in the parameter space need not to follow any particular distribution (in other

words, can be scattered). However, particular distribution of sampling points help to

keep the error of approximation under control.

3.3.3 Combining POD–RBF for Approximation

The ability of POD is to create a reduced order model by truncating orthogonal basis

or dimensions. In a manner, POD works as a data compression tool where the loss

of data is negligible. On the other hand, RBF provides the ability to approximate a

function with high fidelity in between the known values in a multivariable parameter

space. If both techniques are combined we can get a tool that can essentially provide

high quality output approximation without incurring the huge computational cost

associated with finite element analysis during an inverse analysis.

In context of nanoindentation study, let us assume vector p collects the material

model parameters and u collects the output of the simulation (load or displacement

data). Our goal is to find a function such that f (p) = u. This function needs to

approximate the output of the simulation over some domain in parameter space.
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Following the theory related to POD, a reduced dimension model of snapshot matrix,

U can be developed where Ā represents the reduced order of amplitudes. In reduced

dimension, the aforementioned equation can be written as

fa(p) = ā (3.46)

where, the relation between the reduced model and full model is given by the following

equation

f(p) = Φ̄.fa(p) = u (3.47)

If RBF is applied Eq. 3.46 can be expressed in following manner

fa(p) = B.g(p) (3.48)

Once the basis function is known, interpolation coefficients collected in matrix B

is solved in the reduced space using the following equation

B.G = Ā (3.49)

Then the final equation that will provide the approximation of the system response

for any arbitrary set of parameter in the subspace is given by

u ≈ Φ̄.B.g(p) (3.50)

Eq. 3.50 involves simple matrix multiplication, and thus can provide much faster

turnaround time when compared to finite element simulation. This is particularly

useful for inverse analysis where a large part of computational effort is directed to-

wards running simulation inside the optimization loop. It is also a simple approach,

where the training of the POD–RBF (obtaining the matrices Φ̄ and B) is done only

once. Moreover, once trained this technique can provide high enough computation

accuracy, which can even be improved with a larger sampling points.
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3.4 Taguchi Design of Experiments for Sensitivity Analysis

In any process where the output is influenced by multiple number of parameters, there

is a need for the information that how individual parameters affect the overall output.

In other words, it is useful to know the sensitivity of an output to an input parameter

change. This need gave rise to an independent area of research inside statistics called

Design of Experiments (DOE).

Traditionally, researchers used to carry out experiments where only one of the

parameter was changed within a certain range while keeping the other parameters

constant. Then the same process was to be replicated for the other parameters. This

method is called full factorial experimental design, where the number of experiments

required to perform the sensitivity analysis is astronomical. On the contrary, Taguchi

applied the concept of orthogonal arrays, where all factors are changed simultaneously.

For an experiment involving three parameters changing in four levels, the number of

experiments required by Taguchi method is only 16, while full factorial design requires

64 independent experiments.

To perform a systematic sensitivity analysis first an experimental design is re-

quired. It is done by choosing an orthogonal array depending on the degrees of

freedom (Eq. 3.51):

df exp =
∑

df factor +
∑

df interaction (3.51)

If kA is the number of levels for factor A, then dfA = kA – 1. The experiments

are conducted based on the chosen orthogonal array. By employing suitable analysis

technique, such as Analysis of Variance (ANOVA) one can determine the contribution

of individual parameters contribution towards the output. ANOVA is an useful sta-

tistical tool for quantitative determination of influence of any given input parameter

and it can be used to interpret experimental data.
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CHAPTER 4

APPLICATION OF THE PROPOSED TECHNIQUE

The main objective of this study was to use an inverse analysis technique to extract

material model parameters for a nonlinear viscoelastic model from a nanoindentation

experiment. There were three big challenges to this problem —

1. Modeling nanoindentation experiment using finite element analysis

2. Incorporating nonlinear viscoelastic model in the finite element simulation

3. Developing the optimization routine to extract the model parameters

In last chapter modeling of the nanoindentation experiment for a Berkovich tip

using commercial software package ABAQUS was described. To verify that the

ABAQUS model was in fact able to simulate the nanoindentation experiment, a sim-

ple elastic indentation simulation was performed. From the simulation corresponding

load and displacement data were obtained, which was compared against Hertzian an-

alytical solution provided by Sneddon. Figure 4.1 shows the comparison of analytical

and simulated load–displacement data. It can be seen that, although it was not a

perfect match, simulated data closely followed the analytical data. Attaining perfect

match between simulation and analytical data is not very practical as it means go-

ing for very fine meshing in the simulation model thus increasing the computational

expense exponentially.

The second challenge which was to incorporate nonlinear viscoelastic model in

the finite element simulation has also been solved. This required discretizing the

constitutive mathematical model for time step, ∆t. A detailed description of the
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numerical approach that was involved in developing the equations required for finite

element approach has been presented in the previous chapter.

Figure 4.1: Load–displacement behavior of a Berkovich nanoindentation

The third challenge, which was the most critical of the three, has been solved by

combining two separate technique, i.e. Proper Orthogonal Decomposition and Radial

Basis Functions. The nonlinear viscoelastic model of our choice has seven unknown

parameters of interest that needs to be extracted using the POD–RBF technique.

As discussed in the previous chapter, POD–RBF technique needs snapshots of the

system to become trained in approximating the system.

The process of training a surrogate model is often referred as sampling. A simple

way of sampling the parameter space can be the grid system, where the distance

between the sampling points for a parameter is kept constant over the domain of

interest. If every unknown parameter is sampled m times over its domain, for n

number of unknown parameters a total of mn simulations will be required. This
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would be a large number of finite element simulations to handle. Hence, in order to

verify the POD–RBF technique’s ability in solving an inverse problem, first a rather

simple problem where the number of unknown parameters are less were chosen. This

was done in order to investigate the key properties of a POD–RBF based surrogate

model, which could later be utilized to increase the confidence in POD–RBF technique

for the ultimate application i.e. parameter identification of nonlinear Burger’s model.

The performance or the ability of the POD–RBF based surrogate model to pre-

cisely approximate the FE simulation depends on couple of parameters, namely num-

ber of training points used and the choice of RBF. Higher number of training points

relating input parameters to system output improves the quality of surrogate model’s

approximation at the expense of higher number of FE simulations. Although being of-

fline or outside optimization loop, optimizing the number of training points is crucial

since it directly relates to the computational cost of the overall inverse analysis.

There are only handful of articles in the literature that have tackled the inverse

problem of nanoindentation-based material model calibration using POD–RBF based

surrogate models [77, 140–146]. Furthermore, to our best of our knowledge, none

of the previous studies reported if the performance of the surrogate model could

be optimized with respect of number of training points. In addition, the choice of

an RBF, which affects the performance of the surrogate model, has also not been

investigated at depth. Prior studies have typically employed only one kind of RBF

in an ad hoc manner without providing much analysis into comparative benefits of

using different types of RBFs to solve a given problem.

Since a well-trained surrogate model is at the root of solving the nanoindentation-

based inverse problem, this study was designed to facilitate the understanding of

a POD–RBF based surrogate model’s performance with respect to the number of

training points and the choice of an RBF. It was expected that the findings of this

study would provide a general framework for solving nanoindentation-based material

48



modeling inverse problem using POD–RBF technique.

4.1 Case Study

In this study, nanoindentation was conducted on a standard metallic material. The

nanoindentation experiment was then modeled with a finite element analysis software,

where a custom elastic–plastic material behavior was incorporated. A range was

selected for each parameter within which the values of the parameter would be altered.

A Taguchi orthogonal array-based experimental design was formulated by varying

each parameter within the range at four equidistant levels. The analysis of variance

(ANOVA) technique was employed to recognize the influence of the parameters over

the output. The number of levels for the unknown parameters within the specified

range were optimized based on the ANOVA results. Training data were generated

in a full factorial basis by varying each parameter of the custom material model for

the initial and optimized model. A random noise of 1% and 5% was appended to the

training data to investigate the stability of each surrogate model.

4.1.1 Nanoindentation

The nanoindentation experiment was conducted using an MTS Nanoindenter XP

(Agilent Technologies, Santa Clara, CA, USA) using a load-controlled scheme with

a Berkovich tip. The maximum load was set to be 4.9 mN for the experiments. A

triangular loading profile was chosen with a 15 s duration for both the loading and

unloading segments. Before conducting the actual experiments the Berkovich tip was

calibrated using a fused silica reference material. Also, the acceptable thermal drift

rate was chosen to be 0.15 nm/s.

The nanoindentation experiment was conducted on a reference material i.e. single

crystal aluminum. This sample is commonly used to check the performance of a

nanoindenter. The single crystal aluminum sample has Young’s modulus of 70.4 GPa
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and Possion’s ratio of 0.345 as provided by the supplier (Agilent Technologies, Santa

Clara, CA, USA).

4.1.2 Finite Element Simulation

A commercial finite element software (ABAQUS, Dassault Systémes, Providence, RI,

USA) was utilized in this study, both for modeling the nanoindentation experiment

and for solving the finite element problem. The Berkovich tip was modeled as a 3D

discrete rigid body while the sample was modeled as a 3D deformable body. A finer

mesh was provided to the sample near the contact region to ensure good convergence

and also to improve the quality of the finite element solution.

The contact between the indenter and the sample was assumed sliding contact

with a friction coefficient of 0.25 and was defined as surface-to-surface contact. The

indenter and the sample were assigned as the master and the slave surface, respec-

tively. In ABAQUS surface-to-surface contact, master surface nodes can penetrate

the slave surface (i.e. causing deformation to the slave surface), while the slave sur-

face nodes cannot penetrate master surface. In indentation modeling using FE, it is

generally assumed that the indenter is much stiffer than the sample surface; hence,

deformation of the indenter by the sample surface is neglected. The element type was

chosen from the eight-node brick element family (C3D8). The finite element problem

consisted a total of 1323 elements and 1817 nodes. Figure 4.2 shows a schematic

of the FE model generated in ABAQUS and Fig. 4.3 shows the typical ABAQUS

simulation’s stress contour outputs at the end of a Berkovich indentation.

The elastic–plastic material behavior of the sample was incorporated in the FE

software using a UMAT subroutine. The material behavior was chosen as isotropic

elastic–plastic with linear hardening as shown in Fig. 4.2 (a). This model defines both

the elastic and the plastic part of the stress–strain relationship as linear [147, 148].

Only four parameters are required to describe this particular material model, which
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(a) Stress–strain relationship of bilinear plasticity model

(b) Schematic of ABAQUS finite element model for Berkovich indentation

Figure 4.2: ABAQUS finite element modeling details
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(a) Von Mises equivalent stress (b) X-axis stress component, σ11

(c) Y-axis stress component, σ22 (d) Z-axis stress component, σ33

Figure 4.3: Stress contours ABAQUS output after unloading for elastic–plastic

Berkovich indentation simulation

are elastic modulus (E ), Poisson’s ratio (ν), yield strength (σY ), and hardening coef-

ficient (h). For the numerical study, Poission’s ratio was kept constant at the known

value of 0.345. According to prior FE-based studies, Poisson’s ratio does not affect the

FE simulation of indentation experiment as much as the other model parameters [149]

and hence, kept constant in most of the indentation modeling studies [150, 151]. Ta-

ble 4.1 lists the range of values used in this study for the three parameters.

Table 4.1: Range of values for the model parameters

Model parameter Lowest level Highest level

Young’s modulus, E 60 75

Yield strength, σY 0.05 0.20

Hardening coefficient, h 0.4 0.7
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4.1.3 Taguchi Design of Experiments and Sensitivity Analysis

When a system’s output is governed by two or more independent variables, informa-

tion about each variable’s influence over the output may provide deeper insight into

the optimization problem. In other words, it is important to know how the system

output is affected by each given input parameter. By doing so the performance of the

overall optimization routine could be greatly improved since this information could

subsequently be utilized in reducing the computation expense of the meta-model de-

velopment.

In this study, a Taguchi-based design of experiments methodology with ANOVA

was adopted to quantify each input parameters contribution towards the overall out-

put or the error function. Employing Taguchi orthogonal arrays instead of a full

factorial experimental design help in reducing the number of finite element simula-

tions required in assessing the sensitivity of model parameters.

The first step of performing a sensitivity analysis is to define an experimental

design, which involved choosing an appropriate orthogonal array. This was achieved

by first calculating the ‘degrees of freedom’ of the experiment, as

dofexp =
∑

dofi +
∑

dofint (4.1)

where, dofi = ki− 1, ki is designated as the number of levels for the input parameter

i, and dofint are from the interaction between model parameters. In this study four

levels were considered for each of the three input parameters, as listed in Table 4.2.

As a result, the degrees of freedom for each factor equaled 3. No interaction was

considered among the model parameters. Hence, the total number of degrees of

freedom for the experiment was found to be 9. The Taguchi orthogonal array which

can successfully accommodate this number of degrees of freedom is modified L16. The

experimental design for this study according to the modified L16 orthogonal array is

listed in Table 4.3.
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Table 4.2: Levels of material model parameters

Levels Elastic

Modulus,

E (GPa)

Yield

Strength,

σY (GPa)

Hardening

Coefficient,

h

Level 1 60 0.05 0.40

Level 2 65 0.10 0.50

Level 3 70 0.15 0.60

Level 4 75 0.20 0.70

For each of these experiments, finite element simulation yielded results in terms

of indenter displacement as a function of indentation load. The load increments for

the simulation was chosen in such a manner so that it matched with the experimen-

tal loading data. The error function, δ for this study was defined by the following

equation.

δ =

√√√√ 1

n

n∑
i=1

[
(hsimi − hexpi )

hexpi

]2

(4.2)

where, n is the number of data points in the load–displacement plot. By following

the Taguchi orthogonal array experimental design the relationship of three model

parameters with the system output or the error function was formulated, which was

then analyzed using analysis of variance (ANOVA).

4.1.4 POD–RBF Based Surrogate Model

The proper orthogonal decomposition (POD) theory, also known as principal com-

ponent analysis (PCA), was developed to approximate a function over some do-

main of interest based on the known relationships between the input and the out-

put [127, 136, 137]. This study followed the POD–RBF procedure outlined by

Rogers et al. [152].
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Table 4.3: Experimental design based on the modified L16 orthogonal array

Experiment Elastic modulus Yield strength Hardening coefficient

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

5 2 1 2

6 2 2 1

7 2 3 4

8 2 4 3

9 3 1 3

10 3 2 4

11 3 3 1

12 3 4 2

13 4 1 4

14 4 2 3

15 4 3 2

16 4 4 1
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As per POD terminology, the relationship between the input and the output of

a particular system is called a snapshot. In the context of this study, snapshots

or training points were relation of material model parameters and the output tip

displacement data. If M number of simulations were carried out where in each of

them at least one input variable was changed, then the snapshot matrix U was

formulated by combining M number of displacement vectors. Moreover, if the output

of the simulation (displacement vector) had N data points, then snapshot matrix U

can be defined as,

U =



u1
1 u2

1 · · · uM1

u1
2 u2

2 · · · uM2
...

...
. . .

...

u1
N u2

N · · · uMN


(4.3)

Input material model parameters were collected in the input matrix, P . The first

step towards creating a reduced order model using POD was to generate snapshots

of the system for the range of input parameters and subsequently combining all these

appropriately in the U and P matrix. A brief outline of surrogate model training us-

ing POD–RBF technique is provided here without detailed mathematical derivations,

which can be found in the literature [153, 154].

Step 1: Develop the covariance matrix C for the snapshot matrix U , where C =

UT .U .

Step 2: Find the POD orthonormal basis vectors Φj (for j = 1, 2, 3, . . . ,M) which

would optimally represent U . Here, POD basis matrix Φ = U . V , and V

represents the eigenvectors of C. V can be found by solving the eigenvalue

problem noted as C.V = Λ.V .

Step 3: Truncate the POD basis based on the energy of the POD modes and deter-

mine Φ̂. The subsequent POD model would retain majority of the information
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about the system, while reducing the dimension of the problem considerably.

The truncated POD basis, Φ̂ = U . V̂ .

Step 4: Once truncated POD basis matrix is known, the amplitude matrix A can

be computed as, A = Φ̂T .U . A is defined as a nonlinear function of P matrix.

At the time A is known, POD reduced order model of the system is ready, and

data can be interpolated to find out the surrogate approximation for unknown

input parameters.

Step 5: Compute the coefficient matrix B as, B = A.F−1, where, F is the matrix

of interpolation functions or RBFs in the context of this study. F is defined as–

F =



f1(|p1 − p1|) · · · f1(|pj − p1|) · · · f1(|pM − p1|)

f2(|p1 − p2|) · · · f2(|pj − p2|) · · · f2(|pM − p2|)
...

...
...

. . .
...

fi(|p1 − pi|) · · · fi(|pj − pi|) · · · fi(|pM − pi|)
...

...
...

. . .
...

fM(|p1 − pM |) · · · fM(|pj − pM |) · · · f1(|pM − pM |)


(4.4)

where, pi and pj are input parameter vectors used to generate the i-th and j-th

snapshots, respectively.

Step 6: At an unknown point, p in the parameter space, the system output can be

computed using the relationship, u(p) ≈ Φ̂.B.f(p), where f(p) is defined as

f(p) = fi(|p−pi|). f(p) is essentially an M-dimensional column vector of RBF

values of unknown point p with respect to the known input points.

Table 4.4 shows the radial basis functions that were used in this study. It is

important to note that, LS and CS are piece-wise smooth functions, while MQ, GS and

IMQ are continuously smooth functions. The biggest difference between piece-wise

and continuously smooth functions is that the latter creates a continuously smooth
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Table 4.4: Experimental design based on the modified L16 orthogonal array

Radial Basis Functions (RBFs) Equation

Linear splines (LS) ||x− xj||

Cubic splines (CS) ||x− xj||3

Multiquadratic (MQ)
√

1 +
||x−xj ||2

c2j

Gaussian (GS) exp
(
−||x−xj ||

c2j

)
Inverse Multiquadratic (IMQ) 1√

||x−xj ||2+c2j

function through all the known data points while the former is only smooth in between

the data points. Also, the continuously smooth RBFs used in this study utilized a

shape parameter denoted by cj. The primary role of shape parameter is to remove

ill-conditioning during numerical manipulations. In keeping with literature, the value

of the shape parameter cj was kept constant at 0.5 [143].

4.2 Results and Discussions

4.2.1 Sensitivity Analysis

For each of the three unknown parameters (Young’s modulus, yield strength, and

hardening coefficient) initially four levels were selected within the range specified in

Table 4.2. This experimental design required the modified L16 Taguchi orthogonal

array, as listed in Table 4.3. The results of ANOVA for computer experiments that

were conducted following the modified L16 orthogonal array are listed in Table 4.5.

From the P -values of the ANOVA results it was found that the yield strength

parameter significantly affected the output (P-value ≈ 0.00 < 0.05) at 0.05 level of

significance. The other two parameters, Young’s modulus and hardening coefficient,

however, did not had a significant effect. In ANOVA the sum of squares represents the
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Table 4.5: Experimental design based on the modified L16 orthogonal array

Source DF Adj SS Adj MS F-Value P-Value % Contribution

Modulus 3 5272 1757 0.62 0.629 1.70

Yield 3 268843 89614 31.45 0.000 87.14

Hardening 3 17288 5763 2.02 0.212 5.60

Error 6 17094 2849

Total 15 308498

variance contributed by each parameter. Accordingly, the ‘% Contribution’ column in

Table 4.5 shows the percentage contribution of each parameter towards the total sum

of squares. Figure 4.4 shows a visual representation of how the output changes within

the range of each individual parameters, and the % Contribution for each parameters

found from ANOVA. It can be seen that majority of the variance originated from the

yield strength parameter. Meanwhile, the contributions of the other two parameters

were significantly less as compared to the overall variance. Hence, the most influential

input parameter for the bilinear plasticity model was determined to be the yield

strength.

This behavior can be explained in terms of the mechanics of the indentation

process. For a sharp tip indenter, such as the Berkovich tip, plastic deformation

starts dominating the behavior of the nanoindentation response very early in the

loading process. Thus, even a small change in yield strength of the material would

have a significant effect on the nanoindentation behavior, especially under a sharp

tip.
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(a) % Contribution of individual model parameters
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(b) Main effects plot for means of individual model parameter

Figure 4.4: Individual model parameter’s sensitivity towards the output obtained by

ANOVA.
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4.2.2 Effect of Training Points and Choice of RBF

Initially, a total of 4× 4× 4 = 64 finite element (FE) solutions were used to train the

surrogate model. These snapshots or training points had at least one input parameter

different in each of the 64 input set. From the simulation a total of 30 data points

were extracted to represent the load–displacement data. The final snapshot matrix

was then developed with the dimension of 30 row and 64 columns, where each column

represented one single simulation.

POD was then used to reduce the model by identifying the correlation between

the 64 different snapshots. The resultant eigenvalues for the snapshot matrix is given

below.

λ =



5.31× 1008

4.35× 1005

1.21× 1004

5.66× 1003

3.22× 1003

2.12× 1003


It can be seen from the eigenvalues that high degree of correlation existed between

the snapshots. This is a normal behavior since the system, boundary conditions

and the measurements were the same for all the snapshots, while only few model

parameters were changed. Then the dimension of the problem was reduced using the

equation provided in the POD theory (Eq. 3.35). The reduced model was able to

retain 99.91% data variability by keeping only 1 dimension out of 6.

Now, the FE nanoindentation output was not as sensitive to the Young’s modulus

or the hardening coefficient as to the yield strength. Therefore, the number of levels

for the Young’s modulus and hardening coefficient parameters was reduced to three

from the initial number of four. The number of levels for yield strength was kept

constant at four. Table 4.6 shows the optimized levels for the Young’s modulus
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Table 4.6: Experimental design based on the modified L16 orthogonal array

Level Elastic modulus (GPa) Hardening coefficient

1 60.0 0.40

2 67.5 0.55

3 75.0 0.70

and hardening coefficient parameters. By employing the same full factorial design

to generate set of input parameters, a total of 3 × 4 × 3 = 36 different input sets

(snapshots or training points) were now used to train the optimized surrogate model.

After the reduced model is established and its corresponding amplitude matrix

is determined, RBF was used for the interpolation. As mentioned previously, the

choice of RBF is an important step towards developing the inverse technique. In

this study, five different RBFs were used initially to find out the best performing

RBF for approximating nanoindentation response. It was assumed that the error

of approximation would be the maximum between two sampling points. Hence, the

validation points or unknown points referred in the subsequent paragraphs were the

points that were halfway between two known or training points.

Figure 4.5 shows the performances of initial 64-training point and subsequently

optimized 36-training point surrogate models for training and validation points for

various radial basis functions with the five different RBFs. A POD–RBF surrogate

model trains itself by combining the input–output relationships of the known points.

As a result very small deviations or errors are expected for the approximations of the

known training points. Accordingly it was found that both the 64-point and 36-point

surrogate models provided good approximation for the training points (Fig. 4.5a).

The ∼0.8% error in approximation could be attributed to the POD model reduction

and rounding off errors. The 36-point surrogate model showed a small increase in
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(a) Known data (training) points

(b) Unknown data (validation) points

Figure 4.5: Comparison of the initial 64-training point and subsequently optimized

36-training point surrogate model performances calculated for training and validation

points for five different radial basis functions (RBFs), namely, linear splines (LS),

cubic splines (CS), multiquadratic (MQ), Gaussian (GS), and inverse multiquadratic

(IMQ). 63



error for the known points. Nonetheless, this increase in error was relatively small

when compared to the reduction in number of training points used for the optimized

surrogate model.

The performance of the surrogate models for validation (unknown) data points is

shown in Fig. 4.5b. Once again, we report on the performances of both 64-point and

36-point surrogate models with five different RBFs. While the different RBFs did

not show any differences in the performance of the surrogate models for the known

points, significant variations were observed for the validation (unknown) data points.

For the initial surrogate model trained with 64 training points, the lowest error

was found for the multiquadratic (MQ) RBF, while the Gaussian (GS) RBF showed

the highest error. The cubic spline (CS) RBF was also found to be very close in

performance to the MQ RBF. The difference between the best and worst performing

RBF was approximately ∼1%. These errors were magnified for the 36-point model.

In this case the difference between the best and worst performing RBF was approxi-

mately ∼5.5%. Once again, the MQ RBF provided the lowest and the GS RBF the

highest approximation error, respectively. Also, there were only minor differences

in performance between the CS and MQ RBFs. In a relative sense CS, MQ and

IMQ showed a small increase in approximation error for optimized surrogate when

compared to the initial surrogate.

The variation in performances of these RBFs in approximating the nanoindenta-

tion data can be examined in terms of the mechanics of the loading process that is

being modeled. A nanoindentation experiment typically yields a nonlinear response

in the load–displacement data. In the context of this study, this means that a linear

change in any unknown model parameter would lead to a nonlinear change in the

measured tip displacement data. The LS and CS RBFs represent piece-wise smooth

functions and thus can be expected to have issues when the modeled behavior is non-

linear. Accordingly, both the 64-point and 36-point LS RBF-based surrogate models
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exhibited poor performance. The end effect of nonlinearity on the model’s perfor-

mance was much more pronounced for LS RBF-based optimized surrogate model

(with reduced number of points), since the spatial distances between the training

points were greater. While the CS RBF is also a piece-wise smooth function, it of-

fers a better performance because of its ability to conform into a nonlinear shape.

Thus, the CS RBF-based models provided better approximations for both 64-point

and 36-point models.

The MQ, GS, and IMQ RBFs represent continuously smooth functions and thus

should be very capable for modeling nonlinear load–displacement data from a nanoin-

dentation loading process. Hence, all these RBFs should provide comparable approx-

imation error while used in POD–RBF based surrogate models. However, except for

MQ, the performance of these RBFs were poor. In fact, GS RBF-based surrogate

models exhibited the worse performance with significantly higher approximation er-

ror compared to all the other RBFs. Understanding this requires an investigation

into the effects of the shape parameter that plays a role in the approximations by

continuously smooth functions.

4.2.3 Effect of Shape Parameter

To understand variations in the performance of continuously smooth RBFs, especially

the GS function, a parametric study was conducted to observe the effect of shape

parameter. As stated earlier, the primary role of shape parameter is to remove ill-

conditioning during numerical manipulations. Although it is desirable to have a high

value of shape parameter, beyond certain point RBF approximation becomes unstable

due to near singular interpolation matrix [139].

For this investigation the shape parameter was varied from 0.5 to 1.5 and the

resulting effect on fitting studied for the three continuously smooth RBFs of interest,

namely MQ, GS, and IMQ. Figure 4.6 shows the variations in approximation error
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Figure 4.6: Effect of shape parameter (cj) on the performance 36-point surrogate

model for various continuously smooth radial basis functions (RBF’s), multiquadratic

(MQ), Gaussian (GS), and inverse multiquadratic (IMQ).

for these three RBFs as a function of shape parameter for the 36-training point

model. It is seen that, shape parameter played a role in minimizing the approximation

error of the models. The MQ RBF-based models, which already provided the best

performance among all five RBFs, did not show considerable change in error. In

case of IMQ, the approximation error decreased a little bit as the value of the shape

parameter was increased. The most dramatic change was observed for the GS RBF-

based surrogate model, where the approximation error decreased almost exponentially

from a value of ∼7.5% to ∼2%. For cj = 1.5 the error of the GS-based model was

almost comparable to the other two RBFs.

This behavior is consistent with prior studies conducted to illustrate the applica-

bility of RBFs as an interpolation tool [155, 156]. Higher values of the shape factor
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usually improve the overall accuracy of approximation; however, the optimal num-

ber depends heavily on the nature of the problem, the RBF in use, and the number

of training points. The shape parameter not only provides a way for removing ill-

conditioning, it also serves as a measure of influence domain. If a particular unknown

point is imagined in the center of the influence domain then only the data points

inside or near the influence domain affect the quality of approximation of that point.

As higher values of the shape parameter lead to a bigger influence domain, the ap-

proximation quality generally improves. However, larger shape parameter values also

imply large condition number of a system that subsequently leads to larger error in

the coefficients.

4.2.4 Effect of Random Noise

Random noise was introduced in to the training data to observe how well the POD–

RBF based surrogate models perform when measurement errors are present in the

training data. With regards to our specific study, it was particularly important to

examine if approximation errors propagated for the surrogate model with reduced

number of training data. Figure 4.7 shows the effects of 1% and 5% random noise on

the performance of 36-training point and 64-training point based surrogate models.

For both the surrogate models the introduction of 1% or 5% random noise resulted

in only minimal increase in the approximation error. This demonstrated that the

POD–RBF technique was very efficient in filtering out random measurement error in

the training data. This was especially signification for the surrogate model trained

with 36 points and illustrated that the POD–RBF technique was very effective in

dealing with noisy data even when number of training points was low.

Another important observation found from Fig. 4.7 was that RBFs played little

to no role in changing the overall approximation error as a function of random noise

being introduced in to the training data. For all the RBFs, both for 64-point and
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(a) 36-training point model

(b) 64-training point model

Figure 4.7: Effect of random noise on the surrogate model performance calculated for

unknown data (validation points) for various radial basis functions (RBF’s), linear

splines (LS), cubic splines (CS), multiquadratic (MQ), Gaussian (GS), and inverse

multiquadratic (IMQ).
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36-point surrogate models, the error in approximation after training with noisy data

was consistent with the approximation error trained with clean data. This finding

suggested that although the choice of an RBF plays a crucial role for overall surrogate

model performance, it does not provide any added benefit or disadvantage when

dealing with noisy training data.

4.3 Conclusion

This study took a systematic approach towards understanding the role of training

points quantity and the choice of RBF for surrogate model construction to solve a

nanoindentation-based inverse problem. In particular, attention was concentrated

to see if the information of system’s sensitivity towards individual input parameters

could be utilized to reduce the number of data points required to train the surrogate

model without sacrificing considerable accuracy.

A case study problem was formulated where an elastic–plastic model with three

parameters was used to define the material behavior of single crystal aluminum. A

Taguchi orthogonal array was used to design the experiments for the input parameters

varying within a preselected range of values in few equidistant levels. By applying

analysis of variance (ANOVA) on orthogonal array experiments, the sensitivities of

nanoindentation output with respect to each model parameters were identified. This

information was then used to reduce the number of levels for parameters that exhib-

ited smaller effect on the nanoindentation output. Training data points were gener-

ated using finite element software ABAQUS by adopting a full factorial approach for

input parameter sets. A systematic comparison was made between the performances

of five different RBFs, namely, linear splines (LS), cubic splines (CS), multiquadratic

(MQ), Gaussian (GS), and inverse multi quadratic (IMQ). This comparison allowed

the investigation of the choice of RBF in terms of overall performance of the surrogate

model. Finally, random noise was introduced in the training data in order to verify
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the stability of the surrogate model, especially as the number of training points was

reduced.

It was found that ANOVA analysis of a Taguchi orthogonal array-based experi-

mental design could provide meaningful understanding about the sensitivity of each

input parameter of the material model. This information could be utilized in two

ways, a) to reduce the number of data points required for the less critical parameters,

thus reducing the overall number of training points, and b) to combine this informa-

tion with global optimization algorithms to reduce the computational effort for finding

the global minima. In this study, it was successfully shown that an optimally trained

surrogate model provided competitive quality of approximation when compared with

a surrogate model trained higher number of training data. For multiquadratic (MQ)

RBF-based surrogate model, approximately ∼0.5% difference in accuracy was found

for surrogate models trained with 64- and 36-points.

Among the five RBFs that were compared in this study, multiquadratic (MQ)

and Gaussian (GS) RBF provided best and worst performance, respectively, for both

training schemes. While the difference between their performance was approximately

∼1% for 64-points model, it increased dramatically to ∼5.5% for 36-points model.

Among the piece-wise continuous RBFs, cubic spline (CS) RBF’s performance was

comparable to MQ’s performance, while linear spline (LS) RBF performed poorly. It

was interesting to note that, while all the RBFs showed some increase in approxima-

tion error due to training point reduction, this effect was much more pronounced for

LS and GS-based models.

The poor performance of the LS RBF-based model could be attributed to LS’s

inability to replicate nonlinear input–output relationships of the nanoindentation ex-

periment. To understand GS RBF’s unexpectedly high approximation error, a para-

metric study was conducted to investigate the effect of shape parameter on the over-

all performance of the surrogates. As the value of the shape parameter increased the
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quality of approximation for GS-based surrogate improved dramatically due to the in-

crease in radius of influence. Similar observation was made for IMQ-based surrogate,

although the improvement was not as dramatics as GS.

By introducing random noise in the training data, the stability of POD–RBF

based surrogate models were investigated. It was found that POD–RBF was capable

of providing good quality approximation even with noisy training data. Identical

observations were made for both 36- and 64-training points model, where random

noise did not significantly altered the approximation error.

This investigation demonstrated that through the use of sensitivity analysis it was

possible to reduce the number of training points required for POD–RBF based sur-

rogate model without sacrificing considerable accuracy. It was also found that due to

the nonlinear behavior of input–output relationship of a nanoindentation experiment,

a RBF which can conform into a nonlinear shape would perform better. The value of

the shape parameter for continuously smooth functions was found to have effect on

the overall quality of approximation. POD–RBF approach’s power to effectively find

the dominant nature of the data even from a smaller number of training points was

observed through studying the effect of noisy training data.
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CHAPTER 5

ESTIMATION OF NONLINEAR VISCOELASTIC PARAMETERS

5.1 Study Details

In order to demonstrate the applicability of the POD–RBF technique to determine

the nonlinear viscoelastic Burgers model parameters, nanoindentation was carried out

on epoxy. The finite element model was constructed using commercial finite element

package ABAQUS (Dassault Systémes, Providence, RI, USA). The nonlinear Burgers

model was implemented in an user-defined subroutine (UMAT) via FORTRAN script.

The information known from previous chapter about POD–RBF was combined to

solve the problem of finding the model parameters.

5.1.1 Design of Experiments for Sensitivity Analysis

Before generating finite element simulation data by varying the model parameters, a

sensitivity study of the parameters was conducted. This information helps to reduce

the number of finite element simulation used for training. This was demonstrated in

Chapter 4 for an elastic–plastic model.

The nonlinear Burgers model that was chosen to represent the behavior of the

epoxy has seven independent parameters. These parameters are E, ν, Cs, ms, Ct, mt,

and tε, as discussed earlier in Section 3.1. It is already known that a nanoindentation

load–displacement response is not highly influenced by Poisson’s ratio, ν [149–151].

Therefore, in order to keep the number of independent parameters to a minimum,

ν was given a constant value of 0.34, and was not included in the sensitivity analysis

scheme.
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Sensitivity analysis was primarily carried out using Analysis of Variance (ANOVA)

technique. The data required for ANOVA was generated using the Taguchi Design of

Experiments (DOE) method. In this study, the six nonlinear model parameters were

varied in three equidistant levels. A statistical software, Minitab (Minitab Inc., State

College, PA, USA) was used to design the experiments. For six parameters, where

each parameters were varied in three levels, Taguchi L27 orthogonal array design

was appropriate. Table 5.1 shows the levels of the six individual parameters of the

nonlinear Burgers model. The experimental design for this study according to the

L27 orthogonal array is listed in Table 5.2.

Table 5.1: Levels of nonlinear Burgers model parameters

Parameters Level 1 Level 2 Level 3

E 3 3.25 3.5

Cs 0.02 0.06 0.1

ms 0.15 0.25 0.35

Ct 0.15 0.25 0.35

mt 0.2 0.5 0.8

tε 0.1 0.25 0.4

Each of these 27 computer simulations resulted in data in terms of indenter dis-

placement. The resulting value of error function, δ was calculated using the Eq. 5.1.

This was then utilized in ANOVA to determine the effect of each parameters on the

error function.

δ =
1

n

∑[
(hiexp − hisim)2

]
(5.1)

In Eq. 5.1 i = 1, 2, 3, . . . , n, and n is the number of data points in a single

nanoindentation simulation or experiment.

Sensitivity of the nanoindentation output was also determined in a different way,
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Table 5.2: Experimental design based on the L27 orthogonal array

Experiment E Cs ms Ct mt tε

1 3 0.02 0.15 0.15 0.2 0.1

2 3 0.02 0.15 0.15 0.5 0.25

3 3 0.02 0.15 0.15 0.8 0.4

4 3 0.06 0.25 0.25 0.2 0.1

5 3 0.06 0.25 0.25 0.5 0.25

6 3 0.06 0.25 0.25 0.8 0.4

7 3 0.1 0.35 0.35 0.2 0.1

8 3 0.1 0.35 0.35 0.5 0.25

9 3 0.1 0.35 0.35 0.8 0.4

10 3.25 0.02 0.25 0.35 0.2 0.25

11 3.25 0.02 0.25 0.35 0.5 0.4

12 3.25 0.02 0.25 0.35 0.8 0.1

13 3.25 0.06 0.35 0.15 0.2 0.25

14 3.25 0.06 0.35 0.15 0.5 0.4

15 3.25 0.06 0.35 0.15 0.8 0.1

16 3.25 0.1 0.15 0.25 0.2 0.25

17 3.25 0.1 0.15 0.25 0.5 0.4

18 3.25 0.1 0.15 0.25 0.8 0.1

19 3.5 0.02 0.35 0.25 0.2 0.4

20 3.5 0.02 0.35 0.25 0.5 0.1

21 3.5 0.02 0.35 0.25 0.8 0.25

22 3.5 0.06 0.15 0.35 0.2 0.4

23 3.5 0.06 0.15 0.35 0.5 0.1

24 3.5 0.06 0.15 0.35 0.8 0.25

25 3.5 0.1 0.25 0.15 0.2 0.4

26 3.5 0.1 0.25 0.15 0.5 0.1

27 3.5 0.1 0.25 0.15 0.8 0.25
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where the difference in output between lowest and highest limit of the individual

parameter levels were determined. Unlike the Taguchi–ANOVA procedure explained

above, here only the indenter depth at maximum load and the depth after unloading

was studied.

This type of parametric sensitivity analysis has been previously used in under-

standing nanoindentation experiments in general. In the current study, this sensitivity

analysis was performed in order to complement the Taguchi–ANOVA procedure, and

to get an objective understanding of how each parameters contribute to the variance

of an indentation plot’s two key features.

5.1.2 Nanoindentation Experiment

Nanoindentation experiments were conducted on an MTS Nanoindenter XP (Agilent

Technologies, Santa Clara, CA, USA) using a load-controlled scheme with a Berkovich

tip. The maximum load was set to be 0.5, 0.75, and 1.0 mN for the experiments. A

triangular loading profile was chosen with 30, 45, 60, and 240 s durations. The

durations were kept constant for both the loading and unloading segments.

Before conducting the actual experiments the Berkovich tip was calibrated using

a fused silica reference material. Also, the acceptable thermal drift rate was chosen

to be 0.15 nm/s. After ensuring that the thermal drift rate was stable and below the

target drift rate nanoindentation experiments were carried out.

5.1.3 Material

An epoxy polymer, named EPON 862, was selected for carrying out nanoindentation

experiment. EPON 862 is a diglycidyl ether of bisphenol F (DGEBF). The curing

agent used for this resin system was a moderately reactive, low viscosity aliphatic

amine curing agent, called Epikure 3274. Both of these chemicals were supplied by

Miller-Stephenson Chemical Company, Inc., Dunbury, Connecticut.
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Epoxy and hardener was mixed at 100:40 weight ratio and hand-mixed using a

glass-rod for 5–10 minutes. The mixture was then degassed for around 10–20 minutes

to remove any entrapped air bubbles. The mixture was then poured into an aluminum

mold and cured at room temperature for 24 hours and subsequently post-cured at

121°C for 6 hours. The final sample was cut from the prepared epoxy plate using

a bandsaw. Sample surface preparation was carried out by polishing using standard

metallographic techniques.

5.1.4 Genetic Algorithm

A multi-objective genetic algorithm-based optimization procedure was used to iden-

tify the parameters of the nonlinear Burgers model. The procedure was implemented

using MATLAB’s (Mathworks Inc., Natick, MA, USA) global optimization toolbox.

Double vector was chosen as the population type. The initial population of 200 was

randomly created with a uniform distribution. Scores of the first and all subsequent

generations were determined by evaluating the fitness function that was submitted to

the program via MATLAB script.

Selection of the worthy candidates for being the next generation parent were car-

ried out via tournament of size 2. Eighty percent of the next generation population

was produced via crossover, while the remainder of the was created through mu-

tation. Gaussian mutation was selected, where a random number from a Gaussian

distribution centered on zero was added to each vector entry of an individual.

The standard deviation of the Gaussian distribution is controlled using two param-

eters, i.e. scale and shrink. Both of these two parameters were set to 1 for this study.

The scale parameter defines the standard deviation of the Gaussian distribution for

first generation, while the shrink parameter determines the amount of shrinking that

will occur to the standard deviation by the time it reaches the last generation.

In this study, the crossover function was chosen to be intermediate. In case of
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intermediate crossover the creation of children from two parents is controlled by a

single parameter ratio. The value of this parameter was selected to be 1 for this

study. Next generation children were created through a random weighted average of

the parents following Eq. 5.2.

child1 = parent1+...rand*Ratio*(parent2 - parent1) (5.2)

Every once in a while, the worst performing individuals of one subpopulation

need to be replaced by the best performing individuals of a different subpopulation.

This process is called migration. Migration in a genetic algorithm-based optimization

can be controlled using three parameters, i.e. direction, fraction, and interval of

migration.

The direction parameter specifies in which direction migration will take place. The

fraction parameter controls the number of individuals that will be migrated from one

subpopulation to another. The interval parameter dictates the number of generations

that will be elapsed between each migration.

In this study, forward migration direction was chosen. This meant individuals

from nth subpopulation would replace individuals from (n+1)th subpopulation and so

on. The migration fraction and interval were chosen to be 0.2 and 20, respectively.

Total number of generations for the optimization algorithm was chosen to 100×

number of parameters, i.e. 100×6 = 600 for this study. The fitness (error) function

tolerance was chosen to be 1e-4.

5.1.5 Parametric Study: Friction Coefficient

The performance of material model calibration using POD–RBF technique depends

primarily on the quality of training data coming from finite element simulations.

This means that the better the finite element model is in terms of replicating the real

experiment scenario of a nanoindentation experiment the better the quality of train-
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ing data, which in essence provides better quality approximation from the surrogate

model.

One important factor to consider in nanoindentation experiment is the friction

between the indenter tip and the sample or material surface. In real life situations it

is possible that the two surfaces generate finite amount of friction. This can be taken

into consideration by defining sliding contact with a finite friction coefficient between

the surfaces.

However, to simplify the finite element model most researchers have opted to as-

sume frictionless contact between tip and sample surface [157, 158]. Their assumption

was based on the fact that nanoindentation load–displacement data was insensitive

to friction. Nonetheless, a few researchers have shown that friction can influence the

results in a simulation study [159–161]. This is because influence of friction in a sim-

ulated study depends on some other factors, such as the material model used and the

geometry of the tip. If these factors change from one study to another, investigating

the effect of friction becomes a necessity.

Only few studies have previously used the nonlinear Burgers model in a nanoindentation-

based finite element study. Therefore it is necessary to study the effect of friction

coefficient on the load–displacement output. To facilitate the understanding this

study performed a parametric study, where the friction coefficient value was varied in

four steps ranging from 0—0.5. All the experimental load and strain rate levels were

studied to improve the understanding.

5.1.6 POD–RBF Surrogate Model

As discussed in previous chapters the POD–RBF method requires creating snapshots

(input–output relationships of the system) from which the surrogate model could be

established. Each of the data that provides a one-to-one relationship between the

input and the output is called a snapshot. As discussed in Chapter 4, the more
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snapshots or training data points utilized to generate the surrogate model the better

the approximation becomes.

However, the computational burden associated with generating large number of

snapshots becomes the limiting factor in obtaining very high-fidelity predictions from

the surrogate model. As shown in chapter 4, sensitivity analysis could be utilized

to reduce the number of snapshots without sacrificing approximation error. Hence,

in this study, a similar approach was adopted to reduce the computation burden of

training the surrogate model for nonlinear Burgers model.

Once the appropriate number of levels for different parameters were selected using

information from sensitivity analysis, a full factorial approach was taken to generate

the input parameter sets. These parameter sets were combined to produce the in-

put matrix, P . Finite element simulation experiments were carried out for every

individual parameter sets and their corresponding indenter displacement data was

assimilated in the snapshot matrix, U .

In this study, four different experimental conditions were utilized for which the

training data would be generated. In these experimental conditions, the maximum

load was kept constant at 1mN, while the strain rate was varied from 1/30 s-1 to 1/240

s-1. One surrogate model was created for each of those experimental conditions using

finite element data. The approximations from each surrogate model was compared

against their own experimental indenter displacement data to form the objective or

error function.

In keeping with the findings of chapter 4 the Multiquadratic RBF was chosen

for this study. Since, the value of the shape parameter (cj) does not influence the

POD–MQ RBF surrogate model’s performance significantly it was chosen 0.5 for this

study.
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5.2 Results and Discussion

5.2.1 Effect of Friction Coefficient

The effect of the friction coefficient on maximum and residual depths attained during

nanoindentation was analyzed. Figure 5.1 shows the effect for conditions represented

by a fixed maximum load of 1.0 mN with different loading–unloading times. For

any given value of the friction coefficient, the values of both maximum and residual

depths decreased as compared to the corresponding frictionless case of indentation.

The plots represent the reduction of depths between the simulations of a frictionless

condition and a particular friction coefficient (e.g. f = 0.125, 0.25, or 0.5). All

other conditions, e.g. boundary conditions, maximum load, loading–unloading time,

and material model parameters, were kept constant. Both Fig. 5.1(a) and 5.1(b) are

plotted at the same vertical scale for ease of comparison.

Figure 5.1 shows that for any value of the friction coefficient within the studied

range, the value of maximum and residual depths were reduced in comparison to the

frictionless condition. This behavior was found to be true for all studied conditions

with varying loading–unloading times. When friction is considered in a nanoinden-

tation study, part of the energy that could be utilized to displace the material gets

dissipated as frictional energy. This loss of energy leads to a reduced displacement

of the indenter. Similar behavior has been observed for simulation of elastic–plastic

indentation. DiCarlo et al. observed that the introduction of friction in the model

increased the calculated hardness by lowering the indenter displacement at maximum

load [162].

Figure 5.1(a) also illustrates that for a given friction coefficient, the reduction in

maximum depth varied as a function of loading–unloading time. The greater the

loading–unloading time the lower was the maximum depth observed in comparison

to the frictionless condition.
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(a) Effect of friction coefficient on maximum depth

(b) Effect of friction coefficient on residual depth

Figure 5.1: Effect of friction coefficient, f on nanoindentation data for different

loading–unloading time and constant maximum load (difference = depth for fric-

tionless – depth for f = 0.125/0.25/0.5) 81



Figure 5.1(b) shows the reduction in residual depth values between a frictionless

simulation and a finite friction coefficient simulation. Here, for any given value of

friction coefficient, the difference diminished with the increase of loading–unloading

time. When lower loading–unloading time is used in an indentation experiment, the

viscoelastic creep response is subdued. Hence, the elastic response has relatively

higher dominance on the overall deformation behavior. The observed behavior may

mean that friction has more effect on the residual depth when viscoelastic behavior

has lower dominance over the nanoindentation data.

For both maximum and residual depths the reduction in depths was observed to

be very small for all loading–unloading times. For instance in case of t = 240s, the

condition which showed the highest deviation for maximum depth, the reduction was

found to be ≈ 0.5%. On the other hand, the highest reduction in residual depth was

found to be ≈ 1.8%

Figure 5.2 shows the effect of the friction coefficient on maximum and resid-

ual depths when loading–unloading time was kept constant and the maximum load

was varied from 0.5—1.0 mN. Similar to the investigation mentioned above, where

loading–unloading time was varied within experimental range, values of maximum

and residual depths were found to have decreased from the values obtained for the

frictionless condition.

Figure 5.2(a) shows that increase in the friction coefficient resulted in a higher

reduction in maximum depth in comparison to the frictionless counterpart. This

observation was common for all three different maximum load conditions. Similar

behavior was observed for residual depth reductions as illustrated in Fig. 5.2(b).

Since higher friction coefficient would lead to greater frictionally dissipated energy,

higher reduction compared to the frictionless conditions would therefore be expected.

Nevertheless, the overall differences were very small. As a matter of fact for f =

0.5, which provided the maximum differences, reductions in maximum and residual
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(a) Effect of friction coefficient on maximum depth

(b) Effect of friction coefficient on residual depth

Figure 5.2: Effect of friction coefficient, f on nanoindentation data for different max-

imum load (constant loading–unloading time)
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depths were found to be ≈ 0.5 and 1%, respectively.

Another common observation between figure 5.2(a) and 5.2(b) was that between

different maximum load conditions there were hardly any difference for a given coeffi-

cient of friction. It could mean that within the given range of loads (0.5mN—1.0mN),

maximum load have no effect over the friction behavior of tip and sample surface.

However, determining whether the maximum load insensitivity is an universal fact

requires further investigation.

This parametric study shows that the inclusion of friction in the finite element

model leads to changes in the indentation load–displacement response. Nonetheless,

the variations are small for the conditions of interest. Real nanoindentation exper-

iment can never be entirely frictionless. Therefore, this study included the effect of

friction in the model by using a coefficient f = 0.25 for all sensitivity analysis and

surrogate model development purposes.

5.2.2 Sensitivity Analysis

Table 5.3 shows the result of sensitivity analysis carried out using Taguchi-based

design of experiments. The data of 27 experiments carried out according to L27

orthogonal array was used to get information about the sensitivity of output towards

individual parameters.

The ‘% Contribution’ data, which is a measure of variation contributed by indi-

vidual parameters towards the output, shows that except for tε all other parameters

contributed towards the overall variation of output. However, the contribution was

significantly influenced by the ‘steady state’ parameters (Cs and ms).

Figure 5.3 shows the sensitivity of indentation depth at maximum load and at the

end of unloading, i.e. maximum and residual depths. Similar to Taguchi–ANOVA

based sensitivity results, it could be seen that tε has little to no impact on maximum

or residual depths. Cs and ms had the most significant impact on the output for both
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(a) Effect on indentation maximum depth

(b) Effect on indentation residual depth

Figure 5.3: Output sensitivity towards different nonlinear Burgers model parameters
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Table 5.3: Analysis of Variance for different parameters

Source DF Adj SS Adj MS F-Value P-Value % Contribution

E 2 5597885401 2798942700 3630.33 0.000 11.20

Cs 2 16004929654 8002464827 10379.48 0.000 32.01

ms 2 22166899947 11083449973 14375.63 0.000 44.34

Ct 2 6207522908 3103761454 4025.69 0.000 12.42

mt 2 14961103 7480552 9.70 0.002 0.03

tε 2 92652 46326 0.06 0.942 0.00

Error 14 10793843 770989

Total 26 50003085508

studied outputs. Furthermore, the level of significance is much more pronounced for

residual depth compared to maximum depth.

Another observation that could be drawn from these results was elastic modulus

has a positive correlation with the strain rate. In other words, both maximum and

residual depth was comparatively more impacted by elastic modulus when the strain

rate was higher. One explanation of this fact could be that when strain rate is higher

viscoelastic response gets subdued due to inherent time lag between the elastic and

viscoelastic response. As the strain rate gets slower and slower the viscoelastic or

the creep response catches up with the elastic response. Hence, the elastic part of

the displacement becomes less dominant in the overall displacement pattern of the

material.

Figure 5.3 shows another important observation, which is contrary to ANOVA

results. The two parameters, Ct and mt shows opposite trend in these two sensitivity

tests. In ANOVA Ct showed substantial influence towards the output, while it was

fairly insignificant in Figure 5.3. Contrary to Ct, mt showed good sensitivity in fig. 5.3,
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although very insignificant sensitivity in ANOVA results.

This is because fig. 5.3 represents the sensitivity of individual parameters to-

wards two points in the nanoindentation load–displacement plot, namely maximum

and residual depth. Although these two points are very important in understanding

material’s response, these cannot represent the entire plot. It is possible that two

plots distinct in every other way can have the same maximum depth and residual

depth pattern. That is why having multiple complementary means of determining

sensitivity can provide a broader view of the problem.

5.2.3 Surrogate Model Training and Inverse Analysis

The findings from the sensitivity analysis was taken into account to revise the number

of levels for each nonlinear Burgers model parameter. As discussed, tε showed no

influence over the output of the nanoindentation simulations. This implies that either

tε cannot be accurately determined from a Berkovich nanoindentation experiment or

that it is a redundant parameter in describing the material response. Considering

these facts, in order to reduce computational expense, tε was given a constant value.

The two parameters that were the most influential of the remaining five, Cs and

ms, were varied at four levels. Meanwhile, moderately influential two parameters, E

and Ct, were varied at three levels. According to ANOVA, mt was not significantly

sensitive towards the output. However, the parametric study showed that mt had

some influence over maximum indenter depth and residual indenter depth. For this

reason, instead of assigning a constant value to mt, it was varied in two levels.

Table 5.4 shows the corresponding levels for each parameters that were selected

based on the sensitivity analysis. In a full factorial basis, a total of 3×4×4×3×2×1

= 288 finite element simulations were carried out in order to generate the surrogate

model for every single experimental conditions. In each of these simulations, 100 load–

displacement data points were used to represent the nanoindentation plot. Since there
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Table 5.4: Parametric Space of Nonlinear Burgers Parameters for Surrogate Training

Parameters No of Points in Space Parametric Value Space

E 3 3, 3.25, 3.5

Cs 4 0.02, 0.045, 0.07, 0.1

ms 4 0.35

Ct 3 0.15, 0.25, 0.35

mt 2 0.2, 0.8

tε 1 0.25

were four individual experimental conditions to represent, a total of four surrogate

models were developed. The snapshot matrix used to generate each of these surrogate

model had dimensions of 100×288.

After the POD model reduction process was carried out and the RBF coefficients

were calculated, the POD–RBF surrogate model was ready to approximate nanoin-

dentation data within the specified parametric space (see Table 5.1). An objective

function was written in MATLAB where each surrogate model’s output was com-

pared against the corresponding experimental data. This objective function was used

within the MATLAB Global Optimization Toolbox to run multi-objective genetic

algorithm-based global optimization. The optimization algorithm was set to run in

parallel mode until it met the stopping criteria described in Section 5.1.4. Table 5.5

shows the result from the global optimization algorithm.

Table 5.5: Optimized Nonlinear Burgers Model Parameters

Parameters E ν Cs ms Ct mt tε

Optimized 3.28 0.34 0.09 0.20 0.24 0.47 0.25
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The optimized set of parameters were the numerical best fits depending on the

objective function that produces the numerical difference between the predicted and

experimental data. Figure 5.4 shows the comparison of predicted and experimental

data for all four experimental cases. These were the experimental conditions that were

closely followed in creating finite element models and were used to train the predictive

or surrogate model. From Figure 5.4 it can be seen that all four surrogate model

outputs were very close to the corresponding experimental data. This demonstrated

the fact that the multi-objective genetic algorithm-based optimization procedure was

successful in finding a common minima taking the constraints in to consideration.

Although, the surrogate model prediction’s were mostly close with the experimen-

tal data few inconsistencies were observed. For example, the final unloading portion

data for the loading–unloading time t = 30s did not match very well. Similar behavior

was observed for t = 45s, even though qualitatively the difference between prediction

and experiment diminished. For higher loading–unloading time, e.g. t = 60s and

240s, the difference was noticeably very small.

Figure 5.5 shows the comparison of finite element model output for the identified

Burgers model parameters vs. the corresponding nanoindentation experimental data.

The surrogate model developed with finite element simulation data was not trained for

these experimental conditions. These conditions were used to validate the optimized

set of Burgers model parameters.

In training the surrogate model for approximating nonlinear Burgers model out-

put, experimental conditions with varying loading–unloading times were used. On

the other hand, in these validation experiments maximum loads for which the model

was not trained have been used. This decision was deliberately made in consideration

of the fact that nonlinear viscoelastic behavior not only depends on strain rate but

also on the strain levels associated with the experiment. For nanoindentation experi-

ments it could be safely assumed that changing the load levels would result in change
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(a) Loading–unloading time = 30s (b) Loading–unloading time = 45s

(c) Loading–unloading time = 60s (d) Loading–unloading time = 240s

Figure 5.4: Experiment vs. surrogate model for calibrated nonlinear Burgers model

parameters
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(a) Maximum load = 0.5 mN (b) Maximum load = 0.5 mN

(c) Maximum load = 0.75 mN (d) Maximum load = 0.75 mN

Figure 5.5: Experiment vs. finite element simulation for calibrated nonlinear Burgers

model parameters
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of strain levels.

From the validation plots for untrained experimental conditions, it could be ob-

served that the finite element simulation output closely matched with the experimen-

tal data. In two of the cases (see Figure 5.5b & 5.5d) a portion of the unloading curve

showed some discrepancies in a qualitative sense.

Section 5.2.3 shows quantitative variation between the various plots in Fig. 5.4

and 5.5. Variations between the plots has been represented in terms of RMSE, R2,

Avg. Error, and % Error. As it can be seen, various quantitative discrepancies for

Figure 5.5b & 5.5d were found to be comparable with the other plots that showed

little discrepancies in qualitative sense.

Another important observation that could be made was that Figure 5.4b and

5.4d both showed almost same quantitative variation. Although, Figure 5.4d’s match

looked slightly better than Figure 5.4b if perceived visually.

Table 5.6: Variation Between Different Plots

(Pmax = maximum load, t = loading–unloading time)

Conditions RMSE R2 Avg. Err. (nm) % Error

Pmax = 1.0mN

t = 30s 13.23 0.9821 9.11 2.81

t = 45s 9.17 0.9867 7.11 2.34

t = 60s 6.72 0.9891 5.70 2.81

t = 240s 9.01 0.9893 7.07 2.33

Pmax = 0.5mN
t = 30s 4.19 0.9884 3.29 2.73

t = 45s 10.06 0.9827 7.89 3.84

Pmax = 0.75mN
t = 30s 3.48 0.9895 2.78 1.41

t = 45s 10.69 0.9858 7.59 3.38

The variation between different plots for optimized set of model parameters could

have stemmed from different factors. One such factor could be the friction coefficient
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used in the finite element model. As it can be seen the effect of friction coefficient

varied depending on the experimental conditions that were being replicated. As a

result the error associated with using a particular friction coefficient also varied from

one experimental condition to the other. Since the whole process of inverse analysis

depended on numerical manipulations, different error in the FEA data could have

skewed the parameter optimization in one way or the other.

Ascertaining that the material model parameter set that has been extracted from

the inverse analysis procedure is indeed the global parameter set that would satisfy all

possible material response is a challenge. In order to deal with this challenge, material

responses from other experiments, such as compression, tension, or flexural tests

could be included in the process. For some materials carrying out the aforementioned

tests may not be feasible, e.g. thin films, coatings, biological cells. In those cases

improving the confidence in the optimized parameter set could be established by

obtaining material response data from multiple nanoindentation experiments, such

as changing the cone angle for a pyramidal indenter tip, or using spherical tips with

different radii.

Another way of finding additional constraints for the numerical analysis would

be use additional experimental data from the same nanoindentation experiment. For

example, if imprint geometry or residual depth profile data could be harnessed from

a nanoindentation experiment and used in the objective function, the probability of

finding the unique model parameter set increases.
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CHAPTER 6

CONCLUSIONS

The focus of this study was to identify the nonlinear viscoelastic model parameters

for a soft material. Mechanical characterization of soft materials, such as polymers

and biomaterials is often challenging due to various size and shape restrictions of

the bulk testing methods. Nanoindentation, or Depth Sensing Indentation (DSI) is

particularly useful in characterizing material behavior since sample preparation is

very straightforward.

While application of the nanoindentation technique for identifying elastic–plastic

material model parameters has been extensively studied, identification of viscoelastic

behavior still required further investigation. This is because viscoelastic behavior is

a much more complex material behavior to analyze due to the time dependence of

material response.

Earlier studies that investigated viscoelastic behavior using nanoindentation uti-

lized correspondence principal-based analytical solutions to define material response.

This is a rather simplistic way of defining material behavior because it assumes vis-

coelastic response to be linear. Furthermore, the analytical solutions are often valid

until the load is monotonically increasing, i.e. loading portion of the nanoindentation

curve. Since soft materials are nonlinearly viscoelastic and material response infor-

mation from only the loading curve is incomplete, analytical solutions are unable to

capture the full spectrum of material response.

To circumvent the problem associated with analytical solutions, a hybrid approach

named inverse analysis can be used to model complex material behaviors. Various
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studies have shown that by reducing the numerical difference between simulated and

experimental data, material model parameters can be identified. Even though com-

paratively simple elastic–plastic nanoindentation has been widely studied through

inverse analysis, complex time-dependent material response specially nonlinear vis-

coelastic behavior has not been investigated at depth.

In this study, load–displacement material response of a nanoindentation experi-

ment conducted on soft epoxy material has been modeled using nonlinear Burger’s

model. The model parameters of Burger’s model was identified using a global op-

timization algorithm that reduced the differences between the simulation and the

experimental data. The traditional method of inverse analysis-based parameter iden-

tification requires finite element simulation to run inside the optimization algorithm.

The computational expense required to identify parameters thus becomes very large.

In order to solve the computation expense problem a predictive or surrogate model

was trained using finite element simulation data. A surrogate model, once trained, is

a few order of magnitude faster than actual finite element simulation. Hence, instead

of using the finite element analysis within the optimization algorithm, the surrogate

model was used to approximate the simulation data.

In this study, a POD–RBF based surrogate model was used. The performance or

quality of the POD–RBF surrogate model is dependent on a few parameters. These

parameters, such as number of training data and choice of basis functions, were

studied at depth before using surrogate model to calibrate material model. From

this investigation it was found that the information from a sensitivity analysis of the

model parameters could be utilized to reduce the number of sampling points without

conceding quality of approximation.

This study utilized Taguchi–ANOVA based sensitivity analysis to identify the

key parameters that has the most influence over the nanoindentation output. A

parametric sensitivity analysis was also performed in order to understand the effect
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of each parameter over the maximum and residual depths from load–displacement

data. The model parameters representing steady state viscoelasticity (Cs and ms)

was contributing majority of the variation towards the output. Depending on the

results of the sensitivity analysis the parametric space was defined within which the

snapshots for the POD–RBF method were determined.

Another key aspect of finite element material modeling, i.e. effect of friction has

been investigated in this study. Studies conducted in the area of nanoindentation-

based material model calibration suggested that nanoindentation load–displacement

data can be affected by the friction between tip and sample surface. This phenomenon

is primarily dependent upon the material model and the tip geometry under investi-

gation. In this investigation it was found that friction has a small influence over the

nanoindentation data for the studied material model and the Berkovich tip.

The snapshots for the POD–RBF method were generated via finite element simu-

lations with varying parameter sets within the parametric space. To include friction

effect within the model a finite valued friction coefficient was used. The POD–RBF

surrogate model was trained through numerical manipulations as described in ear-

lier chapters. The objective or cost function was defined as the mean squared errors

between the experimental and numerical (surrogate approximation) data. A genetic

algorithm based optimization method was used to reduce the objective function to

determine the model parameter set that satisfies the given constraints.

It was observed that the differences between the experimental and surrogate model

predicted data for the optimized parameter set was small. This meant that for the

trained conditions the optimization process coupled with surrogate model was able to

provide a satisfactory parameter set. In order to check the validity of the calibrated

model parameters, another set of comparison was drawn between nanoindentation

data and finite element simulation data. These nanoindentation experiments were

carried out in different conditions for which the predictive model was not trained.
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Simulation data for the optimized parameter set matched well with these experimen-

tal data. This demonstrated that the optimized parameter set was able to capture

material behavior for various experimental scenarios.

In this study, it has been shown that the importance of developing an analysis tech-

nique to characterize materials exhibiting nonlinear viscoelastic behavior is enormous.

Along with improving the fundamental knowledge about polymers and biomaterials,

this would also help in understanding disease progression, designing better artificial

organs, providing service life prediction of composites, etc. This study presented

a robust approach to determine nonlinear viscoelastic model parameters that could

be utilized to predict soft material’s behavior under different kinds of loading. By

strengthening the existing weaknesses in the literature this study opened up possibili-

ties of characterizing soft materials using an alternative technique that is unobtrusive,

non-cumbersome, and virtually nondestructive.
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APPENDIX A

VISCOELASTIC ANALYTICAL SOLUTIONS

Hertzian solution for elastic spherical and conical contact gives the following P–h

relationships (eqs. (A.1) and (A.2)), respectively. By using Lee and Radok’s corre-

spondence principal to change the elastic constant with the viscoelastic operator and

subsequent Laplace transformation one can end up getting the eqs. (A.3) and (A.4).

P =
4
√
RE

3(1− ν2)
h3/2 (A.1)

P =
2

π

E

1− ν2
tanα h2 (A.2)

h3/2(t) =
3(1− ν2)

4
√
R

P0 D(t) (A.3)

h2(t) =
π

2

1− ν2

tanα
P0 D(t) (A.4)

where, D(t) represents the time-dependent creep modulus. Creep modulus, D(t)

and relaxation modulus, E(t) are often described in a spectral form using a Prony

series in the following form

D(t) =
∑
k

Dk

(
1− exp

(
−t
τk

))
(A.5)

E(t) =
∑
k

Ek exp

(
−t
τk

)
(A.6)
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