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Abstract: Understanding the causes and consequences of variation in across multiple 
levels of biological organization is a central goal in modern biology. Research integrating 
key ecological and evolutionary processes necessitates a framework from which 
phenomena at multiple levels can be tested. Ecological stoichiometry (ES) can serve as a 
useful integrative framework to both quantify variation at multiple levels and understand 
the mechanisms that underlie this variation. ES abstracts biological processes down to 
their constituent atoms of elements to understand ecological and evolutionary patterns. 
While much work in ES has focused on the causes and consequences of interspecific 
differences in stoichiometry, little is known about substantial intraspecific variation. 
Sexual dimorphism is perhaps the most striking example of intraspecific variation in 
many species, at least at and above the molecular level. Almost nothing is known about 
dimorphism at the elemental level, and how this dimorphism may drive sex-specific 
responses to key ecological parameters, such as environmental supply of biogenic 
elements. In this dissertation, I explore sexual dimorphism on the elemental level, the 
sex-specific physiological mechanisms organisms use to respond to changing resource 
availability, and the population-level effects of resource availability on patterns of sexual 
selection in Hyalella amphipods. To that effect, I first quantified sex-specific plasticity in 
phosphorus (P) content of Hyalella amphipods to changes in environmental P supply. I 
found that the sexes differ in their plasticity of body P content in response to P 
availability, with male composition behaving plastically and female composition 
remaining relatively canalized. Second, I used radiotracers to identify age- and sex-
specific nutrient processing strategies in response to differences in dietary P. I found both 
age- and sex-specific patterns of acquisition and assimilation of C and P that are altered 
by dietary P, as well as preferential allocation to exaggerated male sexual traits relative to 
nonsexual traits. Third, I used microcosms to quantify population-level responses to 
environmental P supply and mating trials to explore the interaction between availability 
of P during development and during mating in influencing mating behavior. No evidence 
for effects of P on population dynamics were observed, yet mating behavior was 
influenced by P availability. Finally, understanding that organisms are composed of many 
elements beyond C, N, and P, I quantified sex-specific and trait-specific composition of 
12 mineral and trace elements. Substantial differences between the sexes and traits in 
elemental composition in multiple dimensions were observed, suggesting potential 
importance of these elements in sexual dimorphism. Together, these studies highlight the 
importance of sex-specific responses to variation in the environmental supply of key 
elements, and the utility of ES in understanding the eco-evolutionary mechanisms that 
shape sexual dimorphism and selection. 
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INTRODUCTION 

 

 

Biological diversity is a central tenet of both ecology and evolutionary biology. While 

both of these disciplines place importance on diversity, until the development of 

evolutionary ecology, integration of these two disciplines was somewhat lacking. This 

lack of integration between disciplines is likely the result of the both horizontal and 

vertical fragmentation that is present in most biological disciplines. Specifically, 

horizontal fragmentation occurs when phenomena are well studied in one taxa, often 

model organisms, but little effort has been made to assess the generality of those findings. 

Vertical fragmentation, on the other hand, is the result of a lack of integration of 

phenomena on one level of organization to either higher or lower levels of organization, 

often due to the complexities involved in generalizing across levels. Evolutionary 

biology, since the introduction of the Modern Synthesis (Huxley 1942), has been 

dominated by a population genetics view of evolution, with variation arising primarily 

from mutation and recombination. Additionally, evolution is often studied in specific 

model systems, due to their ease of use within laboratory settings. On the other hand, the 

role of intraspecific variation within populations has often been overlooked in ecology, 

especially ecosystem and community ecology. As a result, very little horizontal or 

vertical integration occurs in either of these disciplines, hindering our ability to fully 

integrate the two. 
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Any integration of ecology and evolutionary biology must consider the role of the 

environment on shaping intraspecific variation, as well as the role of evolutionary change 

on ecological processes. Recently, many researchers have begun focusing on the 

importance of the environment in acting not only as a filter of existing phenotypic 

variation, but as a producer of this variation (West-Eberhard 2003; Pigliucci and Muller 

2010). Additionally, with the realization that evolution often occurs on ecological time 

scales (e.g., Hairston et al. 2005), the importance of evolutionary change on ecosystem-

level processes has been acknowledged (Post and Palkovacs 2009; Schoener 2011). 

Although this newfound appreciation for the links between ecology and evolutionary 

biology has resulted in a wide array of new and exciting studies, a full integration is 

substantially inhibited by the incredible degree of complexity in phenotypic variation 

(see, Houle et al. 2010) and the environment.  

Ecological stoichiometry (ES) provides a useful framework for integrating 

ecology and evolutionary biology. On a fundamental level, an organism’s fitness is the 

result of its ability to acquire resources from the environment and allocate those resources 

to fitness-maximizing traits, such as reproduction or growth (van Noordwijk and de Jong 

1986; Stearns 1989; de Jong and van Noordwijk 1992). It follows that variation in 

organismal fitness is, in part, driven by both organismal demand for resources as well as 

environmental supply of those resources (Kay et al. 2005). At its heart, ES abstracts all 

biological processes into atoms of elements, traditionally carbon (C), nitrogen (N), and 

phosphorus (P), and examines the ecological and evolutionary consequences of the 

mismatch between environmental supply of elements and organismal demand (Sterner 
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and Elser 2002). This abstraction of biological complexity down to the elemental level 

allows for a reduction of that complexity into a finite number of traits of interest. 

Additionally, because the stoichiometry of protoplasmic life is somewhat common, ES 

uses a common currency for which researchers can explore patterns across taxa, as well 

as fundamental links between ecosystem-level processes and phenotypic evolution (Elser 

and Hamilton 2007). Given that the supply of elements in the environment is often highly 

variable both spatially and temporally (Schlesinger 1997), ES is a valuable, ecologically-

explicit framework from which to examine phenotypic evolution. 

Most studies examining evolution from an elemental perspective have focused on 

examination of interspecific elemental variation and the life history differences between 

species that may underlie this variation (e.g., Elser et al. 1996; Quigg et al. 2003; Woods 

et al. 2004). While these studies have provided a cornucopia of empirical evidence for 

phylogenetic diversification of organismal stoichiometry, intraspecific variation within 

populations in stoichiometry is often ignored. Such lack of attention to intraspecific 

stoichiometric variation makes the paradigm incompatible with evolutionary biology. 

That is, there is no provision for the potential of organismal stoichiometry to evolve 

(Jeyasingh et al. 2014). Recent studies have shown that organismal stoichiometry does 

vary within populations, often as much or greater than the variation between species 

(Watts et al. 2006; Bertram et al. 2008; González et al. 2011; El-Sabaawi et al. 2012). 

The sources and mechanisms that underlie this variation, however, have thus far not been 

explicitly elucidated.  

In sexual organisms, sexual dimorphism is a significant source of intraspecific 

variation. The sexes, despite sharing the same genome and habitat, are often highly 
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divergent in their phenotypic characteristics. Often, sexual dimorphism is manifested as 

exaggerated male secondary sexual traits (e.g., deer antlers, beetle horns, peacock 

feathers). These traits are the result of strong directional sexual selection, and males 

possessing greater trait values are often the most successful at acquiring mates 

(Andersson 1994). Additionally, theoretical models suggest that these traits are costly to 

build and maintain, and are tightly coupled with individual variation in quality (i.e., 

condition dependence; Zahavi 1975; Andersson 1986, 1994; Rowe & Houle 1996). In 

addition to variation in male quality due to genetic variation, individual condition, and by 

extension exaggerated trait values, are strongly influenced by the environment (Cotton et 

al. 2004; Kokko et al. 2006). It follows that sex-specific fitness optima, along with the 

substantial cost of exaggerated traits, should result in sex-specific nutritional demands 

and divergent strategies to meet those demands (Morehouse et al. 2010). Because 

exaggerated traits represent incredible phenotypic divergence between the sexes and are 

hypersensitive to environmental heterogeneity, a focus on the interaction between 

ecology and the evolution of these traits can provide useful insights into the mechanisms 

that underlie sex-specific evolutionary trajectories. Indeed, a complete understanding of 

population diversification and speciation necessitates exploration into the interactions 

between sexual selection and environmental heterogeneity (Maan and Seehausen 2011).  

Questions 

 To address, on the elemental level, the eco-evolutionary mechanisms underlying 

sexual dimorphism and selection, some important questions must be explored. First, do 

the sexes differ in their elemental demands? Second, are sex-specific elemental demands 
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influenced by environmental heterogeneity in resource supply? Third, are such potential 

sex-specific differences in demand and response to the environment manifested at the 

levels of elemental acquisition, assimilation, and/or allocation? Fourth, how do these 

nutrient processing strategies change as organisms sexually mature? Finally, are there 

population-level consequences of environmental heterogeneity in elemental supply on 

various aspects of mating biology?  

The above questions are addressed in Chapters 1-3 of this dissertation. In these 

chapters, I explore the effects of just one elemental parameter, phosphorus (P), on sexual 

dimorphism and selection in the freshwater amphipod genus Hyalella. Amphipods in the 

genus Hyalella are an ideal model for testing aforementioned predictions for two reasons. 

First, Hyalella males possess remarkably exaggerated, condition-dependent claw-like 

appendages called posterior gnathopods (Cothran and Jeyasingh 2010). Those individuals 

possessing larger posterior gnathopods relative to body size enjoy higher mating success 

(Wellborn 1995; Wellborn and Bartholf 2005; Cothran 2008; Cothran et al. 2010). 

Second, the distribution of Hyalella includes the majority of freshwater ecosystems 

throughout North America (Bousfield 1958), indicating that Hyalella amphipods likely 

experience a wide spectrum of spatiotemporal variation in elemental supply. Male 

posterior gnathopod expression has been shown to be hypersensitive to environmental 

phosphorus (P) supply, relative to similar, non-sexual traits (Cothran et al. 2012).  

A major reason for the focus on P is that this element is important for many 

biological structures (Westheimer 1987). Higher P content has been hypothesized to 

confer to higher growth rates, due to an increased concentration of P-rich rRNA within 

growing organisms (Elser et al. 1996; Sterner and Elser 2002). Additionally, P supply 
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varies both within and across aquatic ecosystems and is increasing drastically in many 

parts of the world due to human activities (Smil 2000; Wetzel 2001; Schindler et al. 

2008; Hale et al. 2013). Furthermore, changes in P supply invoke gene-by-environment 

interactions in fitness-relevant traits (Jeyasingh and Weider 2005; Jeyasingh et al. 2009), 

affect organismal P and C use (Frisch et al. 2014; Roy Chowdhury et al. 2014), result in 

widespread transcriptional changes (Jeyasingh et al. 2011; Roy Chowdhury et al. 2014; 

2015), and are known to influence microevolutionary trajectories (Weider et al. 1997, 

2008; Frisch et al. 2014), making P supply an important parameter for determining 

organismal condition. 

The final chapter of this dissertation, Chapter 4, revisits the first question posed 

above—is there sexual dimorphism in elemental demand?—and explores Hyalella sexual 

dimorphism in elemental demand in multiple elemental dimensions. Although we 

observed substantial effects of P supply on various aspects of Hyalella biology, a focus 

on just one element potentially masks the importance of trace elements, and the 

interactions among elements, in the mechanisms underlying sexual dimorphism and 

sexual trait variation. Considering that there are ~25 elements with known biological 

functions (Frausto da Silva and Williams 1991), a limited focus on one or a few of these 

elements precludes a complete understanding of biological processes at the elemental 

level, and indeed may result in a ‘black box-ing’ of many important interactions between 

ecology and phenotypic evolution. Given that the biogeochemical cycles of many 

elements are rapidly changing due to anthropogenic activities, knowledge gained from a 

complete stoichiometric view of ecology and evolution is potentially critical for an 

understanding of biological diversity in the Anthropocene.  
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Abstract 

Understanding the evolution of sexually dimorphic traits requires knowledge of 

the genetic and environmental sources of variation. However, we know surprisingly little 

about how the sexes differ in their responses to environmental nutrient supply. Here, we 

investigated how phosphorus (P) availability, a key metric of eutrophication, affects body 

composition in each sex of two Hyalella amphipod species. We also examined whether 

differences in food preference and acquisition are responsible for observed variation in 

body P. We discovered environmentally-driven changes in body P that were dependent 

on both species and sex. In both species, males contained less P when raised in low-P 

laboratory conditions compared to high-P field environments, while females exhibited no 

significant differences. Importantly, this difference was greater in the species that is 

known to have larger sexual traits and higher growth rates. Variation in P content was not 

due to differences in acquisition of P because both sexes preferred high-P food and 

consumed it at a similar rate. Our study illuminates potentially important sex- and 

species-specific evolutionary consequences of rapid alterations to P availability due to 

cultural eutrophication.   
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Introduction 

Human activities have strongly impacted many ecosystems throughout the world. 

Aquatic ecosystems have been particularly affected by cultural eutrophication caused by 

agricultural activity. The advent of artificial fertilizers has played a pivotal role in human 

population growth (Smil, 1999), leading to profound environmental alterations (Smil, 

2000). Notably, synthetic phosphorus (P) fertilizer has been used to augment global 

agriculture for the past 150 years (Brown, 2000). Consequent runoff of P into lakes is a 

major cause of cultural eutrophication (Schindler et al., 2008). A common effect of 

excessive P loading is the increase in P content of seston (i.e. planktonic living and non-

living matter; Hessen et al. 2002) which can alter the nutrition of aquatic consumers 

(Sterner & Elser, 2002). These changes in P content of consumer diet alter the 

development of traits, often with fitness consequences ( Jeyasingh and Weider 2005; 

Bertram et al. 2006; Boersma and Elser 2006; Jeyasingh and Weider 2007; Bertram et al. 

2009; Jeyasingh et al. 2009; Cothran et al. 2012). 

When examining the fitness consequences of nutrient supply, it is important to 

examine intraspecific differences in responses to the environment. Arguably the greatest 

source of intraspecific variation is sexual dimorphism. Sexual dimorphism allows the 

sexes to use different traits or enhancements of traits to employ different reproductive 

strategies or, less commonly, to decrease competition by exploiting different resources 

(Shine 1989; Andersson 1994). Sexual dimorphism implies differences in the material 

composition of the sexes, and thus they should have distinct nutritional demands 

(Morehouse et al., 2010). Numerous studies have documented striking differences in the 
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material composition of the sexes (Tarnopolsky and Saris 2001; Raymond and 

Himmelman 2004) and such compositional differences are often reflected in food choice 

(Clarke et al. 1998; Ruckstuhl 1998; Beck et al. 2007; Maklakov et al. 2008).  

 Because P supply is much lower than P demand in most biota (Westheimer, 

1987), and P availability is positively related to the expression of sexually dimorphic 

traits (Bertram et al. 2006, 2009; Cothran et al. 2012), it is likely that P is a limiting 

resource that underlies honest signaling of male quality (Morehouse et al. 2010). 

Furthermore, previous studies have shown that P influences female oogenesis 

(Visanuvimol & Bertram, 2010), resulting in higher P content in females relative to males 

(Markow et al., 1999). Nevertheless, we know very little about sex-specific responses to 

P supply. The P content of the sexes could differ constitutively, plastically, or show no 

difference, and body P content should be driven by the ability of individuals to acquire 

and process P. Differences in body P content and P processing physiology should have 

dramatic effects on fitness optima of the sexes, causing one sex to be more dramatically 

affected by environmental heterogeneity than the other. Finally, while P is important for 

sexual traits, it also is important for other traits such as growth (Elser et al., 1996) that 

can be under different patterns of natural selection, especially in aquatic invertebrates 

(e.g., Wellborn et al. 1996). Thus, sexual differences in P content and responses to P 

supply should vary depending on the life history differences between closely related 

species.  

Amphipods in the genus Hyalella are an ideal system to examine sex differences 

in P composition and sensitivity to P supply. Because of their vast geographic range, 

these amphipods inhabit most freshwater ecosystems, and experience a wide variety of 
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nutritional environments (Bousfield, 1958). Laboratory experiments have shown that 

Hyalella obtain most of their nutrition by grazing on periphyton such as diatoms and 

bacteria, although much is still unknown about their diets in the wild (Hargrave, 1970). 

Hyalella amphipods in North America represent a complex of undescribed species that 

vary in morphology and life history (Wellborn et al. 2005; Witt et al. 2006; Wellborn and 

Broughton 2008). The distribution of species in the complex is based primarily on the 

strength of fish predation (Wellborn, 1994a). Large ecomorph species live in habitats 

with little or no fish predation. Larval odonates are common predators in these habitats 

and these predators typically prefer smaller prey and thus select for higher growth rates 

(Wellborn 1994a, b), which is a P-demanding trait (Elser et al. 2003). In contrast, small 

ecomorph species are found in habitats with fish, which prefer larger prey, and thus select 

for lower growth rates. 

Large and small ecomorphs also differ in patterns of sexual selection. Although 

larger males that possess larger posterior gnathopods (PGs; large, claw-like appendages) 

are generally more successful in obtaining mates, this pattern is much stronger in the 

large ecomorph than in the small ecomorph (Wellborn, 1995, 2000; Wellborn & Bartholf, 

2005). The PG is more sensitive to low P availability than other morphological traits 

(Cothran et al. 2012). Despite our knowledge of how P availability affects PG expression, 

it is unclear whether this translates into sex differences in P content. 

 In this study, we examined how each sex of Hyalella amphipods responds to 

changes in environmental P availability and whether food preferences and differences in 

acquisition underlie these responses. Specifically, we tested for sex-specific differences 

in body P content, with the prediction that males would be higher in P content than 
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females because large PGs are likely large resource sinks like other sexual traits (Lincoln, 

1992; Andersson, 1994; Emlen & Nijhout, 2000). Second, we tested whether 

environments with different concentrations of P induced sex-specific plasticity in body P 

content. Because males were found to be more sensitive in their morphological response 

to changes in P supply (Cothran et al. 2012), we predicted that such sensitivity would be 

reflected in P content to a greater extent in males than females. If males are more 

sensitive to environmental P than females, then we predict that males will show greater 

preference for P-rich food or acquire P at a faster rate compared to females to optimize 

their resource intake. Our study tested these predictions in two amphipod species with 

different life histories, one with rapid growth and another with selection against rapid 

continual growth (Wellborn, 1994a, 1994b; Wellborn et al., 2005; Wellborn & 

Broughton, 2008). Because P is important for growth, we further tested the prediction 

that P content of males from the large ecomorph, which exhibits prolonged, rapid growth 

should respond more strongly to dietary P supply.  

Materials and Methods 

Survey of P composition in the bodies of field-collected and lab-raised amphipods 

 Our first goal was to quantify the body P composition of the sexes for the two 

ecomorphs collected directly from field environments or collected in field and then raised 

in laboratory environments. Both of the field environments (Lake Thunderbird, Cleveland 

County, OK; Lake LeBoeuf, Erie County, PA, USA) are classified as eutrophic lakes 

with total phosphorus measurements exceeding 40μg/L ( OWRB 2005; Butkas and 

Ostrofsky 2006). Eutrophic lakes have carbon:phosphorus ratios typically lower than 100 
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(Sterner et al., 2008), indicating that these lakes have high P availability, although we did 

not directly measure P availability in the lakes. It is well known that the P content of 

autotrophs tracks inorganic P supply especially in aquatic ecosystems (Elser et al., 2000). 

Thus, it is likely that field-collected amphipods were experiencing a high P diet.  

Large ecomorph amphipods (species OK-L in Wellborn and Broughton 2008) 

were collected from Lake Thunderbird in October 2011 and raised in the laboratory using 

10-L plastic tubs containing water treated with Tetra Aquasafe® (Tetra Werke, Melle, 

Germany) and spiked with 1000 μM NaNO3 and  5μM KH2PO4 to promote periphyton 

growth. Matala® aquatic filter media were added to each tank to provide cover. Animals 

were housed in a temperature-controlled room (mean ± SD = 20 ± 1°C) with a 16:8 

day:night cycle. The animals were fed twice weekly with a 2:1:1 mix of ground rabbit 

pellets, Tetramin® fish flakes (Tetra Werke, Melle, Germany), and Spirulina (Nutrex 

Hawaii Inc., Kailua-Kona HI, USA) that was suspended in Bacto agar. The 

carbon:phosphorus ratio of periphyton in laboratory tanks (mean ± SD = 611 ± 229), and 

agar-based pellets (mean ± SD = 351.6 ± 30.0) was high, indicating a P-limited diet for 

amphipods with body stoichiometry (mean ± SD) of 140.6 ± 31.3 (Frost et al., 2006). Our 

eutrophic field environments, however, likely exhibit C:P ratios of less than 100 (Sterner 

et al., 2008). Stock animals were raised in the laboratory for 7 months to ensure that only 

individuals born and raised in the laboratory were used for elemental analysis. To assess 

the elemental composition of field animals, additional large ecomorphs were collected 

from Lake Thunderbird in April 2012.  

Small ecomorph amphipods (species C in Wellborn and Cothran 2004) were 

collected from Lake LeBoeuf (Erie County, PA, USA) in June 2011 and raised in a 90-L 
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outdoor wading pool. These animals were subsequently overwintered in a single 1000-L 

cattle watering tank filled with 800 L of well water and then placed back into a 90-L 

wading pool the following spring. Thus, these animals had been exposed to wading pool 

conditions for several generations and elemental composition was assayed on animals 

that were born and raised in the wading pool. The pool was filled with approximately 80 

L of well water, inoculated with algae from Lake LeBouef, and provided with 

approximately 13 kg of washed sand. We added 0.968 µM P (as KH2PO4), and 53.55 

µM N (as NaNO3) to promote algal growth. To assess the elemental composition of field 

animals, additional small ecomorphs were collected from Lake LeBoeuf in June 2012.  

We acknowledge that the two ecomorphs were raised in very different laboratory 

conditions prior to estimation of body elemental content. Large ecomorph amphipods 

were housed indoors in multiple containers, while small ecomorphs were reared in a 

single, outdoor wading pool. Thus, direct comparisons between the ecomorphs in P 

content should be interpreted with caution because it is likely the P environments vary 

between the two species. However, our design allows for robust comparisons of P content 

within ecomorphs (i.e., sex-specific, and environment-specific effects).  

 To assess body P content, all amphipods were sexed at 4X magnification using a 

Swift SM90 stereo microscope and then dried individually in a 60°C incubator for 48 hrs. 

To control for the effect of female reproductive stage on body elemental composition, 

only females with clearly visible eggs in their ovaries were selected. This ensured that all 

females used were undergoing the same stage of oogenesis, a particularly P-intensive 

process for females (Markow et al., 1999, 2001). Twenty-three large ecomorph males, 24 

large ecomorph females, and 8 of each sex of small ecomorph amphipods from each 
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environmental group (i.e. lab and field) were analyzed for phosphorus content. A 

modified sulfuric acid digestion method (APHA, 1992) was used to estimate %P, and 

verified with a spinach standard (NIST 1570a).  

Because direct species comparisons cannot be made, we ran separate two-way 

ANOVAs of sex and environment for each species. Statistical analyses were conducted 

using R 2.14.1 (R Foundation for Statistical Computing). 

Food-choice experiment 

To determine the extent to which species- and sex-specific variation in P 

acquisition drives differences in body P composition, we gave amphipods a choice 

between high-P (HP) and low-P (LP) food. All of the food-choice experiment trials were 

performed at the University of Pittsburgh. Small ecomorph and large ecomorph animals 

were collected from Lake LeBoeuf and Lake Thunderbird, respectively. Both ecomorphs 

used in the following experiment were raised in the laboratory under identical conditions, 

in 14-L tubs filled with carbon-filtered and UV irradiated water. Sand was provided as a 

substrate while waterweed (Elodea sp.) and fake macrophytes made of polypropylene 

rope served as refugia for amphipods. The tubs were kept in a temperature-controlled 

(mean ± 1 SD: 22.2 ± 0.2) room with a 16:8 day:night cycle. Amphipods were fed a 3:1 

mixture of ground Tetramin® fish flakes and alfalfa (Spring Valley, Bohemia, NY, 

USA), supplemented with 0.5 grams of Spirulina and 20 mL of high-phosphorus 

Scenedesmus algae suspended in 20 mL Bacto®-agar solution three times a week. Large 

and small ecomorphs were kept under laboratory conditions for at least 3 and 7 months, 

respectively, prior to behavioral testing. Given a time to maturity of ~ 21 d, this assured 
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that all adults tested were descendants of wild-collected adults and raised under identical 

laboratory conditions (Wellborn & Bartholf, 2005).  

For each sex-by-ecomorph combination we gave groups of five amphipods a 

choice between HP and LP foraging stations and quantified the proportion of each 

foraging station consumed by the amphipods. To account for the large variation in size in 

the large ecomorph and avoid biases due to exploitative intraspecific competition 

(Wellborn, 1994b), we also tested for size effects on foraging preferences using two size 

classes for each sex, using head length an indicator of body size [mean ± 1 SD mm]: 

small males: 0.58 ± 0.07, small females: 0.59 ± 0.06, large males: 0.83 ± 0.09, large 

females: 0.83 ± 0.063. For the large ecomorph, we performed 17 foraging trials for each 

sex. For the small ecomorph, we performed 7 and 12 foraging trials for females and 

males, respectively. 

Experimental units were 48-ml plastic cups containing carbon-filtered, UV-

irradiated water, and washed play sand. Each cup housed two 1-cm2 Nitex mesh foraging 

stations (mesh size = 1 mm) containing green algae (Scenedesmus sp.) grown under 

conditions with either low (5.94 μM P) or high added inorganic phosphorus (59.37 μM P) 

concentrations (Kilham et al., 1998) and then mixed with 20 mL of Bacto®-agar. These 

manipulations assured that P availability between our two treatments was much different. 

To confirm that our algae manipulations were effective, we analyzed carbon using an 

elemental analyzer (Elementar, Hanau, Germany) and phosphorus via sulfuric acid 

digestion. Algae reared under different P conditions differed in %P content (mean ± SD; 

LP, 0.044% ± 0.012%; HP, 0.061% ± 0.008%; t5=1.989, P=0.05), but not in %C content 

(LP, 39.6 ± 0.9%; HP, 39.1% ± 0.5%; t5=0.746, P=0.489).  
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Amphipods were starved for 4.5 to 6 h in 48-mL plastic cups filled with filtered 

water to clear their guts (Hargrave, 1970). Each trial was terminated after approximately 

40 to 60 percent of the total food available was foraged. Foraging stations were removed 

and digitized using an Olympus SZX16 microscope fitted with a DP25 digital camera 

(Olympus America, Center Valley, PA). We quantified the proportion of each food type 

consumed by counting the number of empty squares on the mesh and dividing by the 

total number of squares. Although there was some variation among foraging stations in 

the number of 1 mm mesh squares, this did not differ statistically between food types 

(large ecomorph: paired t33 = 1.878, P = 0.07; small ecomorph: paired t15 = 1.3, P = 

0.215). Eight control foraging arenas, without amphipods, were set up to confirm that 

absence of food from the squares was due to consumption by amphipods. 

Separate experiments were performed for the large ecomorph and small 

ecomorph; therefore, we analyzed the data for each ecomorph separately. For each 

ecomorph-by-sex combination (and for size in large ecomorph), we used a Wilcoxon 

signed-rank for paired samples to test whether amphipods preferred HP algae over LP 

algae. We then calculated the difference between the proportion of LP and HP food 

consumed in each replicate and applied a Mann-Whitney U-test to test for sex 

differences, and for the large ecomorph size differences, in the magnitude of preference 

for HP food. Finally, for each experimental unit we divided the number of HP squares 

consumed by the number of days amphipods foraged to assess acquisition rates (number 

of squares consumed per day) of HP algae. We used a Mann-Whitney U-test to test for 

sex differences, and for the large ecomorph size differences, in acquisition rates.  All 

statistical analyses for the foraging experiment were conducted using IBM SPSS 



 
 

24

Statistics 20. 

Results 

P content of field-collected and lab-raised amphipods 

For the large ecomorph, we found that body P was affected by sex, environment, 

and their interaction (Table 1). When we compared the two environments, we found that 

male body P decreased by 26% when raised in the laboratory compared to animals 

collected from the field, whereas females did not differ (Fig 1a). When we compared the 

two sexes, we found that females had higher body P when raised in the lab but there was 

no difference between the sexes in %P when collected from the field.  

For the small ecomorph, we found that body P was affected by the environment, 

but not by sex or the sex-by-environment interaction (Table 1). Across both sexes, %P 

decreased by 7% when amphipods were reared in the laboratory compared to amphipods 

collected from the field (Fig. 1b).  

We acknowledge that our sample size for the small ecomorph is small (N=32). 

Therefore we conducted a post-hoc power analysis using a small, medium, and large 

effect size (0.2, 0.5, and 0.8, respectively). This power analysis yielded powers of 0.194, 

0.779, and 0.992 for the small, medium and large effect sizes, respectively. The effect 

size for the large ecomorph was 0.569, falling between the medium and large effect sizes 

in the power analysis. Given this information, we had a sufficient small ecomorph sample 

size (giving us a power > 0.8) to uncover an effect of similar magnitude to that observed 

in the large ecomorph. 
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Food-choice experiment 

For both ecomorphs, males and females strongly preferred HP algae to LP algae, 

as did both size classes of the large ecomorph (Table 2; Fig. 2). However, the strength of 

this preference did not differ between the sexes in either ecomorph (small ecomorph: Z = 

-0.844 P = 0.398; large ecomorph: Z = -0.753, P = 0.452) or size class in the large 

ecomorph (females: Z = -1.092, P = 0.275; males: Z = -0.2, P = 0.842).  

We also found no evidence for sex differences in acquisition rates of HP food 

(small ecomorph: Z = -1.504 P = 0.152; large ecomorph: Z = -0.919, P = 0.663). 

However, large females of the large ecomorph consumed HP food at a higher rate than 

small females (females: Z = -2.209 P = 0.027); a similar pattern was found in males, 

although it was not significant (Z = -1.66, P = 0.109). For both large ecomorph sexes, 

large amphipods consumed on average four more HP food squares per day than small 

amphipods (mean ± 1 SD squares consumed per day: large females = 12 ± 3, small 

females = 8 ± 3, large males = 11 ± 6, and small males = 7 ± 3). Male and female small 

ecomorph amphipods consumed on average 5 ± 2 and 7 ± 3 HP food squares per day, 

respectively. 

Discussion 

We found that two Hyalella ecomorphs with different life histories exhibited 

divergent sex-specific plasticity in P content in response to rearing environment. 

Specifically, large ecomorph males exhibited plasticity in P content in response to rearing 

conditions (i.e. lab-reared or field-caught) while no such plasticity was observed in large 

ecomorph females or either sex of the small ecomorph. In addition, a food choice 
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experiment revealed that such sex-specific environmental responses do not cause 

different foraging behaviors. Although interspecific variation in body stoichiometry is 

often explained by broad phylogenetic differences (Fagan et al., 2002; Jaenike & 

Markow, 2003; Woods et al., 2004), the two ecomorphs used in this study were once 

considered the same species, Hyalella azteca, until recent molecular and life history 

studies uncovered substantial species diversity within the group (Witt et al. 2006; 

Wellborn and Broughton 2008). This suggests that even species that are morphologically 

quite similar can have divergent and environmentally responsive P content. 

 Phosphorus content of both species of amphipods was dependent on the 

environment. Amphipods raised in the laboratory fed primarily on periphyton growing in 

the tanks, supplemented with agar-based food pellets that were low in P, indicating a P-

limited environment. On the other hand, both lakes from which animals were sampled are 

currently recognized as eutrophic (OWRB 2005; Butkas and Ostrofsky 2006), indicating 

high availability of P, and C:P ratios of autotrophs typically less than 100 (Sterner et al., 

2008). Although we did not directly quantify P content of periphyton from these lakes, it 

is a safe assumption that our lab environment, with C:P ratios between 350-600, was 

considerably P poor than these eutrophic lakes. Thus, it is likely that variation in P 

supply, and associated shifts in composition of macromolecules (e.g., classes of 

carbohydrates, lipids) in the diet of aquatic consumers (Jeyasingh et al., 2011) 

contributed to differences in elemental composition between laboratory-reared and field-

caught amphipods. Furthermore, we acknowledge that other sources of variation (e.g., 

temperature, sunlight, community structure) in sex specific responses in P content to 

altered environments should be important, because our laboratory environment for the 
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small species involved outdoor mesocosms. However, the design of this study to explore 

sex specific variation precludes us from isolating such sources of variation.   

Species-level differences in how P content of the sexes responds to changes in 

dietary supply of P may be due to disparate patterns of sexual selection, yet further study 

is warranted that directly compares species collected from lakes with known resource C:P 

and reared under the identical laboratory conditions. In the large ecomorph, larger males 

have higher mating success, whereas this pattern is weaker in the small ecomorph and 

countered by positive size-selective predation by fish (Wellborn 1994a; Wellborn 1995; 

Wellborn and Bartholf 2005). Sexual selection on male body size in amphipods, which 

have indeterminate growth, is a combination of selection on growth rate and age. Growth 

rate is strongly associated with P content within organisms as P is a major component of 

the rRNA necessary to fuel protein synthesis (Elser et al. 1996). Therefore, we might 

expect higher P demand in large ecomorph males than small ecomorph males, which may 

explain the sensitivity of large ecomorph males to changes in P availability. Note that 

counter to predictions (Elser et al., 1996), we found that fast growing large ecomorph 

amphipods had lower P content. It is likely that the size-dependency of organismal P 

content drives this effect, because P content decreases with an increase in size as the 

fraction of rRNA in the body decreases relative to other P-rich molecules (Gillooly et al., 

2005).  

 In addition to differences in growth rates, the importance of exaggerated sexual 

traits and their demand for P may explain ecomorph differences in sensitivity to the 

nutrient environment. Large PGs increase mating success in both ecomorphs, however, 

only large ecomorph males must also continue to invest P to fuel growth after maturation 
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because of selection of smaller individuals by their predators and the resource 

competition advantages of large body size (Wellborn 1994a, 2002). Large ecomorph PGs 

also have steeper allometric slope than small ecomorph PGs probably because of the 

greater returns in mates for investment in PGs at larger size classes in the large ecomorph 

(Wellborn 1995; Wellborn and Bartholf 2005; Bonduriansky 2007; Cothran and 

Jeyasingh 2010). Further, a previous study by Cothran et al. (2012) has shown that PG 

expression is sensitive to low P availability.  The greater demand for P to fuel high 

relative growth rates of PGs combined with competing demands for increasing body size 

may explain why large ecomorph males are sensitive to changes in the nutrient 

environment.   

 While body P analysis revealed sex-specific responses to rearing environment in 

the large ecomorph amphipods, we found no sex differences in preference or acquisition 

rate when amphipods were offered foods of different P content in either ecomorph (Fig. 

2). Both sexes in each ecomorph preferred high-P to low-P food and these results were 

consistent across size classes in the large ecomorph. We did find significant differences 

in acquisition rates between the two ecomorphs, with large ecomorph amphipods 

acquiring food at a higher rate. These differences are to be expected, however, given the 

significant size differences between the ecomorphs, and previous work showing that the 

large ecomorph consumes algal resources at a higher rate (Wellborn, 1994b). These 

results show that amphipods are able to select food based on relative P content. The 

ability to choose food based on P content has been observed in Daphnia and is believed 

to be an important in mitigating stoichiometric imbalances between food and consumer 

(Schatz & McCauley, 2007). However, this ability is not sex-dependent, suggesting that 
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sexual dimorphism is not driven by differential ability to discern food based on P content.  

Phosphorus availability has been shown to have many effects on the structure and 

biochemistry of algae (Tillberg & Rowley, 1989; Theodorou et al., 1991; Theodorou & 

Plaxton, 1993), and it is possible that the amphipods are showing preference for algal 

characteristics resulting from increased phosphorus. Further study is needed to examine 

the specific algal characteristics preferred by amphipods.  

In summary, we found that closely related, and morphologically similar 

ecomorphs have divergent body P content. Further, P content was plastic but only in 

males of the large ecomorph while the P content of small ecomorph males, and females 

of both ecomorphs were not plastic. However, further studies are warranted in which 

lineages from multiple species are subjected to identical environmental treatments to 

examine plasticity in P content across species. Variation in P content is most likely driven 

by differences in the life history of the ecomorphs and sexes studied. Further, differences 

in body P content were not explained by differences in food choice or acquisition of P, 

and are most likely a function of differential processing of P. Elucidating the mechanisms 

underlying sex-specific responses to changes in the supply of key elements, such as 

phosphorus, should reveal much about how the environment can affect the evolution of 

freshwater organisms that inhabit environments experiencing major shifts in key abiotic 

parameters such as phosphorus loading.  
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Tables 

Table 1. Two-way ANOVA results showing the effects of environment, sex and their 

interaction on %P. F statistics, degrees of freedom and P-values are reported for each 

ecomorph. Bold values indicate significance at P<0.05 

 
Large ecomorph Small ecomorph 

Source F df P F df P 

Environment       

 7.113 1,90 0.009 12.788 1,28 0.001 

       

Sex       

 41.503 1,90 <0.001 0.994 1,28 0.327 

       

Environment*sex       

 30.552 1,90 <0.001 1.068 1,28 0.310 
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Table 2. Foraging preference results comparing the proportion of high P and low P algae 

squares consumed for each sex and also size class for the large ecomorph. In all cases, 

more high P squares were consumed than low P squares. Wilcoxon sign-rank Z and P-

values are presented. Bold values indicate significance at P<0.05 

Ecomorph Sex Size class Z P 

Large Female Small 2.94 0.003 

  Large 2.032 0.042 

     

 Male Small 2.923 0.005 

  Large 2.371 0.018 

Small     

 Female  2.521 0.012 

 Male  2.366 0.018 
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Figures 

Figure 1: Large (a) and small (b) ecomorph responses in male (filled circles) and females 

(open circles) in %P. Markers represent means and error bars ±1 SE 
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Figure 2: Proportion of high phosphorus (white bars) and low phosphorus (gray bars) 

foraging stations consumed by amphipods. Results for both sexes of a) large ecomorph 

and b) small ecomorph ar presented. The large ecomorph species was further split into 

small and large size classes. Bars represent means ±1 SE. 
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Abstract 

Although sexually dimorphic traits are often well studied, we know little about sex-

specific resource use strategies that should underlie such dimorphism. We measured sex-

specific responses in acquisition and assimilation of two fundamental resources, carbon 

(C) and phosphorus (P) in juvenile and mature Hyalella amphipods given low and high 

supplies of inorganic phosphate, analogous to oligotrophic and eutrophic conditions, 

respectively. Additionally, we quantified allocation of resources to sexual traits in males. 

Dual radiotracer (14C and 33P) assays revealed substantial age- and sex-specific 

differences in acquisition and assimilation. Furthermore, a phenotypic manipulation 

experiment revealed that amphipods fed low-P food allocated more C to all traits than 

those fed high-P food. Importantly, we found that amphipods preferentially allocated 

more C to the development of a sexually selected trait (the posterior gnathopod), 

compared to a serially homologous trait (the fifth pereopod) not under sexual selection. 

Substantial differences in how the sexes use fundamental resources, and the impact of 

altered nutrient supply on such differences illuminate sexual dimorphism at the lowest 

level of biological organization. Such information will be important in understanding 

how sex- and age-specific life history demands influence nutrient processing in a 

biosphere characterized by rapidly changing alterations to biogeochemical cycles.    
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Introduction 

 Sexual dimorphism accounts for a large portion of the phenotypic variation 

observed within species. Despite a similar genome, sexes differ extensively in behavior, 

morphology, and physiology. Often sexual dimorphism is manifested as the exaggeration 

of traits (e.g., deer antlers or widowbird tails; Andersson 1994). Exaggerated traits have 

long been thought to be costly, driving many sex-specific behavioral and physiological 

processes (Andersson, 1994; Emlen, 2001; Lincoln, 1992). Further, the expression of 

these exaggerated traits is often hypersensitive to organismal condition, defined as the 

pool of resources allocable to traits (Cotton et al., 2004; Rowe and Houle, 1996). This 

pool of allocable resources is necessarily influenced by both the environmental supply of 

those resources and genetic and/or plastic variation in acquiring, assimilating, and 

allocating resources, resulting in potential tradeoffs between sexual and non-sexual traits. 

Because sexually dimorphic traits are partially the result of sex-specific selection during 

development, studies on sexual dimorphism should not preclude potential ontogenetic 

effects (Badyaev, 2002; Badyaev, 2004). Variation in selective pressures due to sexual 

dimorphism has been theorized, and empirically shown, to elicit sex- and age-specific 

strategies for trade offs between life history traits (Bonduriansky et al., 2008; Hunt et al., 

2004; Penn and Smith, 2007). With regard to nutrient use, however, little is known about 

sex-specific responses to changes in the supply of resources in the environment, and 

whether those responses vary as organisms develop (Morehouse et al., 2010; Snell-Rood 

et al., 2015).  
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 The sexes can differ markedly in elemental composition, with these differences 

changing across different life stages (Back and King, 2013; Goos et al., 2014; Gorokhova 

and Hansson, 2000; Markow et al., 1999). Thus, supply of necessary elements in the 

environment could invoke sex- and/or age-specific element use strategies, particularly in 

species exhibiting high degrees of sexual dimorphism. For example, in many deer 

species, males exhibit age- and sex-specific foraging and nutrient use strategies, 

particularly in bone minerals (e.g., calcium and phosphorus), linked primarily to the 

demands of antler production (Atwood and Weeks, 2002; Banks et al., 1968; Cowan et 

al., 1968; Stephenson and Brown, 1984). The consequences of these sex-specific use 

strategies (e.g., seasonal osteoporosis during antler development) may be mitigated by the 

environmental supply of the minerals comprising antlers. On the elemental level, 

variation in foraging and nutrient use strategies represents changes in the acquisition, 

assimilation, and allocation of elements. Acquisition, assimilation, and allocation are 

each sensitive to changes in elemental supply, which is variable in both space and time 

(Elser, 2003; Sterner and Elser, 2002). Given that human influences on the supply of 

most biologically important elements have been dramatic (Schlesinger, 1997), examining 

the age- and sex-specific consequences of such biogeochemical shifts is an important step 

toward our understanding of the material basis of sexual dimorphism as well as our 

understanding of microevolutionary shifts in response to global change.  

 Because exaggerated traits, which are generally condition-dependent resource 

sinks, are most often found in males, one would expect male acquisition and assimilation 

strategies to be more sensitive to changes in elemental supply. Additionally, selection on 

these exaggerated traits should drive greater allocation of important elements to sexually 
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selected traits compared to similar, non-sexual traits. Finally, the patterns observed in 

elemental processing are expected to change dramatically from juvenility to adulthood, 

and these shifts should be particularly noticeable late in ontogeny of males as they begin 

to mature and develop exaggerated, sexually selected traits.  

We used a sexually dimorphic amphipod species in the Hyalella azteca species 

complex (the species is undescribed and is in clade OK-L in Wellborn and Broughton 

2008) to examine potential sex- and/or age-specific effects of phosphorus (P) supply on 

acquisition and assimilation of P and carbon (C, representing ~50% of biomass; Sterner 

and Elser 2002), as well as the allocation of C to male sexually selected, claw-like 

appendages called gnathopods. This study focuses on the posterior gnathopods which are 

~15 times larger in males than females, and can account for up to 10% of male biomass 

(Wellborn, 2000). Previous studies have shown that the exaggeration of gnathopods 

occurs late in juvenility (Kokkotis and McLaughlin, 2002). In addition, (Goos et al., 

2014) have shown that females of our study species have higher P contents than males. 

Male P content, however, is more influenced by changes in dietary P supply (Goos et al., 

2014), which is likely the result of changes in gnathopod growth under limiting P supply 

(Cothran et al., 2012; Cothran et al., 2014). As such, we hypothesized that males would 

exhibit greater plasticity in their acquisition and assimilation of C and P under contrasting 

P-supply conditions. Second, we hypothesized that age should shift the patterns of both 

acquisition and assimilation of C and P as elemental demand should vary between 

juveniles and adults (Villar-Argaiz et al., 2002). Age-driven shifts were predicted to be 

more pronounced in males as they begin developing exaggerated traits. Third, because 

exaggerated male sexual traits are presumed to be large resource sinks (Lincoln 1992; 
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Andersson 1994; Emlen 2001), we hypothesized that biomass allocation to these traits 

would be greater than to similar non-sexual traits. Additionally, we hypothesized that 

variation in P availability would induce greater plasticity in biomass allocation toward 

sexual traits compared to non-sexual traits.  

Materials and Methods 

To accurately measure sex- and age-specific variation in acquisition and 

assimilation of elemental resources, we used 14C and 33P radioisotopes. While estimates 

of acquisition and assimilation are possible using techniques that do not employ 

radiolabeling (e.g., weighing food before and after feeding, measuring C:P in food and 

feces, etc.), this technique directly measures atoms of each element that have been 

consumed. Additionally, because these isotopes become incorporated into biological 

tissue, we can directly measure isotopic activity after ingestion as a surrogate of 

assimilation. We assessed biomass allocation to a sexually dimorphic trait by quantifying 

the amount of assimilated 14C in gnathopod tissue. In all experiments, P availability was 

manipulated by feeding amphipods either high-P (HP) or low-P (LP) leaf discs, which 

were radiolabeled with 14C and 33P. We digested all samples using an aqueous tissue 

solubilizer (Solvable, Perkin Elmer, Waltham, MA, USA), and measured radioactivity 

using a scintillation counter (LS 600SC, Beckman Coulter, Pasadena, CA, USA).  

 

Study animals and housing conditions   

Amphipods were collected from Ten Acre Lake in Oklahoma County, Oklahoma 
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(35°28’N, 97°15’W), and were housed in 5.7-L plastic tubs containing water treated with 

Tetra Aquasafe to dechlorinate the water (Tetra Werke, Melle, Germany). Washed pea 

gravel and aquatic filter media (Matala USA, California, USA) were added to each tub to 

provide substrate and refugia. Once each week, amphipod stock tanks were fed with one 

HP leaf. 

Manipulation of leaf P content 

Oak leaves were conditioned by soaking them in pond water in a 30-L plastic 

container for one month to allow natural periphyton growth. The container was kept 

indoors under natural light at 20-23°C, with constant aeration. After conditioning, the 

leaves were transferred to either HP (50 μM P) or LP (5 μM  P) COMBO medium 

(Kilham et al., 1998). The leaves were left in the medium for two weeks, under the same 

environment as the conditioning phase, before being used for experiments. Media was 

changed weekly to ensure a continual supply of elements. To verify that our phosphorus 

treatments altered P availability in the leaves, we quantified the P content of a sample of 

leaves that had been dried at 60°C for 48 h with a modified sulfuric acid digestion 

method (APHA, 1992) that was verified using a spinach standard (National Institute of 

Standards and Technology 1570a, Gaithersburg, MD, USA). Phosphorus content of the 

leaves was greater in the HP leaves than in LP leaves (mean ± 1 SD; HP: 0.123% ± 

0.033%, LP: 0.016% ± 0.009%; t4= 6.562, p= 0.003). Additionally, to verify that carbon 

content of the leaves was not significantly affected by our P treatments, we dried a 

sample of leaves and quantified %C using an elemental analyzer (varioMicro Cube, 

Elementar Americas, Mt. Laurel, NJ, USA). There was no difference in C content of the 

leaves between P treatments (mean ± 1 SD; HP: 48.03% ± 0.340%, LP: 49.123% ± 



 
 

49

0.920%; t4= -0.132, p=0.904). Because it is possible that variation in P supply may 

influence the content of another important element, nitrogen (N), in the leaves, we also 

measured %N using the same elemental analyzer. There was no difference in N content 

of the leaves between P treatments (mean ± 1 SD; HP: 2.50% ± 1.44%, LP: 1.35% ± 

0.13%; t4= 1.132, p= 0.459).  

Leaf radiolabeling 

Radioisotope assays allowed us to examine element use on a per-atom basis. By 

introducing radioactive isotopes of both C and P (14C and 33P) to live food, the isotopes 

are incorporated into biologically available pools. After ingestion by an organism, it is 

possible to observe both quantity of radioisotopes acquired and precisely to which tissues 

these resources are allocated. Inorganic radiotracers, such as the ones employed here, are 

introduced to consumers primarily through ingestion of autotrophic periphyton (Carman 

and Guckert, 1994). As such, our radioassays provided a robust test of both ingestive and 

post-ingestive elemental processing strategies. To introduce the radioisotopes into the 

periphyton on the leaves, we first added HP and LP leaf discs into separate jars filled 

with 25 ml of COMBO containing no nitrogen or phosphorus. Each jar contained ten 7-

mm leaf discs. We then added 0.925 MBq of 14C (as bicarbonate) and 1.3875 MBq of 33P 

(as orthophosphate) and placed each jar on an orbital shaker for 72 h. After this period, it 

was assumed that the periphyton on the leaves was radiolabeled uniformly (Hargrave, 

1970; He and Wang, 2006). To determine radioactivity in the leaves prior to feeding, we 

selected five leaf discs and then rinsed and transferred them to scintillation vials for 

quantification. 
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Are there age- and sex-specific differences in acquisition and assimilation of elemental 

resources in response to P supply? 

A total of 144 amphipods across two different life stages, late-stage juveniles 

(male and females both N=36; Fig. 1A) and adults (male and females both N=36, Fig. 

1B), from stock populations were used in radiotracer experiments. Age and body size are 

highly correlated in Hyalella amphipods (Kokkotis and McLaughlin, 2002), allowing us 

to clearly delineate age classes for our radioassays. Specifically, late-stage juveniles were 

identified as animals with a head length (a reliable indicator of body size; Edwards and 

Cowell 1992) of greater than 0.275 mm and less than 0.45 mm, and no egg development 

in the ovaries (immature females) or only slightly enlarged posterior gnathopods 

(immature males; Fig. 1A). Adult females were identified by egg development in the 

ovaries or developing embryos in the marsupium, while adult males were identified by 

fully enlarged posterior gnathopods (Fig. 1B). Since molt and female reproductive cycles 

are tightly linked in amphipods (Sutcliffe, 1992), we controlled for variation in egg 

development by selecting only females with embryos in early development (indicated by 

bright green, oval-shaped embryos) within their marsupium.  

Three days prior to radioassays, each amphipod was transferred to a separate 100-

ml glass jar filled with COMBO media (Kilham et al., 1998) with no added nitrogen or 

phosphorus. Individuals were then randomly assigned to treatments (HP or LP) and fed 

one HP or LP leaf disc (7 mm diameter that did not include any major veins) daily for a 

two-day period to acclimate the amphipods to the food used in the experiment. Before 

feeding the amphipods radiolabeled food, all amphipods were starved for 24 h to clear 

their guts and to maximize foraging activity (Hargrave, 1970). Amphipods were then fed 
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either one HP or LP radiolabeled leaf disc. Because the same animals could not be used 

to assess acquisition and assimilation of C and P, we used two groups of amphipods to 

compare age- and sex-specific responses in acquisition and assimilation to P supply. We 

defined acquisition as the intake of elements in a given period, before those elements 

have been absorbed through the gut wall. Assimilation is defined as those elements 

absorbed through the gut wall into body tissue, and allocation as the amount of atoms 

invested in a trait after assimilation.  

To compare acquisition among the experimental groups, amphipods (late-stage 

juveniles: male and female N=16, and adults: male and female N=16) were allowed to 

feed on the radiolabeled leaves for 2 h (less than average published estimates of gut 

passage time in amphipods [~3.5 hours, on average]; Hargrave 1970; Neumann et al. 

1999; Willoughby and Earnshaw 1982). Once the feeding period was over, amphipods 

were immediately rinsed and transferred to scintillation vials. Because amphipod 

foraging behavior can displace the periphyton on the leaves, accurate acquisition 

measurements cannot be obtained by measuring radioactivity in the leaves before and 

after feeding. As such, within the context of our experiment, this method of estimating 

acquisition is the most accurate, as it directly measures all radioactive material that has 

been ingested by the amphipod in the 2-h period.  

To compare assimilation among the experimental groups (late-stage juveniles: 

male and female N=20, and adults: male and female N=20), amphipods were fed for 2 h, 

as in the acquisition experiment, but were then rinsed and transferred into fresh beakers, 

and fed one non-radiolabeled 70-mm leaf disc of the same P treatment as that of the 

acquisition experiment. At 1, 2, 4, 8, and 12 h after removal of the amphipods, 
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amphipods were transferred to new media and given a new non-radiolabeled leaf disc to 

minimize recycling of the radioisotopes. At 12 h, amphipods were rinsed and transferred 

to scintillation vials. Because the upper limit of observed gut passage times is 6 h 

(Neumann et al. 1999), we assumed that any radioactivity left in the body after 12 h were 

assimilated from the gut into body tissue.  

Prior to statistical analyses, we converted the activity of the radioisotopes, in 

disintegrations per minute (DPM), to μg of radioactive C or P acquired or assimilated. 

Low phosphorus leaves were ~2.5X  more radioactive than HP leaves, which would 

confound results of the amphipod acquisition and assimilation assays. We accounted for 

differences in the radioactivity available in the leaves by multiplying the HP amphipod 

radioactivity by the ratio of mean LP leaf radioactivity to mean HP leaf radioactivity. 

This correction allows us to compare the two treatments after accounting for differences 

in initial leaf radioactivity. All C and P acquisition and assimilation values were corrected 

for body size by dividing these measurements by body mass, calculated from a head 

length vs. mass regression equation. This size adjustment is more appropriate for our 

experimental design than including body size as a covariate in our statistical models 

because amphipod life stage is highly correlated with body size. As a result, our groups 

have dissimilar covariate values with little overlap, violating a key component of 

covariate analyses (Quinn and Keough, 2002). We obtained head length vs. mass 

regression equation by randomly selecting 32 amphipods, ranging in head length from 

350-750 μm, from our stock populations. Each amphipod was analyzed for head length 

using ImageJ and immediately dried in a 60°C drying oven and then weighed. To 

determine whether males and females differ in their head length:body size relationships, 
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we ran an analysis of covariance (ANCOVA), with log-transformed mass as our 

dependent variable, sex as our independent factor, and log-transformed head length as our 

covariate. The results of this ANCOVA indicated that neither the slopes (F1,28= 0.692; p= 

0.412) nor the intercepts (F1,28= 0.656; p= 0424) of the head length:body size relationship 

differed between the sexes. As such, we then ran a linear regression of log-transformed 

mass to log-transformed head length for all amphipods together. This regression was 

highly significant (p<0.001), with 91.6% of the total variation explained by our 

regression equation. Using this regression equation, we then calculated body mass for all 

individuals used in the radiotracer experiments. To satisfy assumptions of normality, our 

size-adjusted values for C and P acquisition and assimilation were log-transformed.  

Amphipods that died during the radiotracer experiments were not included in the 

statistical analyses (<3% late juvenile mortality, 0% adult mortality). Additionally, 

samples that resulted in error in activity quantification, identified as those readings that 

were orders of magnitude higher or lower than those in the same treatment, were also 

removed from analyses. These errors were likely due to no feeding activity or radioactive 

contamination of scintillation vials for the low and high outliers, respectively. In total, for 

the acquisition assay we removed four late stage juveniles and adults from analysis due to 

quantification error. Additionally, we removed five late stage juveniles and four adults 

from analysis in the assimilation assay. The final sample sizes in the acquisition assay 

were 27 and 28 for late-stage juveniles and adults, respectively. For the assimilation 

assay, sample sizes were 34 and 38 for late-stage juveniles and adults, respectively. 

 To examine how sex-specific responses to P availability in the C and P 

acquisition and assimilation experiments may change, we ran general linear models 
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(GLMs) separately for acquisition and assimilation with log-transformed 14C or 33P (ug) 

per mg of dry mass as our dependent variable and life stage, P-availability, and sex as 

fixed factors.  

Is there preferential allocation of carbon to an exaggerated, sexually selected trait?  

 Hyalella amphipods, like many crustaceans, have the capacity to regenerate their 

limbs within only a couple of molts (Skinner, 1985). As such, by allowing amphipods 

with amputated traits to begin regenerating their limbs, we can isolate patterns of 

allocation to re-development of specific traits. From the stock population, we randomly 

selected 30 adult male amphipods and divided them into three appendage amputation 

groups (N=10 for each group). Each male was anesthetized prior to amputation using a 

clove oil solution (Venarsky and Wilhelm 2006). All amputations were performed under 

a stereo microscope (Swift SM90, Schertz, TX, USA) using fine surgical forceps (#5, 

Dumont SA, Montignez, Switzerland). In the first group of males (hereafter, ‘amputated 

gnathopod’ males), we removed the carpus, propodus, and dactyl of both posterior 

gnathopods (Fig. 2). In the second group of males (hereafter, ‘amputated leg’ males), we 

removed the carpus, propodus, and dactyl of both 5th pereopods (i.e. walking legs; Fig. 

2). The 5th pereopod is serially homologous to the posterior gnathopod but is much 

smaller and not used in mate acquisition (Cothran et al., 2010). Finally, the third group of 

males was assigned to an amputation control group (hereafter, ‘unamputated’ males). 

These males were anesthetized and sham operated on, but no appendages were 

amputated. By comparing unamputated males to our two amputation groups, we can 

observe allocation differences between trait regeneration and strictly trait maintenance.  
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After surgery, all males were transferred individually to 200-ml glass jars filled 

with treated water and a square of filter media (Matala USA, Laguna Hills, CA, USA) for 

substrate. We then fed each male one 14-mm diameter HP leaf disc every three days for 

two weeks. This two-week period served as a recovery period that was sufficient for all 

amphipods to begin regeneration of traits. We included this recovery period to isolate 

allocation to regrowth from that of acute wound repair. Amphipods were then randomly 

assigned to either HP or LP treatments, transferred individually to new jars, and fed either 

one HP or LP leaf disc, radiolabeled with 14C, each day for six days, with daily media 

changes. After feeding on radiolabeled food for six days, each amphipod was again 

individually transferred to another 200-ml glass jar and fed non-radiolabeled HP or LP 

food for two more weeks (i.e. diet treatments continued during this period), to allow the 

radiolabeled C time to be allocated to tissue. At the conclusion of the two-week feeding 

period, we measured body size, the size of the walking legs and the size of the 

gnathopods to determine size-adjusted allocation of 14C for each trait. We photographed 

each male on both sides and analyzed each photograph with ImageJ (version 1.46r). We 

measured the width of the gnathopod at the widest part of the propodus and the total 

length of the carpus, propodus, and dactyl of the 5th pereopod. We then dissected the 

carpus, propodus and dactyl of the gnathopods and 5th pereopod from each male and 

quantified radioactivity in these two traits and the rest of the body.  

Prior to statistical analysis, radioactivity within each trait was corrected for initial 

radioactivity within the leaves using the same method as in the acquisition and 

assimilation assays. Trait-specific radioactivity was then converted to μg of 14C allocation 

per mg of trait tissue. Because we were unable to measure the dry mass of each trait used 
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in the radiotracer experiment (per radiation safety protocol), we performed mass 

conversions using trait size-mass regressions. These conversions were performed on 

amphipods that had undergone the same trait manipulations as those used in the study, 

but were not exposed to radiation. First, we randomly selected 60 males from our stock 

tanks and divided them into three groups of 20, representing our three manipulation 

groups. Then, for each group, we amputated the appropriate trait (i.e. amputated 

gnathopods, amputated legs, no amputations). The groups that were manipulated were 

then transferred into individual jars filled with no nitrogen or phosphorus COMBO and 

each fed one HP leaf disc daily for a period of two weeks to allow regrowth to occur. 

After the two-week period, both the gnathopods and the legs were amputated from each 

individual. Trait sizes, along with total body size, were then measured using ImageJ. The 

gnathopods, legs, and body of each individual were then dried at 60°C for 48h and 

weighed to the nearest 0.1 μg (Mettler Toledo XP2U, Columbus, OH, USA). The weights 

of the legs and gnathopods were divided by two to determine the average weight for just 

one limb. We performed separate linear regressions for each manipulation group and trait 

with trait size as our independent variable and mass as our dependent variable. All 

regressions were highly significant (p<0.001), with trait size explaining 70-90% of the 

variation in trait mass. The mass of each trait used in the radiotracer experiment was 

determined by converting the trait size measured to trait mass using the regression 

equation for each group.  

Our goal in this experiment was to examine the effects of P availability and 

amputee group on carbon allocation. Thus, we ran a GLM that included log-transformed 

14C activity in target traits as the dependent variable and P availability, trait, and amputee 
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group as fixed factors. This initial model revealed a trait-by-amputee group interaction 

(see Results). Therefore, to examine trait-specific manipulation or P availability effects, 

we ran separate GLMs for each trait (whole body, gnathopod, and leg), including only 

amputee group and P availability as fixed factors. For significant results, we then ran 

Tukey HSD post hoc analyses to determine differences within factors. 

Results 

Are there age- and sex-specific differences in acquisition and assimilation of elemental 

resources in response to P supply?  

For acquisition, we found a significant interaction between sex and life stage for 

both C and P acquisition (C: F1,47= 13.945, p= 0.001; P: F1,47= 13.183, p= 0.001). Late-

stage juvenile males and adult males did not significantly differ in their acquisition of C 

and P (Fig. 3A, B). However, late-stage females acquired 494% more C and 392% more 

P than adult females (Fig. 3A, B). Additionally, irrespective of sex or age, we observed a 

smaller, but significant, effect of P availability on the acquisition of C, but not P, with 

acquisition increasing in the LP treatment by 32% (F1,47= 4.185, p= 0.046).  

Assimilation of C and P was dependent on the three-way interaction of sex, life 

stage, and P availability (C: F1,64= 10.048, p<0.001; P: F1,64= 10.459, p<0.001). This 

interaction indicates that sex-specific assimilatory responses to P availability change with 

age. In each life stage, female assimilation was largely unchanged by P availability (Fig. 

4). However, in each life stage, there was a significant interaction between sex and P 

availability that was driven by a plastic male response. Specifically, late-stage juvenile 

males exhibited a 63% and 65% decrease in assimilation of C and P when fed LP food 
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(Fig. 4A, B). In contrast, adult males significantly increased assimilation of C and P by 

243% and 152%, respectively, when fed LP food (Fig. 4C, D). These plastic male 

responses resulted in convergence of the sexes in assimilation under contrasting food 

quality. Late-stage juveniles converged in the LP environment, while adults converged in 

the HP environment (Fig. 4). 

Is there preferential allocation of carbon to an exaggerated, sexually selected trait?  

 We observed a significant interaction between amputee group and trait, indicating 

trait-specific responses to amputation (F4,69= 5.75, p<0.001). There was greater 14C 

activity (~404%) in all traits under LP environments than HP environments (F1,69= 

350.65, p<0.001; Fig. 5). The interaction observed between trait and amputee group was 

largely driven by the response of the gnathopod to amputation. Post-hoc analyses 

revealed 14C activity within the gnathopod in the amputated gnathopod group was 

significantly higher than in the amputated leg, or the unamputated groups (Fig. 5B), while 

the other traits (leg and whole body) did not differ in 14C activity across amputation 

groups (Fig. 5A, C). Amphipods within the amputated gnathopod group had, on average, 

115% higher 14C activity in their gnathopods than those within the other two groups. 

Discussion 

The results of our study show that P supply invoked differing degrees of plasticity 

in acquisition and assimilation of two key elemental resources, C and P. Further, our 

results clearly show age and sex have an interactive effect on the acquisition and 

assimilation of both C and P. Finally, our study revealed preferential allocation of 

biomass to an exaggerated trait in males.  Note that our measures of radioactivity in our 
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samples only represented the amount of radiolabeled C or P found in the sample, and 

does not represent an estimate of the total C or P acquired or assimilated. As such, these 

measures are just a fraction of the total C or P acquired, assimilated, or allocated by the 

amphipod. Nevertheless, radiolabeling has been shown to be reliable indicator of the 

physiological kinetics of both C and P (e.g., DeMott et al. 1998; He and Wang 2007; Roy 

Chowdhury et al. 2014). 

Age-specific sexual dimorphism in C and P acquisition in response to P supply  

We found strong, interactive effects of age and sex on the acquisition of C and P 

(Fig. 3), as well as a significant effect of P supply on the acquisition of C. It is possible 

that the increase in C acquisition under LP conditions is due to compensatory feeding, 

which has been proposed, and observed in a few taxa, as a potential mechanism that 

organisms use to meet their elemental demand under low supply conditions (e.g., Plath 

and Boersma 2001; Fink and Von Elert 2006). Additionally, acquisition of C and P 

appear to vary together, which suggests an observed increase in P acquisition is due to 

greater overall feeding effort. Given the temporal nature of sexual divergence, it is not 

surprising that we observed substantial sex-specific differences in the acquisition of both 

C and P that are driven by age. Because the sexes have differing elemental demands, 

differences in foraging behaviors likely play a central role in meeting those demands. 

Indeed, previous studies in a wide array of taxa from crickets to birds and mammals, have 

observed sex-specific differences in foraging strategies (e.g., intake rates, food selection, 

and foraging behavior) on the molecular level (e.g., Bearhop et al., 2006; Maklakov et al., 

2008; Ruckstuhl, 1998), but, to our knowledge, there are no rigorous explorations of such 

sex-specific differences on the elemental level.  
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Previous studies in a variety of taxa (e.g., García-Berthou and Moreno-Amich, 

2000; Stockhoff, 1993) have found that specific life history demands drive foraging 

strategies with juveniles ingesting different, or different quantities of, resources than 

adults.  While exaggerated traits are thought to be costly to build and maintain, the results 

of our acquisition experiments suggest that the development of the exaggerated 

gnathopod in Hyalella males does not drive an increase in C or P acquisition (Fig. 3). In 

fact, the age-by-sex interaction observed is driven primarily by changes in female, not 

male, acquisition from late juvenility to adulthood. Late-stage juveniles differ from adults 

in that they must allocate resources to both a high overall growth rate and the 

development of reproductive traits, both processes that are highly C- and P-intensive 

(Bertram et al., 2009; Cothran et al., 2012; Elser et al., 1996; Elser et al., 2000; Markow 

et al., 2001; Speakman, 2008; Visanuvimol and Bertram, 2010). One possible explanation 

for the observed age-by-sex interaction is that males are foraging at their maximum rate 

in both late juvenility and adulthood, because selection on these traits may be consistent 

across these two life stages. Alternatively, females in late juvenility may be acquiring 

resources at an increased rate due to the demands of somatic growth along with ovary and 

egg development. While adult females bear the demands of oogenesis, a P intensive 

process (Back and King, 2013), the selection for somatic growth in adulthood is much 

lower in adults than juveniles because adults reach a size refuge from their main 

predator—dragonfly naiads (Wellborn, 1994; Wellborn et al., 2005). Given the sex 

differences in P content within amphipods (Goos et al., 2014), it is somewhat surprising 

that no sexual dimorphism in acquisition exists in adulthood. A possible explanation for 

this result could be that adult females assimilate more of their acquired P. Alternatively, 
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adult females may have a greater ability to store acquired P than males. Studies 

examining foraging behaviors, the effects of egg development, and other post-ingestive 

processes, on sex-specific acquisition will provide important insights into the 

mechanisms underlying the observed patterns in acquisition. 

Age-specific sexual dimorphism in C and P assimilation in response to P supply  

Our results clearly show that age- and sex-specific assimilation strategies are not 

independent from the effects of dietary P supply (Fig. 4). Male, not female, assimilation 

was significantly influenced by P availability, but the direction of this response differed 

between late-stage juveniles and adults. These sex-specific patterns are likely due to 

divergent life history demands in Hyalella amphipods. Specifically, males and females 

within this genus exhibit substantial sexual size dimorphism and have different life 

histories, with males being larger than females in the OK-L clade (Cothran et al., 2012; 

Wellborn and Bartholf, 2005; Wellborn et al., 2005). Additionally, developing 

exaggerated gnathopods has been shown to be a P-intensive process, with P availability 

influencing both male growth rate and gnathopod growth (Cothran et al., 2012). Late-

stage juvenile males assimilated comparatively more C and P under HP than LP 

conditions, while adults exhibited the opposite pattern (Fig. 4).  Adult males grown under 

differing P environments have been shown to have differing P contents, with males raised 

under LP conditions containing less P than those raised in HP conditions (Goos et al., 

2014). Within the current study, all amphipods were raised under HP conditions, likely 

increasing their somatic P contents. The pattern observed in adult males, with HP males 

assimilating comparatively less C and P than LP males seems to suggest that adult males 

are ramping up assimilation in LP environments in order to meet their P demands in a 
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comparatively resource-poor environment. The pattern observed in late-stage juvenile 

males may be due to the interaction between acquisition and assimilation. Particularly, 

the increased acquisition observed under LP may induce a decrease in assimilation, 

resulting from a decrease in gut passage time caused by constant feeding (Navarro and 

Winter, 1982; Stahlschmidt et al., 2011). Given that juveniles have a shorter gut length 

than adults, it is possible that increases in acquisition may influence juvenile assimilation 

to a different degree than it does adults. Alternatively, the pattern we observe between 

these two sexes, with juveniles and adults exhibiting contrasting responses to P 

availability, may be due to differences in metabolic plasticity. In a study examining the 

effects of low P food on metabolic activity in Daphnia, Jeyasingh (2007) found that low 

P food both increases feeding effort and metabolic activity. Additionally, metabolic 

scaling was affected by low P food, driven primarily by the greater metabolic response of 

smaller Daphnia species. While the age classes in our study are not as variable in size as 

interspecific differences in Daphnia, it is possible that juvenile males exhibit much 

greater metabolic activity under LP food than adult males, resulting in an overall decrease 

in assimilated C and P. It is important to note that our measure of assimilation is not 

interchangeable with measures of retention or assimilation efficiency. Because we could 

not measure acquisition and assimilation within the same individual, we were unable to 

calculate assimilation efficiency at the individual level. As such, our estimate of 

assimilation is a gross estimate, not accounting for the effects of acquisition, and more 

research is needed to determine whether assimilation efficiency is indeed decreased under 

LP due to higher feeding rates. Regardless, the patterns of assimilation that we observed 

clearly indicate that assimilatory responses to P availability are dependent upon the age 



 
 

63

and sex of an organism. Together, these results point to the potentially important role of 

physiological processes in driving allocation of resources to traits (Olijnyk and Nelson, 

2013; Stahlschmidt et al., 2011), which is generally thought to be controlled by 

acquisition (Robinson and Beckerman, 2013).  

Phosphorus supply alters carbon allocation to a sexually selected trait  

In addition to sexual dimorphism in acquisition and assimilation of elements, our 

results revealed the importance of P availability in allocation to all traits, with greater 

overall biomass allocation when P was in limited supply (Fig. 5). This increase in 

allocation of C under LP food is likely due to the higher acquisition and assimilation of C 

in adult males when feeding on LP food. While it is known that consumers feeding on 

carbon-rich, nutrient-poor diets can deal with such imbalances by respiring or egesting 

excessive C (Darchambeau et al., 2003; Hessen and Anderson, 2008; Jeyasingh, 2007), 

they are also known to store excess C as fats (Sterner et al., 1992). Although we did not 

measure respiration or fat content, higher 14C activity under LP conditions indicate that 

storing excessive dietary C as fats may be a more prevalent mechanism used by 

amphipods to deal with stoichiometric imbalances.  

Using our method of trait manipulations, we were able to isolate resource 

allocation to both the development and maintenance of sexual traits and serially 

homologous non-sexual traits. Specifically, we found that regrowth of the gnathopod, but 

not the walking leg, induced an increase in 14C allocation, suggesting that a greater 

fraction of recently-ingested C was allocated to gnathopod regrowth compared to leg 

regrowth. While our data seems to suggest a pattern of preferential allocation of ingested 
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C to gnathopod regeneration, the precise physiological mechanisms that underlie this 

preferential allocation require further investigation. Additionally, we observed that 14C 

activity was always the lowest in body tissue, compared to the other two traits. This 

pattern may be due to the relative turnover rates of each body tissue. For example, 

provided the overall C turnover rate in amphipod tissue is slower than the two-week 

period between radiolabeling and 14C quantification, it possible that the walking leg or 

gnathopod possesses a significantly faster C turnover rate due to the high abundance of 

metabolically active muscle tissue (Boutton et al., 1983; Hobson and Clark, 1992). Our 

results indicated that the demands of developing a sexual trait (i.e. the male gnathopod), 

as opposed to possessing an already developed trait, play an important role in 

determining carbon allocation in male amphipods, suggesting that sexually selected, 

exaggerated traits are significant resource sinks, particularly later in ontogeny when 

sexual differentiation occurs.  

Conclusion 

We found sex- and age-specific variation in the acquisition and assimilation of 

two key elemental resources that make up approximately 50% of amphipod biomass. 

Further, the environmental supply of phosphorus, at levels similar to those found in 

oligotrophic and eutrophic conditions had a significant effect on how individuals use key 

elemental resources. Moreover, we found that changes in P supply affected biomass 

allocation to all traits, and that biomass allocation to the development of the sexual trait 

was prioritized. Our results highlight the importance of both pre- and post-ingestive 

processes that influence how sexes respond to rapid changes in nutrient availability. It is 

likely that such alterations will affect the sexes differently, and alter the expression of 
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sexually selected traits, perhaps with important demographic and evolutionary 

consequences. 
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Figures 

 

Figure 1: Life stages of Hyalella amphipods used in acquisition and assimilation 
radiotracer experiments. A) late-stage juveniles B) adults. The whole organism is 
represented on the top row and the posterior gnathopod on the bottom row. For both life 
stages, females are on the left, males on the right. 
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Figure 2: Male Hyalella amphipod showing points of dissection for appendage 
amputation groups. The black lines indicate the point where we ablated the carpus, 
propodus, and dactyl of the gnathopods (PG) and fifth pereopods (5P). 
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Figure 3: Age-specific patterns of sexual dimorphism in acquisition of phosphorus 

and carbon over two hours during late ontogeny.. Symbols represent means of log-

transformed, size-adjusted 33P (A) and 14C (B) present in the body, error bars 95% 

confidence intervals. 

 

 

 

  

-5

-4

-3

-2

-1

1" 2"
-23

-22

-21

-20

-19

1" 2"

Females 

Males 

Late-stage 
juveniles 

Adults 

ln
(μ

g 
33

P
 o

r 
14

C
 m

g-
1
) A B 

Late-stage 
juveniles Adults 



 
 

78

Figure 4: Sex-specific patterns of assimilation of C and P in late-stage juveniles and 

adults in response to P availability. (A,B) Late-stage juveniles and (C,D) adults. 

Symbols represent means of log-transformed, size-adjusted33P (A,C) and 14C (B, D) 

present in the body, error bars 95% confidence intervals. 
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Figure 5: Carbon allocation in the male A) body, B) gnathopod, and C) leg across 
amputation groups. Values are means of log-transformed carbon allocation (μg C/mg). 
Error bars are 95% confidence intervals. Different lower case letters indicate significantly 
different carbon allocation, as indicated by Tukey tests. 
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Abstract 

 Eutrophication caused by anthropogenic activity has had tremendous impacts on 

aquatic ecosystems across the world. A primary cause of this eutrophication is increased 

phosphorus (P) runoff into water bodies, resulting in alterations to the quantity and 

quality of food available for consumers. Previous studies have shown that large 

differences in P availability affect expression of traits and mating biology at the 

individual level. Here, we manipulated the supply of phosphate, which altered the 

quantity and quality of food (e.g., periphyton) available to consumers, and documented 

the population-level responses of Hyalella amphipods. We also performed a mating 

experiment to examine the effects of P availability during development on the expression 

of sexual traits, and P availability during mating on mating behavior. Our results indicate 

that subtle variation in P availability has no effect on population density or sex ratio. The 

amount of P available during development and P available during mating, however, did 

affect mating behavior. Further, the patterns in mating behavior observed were not 

attributable to P-induced changes in sexually selected traits. Our study indicates that 

subtle changes in P availability can affect mating biology, possibly due to physiological 

or behavioral changes, but such effects may not necessarily be mediated by differential 

expression of sexually selected traits.  
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Introduction 

 Human activity has fundamentally altered ecosystems at an unprecedented rate 

and scale resulting in evolutionary changes in many organisms (Palumbi, 2001). Altered 

biogeochemical cycles are perhaps the most studied aspect of global environmental 

change (Schlesinger, 1997). In the last few decades, human activities such as fertilizer 

(e.g., phosphate) mining and application have caused the eutrophication of many 

ecosystems (Hale et al., 2013), and phosphorus (P) runoff into aquatic ecosystems is the 

primary cause of eutrophication (Schindler et al., 2008). Further, increased P supply has 

been shown to increase the P content of seston (i.e. planktonic living and nonliving 

matter) and periphtypon (i.e. attached algae and microbial communities) in aquatic 

ecosystems (Hillebrand & Kahlert, 2001; Hessen, 2006). Therefore, the addition of 

inorganic P to aquatic ecosystems can dramatically change the quantity and quality of 

food available to consumers. The ecological consequences of eutrophication have been 

widely studied (e.g., Smith, Tilman, & Nekola, 1999; Smith, 2003; Khan & Ansari, 2005; 

Kemp et al., 2005), however, we have only begun to uncover the evolutionary 

implications of eutrophication.  

 Despite its importance in determining fitness, however, we know relatively little 

about how changes in P supply affect the mating biology of organisms. While there have 

been a few studies on the effects of eutrophication on mating biology, most of these 

studies have focused on how eutrophication directly influences the evolution of sensory 

systems (Van der Meer et al., 2012) and affects sensory reception of mating signals. For 

example, eutrophication increases phytoplankton abundance, resulting in greater turbidity 

that interferes with visual mating cues (Seehausen, van Alphen, & Witte, 1997; Sundin, 
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Berglund, & Rosenqvist, 2010; Lane, Forrest, & Willis, 2011; Fischer & Frommen, 

2013). In addition to altering the visibility of signals, eutrophication will also affect the 

quality of food available for heterotrophic organisms (Sterner & Hessen, 1994). Because 

reproduction is a resource-intensive activity (Speakman, 2008; Morehouse et al., 2010), P 

supply has the potential to influence the mating biology of organisms.  

Our understanding of how changes in P affect organismal performance largely 

arises from studies that employ highly contrasting conditions of P availability. For 

example, studies documenting the effects of P supply on aspects of mating biology in 

crickets have used highly contrasting diets differing roughly by an order of magnitude in 

P content (e.g., 0.2% and 1%; Bertram et al., 2009; Visanuvimol & Bertram, 2010). To 

our knowledge, the response of mating biology to more subtle changes in P content of 

food that may be representative of seasonal or spatial changes in P availability (e.g., 

Hessen, Van Donk, & Gulati, 2005) has not been studied. Further, these previous studies 

have generally focused on the effects of dietary P on the expression of male sexual traits. 

However, mating is inherently an interactive process, and we know little about how 

dietary changes in P availability affect females and consequently sexual interactions 

(Morehouse et al., 2010).  

When examining the effects of P supply on mating biology, most studies have 

focused on changes occurring at the individual level with little attention to demographic 

patterns (e.g., density and sex ratio). This is surprising because much of mating biology is 

driven by population dynamics, as it is both density and sex ratio dependent (Kokko & 

Rankin, 2006).In fact, changes in density and sex ratio have been found to affect several 

aspects of mating biology such as female resistance and choosiness (Rowe et al., 1994; 
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Bleu, Bessa-Gomes, & Laloi, 2012), male weapons and ornaments (Buzatto, Tomkins, & 

Simmons, 2012; Vergara et al., 2012), male mate preferences (Gosden & Svensson, 

2009), mate guarding (Jormalainen, 1998) and alternative mating strategies (Tomkins & 

Brown, 2004; Dennenmoser & Thiel, 2008; Leary, Garcia, & Knapp, 2008). Although it 

is well known that changes in P supply often increase population size, and drive 

population dynamics in a variety of taxa (Andersen, Elser, & Hessen, 2004; Moe et al., 

2005), very little is known about the concomitant impacts of such dynamics on the 

mating biology of species. 

We performed two experiments to assess how modest changes in P supply affect 

demographics, sexual trait development, and mating behavior. First, using a mesocosm 

study, we examined whether P supply results in changes in population density and sex 

ratio. Second, using animals from the mesocosm study above, we conducted a mating 

behavior experiment to examine how changes in P availability affected mating 

interactions. By selecting animals from the population study for this experiment we were 

able to address whether differences in P availability affect sexual trait development and 

consequently mating interactions. We also manipulated the quality of food (i.e. food was 

collected from either high P or low P tanks in the population study) available to animals 

during the behavior experiment to address whether short-term access to P rich food 

affects mating interactions (perhaps through changes in behavior, as opposed to 

developmental shifts). 

 

Materials and Methods 
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Study species and housing of animals 

To examine the effects of P supply on population dynamics and mating biology, 

we used amphipods in the genus Hyalella. Hyalella amphipods are found in most 

freshwater ecosystems throughout North America and are thus exposed to a variety of 

nutritional environments (Bousfield, 1958). This genus is composed of a complex of 

undescribed species and many of these species can be divided into either small ecomorph 

or large ecomorph types that differ in morphology, behavior and life history (Wellborn, 

Cothran, & Bartholf, 2005; Witt, Threloff, & Hebert, 2006; Wellborn & Broughton, 

2008).  

Like many crustaceans, the mating biology of Hyalella is tightly linked to the 

female molt cycle, because the opportunity to fertilize eggs is limited to the period just 

after the female molt (Sutcliffe, 1992). Males are the mate searching sex, and Hyalella 

populations have female-biased sex ratios where males are typically 20% to 40% of the 

population (Wellborn & Bartholf, 2005). However, because female molt cycles are 

asynchronous the operational sex ratio is highly male biased – only about 9% of females 

are receptive at a given time (Wellborn, 1995). As a result of this time-limited female 

receptivity to fertilization, males exhibit mate guarding as a time investment strategy 

(Jormalainen, 1998; Wellborn & Cothran, 2007). Females exhibit resistance behavior to 

pairing by thrashing and curling their body, which affects pairing duration (Wellborn, 

1995; Cothran, 2008). Males use their enlarged, claw-like appendages, the posterior 

gnathopods (hereafter gnathopods) to initiate pairing (Cothran et al., 2010). Prior studies 

have shown that larger size-specific gnathopods provide a mating advantage and this trait 

likely serves as an important male offense trait in sexual conflict over pairing duration 
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(Wellborn, 1995, 2000; Cothran et al., 2010). For the current study, we used a large 

ecomorph species (referred to as OK-L in Wellborn & Broughton, 2008) from Cowen 

Creek, a spring-fed creek located in Marshall County, OK, USA (33°55’N, 96°51’W). 

The OK-L amphipod species is ideal for this study because it exhibits a continuous large 

gnathopod advantage as body size increases (Wellborn & Bartholf, 2005). Additionally, 

gnathopod size and antenna size, a trait that is sexually dimorphic and under sexual 

selection in an isopod species with a similar mating biology (Bertin & Cézilly, 2003), 

have both been found to increase in size in response to increased P availability in 

individual-level studies performed on this species (Cothran et al., 2012). The experiment 

was performed in a greenhouse at the University of Oklahoma Biological Station at 

~26°C. 

 

Set up of amphipod population tanks 

 We set up fourteen 30-L tanks (67.95cm X 40cm X 18.10cm) divided equally into two P 

supply treatments (HP = 60 μM P [K2HPO4] and LP = 10 μM P [K2HPO4]; 

Supplementary Info Figure S1a). Each tank was filled with treated well water, and 

washed pea-sized gravel substratum was added to a depth of approximately 2 cm. Algae 

and amphipods were added after two weeks to allow for dechlorination of the water. The 

tanks were then covered with shade cloth to reduce colonization by terrestrial organisms. 

All tanks received 500 ml of a periphyton slurry collected from Cowen Creek and were 

fertilized with a source of nitrogen (1 mM N [NaNO3]) and the amount of phosphorus 

corresponding to their treatment. Because periphyton growth was minimal in the tanks 
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after two weeks, we added an additional 500 ml of periphyton collected from nearby 

Lake Texoma. Microscope slides that had been scoured with steel wool were added to 

each tank to collect periphyton periodically for elemental analysis. Twenty-five randomly 

chosen gravid females from Cowen Creek were added to twelve of the tanks (six HP, six 

LP), and populations were allowed to grow for three weeks before sampling began. In 

addition to the tanks with amphipods, four amphipod-free tanks (two HP and two LP) 

were set up as controls: periphyton used in the mating trials was collected from these 

tanks (Supplementary Info Figure S1a). Water was added to the tanks once a week to 

keep the tank water level relatively constant throughout the experiment. 

 

Population-level responses to P supply 

 To examine whether population density and sex ratio were affected by P supply, 

each tank was sampled every two weeks, beginning after three weeks of initial population 

growth. We used a 10.16-cm diameter pipe to subsample each tank. On each sampling 

date, we sampled from one randomly selected quadrant (Supplementary Info Figure S1b). 

We lowered the pipe into the chosen quadrant, making sure to push the pipe through the 

substrate to the bottom of the tank. We then collected all amphipods within the pipe using 

a brine shrimp net. Immediately after collection, we quantified the number of males, 

females, and juveniles by examining all amphipods under a stereo microscope (Leica 

S8APO, Leica Microsystems, IL). Amphipods were characterized as juveniles if they did 

not have any eggs visible in ovaries or embryos in the marsupium and enlarged 

gnathopods. Using these data, we compiled a life table and calculated population density 
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and sex ratio (male:female). Population density was calculated by summing all adults and 

juveniles collected per sample and dividing by the area of the 10.16-cm collection pipe; 

total density is reported in individuals/m2. Samples were collected seven times over 17 

weeks, representing between four and five generations of amphipods.  

 To quantify the P content of periphyton, we collected one microscope slide with 

attached periphyton from each tank before amphipods were added and after completion 

of the study. Microscope slides were frozen immediately until P analysis was performed. 

Periphyton from each sample was brushed from the microscope slide into distilled water 

and filtered onto glass filters (0.7 μM; Whatman International Ltd, Maidstone, England). 

The filters were dried at 60°C for 48 h and P content was quantified in duplicate using a 

modified sulfuric acid digestion method (APHA, 1992) and verified with a spinach 

standard (NIST 1570a). This method involves digesting the sample with sulfuric acid and 

reacting the digestion with ammonium molybdate and antimony potassium tartrate. The 

resulting complex is then reduced to form a blue color that is then analyzed using 

spectrophotometry.   

 To determine the effect of sampling date and P treatment on the population 

density and sex ratio of the tanks, we performed two separate repeated-measures (RM) 

ANOVAs with the population density and sex ratio as dependent variables, sampling date 

as a within-subjects variable, and P supply treatment as the between-subjects variable. 

Additionally, we performed a RM-ANOVA to determine the effect of sampling date and 

treatment on the P content of periphyton in the tanks, using arcsine-transformed %P as 

our dependent variable.  
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Effects of P supply on mating  

 To examine the effect of P supply on mating success, we set up a 2-by-2 

completely randomized, factorial design with female rearing environment and mating 

environment as treatments (HP or LP female rearing environment and HP or LP mating 

environment). Each treatment was replicated 30 times for a total of 120 experimental 

units. Females were selected randomly from the tanks and transferred to 150-ml plastic 

cups. Each cup was filled with water and periphyton was added (amphipods were fed ad 

libitum during the experiment) from either the HP or LP control tanks according to the 

mating environment assigned to the cups. Chemical analysis confirmed that the HP 

periphyton was higher in P content than the LP periphyton in these control tanks 

(F1,7=58.75, p<0.001) All of the females were acclimated in the cups for 24 h. During this 

time, two mature males, one from an HP tank and one from an LP tank were randomly 

selected from the experimental tanks and added to each cup (Supplementary Info Figure 

S1c), with randomization at both the within- and between-tank levels. To differentiate 

between the two males, we anesthetized the amphipods with a clove oil solution 

(Venarsky & Wilhelm, 2006) and clipped the right or left fifth walking leg removing two 

to three of the most distal segments of the leg. The side of the leg clipped was alternated 

within treatments between cups. The males were isolated in cups filled with water from 

their rearing environment (either HP or LP) for 24 h to recuperate from surgery. After the 

24-hour recuperation period, males were added to the experimental cups housing the 

females. 
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 Daily observations of each cup were made at 0800, 1200, 1600, and 2000 hours. 

If a pair was observed, we removed the unpaired male and recorded the side of his leg 

clip to determine the identity of the paired male. A trial was ended when the pair 

separated and eggs were deposited into the external brood pouch. The successful male 

was defined as the male last observed paired with the female before oviposition. Because 

females do not store sperm, the last paired male is likely the successful male (Wellborn & 

Cothran, 2007). Replicates were discarded if either the female died or pairing occurred 

after the death of a competing male. During the mating behavior experiment, 13 of the 

120 experimental units were discarded due to death, resulting in a total of 107 

experimental units used for the analyses (HP female/HP environment: N=26, HP 

female/LP environment: N=27, LP female/HP environment: N=27, LP female/LP 

environment: N=27). After a trial ended, all amphipods from each cup were preserved in 

70% alcohol for further morphometric analysis.  

Because we know that morphology can determine the outcome of mating 

(Wellborn, 1995), we performed morphometric analysis in which we measured 4 traits 

for all males. Head length was measured as an indicator of body size (Edwards & Cowell, 

1992). We also measured the maximum width of the propodus of the posterior gnathopod 

and length of the 3rd peduncle segment of the second antenna (hereafter antenna) because 

both traits are known sexually selected traits in amphipods and isopods that share a 

similar mating biology (Wellborn, 1995; Bertin & Cézilly, 2003; Wellborn & Bartholf, 

2005). Additionally, we measured a control trait, the width of the basis of the fifth 

pereopod, which is comparable in size to the gnathopod but has no known sexual 
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function (Cothran et al., 2012). All trait measurements were log-transformed before 

statistical analyses. 

Because most traits are correlated with body size, we adjusted all traits for body 

size using a multivariate analysis of covariance (MANCOVA) to determine the unique 

trait effects on mating success. We used the treatment of the male as a fixed factor and 

head length as a covariate and saved the residuals of the analysis. For each trait, these 

residuals were added to the estimated marginal mean for each treatment to calculate size-

adjusted trait size (Cothran et al., 2012). A major assumption of this size-correction 

method is that the allometric slopes of the traits are equal between treatments (McCoy et 

al., 2006), and this assumption held true for all traits in our study (See Supplementary 

Info Table S1).  

For each size-adjusted trait, we ran paired t-tests to determine if traits differed in 

size between HP-reared and LP-reared males within each competing pair of males. 

Additionally, to determine whether the female’s rearing environment and the current 

mating environment affected which male was successful, we ran a backwards elimination 

logistic regression with the rearing treatment of the successful male as the dependent 

variable and female rearing environment, mating environment, and the interaction 

between the two as independent variables. All statistical procedures were performed 

using SPSS version 20 (IBM, 2011) 

 

Results 
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Population-level responses to P supply 

 Of the 12 experimental tanks, 3 (two HP and one LP) experienced significant 

population crashes about halfway through the experiment and, as a result, these tanks 

were discarded from further analyses. We found an effect of sampling date (beginning 

versus the end of the experiment; F1,16=98.75, p<0.001) and P treatment (F1,16=50.75, 

p<0.001) on the P content of periphyton, but no significant sampling date-by-treatment 

interaction (F1,16=0.583, p=0.456; Figure 1). The P content of the HP tanks was on 

average 1.69 times greater than the P content of the LP tanks. Further, the P content at the 

beginning of the experiment was on average 2.31 times greater than the P content at the 

end of the experiment for both treatments. 

 RM-ANOVA on population density indicated an effect of sampling date (F6,42= 

8.737, p<0.001), but not P treatment (F1,7=0.035, p=0.857) or the sampling date-by-P 

treatment interaction (F6,42=1.12, p=0.367). Population density generally increased early 

in the experiment before reaching a plateau (Figure 2).  

For sex ratio, the RM-ANOVA showed an effect of date (F6,42=3.76, p=0.004) 

and no effect of P treatment (F1,7=1.258, p=0.299) or the sampling date-by-P treatment 

interaction (F6,42=0.670, p=0.674). The populations showed no strong temporal trends in 

sex ratio across time, although sex ratios tended to be more female biased early in the 

experiment (Figure 3).  

  

Effects of P supply on mating  
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 Males from the two rearing environments did not differ in size (measured as head 

length: paired-t106=1.276, p=0.205), gnathopod size (paired-t106=1.734, p=0.086; Figure 4 

or antenna size (paired-t106=0.322, p=0.748; Figure 4). However, pereopods of HP males 

were significantly larger than those of LP males (paired-t106=2.706, p=0.008; Figure 4).  

 The success of LP males against HP males was affected by an interaction between 

female rearing environment (i.e. whether females were raised on LP or HP algae) and 

mating environment (i.e. whether amphipods were fed LP or HP algae during the mating 

experiment; Table 1, Figure 5). Females reared on LP algae were equally likely to pair 

with a LP or HP male regardless of the type of algae the animals were being fed during 

the mating experiment. Females reared on HP algae were more likely to pair with HP 

males when being fed LP algae (19/27 or 70% of the trials) and LP males when being fed 

HP algae during the mating experiment (17/26 or 65% of the trials).  

 

Discussion 

 We found that relatively small differences in P supply have no appreciable effect 

on population size and sex ratio. Nevertheless, our results indicate that P supply 

influenced mating patterns. The differences in pairing patterns were not due to 

differences in crowding or male-biased sex ratios experienced in rearing tanks, both of 

which may affect sexual selection and sexual conflict (Kokko & Rankin, 2006). It is also 

unlikely that differences in pairing patterns were due to changes in male sexual traits 

because the size of male gnathopods and antennae did not differ between P supply 

treatments. The pairing patterns observed are likely due to differences in behavioral 
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responses to a combination of current P-availability in food and the environments in 

which the amphipods were raised. P availability in the developmental environments may 

have caused physiological shifts that resulted in different behavioral responses to the 

quality of food available in the mating environment. However, the effects of 

physiological shifts caused by the developmental environment on responses to food 

quality have yet to be studied in depth, and our results suggest this should be examined in 

future studies. 

Previous studies have shown that eutrophication increases growth rates in 

amphipods and isopods (Hemmi & Jormalainen, 2002; Kraufvelin et al., 2006; Cothran et 

al., 2012). Faster growth should result in shorter time to sexual maturation, leading to 

shorter generation times and steeper population growth trajectories. Further, increases in 

female body size should lead to increased population growth as fecundity increases with 

body size in many animals (Blueweiss et al., 1978; Shine, 1988; Honek, 1993; Preziosi et 

al., 1996; including Hyalella amphipods in Strong, 1972). Indeed, evidence exists that 

eutrophication promotes population growth in marine amphipods, although abundance 

differences exist only between environments that differ dramatically in nutrient 

availability (i.e. nutrient enriched vs. no enrichment; Pardal et al., 2000; Kraufvelin et al., 

2006). Analysis of the periphyton in the tanks indicated that the HP and LP tanks were 

different in P content (Fig. 1). However, such small differences in P supply (only 1.69 

times greater in HP than LP) do not accelerate population growth (Fig. 2). In contrast, 

Kraufvelin et al. (2006) found 2- to 3-fold increases in amphipod (Gammarus locusta) 

abundance in nutrient-enriched mesocosms that contained algae with P contents 3-6 times 

higher than ambient levels. It should be noted that because our tanks were standing stocks 
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with no P addition throughout the experiment, it is possible that P-turnover may be higher 

in the LP tanks. In turn, this might actually have resulted in HP amphipods being more P-

limited than LP amphipods, further inhibiting population growth. 

High within-treatment variation in population density may explain why relatively 

small increases in P supply did not significantly affect population dynamics. This 

variation is likely due to either environmental stochasticity or demographic stochasticity 

in our tanks. Because our tanks were in a controlled environment, environmental 

stochasticity is unlikely, yet possible due to accidental colonization of competing 

microinvertebrates or other unmeasured environmental factors. Indeed, the early 

population crash in one of the tanks eventually discarded from the dataset was likely due 

to intense competition from ostracods and copepods. Further, our results indicate that P 

content decreased significantly in all tanks temporally, suggesting that much of the P in 

the tanks was sequestered into consumer biomass as the experiment progressed, possibly 

resulting in resource stress as the amount of P per algal cell decreased temporally (Gulati, 

Martinez, & Siewertsen, 1995). Demographic stochasticity, either due to a skew in sex 

ratio or random variation in survival may be a large driver of variation in population 

dynamics as some tanks may experience drift and higher inbreeding (Nei, Maruyama, & 

Chakraborty, 1975; Lande, 1988; Simberloff, 2009). Colonies of Hyalella established by 

a single gravid female have been shown to be extremely impacted by demographic 

stochasticity (Wellborn & Capps, 2013). It is difficult, however, to determine how 

important demographic stochasticity was in influencing population dynamics in the 12 

experimental populations, each established from 25 wild-caught gravid females.  
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 Our results indicated that P supply influences the mating behavior of Hyalella 

amphipods. However, these changes in mating behavior seem unlikely to be directly 

related to population dynamics. The traits known to be important determinants of mating 

success (gnathopod size and antenna size; Wellborn, 1995; Bertin & Cézilly, 2003; 

Wellborn & Bartholf, 2005) were not sensitive to the subtle differences in P availability. 

The strength of natural selection within our populations, due to high competition and 

resource stress, could have been greater than sexual selection. Natural selection is very 

likely a strong constraint on sexual traits, especially when sexual traits are density-

dependent (Andersson, 1994; Arnqvist, 1994). Both treatments contained population 

densities much greater (~20,000-50,000 amphipods/m2) than observed in the wild (~700-

8,000 amphipods/m2; Wellborn, 1994). In fact, the mean gnathopod size in our study 

compares to gnathopod size in food-stressed (based on density) gnathopods in a previous 

study (Cothran & Jeyasingh, 2010). However, males in our study possessed larger 

gnathopods than those in the natural populations, suggesting further selective forces 

beyond just density (e.g. predation) may be constraining gnathopod size in the wild 

(Wellborn et al., 2005). Further, while HP males were predicted to have higher mating 

success, this was only true in one of the four treatment groups.  

The male rearing environment was a determinant of mating success only when HP 

females were available. It is possible that HP females are more selective in choosing 

mates, due to changes in female condition that affect resistance behavior. Females raised 

in LP environments may be less likely to resist mating attempts by males due to a greater 

overall cost of resistance in the low P environment. This decrease in female resistance 

should result in relatively random mating. On the other hand, HP females may have been 
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in better condition allowing them to invest more in resistance behaviors. Future studies 

should address whether females fed high P food are more effective at resisting male 

mating attempts than females fed low P food. 

The patterns of mating success observed in our study may also be due to 

differences in male competitive or coercive ability that are only evident in certain 

environments. Given the lack of an effect of P availability on male sexual traits, our 

results suggest that the small differences in P applied in this study, when placed in a 

population context in which animals had to compete for access to P (unlike in Cothran et 

al. 2012), have no effect on sexual selection. Instead, the patterns in male mating success 

may be due to physiological or behavioral changes induced by the differences in P 

available in food. For example, HP males may be of greater overall condition allowing 

them to exploit resources at a higher rate. Alternatively, LP males may be more efficient 

at retaining P (Goos, Cothran, & Jeyasingh, unpublished data), possibly providing an 

advantage in a new food environment. Studies examining the physiological consequences 

of changes in P availability and their effect on mating behavior may shed more light on 

the patterns observed in our study. Of particular interest, is the fact that HP males 

possessed significantly larger pereopods than LP males. Although we know nothing 

about the utility of the fifth pereopod in mating, our results suggest that this trait deserves 

further attention in future studies as it may play a role in foraging or competitive ability.   

 Collectively, we found that, subtle changes in P availability do not affect 

population growth or sex ratio. Nevertheless, we observed effects of P availability on 

mating success, suggesting that P supply has the potential to affect individual level 

processes that ultimately drive mating biology. Although recent studies demonstrate that 
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sexual traits are extremely sensitive to resource supply (Cotton, Fowler, & 

Pomiankowski, 2004; Hunt et al., 2004; Cothran & Jeyasingh, 2010; Lewis et al., 2012; 

Cothran et al., 2012), our results indicate that at the population level, this sensitivity may 

be dampened by natural selection. Given the high densities observed in our study, it is 

possible that resource competition had an effect on the development of male sexual traits. 

Additionally, while most studies of amphipod mating biology focus on morphology in 

determining male mating success (Wellborn, 1995, 2000; Cothran et al., 2010, 2012), the 

results of our study indicate that mating success may also be shaped by the effect of both 

the nutritional history and the current nutrition of food on an individual’s behavior. 

Studies focusing on the effects of nutrient dynamics and other ecosystem-level processes 

on mating biology should consider population-level issues to garner a more complete 

understanding of the effects of global change on sexual selection. 
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Tables 

Table 1: Results of backward elimination procedure examining the effect of female 
treatment and mating environment on whether an HP or LP male paired 

Variable ΔG df p-value 

Female treatment3 2.593 1 0.107 

Mating environment2 0.000 1 1.000 

Female treatment*Mating environment 4.364 1 0.037 

 

 

 

   

ΔG= change in log likelihood statistic when a term was removed. Superscripts 
refer to the step in the backward elimination procedure the variable was removed 
from the model. Significant effects are in bold.  
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Figures 

 Figure 1: Phosphorus content of periphyton collected from experimental tanks at the 

beginning and the end of the experiment. Closed circles represent HP tanks and open 

circles represent LP tanks. Markers represent means ±1 SE. HP = 60 M phosphorus 

(K2HPO4); LP = 10 M phosphorus (K2HPO4). 
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Figure 2: Population densities during the experiment. Markers represent means ±1 SE. 

HP = 60 M phosphorus (K2HPO4); LP = 10 M phosphorus (K2HPO4). 
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Figure 3: Sex-ratios during the experiment. Markers represent means ±1 SE. Because 

density within the tanks varies significantly within treatments, sample sizes for sex-ratio 

estimates also vary considerably (See Supplementary Info Table S2 for sample size 

ranges). HP = 60 M phosphorus (K2HPO4); LP = 10 M phosphorus (K2HPO4). M, 

male; F, female. 
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Figure 4: Size-adjusted trait sizes of males in mating experiment. Markers represent 

means ±1 SE. HP = 60 M phosphorus (K2HPO4); LP = 10 M phosphorus (K2HPO4). 

 



 
 

114

Figure 5: Percentage of HP males successful in mating in each female-by-food group. 

HP = 60 M phosphorus (K2HPO4); LP = 10 M phosphorus (K2HPO4). 
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Supplementary Information 

Figure S1: a) Spatial distribution of tanks used in the population dynamics experiment. 

b) Sampling method showing the sampling quadrants in each tank. c) Mating experiment 

design.  

Table S1: MANCOVA results for interaction between Male Developmental 

Environment and Head Length. Results indicate no difference in slope between 

treatments 

Table S2: Sample size ranges for estimates of population density and sex ratio in 4 HP 

and 5 LP experimental tanks. 
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Figure S1 
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Table S1 

Source Dependent Variable F p 

Male Dev. Environment*ln(Head Length) ln(Gnath. Width) 0.582 0.446 

 ln(Antenna) 1.237 0.267 

 Ln(Pereopod) 1.555 0.214 
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Table S2 

 Population Density Sex Ratio 

Sample HP LP HP LP 

Sample1 3-56 12-105 3-25 9-59 

Sample 2 13-174 43-149 2-26 9-24 

Sample 3 40-354 58-295 4-119 12-147 

Sample 4 43-690 63-281 32-375 41-140 

Sample 5 143-271 128-606 63-213 77-357 

Sample 6 125-289 118-464 58-149 94-279 

Sample 7 116-434 199-434 52-203 87-225 
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Abstract 

 Sexual dimorphism represents the most striking phenotypic differences observed 

within a population. Although difficult to quantify, exaggerated trait expression is 

hypothesized to affect other traits through tradeoffs. Advances in spectrometry enable 

rapid quantification of the elements that make up traits, which can be used to compare the 

elemental signatures of traits. We measured dimorphism in the stoichiometry of Hyalella 

amphipods, and examined the extent to which exaggerated traits contributed to 

dimorphism. Multivariate elemental sexual dimorphism was apparent. Calcium, 

strontium, phosphorus, and sulfur exhibited the greatest degree of sexual dimorphism, as 

indicated by comparison of effect sizes. Sexual and nonsexual traits differed significantly 

in mass-specific stoichiometry. These results indicate dimorphism in the acquisition or 

processing physiology of these elements, and sex-specific selection on the underlying 

loci. High throughput, multidimensional data on the stoichiometric composition of males 

and females will provide a powerful diagnostic tool in understanding the ecology of 

sexual dimorphism.  
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Introduction 

 Sexual dimorphism is arguably the greatest source of intraspecific variation in 

sexually reproducing organisms. Despite sharing a common genome (Ellegren & Parsch 

2007), males and females often exhibit staggering divergence in traits. Such divergence is 

driven by natural and/or sexual selection on traits that maximize fitness in each sex. Sex-

specific selection on certain traits may result in sex-specific life history tradeoffs and 

resource allocation (Bonduriansky et al. 2008). Often, these selective pressures result in 

the exaggeration of sexually dimorphic traits (e.g., beetle horns or peacock feathers; 

Andersson 1994). Developing and maintaining these exaggerated traits is thought to be 

costly resulting in differences in male and female behavior and physiology (Zahavi 1975; 

Andersson 1994; Emlen 2001; Kotiaho 2001). Additionally, these exaggerated traits are 

highly dependent on organismal condition, itself a product of environmental supply of 

resources and genetic variation in the acquisition and utilization of resources (Rowe & 

Houle 1996; Cotton et al. 2004; Hedrick 2005).  

While much work has been done to elucidate the ultimate, evolutionary 

mechanisms that drive sexual dimorphism (e.g., Lande 1980; Hedrick & Temeles 1989; 

Punzalan & Rowe 2015), most of these studies have focused exclusively on the role of 

exaggerated traits in driving sexual dimorphism within species. Research focused on 

these exaggerated traits, as well as other sexually dimorphic traits such as body size and 

composition (see Badyaev 2002; Wells 2007), has provided diverse avenues of research 

toward a greater understanding of sexual dimorphism. Regardless, the focus on only a 

few traits of interest potentially masks the complex interactions between traits, and may 
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lead to misleading mechanistic conclusions for the evolution of sexually dimorphic traits, 

and traits in general (Cotton et al. 2004; Houle et al. 2010). Clearly, measuring all traits 

within an organism is incredibly difficult, if not impossible, but emerging technology and 

analytical methods have opened the door for high-throughput phenotyping on the whole 

organism level (Houle et al. 2010). Because all traits require elemental resources, the 

elemental composition of an individual can serve as a composite trait representing the 

whole individual (Sterner & Elser 2002). Due to the finite number of elements underlying 

all biological processes, high dimensional analyses of organismal elemental composition, 

or ‘ionomics’, has been proposed as a powerful approach to addressing the complexity of 

characterizing whole organism genotype-phenotype correlations (Baxter 2010; Jeyasingh 

et al. 2014). 

Ecological stoichiometry (ES) abstracts complex biological interactions into 

atoms of biologically relevant elements, particularly carbon (C), nitrogen (N), and 

phosphorus (P). A central principle of ES is that the relatively fixed nature of organismal 

demand (i.e. homeostasis) can result in mismatches between demand and environmental 

supply, potentially driving trade-offs that influence the expression of fitness-maximizing 

traits (Elser et al. 2000). Variation in organismal composition is, in part, a function of 

evolutionary history and the current selective pressures imposed on traits. Indeed, broad 

patterns in organismal composition have been observed across a wide array of species as 

the result of life history differences, trophic position, and phylogeny (Elser et al. 1996; 

Fagan et al. 2002; Woods et al. 2004; González et al. 2011). In addition to the widely 

studied interspecific patterns of organismal composition, some recent studies have begun 

to show extensive intraspecific variation in organismal composition (Bertram et al. 2008; 
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González et al. 2011; El-Sabaawi et al. 2012; Morehouse et al. 2012; Goos et al. 2014; 

Tobler et al. 2016). Previously, intraspecific variation in organismal composition was 

thought to be of much smaller magnitude than interspecific variation due to regulation of 

elemental composition, or homeostasis, and has been largely ignored (Karimi & Folt 

2006; Persson et al. 2010). However, intraspecific variability in organismal composition 

has been shown to vary substantially due to genetics as well as the environment (Schade 

et al. 2003; Small & Pringle 2010; El-Sabaawi et al. 2012; Goos et al. 2014). 

Additionally, organismal composition has been shown to vary substantially due to 

variation in life history demands, such as ontogenetic or sex effects (Nakazawa 2011; 

Back & King 2013; Goos et al. 2014).  

 Most studies examining sexual dimorphism in the context of ecological 

stoichiometry have focused on the importance of just one element, P, in affecting sex-

specific fitness-maximizing traits. Specifically, these studies have found that sexual 

dimorphism manifests at the elemental level (Goos et al. 2014), and that the development 

of sexually dimorphic traits (Bertram et al. 2006, 2009; Cothran et al. 2012) and 

reproductive traits, such as egg production (Markow et al. 2001; Visanuvimol & Bertram 

2010) are sensitive to dietary P supply. Further, we have also found that the sexes use 

divergent strategies to meet their P demands in response to variation in dietary P supply 

(Goos et al. 2016). These studies have illuminated some of the myriad ways in which 

supply of an important elemental resource may influence variation in fitness-conferring 

traits. Roughly 25 elements are important for the fundamental biochemistry of life, 

including metabolic processes and the expression of morphological traits (Frausto da 

Silva & Williams 1991). While P clearly plays a role in many organismal processes, a 
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focus on a limited subset of biologically important elements precludes a complete 

understanding of the sources of intraspecific variation in organismal stoichiometry, 

especially considering the documented importance of less abundant elements and 

interactions between elements in biological processes (Cullen & Sherrell 2005; Karimi & 

Folt 2006; Wright et al. 2011; Dudley et al. 2012). A single- or few-element focus may 

result in failure to recognize important ecological and evolutionary patterns due to 

correlated evolution in other traits, which is a central issue in understanding the causal 

mechanisms underlying complex traits (Houle et al. 2010).  

 In this study, we assessed whether sexual dimorphism in a freshwater amphipod 

species manifests along multiple elemental axes, and whether there are sex-specific 

tradeoffs between elements beyond the traditional stoichiometric variables of C, N, and 

P. Additionally, we examined whether the trait-specific elemental demand of 

exaggerated, sexually selected traits differs from that of similar, non-sexual traits and 

whether that demand is correlated with variation in trait morphology. Because 

exaggerated traits are generally considered resource sinks, we expected to observe 

significant divergence in trait-specific demand. Trait-specific demand is expected to 

result from the disproportionate allocation of elemental resources for the development 

and maintenance of exaggerated traits compared to smaller morphological traits.  

Materials and Methods 

Study system 

To address the above questions, we used a freshwater amphipod species in the 

Hyalella azteca species complex (the species is undescribed and is in the clade OK-L in 
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Wellborn & Broughton 2008). Amphipods within this genus exhibit significant 

morphological sexual dimorphism, with males possessing enlarged, claw-like appendages 

called posterior gnathopods (hereafter, just gnathopods) that are ~15 times larger in males 

than females and constitute up to 10% of male biomass (Wellborn 2000). These enlarged 

gnathopods facilitate pairing between the sexes, as larger gnathopods relative to body 

size are important in determining pairing success, which is a prerequisite for mating 

(Wellborn 1995, 2000; Cothran et al. 2010). Previous studies have shown that posterior 

gnathopods in males are much more sensitive to ecological stressors such as food 

availability, environmental P supply, and predation, than the same trait in females and 

similar, nonsexual traits (Cothran & Jeyasingh 2010; Cothran et al. 2012). Additionally, 

amphipods within the OK-L clade of Hyalella exhibit significant sexual dimorphism in P 

content, as well as sex-specific patterns of compositional plasticity in response to 

resource availability (Goos et al. 2014). 

Study organisms 

Amphipods were collected from Dripping Spring in Custer County, OK 

(35°34’32.1816” N, 98°54’2.2998” W). In the lab, amphipods were housed indoors under 

natural light at 20-23°C in 5.7-L plastic tubs filled with no nitrogen or phosphorus 

COMBO media (Kilham et al. 1998), with Nitex mesh (mesh size = 1 mm) provided as 

refugia and constant bubbling. An artificial diet mixture consisting of 4 g of pure 

Spirulina and 1g of Spirulina fish flakes was suspended in 50 mL of Bacto-agar solution 

and cooled in a petri dish. We then fed the lab stock populations five 4-mm pellets of the 

artificial diet once weekly. Media within our stock populations was changed fortnightly.  
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 To ensure that all amphipods used in our study were raised in identical conditions, 

we randomly selected 75 adult males and 75 adult females from our stock populations 

and paired each male with one female in a 100-mL jar filled with no N/P COMBO. We 

allowed all pairs to mate and, once the neonates were released from the mother’s 

marsupium, we removed the adults. Juvenile amphipods were then allowed to mature in 

each jar, with one food pellet being fed to them every three days, and media changes 

occurring every ten days. Once mature, we selected one male and one female from each 

jar for elemental analysis. Each individual was then washed, in triplicate, in ultrapure 

(Type 1) water. To control for the effects of female egg production on the variation in 

body composition, females were selected only when eggs were clearly visible in their 

ovaries, ensuring all females were undergoing the same stage of oogenesis. After 

selection, females were immediately transferred to individual tin boats to be dried and 

subsequently weighed, while males were dissected (see below) before being transferred 

to tin boats. In total, 56 females and 48 males were analyzed for their elemental 

composition. Eight jars contained only females, while 19 jars were discarded due to 

complete neonate mortality (10), death of the mother (6), or no mating observed (3).  

 To quantify elemental demand in male sexual traits in comparison to homologous 

nonsexual traits, we dissected the sexually selected posterior gnathopods and the 

nonsexual fifth pereopod (hereafter walking leg) from each male. After removal from 

their respective jars, each male was immediately dissected under a stereo microscope 

(Swift SM90, Schertz, TX, USA) using fine surgical forceps (#5, Dumont SA, 

Montignez, Switzerland). Both gnathopods and walking legs for each male were 

dissected at the basis (Fig. 1). After dissections, we transferred both gnathopods, walking 
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leg, and the rest of the body of each male to separate tin weigh boats to be dried and 

weighed. 

Elemental analysis 

All samples were analyzed for 29 elements using an inductively coupled plasma 

optical emission spectrometer (ICP-OES; Thermo Scientific iCAP 7400, Waltham, MA, 

USA). In 15 mL centrifuge tubes, we digested each sample with 200 μL of trace metal 

grade 100% HNO3 and 100 μL of trace metal grade 100% H2O2 overnight. We then 

diluted all samples to 5 mL with ultrapure (Type 1) water. Aqueous multi-element 

standard reference solutions (CCV Standard 1A &B, CPI International, Santa Rosa, CA) 

were used to validate the ICP-OES and calibrate our analysis. Of the 29 elements 

analyzed, we excluded 17 from further analysis because the measured values of the 

samples were within the range of the standard deviation of our blank controls, indicating 

that the concentration of these elements within our samples are close to or below the 

detection limit of the machine. The remaining 12 elements (Ca, Cu, Fe, K, Li, Mg, Mn, 

Na, P, S, Sr, and Zn) were all above the limits of detection and the concentrations of 

these elements (in g g-1) were log10-transformed before statistical analyses to satisfy 

assumptions of normality.    

Statistical analysis 

 Because elemental composition within an organism is inherently multivariate, 

with correlations occurring between the elements, we first ran a multivariate analysis of 

variance (MANOVA) on all elemental concentrations for each individual, with sex as a 

fixed factor. Then, to determine which elements exhibit sexual dimorphism, we ran 
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separate univariate analyses of variance (ANOVAs), with sex as a factor. While a 

MANOVA is a frequently used multivariate analysis, this method only determines the 

multivariate differences between groups along one axis (the first discriminant function). 

To examine organismal elemental composition in multivariate space more completely, 

we ran a principal components analysis (PCA) on all individuals, ignoring sex. A PCA is 

a multivariate analysis aimed at transforming many variables of interest into fewer, 

uncorrelated variables that adequately summarize the original data structure. We 

performed our PCA using a correlation matrix, as this method standardizes all variables 

to a mean of zero and a unit variance, thus eliminating the possibility of certain variables 

that exhibit high variance from disproportionately influencing the analysis (Quinn & 

Keough 2002). To improve interpretability of the components extracted by the PCA, we 

applied an orthogonal rotation (varimax) to the components. Four PC axes exhibited 

eigenvalues >1 and the individual PC scores from these axes were extracted for further 

analyses. We then ran separate analyses of variance (ANOVAs) on the principal 

component scores of the four PC axes, with sex as the only predictor variable. This 

method is similar to a MANOVA, but allows for multivariate analyses along many, 

uncorrelated axes (Quinn & Keough 2002). To test for potential trait-specific differences 

in elemental composition, we again ran a MANOVA and individual ANOVAs on all 

elemental variables, with trait as a fixed factor. Additionally, we ran a varimax-rotated 

PCA on all male traits based on the correlation matrix. This analysis resulted in five PC 

axes with eigenvalues>1. We then ran separate ANOVAs on the individual PC scores for 

all five axes, with trait as our lone predictor variable. Effect sizes for all models were 

calculated as eta squared (2), defined as the proportion of the total variance explained by 
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the group variable. All statistical analyses were performed using SPSS (version 20, IBM), 

unless otherwise stated.  

Results 

Sexual dimorphism in multielement stoichiometry 

 The results of our MANOVA indicated that the sexes differed in their elemental 

compositions along the first discriminant axis (Wilks’ = 0.303, F12,91= 17.42, p<0.001). 

Individual ANOVAs indicated the largest effect of sex on concentrations of Ca (Table 1; 

Fig. 2a), P (Table 1; Fig. 2a), S (Table 1; Fig. 2a), and Sr (Table 1; Fig. 2a). Smaller, 

significant effects of sex were observed on concentrations of Li (Table 1; Fig. 2a), Na 

(Table 1; Fig. 2a), and Zn (Table 1; Fig. 2a). Additionally, there were weak, but 

significant effects of sex on Fe (Table 1; Fig. 2a) and K (Table 1; Fig. 2a) concentrations. 

No significant differences were observed between the sexes in Cu (Table 1; Fig. 2a), Mg 

(Table 1; Fig. 2a), and Mn (Table 1; Fig. 2a). Of the nine elements exhibiting sexual 

dimorphism, only Ca, Li, and Sr were greater in males than females (Fig. 2a). Principal 

components analysis resulted in four PCs that explained 74.06% of the total variation in 

elemental composition in amphipods (Table S1). PC1 primarily explained the variance in 

Ca, Li, S, and Sr, PC2 primarily explained the variance in Cu, K, Na, and Zn, PC3 

primarily explained the variance in Mg and P, and PC4 primarily explained the variance 

in Fe and Mn (Table S1). The PCA plots indicate that the sexes differ in their elemental 

compositions in multidimensional space, with most of the separation between the sexes 

occurring along PC1 (Fig. 2b; Fig. S1). Males are clustered toward more positive values 

along PC1, while females tend to be more negative. Additionally, females tend to vary 
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more along this axis than males. The results of our individual ANOVAs for each PC 

indicated strong, significant differences between the sexes in elemental composition 

observed along PC1 (F1,102= 49.696, p<0.001, 2= 0.328 :Fig. 2b). Weak, but significant 

differences between the sexes were also observed along PC2 (F1,102= 6.730, p= 0.011, 

2= 0.062; Fig. 2b) and PC3 (F1,102= 8.771, p= 0.004, 2= 0.079; Fig. S1a). No sexual 

dimorphism was observed along PC4 (F1,102= 3.819, p= 0.053; Fig. S1b).  

Trait specific multielement stoichiometry and its correlations with trait value 

 Using a MANOVA, we observed strong differences between gnathopods and legs 

in elemental composition (Wilks’ = 0.136, F12,91= 43.924, p<0.001). Additionally, 

individual ANOVAs indicated that there was a strong effect of trait on Ca (Table 2; Fig. 

3a), K (Table 2; Fig. 3a), S (Table 2; Fig. 3a), and Sr (Table 2; Fig. 3a) concentrations. 

Additionally, we observed weaker, but still significant, effects of trait on Mg (Table 2; 

Fig. 3a) and P (Table 2; Fig. 3a) concentrations. We observed no significant differences 

between the traits in Cu (Table 2; Fig. 3a), Fe (Table 2; Fig. 4), Li (Table 2; Fig. 3a), Mn 

(Table 2; Fig. 3a), Na (Table 2; Fig. 3a), and Zn (Table 2; Fig. 3a). Calcium and Sr were 

the only elements of the six exhibiting significant trait differences that were greater in 

walking legs than gnathopods (Fig. 3a). Principal components analysis resulted in five 

PCs that explained 74.83% of the total variation in male amphipod trait elemental 

composition (Table S2). PC1 primarily explained the variance in Ca and Sr, PC2 

primarily explained the variance in Na and S, PC 3 primarily explained the variance in K, 

Mg, and P, PC4 primarily explained the variance in Fe, Li, and Mn, and PC5 primarily 

explained the variance in Cu and Zn (Table S2). The PCA plots indicate that traits differ 
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in their elemental stoichiometry along multiple elemental axes (Fig. 3b; Fig. S2). Again, 

this separation primarily occurs along PC1, with gnathopods having much lower values 

of PC1 than walking legs, in general (Fig. 3b). Further, the variation in trait stoichiometry 

within each trait tends to be greater in PC2-4 than in PC1. The results of the ANOVAs 

for each PC axis indicated a strong effect of trait on elemental concentrations along PC1 

(F1,94= 199.393; p<0.001, 2= 0.680; Fig. 3b). Weak, but significant effects of trait were 

also observed on PC2 (F1,94= 4.288; p= 0.041, 2= 0.044; Fig. 3b), and PC3 (F1,94= 9.652; 

p= 0.003, 2= 0.093; Fig. S2a). We did not observe significant differences between the 

traits in PC4 (F1,94= 0.385; p= 0.536; Fig. S2b) or PC5 (F1,94= 0.008; p= 0.928; Fig. S2c).  

 

Discussion 

  Our results show intersexual differences in elemental composition across 

multiple elemental axes beyond C, N and P, despite all organisms being raised in a 

common garden. Additionally, our results show that elemental concentrations within 

organisms exhibit complex correlative relationships that point toward important sex-

specific stoichiometric constraints. Patterns of sexual dimorphism in stoichiometry were 

observed in the concentrations of individual elements, as well as in multivariate space, 

taking into account the various interactions between elements within amphipod tissue. In 

addition to the sexual dimorphism we observed in multielement stoichiometry, we also 

found differences between the stoichiometry of sexual and nonsexual traits both 

individually and in multivariate space. These findings suggest that the elemental demands 
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of different traits are unique, and may drive important resource tradeoffs that influence 

sex-specific fitness.  

In multivariate space, the axis explaining the greatest proportion of total elemental 

variation in amphipods, PC1, was primarily a combination of Ca, Sr, Li, and S. The effect 

sizes calculated in the ANOVA of this axis indicated that sex explains five times more 

variation on this axis than the other axes exhibiting sexual dimorphism, and the PCA 

plots show separation of the sexes along this axis (Fig. 2b). Of the elements exhibiting 

sexual dimorphism, Ca, Sr, and Li were the only elements that were more concentrated in 

males than females. For all other elements exhibiting sexual dimorphism, concentrations 

were higher in females than males (Fig. 2a). Additionally, Ca, Sr, P, and S exhibit the 

greatest degree of sexual dimorphism, as indicated by the effect sizes (Table 1).  

The sexual difference in Ca content is particularly interesting, as Ca is abundant 

in the crustacean body and is involved in key processes. In crustaceans, Ca is most 

abundant in the exoskeleton as CaCO3 and, to a large extent, Ca composition of 

crustaceans is tightly linked to the crustacean molt cycle, as Ca is periodically lost and 

replaced throughout this cycle (Ahearn et al. 2004). Regression analysis revealed a weak, 

but significant, positive allometric relationship between body size and Ca content (Table 

S3). The positive allometric relationship we observed seems to contradict expectations 

based on surface area to volume, however, further examination into these data suggest 

that this positive correlation is driven primarily by the heteroscedastic nature of Ca 

content, driven primarily by sex. Variation in female Ca content was much higher than 

male Ca variation. Thus, the sexual dimorphism observed in Ca content is more likely a 

product of sexual dimorphism in form, rather than just size. Because male Hyalella have 
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higher Ca demands than females, low ambient Ca levels, along with related 

environmental parameters such as pH and conductivity, can impose sex-specific selective 

pressures, with substantial fitness costs (Connallon et al. 2010). 

In addition to the observed sexual differences in Ca content, our multivariate 

analysis indicated positive correlations between Li and Sr content and Ca content, as well 

as a strong negative correlation between S and Ca/Sr/Li (Table 1; Fig. 2b). Strontium is 

an alkaline earth metal that resembles many chemical characteristics of its fellow alkaline 

earth metal, Ca. Often, Sr is a chemical substitute for Ca in various cellular processes, as 

well as in calcified tissues, particularly when environmental supply of Ca is low and 

organismal demand is high (Cowan et al. 1968; Gunatilaka 1981; Matsumura 1981). 

Considering crustaceans have high Ca demands (e.g., Prater et al. 2015), it is possible 

that the positive correlation between Sr and Ca is due to organismal demand outpacing 

the supply of Ca within our media, resulting in Sr substitution to meet these demands.  

Our observation of sexual dimorphism in P content is consistent with other studies 

examining P differences between the sexes in arthropods, and is thought to be a result of 

the substantial demand for P-rich RNA during oogenesis (Markow et al. 1999, 2001; 

Gorokhova & Kyle 2002; Goos et al. 2014). A regression analysis revealed a significant, 

moderately negative allometric relationship between P content and body size (Table S3), 

a relationship predicted by the ‘growth-rate hypothesis’ (Elser et al. 1996). While we 

could not quantify C and N content in the current study because there is not enough 

biomass in individual amphipods for CN as well as ICP-OES analysis, prior work 

observed dimorphism in these elements, with males containing more N (Goos et al. 2014; 

Goos et al., unpublished data).  
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Although its physiological role is largely unexplored (Schou 1957; Schrauzer et 

al. 1992), our results suggest that Li, and its interactions with S, Ca, and Sr, may also be 

important for some aspect of sexual divergence. In contrast to the positive relationships 

between Ca, Sr, and Li, the strong negative correlation between S and Ca/Sr/Li suggests 

that uptake of these elements may be antagonistic. This antagonism between S and 

Ca/Sr/Li may be a direct antagonism where Ca/Sr/Li inhibit the uptake of S, although we 

are unaware of any studies examining this. Alternatively, this antagonism may be the 

result of indirect processes, such as the upregulation of proteins rich in methionine and 

cysteine, S-rich amino acids (Brosnan & Brosnan 2006), in organisms with lower Ca 

demands.  

In addition to the differences between the sexes in elemental composition, we also 

observed differences in elemental composition between sexual and nonsexual male traits. 

Univariate analyses revealed elemental differences between gnathopods and walking legs 

primarily in the bulk elements and not in trace elements (Fig. 3a). As in our intersexual 

comparison of elemental compositions, Ca and Sr exhibited the strongest differences 

between the two traits. The differences between walking legs and gnathopods in these 

elements may be due to differences in exoskeleton investment as a result of disparate trait 

shape. Specifically, the walking legs are laterally compressed compared to the 

exaggerated gnathopods, and thus will have higher surface area-to-volume and 

consequently exoskeleton will contribute toward a higher proportion of leg mass. We also 

observed strong trait differences in K and S content, but these differences are not to the 

same degree as the differences observed in Ca and Sr. Finally, there were small 

differences between Mg and P content of the traits. Multivariate analyses also indicate 



 
 

135

that the traits largely separate on the axis explaining variation in Ca and Sr (PC1, Fig. 

3b). Along this axis, K is weakly negatively correlated with Ca/Sr, indicating that there 

may be weak antagonism between these elements. Variation within each trait is generally 

greater in PCs 2-5 than in PC1. This pattern suggests that differences between traits are 

generally linked to Ca and Sr, whereas trait variation is a function of the other elements.  

Our results show the power of including multidimensional elemental data in the 

application ES principles to elucidate evolutionary questions. It is clear that a focus on a 

single or few elements is bound to miss important variation that underlies striking sexual 

dimorphisms and intraspecific trait diversity. While the precise mechanisms underlying 

the observed patterns of sexual dimorphism along these elemental axes require further 

study, these patterns have to be driven by sex-specific acquisition, assimilation, 

allocation, and excretion strategies. Additionally, knowledge of organismal demand in 

multivariate space can elucidate the complex interactions between an organism and its 

environment that shape important fitness-conferring life history traits. Analyzing high 

throughput, multi dimensional elemental data using the theoretical framework of 

ecological stoichiometry, as demonstrated here, is a powerful way to illuminate 

biologically relevant variation in a world characterized by rapidly changing 

biogeochemical cycles. 
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Tables 

Table 1: ANOVA results comparing elemental concentrations of male and female 

Hyalella amphipods. Bold values indicate significance at p<0.05. 

Variable F1,102 Effect size (2) P 

Ca 47.850 0.319 <0.001 

Cu 1.044 0.010 0.309 

Fe 5.073 0.047 0.026 

K 5.164 0.048 0.025 

Li 19.939 0.164 <0.001 

Mg 0.000 0.000 0.988 

Mn 3.647 0.035 0.059 

Na 19.164 0.158 <0.001 

P 64.701 0.388 <0.001 

S 57.267 0.360 <0.001 

Sr 42.435 0.294 <0.001 

Zn 14.844 0.127 <0.001 
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Table 2: ANOVA results comparing elemental concentrations of male gnathopods and 

walking legs. Bold values indicate significance at p<0.05. 

Variable F1,94 Effect size (2) P 

Ca 194.796 0.675 <0.001 

Cu 0.164 0.002 0.687 

Fe 0.269 0.003 0.605 

K 38.698 0.292 <0.001 

Li 0.105 0.001 0.747 

Mg 6.029 0.060 0.016 

Mn 1.084 0.011 0.300 

Na 0.223 0.002 0.638 

P 4.868 0.049 0.030 

S 19.704 0.173 <0.001 

Sr 182.247 0.660 <0.001 

Zn 2.268 0.024 0.135 
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Figures 

Figure 1: Male Hyalella amphipod showing points of dissection for trait-specific 

elemental composition comparisons. The black lines indicate the point where the 

dissection occurred on the gnathopod and fifth pereopod (a.k.a. walking leg). 
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Figure 2:  Elemental composition of male and female Hyalella amphipods (a) for each 

individual elemental and (b) in multidimensional space. For individual element 

comparisons, error bars represent 95% confidence intervals and asterisks indicate 

significant differences between the sexes (p<0.05). In multidimensional space, the first 

two PCs are shown, with the percentage of total elemental variation explained by these 

axes. The markers represent individual amphipods and vectors linear component loadings 

for each element. 
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Figure 3: Elemental composition of male Hyalella gnathopods and walking legs (a) for 

each individual element and (b) in multidimensional space. For individual element 

comparisons, error bars represent 95% confidence intervals and asterisks indicate 

significant differences between traits (p<0.05). In multidimensional space, the first two 

PCs are shown, with the percentage of total elemental variation explained by these axes. 

The markers represent individual traits and vectors linear component loadings for each 

element.  
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Supplementary Information 

Table S1: PC loadings for whole body ionomic analyses 

Table S2: PC loadings for gnathopod vs. leg ionomic analyses 

Table S3: Correlations of individual elements with log-transformed mass (mg). Bold 

values indicate significant correlations at p<0.05.  

Figure S1:  Elemental compositions of male and female Hyalella amphipods along the 

PCs (a) PC3 vs. PC1 and (b) PC4 vs. PC1. Markers represent individual amphipods and 

vectors represent linear component loadings for each element.  

Figure S2: Elemental compositions of Hyalella gnathopods and walking legs along the 

PCs (a) PC3 vs. PC1, (b) PC4 vs. PC1, and (c) PC5 vs. PC1. Markers represent individual 

amphipods and vectors represent linear component loadings for each element.  
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Table S1 

 PC1 PC2 PC3 PC4 

Eigenvalue 2.900 2.598 1.696 1.693 
% variance 24.17 21.65 14.14 14.11 
Cumulative 
% 

24.17 45.82 59.95 74.06 

Loadings     
Ca 0.886 -0.227 0.049 -0.184 
Cu -0.082 0.708 -0.241 -0.162 
Fe -0.073 0.305 -0.007 0.709 
K -0.210 0.686 0.269 0.107 
Li 0.827 0.131 -0.163 0.180 
Mg 0.199 -0.250 0.863 -0.022 
Mn 0.039 -0.037 0.119 0.889 
Na -0.08 0.699 -0.067 0.226 
P -0.311 0.246 0.851 0.173 
S -0.642 0.422 0.135 -0.070 
Sr 0.868 -0.295 0.176 -0.180 
Zn -0.254 0.765 0.021 0.421 
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Table S2 

 PC1 PC2 PC3 PC4 PC5 

Eigenvalue 2.147 1.834 1.811 1.639 1.549 
% variance 17.89 15.28 15.09 13.66 12.91 
Cumulative 
% 

17.89 33.17 48.26 61.92 74.83 

Loadings      
Ca 0.938 -0.130 -0.054 0.036 0.006 
Cu 0.050 0.085 -0.107 -0.006 0.793 
Fe -0.060 0.041 0.029 0.850 0.106 
K -0.447 0.091 0.644 0.180 0.369 
Li -0.096 0.052 -0.090 0.563 -0.188 
Mg 0.080 0.474 0.624 -0.103 -0.382 
Mn 0.186 0.153 0.111 0.699 0.214 
Na 0.024 0.874 -0.154 0.249 0.033 
P 0.043 -0.136 0.937 -0.016 0.079 
S -0.185 0.875 0.132 0.031 0.146 
Sr 0.975 0.004 0.022 -0.036 -0.088 
Zn -0.157 0.037 0.227 0.060 0.713 
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Table S3 

Variable Pearson Correlation 
(r) 

P 

Ca 0.273 0.005 
Cu -0.002 0.983 
Fe -0.192 0.051 
K -0.104 0.294 
Li 0.169 0.087 
Mg -0.168 0.088 
Mn -0.197 0.045 
Na -0.439 <0.001 
P -0.572 <0.001 
S -0.362 <0.001 
Sr 0.289 0.003 
Zn -0.218 0.026 
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Figure S1 
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Figure S2 
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SYNTHESIS 
 

 

An elemental view of ecology and evolution can help in both horizontal and vertical 

integration of biological research. In recent years, great strides have been made towards a 

mechanistic understanding of eco-evolutionary interactions on the elemental level, with 

the elucidation of phylogenetic (e.g., Woods et al. 2004), community-level (e.g., Elser 

and Urabe 1999), life history (e.g., Jeyasingh and Weider 2005), transcriptomic 

(Jeyasingh et al. 2011; Roy Chowdhury et al. 2015), and microevolutionary (Frisch et al. 

2014) patterns counted among those discoveries. While the use of the elemental 

perspective is growing as a tool for integrating ecology and evolution, largely unexplored 

is the role of sexual selection in shaping these patterns. Considering many of these 

studies are examining these patterns at the interspecific level, or utilize clonal model 

organisms, it is no surprise that sexual dimorphism and selection has been 

underrepresented in stoichiometric research. As arguably the greatest source of variation 

within sexual populations, sex cannot be ignored when attempting to understand the 

important intrinsic (e.g., genetically determined ability to acquire, assimilate, and allocate 

resources) and extrinsic (e.g., environmental resource supply) mechanisms that shape 

intraspecific evolution. 
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In this dissertation, I have studied how the environmental supply of phosphorus 

(P) affects: i) sex-specific patterns of plasticity in stoichiometric demand (Chapter One), 

ii) sex- and age-specific patterns of nutrient acquisition, assimilation, and allocation to 

exaggerated sexual traits (Chapter Two), and iii) population-level demographics, trait 

variation, and mating behavior (Chapter Three). Revisiting the patterns of sexual 

dimorphism on the elemental level observed in Chapter One, I also studied multi-

dimensional elemental sex- and trait-specific stoichiometric demand in a common garden 

environment (Chapter Four). Examining the effects of this relevant environmental 

parameter on various aspects of Hyalella biology on multiple organizational levels has 

illuminated potential ultimate and proximate mechanisms that may be responsible for 

shaping sexual dimorphism rapidly changing environments. 

Sex-specific plasticity in P content 

 In Chapter One, I examined whether sexual dimorphism manifests at the 

elemental level and how P availability influences patterns of stoichiometric dimorphism. 

Because of the differences in life history, morphology, and physiology, the sexes should 

also differ in the constituent elements comprising these higher-level phenotypes. A 

characterization of these sex-specific demands for resources is needed in order to derive 

second-order hypotheses on the proximate and ultimate causes and consequences of 

differential demand in the face of ecological change. I found substantial sexual 

dimorphism in body P content only in two amphipod species raised in a low-P laboratory 

environment. This dimorphism was much greater in the species that exhibits a greater 

degree of both sexual size dimorphism and larger exaggerated sexual traits relative to the 

body. Contrary to predictions based on the growth rate hypothesis (Elser et al. 1996), this 
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faster growing species has a lower P content than the slower growing species. The sexual 

dimorphism in P content observed in the lab was not present in wild caught amphipods of 

both species from high-P water bodies. In both species, only males exhibited plasticity in 

their P contents driven by the environmental conditions in which they were raised, while 

female P content seems relatively canalized. All of the patterns I observed in this study 

were not found to be due to differences between the sexes or species in their foraging 

behavior, as all amphipods overwhelmingly preferred feeding on high P food, suggesting 

that the variation in body P due to sex or species are driven primarily by variation in 

nutrient processing strategies. Although the environments differed in their P supplies, the 

specific causes of this plasticity from lab to field still must be elucidated, as it is difficult 

to separate the effects of P and other environments in this study. For example, it is 

possible that selective forces present in the wild (e.g., predation, competition, etc.) can 

result in little variation in body P content between all individuals in a population. 

Regardless, it is clear that males and females differ in both their elemental demands and 

their potentials for plasticity in these demands.   

Effects of P on nutrient processing 

In the second chapter of this dissertation, I found significant interactive effects of 

P availability, age, and sex on the acquisition and assimilation of both C and P. 

Fundamentally, organisms must meet their resource demands utilizing the nutrient 

processing strategies of acquisition, assimilation, and allocation. Based on first principles, 

it follows that variation in demand should be tightly linked to variation in these strategies. 

In this study, I observed a significant effect of P availability on the acquisition of 

resources, as organisms likely compensated for limited resource availability (Plath and 
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Boersma 2001). Additionally, I found an interactive effect of age and sex on the 

acquisition of C and P, as female decreased resource acquisition as they matured. 

Curiously, I did not observe sexual dimorphism in adult acquisition activity, as predicted 

by the observed dimorphism in P demand from Chapter One. This suggests that P 

demands are not necessarily met by acquisition activity alone. In an examination of 

assimilation activity, I found that assimilatory responses to P availability are dependent 

upon both the age and sex of an organism. Importantly, the patterns of assimilation we 

observed do not follow the patterns of acquisition, suggesting that assimilation and 

acquisition are somewhat independent processes that can be used by organisms to meet 

their resource demands. This finding is especially important as it suggests that the 

ultimate fate of resources within organisms (i.e., allocation) is not necessarily controlled 

by resource acquisition, as has been previously theorized (Robinson and Beckerman 

2013).   

Sexual dimorphism in Hyalella amphipods is largely driven by the expression of 

the exaggerated posterior gnathopods in males. Intense directional sexual selection for 

exaggerated gnathopods should drive preferential allocation to these traits. The 

development of gnathopods has previously been shown to be dependent on 

environmental resource supply (Cothran and Jeyasingh 2010; Cothran et al. 2012). The 

mechanisms for resource allocation to these exaggerated traits in the face of 

environmental P supply are, however, much more elusive. Using the same techniques in 

radioisotope analysis I used to examine acquisition and assimilation, I studied the 

allocation of C to both the sexual gnathopods and other nonsexual traits. This analysis 

found that allocation to all traits was substantially increased when amphipods were fed 
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low P food, suggesting that amphipods hold onto more of their acquired C under these 

conditions, a finding supported by our measures of assimilation. Additionally, I found 

evidence for preferential allocation to the exaggerated gnathopod only during gnathopod 

development. This evidence suggests that the maintenance of the exaggerated gnathopod 

is not considerably more costly than that of similar nonsexual traits, but that the cost of 

developing these traits is high and may impose a substantial burden to amphipods in late 

ontogeny. 

Together, the results of this chapter point toward the need to view variation in 

organismal demand through the lens of the specific mechanisms that organisms use to 

meet their demands. Specifically, studies that examine sex differences in resource 

demand should pay particular attention to the role post-ingestive processes play in 

helping organisms meet their resource demands. Further, these results highlight the 

importance of examining resource demands and organismal responses to resource supply 

in the context of ontogeny, as resource demands and thus selection, shift as organisms 

age.  

Effects of P supply on population dynamics and mating biology 

 Mating biology is highly dependent on population-level parameters, as selection 

for behaviors and traits are often linked to population density or sex ratios (Kokko and 

Rankin 2006). The effects of resource supply on various aspects of mating biology have 

often only been studied at the individual level, with little evidence that these observed 

patterns apply to higher levels of biological organization. Additionally, studies of P 

supply effects on mating biology often use highly contrasting P environments, while 
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exploration into the more subtle changes that are potentially more representative of 

seasonal or spatial variation in P (Hessen et al. 2005) remains lacking. In Chapter Three, I 

tested the effects of subtle changes in P supply on population dynamics and trait 

variation. Additionally, using binary mating trials, I tested the interactive effects of P 

supply during development (long term) and P supply during mating (short term) on 

female choice. My results indicated that subtle changes in P supply has no effect on 

population density or sex ratios. Further, gnathopod development was also not affected 

by subtle changes in P supply, suggesting that the effect previously observed on the 

individual level is dampened in populations, possibly due to constraints imposed by 

competition for food. When examining the influences of P supply on mating behavior, I 

found evidence that organismal nutritional history (i.e., the supply of nutrients during 

development) and current P supply interact to determine the mating success of males. 

Together, the results from this chapter highlight the importance of considering 

population-level dynamics in studies on environmental effects on mating biology, 

especially considering that effects observed on the individual level may be dampened by 

selective forces present in higher-level contexts. Moreover, further attention must be paid 

to ensuring that experimental manipulations in nutrient supply encompass ecologically-

relevant ranges that represent the subtle spatial and temporal variation often observed in 

nature. 

Sexual dimorphism in multiple elemental dimensions 

 The focus on C, N, and P in most stoichiometric studies has provided for a wealth 

of information on the importance of these elements in key ecological and evolutionary 

processes on multiple levels (see, Hessen et al. 2013). Organisms, however, are 
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composed of many more elements than just these three. Focusing on a limited subset of 

elemental variables only captures part of the overall stoichiometric picture, and ignores 

the documented importance of trace elements in ecological and organismal processes 

(e.g., Cullen and Sherrell 2005; Karimi and Folt 2006; Wright et al. 2011; Dudley et al. 

2012). As such, any framework of eco-evolutionary dynamics at the elemental level must 

incorporate the entire suite of elements present in biological systems (i.e., the ionome; 

sensu Salt et al. 2008) or risk black-boxing important interactions among elements 

composing biomass and the ecological consequences of these interactions. Chapter Four 

of this dissertation revisits the central question of the first chapter in determining whether 

sexual dimorphism manifests at the elemental level, this time along multiple elemental 

axes. Additionally, I assessed what, if any, differences there are between sexually 

selected traits and similar nonsexual traits in their relative elemental demands in multiple 

dimensions. I found significant dimorphism and trait differences in multidimensional 

elemental space. The driver of the differences between the sexes and traits was calcium, 

an important element for the formation of the amphipod exoskeleton. I also found 

evidence for positive and negative correlations between elements, emphasizing the 

potential for elemental co-limitation, in which the ability to acquire one nutrient is 

dependent on the supply of another (Saito et al. 2008). This examination of sexual 

dimorphism along multiple elemental axes has illuminated the complexity of elemental 

interactions that may underlie many of the phenotypic differences observed between the 

sexes. While the sources of this dimorphism and the mechanisms responsible for the 

interactions between elements may prove to be challenging to uncover, such 
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bioinformatic tools may provide for an ecologically-explicit understanding of the causes 

and consequences of sexual dimorphism and sexual trait variation.  

 

Conclusions and future directions 

 Studying the responses of males and females to variation in P supply has enabled 

me to study how nutrition and sexual selection interact to shape sexual dimorphism, 

sexual trait development, and mating biology. Such information is critical in furthering 

our understanding of the condition-dependent nature of sexual traits, particularly in light 

of global environmental change. It should be acknowledged that this dissertation is 

limited by its lack of direct quantification of the fitness consequences of the patterns 

observed within. For example, while I observed sex-specific effects of P supply on the 

composition, acquisition, assimilation, and allocation of resources (Chapters One and 

Two), whether these effects result in appreciable sex-specific fitness consequences has 

yet to be fully explored. Further, our understanding of the genetic sources of 

stoichiometric variation is lacking. Without an integration of quantitative genetics 

approaches into studies on stoichiometric variation, the evolutionary implications of 

studies showing organism-level consequences of variation in elemental supply cannot be 

fully deciphered. To that end, future studies examining the evolution of condition-

dependent sexual traits can explore how variation in environmental supply of elements 

affects organismal stoichiometry, and whether sexual trait variation is related to 

organismal stoichiometry. Quantitative genetics techniques can then be used to compare 

these effects across genotypes, to determine the genetic architecture of condition-
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dependent trait evolution on the elemental level. In addition, high-throughput “-omics” 

tools can be incorporated into the framework of ecological stoichiometry to gain a better 

understanding of the mechanisms responsible for both inter- and intrasexual phenotypic 

variation and its relationship to ecosystem processes.  

 Most studies exploring sexual dimorphism and sexual trait variation do so purely 

on the organismal level, including most of the studies within this dissertation. The utility 

of an elemental perspective, however, is the ability to use a common currency of 

elements to address questions across both taxa (i.e., horizontal integration) and levels of 

biological organization (i.e., vertical integration). To this end, future studies must explore 

the role of ecosystem-level parameters in shaping sexual dimorphism and trait evolution 

in natural settings. By using an elemental approach to reduce complexity at both the 

ecosystem and organismal levels, we can begin to understand the complex, multifarious 

selective forces that shape broad spatial diversification within species. Knowledge of the 

variation within species in responses to rapid environmental alterations is critical to our 

understanding of both the evolution of species and the ecological consequences of these 

evolutionary changes. 
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