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Abstract:  Estradiol is the female sex hormone that profoundly influences the female 

reproductive system from puberty to fertility.  Circulating estradiol in women is 

synthesized primarily by ovarian granulosa cells in response to the pituitary glycoprotein 

follicle-stimulating hormone (FSH).  In granulosa cells FSH triggers a signaling cascade 

that subsequently induces expression of aromatase (Cyp19a1), a steroidogenic enzyme 

that catalyzes the aromatization of testosterone into estradiol.  While FSH stimulates 

estradiol production, estradiol concentrations are regulated by intra-ovarian signaling 

molecules wingless-type mammary tumor virus integration-site (WNT) family molecules 

and insulin-like growth factor-I (IGF-I).  Intracellular signaling cascades elicited by FSH, 

WNT, and IGF-I eventually overlap at β-catenin, a transcription co-factor.  In granulosa 

cells β-catenin accumulates in response to FSH, and WNT, and is required for Cyp19a1 

expression.  Although it is evident that granulosa cells require β-catenin to maintain 

estradiol production, there is still much to be identified about its role, regulators, and 

downstream effectors.  In this dissertation, evidence is presented that enhances our 

understanding of the complex intracellular regulation of estradiol biosynthesis.  Data 

demonstrates β-catenin accumulation in response to FSH and IGF-I occur via 

phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) pathway as inhibition of 

PI3K signaling reduced β-catenin and estradiol concentrations.  Additionally, IGF-I 

rescued FSH-mediated Cyp19a1 expression and estradiol production from the inhibitory 

effects of WNT3A.  To elucidate the mechanism, β-catenin accumulation, 

phosphorylation status of β-catenin and Forkhead box O protein were analyzed by 

Western blot and Axin2 mRNA expression by real-time PCR.  Data indicates IGF-I did 

not modulate expression of the above mentioned target markers and therefore was ruled 

out as potential mechanisms.  A noteworthy discovery was in comparing animal models 

and identifying bovine but not rat granulosa cells have increased β-catenin accumulation 

with IGF-I treatment which further adds to the complex nature of estradiol production.  In 

the final study it was confirmed that the crucial mechanism by which β-catenin regulates 

Cyp19a1 transcription is through its association with T-cell Factor on the promoter.  

Together, these data provide a new appreciation and understanding of the complex 

regulation of β-catenin in estradiol production.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 Steroids play an important role in regulating homeostatic and pathological pathways.  

Estradiol is the female sex steroid produced primarily by the ovarian follicle and is essential 

in maintenance of the female reproductive system.  Estradiol drives onset of puberty and 

development of secondary sex characteristics.  Thereafter, estradiol maintains cyclicity, 

enhances oocyte fertility and is responsible for female sexual receptivity.  This female sex 

steroid is also associated with various diseases such as breast cancer, uterine cancer, and 

infertility (Couse et al., 1999; Weiderpass et al., 1999; Yager and Davidson, 2006).  

Understanding the complex biological regulation of estradiol biosynthesis is necessary to set 

a foundation for what is normal and identify future target interventions for when estradiol is 

abnormally present in inappropriate circulatory concentrations.     

 Follicle-stimulating hormone (FSH) is a pituitary glycoprotein released in response to 

hypothalamic gonadotropin-releasing hormone.  The primary function of FSH is to enhance 

expression of genes required for maturation of ovarian follicles while simultaneously 

promoting expression of steroidogenic enzymes necessary for estradiol biosynthesis.  

Granulosa cells in the follicle are the only cells in the female containing FSH receptors 
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(Camp et al., 1991) and require testosterone, a precursor derived from surrounding theca cells 

to synthesize estradiol.  Follicle-stimulating hormone signals via a G-protein coupled 

receptor to target downstream effectors such as cAMP, protein kinase A (PKA) and 

phosphatidylinositol-3 kinase (PI3K) (Izadyar et al., 1998).  Granulosa cells proliferate as 

follicles develop and produce increasing amounts of estradiol from 3.6 pg/mL in the luteal 

phase (days 1 to 18 of the estrous cycle) to 9.7 pg/mL in the estrus phase (day 20) 

(Wettemann et al., 1972).  In cattle, the largest dominant follicle produces increasing 

amounts of estradiol at the start of deviation (Beg et al., 2001), whereas in the human greater 

follicular estradiol occurs in the dominant follicle when identified by its larger diameter (van 

Dessel et al., 1996).  The elevated estradiol concentration, a hallmark of large antral follicles, 

causes a decline in FSH to prevent the emergence of new follicles (Evans et al., 1997).  

Greater amplitude or a surge in luteinizing hormone and is responsible for triggering the 

release of luteinizing hormone for ovulation (Rahe et al., 1980). 

  A requirement for the gonadotropins as regulators in estradiol production has been 

well established and current studies focus on contributions of additional regulatory 

compounds.  A more recently studied signaling factor in the ovary is wingless-type 

mammary tumor virus integration-site (WNT) family of extracellular signaling molecules. 

The WNTs are a family of 19 secreted glycoproteins and 18 of them are expressed in the 

ovary of the human, mouse, rat, pig, and cow (Hernandez Gifford, 2015).  These short range 

signaling molecules can elicit a signal through three pathways including the planar cell 

polarity, WNT/Ca
2+

, and the canonical WNT/β-catenin pathway which is the most 

extensively studied.  In the absence of WNT, cytoplasmic β-catenin concentrations are 

controlled by a multiprotein destruction complex composed of adenomatous polyposis coli, 
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Axin 1, and glycogen synthase kinase-3β (GSK-3β).  Phosphorylation of β-catenin at serine-

45 by the priming kinase, casein kinase (CK1α) and at theronine-41, serine-37, and serine-33 

by GSK-3β induces its ubiquitination and subsequent degradation by the proteosome (Liu et 

al., 2002; Kimelman and Xu, 2006).  In the canonical WNT signaling cascade, WNT binds to 

frizzled (FZD) (Janda et al., 2012) and low density lipoprotein 5/6 receptors (LRP 5/6) (He et 

al., 2004).  Dishevelled is then recruited by FZD which promotes its clustering with LRP5/6 

(Gao and Chen, 2010).  This polymerization by dishevelled provides a platform for Axin 1 to 

associate with LRP5/6 which subsequently causes disassociation of the degradation complex.  

This results in loss of GSK-3β activity which subsequently prevents β-catenin from being 

phosphorylated and targeted for degradation.  β-catenin accumulates in the cytoplasm, 

translocates to the nucleus, and associates with T-cell factor/lymphoid enhancer binding 

protein (TCF/LEF) to activate transcription of target genes (Gordon and Nusse, 2006).   

 The requirement for WNTs in ovarian development was first demonstrated in females 

heterozygous for a disrupted Wnt4 allele that displayed a partial female to male sex reversal 

(Vainio et al., 1999).  The loss of WNT4 in females resulted in ovaries that contained 

structures which resembled seminiferous tubules in testes and expressed sertoli cell marker 

Desert hedgehog, and leydig cell markers 3β-hydroxysteroid deyhdrogenase and 17α 

hydroxylase all of which are markers strictly associated with the male testis of neonates.  The 

requirement for WNT in ovarian development raised the possibility of a role for WNTs in the 

adult ovary.  Subsequent studies have identified transcripts for WNT and downstream WNT 

signaling molecules expressed at specific stages of follicle development (Hsieh et al., 2002; 

Ricken et al., 2002; Wang et al., 2010).  β-catenin, the linchpin molecule in the WNT 

canonical pathway is required for optimal estradiol production (Hernandez Gifford et al., 
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2009).  In culture, FSH regulates expression of WNT/β-catenin signaling in granulosa cells 

as demonstrated by an increase in WNT2 mRNA expression and total β-catenin accumulation 

(Castañon et al., 2012).  Consistent with the role of FSH in estradiol production, total β-

catenin is highly abundant in large estradiol active follicles when compared with large 

estrogen inactive follicles suggesting, β-catenin accumulates in response to FSH in vivo.  

Interestingly, co-stimulation of WNT3A and FSH signaling pathways is inhibitory on 

aromatase (Cyp19a1) mRNA expression and estradiol production in granulosa cells (Stapp et 

al., 2014b).  A focus of this dissertation is to investigate if a potential mechanism by which 

WNT3A is inhibitory on FSH-stimulated estradiol production is through a modification of β-

catenin transcriptional activity.   

 Follicle-stimulating hormone-mediated estradiol and granulosa cell proliferation is 

enhanced in response to the growth factor, insulin-like growth factor-I (IGF-I) in porcine 

(Baranao and Hammond, 1984), rodent (Adashi et al., 1985b), and bovine granulosa cells 

(Spicer and Aad, 2007). Insulin-like growth factor-I signals through phosphatidylinositol-3 

kinase to activate protein kinase B (AKT) which enhances expression of genes involved in 

cell cycle progression and phosphorylates numerous proteins, including GSK-3β (Alessi and 

Cohen, 1998).  In cultured bovine granulosa cells, FSH and IGF-I increases phosphorylated 

and total AKT (Mani et al., 2010).  Additionally, the ability of FSH to increase total β-

catenin (Castañon et al., 2012) suggest AKT is required for β-catenin accumulation.  

Therefore, research presented herein was designed to determine if FSH and IGF-I activation 

of AKT contributes to estradiol synthesis by modulating β-catenin accumulation. 

 The ability of FSH, WNT, and IGF-I to regulate estradiol production in granulosa cell 

relies in their capacity to modulate Cyp19a1 expression, a steroidogenic enzyme required for 
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the final conversion of C19 androgens to the C18 estrogens.  β-catenin is a downstream 

molecule consistently associated with all three pathways and is required for Cyp19a1  mRNA 

expression (Hernandez Gifford et al., 2009).  β-catenin increases expression of target genes 

by associating with multiple nuclear transcription factors on specific promoter regions.  

Interestingly, expression of the FSH-induced luteinizing hormone receptor (Lhcgr), a 

differentiation factor, is dependent on β-catenin association with steroidogenic factor-1 (SF-

1; officially designated NR5A1) a nuclear orphan receptor, and TCF on the Lhcgr promoter 

(Law et al., 2013).  Maximal Cyp19a1 mRNA expression relies on β-catenin association with 

SF-1 on the Cyp19a1 promoter to regulate its expression (Parakh et al., 2006).  It is 

suggested that activation of the Cyp19a1 promoter by FSH additionally requires β-

catenin/TCF association.  However, this is only demonstrated through an increased 

expression of a TCF-luciferase reporter plasmid in response to FSH (Fan et al., 2010).  

Therefore, the final focus is designed to determine if β-catenin is required to associate with 

TCF for optimal Cyp19a1 mRNA expression. 

 Results herein, provide novel insight to the mediators of β-catenin in estradiol 

biosynthesis.  Understanding the normal intracellular molecules that regulate and maintain 

appropriate circulating estradiol concentrations are critical for identifying targets to enhance 

reproductive efficiency or designing therapeutic compounds that modulate estradiol 

biosynthesis. This dissertation advances the knowledge of estradiol biosynthesis in granulosa 

cells by demonstrating the requirement of key intracellular molecules controlling β-catenin.  
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Abbreviation     Name of protein 

 

AKT/PKB  protein kinase B 

APC   adenomatous polyposis coli 

cAMP   cyclic adenosine mono-phosphate 

CK   casein kinase 

CBP   CREB binding protein 

CRE   cAMP response element 

CREB   cAMP response element binding protein 

CYP19A1  aromatase 

ER   estrogen receptor 

FRT   female reproductive tract 

FZD   frizzled receptor 

FSH   follicle-stimulating hormone 

FOXO   forkhead box protein O 

GnRH   gonadotropin releasing hormone 

GSK3β  glycogen kinase synthase 

IGF-I   insulin-like growth factor-I 

LH   luteinizing hormone 

SF-1   steroidogenic factor-1 

PI3K   phosphatidylinositol-3 kinase 

TCF   T-cell factor 

WNT   wingless-type mammary tumor virus integration-site molecule 

 

 

 

 

TABLE 1
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

1. Estradiol Maintains Reproductive Homeostasis 

 In the adult, estradiol plays a prominent role in maintaining homeostasis of the 

female reproductive system.  Estradiol regulates a series of reproductive processes 

including; development of the reproductive tract in utero, onset of puberty, development 

of secondary sex characteristics, and folliculogenesis which are required for optimal 

fertility.  Misregulation of these processes causes reduced if not complete infertility in 

females.  Furthermore, unregulated estradiol in humans is associated with various 

diseases such as breast cancer, polycystic ovaries, and uterine cancer. 

 

1.1 Development of the Female Reproductive Tract 

 Mammals have a bipotential gonad and differentiation into the ovary or testis is 

directed by sex chromosomes and expression of sex-determining genes.  In mammals, 

genetic females have two X chromosomes, and males posses a single X and Y 

chromosome.  The Y chromosome contains a gene encoding sex determining region on 



8 
 

Y chromosome (Sry), and when expressed in the primitive gonads, testes rather than 

ovaries develop.  This previously suggested that ovarian development was a default 

event; however recent studies indicate genes directed at development of the female 

reproductive tract (FRT) precede expression of the SRY protein (Vainio et al., 1999).  

Homozygous null mutations of R-spondin 1in female fetal and newborn mice had 

abnormally high concentrations of testosterone and ovaries depleted of oocytes that were 

surrounded by a coiled duct system that resembled the male epididymis (Tomizuka et al., 

2008).  The Vainio et al., (1999) study was the first to establish the requirement of 

wingless-type mammary tumor virus integration-site 4 (WNT) in ovarian development, 

as females deficient in WNT4 displayed a partial sex reversal that will be discussed in 

more detail in the following sections.  During embryo development of the FRT, the 

mesonephric duct degenerates and the caudal ends of the paramesonephric ducts fuse to 

form the cervix and uterine body (Yin and Ma, 2005).  A small evagination from the 

urogenital sinus attaches to the fused paramesonephric ducts to form the caudal end of the 

vagina.  Ultimately, in a cranial to caudal direction the oviducts, uterus, cervix, and 

cranial vagina, are properly formed.   Although estrogens are not essential for 

differentiating the FRT from that of the male, they are required for reproductive 

capabilities.  Discovery of two estrogen receptors (ER) and gene deletion of one or both 

designated alpha (ERα) or beta (ERβ) demonstrated the crucial role of estradiol during 

embryonic development of a functional FRT (Greene et al., 1986; Giguere et al., 1988; 

Kuiper et al., 1996; Mosselman et al., 1996; Tremblay et al., 1997).  The effects of 

estradiol on the FRT was first identified in ERα knockout (KO) mice which had ovaries 

that lacked developed follicles and corpora lutea, displayed severe uterine hypoplasia, 
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and consequently were infertile (Lubahn et al., 1993).  However, KO of ERβ in mice 

results in subfertility as demonstrated by smaller litters than wild-type mice while the 

FRT is grossly and histologically indistinguishable from their litter mates (Krege et al., 

1998).  Deletion of both ERα and ERβ (αβERKO) was not lethal but mice did display a 

phenotype that is similar to αERKO (Couse et al., 1999).  As adults, the αβERKO ovary 

lacked corpora lutea, and possessed structures resembling seminiferous tubules of testis.  

Development of the FRT is a complex process mediated by several factors, of these is 

estradiol that is clearly required for fertility. 

  

1.2 Cyclicity and Fertility in the Female 

 Normal development of the FRT sets the stage for cyclicity which is a process 

through the fertile life of the female and depending on the species results in the release of 

one or few oocytes from follicles.  The estradiol profile in the follicle microenvironment 

is essential for maturation and fertility of the oocyte (Hennet and Combelles, 2012).  

Individual phases in the cycle mediate the concentrations of estradiol, of these is 

proestrus, a transitional phase where progesterone concentrations decline and estradiol 

increases.  In timed-artificial insemination (AI) estrous synchronization program 

designed to achieve a short or long proestrus period was determined by the interval from 

Lutalyse® administration to Cystorelin® injections (Bridges et al., 2010).  Cows in both 

groups had ovulatory follicles of similar diameter but distinct estradiol peak 

concentrations in the cows with a long proestrus phase (2.25 d) averaged 3.6 pg/mL 

greater than cows with a short proestrus phase (1.25 d).  In the group of animals that were 
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classified as having a normal luteal phase, cows with a long proestrus had 73% 

pregnancy rates to AI versus 14.3% in cows having a short proestrus.  Therefore, limiting 

the length of exposure to estradiol and reducing estradiol concentrations prior to 

ovulation negatively impacts the fertility of the female.  Another recognized role for the 

rise in circulating estradiol is its contribution to sexual receptivity in domestic livestock 

females.  Animals display a variety of behaviors including increased locomotion, 

vocalization, irritability, and the mounting of other animals.  These sexual behaviors 

allow managers take advantage of peak fertility.   

   

 

2. Synthesis and Regulation of Estradiol  

 Steroidogenesis entails a process of enzymatic reactions by which cholesterol is 

converted to active steroid hormones.  Of these is estradiol an important gonadal steroid 

whose primary circulating source is from ovarian follicles.  Regulation of ovarian 

synthesis and release of estradiol is critical for normal function of the FRT and 

homeostatic pathways.  The following section will examine the endocrine and 

intracellular signals relevant to this dissertation that regulate ovarian production of 

estradiol. 

 

2.1 Hypothalamic, Pituitary, and Ovarian Regulation of Estradiol 

 Stimulation and regulation of estradiol depends on the tightly regulated and 

coordinated actions of the hypothalamus, anterior pituitary, and the ovary.  Estradiol 
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synthesis is controlled by  the tonic center (ventromedial nucleus and arcuate nucleus) 

and the surge center (preoptic nucleus, anterior hypothalamic area, and suprachiasmatic 

nucleus), two specialized regions in the ventral portion of the brain (Gorski, 1970).  

These specialized regions contain neurons specific to controlling the decapeptide, 

gonadotropin-releasing hormone (GnRH) which acts on the anterior pituitary to stimulate 

the release of the gonadotropins (Schally et al., 1971).   

 The anterior pituitary is located below the hypothalamus and connected by the 

stalk of the pituitary which contains a specialized circulatory network called the 

hypothalamo-hypophysial portal system which serves as a transport system for 

hypothalamic neurotransmitters including GnRH (Popa, 1930; Green and Harris, 1947).  

Specialized cells that secrete hormones in response to hypothalamic stimuli are in the 

anterior pituitary.  The gonadotropes synthesize and secrete follicle-stimulating hormone 

(FSH) and luteinizing hormone (LH) which are essential for normal reproductive 

function.  The binding of GnRH to its evolutionary conserved G-protein coupled 

receptors (GnRHr) on the gonadotropes results in the synthesis of FSH beta,  LH beta, 

and the common subunit chorionic gonadotropin alpha (Kakar et al., 1993).  The pattern 

of GnRH delivery is episodic and released in pulses to maintain cyclicity and prevent 

receptor desensitization.  Whereas, constant infusion of GnRH in primates with 

hypothalamic lesions fails to restore release of FSH and LH (Belchetz et al., 1978).  

 The gonadotropins, FSH and LH, travel by the general circulation system and are 

recognized by receptors on theca and granulosa cells within follicles of the ovaries.  

Females have one pair of ovaries that are dense in structure and encapsulated by an outer 

layer of connective tissue termed the tunica albuginea.  The innermost region of the ovary 
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is the medulla that is rich in blood vessels, lymphatic vessels and nerves.  The cortex is 

immediately beneath the tunica albuginea which contains primordial, primary, secondary, 

and tertiary follicles and the corpus luteum that are responsible for carrying out the 

primary functions of the reproductive system.  Inside follicles is one oocyte that is 

enclosed by cumulus granulosa cells.  The cumulus oophorus is in immediate contact 

with the oocyte and keeps it static by adhering to mural granulosa cells that border the 

basement membrane.  Contact between cumulus granulosa cells and the oocyte gap 

junctions throughout follicle development are crucial for the movement of metabolites 

between cells and oocyte growth (Brower and Schultz, 1982).  In comparison to mural 

granulosa cells, cumulus granulosa cells replicate ten times faster in response to 

gonadotropins and growth factors (Khamsi and Roberge, 2001).  Finally, theca interna 

and externa cells surround the outside of the basement membrane.  Luteinizing hormone 

can bind to granulosa, and theca cells, whereas only granulosa cells have FSH receptors, 

however both cell types coordinate estradiol synthesis by the granulosa cells.  The 

requirement for theca and granulosa cells to work in synchrony is known as the two-cell 

theory of steroidogenesis as the production of estradiol relies on both cell types.  The 

newly synthesized estradiol circulates systemically and feeds back to the hypothalamus.   

 Feedback actions of estradiol can be positive and negative to regulate the 

reproductive cycle.  The effect of estradiol  as a mediator of the negative feedback loop is 

demonstrated when the removal of the ovaries causes an increase in the gonadotropins 

(Yamaji et al., 1972).  Thus, estradiol prevents the gonadotropins from continually being 

secreted.  Conversely, positive feedback of estradiol is demonstrated by injecting 

ovariectomized guinea pigs with estradiol benzoate and eliciting a surge release of LH 
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(Terasawa et al., 1979).  Additionally, a single injection of estradiol benzoate caused high 

amplitude pulses of GnRH in ovariectomized rhesus monkeys fitted with a push-pull 

cannula in the median eminence (Levine et al., 1985).  In the bovine on day 18 to19 of 

the estrous cycle when estradiol peaks, a LH surge was generated and detected in the 

serum (Rahe et al., 1980).  Collectively, these data demonstrate that estradiol has a 

positive effect on the hypothalamus, by causing the pulsatile release of GnRH that 

subsequently leads to the LH surge which is required for ovulation.  

    

2.2 Folliculogenesis and the Estrous Cycle  

 The ovary is a critical component of the female because it accommodates a finite 

number of oocytes or female sex cells.  The female gonad is a dynamic organ in which 

follicles continually develop, become atretic, ovulate, and differentiate into a corpus 

luteum.  Folliculogenesis is the process of follicle development that is crucial for 

estradiol production and occurs until depletion of the oocyte reserve.   

 Folliculogenesis begins with the most immature follicle type, the microscopic 

primordial follicle, that consists of one oocyte surrounded by a single layer of flattened 

squamous granulosa cells (Rodgers and Irving-Rodgers, 2010).  Through an unknown 

mechanism independent of gonadotropin input, some primordial follicles leave the pool 

of quiescent non-growing follicles and enter the growth phase to develop into small 

preantral follicles.  The primary follicle is characterized by the differentiation of the 

surrounding granulosa cells from squamous to cuboidal, and an increase in diameter 

(Erickson, 1966; Aerts and Bols, 2010).  The follicle proceeds through differentiation 
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independent of gonadotropins into a secondary follicle.  The secondary follicle is 

characterized as having two or more layers of granulosa cells and still lacks fluid filled 

cavity referred to as an antrum (Fair et al., 1997).  During the transition into a secondary 

follicle, the stroma around the basal lamina organizes to become the theca cells (Young 

and McNeilly, 2010).  When the follicle begins to acquire an antrum it is considered a 

tertiary follicle and is highly responsive to the gonadotropins to achieve ovulatory 

capacity.  Granulosa cells of the tertiary follicle proliferate and the theca can be divided 

into interna (hormone production) and externa (transition to stroma).  In monovulatory 

species only one follicle deviates from the rest to be selected as the pre-ovulatory follicle 

whereas, in the litter bearing species such as pigs, approximately 15 to 20 follicles are 

destined to ovulate (Ginther et al., 1996; Mihm and Evans, 2008).  In larger species the 

antral follicle can be observed without a microscope and resembles blister-like structures 

that range in size from 1 to 20 mm (Erickson, 1966).  Follicle development is a lengthy 

process, where the first 300 days primordial follicles grow in the absence of FSH, and 

mature in response to gonadotropins for the next 50 days.  However, folliculogenesis is a 

process denied by many because over 90% of follicles at any stage of development 

undergo atresia.  Follicle atresia is often as a result of a reduced response to 

gonadotropins or overall reduced basal concentrations of the gonadotropins (Kaipia and 

Hsueh, 1997).  

 Folliculogenesis can occur in waves throughout the estrous cycle depending on 

the species and breed.  The estrous cycle is a period of predictable reproductive events 

beginning at estrus and ending at the subsequent estrus.  Length of the estrous cycle 

varies in livestock species however, the physiological changes are similar.  The estrous 
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cycle is unequally divided between the follicular phase where follicles are the primary 

structures on the ovary and the luteal phase where the corpus luteum in the dominant 

structure.  Additionally, these two phases can be distinguished by the hormonal profile 

from the contributing structures on the ovary.  The follicular phase is characterized by the 

greatest concentrations of circulating estradiol whereas in the luteal phase progesterone 

secretion by the corpus luteum is greatest.  To further characterize the ovarian structures 

and the hormonal profile, the luteal phase is subdivided into metestrus and diestrus while 

the follicular phase is divided into proestrus and estrus.  A period where concentrations in 

estradiol rapidly drop and progesterone slowly increases can be attributed to ovulation 

which is the rupture of a dominant follicle to release the oocyte.  In cattle, ovulation 

occurs at the end of estrus (Peters and Lamming, 1983), whereas in rats it occurs near the 

end of proestrus (Butcher et al., 1974).  The major structure present on the ovary in 

metestrus is a newly ovulated dominant follicle that has collapsed into folds and is 

transitioning from a corpus hemorrhagicum to a corpus luteum.  Next is diestrus, a period 

where the corpus luteum is the prominent structure on the ovary and is secreting greatest 

concentrations of progesterone.  Proestrus follows which is characterized by a decline in 

progesterone due to luteolysis of the corpus luteum and an increase in estradiol by means 

of developing follicles.  Lastly, estrus is recognized by a dominant pre-ovulatory follicle 

secreting the greatest estradiol concentrations.  At ovulation the female will have 

completed one estrous cycle and will shift back into metestrus initiating the beginning of 

a new cycle unless pregnancy is established. 
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2.3 Biosynthesis of Estradiol 

 Ovarian estradiol production is a process coordinated by the gonadotropins and 

other intra-ovarian signaling molecules to increase the expression of key steroidogenic 

enzymes in theca and granulosa cells (Hanukoglu, 1992; Peter and Dubuis, 2000).  Two 

major families of steroidogenic enzymes include 1) hydroxylase enzymes (cytochrome 

P450) and 2) hydroxysteroid dehydrogenases (Miller and Auchus, 2011).  These enzymes 

perform a series of enzymatic reactions to convert cholesterol, the steroidogenic 

precursor, into gonad derived hormones.  Cholesterol is derived from 1) acetyl-CoA 

synthesized in the cells, 2) cholesteryl esters from lipid droplets, and 3) low and high-

density lipoproteins from the plasma (Hu et al., 2010).  Steroid acute regulatory protein 

(StAR) shuttles cholesterol into the mitochondria so that it is available for 

steroidogenesis.  The following steps required for estradiol production are complex as the 

series of conversions can occur through the delta-4 or delta-5 pathway (Hu et al., 2010).    

 The first step to estradiol synthesis is conversion of the 27 carbon cholesterol to 

pregnenolone by the mitochondrial side-chain cleavage enzyme (P450scc).  Pregnenolone 

can then be converted to progesterone (delta-4 pathway) or 17α-hydroxypregnenolone via 

3β-hydroxysteroid dehydrogenase (3β-HSD) or 17α-hydroxylase/17, 20-lyase (P450c17), 

respectively.  Only theca cells can further metabolize 17α-hydroxypregnenolone to 

androstenedione (delta-5 pathway) through conversions mediated by P450c17 and 3β-

HSD which can be secreted or is further metabolized to testosterone by 17β-hydroxylase.  

Granulosa cells then uptake androstenedione and testosterone and under FSH stimulation 

express the enzyme aromatase (CYP19A1) that performs the final enzymatic reaction in 

converting thecal derived testosterone to estradiol (Corner, 1938; Simpson et al., 1994).    
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3. Signaling Molecules Regulating Estradiol Synthesis 

 Estradiol synthesis is primarily regulated by the gonadotropins, however the 

concentrations of estradiol produced by granulosa cells can be altered positively or 

negatively by intra-ovarian signaling molecules such as insulin-like growth factor-I (IGF-

I) (Mani et al., 2010; Zhou et al., 2013) and WNT (Stapp et al., 2014b).  This section will 

focus on FSH, IGF-I, and WNT receptor recognition, activation, and the elicited 

intracellular signal transduction related to ovarian estradiol production (Fig. 1).  

 

3.1 Follicle-Stimulating Hormone Signaling in Granulosa Cell Estradiol Production 

 Follicle-stimulating hormone and its receptor (FSHR) are the major physiological 

regulators of granulosa cell proliferation and estradiol production.  The FSHR is a large 

protein that belongs to the rhodopsin-like subfamily of receptors that sense the 

environment for a ligand and elicit a cascade of signaling events inside the cell (Simoni et 

al., 1997; Ulloa-Aguirre et al., 2007).  It is a seven-transmembrane domain guanine-

protein coupled receptor (GPCR) and consists of an extacellular, transmembrane, and 

intracellular domain (Pierce and Parsons, 1981; Vassilatis et al., 2003).  The extracellular 

(NH2-terminus) region is the hormone binding domain and possesses an enigmatic hinge 

region containing a sulfotyrosine (sTyr) site for receptor specificity (Dohlman et al., 

1987).  Two highly conserved cysteine residues of the transmembrane domain build 

disulfide bonds to stabilize the receptor.  The intracellular domain or the COOH-terminus 

contains the region that directly activates the heterotrimeric G-protein (Gudermann et al., 

1995).  Follicle-stimulating hormone is specifically recognized and associated with 

FSHR in a two step process: FSH recruitment then sTyr recognition.  Follicle-stimulating 
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hormone binds to the high-affinity binding domain on the NH2-terminus resulting in a 

conformation change, thus forming a sTyr pocket where the sTyr of FSH will be inserted 

to activate the receptor (Costagliola et al., 2002).   

 Stimulation of FSHR triggers the alpha subunit (Gαs) of the heterotrimeric G 

protein to activate adenylate cyclase which catalyzes ATP to increase the amount of the 

second messenger, cyclic adenosine 3’,5’-monophosphate (cAMP) (Izadyar et al., 1998).  

Then, cAMP will activate protein kinase A (PKA) which will phosphorylate specific 

serine and threonine amino acids of the target proteins.  The tissue specific CYP19A1 

proximal promoter II of the ovary contains specific response elements that are activated 

by transcription factors under FSH stimulation (Mendelson et al., 2005).  The 

transcription factor cAMP response element (CRE)-binding protein (CREB) is activated 

by PKA and binds the CRE-like sequence (159 bp upstream of the transcription initiation 

site) (Fitzpatrick and Richards, 1994; Michael et al., 1997).  A nuclear receptor response 

element on the CYP19A1 promoter (130 bp upstream of the transcription initiation site) 

was identified to bind the orphan nuclear receptor steroidogenic factor 1 (SF-1) 

(Fitzpatrick and Richards, 1994; Michael et al., 1995).  Additionally, PKA can activate 

kinases that initiate other intracellular signaling cascades such as extracellular regulated 

kinase (ERK), p83 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 

kinase (PI3K) (Silva and Price, 2000; Zeleznik et al., 2003; Hunzicker-Dunn and 

Maizels, 2006).  In granulosa cells, CYP19A1 expression is regulated by FSH stimulation 

in the human, rat, and bovine (Steinkampf et al., 1987; Fitzpatrick and Richards, 1991; 

Silva and Price, 2000), whereas IGF-I alone can increase CYP19A1 expression 

(Steinkampf et al., 1988; Ryan et al., 2008) and in the rat enhances FSH-mediated 
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properties (Zhou et al., 2013).  The intracellular pathways elicited by FSH and IGF-I are 

mediated by distinct receptors, however the downstream signals overlap to direct 

granulosa cell proliferation and estradiol production. 

 

3.2 Insulin-like Growth Factor-I Signaling 

 Insulin-like growth factor-I belongs to an integrated growth factor system that 

includes IGF-II, insulin, and six binding proteins (Laviola et al., 2007).  Circulating IGF-I 

is bound to the high affinity binding proteins (IGFBP) produced by granulosa and theca 

cells to mediate the half-life, and interaction with IGF-I receptor (Armstrong et al., 1996).  

Insulin-like growth factor-I is locally produced in the ovary and is recognized for 

promoting granulosa cell differentiation, proliferation, steroid output, and modulating the 

action of the gonadotropins (Baranao and Hammond, 1984; Adashi et al., 1985b).  In 

reproduction IGF-I is required for fertility, as nullizygous Igf-I mutant mice fail to 

ovulate, and have an infantile uterus that lacks muscle tone (Baker et al., 1996).  In cattle 

IGF-I is often regarded as a major determining factor to selection of the ovulatory follicle 

(Fortune et al., 2004).  At emergence the follicle selected to ovulate has a follicular fluid 

profile that includes decreased IGFBP-2, -4, -5, greater IGFBP protease activity, and 

subsequently increased free IGF-I in comparison with the second largest follicle.   

 Insulin-like growth factor-I is a small single chain peptide of 70 amino acids cross 

linked by three disulfide bonds (Rinderknecht and Humbel, 1978).  The IGF-I receptor is 

a hetero-tetrameric protein that consist of two identical extracellular α-subunits 

containing the IGF-I binding site and two transmembrane β-subunits that have ATP-

dependent intrinsic tyrosine kinase activity (Adams et al., 2000).  The binding of IGF-I to 
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a cysteine-rich region of the α-subunit activates the tyrosine kinase domain, subsequently 

catalyzing the phosphorylation of the intrinsic tyrosines on the β-subunits, causing the 

autophosphorylation of tyrosine phosphorylation substrates, such as insulin receptor 

substrate (IRS) (Ogawa et al., 1998).  Activated IRS recruits and activates PI3K, leading 

to the synthesis of phosphoinositol (3,4,5)- triphosphate (PIP3) which in turn activates 

protein kinase B (AKT). 

 Protein kinase B is a major regulator of the cell cycle and is involved in FSH, 

IGF-I, and WNT signaling.  During follicle selection active/phosphorylated AKT protein 

expression is greatest in estrogen active follicles and FSH-treated granulosa cells when 

compared with the subordinate follicles and non-treated cells, respectively (Ryan et al., 

2007; Castañon et al., 2012).  A major AKT target is glycogen synthase kinase 3-β 

(GSK-3β), which becomes inactive upon phosphorylation of serine 9 (Cross et al., 1995; 

Fang et al., 2000), therefore AKT indirectly promotes glycogen synthase.  In granulosa 

cells inactivation of GSK-3β, promotes the accumulation of β-catenin, a key molecule in 

estradiol production that will be reviewed intensively in the subsequent sections.  

Additionally, AKT activates the protein kinase mechanistic target of rapamycin (mTOR), 

which is a key regulator of cell growth, and is a mechanism by which IGF-I increases 

granulosa cell proliferation (Sirotkin et al., 2015).    

   

3.3 Canonical Wingless-Type Mammary Tumor Virus Integration-Site (WNT) 

Signaling 

 Wingless-Type Mammary Tumor Virus Integration-Site molecules are composed 

of a family of 19 highly conserved secreted glycoproteins with paracrine and autocrine 
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functions (Logan and Nusse, 2004).  They are involved in diverse and often critical roles 

such as survival, cell polarity, cell fate, cell proliferation, sexual differentiation and more 

recently in granulosa cell function (Cadigan and Nusse, 1997; Komiya and Habas, 2008; 

Wang et al., 2010).  The initial study establishing the requirement for WNT in the ovary 

was conducted by Vainio et al. (1999) demonstrating that mice null for Wnt4 develop 

ovaries that resembled testes, expressed markers associated with testicle development, 

and had fewer oocytes at birth.  Subsequent studies focused on the requirement for WNT 

in the adult ovary and concluded WNT ligands and components of the pathway are 

differentially expressed at specific stages of follicle development and under gonadotropin  

stimulation in rodents (Hsieh et al., 2002; Ricken et al., 2002; Wang et al., 2010) and 

cattle (Castañon et al., 2012; Gupta et al., 2014).  Immunostaining of whole ovaries 

demonstrated greatest intensity of WNT2 in granulosa cells of healthy antral follicles 

(Wang et al., 2010).  Overexpression of WNT2 via transfection with a recombinant viral 

vector in granulosa cells increased expression of proliferating cell nuclear antigen a 

marker of enhanced DNA synthesis.  Conversely, WNT3A is inhibitory on FSH-

mediated estradiol production in cultured granulosa cells (Stapp et al., 2014b) and 

follicular development in cultured secondary follicles (Li et al., 2014) which suggest 

WNT is negative on FSH signaling.  Evidently, normal ovarian function requires WNT 

signaling and misregulation of the pathway is associated with granulosa cell tumor 

formation (Boerboom et al., 2005). 

 The Wnt gene, first recognized as integration region-1 (int-1) in mice, was 

identified in 1982 (Nusse and Varmus, 1982) , and the first protein (WNT3A) was 

purified in 2003 (Willert et al., 2003).  The abbreviation WNT is derived from 
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combination of the two gene names wingless (wg) in drosophila and int-1 in the mouse.  

WNTs are around 350 to 400 amino acids in length, approximately 40 kDa in size and 

specifically WNT3A is palmitoylated on a conserved cysteine (Cys77) where enzymatic 

removal results in a loss of signaling activity (Willert et al., 2003; Gao and Hannoush, 

2014).  Additionally, WNTs have a signal sequence for secretion and a characteristic 

distribution of 22 cysteine residues for proper folding (Mason et al., 1992).  The nature of 

their posttranslational modifications revealed why WNTs are difficult to purify.  To date, 

the crystal structure of WNT’s has not been identified despite advances in 

characterizations of the protein.   

 To elicit an intracellular signal, WNTs binds a frizzled (FZD) receptor and low 

density lipoprotein receptor-related protein co-receptor (LRP5/6).  Frizzled is a G-protein 

coupled seven transmembrane receptor and to date 10 have been identified (Bhanot et al., 

1996).  The overall genomic organization of all ten FZD genes does not appear to be 

highly conserved, however some individual FZD genes can share up to 75% identity with 

another (Huang and Klein, 2004).  The protein can vary in length from about 500 to 700 

amino acids and the extracellular NH2-terminus contains a conserved 120-amino acid 

cysteine-rich domain that is ligand specific.  Lipoprotein receptor-related protein co-

receptor 5/6 is a single transmembrane receptor that share 70% identity and made of more 

than 1,600 amino acids (Tamai et al., 2000).  Interaction between specific WNT ligands 

and FZD receptor activates one of three distinct pathways known as the planar cell 

polarity, non-canonical WNT/Ca
2+

 and WNT/β-catenin (canonical) pathways (Kohn and 

Moon, 2005; Karner et al., 2006; Huang and He, 2008).  Of these, the most extensively 

studied is the canonical by which WNT/FZD/LRP5/6 form a trimeric complex whose 
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overall signaling results in the hypophosphorylation and accumulation of β-catenin 

(Huang and He, 2008).  

 In the absence of WNT molecules to stimulate the canonical pathway, a 

cytoplasmic destruction complex dedicated to the phosphorylation, ubiquitination, and 

degradation of β-catenin is active.  This complex consist of the central scaffold protein 

Axin 1, adenomatous polyposis coli (APC), and GSK-3β.  β-catenin is phosphorylated at 

serine-45 by the priming kinase, casein kinase 1α (CK1α) then subsequently 

phosphorylated at theronine-41, serine-37, and serine-33 by GSK-3β in the COOH-

terminal to NH2 direction (Liu et al., 2002; Kimelman and Xu, 2006).  These specific 

phosphorylations on β-catenin act as a tag to promote its interaction F-box containing 

protein (β-TrCP), a member of the ubiquitin ligase complex.  Finally, ubiquitination of β-

catenin targets its degradation by the proteosome (Aberle et al., 1997; Hart et al., 1999).   

 WNT ligands bind FZD and LRP5/6 to activate the canonical WNT signaling 

pathway which ultimately prevents the degradation of β-catenin.  The previously 

proposed model of canonical signaling suggests in the presence of WNT, Axin 1 is 

sequestered to membrane by binding LRP5/6 (Mao et al., 2001; Zeng et al., 2005) and 

dishevelled is recruited to FZD which promotes its clustering with LRP5/6 and 

subsequent phosphorylation by GSK-3β and CK1γ (Gao and Chen, 2010).  This 

ultimately contributes to the disassembly of the destruction complex, and β-catenin is no 

longer degraded but instead accumulates in the cytoplasm.  However, a recently 

established model suggest the activity of CK1α and GSK-3β are not inhibited by WNT, 

only β-TrCP dissociates, therefore β-catenin is no longer ubiquitinated and the 

degradation complex saturates with phosphorylated β-catenin (Li et al., 2012).  Newly 
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synthesized β-catenin (Staal et al., 2002) becomes stabilized in the cytoplasm because it 

is no longer degraded and translocates to the nucleus where it regulates transcription by 

serving as a co-transcription factor with T-call Factor (TCF) (Behrens et al., 1996; Huber 

et al., 1996).   

 

3.4 Complex Signal Overlap 

 Regulation of estradiol synthesis in granulosa cells is not linear and as 

demonstrated in this section is controlled primarily by FSH.  Recent discoveries have 

demonstrated FSH, WNT, and IGF-I elicit signals that often overlap and are directed at 

mediating β-catenin activity.  The ability of β-catenin to be modulated by various 

signaling molecules and its involvement in estradiol production establishes the motive to 

fully understand this multifunctional protein which is covered in the subsequent section. 

 

 

4. β-catenin the Central Reoccurring Theme 

 β-catenin is involved in two unrelated physiological roles in the cell, the first 

identified is to maintain cell-cell adhesion and the second is as a signaling molecule.  Its 

role as a signaling molecule is of particular importance as it is the central theme in this 

dissertation and plays a fundamental role in estradiol synthesis.  Importantly, 

deregulation of β-catenin results in various malignancies including ovarian cancer (Arend 

et al., 2013).  The ability β-catenin to participate in cell adhesion and cell signaling is 

further explained in its evolutionary conserved structure.  

 



25 
 

4.1 The Structure of β-catenin 

  The central region of β-catenin consists of a central stretch of 12 imperfect 

repeats (R1-R12) that each contains approximately 42 amino acids (Peifer et al., 1994a).  

This consecutive region of repeats is known as armadillo repeats and the structure it 

forms is highly conserved.  The central region is flanked by 130 amino acids on the NH2-

terminal side and 100 amino acids on the COOH-terminal side.  The terminal domains 

are distinct and are structurally flexible whereas the central region is more rigid to serve 

as an interaction site with binding partners.  The three dimensional structure of β-catenin 

is a superhelix that features a long positively charged groove and is cylindrical in shape 

(Huber et al., 1997).  Each of the 12 repeats contains three α helices arranged in a 

triangular shape that form the superhelix.  The positively charged groove is what enables 

β-catenin to associate with other proteins to carry out its function.   

 

4.2 Brief History of β-catenin/armadillo 

 In this section the nomenclature of the molecule of interest can cause some 

confusion because as it was being discovered and its functions studied in various species, 

it adopted different names.  In Drosophila melanogaster it is recognized as Armadillo 

and in vertebrates β-catenin is accepted; it is a member of the Armadillo repeat protein 

superfamily however, to avoid confusion only β-catenin will be used to address the 

protein. 

 β-catenin is an evolutionary conserved molecule that was first identified as a 

component of cell adhesion (Ozawa et al., 1989; McCrea et al., 1991).  Three 
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independent proteins named alpha, beta, and gamma were found to form a complex with 

uvomorulin (E-cadherin) a membrane adhesion molecule.  In its role as a cell adhesion 

molecule, β-catenin tightly binds the cytoplasmic tail of E-cadherin to link it to alpha-

catenin.   

 In 1980 it was discovered that the Wg gene which encodes the WNT protein of 

Drosophila melanogaster was involved in segment polarity during larval development as 

a mutation in Wg caused mirror-image duplications of individual denticle bands 

(Nusslein-Volhard and Wieschaus, 1980).  In the mid to late 1980’s it was revealed that a 

mutation in armadillo resulted in a similar phenotype to the Wg mutation (Wieschaus et 

al., 1984).  With the knowledge that Wg gene encodes a secreted signaling protein (van 

den Heuvel et al., 1989) and mutations in Wg and armadillo have phenotypic similarities 

the next logical step was to establish that these two proteins are components of one 

pathway involved in pattern formation.  The first evidence that both proteins are involved 

in a signaling pathway was in 1991, when Peifer et al. confirmed that cells of Drosophila 

melanogaster that require the greatest concentrations of β-catenin are the same cells that 

express Wg  (Peifer et al., 1991).  Then in 1994 it was discovered that both proteins work 

together when β-catenin accumulated in the cytosol (Peifer et al., 1994c) and nucleus 

(Funayama et al., 1995) in cells expressing Wg.  This discovery raised the possibility that 

β-catenin could be signaling by interacting with other nuclear proteins and modifying the 

expression of target genes.  During this period it became evident that β-catenin is a 

substrate for serine and threonine phosphorylation and this post-translational 

modification was dependent on WNT and GSK-3β (Peifer et al., 1994b).  By the late 

1990’s it was well established that WNT4 signaling was required for early embryo 
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ovarian development (Vainio et al., 1999), and subsequent research would target WNTs 

and their downstream pathway components such as β-catenin in the adult female gonad.        

 

4.3 Transcriptionally Active β-catenin 

 β-catenin is tightly regulated by WNT signaling and WNT-independent molecules 

that bind β-catenin to mediate its location and function.  Recent investigations are 

focused on how these molecules direct β-catenin to function as a co-transcription factor 

in granulosa cells.  Of the molecules identified to associate with β-catenin are TCF, 

CREB binding protein (CBP), steroidogenic factor 1 (SF-1), and Forkhead box protein O 

(FOXO) which are crucial in mediating ovarian estradiol production.  Current and future 

studies are exploring the role of β-catenin as a signaling protein and a co-activator of 

transcription.   

 For β-catenin to be transcriptionally active it must be present in the nucleus and 

associate with co-transcription factors.  The mechanism of β-catenin nuclear import is 

unclear as it does not contain a nuclear localization sequence and therefore does not 

translocate to the nucleus using the traditional import pathways (Fagotto et al., 1998).  

Others have suggested the type of β-catenin interacting protein will retain its location 

either within the cytoplasm or nucleus (Krieghoff et al., 2006).  

 Members of the TCF family are a family of transcription factors that share the 

same DNA-binding domain more often referred to as a high mobility group.  A mutation 

in the N-terminal region of TCF (the site that interacts with β-catenin) suppressed β-

catenin induced axis duplication in Xenopus (Molenaar et al., 1996).   Later, the NH2-
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terminal region of TCF, specifically amino acids 1-90 was identified to interact with 

repeat 3-8 of Armadillo (van de Wetering et al., 1997).  T-cell factor will bind to a 

conserved DNA binding sequence (A/T)(A/T)CAA(A/T)G within promoters (van Beest 

et al., 2000) and association of TCF with β-catenin will regulate transcription of the target 

gene (Huber et al., 1996).  In the absence of β-catenin, TCF binds members of the 

Groucho family and this complex represses transcription however, WNT stimulation 

activates β-catenin which displaces Groucho and binds TCF (Daniels and Weis, 2005).   

 To aid in the expression of target genes, CBP has histone acetyltransferase 

activity that allows for transcription by loosening chromatin (Ogryzko et al., 1996).  It 

has been demonstrated using a yeast two-hybrid that CBP physically interacts with repeat 

10 on the COOH terminus of β-catenin (Takemaru and Moon, 2000).  When HeLa cells 

were co-expressed with stable β-catenin and CBP, stimulation of the TOPflash promoter 

was significantly enhanced.  Conversely, in drosophila CBP has a negative impact on 

TCF through the acetylation of the β-catenin binding domain on TCF and consequently 

lowering the interaction of β-catenin with TCF (Waltzer and Bienz, 1998).   

 Steroidogenic factor-1 is a 53 kD orphan receptor member of the steroid hormone 

nuclear receptor family (Morohashi et al., 1992) and functions as a transcriptional 

regulator protein that interacts with the promoter sequence (C/A)AGGTCA (Lala et al., 

1992).  This sequence site is present on the promoters of all P450 steroidogenic enzymes 

demonstrating it is essential for steroid synthesis (Morohashi et al., 1992).  Armadillo 

repeats 9-12 of β-catenin associates with amino acids 235-238 of SF-1 to activate 

transcription of target genes and is independent of TCF (Gummow et al., 2003; Mizusaki 

et al., 2003).   
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  Transcriptional activity of FOXO transcription factors is enhanced by binding β-

catenin (Essers et al., 2005).  The interaction occurs on the armadillo repeats 1-8 of β-

catenin with the COOH-terminal half of FOXO. In granulosa cells, FOXO1 is a negative 

regulator of FSH induced proliferation and differentiation (Park et al., 2005).  

Interestingly, oxidative stress induces association of FOXO and β-catenin thus diverting 

its binding away from TCF (Essers et al., 2005).  β-catenin is highly regulated and 

contributes to expression of target genes by serving as a co-transcription factor and in 

granulosa cells is required for estradiol production. 

 

4.4 β-catenin in Granulosa Cells 

 Granulosa cell function depends heavily on β-catenin signaling.  Follicle-

stimulating hormone regulation of β-catenin was confirmed when knockdown of 

endogenous β-catenin protein by siRNA in granulosa cells attenuated FSH and forskolin-

mediated Cyp19a1 luciferase activity (Parakh et al., 2006).  Additionally, this study 

reported through chromatin immunoprecipitation assay and specific SF-1 mutations that 

β-catenin associates with SF-1 and is an essential transcriptional regulator of Cyp19a1.  

In vivo deletion of β-catenin mediated by Amhr2cre mice had no effect on ovarian 

morphology and serum estradiol concentrations were in the normal range likely because 

CRE-mediated recombination is unstable in proliferating granulosa cells (Hernandez 

Gifford et al., 2009).  In vitro recombination of β-catenin in granulosa cells isolated from 

mice homozygous for floxed β-catenin alleles (Ctnnb1
fl/fl

) was performed and granulosa 

cells deficient for β-catenin had reduced FSH-mediated Cyp19a1 expression and media 
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estradiol concentrations.  When β-catenin expression was specifically depleted in only 

granulosa cells by using Cyp19cre mice mated to mice Ctnnb1
fl/fl 

alleles again there were 

no defects in follicular development, ovulation, or corpus luteum formation indicating β-

catenin depleted granulosa cell does not cause any overt abnormalities in ovarian 

morphology (Fan et al., 2010).  Cultured granulosa cells from mice in this study exhibited 

a decreased response to FSH which was demonstrated by a loss of FSH-mediated 

Cyp19a1 and Fshr mRNA expression and TCF transcriptional activity.  Conversely, β-

catenin depleted granulosa cells had enhanced Lhcgr, Star, Cyp11a1, and Sfrp4 in 

response to the LH mimetic treatment (forskolin/phorbol-12-myristate 13-acetate) (Fan et 

al., 2010).  β-catenin knockdown by siRNA in granulosa cells inhibited DNA synthesis as 

demonstrated by a reduced proportion of cells in the S phase when compared with 

negative siRNA-treated cells (Wang et al., 2010).  Overexpression of β-catenin specific 

to granulosa cells was achieved by mating Ctnnb1
(EX3)fl/fl

 mice to Cyp19cre mice which 

resulted in stabilized β-catenin as phosphorylation and degradation occurs on the β-

catenin exon 3 translated product.  Constitutively active β-catenin resulted in increased 

follicle number and reduced apoptosis (Fan et al., 2010) and in response to FSH (100 

ng/mL) in culture.  Additionally, granulosa cells had increased Cyp19a1 and Fshr 

expression compared with vehicle controls.  However, FSH did not induce Lhcgr 

expression, suggesting β-catenin functions to enhance FSH signaling and blocks 

luteinization in granulosa cells.  Due to the lack of LH responsiveness these mice had 

reduced expression of genes for ovulation and luteinization and therefore were subfertile 

despite a greater number of follicles.   
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 Total β-catenin protein abundance in large follicles is hormone dependent, as 

granulosa cells of large estrogen active ( ≥ 25 ng/mL) follicles have more β-catenin 

compared with low estrogen ( < 7.5 ng/mL) large follicles (Castañon et al., 2012).  

Likewise, FSH-treated granulosa cells had greater accumulation of β-catenin, further 

demonstrating its requirement for normal granulosa cell function.   

 The drug to treat bipolar disorder, LiCl has been shown to have undesirable 

reproductive effects in females which resulted in reduced fertility.  Rats injected with 

LiCl had reduced ovarian active β-catenin (not targeted for degradation) and 

subsequently increased follicular atresia and decreased serum estradiol concentrations 

(Mirakhori et al., 2013).  These data demonstrate β-catenin is required for healthy follicle 

development and optimal estradiol production, whereas unregulated β-catenin 

concentrations can lead to detrimental effects in the ovary (Boerboom et al., 2005). 

 

4.5 β-catenin and Ovarian Granulosa Cell Tumors  

 In females, ovarian cancer is the fifth leading cause of death from cancer in the 

United States.  In 2015, there was an estimated 21,290 new cases and 14,180 estimated 

deaths from this disease (Siegel et al., 2015).  Reports have described point mutations in 

the β-catenin gene at GSK-3β phosphorylation sites have been detected in ovarian 

carcinomas (Palacios and Gamallo, 1998; Sagae et al., 1999).  Transgenic mice 

(Ctnnb1
(EX3)fl/fl

 ; Amhr2cre) expressing stabilized β-catenin in the ovaries developed 

follicle-like lesions that in 57% of the mice developed into granulosa cell tumors by 7.5 

months of age (Boerboom et al., 2005).  Additionally, β-catenin was detected by 
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immunohistochemistry to be localized to the nucleus in the majority of ovarian granulosa 

cell tumors, suggesting that β-catenin hyperactivity is associated with tumor 

development.  More recently, female mice transgenically altered to obtain constitutively 

active PI3K/AKT and β-catenin signaling developed aggressive early-onset metastatic 

granulosa cell tumors (Lague et al., 2008).  The evidence supporting the role of β-catenin 

in granulosa cell tumors is strong yet the molecular mechanisms and signal overlap 

remain unresolved.  By characterizing β-catenin and its downstream effectors in normal 

granulosa cell we can eventually understand its actions when it is deregulated.  

  

 

5. Conclusion and Specific Aims 

 The ovary is the female gonad responsible for reproductive competence.  Its 

ability to allow for propagation of the species lies in the release of one or a few gametes 

during the reproductive cycle.  The cycle is regulated by the ovary itself and its 

interaction with the hypothalamus and pituitary.  Estradiol from the ovary plays a 

prominent role in reproduction as it stimulates the development of the reproductive tract, 

initiates the onset of puberty, aids in the development of secondary sex characteristics, 

and contributes to folliculogenesis.  Understanding the complexity of the ovary as it 

pertains to estradiol production is a crucial component of reproduction.  The mediators of 

β-catenin and its roles in normal granulosa cell function and estradiol synthesis remains 

to be fully elucidated.   

 The first study (chapter 3) of this dissertation was designed to identify the 

requirement of AKT as a mediator of β-catenin and subsequent estradiol production in 
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the bovine.  Experiments were carried out to investigate whether AKT regulation of β-

catenin was required for FSH-mediated estradiol production.  To accomplish this, AKT 

activity was stimulated or inhibited utilizing specific pathway regulators and β-catenin 

protein and estradiol medium concentrations were quantified.  

 Previously, we have demonstrated that WNT3A is inhibitory on FSH-mediated 

Cyp19a1, Star, Cyp11a, Lhcgr, and Inha mRNA expression and estradiol medium 

concentrations in rat granulosa cell cultures (Stapp et al., 2014b).  This data suggest 

WNT3A may be critical in keeping estradiol production from going unregulated.  Thus, 

the second study (chapter 4) was two-fold: 1) identify if IGF-I rescues FSH signaling 

from the inhibitory effects of WNT3A and 2) investigate if the mechanism by which 

WNT3A is inhibitory is through a modulation of the phosphorylation pattern of β-catenin 

and FOXO.   

 It has been demonstrated that reduction of β-catenin in granulosa cells prevents 

TOPflash luciferase activity and reduces FSH-mediated Cyp19a1 expression (Fan et al., 

2010).  However, whether or not β-catenin and TCF directly interact to mediate Cyp19a1 

expression has not been demonstrated.  The third and final study (chapter 5) utilized 

novel small-molecule inhibitors that prevent β-catenin/TCF association (Gonsalves et al., 

2011) to test the hypothesis that β-catenin associates with TCF to regulate Cyp19a1.   
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Figure 1: FSH, IGF-I, and WNT Extracellular Signaling Molecules Converge at β-

catenin.   

Model demonstrates the intracellular signaling overlap of the WNT/β-catenin 

(Canonical), IGF-I, and FSH pathways.  Binding of FSH and IGF-I with their respective 

receptors activate phosphatidylinositol-3 kinase (PI3K) which phosphorylates protein 

kinase B (AKT) on Thr-308 and Ser-473.  The activation of AKT subsequently leads to 

β-catenin accumulation which will translocate to the nucleus and initiate transcription of 

genes required for estradiol biosynthesis by association with T-cell factor (TCF).  The 

intracellular signaling cascade elicited by WNT prevents phosphorylation of β-catenin on 

Thr-41, Ser-37, and Ser-33 by the degradation complex comprised of Axin 1, 

adenomatous polyposis coli (APC), and glycogen synthase kinase-3β (GSK-3 β).  β-

catenin not targeted for degradation will accumulate in the cytoplasm and regulate gene 

expression of target genes.
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1. Abstract 

 Follicle-stimulating hormone regulation of ovarian estradiol production requires 

involvement of β-catenin, a transcriptional co-factor.  In cultured granulosa cells of cattle, 

FSH treatment increased protein abundance of β-catenin as well as protein kinase B 

(AKT), a molecule known to regulate components of the β-catenin degradation complex.  

However, whether FSH induction of β-catenin is through direct modulation of AKT 

remains to be determined. To investigate specific contributions of AKT to β-catenin 

accumulation, granulosa cells were treated with insulin-like growth factor-I (IGF-I), a 

well-established AKT activator, in the presence or absence of FSH.  Granulosa cells 

treated with FSH, IGF-I, and IGF-I plus FSH had increased β-catenin accumulation 

compared with controls (P ≤ 0.02; n = 6).   Estradiol medium concentrations were greater 

(P = 0.09; n = 4) in FSH treated cells compared to controls (166 and 100 ± 28 pg/mL, 

respectively).  Treatment with IGF-I and IGF-I plus FSH increased (P < 0.01) estradiol to 

comparable concentrations.  Subsequently,  granulosa cells treated with lithium chloride 

(LiCl), a pharmacological activator of AKT, provided a response consistent with IGF-I 

treated cells, as LiCl, FSH, and FSH plus LiCl increased β-catenin accumulation 

compared with non-treated controls (P ≤ 0.03; n = 3).  In contrast, inhibition of AKT 

signaling with LY294002 suppressed the ability of FSH and IGF-I to regulate β-catenin. 

Additionally, LY294002 treatment reduced FSH and IGF-I mediated estradiol medium 

concentrations (P ≤ 0.004).  These results demonstrate activation of AKT is required for 

gonadotropin regulation of β-catenin accumulation and subsequent ovarian estradiol 

production.  
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2. Introduction 

The ovary is a dynamic reproductive organ that undergoes numerous changes 

during follicular maturation.  Ovarian follicles develop in response to endocrine 

regulation by the hypothalamic-pituitary-gonadal axis, and several intra-ovarian factors.  

Pituitary derived FSH signals via a G-protein coupled receptor to initiate cAMP/protein 

kinase A (PKA) activity as well as induce additional intracellular signaling pathways to 

regulate granulosa cell granulosa cell target genes involved in proliferation, maturation, 

and estradiol synthesis (Hunzicker-Dunn and Maizels, 2006).  In particular, 

phosphoinoside 3-kinase (PI3K) is an essential component of FSH signaling which leads 

to phosphorylation and activation of protein kinase B (PKB/AKT) (Richards et al., 2002; 

Gloaguen et al., 2011).  Furthermore, FSH-treated rat granulosa cells transfected with a 

dominant negative AKT vector fail to induce aromatase (Cyp19a1) mRNA and estradiol 

production (Zeleznik et al., 2003).  Additionally, binding of locally secreted insulin-like 

growth factor I (IGF-I) to tyrosine kinase receptors results in receptor auto-

phosphorylation which ultimately leads to PI3K activation.  Through a series of signaling 

cascades resulting from PI3K, AKT is phosphorylated on Thr-308 and Ser-473 which is 

important for its kinase activity (Alessi et al., 1996; Nicholson and Anderson, 2002).  

Recent data indicate that FSH induction of β-catenin may be by a direct effect of 

increased AKT activity.  Castañon et al. (2012) noted FSH-treated granulosa cells of 

cattle had increased protein accumulation of β-catenin and a tendency for an increase in 

AKT compared with non-treated controls.  Therefore, the objective of the present study 

was to determine if FSH increased β-catenin accumulation in granulosa cells of cattle via 

activation of AKT.  To accomplish this, AKT signaling was modulated using specific 
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pathway activators and inhibitors.  We report that AKT activity is required for FSH and 

IGF-I induction of β-catenin accumulation necessary in the regulation of estradiol 

production from granulosa cells. 

 

3. Materials and methods 

3.1. Tissue collection 

Cattle ovaries were collected at a local federally inspected abattoir (Creekstone 

Farms, Arkansas City, KS) from non-pregnant cows and heifers not exposed to growth-

promoting implants, ionophores, or antibiotics.  For each biological replicate, paired 

ovaries were collected from 18 females and placed in individually marked whirl packs.  

A minimum of three biological replicates were performed for each experiment.   

Ovaries at random stages of the estrous cycle were rinsed with 0.9% saline, 

followed by a second rinse with 70% ethanol and placed in an ice cold antibiotic saline 

solution containing 0.15 M NaCl with 100 U/mL penicillin and 100 mg/mL streptomycin 

(Invitrogen, Grand Island, NY) for transport to the laboratory.  Upon arrival, ovaries were 

transferred into chilled fresh antibiotic saline solution.   

 

3.2. Granulosa cell culture 

Granulosa cells from small follicles (1 to 5 mm) were isolated by follicular fluid 

aspiration using a 3-mL syringe fitted with a 20-gauge needle.  Follicle size was selected 
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based on previous observations demonstrating that 1) recruitment occurs when follicle 

diameter reaches 4 to 6 mm in cattle (Savio et al., 1988; Sirois and Fortune, 1988); 2) 

granulosa cells acquire FSH receptors prior to recruitment (Xu et al., 1995; Evans and 

Fortune, 1997); and 3) granulosa cell steroidogenic enzyme mRNA biosynthesis occurs 

before biosynthesis of LH receptor mRNA in recruited follicles (Bao et al., 1997).  

Granulosa cells were cultured using methods previously described (Castañon et al., 

2012).  Briefly, granulosa cells and follicular fluid was centrifuged at 220 x g for 7 min at 

4°C, supernatant was removed and cells were washed twice in short-term media (1:1 

mixture of Dulbecco’s Modified Eagle Medium (DMEM) and Ham’s F-12 containing 

0.12 mM gentamycin, 2.0 mM glutamine, and 38.5 mM sodium bicarbonate obtained 

from Sigma-Aldrich, St. Louis, MO).  Following the final wash, cells were suspended in 

5 mL of re-suspension media (serum-free medium with 2.5 mg/mL collagenase and 1 

mg/mL DNase, Sigma-Aldrich) to prevent clumping, and cell number and viability was 

determined by trypan blue exclusion using a hemocytometer.  Cells were seeded at a 

density of 1.2 x 10
6 

per 60 mm dish in complete medium (1:1 DMEM and Ham’s F-12 

containing 10% fetal bovine serum, 0.12 mM gentamycin, 2.0 mM glutamine, and 38.5 

mM sodium bicarbonate) and allowed to reach 60-75% confluence (30-50 h) at 38.5°C 

and 5% CO2, 95% air before treatment.  

 Complete medium was removed and cells were rinsed with PBS prior to the 

addition of treatments which were conducted in serum-free medium supplemented with 

10
-7

 M testosterone propionate (Sigma-Aldrich) for 24 h at 38.5°C and 5% CO2.  To 

activate the AKT signaling pathway, cells were treated with 50 ng/mL IGF-I (Sigma-

Aldrich) or 20 mM of lithium chloride (LiCl; EMD Chemicals, San Diego, CA) 
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concurrently in the presence or absence of 100 ng/mL of purified human FSH (S1AFP-B-

3; National Hormone and Peptide Program, National Institutes of Diabetes, Digestive, 

and Kidney Diseases, National Institutes of Health, Bethesda, MD).  Insulin-like growth 

factor-I concentration was selected based on a preliminary concentration dependent study 

(Fig. 7) demonstrating the ability to regulate β-catenin, and literature demonstrating 50 

ng/mL of IGF-I was the minimal concentration capable of inducing CYP19A1 gene 

expression and estradiol production (Mani et al., 2010), whereas LiCl at 20 mM induces 

β-catenin in oligodendroglial cells (Ye et al., 2010).  Inactivation of AKT signaling was 

achieved by a 30 min pre-treatment of granulosa cells with 30 µM LY294002 (Sigma-

Aldrich), a potent inhibitor of PI3K which subsequently decreases AKT activity (Vlahos 

et al., 1994), or dimethyl sulfoxide (DMSO) control.  Following pre-treatment for AKT 

inhibition, FSH (100 ng/mL), IGF-I (50 ng/mL), or vehicle control was added to the 

media.  

At the conclusion of the 24 h treatment period, experiments were terminated by 

aspirating media and rinsing with PBS.  Media was collected from individual dishes for 

steroid analysis and granulosa cells were collected into 200 μL of mammalian-protein 

extraction reagent (M-PER) lysate buffer (Thermo-Scientific, Rockford, IL) and samples 

were stored at -20°C until analysis.   

 

3.3. Western blot 

Total protein was quantified using the bicinchoninic acid (BCA) protein assay kit 

according to the manufacturer’s protocol (Thermo-Scientific).  Protein lysates (5 μg) 
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were separated by 10% SDS-PAGE Tris-HCL gels and transferred to Hybond-C Extra 

nitrocellulose membrane (Amersham Biosciences, Buckinghamshire, UK).  Membranes 

were blocked with 5% nonfat dry milk in Tris-buffered saline containing 0.1% Tween-20 

before antibody incubation at room temperature for 1 h.  Membranes were incubated 

overnight at 4 °C in primary rabbit anti-β-actin (1:10,000; Cell Signaling Technology 

(CST), Danvers, MA) or rabbit anti-GAPDH (1:3,000; CST) to account for equal loading.  

Following primary antibody incubation, membranes were rocked at room temperature for 

1 h with horseradish peroxides-conjugated (HPR) goat anti-rabbit (Thermo-Scientific).  

For detection of β-catenin, membranes were incubated at 4 °C overnight in mouse anti-β-

catenin (1:10,000; BD Transduction Laboratories, San Diego, CA) followed by a 1 h 

incubation in HRP conjugated goat anti-mouse at 1:10,000 (Thermo-Scientific).  

Membranes were incubated at 4 °C overnight in rabbit anti-AKT or anti-phospho-AKT 

Ser-473 (1:1,000; CST) followed by a 1 h incubation in HRP conjugated goat anti-rabbit 

at 1:3,000 (Thermo-Scientific) for detection of AKT and phospho-AKT.  Antigen-

antibody complexes were detected using chemiluminescence with Immobilon detection 

substrate reagent (Millipore, Billerica, MA) and images were captured using the C-DiGit 

Blot Scanner (LI-COR, Lincoln, NE).  All treatments for a single experiment are 

represented on the same blot.  Band intensity and relative abundance of proteins in 

relation to loading controls was quantified using Image Studio™ Software (LI-COR). 

When appropriate, phospho-AKT was normalized to total AKT. 
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3.4 Radioimmunoassay 

Granulosa cell culture media were analyzed for estradiol by solid phase RIA using 

components of commercial kits manufactured by Siemens Medical Diagnostics Corp. 

(Los Angeles, CA) as previously described (Castañon et al., 2012).  Briefly, 200 μL of 

culture media was used to determine the estradiol concentration.  All tubes were 

normalized to 0.5 mL using assay buffer and assayed in duplicate.  Each tube received 

1.0 mL of Siemens tracer, vortexed and incubated at room temperature for 24 h.  Tubes 

were decanted and counted for 1 min in a Packard Cobra II gamma counter.  The specific 

binding was 71%.  Detection limit (95% of maximum binding) of the assay was 2 pg/mL 

and intra-assay CV was 6.8%.  

 

3.5 Statistical analysis 

Experiments were conducted at minimum in 3 independent replicates.  For 

estradiol concentrations, generalized linear mixed models methods were used to analyze 

the data, accounting for non-normal responses and unequal variances where necessary.  

All statistical analyses were performed using SAS (Version 9.3; SAS Institute, Inc., Cary, 

NC).  The estradiol concentration and protein abundance were analyzed using ANOVA 

methods and least squares means comparisons between treatments were performed only 

when the model was significant to determine differences among treatments.  For Western 

blot, quantitative analysis is presented with the protein of interest expressed as a 

percentage of control and a t-test was performed to compare individual treatments to 

control by comparing each treatment mean to 100%.     
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4. Results and discussion 

A requirement of β-catenin as a key transcriptional co-factor in gonadotropin 

regulation of steroidogenesis has brought new perspectives to granulosa cell signal 

transduction.  Previous data suggest β-catenin is hormonally regulated in developing 

cattle follicles, as relative amounts of β-catenin protein increase in large follicles 

producing greater amounts of estradiol likely in response to endogenous FSH (Castañon 

et al., 2012).  Likewise, β-catenin increased and total AKT protein abundance tended to 

increase in primary bovine granulosa cells incubated with FSH further indicating a role 

for β-catenin in follicle development possibly regulated through the AKT signaling 

pathway (Castañon et al., 2012).  Similarly, granulosa cells of cattle cultured in the 

presence of FSH have increased amounts of total and active AKT (Ryan et al., 2008).  

Together, these findings suggest that FSH stimulation of AKT may participate in 

mediating β-catenin and estradiol biosynthesis in granulosa cells of cattle.  

 

4.1. Activation of AKT induces β-catenin accumulation  

To examine the ability of AKT signaling to contribute to β-catenin accumulation 

in granulosa cells of cattle, known pathway stimulators including FSH, IGF-I and LiCl 

were utilized.  Although FSH signaling occurs primarily through cAMP second 

messenger systems, additional FSH intracellular pathways including AKT are obligatory 

for granulosa cell function (Zeleznik et al., 2003).  Moreover, IGF-I is a known regulator 

of AKT in granulosa cells of cattle, as evidenced by increased phosphorylation of AKT 

(Mani et al., 2010).  In the present study (Fig. 2A and B), treatment with all AKT 
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stimulators increased the amount of β-catenin protein to a similar abundance (P ≥ 0.87; n 

= 6).  The granulosa cells treated for 24 h with FSH had increased relative amounts of β-

catenin protein compared with vehicle controls (P = 0.02).  Likewise, greater amounts of 

β-catenin protein were detected in granulosa cells treated with IGF-I alone and in cells 

co-treated with IGF-I in combination with FSH compared with controls (P ≤ 0.02).   

In a separate experiment, primary granulosa cells of cattle were treated with LiCl, 

a pharmacological agent capable of activating the AKT signaling pathway (Chalecka-

Franaszek and Chuang, 1999), in the presence or absence of FSH (Fig. 2C and D).  

Specifically, LiCl enhances AKT by disrupting the signaling complex comprised of 

AKT, beta-arrestin 2, and protein phosphatase 2A (Brown and Tracy, 2013).  Similar to 

the previous experiment, Western blot analysis indicated that β-catenin accumulation was 

consistently greater in granulosa cells treated with FSH and LiCl (P ≤ 0.03; n = 3) when 

compared with controls.  Co-incubation of FSH and LiCl also increased (P = 0.004) 

abundance of β-catenin above controls in amounts that paralleled each treatment 

independently.  The ability of AKT to be mediated by both FSH and IGF-I suggests a 

signaling overlap downstream of FSH and IGF-I receptor, as demonstrated in granulosa 

cells of cattle where co-treatment with FSH and IGF-I increased relative amounts of 

(CYP19A1) mRNA above FSH or IGF-I alone (Mani et al., 2010).  Insulin-like growth 

factor I and FSH are important for normal ovarian function and reduction in function of 

either gene or the respective receptors results in infertility (Baker et al., 1996; Abel et al., 

2000).  Additionally, IGF-I signals through the PI3K/AKT pathway and synergizes with 

FSH to increase steroidogenic output (Zhou et al., 2013).  It is possible that both 
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pathways function collectively to activate AKT which in turn leads to regulation of β-

catenin and subsequent steroid production.   

β-catenin is essential in FSH-mediated steroid production through its co-

transcriptional properties.  Depleting endogenous β-catenin compromises maximal 

induction of FSH-regulated Cyp19a1 mRNA biosynthesis (Parakh et al., 2006) and 

estradiol production (Hernandez Gifford et al., 2009).  To determine whether AKT 

stimulation of β-catenin also contributed to regulation of granulosa cell steroid 

production, media concentrations of estradiol were evaluated.  Following FSH treatment, 

media concentrations of estradiol tended to increase (P = 0.09; n = 4) when compared 

with non-treated controls (166 ± 28 vs. 100 ± 14 pg/mL respectively) (Fig. 3).  The 

granulosa cells stimulated with IGF-I had increased estradiol concentrations to 380 ± 33 

pg/mL; similar to cells co-incubated with IGF-I and FSH which also had increased 

estradiol to 398 ± 41 pg/mL when compared with vehicle-treated controls (P < 0.01).  

The actions of FSH in inducing increased amounts of estradiol is affected by numerous 

factors including animal variation in age, breed and FSH sensitivity (Breuel et al., 1991) 

as well as exposure to exogenous hormones (Stapp et al., 2014).  Mani et al. (2010) did 

not demonstrate an FSH induced increase of estradiol in cultured granulosa cells of cattle; 

however, other previous research has established FSH-mediated estradiol increases in 

granulosa cells of cattle and rats (Castañon et al., 2012; Stapp et al., 2014).  In agreement 

with Mani et al. (2010), IGF-I alone or in combination with FSH significantly enhanced 

estradiol production but a synergistic effect of IGF-I and FSH on estradiol production 

was not detected.  Supporting a role for IGF-I in steroidogenesis, Mani et al. (2010) 

highlighted the ability of IGF-I to up-regulate steroidogenic activity of genes essential for 
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promoting the conversion of cholesterol to estradiol via PI3K/AKT.  Accumulating 

evidence indicates circulating FSH and locally produced IGF-I increases granulosa cell 

estradiol production by enhancing AKT activity.  However, this finding is extended in the 

present research by demonstrating that AKT mediates relative amounts of β-catenin, and 

the AKT/ β-catenin pathway is important in estradiol production in granulosa cells of 

cattle.  

 

4.2. Effects of inhibition of AKT activity  

 To test whether inhibition of AKT activity impacted β-catenin abundance in 

granulosa cells of cattle, the PI3K-family inhibitor LY294002 was used (n = 3).  

Inactivation of AKT signaling was assessed by evaluating phospho-AKT/total AKT 

ratios (Fig. 4A).  A reduction in phospho-AKT/AKT was confirmed in granulosa cells 

treated with LY294002 alone or co-incubated with FSH when compared with DMSO 

vehicle controls, demonstrating inactivation of the pathway (P ≤ 0.001).  Differences 

were not detected between AKT ratios of control and FSH treated cells (P = 0.23), likely 

a result of the 24 h time point.  Additionally, total amounts AKT did not differ among 

treatment groups treated with LY294002 in the presence or absence of FSH (P = 0.18). 

Treatment with FSH consistently increased amounts of β-catenin protein (P < 0.01) 

compared with controls as demonstrated in earlier experiments (Fig. 4C and D).  

However, constraint of AKT signaling by LY294002 also abrogated the ability of FSH to 

mediate β-catenin abundance.  The granulosa cells of cattle co-exposed to the AKT 

inhibitor and FSH or IGF-I (Fig. 4C and D; 5A) had reduced β-catenin compared with 
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cells treated with FSH or IGF-I alone.  Inactivation of AKT in granulosa cells and 

consequent reduction in β-catenin suggests AKT activity is an essential component of 

FSH and IGF-I directed β-catenin protein accumulation.  Because both FSH and IGF-I 

signal via AKT it is probable that these signaling molecules mediate β-catenin abundance 

in granulosa cells of cattle in part via AKT.  LY294002 is inhibitory on PI3K and can 

also target additional kinases related and unrelated to the PI3K family (Gharbi et al., 

2007) therefore, the possibility cannot be excluded that β-catenin accumulation is in part 

regulated by other kinases in addition to AKT.  The likelihood of the indirect inhibitory 

effects of LY294002 is minimal based on results of the present study where three AKT 

activators (FSH, IGF-I, and LiCl) increased β-catenin accumulation and LY294002 

reduced AKT phosphorylation.  

 The estradiol medium concentrations followed a similar pattern as demonstrated 

by β-catenin protein abundance. Treatment of granulosa cells with FSH resulted in 

increased (P < 0.001; n = 3) estradiol accumulation in cell culture media compared with 

non-treated controls, while cells treated with LY294002 had similar estradiol 

concentrations as non-treated controls (Fig. 4E).  Co-incubation of granulosa cells with 

LY294002 plus FSH reduced FSH-mediated estradiol biosynthesis (P = 0.002). 

Similarly, LY294002 reduced (P < 0.001; n = 6) IGF-I mediated estradiol biosynthesis 

compared with IGF-I treatment (Fig. 5B).  Treatment with LY294002 demonstrates AKT 

signaling is required for FSH and IGF-I mediated β-catenin accumulation.  The ability of 

the AKT inhibitor to evoke a comparable change in estradiol concentrations in the 

presence of FSH as occurred with β-catenin protein is similar to reports by Ryan et al. 

(2007) demonstrating LY294002 reduces FSH and IGF-I induced estradiol biosynthesis 
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after 144 h in culture.  While it is recognized that cyclic-AMP and its major effector, 

protein kinase A, are responsible for controlling the majority of the actions of FSH 

(Hunzicker-Dunn and Maizels, 2006) these data highlight the role of AKT activity in β-

catenin mediated estradiol biosynthesis.    

 

5. Conclusion 

 In summary, findings in the present study extend the knowledge regarding how 

FSH regulates β-catenin protein in granulosa cells of cattle.  Previous data suggested 

canonical wingless-type mouse mammary tumor virus integration site 2 (WNT2) or AKT 

signaling as two possible mechanisms for β-catenin accumulation, although WNT2 was 

not directly tested and therefore, cannot be completely discounted; the present studies 

reveal the important role of AKT-mediated β-catenin regulation.  A model is proposed 

whereby signaling molecules upstream of AKT can regulate β-catenin as depicted in 

Figure 6.  Signaling by FSH and IGF-I activates AKT, a serine/threonine specific kinase, 

with multifunctional roles such as cell proliferation, protein synthesis, transcription and 

regulation of the deactivation of glycogen synthase kinase-3 (GSK3β) by Ser-9 

phosphorylation (Alessi and Cohen, 1998; Testa and Tsichlis, 2005).  Axin2 serves as a 

scaffold protein and forms a complex with adenomatous polyposis coli (APC) and 

GSK3β to regulate β-catenin cytoplasmic protein concentrations (Kishida et al., 1998). 

When associated as a component of a degradation complex, GSK3β will phosphorylate β-

catenin at Thr-41, Ser-37, and Ser-33 which ultimately targets β-catenin for 

ubiquitination and subsequent degradation (MacDonald et al., 2009).  Inactivation of 
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GSK3β allows β-catenin to escape the degradation complex and accumulate in the 

cytoplasm and translocate to the nucleus where it binds to TCF to regulate gene 

expression (Behrens et al., 1996; Eastman and Grosschedl, 1999).  In the ovary, β-catenin 

regulates normal developmental and steroidogenic processes including maximal 

biosynthesis of FSH-stimulated Cyp19a1 (Parakh et al., 2006) and estradiol production in 

granulosa cells (Hernandez Gifford et al., 2009).  

Data herein support previous studies in which AKT was found to phosphorylate 

GSK3β and increase free β-catenin (Fukumoto et al., 2001); and where FSH activation of 

AKT results in GSK3β phosphorylation (Fan et al., 2010).  Furthermore, in cultured 

oligodendrocytes β-catenin is increased following IGF-I induced AKT and GSK3β 

phosphorylation (Ye et al., 2010).  Together these results suggest β-catenin is an 

important component of the PI3K/AKT/GSK3β pathway in IGF-I and FSH-mediated 

estradiol biosynthesis.    
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Figure 2: β-catenin Protein in Bovine Granulosa Cells Treated with the AKT       

Activators FSH, IGF-I, and LiCl. 

 Small follicle (1 to 5 mm) granulosa cells of cattle were isolated from bovine ovaries and 

cultured with AKT pathway stimulators IGF-I (50 ng/mL) or LiCl (20 mM) in the 

presence or absence of FSH (100 ng/mL) for 24 h.  Effect of treatment on β-catenin 

accumulation was determined by Western blot analysis with β-actin or GAPDH serving 

as the loading control.  (A and B) Representative Western blot and quantitative analysis 

of granulosa cells treated with IGF-I (n = 6).  (C and D) Representative Western blot and 

quantitative analysis of bovine granulosa cells treated with LiCl (n = 3).  Quantitative 

analysis of β-catenin abundance is expressed as a percentage of controls.  An asterisk 

denotes level of significance when compared to controls (**P < 0.05).  Least squares 

means ± SEM are presented. 
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FIGURE 3 
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Figure 3: Estradiol Production in Bovine Granulosa Cells in Response to FSH and IGF-I. 

Granulosa cells of cattle were collected from small follicles (1 to 5 mm) and cultured 

with IGF-I (50 ng/mL), FSH (100 ng/mL) or the combination to stimulate AKT for 24 h 

prior to media collection.  Estradiol concentrations were analyzed by radioimmunoassay.  

Quantitative analysis is presented as least squares means ± SEM (n = 4).  Bars without a 

common superscript differ (P < 0.05; n = 4) and a # indicates a tendency (P = 0.09) exist 

between CON and FSH. 
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Figure 4:  AKT Activity, β-catenin Accumulation, and Estradiol Production of Bovine 

Granulosa Cells Treated with LY294002 Prior to FSH Stimulation. 

 Granulosa cells of cattle isolated from small follicles (1 to 5 mm) were cultured and 

treated with AKT inhibitor LY294002 (30 μM) or vehicle for 30 min, prior to incubation 

in the presence or absence of FSH (100 ng/mL) for 24 h. Total protein was collected for 

Western blot analysis and β-actin was used as a loading control (n = 3; 2 technical 

replicates per experiment).  Representative Western blot and quantitative analysis for P-

AKT, total AKT (A and B), and β-catenin (C and D).  Quantitative analysis is presented 

as least squares means ± SEM with the protein of interest expressed as a percentage of 

controls.  Data are normalized to the expression of β-catenin in vehicle control.  Bars 

without a common superscript differ (P < 0.05).  An asterisk denotes level of significance 

when compared to controls (*P < 0.10; **P < 0.05). 
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FIGURE 5 
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Figure 5:  Total β-catenin Accumulation in Bovine Granulosa Cells Treated                   

with LY294002 Prior to IGF-I Stimulation. 

 Granulosa cells of cattle isolated from small follicles (1 to 5 mm) were cultured and 

treated with AKT inhibitor LY294002 (30 μM) or vehicle for 30 min, prior to incubation 

in the presence of IGF-I (50 ng/mL) for 24 h.  A) Representative Western blot for beta-

catenin with β-actin serving as a loading control.  Numbers below demonstrate the 

change as a percent of control.  B) Quantitative analysis of estradiol concentrations 

presented as least squares means ± SEM were analyzed by radioimmunoassay(n = 6).  

Bars without a common superscript differ (P < 0.05). 
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FIGURE 6 
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Figure 6: Model for FSH and IGF-I Regulation of β-catenin via AKT Signaling in 

Granulosa Cells. 

 Data suggest activation of protein kinase B (AKT) is a physiologically important 

transduction molecule that is necessary to block glycogen synthase kinase-3β (GSK3β) 

mediated degradation of β-catenin for subsequent activation of FSH target genes in the 

bovine.  GSK3β is a component in a multi-protein degradation complex embedded along 

with adenomatous polyposis coli (APC) and the scaffold protein Axin that is responsible 

for regulating β-catenin accumulation. β-catenin is phosphorylated on Thr-41, Ser-37, 

and Ser-33 by GSK3β and subsequently degraded by the proteosome (MacDonald et al., 

2009).  Stimulation by FSH and IGF-I activates phosphoinositide 3-kinase (PI3K) which 

activates AKT by phosphorylation on Thr-308 and Ser-473 (Alessi et al., 1996; 

Nicholson and Anderson, 2002).  Activate AKT will inhibit GSK3β by phosphorylation 

on Ser-9, allowing for accumulation of β-catenin in the cytoplasm which translocates to 

the nucleus (Alessi and Cohen, 1998; Testa and Tsichlis, 2005).  Nuclear β-catenin then 

associates with transcription factor T-cell factor (TCF), to initiate the transcription of 

FSH target genes involved in steroidogenesis (Parakh et al., 2006; Hernandez Gifford et 

al., 2009).  
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FIGURE 7 
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Figure 7: β-catenin Response to Increasing Concentrations of IGF-I in Bovine                 

Granulosa Cells. 

 A preliminary study (n = 1) was performed to confirm that IGF-I was capable of 

inducing β-catenin at concentrations utilized in the literature. Small follicle bovine 

granulosa cells were isolated from bovine ovaries and treated with increasing 

concentrations of IGF-I (0, 10 25, 50, or 100 ng/mL) for 24h.  Effect of treatment on β-

catenin accumulation was determined by Western blot analysis with β-actin serving as the 

loading control. 
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1. Abstract 

  In livestock production, infertility is a major source of economic loss. 

Preovulatory estradiol biosynthesis relies on coordinated input from pituitary and 

intraovarian signaling pathways and impacts fertility of the ovulated follicle.  In 

granulosa cells, canonical wingless-type mammary tumor virus integration-site 3A 

(WNT3A) signaling is inhibitory on FSH target genes and steroid biosynthesis indicating 

a role in regulation of follicle maturation and differentiation.  Additionally, insulin-like 

growth factor I (IGF-I) contributes to estradiol production and dominant follicles contain 

greater concentrations of IGF-I and estradiol than their cohorts.  The objective of this 

study was to investigate if IGF-I would overcome the inhibitory effects of WNT3A on 

FSH-mediated steroidogenesis.  To determine the effects of IGF-I in this negative 

feedback system, primary cultures of rat granulosa cells were exposed to FSH (100 

ng/mL) and WNT (50 ng/mL) with or without IGF-I (50 ng/mL) for 24 h (n = 3).  

Activation of an aromatase (Cyp19a1) type II promoter (PII)-luciferase reporter was 

achieved by treatment with FSH with or without IGF-I (P < 0.001).  Inhibition of 

WNT3A on FSH-mediated Cyp19a1 PII activity was partially attenuated by the addition 

of IGF-I to the co-treatment paradigm (P < 0.001).  Granulosa cells treated with 

FSH+WNT3A had lower estradiol concentrations than cells treated with FSH alone (113 

vs 482 ± 92 pg/mL, respectively; P = 0.01), while addition of IGF-I in the presence of 

FSH+WNT3A tended to increase estradiol production (341 ± 92 pg/mL; P = 0.10).  To 

identify the mechanism by which IGF-I suppress WNT3A inhibition on FSH activity, β-

catenin and forkhead box protein 1 phosphorylation status and mRNA expression of 

Axin2, a negative regulator of WNT signaling, and was evaluated.  Compared with 
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controls, FSH treatment promoted β-catenin phosphorylation at Ser-552 and Ser-675 

irrespective of co-treatments (P < 0.05). Treatment with IGF-I did not modulate β-catenin 

phosphorylation at these specific C-terminal sites.  Specific WNT pathway activation was 

demonstrated by up regulation of Axin2 (P < 0.05), and the addition of FSH, or IGF-I 

alone or in combination with WNT3A regulated Axin2 expression to similar levels.  

These data indicate that IGF-I contributes to FSH and WNT signaling in granulosa cells 

to mediate ovarian follicle maturation and estradiol production.  Future studies are 

necessary to identify the mechanisms by which IGF-I is able to restore estradiol 

biosynthesis in the presence of WNT negative regulation on FSH signaling. 

 

 

2. Introduction 

 Circulating estradiol concentrations prior to ovulation must remain elevated by the 

dominant follicle to prevent undesirable subordinate follicle maturation.  Additionally, 

estradiol influences fertility as indicated by increased pregnancy rates in cows whose 

dominant follicle developed under a longer period of proestrus and increased estradiol 

(Bridges et al., 2010).  Follicle maturation and estrogen synthesis is regulated by follicle-

stimulating hormone (FSH), as well as intraovarian regulatory molecules including 

insulin-like growth factor I (IGF-I) (Adashi et al., 1985b) and wingless-type mammary 

tumor virus integration-site (WNT) (Boyer et al., 2010).  In granulosa cells, FSH 

generates a cAMP-dependent signaling cascade to initiate transcription of cytochrome 

P450 enzyme aromatase (Cyp19a1) to catalyze the conversion of androgens to estrogens.   
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 The estrogenic potential of granulosa cells can be positively modulated by IGF-I 

through its contributions to cell differentiation and proliferation (Zhou et al., 2013). 

Additionally, in cattle the largest dominant follicle has elevated IGF-I relative to the 

second largest (Beg et al., 2001).  Recent data indicates that IGF-I and FSH activate 

protein kinase B (AKT) leading to β-catenin accumulation (Gomez et al., 2015; chapter 3 

of dissertation), a transcriptional co-factor required for Cyp19a1 mRNA accumulation 

and subsequent estrogen production (Parakh et al., 2006; Hernandez Gifford et al., 2009).  

Collectively, these data suggest that IGF-I and FSH pathways converge downstream of 

their receptors to promote normal granulosa cell function. 

 β-catenin activity is regulated by the canonical WNT signaling pathway in 

granulosa cells.  Treatment with WNT3A inhibits FSH induction of Cyp19a1 and 

subsequent estradiol production in granulosa cells (Stapp et al., 2014b).  However, the 

mechanism by which WNT3A negatively regulates FSH signaling remains to be 

determined.  In this study, we tested the hypothesis that IGF-I plays a role in rescuing 

FSH-mediated Cyp19a1 activity and estradiol production from the inhibitory effects of 

WNT3A. 

 

3. Materials and methods 

3.1 Cell culture 

 Female Sprague-Dawley rats were purchased from Charles River Laboratories 

(Hollister, CA) and housed at Oklahoma State University in accordance with the 

Oklahoma State University Institutional Animal Care and Use Committee (AG-10-3).  
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Rat granulosa cells were isolated and cultured as previously described (Stapp et al., 2014) 

and seeded in 24-well culture plates at a density of 1.6 x 10
5
 cells per well (reporter 

assay) or 5.4 x 10
5
 per 60-mm tissue culture dish (mRNA analysis) in Dulbecco’s 

Modified Eagle Medium/Ham's F-12 (Invitrogen, Carlsbad, CA) with 1% (vol/vol) 

10,000 IU/mL penicillin/10,000 µg streptomycin/mL penicillin and streptomycin 

(DMEM/F12/PS) medium supplemented with 10% FBS.    

 

3.2 Transfection and luciferase assay 

 Granulosa cells were transiently transfected with 10 ng/well p-HRC-B Renilla and 

200 ng/well of CYP19A1 PII or empty luciferase reporter vector using Lipofectamine 

LTX and Plus (Invitrogen) reagent as previously described (Stapp et al., 2014).  The 

following day, cells were treated with DMEM/F12/PS supplemented with 10
-7

 M 

testosterone propionate (Sigma-Aldrich, St. Louis, MO).  Individual treatments included: 

1) vehicle control, 2) 100 ng/mL FSH (S1AFP-B-3; National Hormone and Peptide 

Program, National Institutes of Diabetes, Digestive, and Kidney Diseases, National 

Institutes of Health, Bethesda, MD), 3) IGF-I (50 ng/mL; Invitrogen), 4) WNT3A (50 

ng/mL; R&D Systems, Minneapolis, MN), 5) FSH+WNT3A, 6) IGF-I+WNT3A, 7) 

FSH+IGF-I, and 8) FSH+WNT3A+IGF-I.  Following a 24 h incubation period in their 

respective treatments, protein lysates were collected and luciferase values were measured 

by the Dual-Luciferase Reporter Assay System kit (Promega, Madison, WI) according to 

manufacturer’s protocol.  Luciferase values were measured in duplicate by a single tube 

Modulus Luminometer (Turner BioSystems, Sunnyvale, CA). 
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3.3 Western blot 

 Five micrograms of total cell lysate collected from transfection experiments was 

separated by 10% SDS-PAGE Tris-HCl gels, and transferred to a nitrocellulose 

membrane (Invitrogen).  Membranes were blocked for 1 h in Tris-buffered saline with 

5% non-fat dry milk and 0.1% Tween-20 before antibody incubation.  Membranes were 

incubated overnight at 4˚C in primary rabbit anti-β-actin (1:10,000; Cell Signaling 

Technology (CST), Danvers, MA) to account for equal loading.  Membranes were next 

incubated at room temperature for 1 h with horseradish peroxidase-conjugated (HPR) 

goat anti-rabbit at a final concentration of 1:10,000 (Thermo-Scientific, Waltham, MA). 

For detection of phosphorylated β-catenin at Ser-552 or Ser-675, non-phosphorylated 

(active) β-catenin (Ser-33/37/Thr-41) and phosphorylated forkhead box protein O 

(FOXO1) at Ser-256 membranes were incubated at 4˚C overnight with primary antibody 

(1:1,000; CST) followed by a 1 h incubation in HRP conjugated goat anti-rabbit at 

1:3,000.  For detection of total β-catenin, membranes were incubated at 4 °C overnight in 

mouse anti-β-catenin (1:10,000; BD Transduction Laboratories, San Diego, CA) 

followed by a 1 h incubation in HRP conjugated goat anti-mouse at 1:10,000 (Thermo-

Scientific).  Antigen-antibody complexes were detected using chemiluminescence with 

Immobilon detection substrate reagent (Millipore, Billerica, MA) and images were 

captured using the C-DiGit Blot Scanner (LI-COR, Lincoln, NE).   
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3.4 Quantitative real-time PCR 

 Total RNA was isolated from granulosa cells using TRIzol reagent (Invitrogen) 

according to the manufacturer’s protocol. Integrity of RNA was assessed by visualization 

of 18S and 28S ribosomal RNA resolved by agarose gel electrophoresis. RNA purity and 

quantity was determined using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher 

Scientific, Wilmington, DE, USA).  Purity was determined by 260/280 nm absorbance 

ratios, absorbance ratios above 1.8 were considered acceptable.  Total RNA (1 µg) was 

treated with 1 µL DNase I (Invitrogen) to remove genomic DNA contamination 

following manufacturer’s instructions.  First-strand mRNA was reversed transcribed into 

cDNA using oligo (dT) primers and Superscript II Reverse Transcriptase (Invitrogen).  

Quantitative real-time PCR analysis was performed using methods and primers 

previously reported (Stapp et al., 2014).  Mitochondrial ribosomal protein L19 (Mrpl19) 

was used as an internal housekeeping gene for Axin2 gene normalization.  Relative fold 

change for target mRNA was quantified using the ΔΔCq method. 

 

3.5 Radioimmunoassay 

 Granulosa cell culture media were analyzed for estradiol by solid phase RIA using 

components of commercial kits manufactured by Siemens Medical Diagnostics Corp. 

(Los Angeles, CA) as previously described (Castañon et al., 2012).  The specific binding 

was 65% and detection limit (95% of maximum binding) of the assay was 2 pg/mL and 

intra-assay CV was 8.9%. 
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3.6 Statistical analysis 

 Three biological replicates were evaluated for data analysis on luciferase activity, 

estradiol concentrations, protein abundance, and mRNA expression.  All statistical 

analysis was performed using SAS (Version 9.3; SAS Institute, Inc., Cary, NC). 

Generalized linear mixed models methods were used to analyze the data, accounting for 

non-normal responses and unequal variances where necessary.  Estradiol concentration 

and protein abundance were analyzed using ANOVA methods and least squares means 

comparisons between treatments were performed only when the model was significant to 

determine differences among treatments.  For protein accumulation, quantitative analysis 

is presented with the protein of interest expressed as a percentage of control and 

additionally, a t-test was performed to compare individual treatments to control by 

comparing each treatment level mean to 100%.     

 

4. Results and discussion 

4.1 IGF-I attenuates the inhibitory effect of WNT3A on Cyp19a1 PII activity and 

estradiol production 

 Insulin-like growth factor I contributes to estrogen production by increasing the 

sensitivity of granulosa cells to FSH in cattle (Spicer et al., 2002) and IGF-I knockout 

rodents fail to develop follicles past the pre-antral stage indicating a fundamental role in 

follicle development (Adashi et al., 1985a; Baker et al., 1996).  Moreover, in cattle 

concentrations of IGF-I are greatest in the largest follicle compared with the second 

largest follicle, suggesting IGF-I contributes to dominant follicle selection (Beg et al., 
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2001).  The ability of IGF-I and FSH signaling to mediate AKT and subsequent β-catenin 

accumulation suggest, signaling overlap and a potential mediator of WNT signaling.  To 

examine if IGF-I signaling can alleviate WNT3A inhibition of FSH-mediated Cyp19a1 

mRNA expression and estradiol production, rat granulosa cells were treated with FSH, 

WNT3A, IGF-I or a combination of the treatments.  As expected FSH treatment induced 

a 36-fold change in luciferase Cyp19a1 PII activity above controls (P < 0.001; Fig. 8A), 

and consistent with our previous studies, WNT3A inhibited (P < 0.001) FSH-mediated 

Cyp19a1 PII activity (Stapp et al., 2014b).  Interestingly, the addition of IGF-I to 

FSH+WNT3A increased (P < 0.02) Cyp19a1 PII activity from 36 relative light units 

(RLU) in FSH+WNT3A treated cells to 55 RLU in FSH+WNT3A+IGF-I treated cells.  

Media concentrations of estradiol followed a parallel response to Cyp19a1 PII activity 

(Fig. 8B).  Following FSH treatment, estradiol concentration increased (P < 0.01) when 

compared with vehicle controls (482 vs. 14 ± 92 pg/mL).  Co-treatment of FSH with 

WNT3A reduced estradiol concentrations, while the addition of IGF-I to the 

FSH+WNT3A treatment group increased (P < 0.10) estradiol in medium from 113 to 341 

± 92 pg/mL, respectively. 

 

4.2 β-catenin phosphorylation is not modulated by IGF-I  

 Phosphorylation of β-catenin at Ser-552 and Ser-675 are mediated by FSH and found 

to associate with T-cell factor on FSH target gene promoters (Law et al., 2013). 

Therefore, these transcriptionally active and inactive forms of β-catenin were measured to 

evaluate if IGF-I rescues WNT3A inhibition of FSH-target genes by modulating β-
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catenin phosphorylation status.  Treatment with FSH consistently induced 

phosphorylation of β-catenin at Ser-552 and Ser-675 accumulation when compared with 

controls (P < 0.05) irrespective of treatment.  However, FSH co-treated with IGF-I or 

WNT3A had no effect on phosphorylation of β-catenin at Ser-552 or Ser-675 (Fig. 9 and 

10C and D).  In addition to phosphorylated β-catenin, total concentrations were not 

enhanced with IGF-I treatment when compared with control (Fig 9A).  Active β-catenin 

(non-phosphorylated at Ser-33/37/Thr-41) and total β-catenin between experiments was 

highly variable and therefore the model was not significant (Fig. 10A and B).  However, 

a common trend was FSH and WNT3A treatment induced active and total β-catenin and 

IGF-I down regulated FSH-mediated active β-catenin accumulation.  Insulin-like growth 

factor-I induced accumulation of total β-catenin in cattle (Gomez et al., 2015), but not 

rats demonstrating IGF-I intracellular signaling is species dependent.  These results 

demonstrate IGF-I did not affect FSH’s ability to induce total β-catenin or modulate the 

phosphorylation status. 

  

4.3 Axin2 is not regulated by IGF-I  

 A negative regulator of downstream WNT signaling components is Axin2 (Jho et al., 

2002; Bernkopf et al., 2014), which was induced in cells treated with exogenous WNT3A 

(P < 0.005; Fig. 11) compared with cells that did not receive WNT3A treatment.  To 

address if a mechanism by which IGF-I partially rescues FSH-mediated estradiol 

production is by suppressing Axin2 expression, granulosa cells were stimulated with 

FSH, WNT3A, IGF-I or the combination.  As expected, WNT3A increased Axin2 

expression 11-fold greater than control.  However, co-treatment of WNT3A with FSH, 
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IGF-I or the combination of did not differentially regulate Axin2 mRNA expression, 

therefore eliminating this as a possible mechanism in which IGF-I suppresses WNT3A 

inhibition. 

 

4.4 FOXO1 phosphorylation is not differentially regulated at 24h by IGF-I 

 Forkhead box O protein induces expression of genes involved in cell cycle arrest and 

quiescence.  Non-phosphorylated FOXO is primarily nuclear and presumed to be 

inhibitory on gene transcription.  However, the phosphorylation of FOXO by AKT 

initiates its translocation out of the nucleus and into the cytoplasm (Biggs et al., 1999; 

Brunet et al., 1999).  In granulosa cells FOXO1 is highly expressed and its transcript is 

hormonally induced by FSH and estradiol (Liu et al., 2009; Gloaguen et al., 2011).  

Transient transfection of granulosa cells with active FOXO1 mutant suppressed FSH-

mediated proliferation and differentiation (Park et al., 2005).  Additionally, in cultured 

granulosa cells IGF-I readily phosphorylates FOXO1 (Richards et al., 2002).  These 

discoveries highlight the influence of FOXO on estradiol synthesis in granulosa cells 

therefore, phosphorylated FOXO1 was quantified to determine if IGF-I enhanced its 

exclusion from the nucleus in the presence of WNT.  At the 24 h time point there was no 

difference in phosphorylation status of FOXO1 between IGF-I and co-treatment with 

FSH, WNT3A, and IGF-I (Fig 12).  Data suggest the ability of IGF-I to partially rescue 

FSH-mediated estradiol production is not through enhancing FOXO1 phosphorylation.  

However, we cannot completely rule this out as a mechanism as maximal 

phosphorylation of FOXO by IGF-I occurs 90 min post treatment (Richards et al., 2002).   



74 
 

 Data herein support previous studies in which WNT3A is inhibitory on FSH-

mediated estradiol biosynthesis (Stapp et al., 2014b).  Moreover, the endogenous 

intraovarian signaling molecule, IGF-I partially rescues Cyp19a1 promoter activity from 

WNT3A inhibition resulting in increased estradiol concentrations.  However, the 

mechanism(s) is still under current investigation. 

 

5. Implications 

 In cattle estrogen concentrations are critical in fertility and dominant follicle 

selection however, the mechanisms responsible are diverse and remain unclear.  These 

results indicate FSH, IGF-I, and WNT contribute to regulate estrogen in granulosa cells.  

Data herein demonstrate that IGF-I is capable of overriding a negative feedback system 

set up by WNT3A on FSH target genes that may be necessary to keep follicle maturation 

and estrogen production from going unregulated. 
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B. 

 

FIGURE 8 
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Figure 8: Cyp19a1 PII Activity and Estradiol Production in Rat Granulosa Cells Treated 

with FSH, WNT3A, and IGF-I. 

 Primary rat granulosa cells were transfected with a Cyp19a1 PII luciferase reporter 

plasmid and treated for 24 h with 1) vehicle control, 2) 100 ng/mL highly purified human 

FSH, 3) IGF-I (50 ng/mL), 4) WNT3A (50 ng/mL,) 5) FSH+WNT3A, 6) IGF-

I+WNT3A, 7) FSH+IGF-I, or 8) FSH+WNT3A+IGF-I.  Cell lysate was collected for 

luciferase assay and treatment culture medium for quantification of estradiol 

concentrations.  Least squares means ± SEM are presented and bars without a common 

superscript differ (P < 0.05; n = 3). A) Cyp19a1 promoter activity and B) estradiol 

concentrations (pg/mL).   
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FIGURE 9 
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Figure 9:  β-catenin Phosphorylation Status in Response to FSH, WNT3A, and         

IGF-I in Rat Granulosa Cells. 

 Primary rat granulosa cell lysate from luciferase assay was quantified for Western blot 

analysis of total β-catenin, active β-catenin, phosphorylated β-catenin at Ser-552, and 

Ser-675.  Representative blots for target proteins are displayed over the loading control β-

actin (n = 3).   
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FIGURE 10 
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Figure 10:  Quantification of total and Phosphorylated β-catenin in Response to FSH, 

WNT3A, and IGF-I in Rat Granulosa Cells.  

 Band intensity for Western blot analysis was quantified for A) total β-catenin, B) active 

β-catenin, C) phosphorylated β-catenin at Ser-552, and D) Ser-675.  Quantitative analysis 

of target protein abundance is expressed as a percentage of controls.  Bars without a 

common superscript differ (P < 0.05) and an asterisk denotes level of significance when 

compared to control (*P < 0.0001).  Least squares means ± SEM are presented. 
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FIGURE 11 
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Figure 11: Axin2 mRNA Expression in Rat Granulosa Cells Treated with FSH, WNT3A, 

and IGF-I. 

Primary rat granulosa cells were treated for 24 h with 1) vehicle control, 2) 100 ng/mL 

highly purified human FSH, 3) IGF-I (50 ng/mL), 4) WNT3A (50 ng/mL), 5) 

FSH+WNT3A, 6) IGF-I+WNT3A, 7) FSH+IGF-I, or 8) FSH+WNT3A+IGF-I.  Cells 

were collected into TRIzol for quantitative PCR analysis of Axin 2. Mrpl19 was used as a 

reference gene.  Bars without a common superscript differ (P < 0.05; n = 3) least squares 

means ± SEM are presented. 
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FIGURE 12 
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Figure 12. Phosphorylation Status of FOXO1 in Rat Granulosa Cells Treated                                          

with FSH, WNT3A, and IGF-I. 

 Primary rat granulosa cell lysate from luciferase assay were collected for Western blot 

analysis of phosphorylated FOXO1.  β-actin was used as a loading control (n = 3).  A) A 

representative Western blot and B) Quantitative analysis of FOXO1 abundance is 

expressed as a percentage of controls.  Least squares means ± SEM are presented, no 

significance was detected.
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AROMATASE EXPRESSION IN GRANULOSA CELLS REQUIRES                             

BETA-CATENIN/TCF ASSOCIATION 
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1. Abstract 

 Aromatase (Cyp19a1) is expressed in response to the pituitary gonadotropin 

follicle-stimulating hormone (FSH) and is responsible for the aromatization of androgens 

into estrogens.  Follicle-stimulating hormone induction of Cyp19a1 is enhanced by β-

catenin, a multifunctional protein that serves as a co-transcriptional regulator.  Whether 

the association of β-catenin with the transcription factor T-cell factor (TCF) is required 

for Cyp19a1 expression is unknown.  To elucidate if β-catenin associates with TCF on 

the Cyp19a1 promoter in the presence of FSH, primary granulosa cells were cultured in 

the presence or absence of FSH (100 ng/mL) and treated with increasing concentrations 

(5, 10, 25 µM) of iCRT14, an inhibitor of β-catenin /TCF association.  To ascertain if 

iCRT14 is detrimental on primary granulosa cell number, viability was quantified at 

termination of the treatment period.  Concentrations of iCRT14 at 5, 10, and 25 µM had 

no deleterious effects on cell viability when compared with DMSO control (P > 0.61).  

Successful inhibition of β-catenin and TCF binding was confirmed by real-time PCR 

quantification of luteinizing hormone receptor (Lhcgr), a TCF responsive gene.  As 

expected, treatment with FSH increased Lhcgr expression (516-fold) when compared 

with vehicle control (P < 0.001; n = 3).  Conversely, FSH-mediated induction of Lhcgr 

was returned to control levels in granulosa cells co-treated with FSH and iCRT14.  

Expression of Cyp19a1 mRNA was enhanced with FSH when compared with control (P 

< 0.001) and iCRT14 at 5 and 25 µM abolished FSH-stimulated Cyp19a1 expression 

(15,245 vs 1,414 and 51.67 fold, respectively).  These data demonstrate that FSH 

induction of Cyp19a1 requires β-catenin binding to TCF on the promoter and further 

emphasizes the requirement for β-catenin in estradiol production.  
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2. Introduction 

 Follicle-stimulating hormone (FSH) is a pituitary glycoprotein that enhances 

ovarian follicle development and estradiol biosynthesis by granulosa cells.  Expression of 

the steroidogenic enzyme aromatase (Cyp19a1) is increased in response to FSH and is 

required for conversion of testosterone to estradiol.  β-catenin, a transcriptional co-factor 

accumulates in the cytoplasm in response to FSH (Castañon et al., 2012; Stapp et al., 

2014a) and intra-ovarian signaling molecules such as the wingless-type mammary tumor 

virus integration-site (WNT).  The transcriptional activity of β-catenin was first 

established in the canonical WNT pathway where in the presence of a WNT ligand, a 

degradation complex is prevented from phosphorylating the NH2-terminal of β-catenin 

and targeting it for degradation (Cadigan and Nusse, 1997).  β-catenin then accumulates 

in the cytoplasm translocates to the nucleus and binds T-cell factor (TCF) to mediate 

transcription of target genes (Huber et al., 1996).  Additionally, nuclear β-catenin 

mediates gene expression by associating with other transcription factors of these is 

steroidogenic factor-1 (SF-1), a nuclear orphan receptor.  In granulosa cells, association 

of β-catenin with SF-1 enhances Cyp19a1 expression (Parakh et al., 2006).  Transient 

transfection of granulosa cells with Δ90 β-catenin, an adenovirus encoding a β-catenin 

mutant lacking NH2-terminal residues required for degradation, enhanced FSH 

stimulation of Cyp19a1 expression (Parakh et al., 2006).  Conversely, knock down of 

endogenous β-catenin by siRNA reduced forskolin-mediated Cyp19a1 promoter activity.  

Additionally, cultured granulosa cells from transgenic mice deficient for β-catenin had 

reduced FSH-mediated Cyp19a1 expression and media estradiol concentrations 

(Hernandez Gifford et al., 2009).  These studies emphasize the requirement for β-catenin 
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in Cyp19a1 expression and subsequent estradiol production.  Currently, there are no 

reports indicating Cyp19a1 expression is mediated by β-catenin binding to TCF on the 

Cyp19a1 promoter.   

 Luteinizing hormone receptor (Lhcgr), an FSH target gene, promotes 

differentiation of the follicle.  Chromatin immunoprecipitation demonstrated FSH 

promoted SF-1/β-catenin and TCF3 association with the Lhcgr promoter (Law et al., 

2013).  Transfection with an artificial Lhcgr promoter luciferase reporter in which the 

TCF binding site was mutated abolished FSH stimulation of the reporter.  Similarly, 

mutation of the SF-1 binding site on the Lhcgr promoter prevented promoter activity 

under FSH treatment.  Follicle-stimulating hormone induces Lhcgr through promoting 

SF-1 and TCF-1 activity.   

 Based on the crucial nature of β-catenin to regulate estradiol production, a study 

was designed to investigate if expression of Cyp19a1 requires β-catenin/TCF association.  

Inhibitors of β-catenin responsive transcription (iCRTs) are small-molecules that target β-

catenin transcription by docking into TCF-specific pockets of β-catenin and preventing 

TCF/ β-catenin association.  For the purpose of elucidating if Cyp19a1 expression 

requires β-catenin/TCF association, we utilized iCRT14 in primary granulosa cell 

cultures.  Results herein provide functional evidence that an interaction between β-

catenin and TCF is essential for the FSH cascade that enhances Cyp19a1 expression.   
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3. Materials and methods 

3.1 Cell culture 

 Female Sprague-Dawley rats were purchased from Charles River Laboratories 

(Hollister, CA) and housed at Oklahoma State University and held in accordance with the 

Oklahoma State University Institutional Animal Care and Use Committee (AG-10-3). Rat 

ovaries were collected and transported in Dulbecco’s Modified Eagle Medium/Ham's F-

12 (Invitrogen, Carlsbad, CA) with 1% (vol/vol) 10,000 IU/mL penicillin/10,000 µg 

streptomycin/mL penicillin and streptomycin (DMEM/F12/PS) medium to laboratory for 

further processing.  Granulosa cells were isolated and cultured as previously described 

(Stapp et al., 2014) and seeded in 24-well culture plates at a density of 1.6 x 10
5
 cells per 

well (luciferase assay and cell viability) or 5.4 x 10
5
 cells per 35 mm dish (RNA 

extraction) in DMEM/F12/PS medium supplemented with 10% FBS (complete media).  

Cells for luciferase analysis were first transfected with the appropriate plasmid construct 

before PBS or FSH (100 ng/mL) supplemented with 10
-7

 M testosterone propionate 24 h 

treatment.  In a separate experiment, granulosa cells were treated with DMEM/F12/PS 

supplemented with 10
-7

 M testosterone propionate (Sigma-Aldrich, St. Louis, MO) and 

one of the following treatments: 1) vehicle control (DMSO), 2) 100 ng/mL FSH (S1AFP-

B-3; National Hormone and Peptide Program, National Institutes of Diabetes, Digestive, 

and Kidney Diseases, National Institutes of Health, Bethesda, MD), 3) iCRT14 at 5, 10, 

or  25 µM  (CAS: 677331-12-3; Sigma-Aldrich, St. Louis, MO), and 4) the combination 

of iCRT14 and FSH.  Granulosa cells were treated with iCRT14 or DMSO 1 h prior to 

adding FSH directly to individual wells and incubated for 24 h.  
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3.2 Plasmid constructs, co-transfection, and luciferase assay 

 The reporter vectors Renilla pHRG-B, 517-promoter fragment CYP19A1-wildtype 

(CYP19A1-WT) and CYP19A1-mutant (CYP19A1-TCF MUT) in pGL3-basic were a 

donation by Mary Hunzicker-Dunn at Washington State University.  A putative TCF 

binding site in human CYP19A1 PII was mutated using site directed mutagenesis. The 

empty pGL3-basic vector which served as a control was purchased from Promega 

(Madison, WI).   

 Cultured granulosa cells were co-transfected with 10 ng/well p-HRG-B Renilla 

and 200 ng/well of CYP19A1-WT, CYP19A1-TCF MUT or empty luciferase reporter 

vectors in DMEM/F-12.  Cells were transfected using Lipofectamine LTX and Plus 

reagent (Invitrogen, Carlsbad, CA) according to manufacturers protocol for 

approximately 5 h.  DMEM/F-12 and transfection agents were aspirated and cells were 

returned to fresh medium plus 10% FBS for 18 hours.  Cells then received the appropriate 

treatment as described earlier.  After the final 24 h incubation period in treatment, cell 

lysates were collected and luciferase values were measured using the Dual-Luciferase 

Reporter Assay System according to manufacturer’s protocol (Promega).  A single tube 

Modulus Luminometer (Turner BioSystems, Madison, WI) was used to measure 

luciferase activity for all samples.   

 

3.3 Analysis of cell viability 

 At the completion of the iCRT14 treatment period granulosa cells were rinsed 

with ice cold PBS and detached using TrypLE (Thermo-Scientific, Waltham, MA).  Once 
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cells detached they were collected and 0.5 mL of complete media was used to rinse the 

culture dish to collect remaining cells.  Cells were centrifuged at 200 x g and the 

remaining pellet was resuspended in 250 µL of PBS.  To assess cell viability and 

minimize variation, the Bio-Rad TC20 automated cell counter was used to quantify cell 

viability (Bio-Rad, Hercules, CA).   

 

3.4 Quantitative real-time PCR 

 Total RNA was isolated from granulosa cells using TRIzol reagent (Invitrogen) 

according to the manufacturer’s protocol. RNA Integrity was assessed by visualization of 

18S and 28S ribosomal RNA resolved by agarose gel electrophoresis. RNA purity and 

quantity was determined using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher 

Scientific, Wilmington, DE, USA).  Total RNA (1 µg) was treated with DNase I 

(Invitrogen) to remove genomic DNA contamination following manufacturer’s 

instructions.  First-strand cDNA was reversed transcribed into cDNA using oligo (dT) 

primers and Superscript II Reverse Transcriptase (Invitrogen).  Quantitative real-time 

PCR analysis was performed using methods and primers previously reported (Stapp et al., 

2014).  Mitochondrial ribosomal protein L19 (Mlpl19) was used as an internal 

housekeeping gene for Cyp19a1 and Lhcgr gene normalization. Relative fold change for 

target mRNA was quantified using the ΔΔCq method. 

 

3.5 Statistical analysis 
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 Luciferase activity, cell viability, and relative changes in gene expression for 

Lhcgr and Cyp19a1 were evaluated on at least three biological replicates and statistical 

analysis was performed using SAS (Version 9.3; SAS Institute, Inc., Cary, NC).  

Generalized linear mixed models methods were used to analyze the data.  Effects of 

treatment on cell viability and mRNA expression were analyzed using ANOVA methods 

and least squares means comparisons between treatments were performed only when the 

model was significant to determine differences among treatments.   

  

4. Results and discussion 

 β-catenin, a multifunctional protein, is known to bind TCF and initiate 

transcription of target genes in the nucleus.  Follicle-stimulating hormone stimulates 

Cyp19a1 expression and more recently has been shown to increase total β-catenin protein 

(Castañon et al., 2012).  Moreover, the conversion of testosterone to estradiol relies on 

Cyp19a1expression.  To identify if FSH-mediated accumulation of β-catenin associates 

with TCF to regulate Cyp19a1, rat granulosa cells were treated with iCRT14 and with a 

517 bp CYP19A1 PII plasmid in which one putative TCF site was mutated. 

 

 4.1 CYP19A1-WT and CYP19A1-TCF MUT luciferase expression is similarly in 

response to FSH  

 A putative TCF site in a 517 bp fragment of the CYP19A1 PII was mutated to 

address if TCF is required for optimal CYP19A1 PII luciferase expression in granulosa 

cells.  As expected cells transfected with the CYP19A1-WT plasmid and treated with FSH 
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had increased (P = 0.02; n = 7) luciferase activity when compared with PBS vehicle 

control (Fig. 13).  The TCF site mutation did not affect the ability of FSH to stimulate 

CYP19A1 PII luciferase activity.  Cells transfected with the TCF-mutated plasmid and 

treated with FSH had increased (P = 0.001) luciferase activity (8.92 RLU) compared with 

controls (1.99 RLU). These results indicate no significant interaction between wild-type 

and the mutated TCF site in the aromatase promoter.   

 

4.2 β-catenin is required to associate with TCF for maximal Cyp19a1 mRNA 

Expression  

 β-catenin misregulation is associated with several malignancies and therefore 

recent work is focused on identifying therapeutic molecules that prevent β-catenin 

transcriptional activity.  Of these molecules are iCRT’s which are inhibitory compounds 

that obstruct β-catenin association with TCF (Gonsalves et al., 2011).  The iCRT’s are 

successful at antagonizing β-catenin-mediated transcription by docking into TCF-specific 

pockets in β-catenin and physically blocking TCF binding.  Because of its effectiveness 

and specificity at inhibiting β-catenin and TCF attachment, iCRT14 was utilized to study 

the requirement of their association on Cyp19a1 expression. 

  In breast cancer cell lines iCRT14 effectively inhibits cell proliferation (Bilir et 

al., 2013) and are cytotoxic to colon cancer cell lines (Gonsalves et al., 2011).  To first 

assess whether the iCRTs at increasing concentrations affect primary granulosa 

proliferation and cell number, a cell counter was utilized to quantify cell viability.  Cell 

count ranged between 2.8 and 3.4 x 10
5
 and there was no difference in cell viability (P > 
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0.61; Fig. 14) with increasing concentrations of iCRT14.  These data suggest that iCRT14 

regardless of concentration (5, 10, 25 µM) is not cytotoxic to primary granulosa cells, and 

therefore will not affect data interpretation.   

 To further study the requirement for β-catenin/TCF association for FSH-mediated 

Cyp19a1 expression in granulosa cells, mRNA for FSH target genes Cyp19a1 and Lhcgr 

was quantified by real-time PCR.  Expression of Lhcgr was use as a positive control, as 

β-catenin is required to associate with SF-1 and TCF to regulate its expression (Law et 

al., 2013).  As expected, co-treatment with FSH and iCRT14 at 5 or 25 µM reduced FSH-

mediated Lhcgr expression (29.80 and 7.74 vs 516.29 fold, respectively; Fig. 15A).  

Treatment with FSH drastically induced Cyp19a1 expression 15,245-fold compared with 

controls (P < 0.0001; Fig. 15B).  At 5 or 25 µM iCRT14 had no effect on Cyp19a1 

expression as both were comparable to vehicle controls (P = 0.99).  Consistent with a 

necessary role for TCF/β-catenin in Lhcgr expression, preventing TCF/β-catenin 

association with iCRT14 abolished FSH-mediated Cyp19a1 expression.  Fold change 

expression was 1,417 with 5 µM and 51 with 25 µM iCRT14 co-incubated with FSH, a 

significant reduction from 15,245 in FSH treated granulosa cells. 

  

5. Conclusion 

 These results demonstrate iCRT14 is not cytotoxic to primary granulosa cells but 

is effective at preventing TCF from binding β-catenin.  In estradiol biosynthesis Cyp19a1 

encodes a steroidogenic enzyme that catalyzes the conversion of testosterone to estradiol.  

Depletion of β-catenin in granulosa cells reduces Cyp19a1 expression and subsequent 
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estradiol production (Parakh et al., 2006; Hernandez Gifford et al., 2009).  It has been 

established that β-catenin functions as a co-transcription factor by associating with SF-1 

(Parakh et al., 2006) and now TCF for FSH-mediated estradiol production.   No change in 

Cyp19a1 promoter activity was detected between the wild-type and mutant TCF binding 

site.  It is important to note that the CYP19 PII plasmid only contains a fragment of the 

promoter and not the entire sequence therefore, it is probable that additional TCF sites 

compensate for the mutated one.  Whereas, β-catenin/TCF interaction is prevented by 

iCRT14 therefore inhibiting all β-catenin/TCF transcriptional activity.  Expression of 

Cyp19a1 mRNA was reduced with iCRT14 demonstrating β-catenin/TCF is required for 

activation of the Cyp19a1 promoter.   

 Follicle-stimulating hormone and additional intra-ovarian signaling molecules 

such as WNT and insulin-like growth factor-I mediate β-catenin availability and activity.  

This study highlights the multiple functions and requirements for β-catenin by 

contributing to the body of literature that Cyp19a1 requires β-catenin/TCF association.  

Understanding the mechanisms involved in mediating estradiol production in granulosa 

cells is of importance to normal function of the female reproductive system.  
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FIGURE 13 
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Figure 13: CYP19A1 PII Expression in Rat Granulosa Cells Transfected with CYP19A1-

WT or CYP19A1-TCF MUT is similar in response to FSH. 

Primary rat granulosa cells were transfected with CYP19A1 PII-WT or CYP19A1 PII-

TCF-MUT prior to treatment with 100 ng/mL highly purified human FSH or PBS vehicle 

control for 24 h.  Cell lysate was collected for luciferase assay and data is presented as 

least square means ± SEM (P < 0.05; n = 7) bars with without a common superscript 

differ.  
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FIGURE 14 
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Figure 14: Primary Rat Granulosa Cell Viability in Response to Increasing 

Concentrations of iCRT14. 

Primary rat granulosa cells were treated with 100 ng/mL of highly purified human FSH, 

or increasing concentrations of iCRT14 (5, 10, 25 µM) for 24 h.  Cell viability was 

quantified using an automated cell counter.  Viability is presented as least square means ± 

SEM.  No difference in cell viability was detected between treatments (n = 3).  
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A. 

 
B. 

 

 

 

FIGURE 15 
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Figure 15. Cyp19a1 and Lhcgr expression in FSH and iCRT14 Treated Rat Granulosa 

Cells. 

 Quantitative PCR analysis of Lhcgr and Cyp19a1 mRNA in primary rat granulosa cells 

were treated with iCRT14 (5 or 25 µM) 1 h prior to the addition of highly purified human 

FSH (final concentration 100 ng/mL) for 24 h.  Least square means ± SEM are presented 

(n = 3).  Bars without a common superscript differ (P < 0.001).
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CHAPTER VI 

 

 

CONCLUSION 

 

 Estradiol biosynthesis is complex and involves many intracellular signaling 

cascades.  Knowledge of the mechanisms required to regulate estradiol production in 

ovarian granulosa cells is of importance to normal function of the female reproductive 

system.  Recognizing and comprehending the intricacy of estradiol regulation within 

granulosa cells will progress techniques targeted at enhancing female fertility.  

 β-catenin is a transcriptional co-factor mediated by follicle-stimulating hormone 

(FSH), insulin-like growth factor- I (IGF-I), and wingless-type mammary tumor virus 

integration-site (WNT) in granulosa cells.  Nuclear β-catenin is further regulated by 

various transcription factors that enhance or suppress expression of target genes.  Studies 

performed herein provide novel insight into the multifaceted roles and regulators of β-

catenin in estradiol production.   

 Accumulated β-catenin in response to IGF-I and FSH suggest this is an AKT 

dependent event as both are known to signal downstream and activate AKT.  It remains 

to be determined whether or not transcriptionally active (phosphorylated Ser-552, Ser-

675) is temporally regulated under FSH and IGF-I conditions.  Additionally, the
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accumulation of β-catenin in response to IGF-I stimulation is species specific.  The first 

study performed on bovine granulosa cells demonstrates 24 hour treatment with IGF-I 

increases total β-catenin, whereas in the second study rat granulosa cells under similar 

conditions had no effect.  These data align with capacity of IGF-I treatment in the bovine 

granulosa cells but not rodent cells to stimulate estradiol production.  The marked 

differences in species could provide an insight for follicular development differences in 

monovulatory versus polyovulatory species.  Additional studies are necessary to identify 

if β-catenin in is responsive to FSH and IGF-I in human granulosa cells so the 

appropriate animal model will be used when studying β-catenin regulation in steroid 

production.  

 Of interest is the ability of IGF-I to partially attenuate inhibition of WNT3A on 

FSH-mediated estradiol production.  Further investigation is required to identify the 

intracellular mechanism(s) by which WNT is inhibitory on FSH and the ability of IGF-I 

to relieve this inhibition.  Future studies may involve precipitating β-catenin and 

characterizing the proteins associated with it under FSH, WNT, and FSH+WNT 

conditions.  Even more interesting would be to identify if the inhibitory nature of 

WNT3A is only targeted at FSH-mediated estradiol signaling or does it extend to IGF-I 

in species where IGF-I is sufficient in stimulating estradiol production. 

 The availability of novel inhibitors of catenin responsive transcription (iCRT) 

molecules that inhibit β-catenin association with T-cell factor (TCF) offers plentiful 

research opportunities for applications such as therapeutic agents for granulosa cell 

cancer.  Data presented herein demonstrate iCRTs do not affect primary granulosa cell 

viability, but are effective in preventing expression of TCF promoter genes.    
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 These data support a proposed model (Fig. 16) for IGF-I as a regulator of 

estradiol production and possibly follicle deviation by relieving WNT inhibition.  

Stimulation by FSH on granulosa cells enhances expression of WNT and WNT 

downstream components (Castañon et al., 2012; Gupta et al., 2014).  Treatment with 

WNT3A or LiCl a WNT agonist suppresses follicle development, inhibits FSH-mediated 

mRNA expression of the steroidogenic enzymes: Cyp11a1, Cyp19a1, and differentiation 

factor Lhcgr, and reduces subsequent estradiol production (Li et al., 2014; Stapp et al., 

2014b).  This dissertation provided evidence that IGF-I attenuates WNT3A inhibition on 

Cyp19a1 promoter activity and estradiol production.  The IGF-I system enhances the 

sensitivity of granulosa cells to FSH.  In the bovine the concentrations of IGF-I in large 

follicles increases, however only the dominant follicle do these levels remain consistent 

(Ginther et al., 2001).  Therefore, it is probable that WNT is expressed in response to 

FSH as a negative feedback mechanism to keep estradiol from going unregulated.  Then 

when IGF-I concentrations increase in dominant follicles it will relieve the inhibitory 

properties of WNT on FSH for continual estradiol synthesis.   
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FIGURE 16 
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Figure 16:  Proposed Model for Regulation of Estradiol Biosynthesis by FSH,                

WNT, and IGF-I in Developing Ovarian Follicles. 

Initiation of estradiol production begins with FSH binding its receptor on granulosa cells 

to increase expression of steroidogenic enzymes.  Of these is aromatase which requires β-

catenin association with nuclear transcription factors steroidogenic factor-1 and T-cell 

factor.  Stimulation by FSH also increases expression of WNT ligands and WNT 

signaling components.  Canonical WNT signaling molecule, WNT3A, inhibits FSH-

mediated estradiol production.  Insulin-like growth factor-I expression is greatest in 

follicular fluid of the preovulatory follicle and partially prevents WNT3A inhibition on 

FSH-mediated estradiol production through an unknown mechanism.  
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