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ABSTRACT

A study was conducted to  determine e f f e c t s  of a rsen ic , 

cadmium, chromium, copper, lead , and mercury on the  na tura l f ish  

populations in Oklahoma. Fish samples were co llec ted  annually a t  23 

monitoring s ta t io n s  fo r  herbivore and carnivore troph ic  levels  during 

Water Years (October 1 to  September 30) 1977, 1978, 1979, and 1980.

Samples of the  water column and sediment were also co llec ted  

and analyzed fo r  the  same to x ic  metals as the f i s h  samples.

A dditiona lly , pH, t o t a l  hardness, and flow were analyzed a t  the 

monitoring s ta t io n s .  These measurements were taken to  determine i f  they 

had an e f f e c t  on the to x i c i t y  of the tox ic  metals analyzed to  the 

natura l f i s h  populations.

The concentrations o f  toxic  metals s tudied  in the  natural f i s h  

populations in Oklahoma were generally  low and no observed p a tte rn s  of 

e levated tox ic  metals in the  f i s h  samples could be determined. There 

were no d i re c t  c o rre la t io n s  between the tox ic  metal levels  in the water 

and sediment samples and th e  levels  measured in the  f i s h  samples. No 

c o rre la t io n s  were noted in the  pH, t o ta l  hardness, and flow measurements 

to  the tox ic  metal leve ls  in the  f i s h  samples. Since no p a tte rn s  were 

observed in the f i s h  d a ta ,  i t  was not poss ib le  to  p re d ic t  the  sources of 

these  tox ic  metals.

The level of to x ic  metals was low in the  water samples but 

were much higher in the sediment samples. There were no s ig n i f ic a n t  

c o r re la t io n s  between th e  le v e ls  of tox ic  metals in the  water to  the  

lev e ls  in the  sediment.

i i i
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EVALUATION OF TOXIC METALS IN 

NATURAL FISH POPULATIONS 

IN OKLAHOMA

CHAPTER I

INTRODUCTION

During the past few years  there  has been considerable emphasis 

placed on evaluating and abating  the many po llu tion  problems th a t  

have plagued the United S ta te s  (1) . Recently, the re  has been in c re a s ­

ing concern about the u lt im ate  impact on the aquatic  environment of 

hazardous, tox ic  m a te r ia ls .  Thomas (2) in the symposium, "Proceedings 

on the Biological Monitoring fo r  Environmental E ffe c ts ,"  s ta te d  " there  

are  ind ica tions  of a growing age of skepticism with regard to  monitor­

ing the e f fe c t s  of hazardous p o llu tan ts  in our environment." He a lso  

s tre ssed  the need to  guard a g a in s t  skepticism developing as the r e s u l t  

of misunderstandings or because of inaccurate  or misleading information 

on the e f fe c ts  of these environmental contaminants.

Currently there  is  considerable  in te r e s t  in the concept o f  

monitoring fo r  the  presence o f  tox ic  m ateria ls  in  natura l f i s h  popula­

t io n s .  This thinking has re su l te d  from the f a c t  th a t  f i s h  a re  an 

ex ce llen t  choice fo r  the  determ ination o f  tox ic  substances in the 

aquatic  ecosystem since they a re  always in  contac t with the u lt im ate  

t ra n sp o r te r  o f  to x ic s ,  the w ater and sediment. The term tox ics  i s



taken to  mean several d i f f e r e n t  th in g s .  Organic tox ics  r e fe r  to  

m ateria ls  such as p e s t i c id e s ,  he rb ic id es , and hydrocarbons. Inorganic 

toxics r e f e r  to  m a te r ia ls  such as the heavy metals and the substances 

which cause eu trophication  problems. For the purpose of th i s  paper 

toxics are defined as the  tox ic  metals a r s e n ic ,  cadmium, chromium, 

copper, lead and mercury.

The primary goals of the Federal Water Po llu tion  Control Act (Clean 

Water Act) o f  1972 as amended in 1977 (3) were to :

1. "Eliminate the discharge o f  p o llu tan ts  in to  navigable
waters by 1985;

2. Provide fo r  the p ro tec tion  and propagation o f f i s h ,  
s h e l l f i s h ,  and w i ld l i f e  and provide fo r  rec rea tion  
in waters of the  U.S. by 1983; and

3. P ro h ib it  the discharge o f  toxic  p o llu tan ts  in tox ic  
amounts in to  these  w aters ."

Most of the b io logica l monitoring done to  date has been accomplished 

with the a id  o f  grants  authorized by sec tion  106 of the Clean Water Act 

(3). S p e c if ic a l ly  these  monies have been used to  implement what is  

called  the Basic Water Monitoring Program (4 ) .  This program was s e t  

up as a national technique to  address the problem of the accumulation 

of tox ics  in  f i s h  t i s s u e .  EPA Deputy Administrator John P. Quarles 

estab lished  a Standing Work Group on Water Monitoring on December 24, 

1975. This Standing Work Group was charged with the  task  o f  reviewing 

ongoing monitoring a c t i v i t i e s  and developing c o s t - e f fe c t iv e  water 

monitoring programs in the EPA regions and the  s t a t e s .  The document 

th is  group produced was not intended to  be a " regu lation  or s e t  of 

s t r i c t  gu idelines  and should not be implemented b lindly"  (4 ) .  In s tead , 

the document was to  be considered a "basic s t ru c tu re "  which could be



used to  begin a process of co n s is ten t  nationwide monitoring programs 

so data could be c o l le c te d  which would be a con tr ibu tion  to  more 

e f fe c t iv e  use o f  our monitoring resources.

This "Basic Monitoring Program" was used by the s t a t e  of Oklahoma 

to  design monitoring programs which would address the data needs fo r  

a to ta l  water q u a l i ty  management e f f o r t .  As a p ra c t ic a l  n ece ss i ty ,  

the program has undergone a s e r ie s  of minor changes as i t  evolved to  

the present e f f o r t .  I t  should be noted, however, th a t  consistency in 

a long-term program was a major consideration in any changes proposed 

in the to ta l  program e f f o r t .  The program proposal fo r  Water Year 1981 

represented the f in a l  program which is  recognized by water q u a li ty  

management agencies in Oklahoma as the maximum e f f o r t  which can be 

done with the resources av a ilab le  (5).

One add itiona l po in t should be made in the way o f  in troduction  

to  th i s  p ro je c t .  The Oklahoma Water Resources Board (6) in th e i r  

Water Quality Standards s t a t e  th a t  water resources development in the 

l a s t  century involved water q u a li ty  development to  a minor degree. 

During recen t y ea rs ,  however, an increase in population re su l t in g  in 

community, in d u s t r ia l  and a g r ic u l tu ra l  development, has caused the 

s c ie n t i f i c  and engineering communities to  reassess  the ro le  of water 

q u a li ty  and e leva te  i t  to a pos it ion  of comparable importance with 

water q u an tity .  Section 4 .3  o f  these standards say th e re  are  no 

generalized water q u a l i ty  standards applicable  fo r  a l l  kinds o f  f i s h  

and w i ld l i f e .  Generally , unpolluted waters support a more d iverse  

aquatic  community while only to le ra n t  species can surv ive in compara­

t iv e ly  po llu ted  w aters . The impact of a given chemical o r  physical



co nsti tuen t on a b io log ical community i s  not mutually exclusive of 

o ther co n s ti tu en ts  s ince sy n e rg is t ic  a n tag o n is t ic ,  and other types of 

in te rac t io n s  a re  common. The Water Board fu r th e r  s ta t e s  th a t  the 

n a rra tiv e  and numerical standards are  designed to  promote f ish  and 

w ild l i f e  propagation.

Section 6.6 o f  the water q u a li ty  standards address the problem of 

tox ic  substances. This section  s ta t e s  the waters o f  the s ta te  shall 

be maintained so they w ill not be toxic  to  humans, f i s h  and w i ld l i f e ,  

and o ther t e r r e s t r i a l  and aquatic  l i f e ,  nor detrim ental to  any 

benefic ia l use including continued ingestion  by l ives tock  or fo r  

i r r ig a t io n  use. Toxic substances in Oklahoma waters shall not be 

present in q u a n t i t ie s  which allow s ig n i f ic a n t  bioaccumulation and/or 

biomagnification in the food chain.

The sp ec if ic  information needed to  adquately address these issues 

is  not cu rren tly  a v a ilab le .  Much more work must be done in order to  

completely define  the tox ic  and bioaccumulation po ten tia l  of toxics 

in natural f i s h  populations. This research should help to address 

a pa rt  of the to ta l  issue of tox ic  metals in  the natural f ish  popula­

tions  in Oklahoma.



CHAPTER II 

LITERATURE REVIEW 

Introduction

During the pas t  few years much work has been done to  document 

the impact of tox ic  metals w ithin  the aquatic  ecosystems of the United 

S ta te s .  I t  should be noted th a t  th i s  l i t e r a t u r e  review is  not 

intended to  cover the e n t i r e  scope o f tox ic  metals in the aquatic  

ecosystem. Such reviews have been done by o ther authors and the 

update on the sub jec t  alone i s  s u f f ic ie n t ly  large  to  warrant an e n t i r e  

research p ro jec t .  This l i t e r a t u r e  review is  l im ited  in scope to 

b r ie f ly  summarize the completed work which r e l a t e s  to  the  evaluation 

and in te rp re ta t io n  o f the data generated in t h i s  study.

I t  is  in te re s t in g  to  note a t  the beginning of th i s  l i t e r a t u r e  

review th a t  very few papers were a v a ilab le  from the l i t e r a t u r e  

addressing the e f fe c t s  of tox ic  metals on natura l f i s h  populations.

Of the a r t i c l e s  reviewed, only a few were from Oklahoma, and these 

did not deal with the e f fe c t s  o f  tox ic  metals on natura l f i s h  popula­

t io n s .  Therefore, th i s  p ro je c t  should add to  the  s c i e n t i f i c  l i t e r a t u r e  

with respec t to  add itiona l evaluation o f tox ic  metal data  fo r  the 

natural f i s h  populations in Oklahoma.

This l i t e r a t u r e  review co n sis ts  o f  a general d iscussion  of the 

concept of tox ic  metals impact on the aquatic  ecosystem. A b r ie f  

discussion of the s ix  tox ic  metals being addressed by th i s  p ro jec t  

w ill follow.



In th e i r  in troduction  to  a study on metal accumulation in "Fishes 

and Aquatic In v e r te b ra te s ,"  P h i l l ip s  and Russo (15) s ta ted  th a t  during 

recent years considerable  a t te n t io n  has focused on the f a te  of metals 

and th e i r  d e r iv a tiv e s  in the  aquatic  environment. Although some 

metals are  e s se n t ia l  to  aquatic  organisms in  t ra ce  amounts, o thers  

o f f e r  no known d i r e c t  b e n e f i ts .  Concern fo r  o ther aspects of 

environmental health  have prompted researchers  to  explore the ex ten t 

to  which these o the r  metals are  concentrated in l iv in g  t i s s u e ,  par­

t i c u la r ly  in aquatic  organisms.

Metals accumulation s tud ie s  which focus on the aquatic  environ­

ment are  important fo r  various reasons. The ex ten t to  which metals 

are  accumulated by aquatic  animals can be re la te d  to  metals to x ic i ty .

Two types o f  to x ic i ty  are discussed in the l i t e r a t u r e .  Acute 

to x ic i ty  re fe rs  to  a s i tu a t io n  which causes death or severe damage to  

an organism during a b r i e f  exposure period, normally n in e ty -s ix  hours, 

or le s s .  Chronic to x ic i ty  r e fe rs  to  a s i tu a t io n  which causes death 

or damage to  an organism during prolonged exposue, which, depending 

on the organism te s te d  and the t e s t  conditions and purposes, may range 

from several days, to  weeks, months, or years (16). I t  should be 

noted th a t  there  i s  no c le a r  l in e  o f  demarcation between acute and 

chronic to x ic i ty .

The measure of the  to x ic i ty  o f  any m ateria l to  f i s h  i s  u sually  

expressed in terms o f the  LC50, TLSO, or TLm. These expressions a l l  

r e f e r  to  the concen tra tion  of a to x ican t th a t  is  le th a l  ( f a t a l )  to  

f i f t y  percent of the  organisms te s te d  under sp ec if ied  t e s t  conditions 

in a spec if ied  time.



The e f fe c t s  of acute to x ic i ty  i s  obvious; the  f ish  die  or become 

i l l .  The e f fe c t s  o f  chronic to x i c i t y ,  however can be much more su b t le .  

These e f fe c t s  may be re la te d  to  changes in  a p p e t i te ,  metabolism, 

d isorders  of the nervous system or reproduction . Some chronic e f fe c t s  

may be re v e rs ib le  but most a re  not. Chronic e f fe c t s  can occur in the  

species population ra th e r  than the ind iv id u a l .  I f ,  fo r  example, eggs 

f a i l  to  develop or the sperm does not remain v ia b le ,  the species may 

be e lim inated from an ecosystem because o f  reproductive f a i lu r e .  

A dd itiona lly , the  phenomenon o f bioaccumulation o f c e r ta in  m ateria ls  

may r e s u l t  in chronic to x ic i ty  to  the u ltim ate  consumer in a food 

chain. Thus, f i s h  may slowly re lease  le th a l  tox ican ts  from th e i r  

f a t ty  t i s su e s  during periods of physiological s t r e s s .

McKee and Wolf (17) say the  to x ic i ty  of many po ten tia l  p o llu tan ts  

in water toward p lan t and animal l i f e  is  a tim e-concentration 

phenomenon; i . e . ,  fo r  a given concen tra tion , to x ic i ty  increases with 

continued exposure. For o th e r  sustances , however, to x ic i ty  is  

r e l a t iv e ly  independent of time; i . e . ,  i f  a given concentration  i s  not 

toxic  in  one or two hours, i t  w ill  not be acu te ly  or d i r e c t ly  to x ic .

The re la t io n sh ip  between acute  to x ic i ty  and the concentration 

of metals in various t i s su e s  i s  u se fu l .  Knowledge of re la t io n sh ip s  

between chronic to x ic i ty  and t i s s u e  lev e ls  o f  metals can a id  regu la to ry  

agencies in  adopting and monitoring compliance with water q u a l i ty  

s tandards. Survey and monitoring programs aimed a t  p inpointing 

contamination problems of metals would help regu la to ry  agencies in 

adopting the  necessary r e s t r i c t i o n s .  An understanding of the 

processes governing the  f a t e s ,  pathways and d i s t r ib u t io n  of metals in 

natural waters i s  necessary fo r  assess ing  the cu rren t  s ta tu s  of metals
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in the environment and fo r  avoiding po ten tia l  problems due to  tox ic  

metals.

Like mercury, o th e r  metals concentrated by commercially or 

re c rea t io n a l ly  valuable aquatic  organisms pose a th r e a t  to  human 

consumers and could thereby render these resources le s s  valuable.

The United S ta te s  Food and Drug Administration (FDA) cu rren tly  

l i s t s  mercury, lead ,  cadmium, a rs e n ic ,  selenium and zinc a t  the 

top of i t s  p r io r i ty  l i s t  in i t s  program concerning tox ic  elements 

in food (18). Of th e se ,  only mercury has an FDA-specified regu la to ry  

l im i t  fo r  f i sh  and s h e l l f i s h ;  FDA guidelines fo r  o ther metals in foods 

have not been e s ta b lish ed .

The f a c t  th a t  l iv in g  systems, i . e . ,  in d iv idua ls ,  populations, 

species and ecosystems can take up, accumulate and bioconcentrate  

man-made and natura l to x ican ts  i s  well documented. In aquatic  

systems b io ta  a re  exposed d i r e c t ly  to p o llu tan t  tox ican ts  through 

submersion in a r e l a t iv e ly  e f f i c i e n t  so lvent (water) and are  exposed 

in d ire c t ly  through food webs and o ther b io lo g ica l ,  chemical, and 

physical in te ra c t io n s .  I n i t i a l  to x ican t  le v e l s ,  i f  not immediately 

toxic and damaging, may accumulate in the biota  or sediment over 

time and increase  to  le v e ls  th a t  are  le th a l  or su b le th a lly  damaging 

to aquatic  organisms o r the  consumers o f these organisms.

Ions of tox ic  m a te r ia ls  frequen tly  cause adverse e f fe c t s  

because they pass through the  semipermeable membranes o f  an organism. 

Some m ateria ls  may not pass through membranes in th e i r  na tura l or 

waste-discharged s t a t e ,  bu t ,  in  water they may be converted to  s ta te s  

having increased a b i l i t y  to  a f f e c t  organisms. For example, c e r ta in
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microorganisms can methylate mercury; thus producing a material th a t  

more re ad ily  en ters  physiological systems. Some m ate ria ls  may have 

m ultip le  e f f e c t s :  fo r  example, an iron s a l t  may not be toxic while 

an iron f lo e  or gel may be an i r r i t a n t  o r  clog f i s h  g i l l s  re su lt in g  

in asphyxiation. Iron , a t  low concen tra tions , can be a trace  

n u t r ie n t ,  bu t, a t  high concentrations, can be a to x ican t . M aterials 

a lso  can a f f e c t  organisms i f  th e i r  metabolic byproducts cannot be 

excreted.

In te r re la t io n sh ip s  and in te ra c t io n s  among organisms and th e i r  

environment as well as the in te r re la t io n sh ip  between sediment and the 

water column has been documented. Antagonistic and sy n erg is t ic  

reac tions  among many consti tuen ts  in water has a lso  been e s tab lish ed .

The universe of organisms composing l i f e  in water is  g rea t  in 

both kinds and numbers. As in the human population, physiological 

v a r i a b i l i ty  e x is t s  among individuals o f  the same species in response 

to  a given stim ulus. A much g rea te r  response v a r ia t io n  e x is t s  among 

species of aquatic  organisms. Thus, aquatic  organisms do not e x h ib it  

the same degree of harm, ind iv idually  or by sp ec ie s ,  from a given 

concentration  of a tox ican t or po ten tia l  tox ican t within the  environ­

ment. I t  i s  necessary to  ensure a reasonable degree of sa fe ty  fo r  

those more s en s i t iv e  species th a t  a re  important to  the functioning of 

the aquatic  ecosystem even though data on the response of such species 

to  the q u a l i ty  co n s ti tu en t  under considera tion  may not be av a ilab le .  

The aquatic  food web i s  an in t r i c a te  re la t io n sh ip  of predator and prey 

organisms. A water co n s t i tu en t  destroying or e lim inating  an 

important segment of t h i s  web would, in a l l  l ik e l ih o o d , destroy or 

s e r io u s ly  impair o the r organisms assoc iated  with i t .
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The ideal data base fo r  c r i t e r i a  development would co n s is t  o f  

information on a la rge  percentage of  aquatic  species and would show 

the community response to  a range o f  concentrations fo r  a te s ted  

co n s ti tu en t  during a long time period. This information i s  not 

availab le  but in v es t ig a to rs  are beginning to  derive such information 

for a few water c o n s t i tu en ts .

Brown and Chow (19) ind ica ted  in th e i r  study of heavy metal 

concentrations in Ontario f i s h  th a t  the complex ro le  o f  t race  heavy 

metals in the biosphere is  l i t t l e  understood. However, i t  i s  well 

known th a t  large concentrations o f t race  heavy metals are  tox ic  to  

the ecosystem as a whole and to  man in p a r t i c u la r ,  s ince he i s  a t  the 

end of a v a r ie ty  of food chains by v ir tu e  of his  variegated d ie t .

These authors s tudied a lew ife , brown bullhead , carp , freshw ater drum, 

gizzard shad, golden sh in e r ,  lake w h ite f ish , largemouth bass, longnose 

sucker, pumpkinseed, rainbow sm elt, rock bass, white bass , white 

sucker and yellow perch. I t  was found th a t  the  concentrations o f  

metals were s im ila r  in the various species s tud ied . The higher lev e ls  

of metals a t  one location  were a t t r ib u te d  to  higher concentra tions of 

metals in sediments.

Vinikour, G oldstein , and Anderson (20) were of the opinion th a t  

determinations of whole body heavy metal contents are c r i t i c a l  to  

the study o f  b iom agnification, because predators  consume e n t i r e  prey, 

not se lec ted  organs. Consequently whole body metal concentra tions  

from both contaminated and uncontaminated s i t e s  are o f  increasing  

importance to  in v e s t ig a to r s .  Pa tte rns  o f  heavy metal b ioconcentra tion  

with age or s iz e ,  can in f luence , to  the e x ten t  o f  masking, observed 

trends in  biomagnification.
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These authors noted with few exceptions, whole body metal concen­

tra t io n s  showed no change as f i s h  weight increased . Discrepancies 

in b ioconcentration  p a t te rn s  observed by researchers  may be due to  

inconsistenc ies  in analyzing e i th e r  whole body or various t i s s u e s .  

Furthermore, the s u s c e p t ib i l i ty  o f  individual t i s s u e s  to  metal 

uptake v a rie s  considerably  due to  new t is su e s  being incorporated a t  

a g rea te r  r a te  than metals being ac tive ly  transpo rted  in to  the  t i s su e s  

to e s ta b l is h  a s te a d y -s ta te  concentration.

Rehwoldt e t  a l .  (21) did a study of cu rren t  and h is to r ic a l  heavy 

metal res idues  in Hudson River f i s h .  Their data ind ica ted  th a t  although 

metal residues may be an ind ica to r  of in d u s t r ia l  a c t i v i ty  and contamina­

tion in c e r ta in  water systems in a r e la t iv e ly  clean system such as the 

Mid Hudson a rea ,  the  res idues  a re  independent of time. While several 

pathways could be proposed i f  the data ind ica ted  a re la t io n sh ip  

between res idues  and in d u s t r ia l  development, they a re  not appropria te  

in th is  case . The most l ik e ly  source of the  res idue  is  the  absorption 

of the metals from the waters which leached them from the r iv e r  banks 

and bottom. These data  do not seem to follow any chronological r e l a ­

t ionsh ip ; in f a c t ,  they seem to  be independent o f  time.

Enk and Mathis (22) s ta ted  th a t  aquatic  in sec ts  exh ib ited  higher 

concentrations o f  cadmium than did sediments. Although i t  i s  known 

th a t  many metals a re  to x ic  to  aquatic  organisms, the  exact ac tions  of 

these metals and the le v e ls  a t  which they become harmful a re  s t i l l  

being in v es t ig a ted .  In genera l,  metals and o th e r  stream contaminants, 

whether in suspensions o r  so lu t io n ,  do not simply flow downstream.
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P h il l ip s  and Russo (15) s ta ted  the following conclusions and 

recommendations in  th e i r  extensive l i t e r a t u r e  review of the 

bioaccumulation tendencies o f  twenty-one m etals:

1. Unlike mercury, most metals a re  not accumulated in the 
edible  portions of f ish e s  and do not rep re sen t  a th r e a t  to  human 
consumers of f i s h  unless the f i s h  a re  eaten in t h e i r  e n t i r e ty .
Metals deserving fu r th e r  a t te n t io n  with respec t to  th e i r  propensity 
fo r  accumulation in ed ib le  f ish  t i s su e s  include mercury, a rsen ic  
and rad ioac tive  cesium.
2. S h e l l f ish e s ,  p a r t ic u la r ly  o y s te r s ,  pass ive ly  accumulate many 
metals much more re a d i ly  than f i s h e s ;  t h i s  suggests a p r io r i ty  fo r  
monitoring in metal-contaminated a reas .  P o te n t ia l ly  dangerous 
metals in s h e l l f i s h e s  include cadmium, a rs e n ic ,  mercury, lead
and s i lv e r .
3. Most f ish e s  are capable of accumulating most metals both from 
th e i r  d ie t  via the g a s t ro in te s t in a l  system and from water via 
various membrane su rfaces ,  p a r t i c u la r ly  the g i l l s .  With some 
exceptions, the r e la t iv e  con tr ibu tions  o f  these  two sources of 
metals to f ish e s  are  poorly understood. Considering th a t  food 
may be an important rou te  of exposure to  tox ic  chemicals of f i s h ,  
c r i t e r i a  derived from labora tory  to x ic i ty  experiments during which 
f ish  received exposure to  chemicals only through the  water could 
be misleading. Further research i s  needed in th i s  area .
4. Although the  d is t r ib u t io n  o f  some metals in the t is su e s  of a 
v a r ie ty  of aquatic  organisms has been ex tensive ly  s tud ied , more 
information i s  needed about the actual mechanisms of tox ic  a c t io n ,  
p a r t ic u la r ly  mechanisms of chronic to x ic i ty .  Because some metals 
continue to  be accumulated by f is h e s  a t  the same r a te  even under 
conditions which s ig n i f ic a n t ly  reduce to x ic i ty ,  and a lso  because 
some species or ind iv idua ls  are  more or le s s  suscep tib le  than o thers  
to  bioaccumulation of a p a r t i c u la r  m eta l,  i t  follows th a t  toxic 
response is  in te rn a l ly  determined and th a t  adaptive fac to rs  are 
involved.
5. Sediments are  an important sink fo r  most metals in aquatic  
environments. Further information concerning the biological and 
physio-chemical fac to rs  a f fe c t in g  metals m obiliza tion  from and 
deposition in  sediments would be va luab le .
6. Although some instances have been reported  where high levels
of metals in na tura l waters have been a t t r ib u te d  to  natural sources, 
the la rg e s t  share o f  contamination i s  due to  man. Waters receiving 
metal inputs r e s u l t in g  from man's a c t i v i t i e s  should receive the 
highest monitoring p r io r i ty .
7. The re la t io n sh ip s  between chronic to x ic i ty  thresholds and 
metal concentrations in  t i s su e s  have been determined fo r  a few 
metals with a few f is h  spec ies .  S tudies  should be undertaken to  
determine i f  these  re la t io n sh ip s  a re  v a l id  in  natural environments; 
i f  th i s  concept proves u se fu l ,  then re la t io n s h ip s  should be



13

estab lish ed  fo r  o the r  metals and with o ther aquatic  species.
8. Some chemical forms of m eta ls , such as methylmercury, are  
f a r  more tox ic  and more read ily  accumulated by aquatic  organisms 
than are  o th e rs .  The most bioaccumulative and toxic forms of 
o ther hazardous metals should a lso  be determined.

Table 1 shows the summary data o f  the LC50 values examined in the 

l i t e r a t u r e  review. Where a range of values was given, the maximum and 

minimum numbers were se lec ted  fo r  inc lus ion  in  the tab le .

Arsenic 

Physical S ta te

Arsenic i s  a n a tu ra l ly  occurring element often  re fe rred  to  as a 

metal, although chemically c la s s i f i e d  as a m eta llo id . Arsenic is  

described as a gray, lu s tro u s ,  c r y s ta l l in e  mass, a lso  black amorphous 

powder and yellow c r y s ta l s .  Arsenic has a molecular weight of 299.6, 

sp ec if ic  g rav ity  o f  5 .73, sublimes w ithout melting a t  610°C, and has 

a vapor pressure  o f  1 mm of mercury (23, 24). Arsenic and i t s  

compounds are used in the manufacturing o f  g la s s ,  c lo th ,  and e le c t r i c a l  

semiconductors, fungicides and wood p re se rv a t iv e s ,  as growth stim ula tors  

fo r  p lan ts  and animals, as well as in v e te r in a ry  a p p lica t io n s ,  t e x t i l e  

p r in t in g ,  and to  control sludge formation in  lu b r ica t in g  o i l s  (23, 25).

The United S ta te s  consumes h a lf  o f  the  world production of a rsen ic  

or about 37,500 tons per year , and produces about 18,000 tons per year 

i t s e l f .  The p rin c ip a l emission source fo r  a rsen ic  in the United S ta te s  

is  thought to  be coa l- fue l power p lan ts  which emit approximately 

3,000 tons o f  a rsen ic  per year (26).

Arsenic as a f ree  element i s  r a re ly  encountered in natural w aters. 

Soluble inorganic a rsena te  (+5) predominates under normal conditions



Table 1. Summary of Ranges of LC50 Values (Expressed in Mg/L) From Selected References. 

Reference Year Arsenic Cadmium Chromium Copper Lead

0.100McKee and Wolf 1963 1.000 0.010-10.000 0.050 0.020
ERA 1976 0.001- 0.012 0.100
Sorensen 1976 150.000
Cardwell e t  a l . 1976 18.100
Hughes and Davis 1967 0.290
In g l i s  and Davis 1972 16.240
Clemens and Sneed 1959 15.022
Sorensen 1976 150.000
Pickering

and Gast 1972 2.000-12.000
Chapman 0.001- 0.004
Kumada 1973 0 .006- 0.007
Hale 1977 0.006
Davies 1977 0.002
Spehar 1976 2.500
Pickering
and Henderson 1966 4.100-133.000

Wallen 1957 92.000-135.000
Trama and Benoit 1960 110.000-170.000
Adelman and Smith 1976 37.000-133.000
Benoit 1976 69.000
Holland e t  a l . 1960 0.190-0.780
Lorz and
McPherson 1976 0.060-0.074

Chakoumakos 0.044-0.367
Hawarth and

Sprague 0.019-0.298
Cairns e t  a l . 1978 0.150-2.700
Geek1er e t  a l . 1976 0.340-1.100
Mount and Stephen 1969 0.075-0.430
Rehwoldt e t  a l . 1971 4.300-6.200
Brown e t  a l . 1974 0.580

Mercury

0.004- 0.200 
* 0.001

0.035- 2.180

8.000

5.580-482.000
630.000

* = Less Than Detection Limit



Table 1. (c o n t .)

Reference Year Arsenic Cadmium Chromium Copper Lead Mercury

Brown and Dalton 1970 0.750
Cope 1966 0.150
P a trick  e t  a l . 1968 1.250
Davies e t  a l . 1976 1.170-507.000
Tarzwell and

Henderson 1960 2.400
MacLeod and

Pessah 1973 0 .2 2 0 -  0.400
McKim e t  a l . 1976 0.065 -  0.084
R einert e t  a l . 1974 0 .0 1 0 -  2.100

cn
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since i t  i s  thermodynamically more s tab le  in  water than a rs e n i te  (+3) 

(29). Analysis o f  1,577 U. S. surface waters showed a rsen ic  to  be 

present in 87 samples, with concentrations ranging from .005 mg/1 to  

.336 mg/1 and a mean level o f  .064 mg/1 (27). Bowen (28) reported 

.003 mg/1 in sea w ater. Although arsen ic  i s  a lso  found in a i r  and in 

a l l  l iv in g  organisms, the low to x ic i ty  of elemental a rsen ic  is  

a t t r ib u te d  to  i t s  v i r tu a l  in s o lu b i l i ty  in water or in the body f lu id s  

(25).

Conditions of low pH and low dissolved oxygen in water favor the 

formation of lower oxidation  s ta te  a rsen ica ls  such as a r s e n i te  (+3) 

and a rs in e  (-3) whereas more basic , oxygenated waters r e s u l t  in an 

increase  in the percentage of arsenic  present in  the  pentavalent s t a t e .  

The reducing ac tion  of  c e r ta in  organisms may a lso  cause a rs e n i te  to  be 

the predominant form. In waters of high organic co n ten t ,  a considerable 

amount of a rsen ic  may be bound to co llo ida l humic m atte r  (29).

Aquatic Organism Toxicity

Complete knowledge of the to x ic i ty  pathways of  a rsen ic  i s  le ss  

than complete s ince much of the work has been devoted to  monitoring or 

f i e ld  assessment s tu d ie s .  I t  i s  thought th a t  a rsen ic  forms k in e t ic a l ly  

s tab le  bonds to su l fu r  and carbon in organic compounds. Like mercury, 

a rsen ic  (+3) reac ts  with sulfhydryl groups o f  p ro te in s ;  and, enzyme 

in a c t iv a t io n  by th i s  mechanism appears to  be the primary mode of 

a rsen ic  to x ic i ty .

Arsenic to x ic i ty  varied  g rea tly  with d i f f e r e n t  species  and w ithin  

the same species of f i s h .  One of the lower LC50 values reported  (30)
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was approximately 500 times lower than the higher values (31). The 

LC50 values fo r  b lu eg il ls  alone d i f f e re d  by as much as 300 tim es.

These large  d ifferences  were due mainly to the low acute value given 

fo r  b lu e g i l l s  (30) in which a spec ia lized  granular formulation of 

sodium a r s e n i te  was used. This was found to  be more tox ic  than o ther 

formulations previously te s te d .  Comparisons of the highest and 

lowest acute values without th i s  value showed d iffe rences  o f  approxi­

mately e ig h t  times between species and f iv e  times fo r  t e s t s  with 

b lu e g i l l s .  Although t e s t s  were conducted in both hard and s o f t  water, 

hardness as ind ica ted  by In g l is  and Davis (33) did not appear to  

a f f e c t  the to x ic i ty  of a rs en ic .  No s ig n if ic a n t  d iffe rence  in  to x ic i ty  

was found by these authors fo r  comparative t e s t s  with b lu e g i l l s  in 

water o f  hardness ranging from 53 to  368 mg/1 as CaCOg. Comparison of 

LC50 values fo r  f in g e rlin g  and ju v en ile  channel c a t f i s h  (32, 34) and 

fo r  b lu e g i l l s  (30, 32) show e a r ly  l i f e  s tages o f  f i s h  may be more 

s e n s i t iv e  to  a rsen ic  than l a t e r  s tag es .  This i s  in agreement with 

work reported  by Sorensen (31) fo r  green sunfish and Gilderhus (35) 

fo r b lu e g i l l s  studied in outdoor ponds.

Bioconcentration fac to rs  were ca lcu la ted  by Spehar e t  a l .  (36) 

fo r  f iv e  in v e rteb ra te  species and two species o f  f i s h .  A bioconcen­

t r a t io n  fa c to r  o f  less  than one was obtained fo r  amphipods s ince 

res idues  were le s s  than the de tec t io n  l im i t .  In the  same study a 

b ioconcentra tion  fac to r  of zero was reported fo r  rainbow t r o u t  because 

concentra tions in the exposed f is h  were the same as in the co n tro ls  

a f t e r  a 28-day exposure period . Daphnia magna, s n a i l s ,  and s to n e f l ie s  

had s l i g h t ly  higher residues than t r o u t  te s ted  under the  same conditions 

ind ica t in g  th a t  lower aquatic  forms may accumulate some a rs e n ic .
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A bioconcentra tion  fa c to r  o f  four was obtained fo r  b lu e g i l ls  in 

another study (15). The h a l f - l i f e  o f  t h i s  element in b lueg ill  t i s s u e s  

was one day. The low bioconcentration and sho rt  biological h a l f - l i f e  

of a rsen ic  in  f is h  t i s su e  suggest no res idue  problem will occur a t  

exposure concentrations not d i r e c t ly  to x ic .

Data on o ther tox icological e f f e c t s  show the re  i s  a wide range of 

s e n s i t i v i t y  of inverteb ra te  and f i s h  species  to  a rsen ic .  In almost 

a l l  cases a rsen ic  to x ic i ty  was increased with increased length of 

exposure. Water temperature a lso  appeared to  influence arsenic  

to x ic i ty .  Sorensen (37) found higher water temperature decreased the 

median le th a l  time of green sunfish  a f t e r  exposure to  two concentra­

t io n s  of a rsen ic .

Although arsen ic  is  concentrated in  aquatic  organisms, i t  is  

ev iden tly  not progressively  concentrated along a food chain. In 

a d d it io n ,  a rsen ic  consumed as an organically-bound species in f le sh  

appears to  have low to x ic i ty  (29).

These data  ind ica te  freshwater f ish -fo o d  organisms are  adversely 

a ffec ted  by concentrations o f  a rsen ic  as low as 1.3 mg/1. The da ta ,  

however, a re  not considered to be s u f f i c i e n t  to  recommend any numerical 

c r i t e r io n  f o r  freshwater aquatic  l i f e .  Ex isting  data ind ica te  the 

50 ug/1 c r i t e r i o n  es tab lished  fo r  domestic water supplies should be 

p ro tec t iv e  o f  aquatic  l i f e  (16). McKee and Wolf (17) concluded th a t  

1.0 mg/1 of  a rsen ic  was recommended fo r  the  adequate p ro tec tion  of f i s h  

and o ther  aqua tic  l i f e .
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Human Toxicity

Arsenic exposure occurs within the human population in a number 

o f  ways. Arsenic i s  s t i l l  used to t r e a t  leukemia, anemia, and ce r ta in  

skin d iseases . In the  d i e t ,  vegetables and grain contain  an average 

of 0.44 ppm and meats an average of 0.5 ppm of a rs e n ic .  Organic 

a rsen ica ls  are d e l ib e ra te ly  introduced in to  the d i e t  o f  poultry and 

pigs as growth s tim u la to rs  and p e s t ic id e s .  Compounds of  arsenic  may 

be absorbed in d u s t r i a l ly  by in ha la tion , in ges t ion , and through the 

skin. A dditionally , the a rsen ic  content o f  drinking water supplies in 

the United S ta tes  ranges from a trace  to  approximately 0.1 mg/1 . No 

adverse health e f fe c ts  have been reported from the ingestion of water 

containing 0.1 mg/1 of a rsen ic  (23, 38, 39, 40).

Arsenic is  d i s t r ib u te d  prim arily  to the  l i v e r ,  kidneys, in te s t in a l  

w all,  spleen, lungs, and to  a le s s e r  ex ten t to the body t is su es  and 

f lu id s .  The ex ten t to  which a rsen ic  is  taken up by these  t is su es  

depends on the r a te  of exposure and the chemical form (38). Arsenic 

is  immobilized by binding to  sulfhydryl groups in the  keratin  of ha ir  

and n a i ls .  Deposition begins within two weeks a f t e r  the  dose. Excretion 

is  slow, requ iring  up to  ten days a f t e r  acute absorp tion . I t  is  

excreted via the u r in e ,  f e c e s ,  sweat, and the epithelium  of the skin 

(23, 41, 42). A fter cessa tio n  of  continuous exposure, a rsenic  excretion 

may continue fo r  as long as 70 days (39, 43).

There is  a g rea t deal o f  confusion in the l i t e r a t u r e  regarding 

the accumulation of a rsen ic  and l i t t l e  is  known about the b io trans­

formation of a rsen ic  in man in sp i te  of the long use o f  a rsen ica ls  as 

pharmaceuticals and p e s t ic id e s  (38). The to x ic i ty  o f  various arsenic
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compounds i s  extremely v a r ia b le  and depends on the  species  exposed, the 

formulation of the a r s e n ic a l ,  the  route of exposure, and th e  r a te  and 

duration o f  exposure (38, 44). An assumption th a t  a l l  a rsen ic  compounds 

are  equally  tox ic  i s  wrong and dangerous.

The signs of severe to x ico s is  in humans include abdominal pain, 

fo rcefu l vomiting, cramps in the  legs , r e s t le s s n e s s ,  and spasms. Other 

signs include co llap se ,  l iv id  and anxious face ,  sunken eyes, cold and 

clammy sk in , p ro s t ra t io n ,  s tupo r , convulsions, p a ra ly s is ,  co llap se ,  

coma, i r r i t a t i o n  of the  nose and conjunctiva, b ro n c h i t i s ,  p e rfo ra tion  

of the  nasal septum and lo ss  o f  n a i ls  and h a ir  (23, 38, 39, 45, 46, 47).

Data on exposure o f  humans points to a causal re la t io n s h ip

between skin cancer and high level exposures to  inorganic a rsen ic  

compounds (48). Evidence of the  carcinogenic ity  o f  a rsen ic  in man is  

based almost e n t i r e ly  on d e sc r ip t iv e ,  re t ro s p e c t iv e ,  epidemiologic 

s tu d ie s .  Thus, a change in the  ra te  of cancer in  various population 

groups has been id e n t i f i e d ,  suggesting the influence o f  carcinogens in 

the environment of the  groups (38).

Cadmi um 

Physical S ta te

Cadmium i s  a s o f t ,  d u c t i l e ,  s i lv e r-w h ite ,  e le c t ro p o s i t iv e  metal 

which d isso lves re a d i ly  in  mineral ac id s . Spontaneous annealing and 

r e c r y s t a l l i z a t io n  o f  c h i l l - c a s t  cadmium occurs a t  room temperature. 

Cadmium has an atomic weight o f  112.41, a sp e c if ic  g rav ity  o f  8.642,

a melting point o f  320.9°C, and a boiling  poin t o f  767°C (23).

The p rinc ipa l uses o f  cadmium include e le c t ro p la t in g ,  pigment
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manufacture, a l lo y s ,  nuclear r e a c to r s ,  and p la s t ic s  (17, 38, 49). The 

s o lu b i l i ty  o f  cadmium compounds in water depends on the  nature o f  the 

compounds and on the water q u a l i ty .  However, in most s i tu a t io n s  

s u f f ic ie n t  cadmium can be d issolved to  cause toxic  e f f e c t s  to  aquatic  

organisms (50). In streams and r i v e r s ,  the concentra tion  of cadmium 

tends to  be higher in sediment than in f i l t e r e d  running water.

Pollu tion sources and r a in f a l l  may be the major co n tr ib u to rs  of 

cadmium in r iv e r  water s ince  cadmium is  s trongly  absorbed to c lays , 

muds, humic and organic m ate r ia ls  and some hydrous ox ides, a l l  of 

which tend to  remove i t  from the water column by p re c ip i ta t io n  (51).

Most fresh  waters in the United S ta te s  contain le s s  than .001 mg/1 of 

cadmium although lev e ls  as high as ,120 mg/1 have been reported (52).

Aquatic Organism Toxicity 

In the aquatic  environment, cadmium is  acu te ly  to x ic  to  f i s h  a t  

concentrations as low as .001 mg/1. Chronic to x ic i ty  to  f is h  has been 

reported a t  approximately the  same le v e ls .  Tabata (53) and Carroll e t  

a l .  (54) have shown in  acute  t e s t s  the calcium ion p ro tec ts  f ish  ag a in s t  

cadmium to x ic i ty .  Cadmium has been reported to  bioconcentrate  in f ish  

t is su e s  to  lev e ls  2,000 times as g rea t  as those of ambient waters (55). 

Since cadmium is  an element, i t  w ill  not be destroyed and may be ex­

pected to  p e r s i s t  in d e f in i te ly  in  the  environment in  some form. There 

is  a tendency fo r  cadmium to  accumulate in the  l i v e r  and kidney o f ex­

posed organisms. I t  a lso  ac ts  s y n e rg is t i c a l ly  with o th e r  substances to  

increase to x ic i ty .  Cadmium concentra tions o f  0.03 mg/1 in combination 

with 0.15 mg/1 of zinc from galvanized screens can cause m o rta l i ty  in 

salmon f ry  (17).
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McKee and Wolf (17) a lso  s ta t e  the  le th a l  concentration fo r  f i s h  

va ries  from about 0.01 mg/1 to about 10 mg/1 depending on the t e s t  

animal, water type , temperature, and time o f exposure. Examination of 

o ther LC50 values f o r  f i sh  show concen tra tions , adjusted only fo r  

d ifferences  in to x ic i ty  t e s t  methods, ranging from a low of .006 mg/1 

to  a high o f 40.18 mg/1, with several in term edia te  values showing 

in t r a s p e c i f i c  v a r i a b i l i t y ,  possibly due to  water qua li ty  e f fe c ts  (56). 

Although some o f the  adjusted LC50 values appear r e la t iv e ly  low, the re  

i s  credence in the  f a c t  th a t  four independent s tu d ie s  present values 

below .01 mg/1, which is  the maximum allowable cadmium concentration 

fo r  potable water in the United S ta tes  (16, 57).

Toxicity  data  in d ica te  water hardness s ig n i f ic a n t ly  influences 

the  acute to x ic i ty  of cadmium to f i s h .  The only chronic t e s t  data 

r e la t in g  f i s h  chronic to x ic i ty  to hardness i s  unexplainably con tra ­

d ic to ry  (55). Brook t ro u t  were found to  be several times more sen s i t iv e  

in s o f t  water than hard water, while channel c a t f i s h  were equally 

sen s i t iv e  in  both.

P ickering and Gast (56) conducted two separa te  flow-through t e s t s  

on the chronic to x ic i ty  of cadmium to  the  fathead minnow using water 

of 202 mg/1 hardness, 157 mg/1 a lk a l in i t y ,  and 7.7 pH. Five cadmium 

concen tra tions  from .004 mg/1 to .35 mg/1 were de livered  to  the 

exposure chambers in  each t e s t  over the  l i f e  h is to ry  of the f i s h .  A 

concen tra tion  o f  .06 mg/1 cadmium decreased surv ival of developing 

embryos. At le v e ls  from .005 mg/1 to  .04 mg/1 no adverse e f f e c t  on 

s u rv iv a l ,  growth, or reproduction was found. Eaton (58) exposed 

b lu e g i l l  sunfish  to  f iv e  cadmium concentra tions  ranging from .031 mg/1
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to 2.14 mg/1 fo r  11 months in a flow-through system using water o f  the 

same hardness as above. Nine of the 18 ad u l t  b lu eg il l  sunfish exposed 

to  .08 mg/1 died by the end of the t e s t ,  while a l l  of those exposed to 

.031 mg/1, as well as the co n tro l ,  survived. At .08 mg/1 cadmium the 

h a tch a b i l i ty  of eggs was not measurably a f fe c te d ,  but the  survival and 

growth of the re su l t in g  larvae were severely  reduced a f t e r  60 days. 

Larvae exposed to  .031 mg/1 cadmium survived and grew about as well 

as the control f i s h .  Sixty days a f t e r  hatching in hard water, growth 

and survival of channel c a t f ish  f ry  was reduced s ig n i f ic a n t ly  a t  a 

cadmium concentration of .017 mg/1 but not a t  .012 mg/1 (59). Thus, 

in hard water, a c r i t e r io n  of .012 mg/1 cadmium represen ts  a demon­

s t ra te d  n o -e ffec t  level fo r  c a t f i s h  and th e re fo re  was chosen to  

p ro tec t  non-salmonid freshwater f i s h  species .

Spehar (60) reported on chronic to x ic i ty  t e s t s  with cadmium using 

a topminnow na tive  to  Florida in water with a hardness of 41 mg/1 to 

45 mg/1 as CaCOg, a lk a l in i ty  of 38 mg/1 to  43 mg/1, and a pH of 7 .4 . 

There was a s ig n i f ic a n t  reduction in the number of eggs produced per 

female a t  .008 mg/1 cadmium, but f i s h  in .004 mg/1 were unaffected. A 

c r i t e r io n  of .004 mg/1 cadmium was se lec ted  as o ffe r ing  p ro tec tion  to 

warm water f i s h  species in s o f t  water.

Three consecutive generations of brook t r o u t  were exposed to  

cadmium concentrations ranging from .006 mg/1 to  .0005 mg/1 in  a t e s t  

water o f  s im ila r  hardness (61). Second generation f i s h  exposed to  

.006 mg/1 and .003 mg/1 cadmium were smaller a t  th ree  months than f ish  

exposed to  lower concen tra tions . Both f i r s t  and second generation f is h  

suffered  extensive m o r ta l i t ie s  during spawning in .003 mg/1 cadmium.

Egg h a tc h a b i l i ty ,  su rv iv a l ,  growth, and reproduction o f f i s h  exposed
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to .002 mg/1 were equal to  those of control f i s h .

Eaton e t  a l .  (62) reported the e f f e c t  of cadmium on juven iles  

of brook t ro u t  and eyed embryos of brown t r o u t  was g rea te r  a f t e r  

exposure fo r  60 days than a f t e r  exposure fo r  30 days. In Coho salmon, 

lake t r o u t ,  and the younger embryos of brown t ro u t  the longer exposure 

did not evoke g re a te r  s e n s i t iv i ty ,  nor did a 120-day exposure to  

cadmium increase the s e n s i t iv i ty  of brook t r o u t  compared to  th a t  a t  

60 days. Therefore, based on the lim ited  amount of information 

provided by th i s  study and a few l i f e - c y c le  chronic exposures, 60 

days seems to  be an appropria te  duration o f  larval or juven ile  

exposure to  estim ate  cadmium chronic to x ic i ty .

Biesinger and Christensen (63) measured the to x ic i ty  of cadmium 

to Daphnia magna during an e n t i re  l i f e  cycle  in t e s t  water with a 

hardness of 45 mg/1, a lk a l in i ty  of 42 mg/1, and a pH of 7 .7 . I t  was 

found th a t  50 percent of the daphnids exposed to cadmium concentrations 

of .005 mg/1 were k i l le d  in th ree  weeks. The production of young was 

reduced by 50 percent compared to the con tro ls  in a cadmium concentra­

tion  of .0007 mg/1. Several in v e r teb ra te  species have been found much 

le ss  s e n s i t iv e  to  cadmium in acute t e s t s  than in the midge and clado- 

ceran exposures (64, 65, 66).

Bioconcentration fac to rs  ranged from 151 fo r  brook t ro u t  (61) to  

1,988 fo r  f l a g f i s h  (67). By comparison, brook t ro u t  were observed to  

approach s te a d y -s ta te  b ioconcentration much more slowly (61) than 

Daphnia magna (68).

One noteworthy c h a r a c te r i s t ic  of cadmium bioconcentration is  

the possib le  long h a l f - l i f e  of res idues . Benoit e t  a l .  (61) found
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c e r ta in  organs did not lose s ig n if ic a n t  amounts o f  cadmium when exposed 

t r o u t  were placed in  clean water fo r  several weeks.

Fish and c e r ta in  o ther inverteb ra tes  have been found to  be 

s e n s i t iv e  to  low lev e ls  of cadmium in water. Salmonids and cladocerans 

appear to be the most s en s i t iv e  among organisms te s te d .  Increased 

hardness and/or a lk a l in i ty  have been demonstrated to decrease the 

to x ic i ty  of cadmium in acute freshwater m o rta l i ty  t e s t s ,  but may have 

le ss  o f  an e f f e c t  a t  low cadmium le v e ls .  Lowman e t  a l .  (69) reported  

a concentration fa c to r  of 1,000 fo r  cadmium in f i s h  muscle.

Murphy e t  a l .  (70) s ta te  th a t  cadmium concentra tions in f i s h  do 

not seem to  be co rre la ted  to  length , weight, cond ition , or age. The 

actual incorporation  of t race  metals in to  f i s h  can take place by 

absorption across the g i l l  surface or through the gut t r a c t  w a ll .

Human Toxicity

Evidence fo r  the serious toxic  po ten tia l  o f  cadmium i s  provided 

by: (a) poisoning from cadmium-contaminated food and beverages (b)

epidemiologic evidence th a t  cadmium may be assoc ia ted  with renal 

a r t e r i a l  hypertension under c e r ta in  conditions (c) epidemiologic 

a ssoc ia tion  o f  cadmium with " I t a i - i t a i "  d isease  in Japan and (d) long­

term oral to x ic i ty  s tud ies  in animals (39). Blinder e t  a l .  (71) a lso  

s ta te  th a t  cadmium i s  a tox ic  heavy metal which is  being d ispersed  in 

our environment because of increasing in d u s t r ia l  use. The elim ination  

of cadmium takes place extremely slowly, which means cadmium accumulates 

in the body, e sp e c ia l ly  in the l iv e r  and kidneys. There i s  wide 

consensus th a t  the  cadmium content o f  food i s  the major source of
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cadmium f o r  the  general population. The average d a ily  intake fo r  

adu lts  i s  approximately .05 mg/1 (38).

Exposure to  cadmium re s u l t s  in  symptoms such as nausea, vomiting, 

s a l iv a t io n ,  choking a t ta c k s ,  abdominal p a in s ,  tenesmus and d iarrhea 

(23, 38). The d i s t r ib u t io n  of cadmium w ith in  the body appears to  be 

prim arily  w ith in  the kidney and l iv e r .  Recent experimental study 

ind ica tes  cadmium a t  high doses can in te r f e r e  with the a c t iv a t io n  of 

vitamin D in both l iv e r  and kidneys (38).

Chromi um 

Physical S ta te

Chromium i s  a m e ta l l ic  element which can e x i s t  in several valence 

s t a t e s .  I t  has an atomic weight o f  52.01, a s p e c if ic  grav ity  of 7.20, 

a melting po in t of 1890°C, and a bo il ing  po in t o f  2480°C (23),

Chromium e x h ib i ts  valence s ta t e s  o f  +3 or +6 in the aquatic  environ­

ment. Hexavalent chromium is  a strong oxid iz ing  agent which reac ts  

read ily  with reducing agents such as su l fu r  dioxide to  give t r i v a l e n t  

chromium. The valence s ta t e s  a re  such th a t  most accumulation of 

chromium in the  aquatic  environment would occur in the sediments.

Chromium s a l t s  are  used ex tens ive ly  in the metal f in ish ing  

industry  as e le c t ro p la t in g ,  c lean ing , and pass iva ting  agents , and as 

mordants in  th e  t e x t i l e  indus try . They are  a lso  used in cooling w aters, 

in the le a th e r  tanning indus try , in c a t a ly t i c  manufacture, in pigments 

and primer p a in ts ,  and in fungicides and wood p reserva tives  (17, 38).

Concentrations of chromium in r iv e r s  o f  the United S ta tes  have 

been reported  to  be from .0007 mg/1 to  .084 mg/1. Kopp (72) reported  

a mean su rface  water concentration  o f  .0097 mg/1, based on 1,577 samples,



27

Aquatic Organism Toxicity  

McKee and Wolf (17) report  the to x ic i ty  of chromium s a l t s  toward 

aquatic  l i f e  v a r ie s  widely with the sp ec ie s ,  tem perature, pH, valence 

and sy n e rg is t ic  o r  an tagon is tic  e f f e c t s ,  e sp e c ia l ly  th a t  of hardness. 

Fish are r e l a t iv e ly  to le ra n t  of chromium s a l t s ,  but lower forms of 

aquatic l i f e  a re  extremely s e n s i t iv e .  There appears to  be no evidence 

leading one to  conclude th a t  hexavalent chromium is  more tox ic  toward 

f ish  than the  t r i v a l e n t  form. They fu r th e r  s t a t e  the to x ic i ty  of 

chromium toward b ac te r ia  is  con tro lled  by the valence, the type of 

organism, the  amount of organic m atter p re sen t ,  and the  presence or 

absence of d isso lved  oxygen. The chromate  i s  much more toxic  under 

anaerobic conditions  than the chromic ion, whereas, the chromic ion 

is  more tox ic  under aerobic conditions than the  chromate ion.

In the freshw ater environment, hexavalent chromium has been shown 

acutely  tox ic  to  inve rteb ra tes  a t  concentra tions as low as .022 mg/1 

(73) and 17.6 mg/1 fo r  v e rteb ra tes  (74). For t r i v a l e n t  chromium the 

toxic  value i s  2 .0  mg/1 in freshwater (63). Hexavalent chromium has 

been shown ch ro n ica lly  tox ic  to  freshw ater organisms a t  .105 mg/1 (55); 

fo r  t r i v a le n t  chromium in freshwater the value i s  .445 mg/1 (63).

T r iva len t chromium is  s u b s ta n t ia l ly  more tox ic  to  aquatic  l i f e  

in s o f t  than in hard water. The e f f e c t  of water hardness on the 

to x ic i ty  o f  hexavalent chromium is  in s ig n i f ic a n t .

The 96-hour LC50 values fo r  hexavalent chromium fo r  nine species 

ranged from 9.62 mg/1 fo r  the fathead minnow te s te d  in s o f t  water to 

a high of 138.5 mg/1 fo r  the largemouth bass in hard water. Wallen 

e t  a l .  (75) s tudied  the  to x ic i ty  of hexavalent chromium to  mosquito



28

f is h  using potassium and sodium s a l t s  of both dichromate and chromate. 

Based on chromium, both dichromate s a l t s  were about h a l f  as toxic as 

e i th e r  chromate s a l t .  Trama and Benoit (76) a lso  s tudied  the to x ic i ty  

of hexavalent chromium using potassium dichromate and potassium 

chromate. The ad justed  96-hour LC50 values a re  110.0 mg/1 fo r  the 

dichromate s a l t  and 170.0 mg/1 fo r  the chromate s a l t .  They a t t r ib u te d  

the lower LC50 value o f  the dichromate s a l t  to  i t s  a c id i ty  being 

g rea te r  than th a t  of the chromate s a l t  because chromium is  s l ig h t ly  

more toxic  a t  lower pH values.

The v a r ia t io n  in to x ic i ty  of hexavalent chromium due to  water 

hardness was le s s  than the v a r ia t io n  between the  dichromate and chromate 

s a l t s  of hexavalent chromium in s o f t  water (74). The fathead minnow 

LC50 values fo r  both s a l t s  in s o f t  water were 17.6 mg/1 fo r  dichromate 

and 45.6 mg/1 fo r  chromate. The 96-hour LC50 fo r  b lu eg il l  to  chromium 

was 118 mg/1 and 133 mg/1 fo r  s o f t  and hard water re sp ec tiv e ly .  The 

d iffe rence  in LC50 values due to hardness i s  le s s  than a fa c to r  of 2.

Adelman and Smith (77) ind ica te  the LC50 values fo r  hexavalent 

chromium does not occur within 96 hours. For the mean of 16 LC50 values, 

the r a t io  of 11-day to  96-hour values is  0.37 fo r  the fathead minnow 

and 0.27 fo r  the  go ld fish .  The 96-hour LC50 values fo r  t r iv a le n t  

chromium fo r  11 species  fo r  f i s h  ranged from 1.82 mg/1 fo r  the guppy in 

s o f t  water to  39.3 mg/1 fo r  the b lu e g i l l  te s ted  in  hard water.

The LC50 values varied from .019 mg/1 as hexavalent chromium fo r  

Daphnia hyalina to  a high of 55,0 mg/1 as t r i v a l e n t  chromium fo r  a 

cad d is f ly .  The data in d ica te  th a t  cladocerans a re  more sen s i t iv e  to
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the le th a l  e f fe c t s  o f  chromium than are  the  aquatic  in sec ts .

Debelak (78) studied the acute to x ic i ty  of hexavalent chromium 

to  Daphnia magna in both a re c o n s ti tu ted  water with a hardness of 163 

mg/1 (as CaCO^) and pH value o f  8.3 and pond water with a hardness of 

86 mg/1 (as CaCOg) and pH value o f  8 .4 .  The mean of f iv e  72-hour LC50 

values was .039 mg/1 in the pond water and .073 mg/1 in the r e c o n s t i ­

tu ted  w ater. Thus, hexavalent chromium was s l ig h t ly  more toxic  in  the 

so f te r  d i lu t io n  water.

Benoit (79) reported on the long-term e f fe c ts  of hexavalent 

chromium to  brook t ro u t  and rainbow t r o u t .  The maximum acceptable 

tox ican t concentration (MATC) of .2 mg/1 to  .35 mg/1 was e s tab lish ed  

on the basis  of su rv iva l.  Growth in weight was re tarded a t  a l l  t e s t  

concentrations during the f i r s t  e ig h t  months of the exposure. However, 

th is  was a temporary e f fe c t  on growth and was not used by the author 

to e s ta b l is h  the MATC.

Sauter e t  a l .  (55) s tudied the to x ic i ty  of hexavalent chromium 

(sodium dichromate) to  eggs and f ry  of s ix  f i s h  species: rainbow

and lake t r o u t ,  northern pike, white sucker, channel c a t f i s h ,  and 

b lu e g i l l .  The eggs and f ry  were continuously exposed in so f t  water 

fo r a maximum of 60 days a f t e r  hatching. Observations were made of 

the h a tc h a b i l i ty  of eggs, and the s u rv iv a l ,  length , and weight of the 

fry  a f t e r  30 and 60 days. The m ajority  of the data generated from 

these chromium exposures ind ica tes  a very s ig n i f ic a n t  cumulative 

e f f e c t  o f  f ry .  This was e sp ec ia l ly  t ru e  fo r  the rainbow and lake 

t ro u t  s ince  s ig n i f ic a n t  m o rta l i ty  occurred between 30 and 60 days.
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This cumulative e f f e c t  i s  co n s is ten t with the  observed l i f e  cycle t e s t s  

with the rainbow and brook t ro u t  (79).

All o f  the l i f e  cycle  and embryo-larval t e s t s  were conducted with 

hexavalent chromium in s o f t  water with a hardness range of 34 mg/1 to  

45 mg/1 (as CaCOg). The e f f e c t  o f  hardness on the acute to x ic i ty  of 

hexavalent chromium was in s ig n if ic a n t .  Olson and Foster (80) reported  

a s t a t i s t i c a l l y  s ig n i f ic a n t  e f f e c t  on growth of Chinook salmon a t  .016 

mg/1 and on rainbow t r o u t  a t  .021 mg/1. At these  concen tra tions , 

growth was reduced about ten percent.

Olson (81) studied the comparative to x ic i ty  of hexavalent and 

t r i v a le n t  chromium to Chinook salmon. Hexavalent chromium a t  a 

concentration of .20 mg/1 was more tox ic  in Columbia River water 

(hardness, 70 mg/1 as CaCOg) than a s im ila r  concentration  of t r i v a le n t  

chromium. Survival and growth in the t r i v a l e n t  chromium exposure was 

s im ila r  to  co n tro ls ;  however, survival and growth in  the  hexavalent 

chromium exposure was only about 50 percent of the co n tro l .

The lowest concentra tion  to  produce an adverse e f f e c t  on in v e r te ­

brates  was reported  by Dowden and Bennett (82) and Trabalka and Gehrs 

(83). They reported  a 48-hour LC50 fo r  Daphnia magna of .03 mg/1 of 

chromic s u l f a te .  This value fo r  t r i v a le n t  chromium is  so much lower 

than the value of 2.0 mg/1 reported  by Beisinger and Christensen (63) 

th a t  .008 mg/1 i s  considered to  be a doubtful value. Using the data 

of Trabalka and Gehrs (83) and comparing the  r e s u l t s  with o ther chronic 

t e s t s  with hexavalent chromium, i t  is  estim ated th a t  a concentration 

of  .005 mg/1 would not produce any d e le te r io u s  e f f e c t s .



31

The data av a i lab le  in d ica te  hexavalent chromium to  be somewhat 

more tox ic  than t r i v a l e n t  chromium in the  case o f  chinook salmon, and 

since s ig n i f ic a n t  e f f e c t s  were seen on f is h  a t  0 .2  mg/1 of hexavalent 

chromium, 0.10 mg/1 up to  values as high as 1.0 mg/1 should provide 

adequate p ro tec tion  fo r  both freshw ater in v e r teb ra tes  and f ish  (16, 17).

Human Toxicity

The average d a i ly  in take of chromium in the United S ta tes  v a r ies  

widely due to  d ie t  and geography. Estimates range from .005 mg/day 

to  .115 mg/day with an average of .06 mg/day to  .065 mg/day a l l  the 

way to  an average of .28 mg/day (38, 84). Comparatively l i t t l e  data 

are av a ilab le  on the incidence and frequency of chromium d is t r ib u t io n  

in  foods (39).

Symptoms o f chromium in to x ica tio n  include damage to  the kidneys, 

i r r i t a t i o n  a t  the s i t e  of exposure, and ac tion  as p ro te in  p ré c ip i ta n ts  

(23, 38). Organ d i s t r ib u t io n  s tud ies  have been inconclusive. I t  does 

appear the hexavalent form o f chromium i s  more tox ic  than the o ther 

forms.

The in terim  primary drinking water standard has been s e t  a t  0.05 

mg/1 (39). However, a family of four ind iv idua ls  i s  known to have 

drunk water fo r  a period of th ree  years  a t  a chromium level of 0.45 mg/1 

without known e f f e c t s  on t h e i r  health  as determined by a s ingle  medical 

examination (85). A study was designed by Mackenzie e t  a l .  (86) to  

determine the to x ic i ty  of hexavalent and t r i v a l e n t  chromium ions to  

r a t s  a t  various drinking water le v e l s .  A fter one year a t  leve ls  of 

0.45 to  25 mg/1, t h i s  study showed no evidence o f  to x ic  response in
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body weight, food consumption, blood changes, or m o rta l i ty .  S ig n i f i ­

cant accumulations of chromium occurred in the t i s su e s  a t  concentrations 

g re a te r  than 5 mg/1.

Copper 

Physical S tate

Copper is  a s o f t  heavy metal with atomic number 29, an atomic 

weight of 63.54, a melting po in t o f  1083°C, and a bo iling  po in t of 

2595°C (23, 87). Elemental copper i s  read ily  attacked by organic and 

mineral acids containing an oxidizing agent and is  slowly soluble  in 

ammonia water. The halogens a t ta ck  copper slowly a t  room temperature 

to y ie ld  the corresponding copper halide . Oxides and su lf id e s  are 

a lso  reac tiv e  with copper. Based on equilibrium constan ts ,  Stumm and 

Morgan (88) ca lcu la ted  copper s o lu b i l i ty  in a carbonate bearing water. 

They found the cupric  ion to  be the dominant copper species up to  pH 6 

and from pH 6 to  9.3 the aqueous copper carbonate complex would domi­

nate. The presence o f  organic ligands such as humic ac id s ,  fu lv ic  ac id s ,  

amino ac id s , cyanide, and detergen ts  would a l t e r  t h i s  equilibrium  (89).

The major in d u s t r ia l  uses fo r  copper include e le c t r i c a l  products, 

co ins, and metal p la t in g .  I t  i s  used as c a s t in g s ,  sh ee ts ,  ro d s ,tu b in g , 

and wire. Alloyed with o ther m eta ls , i t  i s  used to  form various brasses 

and bronzes (17, 23).

Usual concentrations of .001 mg/1 to .01 mg/1 are  reported  fo r  a 

m ajority  of surface waters in the United S ta te s .  Fortunate ly , the 

various copper complexes and p re c ip i ta te s  appear to  be la rg e ly  non­

tox ic  and tend to  mask or remove to x ic i ty  a t t r ib u ta b le  to  copper (90).
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This f a c t  g rea t ly  complicates the in te rp re ta t io n  and app lica tion  of 

av a ilab le  to x ic i ty  da ta ,  s ince the proportion of f ree  copper ion present 

i s  highly variab le  and is  d i f f i c u l t  to  measure except under ideal 

laboratory  conditions. Seasonally and lo c a l ly ,  to x ic i ty  may be 

m itigated by the presence of n a tu ra l ly  occurring ch e la t in g ,  complexing, 

and p re c ip i ta t in g  agents.

Aquatic Organism Toxicity

Toxicity  t e s t s  with copper have been conducted on a to ta l  of 29 

f is h  species with nearly 250 values av a i lab le  fo r  comparison. Most of 

these t e s t s  have been conducted with four salmonid spec ies ,  fathead 

and bluntnose minnows, and b lu e g i l l s .  Toxic values range from a low 

of .01 mg/1 fo r  chinook salmon in s o f t  water to  10.0 mg/1 fo r  b lu e g i l ls  

te s ted  in hard water ( 57, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 

101, 102, 103, 104, 105, 106, 107, 108, 109, 110).

Chinook salmon was the most s e n s i t iv e  f i s h  species. Rainbow 

t ro u t  and the other salmonids are somewhat le ss  s e n s i t iv e .  Fathead 

minnows and several o ther cyprinids were approximately th ree  to eleven 

times more r e s i s t a n t  to  copper than the  salmonids. Bluntnose minnows, 

however, are nearly as s e n s i t iv e  as the  salmonids. B lueg ills  and 

o ther cen trarch ids  are approximately 20 to  110 times more r e s i s ta n t  

than salmonids.

A dditionally , McKim e t  a l .  ( I l l )  reported  on copper to x ic i ty  to 

embryos and larvae o f  fresh  water f i s h .  They s ta ted  larvae and ear ly  

ju ven ile  s tages of a l l  species te s ted  were more s e n s i t iv e  to  copper 

than the embryos. Embryo survival was a ffec ted  only a t  the higher
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concentrations o f  copper te s ted  in a l l  species except rainbow t ro u t .  

Embryo m orta li ty  was almost complete a t  the  following concentrations: 

Northern pike, .5 mg/1; rainbow t r o u t ,  .037 mg/1; white sucker, .333 

mg/1; brook t r o u t ,  .555 mg/1; and herr ing , .555 mg/1. Copper had no 

e f fe c t  on smallmouth bass embryos a t  any concentration  te s ted .

Doudoroff and Katz (112), in reviewing l i t e r a t u r e  on the to x ic i ty  

of copper, concluded most natural f resh  waters in the United S ta tes  

containing copper concentrations below .025 mg/1 ev idently  are not 

rapidly  f a ta l  fo r  most common f is h  spec ies .  A dditionally , McKee and 

Wolf (17) s ta t e  to x ic i ty  of copper to  aquatic  organisms varies 

s ig n if ic a n t ly  not only with the spec ies ,  bu t,  a lso ,  with the physical 

and chemical c h a ra c te r i s t ic s  of the water. Synergism a lso  ex is ts  

between copper and mercury. On the o ther hand, sodium n i t r i t e  and 

sodium n i t r a t e  have been reported  to  decrease the  to x ic i ty  of copper 

to  f i s h ,  and copper has shown evidence of decreasing the  to x ic i ty  of 

cyanide. Therefore, they recommend a water concentration  of 0.02 mg/1 

to  p ro tec t  f i s h  in  general.

The overall v a r ia tion  observed in acute to x ic i ty  values fo r 

invertebra te  species was nearly the  same as fo r  f i s h .  The values 

ranged from .0042 mg/1 fo r Daphnia hyalina to  10.2 mg/1 fo r  snail eggs, 

and 9.1 mg/1 fo r  adu lt  s to n e f l ie s .

Human Toxicity

Copper i s  not considered to  be a cumulative systemic poison l ik e  

lead and mercury. Most of the copper ingested i s  excreted by the 

body and l i t t l e  i s  re ta in ed  (17, 38). Copper concentrations high
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enough to  be dangerous to  human beings renders water d isagreeable  to 

t a s t e .  However, ingestion  of m illigram  q u an ti t ie s  can cause symptoms 

of nausea, vomiting, d ia rrh ea ,  congestion of mucus membranes, u lce ra t io n  

of the nasal septum, s a l iv a t io n ,  m e ta l l ic  t a s t e ,  cramps in the  calves 

and p ro s tra t io n  (23, 38).

Lead 

Physical S ta te

Lead i s  a s o f t  gray, acid so lub le  metal. I t  i s  used in e le c t r o ­

p la t in g ,  m etallurgy, and the manufacture of construction  m a te r ia ls ,  

rad ia t io n  p ro tec t iv e  devices, p l a s t i c s  and e lec tro n ic s  equipment. The 

s o lu b i l i ty  of lead compounds in water depends heavily  on pH and 

ranges from about 10.0 mg/1 of lead a t  pH 5.5 to  .001 mg/1 a t  pH 9.0 . 

Lead has a melting po in t of 327.4°C and a boiling  po in t of 1525°C (23).

Lead en te rs  the aquatic  environment through p re c ip i ta t io n ,  lead 

dust f a l l o u t ,  erosion and leaching o f s o i l ,  municipal and in d u s tr ia l  

waste d ischarges, and the runoff o f  f a l l o u t  deposits  from s t r e e t s  and 

o ther su rfaces . Extrapolations from recen t s tud ies  in d ica te  th a t  

as much as 5,000 tons of lead per year may be added to  the n a t io n 's  

aquatic  environment as a r e s u l t  o f  urban runoff (39, 113).

Some natura l waters contain lead in  so lu tion  as much as 0 .4  mg/1 

to 8.0  mg/1, where mountain limestone i s  found. In the  United S ta te s  

lead concentrations in  surface and ground waters used fo r  domestic 

supplies range from tra c e s  to  0,04 mg/1 (17). Since lead i s  an element, 

i t  w ill not be destroyed and may be expected to  p e r s i s t  in d e f in i te ly  

in the environment in some form.
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Aquatic Organism Toxicity  

McKee and Wolf (17) re p o r t  the following mechanism fo r  lead 

to x ic i ty  to  f i s h  in water containing lead s a l t s :  a film  of coagulated 

mucus f i r s t  forms over the  g i l l s ,  and then over the whole body o f the 

f i s h ,  probably as a r e s u l t  o f a reac tio n  between lead and an organic 

co n s t i tu en t  of mucus. The death of the f i s h  i s  caused by suffocation  

due to  th i s  o b s tru c t iv e  lay er .

The tox ic  e f f e c t s  o f  lead have been te s te d  on a wide v a r ie ty  of 

freshw ater organisms. Test animals used to  determine these e f fe c ts  

included f ish  from s ix  d i f f e r e n t  fam il ie s .  Consequently, the  a v a i l ­

able data base is  q u i te  la rg e  and c le a r ly  demonstrates the re la t iv e  

s e n s i t iv i ty  of freshw ater organisms to  lead (16, 17, 74, 115).

F if teen  LC50 values were av a ilab le  fo r  e ig h t  species of f i s h .  Three 

s o f t  water fathead minnow acute t e s t s  were conducted with lead c h lo r id e ,  

and these  values ranged from 2.4 mg/1 to  7.33 mg/1. The c lose  agree­

ment between these t e s t s  demonstrates th a t  lead LC50 values fo r  f i s h  can 

be reproduced with reasonable  accuracy. The fourth  s o f t  water fathead 

minnow t e s t  was conducted with lead ace ta te  and the ca lcu la ted  LC50 

value agreed c lo se ly  with the  lead ch lo ride  exposures (17, 99, 114).

Acute t e s t s  have been conducted with lead in  both hard and so f t  

water with rainbow t r o u t ,  fathead minnows and b lu e g i l l s  (74, 114).

Results from these  t e s t s  showed the LC50 values fo r  lead d if fe red  in 

hard and s o f t  water and varied  by a f a c to r  of 237 times fo r  rainbow 

t r o u t ,  65 times f o r  fa thead  minnows and 19 times fo r  b lu e g i l l s .  Another 

example o f  ha rd n ess -re la ted  lead to x ic i ty  to  f i s h  was reported  by 

Tarzwell and Henderson (115). These authors conducted 96-hour
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exposures o f  fathead minnows to  lead in hard (400 mg/1) and s o f t  (20 

mg/1) water. The hard water exposure was not included because an LC50 

value was not obtained w ithin  96-hours; however, th is  t e s t  did show 

the hard water LC50 value was g re a te r  than 75.0 mg/1 which meant the 

d ifference  between hard and s o f t  water exposures varied by a fa c to r  

g rea te r  than 31 times. Hale (57) conducted an acute exposure t e s t  of 

rainbow t ro u t  to lead and obtained an LC50 value of 6.16 mg/1. This 

value is  almost s ix  times g re a te r  than the LC50 value obtained fo r  

rainbow t ro u t  in s o f t  water by Davies e t  a l .  (114). Hale (57) did 

not report  water hardness; however, a lk a l in i ty  and pH were reported  to 

be 105 mg/1 and 7.3 mg/1 re sp ec t iv e ly ,  which suggests th i s  water was 

probably harder than the t e s t  water used by Davies e t  a l .  Acute values 

obtained by Wallen e t  a l .  (75) fo r  the red sh iner and mosquito f i s h  

were a lso  q u ite  high; however, the authors did not re p o r t  hardness and 

both t e s t s  were conducted in tu rb id  water containing suspended clay 

p a r t ic le s  a t  approximately 300.0 mg/1.

Chronic t e s t s  have been conducted with lead and six  species  of 

f i s h .  All chronic t e s t s  were conducted in s o f t  water (33 mg/1).

No acceptable hard water chronic t e s t s  were found in the l i t e r a ­

tu re  to compare with the s o f t  water da ta . Davies e t  a l .  (114) reported 

the long-term e f fe c t s  of lead on rainbow t ro u t  in hard and s o f t  water. 

Although these t e s t s  were n e i th e r  l i f e  cycle ,  p a r t ia l  l i f e  cy c le ,  nor 

embryo-larval t e s t s ,  they do provide useful information. During these 

19-month exposures a s ig n i f ic a n t  number of t r o u t  developed spinal 

de fo rm ities ,  eroded f in s  and b la c k ta i l s  in both hard (353 mg/1) and 

s o f t  (28 mg/1) water a t  measured lead concentrations o f  .38 mg/1 and
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.013 mg/1, re sp ec tiv e ly .  These r e s u l t s ,  th e re fo re ,  e s tab lished  a 

d e f in i te  re la t io n sh ip  between water hardness and chronic lead to x ic i ty  

to f i s h  in which rainbow tro u t  s e n s i t iv i ty  varied by a fa c to r  of 

29 times.

The bioconcentration fac to r  fo r  brook t ro u t  was calcu la ted  to  be 

42 from a labora to ry  exposure by Holcombe e t  a l .  (116) which included 

20 measurements of lead concentrations in the water during the 140-day 

t e s t .  Lead res idues  reported by Atchison e t  a l .  (117) were obtained 

from a mixed population of b lu e g i l ls  co llec ted  from a small 300 acre 

lake. The average bioconcentration fa c to r  fo r  lead in water fo r  th is  

contaminated lake was determined to  be 45 from 36 separate measure­

ments. Since no maximum permissible t i s s u e  concentration i s  av a ilab le  

for lead , no res idue  lim ited tox ican t concentration can be ca lcu la ted .

Although a wide varie ty  of in v e r teb ra te  species have been te s t e d ,  

no repo rts  were found in the l i t e r a t u r e  which te s ted  lead to x ic i ty  on 

the same species in both hard and s o f t  water. However, i t  seems 

logica l to  assume th a t  a s im ila r  r e la t io n s h ip  e x is t s  between acute 

lead to x ic i ty  and water hardness fo r  in v e r teb ra te  species as was 

demonstrated fo r  exposures to  f i s h .

In summary, lead in the aquatic  environment has been reported  to 

be acu te ly  tox ic  to  inverteb ra tes  a t  concentrations as low as .45 mg/1 

and ch ron ica lly  tox ic  a t  le ss  than .10 mg/1 (63). The comparable 

f igu res  fo r  v e r teb ra te s  are .90 mg/1 fo r  acute to x ic i ty  (99) and .0076 

mg/1 fo r  chronic to x ic i ty  (114). Toxicity  i s  a lso  a ffec ted  by water 

hardness (74, 115).
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Human Toxicity

As fa r  as i s  known, lead has no benefic ia l o r  d e s irab le  n u t r i ­

t iona l e f f e c t s .  Lead i s  a tox ic  metal tending to  accumulate in the 

t i s su e s  o f  man and animals. Although seldom seen in the ad u l t  popula­

t io n ,  i r r e v e r s ib le  damage to  the brain i s  a frequent r e s u l t  of lead 

in to x ica tio n  in  ch ild ren . Such lead in to x ica t io n  most commonly r e s u l t s  

from ingestion of lead-containing pa in t s t i l l  found in o lder homes.

The major tox ic  e f fe c t s  of lead include anemia, neurological dysfunction, 

and renal impairment. The most common symptoms o f lead poisoning are 

anemia, severe in te s t in a l  cramps, p a ra ly s is  of nerves (p a r t ic u la r ly  

of the arms and le g s ) ,  loss  of ap p e t i te ,  and fa t ig u e .  These symptoms 

usually  develop slowly (38, 39). High lev e ls  of exposure produce 

severe neurological damage, often manifested by encephalopathy and 

convulsions; such cases frequently  are f a t a l .  Lead i s  s trong ly  

suspected of producing s u b t i le  e f fec ts  ( e f fe c ts  due to  low level or 

long term exposures in s u f f ic ie n t  to  produce overt symptoms) such as 

impaired neurological and motor development and renal damage in 

children (118). Subclin ical lead e f fe c ts  are  d i s t i n c t  from those of 

residual damage following lead in to x ica tion .

Mercury 

Physical S ta te

Mercury i s  a s i lv e r -w h ite  m etal, i s  l iq u id  a t  room temperature, 

and can e x is t  in th ree  oxidation s t a t e s .  Mercury has an atomic weight 

of 200.59, a melting po in t of -38.87°c and a b o iling  po in t varying from 

356°C to  358°C, The sp e c if ic  g rav ity  i s  13.546 and the vapor pressure

i s  0.0012 mm Hg (23, 87).
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The la r g e s t  p resent use of mercury i s  in e le c t r i c a l  apparatus; 

o ther uses include in d u s tr ia l  control instruments and a g r ic u l tu ra l  

and in d u s t r ia l  poisons, in s e c t ic id e s ,  fungicides, b a c te r io c id e s ,  

e l e c t r o ly t i c  c e l l s ,  pharmaceutical and dental p repara t ions , a n t i -  

fouling p a in t ,  and c a ta ly s ts  (23).

The Department of the I n te r io r  carr ied  out a nationwide recon­

naissance o f  mercury in U.S. water in the summer and f a l l  of 1970 (119) 

Of those samples from the in d u s t r ia l  wastewater category , 30 percent 

contained mercury a t  g rea te r  than .01 mg/1: nearly 0.5 percent o f  the 

samples in  t h i s  group contained more than 1.0 mg/1. Only 4 percent of 

surface water samples contained more than 1.0 mg/1. The higher 

mercury concentra tions were genera lly  found in small streams. About 

h a l f  o f  the 43 samples from the M ississippi River contained le s s  than 

.0001 mg/1.

Finding c e r ta in  microorganisms with the a b i l i t y  to  convert 

inorganic and organic forms of mercury to  highly tox ic  methyl or 

dimethyl mercury has made any form o f  mercury p o te n t ia l ly  hazardous 

to  the environment (120). In w ater , under n a tu ra l ly  occurring con­

d i t io n s  o f pH and temperature, inorganic mercury can be converted 

re ad ily  to  methyl mercury (121).

Mercury has long been recognized as one of the more tox ic  metals 

but was only recen tly  id e n t i f ie d  as a serious p o l lu ta n t  in the aquatic  

environment. I n i t i a l l y ,  elemental mercury which i s  a l iq u id  a t  room 

tem perature, was considered a r e l a t iv e ly  in e r t  heavy m eta l. The 

assumption was made th a t  the  mercury would quickly s e t t l e  to  the 

bottom of a body of water and remain there  in an innocuous s t a t e .
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However, s ince  both aerobic and anaerobic b ac te r ia  in  the sediments 

are capable o f  methylating mercury, elemental mercury i s  a serious 

th r e a t  to  the  aquatic  environment s ince t h i s  process occurs maximally 

a t  a pH of 6 .0 .

Mercury i s  a lso  one of the few major p o l lu ta n ts  adversely a f f e c t ­

ing the aquatic  environment through both d i r e c t  to x ic i ty  and bio­

accumulation. Bioaccumulation has been more thoroughly studied and 

has ra ised  much concern (122). Methyl mercuric compounds are more 

toxic  than inorganic mercury to  mammals as well as aquatic  l i f e  and 

most of the t i s s u e  residue data reported  a re  fo r  the organic form.

There i s  no known physiological function o f  mercury and any mercury 

added to  the  aquatic  environment may inc rease  t i s s u e  res idues .

Regardless of the mercury form p re sen t ,  a major portion of the 

mercury w ill u l t im ate ly  res ide  in the bottom sediments. I t  appears 

the m éthylation process takes place a t  the water/sediment in te r fa c e ,  

p a r t ic u la r ly  in the sediment area in  which the  benthic organisms are 

most a c t iv e .  The movement of benthos w ithin  the sediments con tribu tes  

to  the m éthylation process by physica lly  expanding the area of water/ 

sediment in te r fa c e .  Through ingestion  of the  d e t r i tu s  in the sediments, 

benthos acquire  a body burden of mercury th a t  w ill  in turn be t ra n s ­

ported to  f i s h  upon ingest ion . These forms o f mercury are bioconcen­

tra te d  many-fold in f ish  and o ther aquatic  organisms because of the 

very rap id  uptake and the r e l a t iv e  i n a b i l i t y  o f  the  f i s h  to  excrete 

mercury from t h e i r  t i s s u e s .  As a r e s u l t ,  mercury in  f i s h  t is su e s  may 

exceed the  0.5 mg/kg FDA guideline (16).
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Aquatic Organism Toxicity 

Mercurials w ill damage the bronchial epithelium and in te r ru p t  

re sp ira to ry  function in freshw ater in v e r te b ra te s .  Rainbow t ro u t  

suffered loss  of equilib rium , and t r o u t  f ry  were more suscep tib le  to  

poisoning than f in g e r l in g s .  Mercurial compounds may in te r fe re  with 

recep tor membranes in f i s h  (123).

MacLeod and Pessah (124) reported  temperature e f fe c ts  of mercuric 

ch loride  to x ic i ty  to  rainbow t r o u t .  At 5, 10, and 15°C, the LC50 

values were .4 mg/1, .28 mg/1, and .22 mg/1, re sp ec tiv e ly .  Clemens and 

Sneed (125) found th a t  a t  temperatures of 10, 16.5 , and 24°C, the LC50 

values fo r  channel c a t f i s h  and phenylmercuric a ce ta te  were 1.154 mg/1, 

.863 mg/1, and .223 mg/1, re sp ec t iv e ly .  They a lso  investiga ted  the 

influence of l i f e  stage of channel c a t f i s h  on i t s  s e n s i t iv i ty  to 

pyridylmercuric a c e ta te .  At 23 to  24°C, they found about the same 

influence of age between yolk sac f ry  (48-hour LC50 value of .374 mg/1) 

and 3-inch juven ile s  (24-hour LC50 value of 3.75 mg/1) as was found fo r  

temperatures between 10 and 24°C.

Cox e t  a l .  (126) studied the source of mercury in a new impound­

ment. During the  course of th i s  in v es t ig a t io n  about 200 f ish  samples 

were analyzed fo r  mercury. As expected, species which were high in 

the  food chain contacted more mercury. Their r e s u l t s  suggested high 

mercury leve ls  found in bass and crapp ie  were a r e s u l t  of biomagnifi­

cation  through the food chain.

McKim e t  a l .  (127) observed adverse e f fe c t s  of methylmercuric 

ch loride  on brook t r o u t  a t  .0009 mg/1 but not a t  .0003 mg/1. Brook
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t ro u t  were approximately th ree  to  four times more r e s i s t a n t  than 

rainbow t ro u t .

The estim ate fo r  chronic to x ic i ty  fo r mercury i s  .0002 mg/1 

although no equilibrium of mercury in the f i s h  t i s su e s  could be 

demonstrated by Reinert e t  a l .  (128) a f te r  an 84-day exposure of 

juven ile  rainbow t ro u t .  The uptake of methyl mercuric ch lo ride  

by brook t ro u t  had not reached equilibrium a f t e r  273 days (127). In 

the l a t t e r  study, the re  was no de tec tab le  loss  of mercury from various 

t i s su e s  a f t e r  a 16-week exposure in control water. Since whole fathead 

minnows were only analyzed once a t  the end of a l i f e - c y c le  exposure 

(129) no comment could be made with regard to  equilibrium  in  th i s  

species . Data (128) ind ica ted  an influence of temperature on ra te  of 

uptake but was not considered fo r  bioconcentration f a c to r  ca lcu la tions  

since a steady s ta t e  was not achieved even a t  the h ighest temperature 

studied.

The co n tra s t  between fathead minnows (129) and brook t r o u t  (127) 

is  one of considerable i n t e r e s t  and poten tia l importance. Of the 

fac to rs  d i f f e r in g  between these  t e s t s ,  the species and feeding h ab its ,  

the l a t t e r  was the most in t r ig u in g  to  consider. Since most of the 

t ro u t  were fed on p e l le ted  t ro u t  feed , there  was l i t t l e  opportunity  

fo r  food chain imput to  the  t r o u t .  In co n tra s t ,  the fa thead minnow, 

a browser, had the opportunity  not only to  feed on the  introduced 

food but a lso  on the Aufwuchs growing within the mercury-enriched 

environment of the exposure chamber. The higher b ioconcentration  

f a c to r  fo r  the  fathead minnows, 62,898, may be more rep re se n ta t iv e  of 

f i e ld  da ta .



44

Since the lowest maximum perm issible  t i s s u e  concentration (1 .0  

mg/kg) is  based on the m arke tab ility  o f  f i s h  and s h e l l f i s h ,  only data  

on the ed ib le  portion  of these organisms may be used to  ca lcu la te  a 

bioconcentration fa c to r .  McKim e t  a l .  (127) concluded there  was no 

d iffe rence  in bioconcentration fa c to rs  between residues in muscle and 

to ta l  body fo r  brook t ro u t .  This b ioconcentration  fa c to r  i s  62,898.

Human Toxicity

Mercury i s  considered to  be highly tox ic  to  humans. I t  is  re a d i ly  

absorbed by way of the g a s t ro - in te s t in a l  t r a c t ,  and fa ta l  doses fo r  

man vary from 3 to  30 grams (17). In humans, mercurials have been 

associated  with neurological d iso rd e rs ,  sensory impairment, tremors, 

buccal u lc e ra t io n ,  g a s t ro - in te s t in a l  complaints, and multisystem 

involvement due to  general encephalopathy (16, 23, 38, 122, 130, 131, 

132, 133, 134).



CHAPTER I I I  

METHODS AND MATERIALS

Program Description 

The data which a re  presented in th i s  research  were co llec ted  as 

a p a r t  o f the Basic Water Monitoring Program fo r  the s ta t e  of Oklahoma

fo r  water years (October 1 to  September 30) 1977 to  p resen t.  As was

mentioned e a r l i e r ,  the EPA Basic Water Monitoring Program (4) was not 

designed to  be a mandatory program. However, in  order fo r continued 

EPA funding to  the  s t a t e  on a l l  water p o llu t io n  programs, a b io logica l 

monitoring program was requ ired .

The to ta l  Basic Water Monitoring Program in Oklahoma fo r  the l a s t  

several years included 100 ambient trend monitoring s ta t io n s  where 

water samples were co lle c ted  monthly fo r  organic and inorganic con ten t. 

Also included were approximately 23 b io log ica l s t a t io n s  sampled annually 

or b i-annually  f o r  to x ic  an a ly s is  of f i s h ,  sediment, and water. I t  

should be noted th a t  th i s  monitoring e f f o r t  was not a l l - in c lu s iv e  fo r

the to ta l  water q u a l i ty  monitoring fo r  the s t a t e  o f  Oklahoma. Other

programs were conducted by various agencies fo r  o th e r  purposes.

The f i s h  samples fo r  to x ic  metal analyses were co llec ted  from 23 

d i f f e r e n t  s ta t io n s  on 15 d i f f e r e n t  streams in Oklahoma. Appendix A 

l i s t s  these  s ta t io n s  and describes  the stream, h a b i t a t ,  physical loca ­

t io n  and legal d e sc r ip t io n .  Figure 1 shows a map o f the s ta t e  

including a l l  of the  monitoring s ta t io n s .  The b io log ica l s ta t io n s
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shown were se lec ted  so the s t a t e  needs as well as the national goals 

of EPA could be met fo r  Oklahoma. These s ta t io n s  rep resen t  the 

various aquatic  h ab ita ts  within the s t a t e  of Oklahoma. They a lso  

rep resen t both high water q u a l i ty  streams as well as streams of 

poorer q u a l i ty .

F ield  Sample Collections

The f i s h  samples fo r  t h i s  research e f f o r t  were co llec ted  during 

June and Ju ly  a t  the 23 biotrend s i t e s .  This time period was se lec ted  

to correspond to  the most c r i t i c a l  low flow periods of the year .  The 

f i s h  populations were sampled over an area o f  approximately 210 yards 

a t  each sampling s i t e .  The sp e c if ic  co llec tio n  techniques u t i l i z e d  

included se in in g ,  e le c t ro f i sh in g ,  and where h ab ita t  d ic ta te d ,  g i l l -  

ne tt ing  (7, 8 , 9, 10). Representative samples o f  the f i s h  community 

were co lle c te d  as follows: 1) one sample of the predominate herbivore

trophic  le v e l ,  consis ting  of a t  l e a s t  four f ish  of the same spec ies ,  

and 2) one sample of the predator (carnivore) trophic  l e v e l ,  consis ting  

of a t  l e a s t  fou r f i s h  of the same spec ies ,  were c o l le c te d .  These samples 

were wrapped in p la s t ic  bags, immediately iced , and were frozen immedi­

a te ly  upon re tu rn  to the lab u n t i l  lab analysis  preparation  could be 

accomplished.

Detailed  f ie ld  notes were maintained a t  each s i t e  where f ish  

samples were c o l lec ted .  These notes consis ted  o f  h a b i ta t  type, 

flow co n d it io n ,  any unusual d is turbances to the s i t e  (such as 

construction  a c t i v i t i e s ) ,  and any o ther observations t h a t  would aid 

the in te rp re ta t io n  of labora to ry  d a ta .
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Fish Tissue Preparation and Toxic Metal Analysis

Fish p reparation  and ana ly tica l  techniques were taken from the 

EPA Methods fo r  Chemical Analysis of Water and Wastes (11) and 

Standard Methods fo r  the  Examination of Water and Wastewater (12).

The heavy metal analyses on the prepared f i s h  t i s su e  samples were 

analyzed on an Instrumentation Laboratory Model 951 Atomic Absorption 

Spectrophotometer using the following procedures:

Copper, Cadmium, Chromium, Lead.

1. Take 5 grams of blended (or small) f i s h .
2. Place in c ru c ib le ,  add 1:1 N itr ic  Acid.
3. Place on a hot p la te  and take almost to  dryness 3 times.

(On the 3rd time, take the so lu tion  to  complete dryness).
4. Place the c ruc ib le  in  a cold muffle furnace and s e t  the

temperature a t  525 degrees C.
5. Turn on the muffle furnace and leave the c ruc ib le  u n ti l  a 

white ash is  produced (usually  36-48 hours).
6. Cool.
7. Bring the ash to 25 ml f in a l  volume with 5% N itr ic  Acid.
8. Aspirate d i r e c t ly  in to  Atomic Absorption Spectrophotometer.

Mercury.

1. Take 1 gram of blended (or small) f i s h .
2. Place in a BOD b o t t l e ,  add 5 ml concentrated S u lfu ric  Acid

and 2.5 ml N i t r ic  Acid.
3. Leave th i s  so lu t io n  overnight or longer.
4. Add 100 ml deionized water.
5. Add so lid  Potassium Permanganate and keep the so lu tion  

purple fo r  15 minutes, and add add itional Potassium 
Permanganate i f  necessary during the 2 hours in the  95 
degree hot water bath.

6. Add 8 ml of Potassium P ersu lfa te  so lu tio n  to  each sample.
7. Heat fo r  2 hours in  a water bath a t  95 degrees C.
8. Cool and add 8 ml o f  Sodium Chloride-Hydroxylamine 

Hydrochloride so lu tion  to  each f la s k .
9. After the sample i s  t o t a l l y  decolorized and no Permanganate 

i s  l e f t  in  the  b o t t l e ,  the b o t t le  i s  connected to  the 
ae ra to r  and purged un ti l  the recorder pen re tu rns  to  the 
base line . Then add 5.0 ml of Stannous Chloride so lu tion  
and purge u n t i l  the  pen reaches a maximum, then r in s e .
Rinse the a e ra to r  with 1 + 1 N itr ic  Acid in to  the  sample 
b o t t le  being removed from the  a e r a to r ,  then s t a r t  on the 
next sample.
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Analytical Quality Control

The S ta te  Water Quality Laboratory i s  commited to  the conduct o f  

a program which w ill insure  accurate  and v a l id  da ta .  Therefore, the 

fundamental agreement fo r  an a ly t ica l  q u a l i ty  control o f  the data gener­

ated under the Basic Water Monitoring Program is  approximately 20 

percent o f  the laboratory  e f f o r t .  The to ta l  program includes both 

in tra - la b o ra to ry  procedures such as spiked sample recovery, r e p l ic a te  

sample analyses, and reference sample analyses. The laboratory  a lso  

conducts in te r - lab o ra to ry  a n a ly t ica l  q u a l i ty  control procedures such 

as sample s p l i t t i n g  between s ta t e  and EPA lab o ra to r ie s  (13, 14).

The a n a ly t ica l  q u a l i ty  control methods on the f i s h  t i s su e  

analyses included approximately one in ten samples being s p l i t  and 

analyzed as dup lica te  samples. Thus, th i s  p a r t ic u la r  sample had two 

spike analyses of known values run on i t .  Precis ion o f the analyses 

is  determined by the d iffe rence  in  the two d i f f e r e n t  spike sample 

readings. The accuracy of the procedures i s  determined by the 

following equation:

These data are  then used to  p lo t  the appropria te  q u a li ty  

assurance charts  to  insure  the t e s t s  were in co n tro l .  This type of 

q u a li ty  assurance e f f o r t  was reasonable and, a t  the same time, gave 

the labora to ry  s t a f f  the information they needed fo r  insuring  sample 

v a l id i ty .



CHAPTER IV 

RESULTS AND DISCUSSION 

Toxic Metals in Fish 

General

The data generated by t h i s  p ro jec t  were separated in to  the 

s ta t e  of Oklahoma's two major drainage basins fo r  subsequent evaluation . 

These basins consis t  of the  Arkansas River which drains roughly the 

northern h a lf  of Oklahoma from west to e a s t  and the  Red River which 

serves as the  southern boundary of Oklahoma and dra ins roughly the 

southern ha lf  of the s t a t e  from west to  e a s t .  There were f i f t e e n  

sampling s i t e s  on the  Arkansas River and i t s  t r i b u t a r i e s  and e igh t 

sampling s i t e s  on the  Red River and i t s  t r i b u t a r i e s  in Oklahoma. These 

s i t e s  are l i s te d  in Appendix A. I t  is  a lso  important to  note th a t  

th e re  are  natura l changes in the  water q u a l i ty  of streams in Oklahoma as 

they flow from west to  e a s t .  In gen era l ,  the  water q u a l i ty  of eastern  

Oklahoma streams is  b e t t e r  than the  water q u a l i ty  o f  western Oklahoma 

streams. For example, i t  is  known th a t  streams in western Oklahoma tend 

to  have higher tu r b id i ty ,  lower flow, and more minerals than streams 

from eas te rn  Oklahoma.

50
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Raw Data Discussion

Table 2 p resen ts  the  raw data from the f ish  samples which were 

analyzed In th i s  study. These data are l i s t e d  by sample s i t e ,  water 

year, and the to x ic  metal content of the f i s h  sample by herbivore and 

carnivore troph ic  le v e l .  S ta tions  1 through 15 represen t sampling s i t e s  

within the  Arkansas River Basin while S ta tions  16 through 23 l i s t  the  

data from the Red River Basin. Appendix E shows the species of f i s h  

co lle c te d ,  and weights of the  samples In Table 2.

These raw data are presented graph ically  In Appendix B, Figures 

B-1 through B-24. These graphs show the Individual tox ic  metal w ithin 

the individual r iv e r  basin fo r  Water Years 1977, 1978, 1979, and 1980. 

These f ig u res  show the  data  of the tox ic  metal (In Mg/Kg of body weight) 

In a temporal sequence by sample s ta t io n  location  fo r  the  e n t i r e  basin . 

The concentration ranges may be d i f f e r e n t  on each f ig u re  due to  both 

ana ly t ica l  de tec tion  l im its  and the level of the  tox ic  metal de tec ted  In 

the f i s h .  Any value which was less  than the de tec tion  l im it  was 

recorded as a zero fo r  the  purpose of the graphical p resen ta tion  o f  the  

data. Water years fo r  which no data  were ava ilab le  were a lso  recorded 

as zero values. The data  w ill  be discussed from the graphs, which are a 

presenta tion  of the  Information In Table 2. L as tly , re fe rence  to  

elevated leve ls  of the  Individual tox ic  metals In the  f i s h  samples 

should be In te rp re ted  only as a technique to  compare the  data  po in ts  

within a r iv e r  basin . These references to  elevated leve ls  r e f e r  only to  

a comparison with the  mean lev e ls  fo r  the  Individual basin under 

considera tion  and do not n e ce ssa r i ly  re fe r  to  any concentra tions which 

would be detrim ental to  the  f i s h  or to  persons consuming these  f i s h .



Table 2. Toxic Metal Levels in Herbivore and Carnivore Fish by S ta tion  Location and Water Year (WY).

Arsenic Cadmium Chromium Lead Mercury
STATION WY HERB CARN HERB CARN HERB CARN HERB CARN HERB CARN HERB CARN

1 1977 0.20 *0.10 *0.50 *0.50 6.20 22.00 0.70 *1.00 0.13 0.49
1978 *0.10 3.00 0.20 *0.10 0.80 1.50 1.80 2.10 1.70 *1.00 *0.05 0.14
1979 *0.10 *0.10 2.00 0.60 3.20 2.80 *1.00 2.00 0.24 *0.05
1980 3.00 0.10 0.20 1.60 1.40 *0.40 0.20 *1.00 *1.00 0.15 0.18

2 1977 0.23 0.05 6.09 0.32 1.80 1.40 0.40 0.70 0.20
1978 0.05 0.05 0.20 0.05 0.25 1.90 1.20 1.70 1.40 0.50 0.03 0.20
1979 0.05 0.05 0.05 0.05 0.50 0.25 1.50 1.20 1.50 1.60 0.03 0.09

3 1977 0.10 *0.10 *0.50 *0.50 3.00 4.39 *1.00 *1.00 0.10 0.60
1978 *0.10 *0.10 0.20 *0.10 *0.10 2.40 1.60 5.50 1.10 *1.00 0.06 0.22
1979 3.70 0.40 2.50 1.30 *1.00 0.13
1980 0.20 1.00 *0.40 *1.00 *0.05

4 1977 *0.10 0.10 *0.50 2.90 1.96 3.70 0.70 4.70 0.17 *0.05
1978 0.20 2.00 *0.10 *0.10 *0.50 15.00 1.50 2.00 1.30 9.00 *0.05 *0.05
1979 5.00 0.20 *0.10 1.30 0.90 0.30 *0.40 *1.00 *1.00 *0.05 0.20
1980 0.10 *0.10 1.50 *0.50 *0.40 *0.40 *1.00 *1.00 0.27 *0.05

5 1977 0.05 0.05 0.25 1.30 11.50 5.80 4.00 1.80 0.13 0.17
1978 1.70 0.05 0.10 0.30 0.25 1.60 1.50 2.00 1.90 1.70 0.27 0.09
1979 0.05 0.05 0.25 0.25 1.20 0.60 2.80 0.50 0.09 0.03
1980 0.20 1.40 0.20 0.50 0.09

6 1977 0.05 0.13 0.25 1.30 0.20 1.21 0.50 1.10 0.28 0.30
1978 0.05 0.05 0.10 0.20 0.60 0.25 2.20 1.50 1.30 1.30 0.03 0.03
1979 0.20 0.05 0.09 0.25 1.50 0.20 3.50 0.05 0.16 0.05
1980 0.10 0.75 0.80 0.50 0.19

oiro

*  = Less than Detection l im it



Table 2. (cont.)

STATION WY
Arsenic

HERB CARN
Cadmium

HERB
Chromium

CARN HERB
ium Copper Lead Mercury
CARN HERB CARN HERB CARN HERB CARN

7 1978 *0.10 *0.10 0.20 0.20 1.00 *0.50 1.70 1.50 1.50 1.20 *0.05 0.95
1979 0.10 0.20 2.00 1.00 0.90 *0.40 *1.00 *1.00 0.05 0.17
1980 0.20 0.10 *0.50 *0.50 *0.40 *0.40 *1.00 *1.00 0.12 0.19

8 1978 *0.10 *0.10 0.10 *0.10 4.10 1.60 2.20 2.50 1.90 *1.00 *0.05 0.09
1979 *0.10 0 . .2 0 1.60 2.20 0.40 0.90 *1.00 *1.00 *0.05 4.80

9 1977 0.20 0.20 2.80 4.20 1.40 3.60 *1.00 *1.00 *0.05 *0.05
1978 0.10 *0.10 0.10 *0.10 1.90 *0.50 2.10 0.70 2.90 *1.00 *0.05 *0.05
1979 *0.10 *0.50 0.70 1.40 0.13

10 1979 *0.10 *0.10 0.50 2.00 1.00 1.70 *1.00 1.10 *0.05 0.12
1980 *0.10 1.30 *0.40 *1.00 *0.05

11 1977 *0.10 0.20 *0.50 2.60 18.00 3.90 3.10 2.20 0.06 *0.05
1978 *0.10 0.20 *0.10 0.60 0.50 2.10 1.10 2.30 *1.00 0.06 0.16
1979 0.20 0.40 0.50 1.50 *0.40 2.60 *1.00 *1.00 0.10
1980 *0.10 *0.50 *0.40 *1.00 *0.05

12 1977 0.18 0.60 2.80 1.40 0.11
1978 *0.10 *0.10 1.50 1.00 2.90 0.70 1.30 1.10 0.12 0.10
1980 0.20 1.00 *0.40 *1.00 *0.05

13 1977 0.20 0.20 2.50 3.30 3.10 4.60 0.50 1.50 0.03 0.06
1978 2.10 0.10 0.25 3.10 1.70 0.03
1979 0.05 0.20 1.00 1.40 1.90 2.60 0.50 0.50 0.11 0.26
1980 0.50 0.15 5.80 0.25 0.26 2.50 1.20 0.50 0.03 0.40

S

*  = Less Than Detection L im it



Table 2. (cont.)

Arsenic Cadmium Chromium Copper Lead Mercury
STATION WY HERB CARN HERB CARN HERB CARN HERB CARN HERB CARN HERB CARN

14 1977 0.12 0.20 0.25 2.60 2.90 1.90 1.50 1.50 0.08 0.06
1978 0.70 0.10 0.05 0.80 1.70 42.00 3.50 1.30 0.50 0.09 0.09
1979 1.00 0.05 1.00 2.10 1.00 7.00 1.00 2.00 1.00 0.03 1.00
1980 3.00 0.10 0.10 0.25 0.15 0.20 0.20 0.50 0.50 0.07 0.05

15 1977 0.80 0.20 4.00 1.70 12.00 8.80 3.30 1.40 *0.05 *0.05
1978 0.20 *0.10 *0.10 *0.10 *0.50 *0.50 1.30 1.30 *1.00 *1.00 *0.05 0.60
1979 *0.10 0.20 2.10 *0.50 2.10 0.30 1.80 1.80 0.11 0.06

16 1977 *0.10 *0.10 *0.50 *0.50 11.00 4.30 *1.00 1.70 *0.05 *0.05
1978 0.10 *0.10 0.20 0.10 *0.50 0.60 1.50 1.90 1.30 1.20 *0.05 *0.05
1979 0.20 *0.10 1.40 1.50 1.60 0.40 *1.00 *1.00 0.06 *0.05
1980 *0.10 3.10 0.40 1.60 0.10

17 1977 *0.10 *0.10 8.44 *0.50 3.20 1.93 1.00 *1.00 0.30 0.20
1978 *0.10 0.10 1.05 2.20 1.50 0.11
1979 0.30 1.50 *0.40 *1.00 0.14

18 1977 0.20 1.80 1.20 *1.00 *0.05
1978 1.40 *0.10 *0.10 0.80 0.90 2.30 2.30 0.90 *0.05 1.20
1979 *0.10 *0.10 *0.50 *0.50 0.90 1.00 *1.00 *1.00 *0.05 *0.05
1980 *0.10 0.50 0.40 *1.00 0.20

19 1977 *0.10 0.30 *0.50 *0.50 0.90 1.40 *1.00 *1.00 *0.05 0.06
1978 *0.10 1.80 *0.10 *0.10 0.80 1.00 1.30 3.00 1.30 1.30 0.70 2.10
1979 *0.10 1.00 0.90 *1.00 *0.05 *0.05
1980 2.00 0.20 1.30 *0.40 *1.00 *0.05

en

*  = Less Than Detection Lim it



Table 2. (cont.)

Arsenic Cadmium Chromium Copper Lead Mercury
STATION WY HERB CARN HERB CARN HERB CARN HERB CARN HERB CARN HERB CARN

20 1977 0.10 0.20 3.70 3.20 3.50 7 .,40 *1.00 1.80 *0.05 0.05
1978 *0.10 *0.10 *0.10 *0.10 1.70 0.80 2.60 0.90 *1.00 *1.00 0.09 0.06
1979 *0.10 0.50 1.10 *1.00 *0.05

21 1977 0.10 0.30 3.70 3.30 5.00 0.40 1.70 1.50 *0.05 *0.05
1978 *0.10 *0.10 *0.50 0.80 1.50 2.00 0.70 1.50 0.49 0.62
1979 2.40 0.20 0.20 1.30 1.10 0.40 1.30 *1.00 *1.00 0.14 0.12

22 1977 0.20 0.30 0.60 2.10 3.00 3.70 *1.00 *1.00 *0.05 *0.05
1978 1.40 *0.10 *0.10 *0.10 1.40 1.80 3.20 3.00 *0.05 *0.05
1979 *0.10 0.20 0.50 1.10 0.40 2.20 *1.00 *1.00 *0.05 0.20

23 1977 0.20 0.20 4.60 3.00 3.60 0.60 1.20 2.30 *0.05 *0.05
1978 *0.10 0.10 *0.10 2.50 0.80 3.80 3.00 1.80 1.50 0.19 0.11
1979 *0.10 *0.10 0.50 *0.50 0.40 0.50 *1.00 1.10 *0.05 *0.05
1980 *0.10 *0.10 *0.50 *0.50 *0.40 *0.40 *1.00 *1.00 *0.05 0.16

U1
CJl

* = Less Than Detection Limit
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Arsenic Levels in Fish 

Figure B-1 shows th a t  a rsenic  lev e ls  in herbivores in the  

Arkansas River Basin are e levated  a t s i t e  3 (Cimarron River near 

Buffalo) in 1979, s i t e  5 (Arkansas River near Sand Springs) in 1978, 

s i t e  13 (Canadian River near Bridgeport) in 1977, and s i t e  14 (Canadian 

River near Calvin) in 1980. Figure B-2 shows th a t  a rsenic  levels  in th e  

carnivores in the  Arkansas River Basin were elevated a t  s i t e  1 (S a lt  

Fork of the  Arkansas River near J e t )  in 1978 and 1980, s i t e  4 (Cimarron 

River near Perkins) in 1978 and 1979, and a t s i t e  14 (Canadian River 

Near Calvin in 1978. No obvious pa tte rns  of elevated arsenic  were 

observed from these data.

Figure B-13 shows arsen ic  levels  in herbivores in the  Red River 

Basin to  be elevated  a t  s i t e  18 (Washita River near Durwood) in 1978, 

s i t e  19 (Muddy Boggy near F a r r is )  in 1980, and s i t e  22 (Red River near 

DeKalb) inl978. Figure B-14 shows the  a rsen ic  levels  in carnivores to  

be elevated a t s i t e  19 (Muddy Boggy near F a rr is )  in 1978, and s i t e  21 

(Kiamichi River near A ntlers) in 1979. As was the case with the 

Arkansas River Basin, no p a tte rn s  of e levated levels  of a rsen ic  were 

noted.

Cadmium Levels in Fish 

Figure B-3 shows th e  cadmium leve ls  in the  herbivores in the  

Arkansas River Basin. There were e levated levels  a t s i t e  3 (Cimarron 

River near Buffalo) in 1979, s i t e  13 (Canadian River near Bridgeport) in 

1980, and s i t e  15 (Poteau River near F t.  Smith) in 1977. Figure B-4 

shows the  cadmium lev e ls  in the  carn ivores  in the  Arkansas River Basin.
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Elevated levels  were observed a t s i t e  5 (Arkansas River near Sand 

Springs) in 1978, s i t e  11 (North Canadian River near El Reno) in 1979, 

and s i t e  14 (Canadian River near Calvin) in 1979. No obvious pa tte rn  to  

these  data were observed.

Figure B-15 shows the cadmium levels  in the herbivores in the

Red River Basin. No elevated levels  of cadmium were noted in th i s

f ig u re .  Figure B-16 shows the cadmium leve ls  in the carnivores in the

Red River Basin. Elevated cadmium levels  were noted a t  s i t e  17 (Red

River near T erra i)  in 1979, s i t e  19 (Muddy Boggy near F a rr is )  in 1977, 

s i t e  21 (Kiamichi River near Antlers) in 1977, and s i t e  22 (Red River 

near DeKalb) in 1977. No obvious p a tte rn s  of elevated cadmium were 

observed from these data.

Chromium Levels in Fish

Figure B-5 shows the chromium levels  in herbivores in the 

Arkansas River Basin. Elevated levels  were noted a t s i t e  2 (Arkansas 

River near Ralston) in 1977, s i t e  8 ( I l l i n o i s  River near Tahlequah) in 

1978, s i t e  9 ( I l l i n o i s  River near Gore) in 1977, s i t e  13 (Canadian River 

near Bridgeport) in 1977, and s i t e  15 (Poteau River near F t.  Smith) in 

1977 and 1979. Figure B-6 shows the chromium levels  in the  carnivores 

in the  Arkansas River Basin. Samples were elevated at s i t e  4 (Cimarron 

River near Perkins) in 1977 and 1978, s i t e  9 ( I l l i n o i s  River near Gore) 

in 1977, s i t e  11 (North Canadian River near El Reno) in 1977, and s i t e  

13 (Canadian River near Bridgeport) in 1977. The only observed pa tte rn  

to  chromium leve ls  in f i s h  in the  Arkansas River Basin were elevated 

lev e ls  a t  s i t e  4 fo r  consecutive Water Years 1977 and 1978. These
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levels  were lower in 1977 and 1980.

Figure B-17 shows the  chromium levels in herbivores in the Red 

River Basin. Elevated leve ls  were observed a t  s i t e  16 (North Fork of 

the Red near Headrick) in 1980, s i t e  17 (Red River near T erra i)  in 1977, 

s i t e  20 (Kiamichi River near Big Cedar) in 1977, s i t e  21 (Kiamichi River 

near Antlers) in 1977, and s i t e  23 (L i t t le  River near Idabel) in 1977

and 1978. No obvious p a t te rn s  to  the data were observed.

Figure B-18 shows the chromium levels  in the carnivores in the 

Red River Basin. Elevated levels  were observed a t s i t e  20 (Kiamichi 

River near Big Cedar) in 1977, s i t e  21 (Kiamichi River near A ntlers) in 

1977, s i t e  22 (Red River near DeKalb) in 1977, and s i t e  23 ( L i t t l e  River 

near Idabel) in 1977. Both f ig u res  B-17 and B-18 indicated higher 

levels of chromium in f i s h  in the  Red River Basin during Water Year

1977.

Copper Levels in Fish

Figure B-7 shows the copper levels fo r  the herbivores in the 

Arkansas River Basin. Elevated levels  were noted a t s i t e  1 (S a l t  Fork 

of the Arkansas near J e t )  in 1977 and 1979, s i t e  5 (Arkansas River near 

Sand Springs) in 1977, s i t e  11 (North Canadian River near El Reno) in

1977 and 1978, s i t e  12 (North Canadian River near Harrah) in 1977 and

1978, s i t e  13 (Canadian River near Bridgeport) in 1977 and 1978, s i t e  14 

(Canadian River near Calvin) in 1977, 1978, and 1979, and s i t e  15 

(Poteau River near F t. Smith) in 1977 and 1979. These data  ind ica te  

th a t  copper was present in a large number of herbivore f i s h  samples 

analyzed in the Arkansas River Basin.
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Figure B-8 shows the  copper leve ls  in  the  carnivores in the 

Arkansas River Basin. Elevated levels  were noted a t  s i t e  1 (S a lt  Fork 

of the Arkansas near J e t )  in 1977, s i t e  5 (Arkansas River near Sand 

Springs) in 1977, s i t e  9 ( I l l i n o i s  River near Gore) in 1977, s i t e  11 

(North Canadian River near El Reno) in 1977 and 1979, s i t e  13 (Canadian 

River near Bridgeport) in 1977, s i t e  14 (Canadian River near Calvin) in

1978, and s i t e  15 (Poteau River near F t. Smith) in 1977. These data

ind ica te  the presence of copper in carnivores a t  several sampling s i t e s  

but no observable trends were noted.

Figure B-19 shows the raw data fo r  the copper lev e ls  in the 

herbivores in the Red River Basin. Elevated lev e ls  of copper were noted 

a t  s i t e  16 (North Fork of the Red near T erra i)  in  1977 and 1978, s i t e  20 

(Kiamichi River near Big Cedar) in 1977 and 1978, s i t e  21 (Kiamichi 

River near A ntlers) in 1977, s i t e  22 (Red River near DeKalb) in 1977 and

1978, and s i t e  23 ( L i t t l e  River near Idabel) in 1977 and 1978.

Figure B-20 shows the raw data fo r  copper levels  in ; the 

carnivores in the  Red River Basin. Elevated lev e ls  were noted a t  s i t e  

16 (North Fork of the Red near Headrick) in 1977, s i t e  19 (Muddy Boggy 

near F a rr is )  in 1978, s i t e  20 (Kiamichi River near Big Cedar) in 1977, 

S ite  21 (Kiamichi River near A ntlers) in 1978, s i t e  22 (Red River near 

DeKalb) in 1977 and 1978, and s i t e  23 ( L i t t l e  River near Idabel) in

1978. These data point out the  presence of copper in a number of the  

carnivore f i s h  sampled in the  Red River Basin.

Lead Levels in Fish 

Figure B-9 shows the  lead content o f  the  herbivores co llec ted
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from the  Arkansas River Basin. These data show the presence of lead in 

herbivores a t most of the monitoring s ta t io n s  in the  Arkansas River 

Basin. Elevated lead levels  were noted a t  s i t e  5 (Arkansas River near 

Sand Springs) in 1977, 1978, and 1979, s i t e  6 (Arkansas River near 

Haskell) in 1979, s i t e  9 ( I l l i n o i s  River near Gore) in 1978, s i t e  11 

(North Canadian River near El Reno) in 1977 and 1978, and s i t e  15

(Poteau River near F t. Smith) in 1977.

Figure B-10 shows the lead content of the carnivores in the 

Arkansas River Basin. Elevated levels  were noted a t  s i t e  1 (S a l t  Fork

of the Arkansas near Je t)  in 1979, s i t e  4 (Cimarron River near Perkins)

in 1977 and 1978, and s i t e  11 (North Canadian River near El Reno) in

1977. The carn ivores , l ik e  the  herbivores in the  Arkansas River Basin 

have measurable levels  of lead in th e i r  t i s s u e .

Figure B-21 shows the lead content of the  herbivores in the Red

River Basin. Elevated levels  were noted a t  s i t e  16 (North Fork of the 

Red near Headrick) in 1978 and 1980, s i t e  17 (Red River near T e rra i)  in

1978, s i t e  19 (Muddy Boggy near F a rr is )  in 1977 and 1978, s i t e  21 

(Kiamichi River near Antlers) in 1977, and s i t e  23 ( L i t t l e  River near 

Idabel) in 1977 and 1978. The herbivores in the  Red River Basin had

measureable leve ls  of lead but were lower than the f i s h  sampled in the

Arkansas River Basin.

Figure B-22 shows the lead content of the  carn ivores in the Red 

River Basin. Elevated levels  were noted a t  s i t e  16 (North Fork of the 

Red near Headrick) in 1977, s i t e  20 (Kiamichi River near Big Cedar) in 

1977, and s i t e  23 ( L i t t l e  River near Idabel) in 1977 and 1978. The 

carn ivo res , a lso had lower levels  of lead than the samples from the
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Arkansas River Basin.

Mercury Levels in Fish

Figure B-11 shows the mercury content of the  Herbivores in the 

Arkansas River Basin. Elevated levels  were noted a t  s i t e  2 (Arkansas 

River near Ralston) in 1977, s i t e  4 (Cimarron River near Perkins) in 

1980, s i t e  5 (Arkansas River near Sand Springs) in 1978, and s i t e  6 

(Arkansas River near Haskell) in 1977. No p a tte rn  of e levated  mercury 

levels  were noted in the  herbivores in the Arkansas River Basin.

Figure B-12 shows the mercury content of the  carn ivores in the 

Arkansas River Basin. Elevated levels  were noted a t s i t e  1 (S a lt  Fork 

of the Arkansas near J e t )  in 1977, s i t e  3 (Cimarron River near Buffalo) 

in 1977, s i t e  6 (Arkansas River near Haskell) in 1977, s i t e  7 (Bird 

Creek near Catoosa) in 1978, s i t e  8 ( I l l i n o i s  River near Tahlequah) in 

1979, s i t e  13 (Canadian River near Bridgeport) in 1979 and 1980, s i t e  14 

(Canadian River near Calvin) in 1978, and s i t e  15 (Poteau River near F t. 

Smith) in 1978. Several samples of carnivores were observed to  have 

elevated mercury lev e ls  in the Arkansas River Basin. As with other 

m etals, no observed p a tte rns  were obvious from the  da ta  base availab le  

from t h i s  study. Additional monitoring should be done to  v e r ify  these 

r e s u l t s  before undue concern is  expressed.

Figure B-23 shows the mercury content of the  herbivores from 

th e  Red River Basin. Elevated levels  were observed a t  s i t e  17 (Red 

River near T e rra i)  in 1977, s i t e  19 (Muddy Boggy near F a r r is )  in 1978, 

and s i t e  21 (Kiamichi River near Antlers) in 1978. No obvious pa tte rns  

to  the data  were noted.
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Figure B-24 shows the mercury content of the carnivores from 

the  Red River Basin. Elevated levels  were noted a t s i t e  19 (Muddy 

Boggy near F a rr is )  in 1978 and s i t e  21 (Kiamichi River near Antlers) in

1978. Although the mercury level in the carnivores a t  s i t e  18 and 19 is  

considered to be very high, the values were low a t  the  same location the 

preceeding or following year.

Relationship of Toxic Metal Content to  Trophic Level 

Arkansas River Basin. Figures B-1 through B-12 show the tox ic  

metals data fo r  the Arkansas River Basin. These data do not ind icate  a 

general trend of one trophic  level having higher metal levels than the 

o th e r .  The one exception in the Arkansas River Basin is  the mercury 

le v e ls .  There are several instances where the  mercury values are higher 

in the  carnivores than in the herbivores. The levels  in the carn ivores, 

however, cannot be d i re c t ly  re la te d  to  the  levels  in the herbivores.

Appendix C, Table C-1 shows the mean, standard deviation , 

minimum, and maximum values fo r  the tox ic  metals in the  Arkansas River 

Basin. These basic s t a t i s t i c s  ind ica te  no fu r th e r  re la t io n sh ip s  between 

the herbivores and carnivores than the  raw data  analyses presented in 

the  graphs. The mean values fo r  the  tox ic  metals are very s im il ia r  for 

a l l  the metals except mercury. The mean mercury level fo r  herbivores i s  

0.098 Mg/Kg, while the mean value fo r  the carnivores is  0.305 Mg/Kg. 

These values show a close re la t io n sh ip  with the  data  from the graphs.

Red River Basin. Figures B-12 through B-24 show the toxic  

metal da ta  fo r  the  Red River Basin. These da ta  do not ind ica te  a 

general trend of one troph ic  level having higher tox ic  metals than the
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o th e r .  The one exception in the  Red River is  chromium. This metal is  

more elevated in the  herbivores than in the  carnivores. The levels  in 

the  herb ivores, however do not appear to  be d i re c t ly  re la ted  to  the 

levels  in the  carn ivores.

Appendix C, Table C-2 shows the  mean, standard deviation , 

minimum, and maximum values fo r  the  to x ic  metals in the Red River Basin. 

These basic s t a t i s t i c s  show no more information about the re la t io n sh ip s  

between the herbivores and carnivores than the  raw data analyses 

presented in the  graphs. The mean lev e ls  fo r  the  toxic metals are very 

s im ila r  fo r  a l l  metals including chromium values. These date  do not 

show any s ig n if ic a n t  re la t io n sh ip  to  the  tox ic  metals in the  herbivores 

as compared to  the  levels  in the carn ivores .

Toxic Metals in Water

Table 3 shows the raw data fo r  the  tox ic  metal analyses of 

water samples which were co llec ted  a t the  same locations as the  f i s h  

samples. These data represent an average concentration of four values 

fo r  each Water Year. A prelim inary look a t  these  data ind ica te  low 

concentrations of tox ic  metals in the  water column. A dditionally , 

Appendix C shows the re s u l t s  of the  ca lcu la t io n s  of the mean, standard 

dev ia t ion , minimum, and maximum values fo r  the  individual tox ic  metals 

in f i s h ,  w ater, and sediment. Table C-1 l i s t s  the  basic s t a t i s t i c s  fo r  

the Arkansas River Basin while Table C-2 shows the same data fo r  the  Red 

River Basin. These s t a t i s t i c s  also po in t out the  low tox ic  metal 

content of the  water samples co llec ted  and analyzed from the  monitoring 

s ta t io n s .
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Table 3. Toxic Metal Data In Water (Reported in Mg/L) by S ta tion  
Location and Water Year.

Site Year Arsenic Cadmium Chromium Copper Lead Mercury

1 1977 * 0.001 0.010 0.045 0.026 0.039 * 0.001
1978 0.003 0.015 0.013 0.019 0.035 * 0.001
1979 * 0.001 0.008 0.010 0.015 0.040 * 0.001
1980 0.011 0.011 0.015 0.020 * 0.001

2 1977 0.008 0.003 0.029 0.013 0.013 * 0.001
1978 0.003 0.008 0.010 0.011 0.062 * 0.001
1979 * 0.001 0.003 0.010 0.008 0.024 * 0.001

3 1977 0.014 0.008 0.018 0.030 * 0.001 * 0.001
1978 0.003 0.002 0.021 0.024 0.029 * 0.001
1979 * 0.001 0.020 0.310 0.033 * 0.001 0.165
1980 0.039 0.002 0.013 0.007 0.020 * 0.001

4 1977 * 0.001 0.015 0.100
1978 0.009 0.003 0.025 0.019 0.053 * 0.001
1979 * 0.001 0.002 0.030 0.009 * 0.001 0.020
1980 0.001 0.002 0.010 0.013 0.020 * 0.001

5 1977 * 0.001 0.001 0.010 0.001 0.100
1978 0.003 0.008 0.017 0.012 0.055 * 0.001
1979 * 0.001 * 0.001 0.020 0.010 * 0.001 0.160
1980 0.005 0.002 0.018 0.006 0.047 * 0.001

6 1977 * 0.001 0.002 0.032 0.007 0.012 * 0.001
1978 0.004 0.001 0.027 0.010 0.051 * 0.001
1979 * 0.001 0.002 0.016 0.009 0.022 * 0.001
1980 * 0.001 0.002 0.010 0.006 0.036 * 0.001

7 1978 0.001 0.003 0.017 0.012 0.023 0.001
1979 * 0.001 0.005 0.024 0.008 0.029 * 0.001
1980 * 0.001 0.002 0.012 0.007 0.030 * 0.001

8 1978 * 0.001 0.001 0.016 0.006 0.015 * 0.001
1979 * 0.001 0.002 0.010 0.003 0.015 * 0.001

9 1977 0.001 0.001 0.015 0.005 0.009 * 0.001
1978 0.001 0.001 0.008 0.003 0.011 * 0.001
1979 * 0.001 0.002 0.015 0.003 0.009 * 0.001

10 1979
1980 0.002 0.024 0.012 0.020 * 0.001

* = Less Than Detection Lim it
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S ite Year Arsenic Cadmium Chromium Copper Lead Mercury

11 1977 * 0.001 0.002 0.022 0.005 0.017 * 0.001
1978 0.004 0.001 0.014 0.004 0.026 * 0.001
1979 * 0.001 0.002 0.012 0.015 0.012 * 0.001
1980 * 0.001 0.005 0.010 0.004 0.020 * 0.001

12 1977 * 0.001 0.003 0.032 0.011 0.022 * 0.001
1978 0.007 0.001 0.010 0.009 0.070 * 0.001
1980 * 0.001 0.002 0.012 0.009 0.020 * 0.001

13 1977 * 0.001 0.002 0.034 0.021 0.028 * 0.001
1978 0.002 0.002 0.011 0.005 0.025 * 0.001
1979 * 0.001 0.002 0.011 0.010 0.035 * 0.001
1980 0.008 0.005 0.014 0.011 0.020 * 0.001

14 1977 0.006 0.008 0.010 0.011 0.063 * 0.001
1978 0.005 0.002 0.018 0.016 0.025 * 0.001
1979 * 0.001 * 0.001 0.040 0.011 * 0.001 0.054
1980 * 0.001 0.005 0.018 0.010 0.051 * 0.001

15 1977 * 0.001 0.003 0.028 0.004 0.008 * 0.001
1978 0.004 0.001 0.025 0.013 0.031 * 0.001
1979 * 0.001 0.002 0.036 0.012 0.030 * 0.001

16 1977 * 0.001 0.013 0.018 * 0.001 0.100
1978 0.003 0.009 0.010 0.010 0.010 * 0.001
1979 * 0.001 0.003 0.030 0.006 * 0.001 * 0.001
1980 0.015 0.003 0.013 0.017 0.020 * 0.001

17 1977
1978

* 0.001 0.004 0.063 0.034 0.038 * 0.001

1979 0.002 0.014 0.017 0.020 * 0.001

18 1977 * 0.001 0.010 * 0.001 0.100
1978 0.004 * 0.001 0.053 0.012 0.021 * 0.001
1979 * 0.001 * 0.001 0.030 0.016 0.046 * 0.001
1980 * 0.001 0.002 0.014 0.007 0.020 * 0.001

19 1977 * 0.001 0.001 0.035 0.008 0.008 * 0.001
1978 0.001 0.001 0.021 0.008 0.009 * 0.001
1979 * 0.001 0.002 0.014 0.005 0.009 * 0.001
1980 0.023 0.003 0.024 0.021 0.021 * 0.001

20 1977 0.001 0.001 0.012 0.001 0.002 * 0.001
1978 * 0.001 0.002 0.006 0.002 0.030 0.001
1979 * 0.001 0.002 0.013 0.004 0.020 * 0.001

*  = Less Than Detection L im it
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Table 3. (cont.)

S ite Year Arsenic Cadmium Chromium Copper Lead Mercury

21 1977 * 0.001 0.001 0.016 0.004 0.025 0.001
1978 0.001 0.001 0.014 0.004 0.007 0.001
1979 0.033 0.002 0.012 0.003 0.008 0.001

22 1977 * 0.001 * 0.001 0.016 0.009 * 0.001 0.020
1978
1979 * 0.001 * 0.001 * 0.010 * 0.001 * 0.001 * 0.001

23 1977 * 0.001 * 0.001 0.011 0.006 * 0.001 * 0.001
1978 0.001 0.008 0.016 0.006 0.115 * 0.001
1979 * 0.001 0.004 0.022 0.004 * 0.001 * 0.001
1980 * 0.001 * 0.001 0.010 0.004 * 0.001 * 0.001

* = Less Than Detection Limit
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Toxic Metals in Sediment 

Table 4 shows the raw data fo r  the toxic metal analyses of the  

sediment samples which were co llec ted  and analyzed a t  the same time and 

locations  as the  f ish  samples. A prelim inary review of these  data 

ind ica te  high tox ic  levels  are present a t several monitoring s i t e s .  

A dditionally , Appendix C shows the  r e s u l t s  of ca lcu la tions  of the  mean, 

standard dev ia tion , minimum, and maximum values- fo r  the individual toxic  

metals in f i s h ,  water, and sediment fo r  both the Arkansas and Red River 

Basins. Table C-1 shows the basic  s t a t i s t i c s  for the Arkansas River 

Basin. All of the sediment samples had elevated mean tox ic  metal 

le v e ls .

Table C-2 shows the  basic  s t a t i s t i c s  fo r the Red River Basin.

As was noted in the Arkansas River Basin da ta , the sediment samples have 

elevated mean values. I t  should also be noted th a t  the standard 

deviations on some of the parameters, e sp ec ia lly  the metals da ta  were 

very high. This s i tu a t io n  is  not considered th a t  unusual fo r  the  

sediment grab samples co llec ted  in t h i s  p ro jec t .

Total Hardness. pH, and Flow 

Table 5 presents the raw data fo r  to ta l  hardness, pH, and flow 

by s ta t io n  location and Water Year. The samples fo r  these analyses were 

co llec ted  a t  several d i f fe re n t  times of the  year. The average values 

fo r  t o t a l  hardness and pH are summarized in the ta b le .  Additional 

basic  s t a t i s t i c s  are presented in Appendix C, Table C-3.
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Table 4. Toxic Metal Data in Sediment (Reported in Mg/Kg) by Station 
Location and Water Year.

S ite Year Arsenic Cadmium Chromium Copper Lead Mercury

1 1977 4.00 * 1.00 12.00 8.00 3.00 13.00
1978 3.00 * 1.00 19.00 6.00 * 1.00 17.00
1979 * 2.00 * 1.00 5.00 * 2.00 * 1.00
1980 3.30 2.00 19.00 7.00 * 1.00 12.00

2 1977
1978 * 2.00 1.00 15.00 * 2.00 * 1.00 * 5.00
1979 * 2.00 * 1.00 * 5.00 * 2.00 * 1.00

3 1977 128.00 * 1.00 13.00 2.00 * 1.00
1978 * 2.00 1.00 11.00 5.00 * 1.00
1979
1980 * 2.00 1.00 * 5.00 * 2.00 * 5.00

4 1977 3.00 * 1.00 24.00 9.00 * 1.00 11.00
1978 2.00 * 1.00 15.00 2.00 * 1.00 9.00
1979 * 2.00 * 1.00 13.00 3.00 1.27
1980 * 2.00 * 1.00 * 5.00 * 2.00 * 5.00

5 1977 2.60 * 1.00 17.00 4.00 * 1.00 * 5.00
1978 * 2.00 1.00 18.00 * 2.00 * 1.00 * 5.00
1979 2.00 1.00 * 5.00 * 2.00 * 1.00
1980 * 2.00 * 1.00 6.00 * 2.00 13.00 * 5.00

6 1977 * 2.00 * 1.00 13.00 3.00 * 1.00 * 5.00
1978 * 2.00 2.00 32.00 4.00 * 1.00 * 5.00
1979 * 2.00 1.00 * 5.00 * 2.00 * 1.00
1980 * 2.00 * 1.00 * 5.00 * 2.00 * 1.00

7 1978 * 2.00 2.00 27.00 19.00 34.00 8.00
1979 * 2.00 * 1.00 5.00 3.00 * 1.00
1980

8 1978 2.20 2.00 45.00 * 2.00 * 1.00 * 5.00
1979

9 1977 285.00 * 1.00 21.00 2.00 * 1.00 * 5.00
1978 2.10 * 1.00 80.00 2.00 * 1.00 * 5.00
1979 4.00 1.00 22.00 6.00 16.00 11.00

10 1979
1980 * 2.00 * 1.00 6.00 * 2.00 * 1.00

11 1977 * 2.00 * 1.00 5.00 * 2.00 7.00 * 5.00
1978 * 2.00 * 1.00 15.00 * 2.00 * 1.00 * 5.00
1979 * 2.00 * 1.00 * 5.00 * 2.00 * 1.00
1980 3.60 2.00 * 5.00 * 2.00 * 1.00

*  = Less Than Detection Limit
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Site Year Arsenic Cadmium Chromium Copper Lead Mercury

12 1977 13.00 * 1.00 9.00 9.00 19.00 15.00
1978 * 2.00 1.00 19.00 * 2.00 * 1.00 9.00
1980 * 2.00 3.00 * 5.00 * 2.00 * 1.00

13 1977 6.00 * 1.00 * 5.00 * 2.00 * 1.00 * 5.00
1978 * 2.00 1.50 16.00 * 2.00 * 1.00 * 5.00
1979 * 2.00 * 1.00 5.00 * 2.00 * 1.00
1980 * 1.00 * 5.00 * 2.00 * 1.00

14 1977 3.60 * 1.00 28.00 20.00 * 1.00 50.00
1978 * 2.00 * 1.00 8.00 * 2.00 * 1.00 * 5.00
1979 * 2.00 1.00 6.00 * 2.00 * 1.00
1980 32.00 1.00 10.00 7.00 12.00 * 5.00

15 1977 524.00 * 1.00 46.00 14.00 * 1.00 25.00
1978 2.40 * 1.00 56.00 6.00 * 1.00 16.00
1979 24.00 * 1.00 11.00 6.00 * 1.00 29.00

16 1977 13.00 * 1.00 9.00 9.00 19.00 15.00
1978 * 2.00 1.00 19.00 * 2.00 * 1.00 9.00
1980 * 2.00 3.00 * 5.00 * 2.00 * 1.00

17 1977 12.00 * 1.00 10.00 3.00 13.00 5.00
1978 * 2.00 * 1.00 20.00 8.00 * 1.00 13.00
1979 * 2.00 2.00 9.00 * 2.00 * 1.00

18 1977 21.00 * 1.00 11.00 3.00 * 1.00 6.00
1978 4.80 1.00 6.00 2.00 * 1.00 5.00
1979 2.00 1.00 8.00 3.00 * 1.00
1980 2.30 * 1.00 * 5.00 2.00 * 1.00

19 1977 12.00 * 1.00 7.00 * 2.00 * 1.00 * 5.00
1978 * 2.00 1.00 42.00 * 2.00 * 1.00 ★ 5.00
1979 2.20 * 1.00 5.00 * 2.00 * 1.00
1980 * 2.00 * 1.00 * 5.00 * 2.00 * 1.00

20 1977 9.00 * 1.00 36.00 9.00 3.60 25.00
1978 * 2.00 * 1.00 28.00 * 2.00 * 1.00 * 5.00
1979 35.00 * 1.00 18.00 10.00 * 1.00 16.00

21 1977 230.00 * 1.00 30.00 7.00 * 1.00 15.00
1978 * 2.00 * 1.00 59.00 4.00 * 1.00 12.00
1979 9.00 1.00 18.00 9.00 * 1.00 52.00

22 1977 105.00 * 1.00 23.00 5.00 * 1.00 10.00
1978 * 2.00 1.00 90.00 * 2.00 * 1.00 * 5.00
1979 * 2.00 1.00 10.00 4.00 * 1.00

* = Less Than Detection Lim it



70

Table 4. (cont.)

S ite  Year Arsenic Cadmium Chromium Copper Lead Mercury

23 1977 154.00 * 1.00 14.00 3.00 5.00
1978 * 2.00 2.00 67.00 * 2.00 ★ 1.00 * 5.00
1979 3.00 * 1.00 * 5.00 * 2.00 * 1.00
1980 22.50 * 1.00 23.00 * 2.00 * 1.00 34.00

* = Less Than Detection Limit
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Table 5. Total Hardness, pH, and Flow by S ta tion  Location and Water Year.

Water Total Flow
S ite Year fiH Hardness (ÜF5)

1 1977 8.4 681 67
1978 8.4 532 63
1979 8.1 772 298
1980 8.1 604 182

2 1977 8.3 249 11310
1978 8.4 264 6724
1979 7.5 326 4037

3 1977 8.2 517 142
1978 8.1 545 703
1979 6.9 423
1980 8.0 1472

4 1977 8.4 665 1119
1978 8.2 693 1781
1979 833
1980 7.6 613

5 1977 8.1
1978 7.7 230 13230
1979 6822
1980 7.5 570 7728

6 1977 8.2 244 9362
1978 8.1 226 4942
1979 8.1 272 6561
1980 7.7 246 7080

7 1978 7.4 164
1979 7.3 140
1980 7.1 233

8 1978 7.1 100 422
1979 7.2 110 333

9 1977 7.6 15 324
1978 7.8 127 1590
1979 7.6 93 545

10 1979 110
1980 7.6 333 43

11 1977 8.3 455 35
1978 8.2 366 30
1979 8.0 413 270
1980 7.2 427 145
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Table 5. (cont.)

Water Total Flow
S ite  Year pH Hardness (CFS)

12 1977 7.9 306 157
1978 8.1 289 141
1980 7.5 361 451

13 1977 8.3 573 77
1978 8.3 344 8
1979 8.2 500
1980 7.9 683 7

14 1977 8.2 319 1262
1978 8.2 330 2071
1979 1348
1980 7.8 134 57

15 1977 7.1 38
1978 7.1 47
1979 7.5 28

16 1977 8 .0  1118 113
1978 7.9 1192 80
1979 120
1980 7.9 860 27

17 1977 8.3 870 977
1978 7.7 934 487
1979 996

18 1977 8.1 274 431
1978 8.1 500 392
1979 761
1980 7.7 605 911

19 1977 7.6 59 60
1978 7.5 86 13
1979 7.3 78 89
1980 7.2 102 2

20 1977 7.1 1
1978 7.3 8 13
1979 7.2 43

21 1977 7.0 28 48
1978 7.3 20 182
1979 7.1 19 223

22 1977 7 .8  255 3358
1978 3101
1979 4551
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Table 5. (cont.)

Water Total Flow
S ite Year EH Hardness (ÜF5)

23 1977 6.7 25 94
1978 7.4 30 333
1979 7.0 32 407
1980 7.3 32 26
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Total Hardness

The concentrations fo r  t o t a l  hardness rep resen t th e  mean values 

f o r  a l l  of the data fo r  the  e n t i r e  year. The data from the  Arkansas 

River Basin and the  Red River Basin can be discussed toge ther since the  

basic  s t a t i s t i c s  presented in Table C-3 are very s im ila r  fo r  both 

b as in s .  The range of hardness i s  more a function of eas te rn  and western 

Oklahoma than of the  Arkansas or Red River Basins. The most important 

item to  be noted from these  da ta  is  th a t  in most of the sampling 

lo c a t io n s ,  s u f f ic ie n t  hardness is  present to  allow fo r adequate 

buffering  capacity  with re spec t to  the tox ic  p ro p e rt ie s  of the  tox ic  

metals being addressed in th i s  paper.

pH

As with the  hardness da ta ,  the  pH values presented in Table 5 

rep resen t mean values of a l l  the  data  fo r  a water year t h a t  were 

a v a i lab le .  The data from the Arkansas and Red River Basins are s im ila r  

enough to  warrant discussing them to ge ther .  The major function  of pH 

d iffe ren ces  r e la te s  mostly to  western or eas te rn  Oklahoma ra th e r  than 

the  Arkansas or Red River Basin. The s t a t i 's t i c s  are presented in  Table 

C-3 and ind ica te  the  minimum value reported was 7.5 in the  Arkansas 

River Basin and and 6.7 in the  Red River basin . These da ta  point out 

th a t  the  pH of the  water should not increase the t o x i c i t y  o f  the metals 

to  the  f i s h .

Flow

The flow data included herein  were obtained from the  United 

S ta te s  Geological Survey Surface Water Records fo r  Oklahoma fo r  Water
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Year 1977 and 1978 (135,136). The flow data fo r  Water Year 1979 and 

1980 were not published a t the  time of t h i s  w r i t in g .  Since complete 

flow records were not av a ilab le ,  and since p a r t i a l  flow data could be 

obtained v e rba lly , the decision was made to  use only the  flow data which 

corresponded to  the most c r i t i c a l  flow periods a t the  time the f i s h  

samples were co llec ted .  Therefore, only the  flow data  fo r  the  month of 

July were used in Table 5. The flow data fo r Water Year 1979 and 1980 

are sub jec t to  change but w ill  be published a t  a l a t e r  data by the  

United S ta tes  Geological Survey (137).

Table C-3 shows the basic s t a t i s t i c s  fo r  the flow da ta . As 

would be expected, the flow data fo r  a l l  of the  streams represented in 

t h i s  study are extremely v a r iab le .  This v a r ia t io n  is  also pointed out 

by the high standard deviation of the  da ta .  Additional study needs to  

be done to  address the e f fe c ts  of flow on the t ra n sp o r t  and deposition 

of sediments as well as the re la t io n sh ip  of flow to  the tox ic  metals in 

the  water column and the sediments and the u ltim ate  impact on the f is h  

populations.

Data C orrela tion

One concern of t h i s  study of the to x ic  metals in na tura l f i s h  

populations in Oklahoma is  the  presence or absence of any cause and 

e f fe c t  re la t io n sh ip s  between any of the  da ta  th a t  were generated. In 

order to  determine the e f f e c t  one v a r iab le  had on another, a s e r ie s  of 

Pearson moment co rre la t io n  c o e f f ic ie n ts  were run between paired data  

s e t s .  Appendix D presents  the  r e s u l t s  of se lec ted  c o r re la t io n s .  For 

the purpose of th i s  d iscuss ion , a c o r re la t io n  of  0.50 w il l  be taken as
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an ind ica tion  th a t  these  re la t io n sh ip s  might be co rre la ted .

Metals in Water to  Metals in Fish

Table D-1, Appendix D shows the c o r re la t io n  c o e f f ic ien ts  of the  

tox ic  metals in water to  the  tox ic  metals in f i s h  in the Arkansas River 

Basin. The re la t io n sh ip s  with c o rre la t io n s  g rea te r  than 0.50 were: 

cadmium to arsenic  in herbivores, 0.53; chromium to arsenic  in 

herbivores, 0 .65; mercury to  a rsen ic  in herb ivores, 1.00; and mercury to  

mercury in herb ivores, 0.70. A negative co rre la t io n  of -0.66 fo r 

mercury to  mercury in carn ivores. The exact reasons fo r  the  pa tte rn  of 

these  co rre la t io n s  is  not known. The p e rfe c t  co rre la t io n  of 1.00 

ind ica tes  th a t  th i s  in te r re la t io n s h ip  should be explored fu r th e r .

Table D-2 shows the c o rre la t io n  c o e f f ic ie n ts  of the  toxic 

metals in the  water to  tox ic  metals in the  f i s h  in the  Red River Basin. 

The re la t io n sh ip s  with co rre la tio n s  g re a te r  thkan 0.50 included: 

arsenic  to  arsen ic  in herbivores, 0.84; arsen ic  to  arsen ic  in 

carn ivores, 0.65; arsen ic  to  cadmium in herb ivores, 0.59; arsen ic  to 

cadmium in carn ivores , 0.60; chromium to  arsen ic  in herb ivores, 0.63; 

chromium to  a rsen ic  in carn ivores, 0.64; copper to arsenic  in 

herbivores, 0 .88; and, mercury to  copper in carn ivores, 0 .79. Negative 

co rre la t io n s  g rea te r  than the 0.50 level included: arsen ic  to  copper in 

herb ivores, -0 .70; a rsen ic  to  lead in carn iv o res ,  -0 .90; cadmium to  

a rsen ic  in carn ivores , -0.58; and, lead to  arsenic  in carn ivores , -0 .62. 

As was s ta ted  e a r l i e r ,  these r e s u l t s  may be somewhat misleading; bu t,  i t  

appears th a t  the  lev e ls  of toxic  metals in the  water is  re la ted  to  the 

presence of tox ic  metals in the  f i s h  samples.
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Metals in Sediment to  Metals in Fish 

Table D-1 also shows the co rre la t io n  c o e f f ic ien ts  of the  tox ic  

metals in the  sediment samples to  the  toxic metals in the f i s h  samples 

from the Arknasas River Basin. The co rre la t io n s  g rea te r  than 0.50 were: 

arsenic  to  arsen ic  in herbivores, 0.70; arsen ic  to  cadmium in 

herbivores, 0 .77; arsen ic  to  chromium in herbivores, 0.51; mercury to  

copper in herb ivores, 0.63; and, mercury to  lead in herbivores, 0.74. 

These data  ind ica te  th a t  there  seems to  be le ss  co rre la t io n  of metals in 

sediment to  the metals in f i sh  than metals in the  water samples to  the 

metals in th e  f i s h  in the  Arkansas River Basin.

Table D-2 also  shows the co rre la t io n  c o e f f ic ie n ts  of the  tox ic  

metals in the sediment samples to  the tox ic  metals in f i s h  in th e  Red 

River Basin. Those re la t io n sh ip s  with c o r re la t io n s  g rea te r  than 0.5 

included: arsen ic  to  arsenic  in carn ivores, 0 .74; arsen ic  to  cadmium in 

carn ivores , 0.52; arsen ic  to  chromium in carn ivores , 0.67; copper to 

arsenic in carn ivo res , 0 .74; and, lead to  chromium in herb ivores, 0.85. 

I t  should also be noted th a t  a negative co rre la t io n  of -1.00 was 

observed between mercury in the sediment to  arsen ic  in the  herb ivores. 

The reason fo r  th i s  is  not known. Generally, th e re  appears to  be less  

co rre la t io n  of to x ic  metals in sediment to  tox ic  metals in f i s h  in the  

Red River Basin.

Metals in Water to Metals in Sediment 

Table D-3, Appendix D, shows the c o r re la t io n  c o e f f ic ie n ts  which 

r e l a t e  to x ic  metals in the  water to  the  tox ic  metals in the  sediment. 

C orre la tions  in th e  Arkansas River Basin above 0.50 included: mercury
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in water to  arsenic  in sediment, 0.70 and mercury in water to  mercury in 

sediment, 0 ,50. Negative co rre la t io n s  g rea te r  than 0.50 were: mercury 

in water to  copper in sediment, -0 .53; and mercury in water to  lead in 

sediment, -0 .60 . These data  point out the f a c t  th a t  the  presence of 

mercury in water may have a re la t io n sh ip  on the concentration of other 

tox ic  metals in the sediment.

Table 0-3 a lso shows the  c o rre la t io n  c o e f f ic ie n ts  fo r  the tox ic  

metals in water to  tox ic  metals in sediment in the  Red River Basin. 

C orre la tions  g rea te r  than 0.50 included: arsenic  in water to  mercury in

sediment, 0 .88; chromium in water to  lead in sediment, 0 .62; copper in 

water to  lead in sediment, 0 .64; and, lead in water to  cadmium in 

sediment, 0 .56. Negative c o r re la t io n s  g rea te r  than 0.50 included: 

a rsen ic  in water to  chromium in sediment, -0 .50; lead in water to 

mercury in sediment, -0 .57; mercury in water to  chromium in sediment, 

-0 .69 ; and, mercury in water to  copper in sediment, -0 .52 . These 

r e la t io n sh ip s  are not high enough to  ind ica te  d i r - c t  c o r re la t io n s .  They 

should be looked a t  more c lo se ly  in fu tu re  tox ics  work.

Total Hardness, pH, and Flow to  Toxic Metals in Fish

Tables D-1 and D-2 show the c o rre la t io n  c o e f f ic ie n ts  fo r  pH, 

to t a l  hardness, and flow to  the  tox ic  metal levels  in the  f i s h  samples 

from the  Arkansas and Red River Basins. C oeffic ien ts  g re a te r  than 0.50 

in the Arkansas River Basin included: pH to  arsenic  in carn iv o res ,  0.52 

and to t a l  hardness to  a rsen ic  in carn ivores , 0 .75. Negative 

c o rre la t io n s  ca lcu la ted  fo r  the  Red River Basin were: pH to  a rsen ic  in 

herb ivores , -0 .59 , and to ta l  hardness to  a rsen ic  in he rb ivores , -0 .54 .
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The reason fo r  the  pos it ive  co rre la t io n s  in th e  Arkansas River Basin and 

the negative c o r re la t io n s  in the  Red River Basin is  not known. The main 

po in t of these  data  is  th a t  there  does not appear to  be any defensib le  

c o r re la t io n  of t o t a l  hardness, pH, and flow to  the  levels  of tox ic  

metals in na tu ra l f i s h  populations in Oklahoma.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This research  p ro jec t  was designed to  in v es t ig a te  the  tox ic  

metal leve ls  in the  na tura l f i s h  populations in Oklahoma. Many 

questions arose throughout the  course of the  p ro jec t  th a t  need to  be 

examined in more depth and d e t a i l .  I t  is  hoped th a t  th i s  prelim inary 

work w ill r e s u l t  in water q u a l i ty  management agencies in Oklahoma 

implementing a more comprehensive and d e ta i led  research  program to 

adequately address the  question of the leve ls  and e f fe c t s  of tox ic  

metals on the  na tu ra l  f i s h  populations in Oklahoma.

Conclusions

1. This p ro je c t  should be viewed as a base l in e  study of the

to x ic  metals in natural f ish  populations in Oklahoma. The 

concen tra tions  of tox ic  metals in the  f i s h  samples analyzed 

were low. A few cases of elevated to x ic  metals in the  f i s h  

samples were observed but no co n s is ten t  p a t te rn s  were 

d e tec ted . For the  purpose of t h i s  p ro je c t  the  term e levated  

re fe r re d  only to  a comparison of the  mean values fo r  the 

indiv idual basin under consideration and do not n ece ssa r i ly  

r e f e r  to  concentra tions which are detrim ental to  the  f i s h .

80
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Due to  the scope of t h i s  p ro je c t ,  i t  was not possib le  to  

determine the  sources causing these s l ig h t ly  elevated le v e ls .

2. The data generated by t h i s  p ro jec t were d i f f i c u l t  to  in te rp re t  

due to  the low concentrations of tox ic  metals observed in the  

f is h  and water samples. These low levels of tox ic  metals in 

the f i s h  and water samples indicated th a t  tox ic  metal 

po llu tion  did not appear to  be a s ig n if ic a n t  problem over a 

large portion of Oklahoma. The acute , tox ic  e f fe c ts  of metals 

was not a problem. I t  is  very d i f f i c u l t  to  evaluate the 

chronic e f fe c ts  of the low levels  of toxic m etals. The 

chronic e f fe c ts  of sub -le tha l doses of toxic  metals on f i s h  is  

not well doccumented in the l i t e r a tu r e .

3. The tox ic  metals measured in the sediment samples co llec ted  at 

the same time the f i s h  samples were co llected  showed elevated 

levels  a t many of the  s i t e s  studied.

4. The pH and to ta l  hardness of the water samples were observed 

to  be within leve ls  which generally  do not a f fe c t  the t o x ic i ty  

of metals to  the na tura l f i s h  populations.

5. No s ig n if ic a n t  c o r re la t io n  co e f f ic ien ts  were observed between 

the flow measurements and the levels  of toxic  metals observed 

in the f i s h  samples. This is  to  be expected because of the 

low levels  of to x ic  metals observed in the f is h  samples and 

the  low flow cond itions .

6. There were v i r t u a l ly  no s ig n if ic a n t  co rre la tions  observed 

between the  to x ic  metal leve ls  in the  water samples and the  

levels  observed in the  sediment samples due to  the absorbtive
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capacity  of the  sediments. The re lease  of the  metals from the 

sediments in to  the  water would be very slow.

Recommendations

1. Additional work should be undertaken to  determine the

co rre la t io n s  of to x ic  metals content between a l l  of the  

components of the aquatic  ecosystem ( f i s h ,  water, and 

sediment). In order to  accomplish th i s  o b jec t iv e ,  an a ly t ica l  

methods need to  be developed which w ill increase the speed and 

decrease the cost of f i s h  and sediment an a ly s is .  More 

sen s i t iv e  an a ly t ica l  procedures fo r  toxic  metal analysis  also 

need to  be developed. Lower detec tion  l im its  would allow fo r 

b e t te r  use of c o r re la t io n  s t a t i s t i c s .

2. Research programs which w ill allow fo r more e f f o r t  in the 

co lle c t io n  and ana lys is  of tox ic  metals in f i s h ,  sediment, and 

water should be developed. Samples of whole f i s h  and 

d i f f e r e n t  organs as well as ed ib le  portions of the  f i s h  should 

be analyzed. A comparison should be made of o ld e r ,  la rger 

f ish  and younger, sm aller f i s h  r e la t iv e  to  tox ic  metal lev e ls .  

The same species  o f  f i s h  should be examined a t d i f f e r e n t  

locations across the  s t a t e .  More f ish  samples from each s i t e  

would allow fo r  b e t te r  data co r re la t io n .  I t  is  a lso important 

to  note th a t  t h i s  work should be done under c r i t i c a l ,  low flow 

conditions of the  stream.

3. Future s tud ies  of th e  re la t io n sh ip s  of tox ic  metals in water 

and sediment should include a measure of the  organic content



83

of the water and sediments. The e f fe c t  of the organics on the 

re ten tio n  of tox ic  metals in the  sediment should be 

inv es t ig a ted .

4. Studies of the toxic  metal leve ls  in samples of natural f i s h  

populations should include a measure of the biomass of the  

f i s h  population a t the sample s i t e .

5. More consecutive years of monitoring data should be obtained 

so r e l i a b le  trends can be evaluated a t  each s ta t io n .  This 

would then allow fo r  the evaluation of sources (point and non­

poin t)  of tox ic  metals in the f i s h  t i s s u e s .

6. Additional study should be done to  evaluate the re la t io n sh ip s

of flow p a tte rn s  to  the  sediment deposition and the levels  of

to x ic  metals observed in na tu ra l f i s h  populations.

7. Due to  the  elevated leve ls  of metals in the  sediment with

re spec t to  the levels  in the f i s h  and water samples, s tud ies

should be conducted to  in v es t ig a te  the  re lease  p o ten tia l  of 

these  metals from the sediments.
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TABLE A-1. SAMPLE STATION DESCRIPTIONS, NAMES AND LEGAL LOCATIONS.

STATION
NUMBER

USGS
NUMBER NAME

LEGAL
DESCRIPTION LOCATION

1505 S a i t  Fork o f  the
Arkansas River 
near J e t

1525 Arkansas River a t
Ralston

1579.5 Cimarron River near 
Buffalo

1610 Cimarron River a t
Perkins

1644 Arkansas River near
Sand Springs

1655.7 Arkansas River a t  
Haskell

NE/4 NE/4 
Sec11 T26N R9W

NW/4 Sec 1 
T23N R5E

NW/4 SW/4 
Sec 7 T28N R20W

SW/4 SW/4 
Sec 7 T17N R3E

NW/4 SW/4 Sec 14 
T19N RUE

NE/4 Sec 31 
T16N R16E

0.6 mile downstream from Great 
S a l t  P la ins  Dam, 4 miles upstream 
from Wagon Creek, 6 miles no rtheast  
of J e t ,  and a t  Mile 102.7

2 miles downstream from S a l t  Creek, 
2 miles upstream from Grayhorse 
Creek, and a t  Mile 594.0

6 miles upstream from Keno Creek,
7 miles upstream from Bridge on 
US Highway 64, 14 miles no rtheast  
o f  B uffalo , and a t  Mile 296.0

1 mile south o f  Perk ins , 1.5 miles 
upstream from Dugout Creek, 4 .0 
miles downstream from Wildhorse 
Creek, and a t  Mile 87.3

5.1 miles downstream from Keystone 
Dam, and 10 miles upstream from 
Gaging S ta t io n  a t  Tulsa

2 miles e a s t  o f  H askell, 23.5 miles 
upstream from V erdigris  R iver, and 
a t  Mile 483.7
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TABLE A-1. (cont.)

STATION
NUMBER

USGS
NUMBER NAME

LEGAL
DESCRIPTION LOCATION

8

10

11

12

13

1780.5 Bird Creek near
Catoosa Highway 167

1965 I l l i n o i s  River near
Tahlequah Highway 62

1980 I l l i n o i s  River near
Gore

2424 Deep Fork River
near Wellston

2395 North Canadian a t
El Reno

2415.5 North Canadian 
River a t  Harrah

2285 South Canadian River
a t  Bridgeport

NW/4 SE/4 NW/4 
Sec 9 T20N R14E

SE/4 Sec 26 
T17N R22E

NE/4 SW/4 
Sec 27 T13N 
R21E

Sec 32 T13N 
R7W

SW/4 NW/4 
Sec 22 T12N 
RIE

SE/4 SW/4 
Sec 28 T13N 
RllW

At bridge on US Highway 75, 
approximately 5.5 miles northwest 
of  Catoosa

0.2 mile downstream from US 
Highway 62, 2.2 miles no rth eas t  
o f  Tahlequah, 6.5 miles upstream 
from Baron Fork, and a t  Mile 55.8

4.3 miles downstream from T en k il le r  
Ferry Dam, 4.5 miles n o rth eas t  of 
Gore, and a t  Mile 8.5

2.0 miles north  o f Courthouse 
in El Reno, 2.2 miles downstream 
from Target Creek, and a t  Mile
307.4

2.2 miles northwest o f  Harrah 
and a t  Mile 230

1.0 mile north  o f  Bridgeport,
2 .8  miles upstream from Lumpmouth 
Creek, and a t  Mile 267.1



TABLE A-1. (cont.)

STATION
NUMBER

USGS
NUMBER NAME

LEGAL
DESCRIPTION LOCATION

14

15

16

17

18

19

20

2315 Canadian River a t
Calvin

2494.4 Poteau River near 
F t. Smith, Arkansas

3050 North Fork of the  Red
River near Headrick

3155 Red River near Terra!

3310 Washita River near
Durwood

3340 Muddy Boggy Creek
near F a rr is

3357 Kiamichi River near
Big Cedar

NE/4 SW/4 Sec 22 
T6N RlOE

SE/4 SW/4 
Sec 9 TION 
R27E

NW/4 NE/4 
Sec 21 T2N 
R18W

NW/4 SW/4 
Sec 3 T4S R3E

NE/4 NW/4 Sec 26 
T3S R13E

SW/4 SE/4 Sec 18 
T2N R26E

0.5 mile no rth eas t  o f  Calvin,
2.4 miles upstream from Shawnee 
Creek, 8 .5  miles downstream 
from L i t t l e  River, and a t  Mile 93.9

1.2 miles west of S ta te  Line, 
and 2.0 miles southwest of F t. Smith

2.5 miles e a s t  o f  Headrick, 12.9 
miles upstream from O tte r  Creek, 
and a t  Mile 33.0

1.2 miles south o f T e r ra i ,  3.6 miles 
downstream from L i t t l e  Wichita 
River, and a t  Mile 872

1.3 miles downstream from Caddo 
Creek, 4 miles north of Durwood, 
and a t  Mile 63.4

1.3 miles downstream from McGee 
Creek, 2 .8  miles northwest of 
F a r r i s ,  and a t  Mile 57.7

0.2 mile upstream from Rattlesnake 
Creek, 1.1 miles upstream from 
Big Branch, 2.1 miles e a s t  o f  Big 
Cedar, and a t  Mile 157.6
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TABLE A-1. (cont.)

STATION
NUMBER

USGS
NUMBER NAME

LEGAL
DESCRIPTION LOCATION

21 3362 Kiamichi River
near A ntlers

SW/4 Sec 35 2.0 miles n o r th eas t  of A n tle rs ,
T3S R16E 7.7 miles downstream from Tenmile

Creek, 5.4 miles upstream from 
Cedar Creek and a t  Mile 59.6

22 3368.2 Red River near DeKalb, 
Texas

4.8 miles upstream from North Mill 
Creek, 13 miles north o f  DeKalb, 
and a t  Mile 556.9

23 3385 L i t t l e  River near
Idabel

SE/4 SE/4 
Sec 14 T7S 
R24E

5.0 miles no rth eas t  of Idabe l, 
and a t  Mile 103.4

KO
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TABLE A-2. DESCRIPTION OF THE AQUATIC HABITATS AT THE SAMPLE STATIONS.

STATION NUMBER________________________________ DESCRIPTION OF AQUATIC HABITAT___________________________

1 The S a i t  Fork o f  the  Arkansas River near J e t  has a wide channel (approximately
200 f e e t )  with moderately deep banks and having usua lly  le s s  than four f e e t  of 
water. There a re  shallow, s t i l l  backwater pools along the south bank. The water 
i s  c le a r  with s luggish  flow with flow occurring only when the  water in Great S a l t  
P la ins  Reservoir i s  higher than the  dam. The environment a t  th i s  s i t e  i s  highly 
modified by the  Reservoir 0 .6  miles upstream from th i s  s i t e  due to  t h i s  flow 
dependence, and the  su b s t ra te  has been modified by channeliza tion  during construc­
t io n  o f  the  dam and the highway bridge.

The su b s tra te  was very s ta b l e ,  co n s is t in g  o f  s o f t  shale  bedrock and small to  medium 
s ize  rocks with pockets o f  hard c lay .  The area  i s  impacted by heavy u t i l i z a t io n  
by fishermen and minnow d e a le r s ,  r e s u l t in g  in accumulations o f  s o l id  wastes in the 
h a b i ta t  a rea .

2 The Arkansas River a t  Ralston i s  wide (approximately one m ile ) ,  bordered by high,
s teep  banks on both s id e s ,  with a la rge  sandbar in the  bend o f the  r iv e r .  The 
water i s  c l e a r ,  approximately s ix  f e e t  in  depth , with a sw if t  flowing c u rre n t .  The 
sampling area was in a shallow channel (approximately th ree  f e e t  deep) with several 
backwater pools o f  s t i l l  w ater. The r iv e r  a t  th i s  s i t e  i s  a permanently flowing 
stream with tu rb u len t  water and eddies due to  the  Kaw Reservoir d ischarge.

The su b s t ra te  consis ted  o f  f in e  sand to  coarse gravel which formed mixed sand/gravel 
bars with s l i g h t  accumulations o f  p la n t  d e b r is .  There was no rooted aquatic  
vegeta tion  in  the  area due to  an unstable  s u b s t r a te .
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TABLE A-2. (cont.)

STATION NUMBER DESCRIPTION OF AQUATIC HABITAT

The Cimarron River near Buffalo i s  a ty p ic a l ,  western Oklahoma r iv e r  with low 
banks and wide, sandy f lo o d p la in s .  The channel i s  narrow (approximately 10 
f e e t  wide) and meanders across an u sua lly  dry , wide, sandy bed. The water i s  
c le a r  with g en tle  flow and very shallow r i f f l e s  which a re  le s s  than s ix  inches 
in depth. Sparsely located  narrow pools , u sually  le s s  than two f e e t  in depth , 
were formed along undercut banks and a t  the end of sandbars where the  channel 
widens. The h a b i ta t  was very uniform in i t s  f e a tu re s .

The su b s tra te  was very uns tab le ,  co n s is t in g  of f in e  to  coarse sand which s h i f t s  
c o n tin u a lly .  This unstable  su b s tra te  prevents the  estab lishm ent o f  rooted 
aquatic  vege ta tion .

The Cimarron River a t  Perkins i s  a wide, medium s ize  r iv e r  with rap id  flow and 
very tu rb id  w ater. There were la rge  sandbars and moderatly high banks o f  red 
so i l  surrounded by a wide, r ic h  flood p la in .  The main channel was undercutting 
the  north bank and forming a long sandbar which sloped in to  a deep hole. The 
water a t  the  sandbar was two to  th ree  f e e t  deep and then formed a long, deep 
channel. There were several la rg e ,  shallow backwater pools . Several deep holes 
w ithin  the channel were f i l l e d  with a very s o f t  l i q u id - l ik e  mud. The area  i s  
used ex tens ive ly  fo r  re c re a t io n .

The su b s tra te  in the  main channel was comprised o f  very f i n e ,  hard packed sand. 
The su b s tra te  out o f  the  main channel was very s o f t  and was covered with a layer  
o f  th in  mud.



TABLE A-2. (cont.)

STATION NUMBER______________________________ DESCRIPTION OF AQUATIC HABITAT_______________________

5 The Arkansas River near Sand Springs i s  a deep, wide, sw if t  flowing stream with
c le a r  water and bordered by high banks and broad f lo o d p la in s .  The area is  
highly modified due to  sand removal operations on the  e a s t  bank and bridge due to  
sand removal opera tions  on the  e a s t  bank and bridge construc tion  on the  west 
bank. Flow in the  r iv e r  modified by discharges of water from Keystone Reservoir. 
The area consis ted  of shallow to  deep pools f i l l e d  with dense growths o f willow 
and cottonwood t r e e s .

6 The Arkansas River a t  Haskell i s  a wide (0 .5  m ile) sw if t  flowing r iv e r  with
low banks, wide sandbars, and a broad, r ich  flood p la in .  The water i s  c le a r  with 
tu rb u len t  flow, edd ies ,  and waves. There was a d a i ly  f lu c tu a t in g  water level 
as water i s  discharged from Keystone Reservoir. This was evidenced by e s tab lished  
willow t re e s  along the west bank which were inundated a t  the  time. The h a b i ta t  
has been highly modified on the  e a s t  bank by a sand removal opera tion . The west 
bank was channelized during the  construc tion  o f  a highway bridge . The sampling 
areas were in the  main channel in water four to  f iv e  f e e t  deep, in the  backwater 
a t  the  mouth o f  a small stream , and in backwater pools formed during the  highway 
bridge con s tru c tio n .

The unstab le  s u b s t ra te  consis ted  of f in e  to  coarse sand.

7 Bird Creek near Catoosa i s  a f a s t  flowing, narrow stream with many rap ids  and 
w a te r f a l l s .  At t h i s  s i t e  a deep cu t  was made during the  construc tion  o f  the 
highway, leaving the  bedrock exposed on the su rface . The water i s  shallow and 
flows over and around many big rocks in the  streambed. At the  end o f the  rap ids 
a long, narrow channel i s  found through which the  water flows very f a s t  and ends 
a t  a small w a te r f a l l .  The e n t i r e  area i s  very rocky with most o f  the  su b s tra te  of 
the  stream co n s is t in g  o f  bedrock made up o f layers  o f  lim estone. In the long 
channel th e re  a re  many la rge  rocks. There i s  some mud and t ra sh  a t  the  fo o t  of 
the  rap ids .

The water was very muddy and had an odor o f  sewage a t  both sampling periods . High 
s teep  banks surround both s id es  of the  stream. The area  had a l o t  of so l id  waste, 
both in the  stream and around i t .  The stream i s  used by fishermen and o the rs  fo r  
re c rea t io n .

o
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TABLE A-2. (cont.)

STATION NUMBER______________________________ DESCRIPTION OF AQUATIC HABITAT________________________

8 The m i n o i s  River sou theas t o f  Tahlequah co n s is ts  of the  junc tion  o f  the
I l l i n o i s  and Baron Fork. At t h i s  po in t the  r i v e r  i s  a narrow (150 f e e t ) ,  f a s t  
flowing stream with c le a r  water. A long, medium-deep raceway (2-3 fe e t )  gives 
way to  a shallow, f a s t  flowing r i f f l e  and then drops o f f  in to  a deep pool (6 f e e t ) .
The water flows over a s u b s tra te  o f  medium to  small s ized  c h e r t  and f l i n t  gravel
and a few la rg e r  rocks. The r iv e r  shore consis ted  o f  la rge  gravel bars on both 
s id es  with well e s ta b lish ed  willow growths l in in g  the banks. Heavy growths of 
filamentous green a lgae  were found throughout the  a re a .  Willow growths fu rn ish  
shading areas along both shores throughout the day next to  the banks.

This area has very heavy human usage as a camping and outing a rea .  There is
a so l id  waste d isposal problem a t  t h i s  s i t e  due to  t h i s  usage. This area in the
p a s t  has been used fo r  gravel o p e ra t io n s ,  but i t  i s  not now.

9 The I l l i n o i s  River a t  Gore i s  a c l e a r ,  cool r iv e r  bordered by woods with low banks _
and a deep, wide channel with s lugg ish  flow. The channel o f  the r iv e r  a t  th i s  s i t e  o  
becomes deeper and the flow more s luggish  due to  the  influence  o f the Robert S. Kerr 
Reservoir on the  Arkansas River. The area c o n s is ts  o f  a s e r ie s  o f  sm all,  segregated 
ponds through which the r iv e r  has very dense v ege ta tive  growths o f  Ceratophyllum 
(c o o n ta i l )  and Potamogeton (pond weed) usually  6-10 f e e t  wide along the margins of 
the  r iv e r .  H abitats  consis ted  o f  sm all, heavily  vegetated pools , deep, c le a r  
poo ls , shallow sh o re l in e s ,  and a deep, c le a r  channel.

The su b s tra te  was s ta b le  and consis ted  o f  gravel to  cobble-sized  rocks. In some 
a re a s ,  black mud was mixed with heavy accumulations o f  d e t r i t u s .  There was dense, 
woody p la n t  dep ris  in  the  main channel.

10 The Deep Fork River near Wellston flows through the southwest edge o f Wellston. A
small stream e n te rs  the r i v e r  a t  t h i s  s i t e  from the town. This stream was pea green 
in  co lo r .  The r i v e r  a t  t h i s  po in t has a high, s teep  sandbar on the west and a 
s teep  bank on the  e a s t .  The water flows gen tly  over shallow r i f f l e s  formed by 
sandbars in to  shallow pools ( le s s  than one fo o t  deep). The water spreads out over 
the  sandbars and slows down except along the edge o f the  banks where a raceway

W



TABLE A-2. (con t.)

STATION NUMBER DESCRIPTION OF AQUATIC HABITAT

11

12

picks up the  water and moves f a s t e r .  The banks a re  l ined  by overhanding t r e e s  
and brush which help to  shade the  water most o f  the day.

The water was c le a r  except in one small backwater pool where th e re  was a th ick  
growth o f  green a lgae . The area  surrounding the  r iv e r  consis ted  o f  r ic h  f lood ­
p la in s  made up o f  a sandy s o i l .  The area has some so l id  waste problems.

The su b s t ra te  consis ted  o f  coarse  to  f in e  sand which was very uns tab le , 
was some woody m ateria l p i le d  along the  banks by flood w aters.

There

The North Canadian River i s  an in te rm it te n t  stream whose flow is  regu la ted  by 
re le a se s  from Canton Reservoir. The stream was very narrow with high banks and 
a wide f lo o d p la in .  The s i t e  i s  composed o f a long, moderately deep channel near 
the  south bank. The stream becomes shallow on the north bank because o f  a small 
sandbar. This forms a backwater area  along the  north bank. There i s  a dense 
p lan t  cover which hangs over the  bank on the  south s ide  o f  the  r iv e r .

The su b s tra te  was composed o f somewhat s ta b le  hard-packed f in e  grained sand in 
the  main channel.

The North Canadian River a t  Harrah i s  narrow, shallow, and sw if t  flowing with high 
banks and wide flood p la in s .  The water i s  c le a r  and usually  b r ig h t  green in  co lo r 
due to  r ic h  a lg a l  growths. The r iv e r  g en era lly  has a uniform v e lo c i ty  due to  
the  continuous discharge o f  t r e a te d  e f f lu e n t  from the Oklahoma City Southside 
Wastewater Treatment F a c i l i ty .  The r iv e r  channel i s  approximately 5 f e e t  in  depth 
with long, shallow r i f f l e s  ending in  sandbars and pools. There a re  several deep 
backwaters along the  north bank o f the  stream and a la rge  amount of wood m ateria l 
both in the  water and suspended above the water.

The su b s t ra te  consis ted  o f f i n e ,  hard packed sand in the  main channel. In pools 
and backwaters out of the  main channel, t h i s  compacted sand had a 6-12 inch 
cover o f  s o f t  mud.



TABLE A-2 (cont.)

STATION NUMBER________________________________ DESCRIPTION OF AQUATIC HABITAT____________________________

13 The South Canadian River i s  a small r iv e r  with in te rm it te n t  flow. I t  has c le a r
water which meanders across a wide, sandy r iv e r  bed. The r iv e r  forms long shallow 
r i f f l e s  with shallow, deep pools a t  the edge o f  sandbars. A few pools with water 
two to  th ree  f e e t  deep a re  located  along the north bank near areas where woody 
debris  has been deposited as a r e s u l t  o f  h i s to r ic a l  f loods . There was a long, wide 
sandbar on the south s ide  o f  the r i v e r .  This s i t e  i s  used ex tens ive ly  by commercial 
minnow d e a le rs .

The su b s tra te  was composed o f very f in e  unstab le  sand which was continuously 
s h i f t in g .

14 The Canadian River a t  Calvin has a very wide r iv e r  bed with high, s teep  banks and
a sm all, narrow channel which meanders across the sandy r iverbed . The water i s  
c le a r  with g en tle  flow. The aquatic  h a b i ta t  i s  very uniform in c h a ra c te r ,  cons is ting  _
o f  a moderately deep channel with a few shallow pools along i t s  margin. The channel o
has formed a long sandbar which drops o f f  to  form a deep pool along the  north bank.
The r iv e r  i s  undercutting  the  north bank and f i l l i n g  the  pool with dense, woody 
deb ris .

The su b s tra te  consis ted  of f in e  to  coarse sand with a few la rge  rocks.

15 The Poteau River near F t. Smith i s  a ty p ica l  lowland r iv e r  with a deep channel,
tu rb id  w ater , s luggish  flow, and very s teep , muddy banks lined  with la rge  hardwood 
t r e e s  and bordered by broad, r ic h  f lo o d p la in s .  The h a b i ta t  sampled consis ted  o f  a 
deep shore line  mixed with backwater o f  a small creek th a t  was backed up by the 
r iv e r .  Turbid waters have prevented the estab lishm ent o f  rooted aquatic  vegeta tion .

The su b s tra te  consis ted  of s o f t  mud, small rocks and grave l.

CJl



TABLE A-2. (cont.)

STATION NUMBER_____________________________ DESCRIPTION OF AQUATIC HABITAT___________________________

16 The North Fork o f the Red River is  a medium sized  r iv e r  with c le a r  water and gentle
flow in a wide shallow channel. The west bank i s  high and slopes to  high g ran ite  
r id g es .  The e a s t  bank i s  a lso  high and c o n s is ts  o f  red so i l  bordered by wide, r ic h  
f lo o d p la in s .  The channel consis ted  o f  shallow r i f f l e s  and backwater pools. Deep 
pools were sparse ly  spaced a t  the end o f sandbars and along undercut banks. Several 
deep pools were formed behind logjams in the  main channel.

The su b s tra te  consis ted  o f  f in e  to  very coarse sand mixed with la rg e  amounts o f  
igneous g rave l.  The su b s tra te  was very unstab le  and con tinua lly  s h i f t in g .  A high 
sand and gravel bar was formed on the west bank with a dense growth of willow t r e e s .
This area  was noted to  be used ex tens ive ly  fo r  re c rea tio n a l  purposes.

17 The Red River near Terrai i s  wide with high, s te e p ,  red c lay  banks on the  north and
a wide, shallow sandbar and floodp la ins  on the  south. The channel i s  wide (approxi­
mately 200 fe e t )  with c l e a r  w ater , gen tle  flow, and a median depth o f  f iv e  f e e t .  The 
sampling area consis ted  o f  shallow channels (3 fe e t )  and very shallow backwater 
pools o f  standing water. One deep pool (approximately 6 fe e t )  with a la rge  d r i f t ­
wood accumulation was located  beneath the  highway bridge.

The su b s t ra te  consis ted  o f  f in e  to  coarse sand with some la rge  rocks and sandstone 
bedrock along the deep banks. The su b s tra te  was covered in the deep pools with a 
very f i n e ,  muddy sediment 6-10 inches deep. The s h i f t in g  su b s tra te  prevents the  
estab lishm ent o f  rooted aquatic  vege ta tion .

18 The Washita River near Durwood i s  a moderately s ized  lowland r iv e r  with very s teep
banks and a narrow, deep channel. The water i s  very tu rb id  with very sw if t  flow.
The r i v e r  consis ted  o f  a long, deep raceway along the  north bank which shallows
out in to  a long, narrow sandbar on the  south s id e .  Water passing over the sandbar 
d iv ides  in to  several small r i f f l e s  and pools.

The s u b s t ra te  consis ted  o f  hard packed f in e  sand which was very s ta b le .  Heavy erosion 
of the  north bank has re su l ted  in very s o f t  and unstab le  sediments along th i s  a rea . 
There was some woody deb ris  lodged along the north  bank.
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TABLE A-2. (cont.)

STATION NUMBER_____________________________ DESCRIPTION OF AQUATIC HABITAT__________________________

19 Muddy Boggy Creek near F a r r is  i s  a medium s ize  lowland r iv e r  with very s te e p ,  muddy 
banks and a narrow, shallow channel f i l l e d  with woody d e b r is .  The water i s  very 
tu rb id  and has a s lugg ish  flow. The banks had heavy p la n t  cover with th e  area 
showing heavy use by l iv e s to ck .  Small, shallow pools and a sandbar l in e  the west 
bank o f the  r iv e r .

The s u b s tra te  consis ted  of hard, black c lay  and some sandy sediments mixed with 
small rocks. Within the  main channel were la rge  numbers o f  dead t re e s  and stumps.

20 The Kiamichi River near Big Cedar i s  a ty p ica l  upland stream with in te rm it te n t  flow, 
c le a r  water, and a gen tly  sloping g ra d ien t .  The stream i s  bordered by low banks 
and a dense pine and hardwood f o r e s t .  The r iv e r  channel consis ted  o f  c l e a r ,  
moderately deep pools connected by shallow, narrow r i f f l e s  with dense growth of 
Potamogeton (pond weed) in the  shallow a reas .

The su b s tra te  consis ted  o f  t i l t e d  sandstone bedrock covered by la rge  boulders to  
cobble and was very u n s tab le . Small amounts o f  d e t r i tu s  c o n s t i tu te  sedimentation 
in pockets between the  boulders. The area i s  u sually  shaded by an overhanging 
t r e e  canopy.

21 The Kiamichi River near Antlers i s  formed by a wide, long, moderately deep pool
with s luggish  flow and s l ig h t ly  tu rb id  water. The r i v e r  i s  now influenced by 
backwaters from Hugo Reservoir. This area  o f  the r iv e r  was, in  the  p a s t ,  one of  
r i f f l e s  and sw if t  flowing w ater , but i s  now inundated. The r iv e r  i s  bordered by 
very s teep  banks, dense t r e e s ,  and black gumbo s o i l .  Along the  edges o f  the  r iv e r  
were dense growths o f  Potamogeton (pond weed) and willow t re e s  in backwater pools 
and gravel ba rs .  A sm all, c l e a r ,  flowing spring en tered  the r iv e r  a t  t h i s  s ta t io n .

The su b s tra te  consis ted  o f  la rge  rocks and boulders mixed with muddy, yellow 
clay  sediments.



TABLE A-2. (cont.)

STATION NUMBER_____________________________ DESCRIPTION OF AQUATIC HABITAT__________________________

22 The Red River i s  wide (approximately one m ile ) ,  and sw if t  flowing a t  t h i s  s t a t io n ,
with a moderately deep channel and s l i g h t ly  tu rb id  water. The stream is  bordered
by moderately high banks, broad, f l a t  sandbars, and a wide, r ic h  f lo o d p la in .  In the 
south bank sampling a re a ,  the  r iv e r  d iv ides  and forms an is lan d  with a deep water 
channel during periods o f  high flow. During periods o f low flow, the channel forms 
iso la te d  pools with minimal c u r ren t .

The su b s tra te  consis ted  o f very f in e  sand which s h i f t s  co n tin u a lly  and i s  very 
un s tab le . A few willow t r e e s  were growing in the  r iv e r  channel. The north  bank
of the  r i v e r  was high and was in the process o f  being undercut by a deep, sw if t
flowing channel along t h i s  bank.

23 The L i t t l e  River near Idabel i s  a lowland stream with s teep  banks o f  black gumbo
s o i l  surrounded by heavily  wooded lowlands. The stream is  moderately la rge  with 
s l i g h t ly  tu rb id  water and a permanent, gen tle  flow. The r i v e r  has many d iverse  
h a b i ta ts  ranging from deep sluggish  backwaters to  shallow, broad, gravel bottom g
r i f f l e s ,  deep, rocky channels, sm all, shallow backwater pools with dense v ege ta tion , 
and a reas  o f  woody debris  lodged ag a in s t  banks.

The su b s tra te  consis ted  o f s o f t  mud mixed with leaves and wood debris  in a gen tle  
c u rren t  along the south bank. The s u b s t ra te  along the  north bank consis ted  o f  f in e  
to  la rg e  gravel with small amounts o f  woody m ateria l buried in the  channel. The 
stream along the north bank had a sw if t  cu r re n t  and the  sho re line  had profuse ,
dense growths o f  Potamogeton (pond weed). This s ta t io n  i s  below the  mouth of
Lukfata Creek and above an in d u s t r ia l  po in t-source  d ischarge.
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Figure B-1. Arsenic Content (Mg/Kg Body Weight) in  the Fish Samples o f the Herbivore Trophic Level
from the Arkansas River Basin.
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Figure B-2. Arsenic Content (Mg/Kg Body Weight) in  the Fish Samples o f the Carnivore Trophic Level
from the Arkansas River Basin.
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from the Arkansas River Basin.
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Figure B-5. Chromium Content (Mg/Kg Body Weight) in  the Fish Samples o f the Herbivore Trophic Level
from the Arkansas River Basin.
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Figure B-9. Lead Content (Mg/Kg Body Weight) in  the Fish Samples o f the Herbivore Trophic Level
from the Arkansas River Basin.
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Figure B-10. Lead Content (Mg/Kg Body Weight) In the Fish Samples o f the Carnivore Trophic Level
from the Arkansas River Basin.
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from the Arkansas River Basin.

roo



$
c01uc
o<_)
t3
0)

1 .0  

,9

.8 

. 7  

.6 

. 5  

. 4

. 3

.2

. 1

i .e

«o «o «0 «AN N N m 
00 ^  CD

Nul I L
6  7  8
S ta tions

1 0  11 1 2  13  1 4  15

Figure B-12. Mercury Content (Mg/Kg Body Weight) in  the Fish Samples o f the Carnivore Trophic Level
from the Arkansas River Basin.
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Figure B-20. Copper Content (Mg/Kg Body Weight) In the Fish Samples o f the Carnivore Trophic Level
from the Red River Basin.



s
o>

iAC
o

•r-4->
ê

s
go

•os

10.0
9 . 5
9 . 0

8 . 5

8 . 0
7 . 5

7 . 0
6 . 5

6.0
5 . 5
5 . 0
4 . 5
4 . 0

3 . 5
3 . 0
2 . 5

2.0 h
1 . 5

1 . 0  
. 5

0.0

1 1

U) V) ^  
•M "M "M 09 -y 00 v> @»

I ni I ImI  n I
1 9  2 0

S t a t i o n s
21 22

WO
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from the Red River Basin.



g
g
c
o

s
g
uc
5
t*
3

(U

I
«o V) w w 
-Nj - 'j  -M a )
N o» s»

d l0.0 n im n i n rmnfl n
1 8  19

S ta tio n s

Wro

Figure B-23. Mercury Content (Mg/Kg Body Weight) In  the Fish Samples o f the Herbivore Trophic Level
from the Red River Basin.



en
oi

4-»
2
(Uuc
ou
t

20)

SO w
N N N 0> N €D ^  d>

W
W

18  1 9

S ta tio n s

Figure B-24. Mercury Content (Mg/Kg Body Weight) in  the Fish Samples o f the Carnivore Trophic Level
from the Red River Basin.



APPENDIX C

SAMPLE MEANS, STANDARD DEVIATION, MINIMUM, AND MAXIMUM

134



135

Table C-1. Mean, Standard Deviation, Minimum, and Maximum Values fo r
Selected Parameters from the Arkansas River Basin.

Standard
Metal Mean Deviation Minimum Maximum

Arsenic
Herbivores 0.756 1.196 * 0.100 3.700
Carnivores 1.032 1.596 * 0.100 5.000

Cadmium
Herbivores 0.146 0.132 * 0.100 0.800
Carnivores 0.138 0.161 * 0.100 1.000

Chromium
Herbivores 1.502 1.367 * 0.500 6.090
Carnivores 3.148 2.353 * 0.500 15.000

Copper
Herbivores 3.148 6.518 * 0.400 42.000
Carnivores 2.544 3.621 * 0.400 22.000

Lead
Herbivores 1.240 0.930 * 1.000 4.000
Carnivores 1.174 1.466 * 1.000 9.000

Mercury
Herbivores 0.098 0.112 * 0.050 0.700
Carnivores 0.305 0.756 * 0.050 4.800

Arsenic (water) 0.006 0.008 * 0.001 0.039
Cadmium (water) 0.004 0.004 * 0.001 0.020
Chromium (water) 0.025 0.043 0.008 0.310
Copper (water) 0.011 0.007 0.003 0.033
Lead (water) 0.028 0.016 * 0.001 0.070
Mercury (water) 0.086 0.064 * 0.001 0.165

Arsenic (sediment) 23.884 88.992 * 2.000 524.000
Cadmium (sediment) 0.848 0.586 * 1.000 3.000
Chromium (sediment) 15.207 15.720 * 5.000 80.000
Copper (sediment) 3.717 4.505 * 2.000 20.000
Lead (sediment) 2.813 6.483 * 1.000 34.000
Mercury (sediment) 17.300 11.629 * 5.000 29.000

* = Less Than Detection Limit
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Table C-2. Mean, Standard Deviation, Minimum, and Maximum Values fo r
Selected Parameters from the Red River Basin.

Standard
Metal Mean Deviation Minimum Maximum

Arsenic
Herbivores 0.638 0.818 * 0.100 2.000
Carnivores 0.870 1.143 * 0.100 2.400

Cadmium
Herbivore 0.098 0.066 * 0.100 0.200
Carnivores 0.125 0.102 * 0.100 0.300

Chromium
Herbivores 1.623 1.849 * 0.500 8.400
Carnivores 1.159 0.972 * 0.500 3.300

Copper
Herbivores 2.138 2.251 * 0.400 11.000
Carnivores 1.942 1.692 * 0.400 7.400

Lead
Herbivores 0.820 0.456 * 1.000 1.800
Carnivores 0.970 0.582 * 1.000 2.300

Mercury
Herbivores 0.110 0.161 * 0.050 0.700
Carnivores 0.233 0.484 * 0,050 2.100

Arsenic (water) 0.009 0.012 * 0.001 0.033
Cadmium (water) 0.003 0.002 * 0.001 0.009
Chromium (water) 0.020 0.014 0.006 0.063
Copper (water) 0.009 0.008 * 0.001 0.034
Lead (water) 0.024 0.025 0.002 0.115
Mercury (water) 0.032 0.047 * 0.001 0.100

Arsenic (sediment) 23.840 53.727 * 2.000 230.000
Cadmium (sediment) 0.741 0.424 * 1.000 2.000
Chromium (sediment) 19.786 21.767 * 5.000 90.000
Copper (sediment) 3.070 2.892 * 2.000 10.000
Lead (sediment) 1.100 2.502 * 1.000 13.000
Mercury (sediment) 16.500 14.215 * 5.000 52.000

* = Less Than D etection Limit
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Table C-3. Mean, Standard Deviation, Minimum, and Maximum Values fo r pH,
Hardness, and Flow, from the Arkansas and Red River Basins.

Standard
Basin Mean Deviation Minimum Maximum

Arkansas River Basin
pH 7.8 0.43 6 .9  8 .4
Total Hardness 367.0 267.50 15.0 1472.0
Flow 2222.0 3443.00 7 .0 13230.0

Red River Basin
pH 7.5 0.42 6.7 8.3
Total Hardness 339.0 412.90 8 .0  1192.0
Flow 637.0 1132.00 1.0 4551.0
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Table D-1. Correlation C oeffic ients fo r  Toxic Metals in Water, Sediment, pH, Total Hardness, and Flow to
the Toxic Metal Levels in the Fish Samples From the Arkansas River Basin.

A rsenic Cadmium Chromium Lead
Water Herb Cam Herb Cam Herb Cam Herb Cam Herb Cam Herb Cam

A rsenic
Cadmium
Chromium
Copper
Lead
Mercury

-.1303
.5364
.6515
.3554
.2827

1.0000

.4565

.3813

.2141

.2038
-.3224

.0199

.1096

.2133

.2910

.0789
-.2255

.1008

-.2387
-.0004

.3153
-.0795
-.0183
-.2429

.0279

.0055

.1535
-.0597
-.3251
-.0358

.2106
-.0350

.0715

.1782

.2081

.1866

-.0600
-.0921
-.0085

.0545
-.1142
-.0008

.3221

.2493

.4741

.4512
-.0238

.2767

-.3587
-.1664
-.1064
-.2702
-.1790

.1794

.2871
-.0527

.1461

.1515

.2617

.1966

-.0225
.0828
.0635
.1305

-.0347
.7053

.1618
-.0525
-.0628
-.1288
-.1472
-.6640

Sediment

A rsenic
Cadmium
Chromium
Copper
Lead
Mercury

.7028

.0672
-.2803
-.0530

.0939

.0000

.3336
-.2205
-.3166
-.0010
-.1609

.2393

.7731
-.0547
-.1342

.2929

.0748
-.1355

.0584

.1149
-.1509

.0066
-.0021
-.1626

.5147
-.0142

.1593
-.0525
-.0957
-.1832

.0673
-.1495
-.0344
-.0410
-.1408
-.0887

.1373
-.1720

.0032

.0019
-.0321

.6309

.2708
-.2012

.0021

.2002
-.0587

.0857

.1870
-.0476

.2965

.0961
-.0134

.7404

-.0428
-.1426
-.0148

.0683
-.0135
-.0558

-.1606
-.2123
-.2207
-.0673
-.0978

.2196

-.0997
.1823
.0013
.2168
.4036

-.1153

£H -.2809 .5233 -.2223 -.1557 -.2270 .1898 .1978 .2506 .1485 .1938 .2170 -.2897

Hardness -.1869 .7536 -.0038 -.1798 -.1021 .2705 -.0461 .3111 -.2785 .3403 .0119 -.1660

Flow -.0575 -.4442 -.0383 -.0122 .0421 -.1003 -.0826 -.1897 .2241 -.0162 .6128 -.1199

W
iO



Table D-2. Correlation C oeffic ients fo r  Toxic Metals in  Water, Sediment, pH, Total Hardness, and Flow to
the Toxic Metal Levels in the Fish Samples from the Red River Basin.

A rsenic Cadmium Chromium Lead Mercury
i te r Herb Cam Herb Cam Herb Cam Herb Cam Herb Cam Herb Cam

Arsenic .8402 .6564 .5955 .6071 .0248 -.0832 -.7060 -.4015 -.4000 -.9017 -.3253 -.2660
Cadmium -.2294 -.5894 .3638 -.3677 .0390 -.3554 .0875 -.0202 -.4312 .1223 -.2015 -.2480
Chromium .6376 .6401 -.2056 -.1791 .3691 -.2842 -.0544 -.0444 -.0182 -.3327 .0889 .2651
Copper .8821 -.1803 -.0804 -.1109 .4352 -.3398 .1660 .0048 .0942 -.2114 .0582 .0457
Lead -.2589 -.6252 -.0682 -.3248 .2248 -.2045 .3993 -.0628 .4651 .0699 -.0317 -.1739
Mercury .0000 .0000 .1032 -.3267 .2435 -.4504 .4897 .7966 -.3443 .4792 -.4109 -.3017

Sediment

Arsenic
Cadmium
Chromium
Copper
Lead
Mercury

.3764
-.2399
-.0919
-.2387

.0000
-1.0000

.7484

.4011

.2109

.7484

.0000

.0000

.2880
-.0445
-.1704

.2541
-.1459

.1173

.5295

.0642
-.1849

.3202
-.1248

.1059

.3566
-.0897

.0493

.2154

.8599
-.2977

.6764
-.0764

.2548

.4110
-.0880
-.1243

.3053
-.0176

.1630

.0677

.3009
-.5138

-.1880
-.0294

.3171

.2397

.1951
-.0222

.3898
-.4649

.3619

.0660

.0478
-.3788

.3660
-.0641

.3579

.0266
-.0621
-.3439

-.1946
.1633
.3588

-.0368
.2033

-.0710

-.1793
.1504
.1649

-.1606 Z  
-.0455 o  
-.2972

EH -.0260 -.5934 -.1448 -.2479 .0398 -.4882 .1460 .2599 .0381 -.3427 .0660 .2280

Hardness -.1817 -.5449 -.0482 -.2582 .1051 -.3251 .3389 .4797 .2336 .0608 -.1028 -.0712

Flow .3542 -.3664 -.0616 .2440 -.1056 .1178 -.0504 .1663 -.2165 -.3508 -.1508 -.1172
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Table D-3. C orre la tion  C o effic ien ts  R elating  Toxic Metals in the Water to  
th e  Levels in  Sediment in the  Arkansas and Red River Basins.

River Basin
Arsenic Cadmium Chromium Copper Lead Mercury

Arkansas River Basin 
Arsenic (w ater) 
Cadmium (w ater) 
Chromium (w ater) 
Copper (w ater) 
Lead (w ater)
Mercury (w ater)

Red R iver Basin 
Arsenic (w ater) 
Cadmium (w ater) 
Chromium (w ater) 
Copper (w ater) 
Lead (w ater)
Mercury (w ater)

-.0406 -.0378 -.3130 -.1579 -.2510 .0945
-.0342 -.0070 -.0962 .2580 -.0741 -.2259

.1133 -.2137 -.0387 .1663 .0608 -.0553
-.1264 -.1695 -.1873 .1025 -.1089 -.1644
-.2541 .0034 -.0721 .0815 -.0849 -.3906

.7044 -.4222 -.4820 -.5325 -.6068 .5088

.3811 -.1693 -.5027 .2983 -.2565 .8849
-.2287 .4377 -.0105 -.3445 .0767 -.2184
-.1592 -.0302 -.2470 -.1497 .6213 -.4802
-.1758 .1155 -.4030 -.3146 .6403 -.4640
-.0114 .5608 .4133 -.2257 .0845 -.5799
-.2762 -.2910 -.6986 -.5220 .0000 -.4530
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Table E-1. Species, Common Name, Number C ollected, and Total Weight of 
Herbivore Fish Samples by S ite  Number and Water Year.

Water 
S ite  Year S c ie n tif ic  Name Common Name

Number Weight 
Collected (grams)

1 1977 Notropis lu tre n s is Red Shiner 5 33
1978 Notropis lu tre n s is Red Shiner 30 109
1979 Dorsoma cepedanum Gizzard Shad 7 214
1980 Ictiobus bubalus Smallmouth Buffalo 2 1125

2 1977 Dorsoma cepedanum Gizzard Shad 8 201
1978 Notropis lu tre n s is Red Shiner 30 160
1979 Notropis lu tre n s is Red Shiner 32 102

3 1977 Notropis lu tre n s is Red Shiner 5 40
1978 Notropis lu tre n s is Red Shiner 36 71
1979 Hybognathus p la c itu s Plains Minnow 24 8
1980 Hybognathus p la c itu s Plains Minnow 14 16

4 1977 Notropis lu tre n s is Red Shiner 4 4
1978 Notropis lu tre n s is Red Shiner 36 31
1979 Dorsoma cepedanum Gizzard Shad 1 36
1980 Cyprinus carp io Carp 5 1000

5 1977 Dorsoma cepedanum Gizaard Shad 10 120
1978 Dorsoma cepedanum Gizzard Shad 24 200
1979 Carpio carp io River Carpsucker 2 66
1980 Cyprinus carp io Carp 8 5902

6 1977 Dorsoma cepedanum Gizzard Shad 4 84
1978 Dorsoma cepedanum Gizzard Shad 14 260
1979 Cyprinus carp io Carp 1 1135
1980 Ic tiobus bubalus Smallmouth Buffalo 1 1576

7 1978 Dorsoma cepedanum Gizzard Shad 1 10
1979 Dorsoma cepedanum Gizzard Shad 1 54
1980 Cyprinus carp io Carp

8 1978 Notropis p ilsb ry i Dusky-striped Shiner 24 15
1979 Notropis p ilsb ry i Dusky-striped Shiner 14 4

9 1977 Dorsoma cepedanum Gizzard Shad 1 13
1978 Compostoma anomalurn S tonero ller 13 9
1979 Dorsoma cepedanum Gizzard Shad 2 34

10 1979
1980 Cyprinus carp io Carp 3 300
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Table E-1. (cont.)

Water 
S ite  Year

11

12

13

14

15

16

17

18

19

20

1977
1978
1979
1980

1977
1978 
1980

1977
1978
1979
1980

1977
1978
1979
1980

1977
1978
1979

1977
1978
1979
1980

1977
1978
1979

1977
1978
1979
1980

1977
1978
1979
1980

1977
1978
1979

S c ien tific  Name

Notropis lu tre n s is  
Notropis lu tre n s is  
Notropis lu tre n s is  
Notropis lu tre n s is

Notropis lu tre n s is  
Notropis lu tre n s is  
Notropis lu tre n s is

Notropis lu tre n s is  
Notropis lu tre n s is  
Notropis lu tre n s is  
Hybognathus p la c itu s

Notropis lu tre n s is  
Notropis lu tre n s is  
Hybognathus p la c itu s  
Notropi s l û t  rensi s

Dorsoma cepedanum 
Dorsoma cepedanum 
Dorsoma cepedanum

Notropis lu tre n s is  
Notropis lu tre n s is  
Notropis lu tre n s is  
Cyprinus carp io

Hybognathus p la c itu s  
Notropis lu tre n s is

Notropis lu tr e n s is  
Notropis lu tre n s is  
Notropis lu tre n s is ' 
Dorsoma cepedanum

Notropis lu tr e n s is  
Notropis lu tre n s is  
Notropis lu tr e n s is  
Notropis lu tre n s is

Notropis um bralitus 
Notropis boops

Common Name
Number Height 

Collected (grams)

Red Shiner 6 10
Red Shiner 86 71
Red Shiner 48 23
Red Shiner 24 13

Red Shiner 5 13
Red Shiner 25 23
Red Shiner 29 32

Red Shiner 10 12
Red Shiner 36 33
Red Shiner 48 47
Plains Minnow 37 42

Red Shiner 5 10
Red Shiner 36 42
Plains Minnow 12 14
Red Shiner 80 60

Gizzard Shad 10 31
Gizzard Shad 8 27
Gizzard Shad 3 6

Red Shiner 10 13
Red Shiner 25 23
Red Shiner 5 4
Carp 1 681

i P lains Minnow 36 32
Red Shiner 80 84

Red Shiner 10 13
Red Shiner 24 23
Red Shiner 12 11
Gizzard Shad 50 127

Red Shiner 10 11
Red Shiner 25 20
Red Shiner 16 13
Red Shiner 30 20

Redfin Shiner 10 16
Bigeye Shiner 25 26
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Table E-1. (cont.)

Site
Water
Year S c ien tific  Name Conmon Name

Number Height 
Collected (grams)

21 1977 Notropis um bralitus Redfin Shiner 10 13
1978 Notropis boops Bigeye Shiner 8 16
1979 Notropis boops Bigeye Shiner 14 25

22 1977 Notropis lu tre n s is Red Shiner 10 12
1978 Notropis lu tre n s is Red Shiner 48 53
1979 Notropis lu tre n s is Red Shiner 16 21

23 1977 Notropis whipplei SteelCOlor Shiner 10 11
1978 Notropis venustus B lack ta il Shiner 12 10
1979 Notropis um bralitus Redfin Shiner 13 21
1980 Dorsoma cepedanum Gizzard Shad 1 272
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Table E-2. Species, Common Name, Number C ollected , and Total Weight of 
Carnivore Fish Samples by S ite  Number and Water Year.

S ite
Water
Year S c ie n t i f ic  Name Common Name

Number Height 
C ollected  (grams)

1 1977 Gambusia a f f in i s M osquitofish 5 6
1978 Aplodinotus qrunniens Freshwater Drum 4 10
1979 Lepomis megalo t i s Longear Sunfish 8 50
1980 Lepisosteus osseus Longnose Gar 2 2724

2 1977 Pomoxis an n u la ris White Crappie 3 170
1978 Pomoxis an n u laris White Crappie 1 454
1979 Pomixis an n u la ris White Crappie 1 525

3 1977 Lepomis cyanellu s Green Sunfish 1 10
1978 Fundulus kansae P lains k i l l f i s h 22 21
1979
1980 Fundulus kansae P la ins k i l l f i s h 30 25

4 1977 Pomoxis an n u la ris White Crappie 2 120
1978 Lepomis m egalotis Longear Sunfish 5 60
1979 Lepomis m egalotis Longear Sunfish 1 40
1980 Pomixis an n u laris White Crappie 2 65

5 1977 Morone chrysops White Bass 5 110
1978 Morone chrysops White Bass 24 48
1979 M icropterus salmoides Largemouth Bass 3 1200

6

1980

1977 Morone chrysops White Bass 2 72
1978 Morone chrysops White Bass 18 621
1979 Ic ta lu ru s  melas Black Bullhead 1 561

7

1980

1978 Lepomis m egalotis Longear Sunfish 1 41
1979 Pomoxis an n u laris White Crappie 4 140

8

1980

1978

Ic ta lu ru s  punctates 

Lepomis m egalotis

Channel C atfish  

Longear Sunfish 1 22
1979 Pomixis an n u laris White Crappie 3 114

9 1977 M icropterus salmoides Largemouth Bass 10 23
1978 M icropterus salmoides Largemouth Bass 2 8
1979 Aplodinotus grunniens Freshwater Drum 2 681

10 1979 Lepomis m acrochirus B lueg ill Sunfish 1 1
1980 Pomoxis an n u laris White Crappie 3 117
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Table E-2. (cont.)

S ite
Water
Year S c ie n tif ic  Name Common Name

Number Weight 
C ollected  (grams)

11 1977
1978
1979
1980

Lepomis m egalotis 
Lepomis m egalotis 
Pomoxis annu laris

Longear Sunfish 
Longear Sunfish 
White Crappie

1

1

42

39

12 1977
1978 
1980

Pomoxis annu laris White Crappie 1 20

13 1977
1978
1979
1980

Lepomis cyanellus 
Lepomis m egalotis 
Lepomis cyanellus 
Pomoxis annu laris

Green Sunfish 
Longear Sunfish 
Green Sunfish 
White Crappie

2
2

59
1

28
26

119
50

14 1977
1978
1979
1980

Pomoxis annu laris  
Lepomis m egalotis 
Pomoxis annu laris  
Ic ta lu ru s  punctatus

White Crappie 
Longear Sunfish 
White Crappie 
Channel C atfish

2
4
7
1

30
16

2450
744

15 1977
1978
1979

Pomoxis annu laris  
Lepomis macrochirus 
Lepomis macrochirus

White Crappie 
B lueg ill Sunfish 
B lueg ill Sunfish

1
3
1

13
6

81

16 1977
1978
1979
1980

Gambusia a f f in is  
M icropterus salmoides 
Lepomis m egalotis

M osquitofish 
Largemouth Bass 
Longear Sunfish

10
3
5

8
27

220

17 1977
1978
1979

Lepomis m egalotis 

Lepisosteus osseus

Longear Sunfish 

Longnose Gar

2

3

13

681

18 1977
1978
1979
1980

Ic ta lu ru s  punctatus 
Ic ta lu ru s  punctatus

Channel C atfish  
Channel C atfish

1
1

25
60

19 1977
1978
1979
1980

M icropterus salmoides Largemouth Bass 
M icropterus salmoides Largemouth Bass 
M icropterus punctu la tus Spotted Bass

1
4
9

13
30

802

20 1977
1978
1979

Lepomis cyanellus 
Lepomis m egalotis 
Lepomis m egalotis

Green Sunfish 
Longear Sunfish 
Longear Sunfish

2
5
3

24
51

507
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Table E-2. (cont.)

Water Number Weight
S ite Year S c ie n tif ic  Name Common Name C ollected  (grams)

21 1977 Lepomis megalotis Longear Sunfish 2 31
1978 Lepomis megalotis Longear Sunfish 8 60
1979 Lepomis cyanellus Green Sunfish 1 10

22 1977 Lepomis megalotis Longear Sunfish 1 11
1978 Lepomis megalotis Longear Sunfish 7 68
1979 Lepomis humilis Orangespotted Sunfish 2 86

23 1977 Lepomis megalotis Longear Sunfish 2 18
1978 Lepomis megalotis Longear Sunfish 3 24
1979 Lepomis megalotis Longear Sunfish 2 21
1980 Lepomis megalotis Longear Sunfish 5 232


