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INTRODUCTION
During the past two decades, there has been an increasing number 

of comparative forecasting studies. The objective of these studies is 
to compare different forecasting methodologies with the hope of finding 
the best methodology. These studies have led to conflicting reports 
and controversies.

This dissertation examines almost all published comparative 
studies and delineates a list of fallacies occurring in comparative 
forecasting studies. These fallacies most commonly give rise to the 
existing controversies. Since the controversies in forecasting stem 
from comparisons of the various approaches, a brief synopsis of the 
most currently employed univariate and multivariate methodologies are 
presented.

XXI



A STUDY OF COMPARATIVE FORECASTING

CHAPTER ONE

BOX-JENKINS METHODOLOGY

The best qualification of a prophet is 
to have a good memory

-Marquis of Halifax

1.1 Introduction 
The Box-Jenkins methodology assumes that the reality 

giving rise to a historical time series pattern can be adequately 
and parsimoniously represented by a member of a large and rich class 
of models. Through an iterative approach, a possible model from the 
general class of models is identified and then checked against the data 
and assumptions underlying the general class of models for proper fit. 
If the specified model is satisfactory, it is used for forecasting; if 
not, the process is repeated using a modified tentative model suggested 
by residual analysis. The process is shown in Figure 1.0.

Gwilym M. Jenkins, in his book, "Practical Experiences with 
Modelling and Forecasting Time Series," gives an excellent presentation 
of the BJ methodology. This book together with other works by Box and 
Jenkins [67,11, 96, 83 and 46] constitutes the basis for the discussion 
to be presented in the following sections.
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FIGURE 1.0

NO

YES

— D^iagnostic checking^ 
(is the model adequate?

Use the model for forecasting

Postulate general class 
of model

Estimate parameters in 
the model

Identify model to be 
tentatively entertained

Box-Jenkins Model Identification Process

From; G.P. Box and G.M. Jenkins,, Time Series Analysis Forecasting 
and Control, Holden Day, Inc., 1970, p. 19.

Section 1.2 describes the usefulness of univariate models for 
forecasting a time series from its own past history along with a brief 
mathematical description of the mathematical model.

Section 1.3 discusses the role of transfer function for relat­
ing an output time series which is to be forecast to a set of related 
input variables. These models, whose mathematical description is also 
found in section 1.3, enable a time series to be forecasted not only
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from its own past history but also from the past history of other 
related variables.

Section 1.4 describes the intervention models, a class of 
models which can be used to represent;unusual events such as a strike, 
a holiday or a change in definition of a variable.

Section 1.5 describes the objectives of a class of models 
called multivariate stochastic models which can represent several out­
put series with mutual interactions or feedback. A mathematical de­
scription of these models is given also in section 1.5.

1.2 Univariate Stochastic (single output) Models 
The simplest forecasting equation occurs when one is asked to 

forecast the future of a time series from a knowledge of its past his­

tory alone. Such a simple-minded approach could be questionable in 
accuracy when very accurate forecasts over the long term were expected. 
Jenkins [66] claims that univariate stochastic models, despite their 
simplicity, are important for the following reasons:

i. In some situations, it may be the only feasible 
practical approach to adopt because of the sheer 
magnitude of the problem.

ii. In other situations, it may be impossible to find 
variables which are related to the variable being 
forecast leaving the univariate model as the only 
means of forecasting.

iii. In any case, the development of a univariate model
provides a "yardstick" with which more sophisticated 
models can be compared. '



iv. Univariate models can be used for 'screening' data 
during the early stages of an analysis. The pres­
ence of large residuals, for example, in a uni­
variate model, may correspond to abnormal events 
such as a strike, or to faulty data.

A mathematical description of univariate models will be given 
below as they apply to stationary, non-stationary and seasonal time 
series.

Stationary Models. A stationary time series can be represented 
by a wide class of models, linear in the transformed variable, called 
autoregressive-moving average (ASMA) models, that is:

(Z*^-c) = + ... +

^  " V t - 1  " " V t - q

where Z*^ = Z^^^^

c is the constant mean of the series, and

represents the class of power transformations defined by

X ^0
Z^(^) = < (1.2.2)

,InZ^, X = 0

where X is a vector or parameters defining the transformation. The 
main objective of the transformation is to produce residuals in the
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fitted model that have a constant variance. It is required that the 
transformed residuals have a common probability distribution [66, 

p. 95].
Model (1.2.1) represents the current value of the transformed 

series as a linear function of:
(a) past values of the transformed series
(b) current and past values of the residuals a^ and can be 

written in operator form as:

6(B) 1 - 6iB - 0 - ... - 8 B^
■ —  V .  . .2---------4) (B) 1 — cj)ĵB — ({igB — ... — (j)pB

where the backward shift operator B is defined by:

B^at - a^_.

The parameters in equation (1.2.3) need to satisfy the follow­
ing conditions:

i. The MA(q) process is stationary regardless of the values 
of the the weights {6̂ }̂, but it is invertible only if the 
roots of 0 (B) = 0 outside the unit circle where 6 (B) isq q
defined as 0 (B) = (1 - 0,B^ - 0„B^ - ... - 0 B*̂ ).q 1 2  q

ii. The AB.(p) process is stationary only if the roots of
4)(B) = 0 lie outside the unit circle, but it is invert­
ible for all values of the weights where (|)̂ (B) is
defined as <|) (B) = (1 — ((îB — ijjgB — ... — <]) B^)



(XîPictorially we can represent the transformed series as
the output from a linear filter whose input is a random series with zero 
mean and constant variance ("white noise") and whose filter function is 
a ratio of 0(B) and (})(B).

white noise a^
0(B) 1 - 0,B - . -  0 B^ =  i-----------g—
(J)(B) 1 — (|)̂B — ... ~ (p B^

7
t-C

To achieve parsimony, that is a representation which economizes 
in the use of parameters, it is necessary to include, in general, both 
AR and MA components in the model. In contrast, "the use of an AR model 
to represent series which is described by an MA model, or vice versa, 
will result in the prodigal use of parameters" [66, p. 98].

Non-Stationary Models. Many time series behave as if they have 
no constant mean. Such time series are called non-stationary in the 
mean.

Successive differencing may reduce a non-stationary stochastic 

time series to a stationary time series. If a non-stationary time 
series can be reduced to a stationary series by applying a suitable 
degree of differencing, we say the original series is homogeneously non- 
stationary. Thus, a class of models, useful for representing a wide 
range of practical situations, can be obtained by first differencing 
the transformed series d times to induce stationarity, that is,

\  (1.2.4)

The stationary series can then be represented by an ARMA model



9(B) 1 - 0-B - 0-B^ - ... - 0 B^
1_____£___________ 3_W^-c = -------=- Î5----------^ (1.2.5)

V "^ (|)(B) ^ 1 - (|)̂B - (̂ gB̂  - ... - * B^ ^

Equations (1.2.4) and 1.2.5) define a model known as the 
Autoregressive Integrated Moving Average model or ARIMA (p,d,q) model. 
Yaglom [66, p. 99] has described models involving differencing as accu­
mulated processes. Such models are capable of describing a wide class 
of stochastic trends, whose coefficients adapt as each observation comes 
to hand. Thus:

. . . models involving single differencing V can be used to 
describe series whose level is continuously updated by random 
shocks; models involving double differencing can describe 
series whose level and slope are continuously updated by ran­
dom shocks, and so on [66, p. 99].

In most cases, however, single differencing is adequate to describe
most non-stationary time series.

Seasonal Models. Jenkins and Watts [68] and Box and Jenkins 
[11] proposed models capable of dealing with seasonal series. In order 
to describe series containing seasonal patterns with period s, whether 
stationary or not, they developed a new class of models: the seasonal
(p,d,q)X(P,D,Q)^ model defined by

W^ = (1.2.6)

0(B) 0(B®)
W -c =  - a  (1.2.7)
 ̂ (|)(B) $(B®) ^

where (j)(B), 0(B) are non-seasonal AR and MA operators as defined in



(1.2.3), and

- Z^-s^ (1.2.8)

is the seasonal differencing operator, and

$(B®) = 1 - - $gB^^ - ... - $^B^^ (1.2.9)

0(B®) = 1 - 0^B® - 0gB^^ - ... - 0 B^® (1.2.10)

are seasonal AR and MA average operators, and constant c measures the 
mean of the appropriately transformed and differenced series W^.

Figure 1.1 shows the filter of the seasonal model defined by 
equation (1.2.6) and 1.2.7). Also Figure 1.2 shows a flow diagram for 
building univariate models.

1.3 Transfer Function (single output - multiple input) Noise Models 
The objective of transfer function models is to describe 

methods for estimating dynamic relationships between
i. output variable and
ii. input variables . . . X^^

When a system is operating in open loop, there is no feedback be­
tween output and inputs. In other words, there is a univariable flow 
from X^^,Xg^, . . . to Y^. Graphically the Transfer Function Model 
for the single output - single input case is illustrated in Figure 1.3. 
Y^ can be split into two components, and such that:



FIGURE 1.1

FILTER REPRESENTATION OF 
SEASONAL UNIVARIATE STOCHASTIC MODEL

R a n d o m
se r ie s
( w h i te  n o ise )
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T r a n s io r m e d  
se r ie s
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From: Jenkins, Practical Experiences with Modelling
and Forecasting Time Series
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FIGURE 1.2

FLOW DIAGRAM FOR UNIVARIATE STOCHASTIC MODEL BUILDING 
AND FORECASTING, BASED ON THREE COMPUTER PROGRAMS: 
USID (UNIVARIATE STOCHASTIC IDENTIFICATION PROGRAM), 
USES (UNIVARIATE STOCHASTIC ESTIMATION PROGRAM),
USFO (UNIVARIATE STOCHASTIC FORECASTING PROGRAM).

D ata

ID EN TIFIC A TIO N  (USID)

• A .C .F .
• P .A .C .F . 
o f  b ase  and  
d iffe ren ced  
series
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I - tra n sfo rm a tio n ?  |
I -  d iffe ren c in g ?  I

• seaso n a lity ?  j

r-------- 1
I D IF F E R E N C IN G

n eed ed  to
I induce  
I s ta tio n a r ity ?

I ID E N TIFY  M OD EL IS) j 
U o  b e  e n te r ta in e d  iJ (or I
I d iffe renced  !
I series? |
I__________________________I

PR ELIM IN A RY  
ESTIM ATES 
for m odel 
p aram eters?

EST IM A T IO N  (USES)

Ir —  — ---------- 1 r
R E -IO E N T IF Y  I 1

j m odels fo r  i 1
1 - f it tin g  1 
1 ■ ch eck in g  j

In ad eq u ate 1
L

ESTIM ATE 
• param eters 
‘ residual 

sta tis tics

A dequate

F O R E C A ST IN G  (U SFO ) 

I--------

A .C .F .: A u to c o rre la tio n  
fu n c tio n

P .A .C .F .: P artia l
au to c o rre la tio n  
fu n c tio n

D ecide

FO R EC A STS .

-  fo recas t origins 
.  fo recast lead tim es 
• p ro b ab ility  lim its

I

I G E N E R A T E  FO REC A STS

Needs
Judgem ent

Needs
co m p u ta tio n

From: Jenkins, Practical Experiences with Modelling
and Forecasting Time Series



11

(1.3.1)

where is the observed output
is that part of Y^ which can be explained exactly in 
terms of

Input (X̂ )

is that part of Y^ that cannot be explained in terms 
of X^ and is called the noise (or disturbance).

FIGURE 1.3
• SCHEMATIC REPRESENTATION OF SINGLE OUTPUT, 

SINGLE INPUT TRANSFER FUNCTION-NOISE MODEL

Random component 
of noises (a^)

Noise (error) 
model

Function
Model

Component of 
output explained 

exactly by input (Û )
Noise or 
Error (N̂ )

Output (Y^)

From: Jenkins, Practical Experiences with Modelling
and Forecasting Time Series

A general way of representing a linear dynamic relationship
between U^ and X^ is

■■■  - V t - T  - V t - b - V t - b - i -  ••• -Vt-b-s
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that is

W -W B- ... -W B® W(B)
... - a >

where U(B) = B^ [66, p. 100]

The transfer function U(B) contains
i. a moving average operation W(B)
ii. an autoregressive operation 6(B)
iii. a pure delay parameter b, which represents the number

of complete time intervals before a change in begins 
to have an effect on Y^.

If in equation (1.3.1) we allow for the need to transform the 

variables Xit»X2t' * ‘ ’’̂ t ’̂ t’ well as differencing different 
than Y^, we come up with the general form

+»t (1-3-2)

If we assume that is non-stationary, then we can represent 
by an ARIMA (p,d,q) model

- c+ ?(#)- (1-3-3)

Multiplying (1.3.2) by we get

t d) (B) t—b ^
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^dN+d^(4) ^ W W  ydN+dl^ (̂ X) ^ ^dN^ 
t (|)(B) t-b t

if we set dY = dN+d 
dX = dN+d^

y, -

K . ydXx.(^K)

dNand V with its equal from equation (1.3.3), we get

^t 1(B) \-h 4(B) \  (1.3.4)

Equation (1.3.4) may be generalized for several input variables 

• • ‘’\ t

ôj (B) (^j,t-bj " 4(B) %  (1.3.5)

each X-variable having a transfer function with its own moving average 
operator (B), AR operator 6̂  (B) and pure delay b^.

Seasonal Transfer Function Noise Models. The model may be 
seasonal because:

i. Input is seasonal
ii. Noise is seasonal
iii. Transfer function is seasonal
iv. Combination of the above.

If we denote the seasonal period with s, the general seasonal transfer
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function model can be written as [67]:

k Wj(B) d.
V'*Y

„h.re V < > V V  (1.3.6)
^  ̂ 4(B) $(B®) t

Figure 1.4 shows the non-seasonal transfer function-noise model for one 
input. Figure 1.5 shows a filter representation of the seasonal multiple 
input transfer function model (1.3.6) and Figure 1.6 shows a flow diagram 
for building transfer function models.

1.4 Intervention Models 
The objectives of Interventional analysis makes allowances in 

time series models for large external events such as 
i. a strike
ii. a sales promotion
iii. a change in a law (introduction of a new law)
In order to quantify such external events, we introduce to the 

model the following "dummy variables."
i. "pulse" variable which is set equal to 1 when an 

anomalous event occurs and 0 otherwise,
ii. "step" variables, set to 0 before a change (such as a

policy change, or a new law or a change in definition in
an economic variable) and to 1 after such a change [66]. 

The above events, if left out, would cause large residuals or distortion 
of model structure and parameter estimates.
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FIGURE 1.4

NON-SEASONAL TRANSFER FUNCTION - NOISE MODEL FOR ONE INPUT

-r-r r ' ' I I

8(B)

w(B) B
6(B)

Xt

From: Jenkins, The Theory and Practical Application of
Univariate and Transfer Function Analysis



16

FIGURE 1.5

FILTER REPRESENTATION OF SEASONAL MULTIPLE 
INPUT TRANSFER FUNCTION MODEL

Uu
TRANSFER FUNCTION 

FILTER FOR X,,

S,iS)

1 aiBieifl')

NOISE FILTER

TRANSFER FUNCTION 
FILTER FOR X j, '

TRANSFER FUNCTION 
FILTER FOR X„
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FIGURE 1.6

FLOW DIAGRAM FOR TRANSFER FUNCTION MODEL BUILDING 
AND FORECASTING BASED ON THREE COMPUTER PROGRAMS:
MTID (MULTIPLE INPUT TRANSFER FUNCTION IDENTIFICATION),
MUTE (MULTIPLE INPUT TRANSFER FUNCTION ESTIMATION),
MUTF (MULTIPLE INPUT TRANSFER FUNCTION FORECASTING) .
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To investigate the effect of such an intervention variable 
on the variable being modelled, we may postulate a lag structure

whose parameters can be estimated as in a transfer function model.
In order to identify intervention models, we inspect the data

and the residuals. As a result of a known external event, inspection
of the data may suggest ways in which that event has changed the course
of the series [66, p. 107].

As an example, inspection of many consumer price indices may indi­
cate that the dramatic oil price increase in the last quarter of 
1973 was responsible for the consumer price indices rate of change 
increase. The intervention model

VYt^^^ = (1.4.2)
can depict that effect, where is a step function between 0 and 1
and the point of the so-called 'oil crisis.'

Examination of the residuals from the model fitted before an 
intervention variable is introduced can also indicate need for possible 
intervention model. For example, a large negative residual followed by 
a large positive residual in a univariate model may be due to a loss of 
sales during the period of a "strike" and a catching-up in deliveries 
in the period following the strike [66, p. 107]. Such an effect may be 
described by the model:

= (W - W.B)C^ (1.4.3)t o I t

where is a pulse of unit height at the point where the strike
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occurred. Figure (1.7) shows examples of the effect of the variables 
in equation (1.4.1) which can be modelled by simple transfer function 
models when the intervention variable is a step or pulse.

Introducing the Noise into an Intervention Model. Suppose that 
the univariate model

12VVi2 = (1-9B) (1-0B^^) a^ (1.4.4)

has been fitted to a series, excluding the period when the abnormal 
event occurred. If the intervention mechanism was defined by (1.4.3), 
then we could postulate a model

(W^-W^B) 5^ + (1.4.5)

where is a noise term describing the behavior of the series in the 
absence of the abnormal event. Assuming that W^=W^=0 and combining

(1.4.4) and (1.4.5) we get

VVizNt = (1-8B) (l-QB^^) (1.4.6)

Combining again (1.4.6) with (1.4.5), we obtain the overall intervention 
model

= (W^-W^B) VV^2?t (1-0B) (1-0B^^) a ^

Similarly, equation (1.4.2) can be formulated as
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FIGURE 1.7

EXAMPLES OF DYNAMIC EFFECTS WHICH CAN BE SIMULATED IN 
INTERVENTION ANALYSIS USING A 'PULSE' INPUT AND STEP INPUT
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VY^(^) = + n J. (1.4.7)

Setting W^=0 and solving for equation (1.4.7) becomes

(1.4.8)

Substituting equation (1.4.8) into equation (1.4.4), we get

^12^t " (1-6B)(1-0B^^) a^ (1.4.9)

Finally, combining (1.4.8) and (1.4.9), we get the overall intervention 

model

^^12^t^^ " ^o^l2^t (1-6B) (1-0B^^) a^ (1.4.10)

1.5 Multivariate Stochastic Models 

The assumptions underlying the transfer function model, a 
completely unidirectional model, may not always be justified in practice 
due to feedback between the output and the inputs. As an example,
Jenkins [66, p. 21] provides the well known pair of time series con­
sisting of the annual number of hogs sold in the United States and the 
corresponding price of hogs on January 1st of each year. An increase 
in the number of hogs at a particular year may bring down the price of 
hogs the following year due to an excess of supply. Conversely, however, 
if the price of hogs falls at a particular year, the farmers, due to a 
lack of incentive, will probably let the number of hogs go down also.
Here the input variable (number of hogs) affects the output variable
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(price of hogs) and vice-versa.
In situations of this kind, it is important to treat both 

variables (in general, the several variables involved) on an equal or 
reciprocal basis so that the two way feedback between each pair of vari­
ables can be disentangled. This requires the building of multivariate 
stochastic models (or multiple output models) to describe the mutual 
dependence between the variables [66, p. 22].

M.S. Bartlett [5, 7] and M.H. Quenouille [66, p. 109) were the 
pioneers in the area of multivariate stochastic models. Quenouille 
generalized the ARMA model of

... 0(B) 1-0,B - ... - 0 B^
Z: (^)-c-------------i------------9—  aA 1 -R _ _ A pP t

from its univariate form to

V t  ■ V t : i "  * V t  - • • •

- V t - q  (1-5-1)

where Z is a column vector whose transpose ^  = (Z ,Z„ , ...,Z ) is
U t  l u  6  U X lU

a low vector of n series; <1)̂, 0̂  ̂are nxn autoregressive and moving aver­
age matrices respectively; a^ is a vector whose elements a^^ are 
mutually uncorrelated at all times.

Model (1.5.1) provides a useful starting point but is inade­
quate for two basic reasons. Firstly, model (1.5.1) constrains the 
univariate models for the individual time series Z^^ to have AR operators
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which have the same order and same parameter values [66, p. 110]. 
Secondly, model (1.5.1) assumes statlonarlty; that is, the n time series 
are in statistical equilibrium about fixed means.

A. Alavi [1] in his Ph.D. thesis, "Some Multivariate Extensions 
of Box-Jenkins Forecasting," suggested the following way to remove the 
former highly undesirable constraint:
Write model (1.5.1) in the form

<f>ll(B) *12(B) ... *i^(B)

* 2 1 ™  *22 (B)

♦n2«>

611(B) 612(B) ... 6i^(B)

621(B) 622(B) ... 62^(6)

" ^ u - 7

%2t-=2

^nt'^n

^It

^2t

^nt

or 1(B)(Z^-c) = 1(B)a^ (1.5.2)

where the AR operator *^j(B) is a polynomial of degree p^^ in the back­
ward shift operator B and the MA operator (B) is a polynomial of 
degree in (B). In (1.5.2), which will be referred to as a multi­
variate ARMA model or ARMA (1,3.), the polynomials in the diagonal 
positions start with unity while the polynomials in the off-diagonal
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positions start with a power of B thus making the a^^ the one-step- 
ahead forecast errors. Those errors then must be allowed to have a 
covariance matrix

E =

* 1 2 " °ln

^21 ^2

^nl % 2

2n

,2n

(1.5.3)

with o^j=Oj^, but otherwise mutually uncorrelated at non-simultaneous 
times [66, p. 111].

As far as the second disadvantage of model (1.5.1) is con­
cerned, namely the fact that model (1.5.1) assumes stationarity, we can 
generalize the model (1.5.2) to

i.(B) (W -c) = 0. (B) a— t (1.5.4)

where M' = (? . . .

with ̂ (B) and ^(B) as defined in (1.5.2) and ĉ is a vector of constants. 
Such a model will be referred to as a multivariate ARIMA model
where the matrices _P = (pu^), ^  = (q^^) determine the degrees of the 
polynomials in the AR and MA matrices, and the row vector ^'= (d^ydg,
..., d^) has elements corresponding to the degrees of differencing 
required to induce stationarity in each of the individual time series.

Seasonal Multivariate Stochastic Models. As in the univariate
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and transfer function models it is possible to extend the seasonal and 
non-seasonal differencing to multivariate stochastic models to induce 
stationary. The element of the vector in (1.5.4) needs to be de­
fined as

(1.5.5)

Stationarity and Invertibility Conditions. The conditions that 
the multivariate stochastic models need to satisfy are similar to the 
ones satisfied by the univariate models. Namely, the parameters in the 
AR matrix ̂ (B) in (1.5.4) must satisfy the condition that the roots of 
|^(B)1=0 lie outside the unit circle. Also, the parameters in the MA 
matrix ̂ (B) in (1.5.4) must satisfy the condition that the roots of 
|^(B)1=0 lie outside the unit circle.

The stationarity condition of the multivariate stochastic 
models ensures that the statistical properties of the differenced time 

series are time invariant: whereas, the invertibility condition ensures 
that, if -the model (1.5.4) is used to generate simultaneous forecasts of 
the transformed series the weights applied to previous observations
will die out as we stretch further into the past [66, p 112].

Figure 1.8 illustrates the Two-Way Feedback multivariate 
stochastic model. Figure 1.9 shows a multivariate stochastic model with 
multiple output, whereas Figure 1.10 shows a multivariate transfer 
function model with multiple output - multiple input, and Figure 1.11 
shows the filter representation of seasonal multivariate stochastic 
model.
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FIGURE 1.8 
TWO-WAY FEEDBACK
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FIGURE 1.10 
MULTIVARIATE TRANSFER FUNCTION MODEL
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From "The Theory and Practical Application of Multivariate 
and Multivariate Transfer Function Analysis" by Gwilym Jenkins 
and Partners Ltd.

Model Building. Figure 1.12 shows a flow diagram for 

building multivariate stochastic models. The model building is carried 
out in three steps; identification, estimation and checking. The 
alignment stage, which is included in the identification step, is simply 
shifting the time series forward or backwards relative to each other 
until the cross correlation functions are approximately centered at 
zero [66, p. 116].
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FIGURE 1.11

FILTER REPRESENTATION OF SEASONAL 
MULTIVARIATE STOCHASTIC MODEL
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FIGURE 1.12

FLOW DIAGRAM FOR MULTIVARIATE STOCHASTIC MODEL BUILDING 
BASED ON THREE COMPUTER PROGRAMS: MSID (MULTIVARIATE
STOCHASTIC IDENTIFICATION): MSES (MULTIVARIATE STOCHASTIC 
ESTIMATION), MSFO (MULTIVARIATE STOCHASTIC FORECASTING).
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CHAPTER TWO

EXPONENTIAL SMOOTHING

A religious seer is predicting that the 
world will end at 10 P.M. tonight. For 
more details, watch the news at eleven.

-TV News Flash

2.1 Introduction 
Exponential smoothing is an approach that produces forecasts of 

sufficient accuracy but which, at the same time, is quick and inexpensive 
to operate. It is a fully automated procedure thus reducing the need for 
skilled manpower in its operation. The exponential smoothing method is 
established as a short term forecast (perhaps up to a year or so ahead) 

and retains a good deal of popularity in industrial forecasting in spite 
of its theoretical limitations when compared with the more sophisticated 
Box-Jenkins procedure. A great danger in employing a fully automatic 
predictor is that rather poor forecasts might result unless one exercises 
some control over the quality of forecasts produced. To meet this need, 
a number of automatic monitoring [135] or tracking systems have been 
developed and are used in conjunction with exponential smoothing proce­
dures. This serves as a forecast quality check and can be useful in the 
modification of inadequate forecasts.

30
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In this chapter, a few commonly used exponential smoothing proce­
dures will be briefly examined. A wide range of exponential smoothing 
models can be derived as special cases of Kalman filtering and Box-Jenkins 
procedures. And this being the case, more emphasis will be given to 
Kalman filtering and Box-Jenkins procedures than exponential smoothing.
W.J. Granger and Paul Newbold have an excellent presentation on exponen­
tial smoothing in their book Forecasting Economic Time Series. I am in­
debted to them for the major part of the following discussion.

Forecasting Methods Based on Exponential Smoothing

2.2 Exponential Smoothing for a Constant Process
This model was developed by Holt [65] and Brown [19] and is also

called single smoothing model or exponential smoothing model. In princi­
ple, exponential smoothing "smoothes" historical observations to eliminate 
randomness. At each time period, the forecasts are recursively updated 
using the most current observations. This is a weighing scheme that 
would apply the most weight to the most recent observed values and decreas­
ing weights to the older values.

Basically, in the case of forecasting with moving averages, we
have

S  = %t-l %t-2 + • • ’ %t-N+l
t+1 N (2.2.1)

where = forecast at time t
= observation at time t
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N = number of values Included in the forecast. 

Equation (2.21) can be written as:

c - f t  ^t-1 ^t-2 '*•••♦ ^t-N+1 %t-N ^t-N
t+1 “ N N N “ N

Equation (2.2.2) states that each new forecast S ,̂  is based on the
Zt Z^_Q

preceding forecast adjusted by ---- ^— . Assume now that only the most
recent observation and the forecast made for the same period were
available. A good approximation for Z^_^ would be S^, the seasonal fore­

stcast value of the previous period. Then (2.2.2) would become = —  +

®t “ ®t+l V  ^t (1" ÎN ) ^t (2.2.3)

Form (2.2.3) indicates that the forecast for period t+1 consists of wèigh-
1ing the most recent observation Z^ with the weight - and the most recent 

forecast with the value of 1- Using the Greek lowercase letter alpha as 
a substitution for ^ (i.e., smoothing constant),

St+i = aZ^ + (l-a)St (2.2.4)

Equation (2.2.4) is the general form used in computing a forecast by the 
method of single exponential smoothing. Compared with the method of moving 
averages, it solves the problem of storing the last N observed values, each 
assigned equal weight, ^  , to each of the last N observations and 0 weight 
to all observation before period t-N. Expanding (2.2.4) by substituting in
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the value for S^, we get

= aẐ  + ot (l-a)Z^_j^ + a (l-a)^Z^_2 +a(l-<x)Z^_2 + . . .

From (2.2.5), we can see that decreasing weights are being given to the 
older observations since 0<a<l. The older the observation, the smaller 
weight it gets assigned.

An equivalent simple exponential model [53, 106] which replaces an 
original series Xĵ , X^, . . . X^ by a smoothed series X^, is given by

X^ = aXj. + (l-a)X^_^ 0<a<l (2.2.6)

Here the forecast of X^^^, denoted by F^ for some positive integer h is 
given by

\ , h  " \  (2.2.7)

According to (2.2.6) the forecasts of all future values of the series are 
given by the latest available smooth value. As soon as new observations be­
come available, i.e. actual values for X^ are available, the updating mech­
anism of (2.2.6) updates the previous estimate of X^ ^ at time t and produces 
the new estimate of level X^ which is a weighted estimate average of X^ and

V i -
A starting value for equation (2.2.6) is suggested by setting X^ = 

X^. Equation (2.2.6) can then be used recursively for t = 2, 3........ n.
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Holt-Winters Approach

2.3.1 Non-Seasonal 
Simple exponential smoothing is not applicable when there is a 

seasonal pattern in the data. Holt [65] and Winters [146] extend the sim­
ple exponential smoothing algorithm so that it accounts for times series 
consisting of level, trend and, possibly, a seasonal factor in addition to 
the unpredictable residual element.

Treating the nonseasonal time series which is made up locally of 
the sum of level, linear trend and residual, we denote the estimate of 
level at time t by and of trend by where

= AX^ + (1-A) (X̂ ._̂  + T^_i) 0<A<1 (2.3.1.1)

Tt = C + (l-C)T^_i 0<C<1 (2.3.1.2)

Formulas (2.3.1.1) and (2.3.1.2) modify previous estimates when new obser­
vations are available. The simplest approach to the "starting up" value 
is to set Tg = Xg-X^^ ^2~^2 solve the above formulas recursively for 
t = 3, 4, . . ., n. Forecasts of future values of the series are given by

*n,h (2.3.1.3)

The choice of assigning values for A, C will be brought up at the end of 
Section 2.3.2.

2.3.2 Seasonal Holt-Winters Approach 
The most commonly employed variant of the Holt-Winters method as­

sumes that the seasonal factor F^ is multiplicative while the trend remains
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additive. In this case, for a seasonal series with X^>0, for every teN and 
period s, the seasonal factor is given by

Fj. = D(X^/X^) + (l-D)F^g 0<D<1 (2.3.2.1)

The level X^ which can be thought as level with the seasonality out is es­
timated now by

Xj. = A(X^/F^_g) + (1-A)(X^_^ + 0<A<1 (2.3.2.2)

The trend component is given by equation (2.3.1.2) of the previous section.

T^ = C (Xj. + (l-C)T^_i 0<C<1 (2.3.1.2)

"Starting up" values are given by
_ 1 s

F. = Xj/X where X = --- E X, j = 1   T = 0J s s S K s

Equations (2.3.2.1), (2.3.2.2) and (2.3.1.2) can be used recursively for 
t = s+1, s+2, . . ., n. The forecasts for future values, for additive and 
seasonally multiplicative trend, are given by

fn.h ' » .  + “V W s -  h = 1. 2. 3......... s

= (X + hi ) F .. , , h = s+1, s+2, . . ,2s (2.3.2.3)n n n+n—<ds

When we deal with situations where the seasonal factor is addi­
tive rather than multiplicative, equations (2.3.2.1) and (2.3.2.2) can be 
replaced by

Ft = D(X^-X^) + (l-D)F^g 0<D<1 (2.3.2.4)
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and Xj. = A(X^-F^_g) + (1-A) 0<A<1 (2.3.2.5))

The forecast equation (2.3.2.3) is now replaced by

fn,h \  "̂̂ n ^n+h-s ’ ^ ^.........^

- X^ + hT^ + h s+1, s+2, . . , 2s
(2.3.2.6)

A major drawback to exponential smoothing is that there is no easy 
way to determine an appropriate value forain (1.2.6). Determining appro­
priate values for A, C and D employed in the Holt-Winters algorithms is 
also problematic. In general, the lower the values of these constants the 
more steady the final forecasts will be since the use of low values gives 
considerably more weight to past observations. Consequently, any random 
fluctuation in the future will not have any major effect in the determina­
tion of the forecast. At the same time, however, the model will be quite 
insensitive to any sudden changes of behavior of the series.

Holt and Winters propose to select those values for A, C, and D 
that would have best "forecast" the given situation. The element of arbi­
trariness is not absent here, however, since a decision is made on the 
criterion of accuracy (cost or error function) and on the magnitude of 
projection of the forecast ahead. The most common procedure is to posit 
a quadratic cost function and to seek the smoothing constants that provide 
the best one-step ahead forecasts. The procedure is to choose a grid of 
possible values of A, C, and D and to calculate the one-step-ahead fore­
casts, f^ ĵ ,t = m, m+1, . . ., n-1, for each set of the smoothing constants.
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The set for which the sum of squared errors

is smallest is then used to calculate actual forecasts of all future values 
of the series. The starting point m is an integer large enough to allow 
the effects of the choice of initial "starting up" values to have died down.

One advantage of the above procedure is that it is easily imple- 

mentated as a computer program that will automatically produce the best 
choices for A, C and D. One disadvantage is that this approach demands 
storage of all past observations and, hence, greatly increases computer 
storage requirements.

A major weakness of Holt-Winters method, besides the requiring of 
three smoothing parameters and the considerable work which is done to gen­
erate the optimal set of smoothing constants A, C and D, is that once the 
optimal values are found, there is no easy way to modify them when a basic 
change in the data takes place. An alternative way [83, p. 79] to worrying 
about optimal values is to find good initial estimates for equations 
(2.3.2.1), (2.3.2.2) and (2.3.1.2), then, specify small values for A, C, 
and D (around .1 to .2). The forecasting system then reacts slowly but 
steadily to changes in the data. The disadvantage of this strategy is that 
it gives a low response system. This is a general, low cost method for 
forecasting all types of data which, despite its low response, achieves 
long-term stability.

2.4 General Exponential Smoothing - Brown’s Approach 
Brown is credited with creating an alternative procedure, gener-
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al exponential smoothing [20]. Define the time series to be

X, = E alf. (i-t)+e., i = 1, 2, . . . t
j=l 3 3 1

(2.4.1)

where;

1. We assume that thé time series X^ is the linear combination 
of k known deterministic functions of time plus a residual

ii. The functions fj, j=l, . . . k, are generally taken to be 
polynomials, exponentials and mixtures of sine and cosine 
terms.

iii. The model (2.4.1) is assumed to hold only locally; so, we can 
always minimize the discounted sum of squared errors:

S = .2 8
i=l

t-i
0 < e < 1 (2.4.2)

In matrix form, let X = a =

H=

f^d-t) f2(l-t) . . . f%(l-t) f'(l-t)
fl(2-t) f2(2-0 . . . fk(2_t) f(2-t)

>
f^(0) (2(0) . . ' fk(o) _ f'(0)

W =
3(t-l)/2 g(t-2)/2 0
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Equation (2.4.2) then becomes

S = (WX-WHa)'(WX-WHa) (2.4.3)

Differentiating (2.4.3) with respect to a, we obtain a minimum for

â(t) = (H'W’WH)“^H'W'WX (2.4.4)

where â(t) is now a function of t.

t
If we define F(t) = H'W'WH = E (i-t)^'(i-t) (2.4.5)

i=l

and g(t) = H'W’WX = E B*̂“^X.l(i-t), (2.4.6)
i=l 1

then we can write (2.4.4) as

â(t) = F"l(t)g(t) (2.4.7)

Equation (2.4.5) implies that

F(t) = F(t-l) + ef"lf(l-t)f'(l-t) (2.4.8)

Suppose now that there exists a non-singular matrix L such that

l(t) = Lf^(t-l), WeN, (2.4.9)

then from (2.4.6) we get

g(t) = 8L"^g(t-l) + f (O)X^ (2.4.10)

Further, for functions that do not die out too quickly, it follows from
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(2.4.9) that for moderately large t, F(t) will converge to some steady state 
matrix F, so that a(t) can be written as;

a(t) = F"^g(t) (2.4.11)

Thus, the forecast of is given by

f = â'(n)f(h) or f . = g’(n)F ^f(h) (2.4.12)n,n —  n,n —

where g(n) is calculated recursively from (2.4.10)
F is obtained from (2.4.8)

Ĵ (h) is a vector of known constants.

With a procedure similar to the one used to find the Holt-Winters
predictor (i.e. by optimizing over a grid of possible values) or by visual
inspection of the characteristics of the series under consideration, one can
assign a value to the discount parameter g. Brown suggests choosing 3 so
that .75_<3^.95, the actual value used depending on the stability of the ser­

ifies, while Harrison [61] proposes that a value in the neighborhood of 3 =
.8 would frequently be appropriate.

The general exponential smoothing approach poses a few problems 
that curtail its applicability and its usefulness. First, D.J. Reid [117] 
notes that the errors from the fitted model are very often serially corre­
lated suggesting that suboptimal forecasts will be produced. He notes that
substantial improvement in forecast performance may be achieved by fitting 
a first-order autoregressive model to these residuals. The second difficulty 
concerns seasonal time series and deals in particular with the question of 
how many harmonics to fit in the model. Reid suggests starting with a few
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harmonie terms and, every time we add additional terms, testing for an im­
provement in fit. However, when a large number of coefficients are to be 
fitted, estimation becomes less efficient, and Reid concludes that "it is 
normally desirable to keep the number of fitting functions as low as pos­
sible provided they still adequately describe the times series" [117].

Brown's method uses only one smoothing parameter, g. Precision 
estimate of a model such as:

= a^ + a^t + a^cos(-|p-) + a^sinC-jp-) + a^cosC— ) +

(2.4.13)

requires g to be fairly large so as to allow a fair number of data points to 
have appreciable weight; otherwise, one is estimating with very few degrees 
of freedom. On the other hand, one often requires an exponential smoothing 
procedure to adapt very quickly so as to put the most weight on the few 
most recent observations. These two requirements are mutually incompatible, 
and one wonders of the performance of Brown's method for seasonal time 
series. This questionable performance prompted C.W.J. Granger and Paul 
Newbold to rather bluntly ask, "Is it reasonable to expect the Brown pre­
dictor to do with a single parameter what requires three parameters for 
Holt-Winters" [54, p. 169]?

2.5 Relationships Between Box-Jenkins Models and Exponential Smoothing

In this section, the relationships between exponential smoothing 
and the Box-Jenkins procedures will be apparent as a result of an attempt to 
find the stochastic processes for which exponential smoothing predictors are
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optimal.
Considering the Holt-Winters seasonal predictor in its additive 

form, we denote with the level of series at time t. We have

Xj. = A(X^-F^_g) + (1-A)(X^_^ + T^_^) (2.5.1)

= C(X^-X^i) + (l-C)T^i (2.5.2)

= D(X^-X^) + (l-D)F^g (2.5.3)

If we denote the one-step ahead forecast of X^ by f^ = f^_^ then

^t " ^t-1 ^t-1 ^t-s (2.5.4)

and the forecast error is

Solving (2.5.1) for X^-X^_^, we have

\  - V l  -  T f l  A(%t - V l  - V l  - ft-s) (2-5-6)

Substituting (2.5.5) in (2.5.6), we get

X. - X , = T. . + Ae^ (2.5.7)t t-1 t-1 t

Solving (2.5.2) for we get

\  - Tj.! = C(X; - X,_i) - CT;_i (2.5.8)
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Substituting (2.5.7) into (2.5.8), we get

\  - CTc_l

- Cl - CI^ ^ = CAê . (2.5.9)

Similarly solving (2.5.3) for - F^_^, we get

- :t-s ' - >'t - Ft-s)

or by (2.5.7)

Ft - Ft_s - - %t-l - "t-1 - F f ,  - (2-5-11)

The quantity X - X - T ., - F = e , according to (2.5.5), soiZ C"" J. t"“S L

Fj. - F^_g = D(e^ - Ae^) = (l-A)De^ (2.5.12)

Now we introduce the back-shift operator as;

*'=t ' n-j

Using the back-shift operator notation, we have:

"t-1 - \  - V l  - (2-5-13)

We write (2.5.7) as:

\-l ~ \-Z " ^t-2 A^t-1 (2.5.14)
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and (2.5.9) as:

V l  - V 2 '  “ ^ - 1  <2.5.15)

We substitute in (2.5.15) the value of  ̂from (2.5.13)

We subtract (2.5.14) from (2.5.16), and we have

\  ~ \ - l  *t-l \-2 ^^®t-l ” ^t-2 ~ '̂ ®t-l ^®t ^t-2

or - 2X^ - + - = Ae^ - (l-C)Ae^ - or, using the back-shiftt t—1 t—z t t—1
operator B, we have

(l-B)^X^ = A[l-(l-C)B]e^ (2.5.17)

Similarly, from (2.5.9) and (2.5.12) we have

(l-B)T^ = ACe^ (2.5.18)

and (1-B®)F^ = (l-A)Dê . (2.5.19)

Combining (2.5.17), (2.5.18) and (2.5.19), we get

[AB(1-B®)[1-(1-C)B] + ACB[(1-B)(1-B®) +

(1-A)DB®(1-B)^]ej. (2.5.20)
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From (2.5.5), we get + F^_^ = - e^, and, thus, (1.5.20) be­
comes

(1-B)^(1-B®)X^ = [(l-B)^(l-B®) + AB(1-B®)[1-(1-C)B] 

+ ACB(1-B)(1-B®) + (1-A)DB®(1-B)^]e^

Now for an optimal forecast, the errors e^ will constitute a white noise 
process e^. Thus, if the Holt-Winters additive seasonal predictor is to 
produce optimal forecasts, then the series X^ must be generated by a pro­
cess of the form

- (1+bĵ B + + b B® + b +

where the five coefficients b , b_, b , b and b are functions of the1 2 s s+1 s+2
three smoothing constants A, C and D. Hence, this exponential smoothing 
predictor is optimal for a process generated by a particular member of the 
class of seasonal models of the Box-Jenkins family.

In a similar way it can be shown that the simple exponential 
smoothing predictor derived from

Xj. = aXf + (l-a)Xt-i, 0<a<l (2.5.21)

is optimal iff X^ is generated by the ARIMA ( 0, 1, 1) process (l-B)X^ = 

[l-(l-ct )B]e^ as originally shown by Muth [99].

Harrison [60] shows that the Holt-Winters nonseasonal predictor gen­
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erated by

= AX^ + (1-A)(X^_^ + = C(X̂ . - X^_^) + (l-C)T^_i

(2.5.22)

gives optimal forecasts if X^ is generated by an ARIMA (0, 2, 2) process.
More recently Goodman [52] and Cogger [39] show that forecasts

produced by multiple exponential smoothing of order k are optimal in a mini­
mum MSB for a restricted class of the ARIMA (0, k, k) processes. McKenzie 
[88] extends these results to direct smoothing models with transcendental 
terms.

Cogger [39] considers the nonseasonal Brown predictor, obtained by 
estimating a polynomial in time of degree m, showing that optimality of this 
predictor implies that the underlying process is generated by an ARIMA 
(0, m+1, nri-1) model.

D.J. Reid [117] notes that the k-type exponential smoothing fore­
casts at time t for lead time t are of the form

X^(?) = a^(t) + a^(t)x + ............+ct^(t)t^ (2.5.23)

where a^(t) is a linear function of the first k smoothed values of the
series; a proof of this statement is given by Brown and Meyer [41]. The
result (2.5.23) shows that the forecasts produced by any degree of multiple
exponential smoothing are equivalent to those produced by a Box-Jenkins type
of predictor of degree (k-1, 1, k) for k-type smoothing. To quote Reid:

smoothing imposes constraints in the form of relationships between the 
coefficients of the auto-regressive and moving average operators, so 
that in general it will be sub-optimal. Only in the rare case where
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these same constraints are present in the true generating model will 
we expect multiple smoothing to do as well as, or better than, the 
Box-Jenkins model of equivalent degree[131].

This last statement will be of extreme importance when we consider the
"Controversies among Forecasting Literature" in Chapter VII.

2.6 Monitoring Forecast Performance 
Lynwood A. Johnson and Douglas C. Montgomery [69] summarize some

of the most important reasons for the popularity of the exponential smooth­
ing methods. They are as follows:
(1) The selection of the form of the time series model can be done in a 

rational manner based either on objective historical data or subjec­
tive consideration of the future. A modest amount of historical 
data is usually sufficient for determining initial parameter values.

(2) Determination of initial values for model parameters is usually easily 
done.

(3). Model parameters often have intuitive meaning to the forecaster.
(4) Only limited data storage is required.
(5) The same model form may be used for a large number of time series.
(6) Periodic revision of model parameters is easily accomplished by means 

of simple algebraic expressions.
(7) Forecast generation based on the model is straightforward extrapola­

tion over the lead time of interest.
(8) Forecasts can often be stated in terms of prediction intervals with 

little additional effort.
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(9) Cumulative forecasts can usually be expressed as closed form expres­
sions involving the model's parameters and the lead time length.

(10) The relation between stability and responsiveness of the fore­
casting procedure can be adjusted easily by changing the rate of 
smoothing.

(11) Tracking signal tests for forecast control are easy to apply with cor­
rective action on out-of-control situations being possible either
automatically through programmed logic or through external intervention.

(12) The cost of developing the model and operating it is less than that
of more sophisticated time series methods and causal models while the 
accuracy obtained in the forecasting stage, as opposed to the para­
meter estimation or fitting stage, is often comparable.

However, as has been shown, particular exponential smoothing 
methods are optimal only for corresponding underlying stochastic processes 
which in many cases are subsets of the general class of the Box-Jenkins 
models. If somehow the assumed generating process is different than the 
true underlying process, then, the forecasts produced could be very far 
from optimal. It would be extremely valuable to have a fully automatic 
check on forecast performance so forecasts that violated a built-in safe­
guard would be signaled out. The forecaster may then devote his attention 
to those few time series that present a problem while forecasts of the re­
maining series could be produced routinely. In this section, we will 
examine two proposals in this context. The first one is due to Harrison 
and Davies [62] and the second one is due to Trigg [135].
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2.6.1 Harrison and Davies "Cusum" Technique 
P.J. Harrison and 0.1. Davies [62] suggest the use of cummulative 

sum (cusum) techniques for the control of routine forecasts. Briefly, 
their methodology is as follows:

If we denote f t o  be a one-step-ahead forecast of with errors
e^ and the system begins to produce forecasts for time t=l, then the cum­
mulative sums of the forecasts errors are

= e^, Cj = Cj_^ + , j = 2, 3, . . . (2.6.1.1)

The cusum chart is a chart where these cummulative sums are plot­
ted. Inspection of the cusum chart may indicate any tendency toward bias
in the forecasts. Harrison and Davies suggest a backward sequential test 
procedure so that we define at time t 

Si = e, = C -

2̂ = Gf + =t-l = ^t - Ct-2

Sk = =t + ^ - 1  + • • • + «t-k+1 = - St-k

For every new observation that occurs, a new is calculated and tested 
against corresponding control limits + L^. If the calculated value of 
is not within the (-1, L), lack of control is signaled. The procedure, 
Harrison and Davies note, only provides a vague indication of the way in 
which the forecasting scheme needs to be adjusted. Harrison and Davies 

show that, if the magnitude of the limits is a linear function of the
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number of observations comprising the sum to be tested, considerable impli­
cations are achieved as far as storage of information is concerned. The 
authors suggest that, if the forecast errors are independent, appropriate 
limits can be found through a "monogram" of Ewan and Kemp [44].

2.6.2 Trigg's "Tracking Signal"
Brown [20] presents a tracking signal to be the sum of the fore­

casting errors divided by the Mean Absolute Deviation (M.A.D.). M.A.D. is 
a convenient measure of the noise in the system and is obtained by a 
simple smoothing process upon the absolute forecasting errors. The up­
dating equations for any new, available data are; Sum of errors - previous 
sum of errors + latest error.
M.A.D. = (1-ct) previous M.A.D. + a  latest absolute error where a is the 
smoothing constant.
Tracking signal =

Brown computes significance levels for the tracking signal which if exceeded 
should prompt investigation. Brown's tracking signals have the following 
two disadvantages. To quote Trigg:

1. Once the tracking signal has gone out of limits, it will not neces­
sarily return within limits even though the forecasting system it­
self comes back in control. Consequently, intervention is neces­
sary to set the sum of the errors back to zero if future false 
alarms are to be avoided. Such interventions can be tedious and 
may tend to be neglected when several hundred items are being 
forecast.

2. Ironically, if the system starts to give exceptionally accurate 
forecasts, the tracking signal may go out of limits. For example, 
if perfect forecasts begin to occur, the M.A.D. will tend to zero 
whilst the sum of the errors will remain unaltered. The tracking 
signal, thus, clearly tends to infinity [135].

If instead of the sum of errors we use a smoothed error, we can reunite the
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updating equations as;
Smoothed error = (1-a) previous smoothed error + a latest error

(2.6.2.1)
M.A.D. = (1-a) previous M.A.D. + a latest absolute error

(2.6.2.2)
Smoothed ErrorTracking signal =

(2.6.2.3)
If we denote the smoothed error at time t by and the M.A.D. by 
then we have

= (1^)E^_^ + ae^ (2.6.2.4)

D^ = (l-<x)D^_^ + ajê .| (2.6.2.5)

EtTracking signal = ----
D^ (2.6.2.6)

Equation (2.6.2.4) can be expanded into the form

E = E a(l-a)V 
i=0

and on the assumption that the errors are uncorrelated

Var(E.) = oJx^E (1-a)^^ 
^ i=0

Since 1-a is always less than 1, the series is convergent and sums to

a^oê
l-(l-a)2

Two sigma limits for the smoothed error are
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or +  20 ■' “Z —  e V 2-aaa
There is a linear relation between o and M.A.D. For a wide range of0 . . .

distributions, o ' 1 . 2  M.A.D. or a y 1.2D^ where a is the standard e ~ e t e
deviation of the error series.

Two standard error limits are thus given by

+  2.4a/^2a-a^ (2.6.2.7)

Trigg derives the cummulative distribution of the tracking signal by simula­
tion (assuming in addition a normal distribution for the errors) and con­
cludes that fora = .1 equation (2.6.2 provides a good approximation 
for a 5% level test.

Trigg's assumption that the errors are uncorrelated is frequently 
violated by exponential smoothing predictors. It is apparent that the 
validity test rests crucially on the above assumption. Batty [139] demon­
strates this point in a particular case.



CHAPTER THREE

STATE SPACE 
KALÎ1AN FILTERS AND THEIR APPLICATION 

TO FORECASTING

If you can look into the seeds of time, and 
say which grain will grow and which will not, 
speak then unto me

-Shakespeare

3.1 Introduction
A good introductory presentation on Kalman Filters has been 

given by Spyros Makridakis and Steven C. Wheelwright [83 and 84]. They 
define Kalman filtering to be a combination of two independent estimates 
to form a weighed estimate or prediction. One estimate can be based on 
prior knowledge and the other estimate can be based on new information. 
Kalman filtering combines the two estimates to obtain an improved 
estimate.

Harrison and Stevens [63] use the name Bayesian forecasting 
and Kalman filters interchangeably. An obvious parallelism is found 
between Bayesian's "prior" and "posterior" and Kalman filtering's 
"prior" and "new estimate."

In section 3.2, a brief historical overview of the Kalman 
filtering will be given. Section 3.3 will briefly cover the Bayesian

53
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approach in forecasting and the state space models. Section 3.4 will 
deal with the properties of Kalman filtering and the applications of 
state space models in forecasting and model design. Section 3.5 will 
deal with an example of multidimensional identification and forecasting 
using state space models and, in particular, using the automated - 
software package PROJECT. Finally, in section 3.6, some conclusions 
will be reached on state space forecasting and Kalman filtering. Their 
properties, advantages and limitations will be briefly examined.

3.2 Historical Overview of the Kalman Filtering Approach
Kolmogoroff's work, written in 1941, is a pioneering effort on 

discrete time stationary stochastic process ■ [90]. His and the work of 

Wiener [140] for the continuous case provide the starting point 
basis of modern filtering theory. Both Wiener.and Kolmogoroff center 
their work on estimating the white noise, e^ in

Zy = Zf + (3.2.1)

where is expressed as deviation from the overall mean of the time 
series and is the original message, or pattern, generated by the real 
process represented through the time series. Kolmogoroff uses a 
presentation suggested by Wold [148] and Wiener reduces the prediction 
problem to the solution of a Weiner-Hopf integral equation:

Txx’^̂  ̂= C  (K-v)dv

where W(v) is the weighing function or impulse-response function and y
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denotes the out covariance. Recapturing can be achieved by solving
(3.2.1). However, such a solution was difficult to obtain, thus, 
limiting the applicability of the Wiener-Kolmogoroff filter. Originally, 
the solution was obtained by using spectral factorization.

Later, in 1947, Levinson provides some discrete approximations 
in order to obtain W(v) in equation (3.2.1) [90]. When new data becomes 
available, he devises recurrence equations to obtain estimates of W(v).
At this point, however, without the help of a computer, the matrix in­
version is still posing a problem when the number of observations 
involved is large. Zadeh and Ragazzini in 1950 simplify the problem of 
solution for the finite memory case by introducing the idea of "shaping 
filters" which provides a simplified approach for the solution of the 
Hopt-Wiener equation. Bootom in 1952 deals with the problem on the non- 
stationary time series approach. Stratonovich, in 1957, works on the 
scalar continuous case and Swerling [127], in 1959, extends the 
Kolmogoroff-Wiener results for the no process noise. Overall, except for 
a few insignificant aspects, his work is identical to the later work of 
Kalman and Bucy.

In 1960, R.E. Kalman [71] points out that the methods already 
developed for solving the Wiener problem are subject to the following 
limitations which curtail their practical usefulness:

i. The optimal filter is specified by its impulse response.
It is not an easy task to synthesize the filter from 
such data.

ii. Numerical determination of the optimal impulse
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response is often quite involved and poorly suited 
to machine computation,

iii. Important generalizations (e.g. growing-memory filters, 
non-stationary prediction) require new derivations 
frequently of considerable difficulty to the non­
specialist.

iv. The mathematics of the derivations are not trans­
parent. Fundamental assumptions and their consequences 
tend to be obscured.

Kalman approaches the Wiener problem from the point of conditional dis­
tribution and expectations. In this way, basic facts of the Wiener 
theory are quickly obtained; the scope of the results and the funda­
mental assumptions appear clearly. All statistical calculations and 

are based on first and second order averages; thus, the (iv.) limita­
tion is eliminated.

Following particularly Bode and Shannon [10], Kalman represents 
arbitrary random signals as the output of a linear dynamic system 
excited by independent or uncorrelated random signals ("white noise"). 
His approach differs from the conventional one only in the way linear 
dynamic systems are described; he emphasizes the concept of "state" 

and "state transition"; in other words, he specifies linear systems in 
terms of first-order difference equations.

With the state-transition method, a single derivation covers 
a large variety of problems: growing and infinite memory filters,
stationary and nonstationary statistics. In other words, difficulty
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(iii) above disappears. Having guessed the "state" of the estimation 
(i.e., filtering or prediction) problem correctly, one is led to a non­
linear difference equation for the covariance matrix of the optimal 
estimation error. From the solution of this equation the coefficients 
of the difference (or differential) equation of the optimal linear 
filter are obtained without further calculations. He also shows that 
the filtering problem is thé dual of the noise-free regulator problem.

In 1961, R.E. Kalman and R.S. Bucy [73] in their article 
"New Results in Linear Filtering and Prediction Theory" derives a non­
linear differential equation of the Riccati type for the covariance 
matrix of the optimal filtering error. The solution of this "variance 
equation" completely specifies the optimal filter for either finite or 
infinite smoothing intervals and stationary or nonstationary statistics. 
The variance equation is closely related to the Hamiltonian (canonical) 
differential equations of the calculus of variations. In some cases, 
the authors, Kalman and Bucy, provide analytical solutions. They also 
make an extensive use of the Duality Principle in relating stochastic 
estimation and deterministic control problems and in proving theoreti­
cal results.

Kalman and Bucy, unlike Wiener and Kolmogoroff who work in 
the frequency domain, involve their system description in the time 
domain and introduce state-space notation which offers considerable 
conceptual and computational advantages.

R.S. Bucy [107] claims that when the stationary stochastic 
processes are Markovian with continuous paths, the Wiener-Kolmogoroff
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theory is simply a special case of the Kalman-Bucy theory of linear, 
finite time filtering for nonstationary processes.

In 1969, R.A. Singer and Paul A. Frost [121] derive upper 
and lower bounds on the error covariance matrices of the Kalman and 
Wiener filters for linear finite state time invariant system. These 
bounds yield a measure of the relative estimation accuracy of these 
filters and provide a practical tool for determining when the implemen- 
tational complexity of a Kalman filter can be justified. The calcula­
tion, though, of these bounds requires little more than the determination 
of the corresponding Wiener filter.

In 1977, Raman K. Mehra [121] assumes that the required 
knowledge of all the systems and noise parameters for the Kalman filter 
is unknown (i.e. all these parameters have an unknown value) and, there­
fore, must be identified before use in the Kalman filter. He then 
presents a correlation technique which identifies a system in its canon­
ical form. The estimates are shown to be asympototically normal, unbi­
ased and consistent. The scheme is capable of being implemented on-line 
and can be used in conjunction with the Kalman filter. A technique for 
more efficient estimation by using higher order correlations is also 
given. He suggests a recursive technique to determine the order of the 
system when the dimension is unknown. The results are first derived for 
stationary processes and are then extended to nonstationary processes.

Emanuel Parzen, in 1979, in his article "Forecasting and 
Whitening Filter Estimation," [112] suggests a different approach to 
time series modeling in which the identification stage is not
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accomplished by graphical inspection of the time series and of computed 
auxiliary sample functions such as autocorrelation function, partial auto­
correlation function and spectrum. Rather, the transfer function of 
the whitening filter is estimated directly and parameterized parsimoni­
ously by using a criterion function called (CAT) for determining the order 
of approximating autoregressive schemes. His reason for diverging from 
the popular Box-Jenkins approach of time-series model identification is 
that ARMA schemes are useful and desirable only for modeling nonstationary 
time-series. According to Parzen, the advantage of his approach is that 
the identification process currently used in ARMA modelling, which is 
based on visual inspection of autocorrelation and partial autocorrelation 
functions, can be replaced by objective criteria based on estimating the 
transfer function in the frequency domain of the infinite AR whitening 
filter.

Raman K. Mehra [120] and Jazwinski [65A] give overviews of 
Kalman filters and their application to forecasting. The discussion 
presented here of the Bayesian approach and that of state space and of 
Kalman filters follows Mehra.

3.3 Bayesian Approach and State Space Models
3.3.1 There are four basic elements in a decision theory 

formulation for forecasting future values of a given random process:
i. unknown state of the world denoted by {X(t)} where

x(t) is a state vector, for t = o, 1, 2, 3 . . . .
ii. Prior knowledge of the process {X(t)} in the form of

prior probabilities and evolution equations that
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result in a prior probability specification p({X(t)})
iii. A vector of observations {Y(t)} associated with the true 

state {X(t)} according to a known probability law 
P({Y(t)}/{X(t)},0) where 6 is set of parameters,

iv. A loss function &[{X(t)}, {X(t)}] that expresses the 
loss to the decision maker and whose expected value 
should be minimized, for an optimal decision strategy, 
by making an appropriate choice of (X(t)}. The fore­
cast X(t) is a function of all the observations at time t.

Raiffa [114] shows that an efficient way to obtain an optimal
decision is to compute recursively in time the posterior distributions of
the state {X(t)} and perform expectations of the loss function with res­
pect to these distributions. Calculations of the posterior probabilities, 
nevertheless is not an easy task, and that is exactly where a Kalman fil­
ter becomes useful.

3.3.2 State Space Models. State space models are based on the 
Markov property that the present state of a random process depends pro­
babilistically on past states of the process only through the state ob­
served in the most immediate past. A general state space vector model 
of finite dimension is typically specified in terms of the following five 
quantities:

i. Input vector u(t), output y(t) and internal state vari­
able x(t).

ii. A transformation rule of the state vector from one time 
to the next.
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iii. A relationship between u(t), y(t) and x(t).
iv. Initial state x(0).

V .  Joint statistics of all random variables.

Mathematically x(t+l) = f[x(t), u(t), 6, t]
+ w(t) (3.3.2.1)

y(t) = h[x(t), u(t), 0, t]
+ v(t) (3.3.2.2)

t = 0, 1, 2, « « . 
where x(t) is an nxl state vector
u(t) u(t) is an rxl input vector

w(t) is qxl process noise vector 
0 is mxl parameter vector 

y(t) is pxl output vector
w(t) and v(t) are uncorrelated white noise sequences 

with known distributions. Also the distribution of x(0) is assumed known.
As a mathematical model, the state space model is only an approx­

imation to reality. There are a number of popular forecasting models 
which can be reduced in the form of equations (3.3.2.1) and (3.3.2.2).
When (3.3.2.1) and (3.3.2.2) are linear the state space model is known 
as the Gauss-Markov model. The linearity reduces equations (3.3.2.1) and 

(3.3.2.2) to
x(t+l) - $x(t) + Gu(t) + Tw(t) (3.3.2.3)
y(t) = Hx(t) + v(t), t = 0, 1, 2,. . . (3.3.2.4)

where w(t) and v(t) are assumed to be Gausian white noise (GWN) sequences 
with zero mean and covariances Q and R respectively. The matrices (|>,
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G, H, r, Q, R and P are deterministic where P is defined as theo o
covariance of the initial state x(o) which is normally distributed with
mean x and covariance P . o o

What we gain with representation (3.3.2.3) and (3.3.2.4) over
(3.3.2.1) and (3.3.2.2) is that, by solving the set of first-order vec­
tor difference equations, we can compute the mean, covariance and cor­
relation functions for x(t) and y(t) [117]. Furthermore, the posterior 
distribution p[x(t)|y(t), y(t-l), . . . y(l)] turns out to be Gaussian, 
and its first two moments are computed recursively by the Kalman filter.

One example that shows the modeling flexibility of the state- 
space vector is the derivation of the equation of a first order autore­
gressive moving average model. In equations (3.3.2.3) and (3.3.2,4) 
process noise w(t) and measurement noise v(t) have quite different 
interpretations and effects; v(t) represents the error inherent in 
observing the true state of the system x(t) and w(t) represents the 
random shocks during the evolution of x(t). is we assume

i. All matrices are time invariant,
ii. Neglect v(t) i.e. v(t) = 0
iii. All state variables can be observed, i.e. y(.t) = x(t), 

then we can write equation (3.3.2.3) as:

y(t+l) = (J)y(t) + Gu(t) + Tw(t) (3.3.2.5)

R.S. Bucy and P.D. Joseph [25] show that equation (3.3.2.5) re­
sents an AR(1) process with observed input u(t) and random errors w(t).
Chow [34] and Mehra [90] show how econometric simultaneous equation
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models may be written in the form of equation (3.3.2.5).
Now, we assume that w(t) = 0, i.e., there is no process noise 

and that also the initial state x(0) is known. Then, given {u(t)}, 
the {x(t)} process is deterministic, and by substituting x(t) = y(t) - 
v(t) into equation (3.3.2.3), we have y(t+l) - v(t+l) = <j>[y(t) - v(t)]
+ Gu(t) or

y(t+l) = ^y(t) + Gu(t) + [v(t+l) - v(t)] (3.3.2.6)
P. Whittle [72] shows that equation (3.3.2.6) corresponds to a 
vector first-order autoregressive moving average (ARMA) model. The same 
type of result is obtained even if the w(t) term is kept in the model.

3.4 Kalman Filter Properties and Model Design
R.K. Mehra in "Kalman Filters and their Applications to Fore­

casting" TIMS Studies in the Mgt Sciences 12 (1979), p. 75-94 derives 
the one-step-ahead prediction equation for the state space model using 
the state space equations, and by using Bayes's rule, he shows how to do 
measurement updates. The prediction and update Kalman equations are 
then derived and the innovation and stability properties of the Kalman 
filters are discussed in detail. These properties are mentioned here 
briefly.

Innovation Property. The one-step-ahead prediction error 
sequence v(t) = y(t) - Hx(t|t-1) is known as the innovation sequence 
since it represents new information brought by observations y(t) in 
addition to the information contained in the past observation history 
y ^ T h e  innovation property is shown to be used to test the
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optimality of Kalman filters to detect changes in process model and to 
build adaptive, robust Kalman filters.

Stability. Kalman [72] and others show that the Kalman 
filter possesses the property of global asymptotic stability for a com­
pletely controllable and observable system.

Raman K. Mehra also gives some guidelines when it comes to 
Kalman filter design and testing. These are characterized as model 
selection, parameter specification, algorithm selection, sensitivity 
analysis, validation and testing:

Model Selection is perhaps the most important step in 
Kalman filter design. When there is little a priori modeling informa­
tion available, as is the case in several socioeconomic and business 
applications, it would be better to identify the state vector directly 
from the historical data. Mehra and Cameron [93] discuss such a tech­
nique. The use of multiple models is also a good strategy when models 
can be developed on theoretical as well as on empirical bases. Multiple 
models are extremely useful when the model of the system may be expected 
to change suddenly in time without knowing the exact time of the change.

Parameter Specification. Once a model is selected, one 
has to specify the matrices G, T, H, Q, R, and P^. Physical 
understanding of the process can provide adequate information for 
theoretically based models. For black-box models, the parameters can 
be identified from the historical input-output data once special canon­
ical forms are assumed. Other techniques such as Maximum Likelihood or 
Bayesian approach have also been developed for estimating unknown
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parameters in theoretical models by using past historical data. In 
case of little or no historical information, Kalman filtering may be 
started with very little objective information and adapted as data be­
come available.

Sensitivity Analysis. In general, the effect on modeling and 
parameter errors on the performance of the Kalman filter can be deter­
mined through sensitivity analysis. It is shown [91] that the Kalman 
filter approach has extreme sensitivity to the underestimation of the 
measurement noise variance.

Validation and Testing., Statistical tests for checking the 
whiteness property are:

i. Correlation tests for testing local dependence [92]
ii. Integrated spectrum test for periodic linear depen­

dence [68]
iii. Run tests for linear and nonlinear dependence [45]

3.5 Multidimensional Identification and 
Forecasting Using State Space Models

The following descriptions of the identification and fore­
casting processes for state space models is summarized from a paper 
presented at the ORSA/TIMS Conference in Miami, Florida November 3, 
1976 by Alan V. Cameron and Raman K. Mehra [28]. According to Cameron 
and Mehra, the need for multidimensional or multiple time series 
modeling and forecasting stems from the lack of a technique that ade­
quately describes the behavior of a multiple time series. The Box- 
Jenkins methodology is inadequate since, according to the authors.
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the multiple time series case requires certain new concepts and 
techniques not present in the Box-Jenkins approach.

Computer runs of various data, using the State Space program 
PROJECT, were obtained and analyzed in a seminar on SS during the month 
of November 20-23, 1980 given by Raman Mehra in Boston, Massachusetts. 
Some of the concepts to be presented in this section were introduced 
and discussed during the above seminar.

The PROJECT program has been developed based on the theory of 
Systems Identification and Control Theory. The program can perform 
differencing and choose the order of the model automatically with mini­
mal user intervention. The PROJECT program is based on State Space 
Models, Stochastic Realization Theory, Statistical Decision Theory, 
Canonical Correlation Analysis and Kalman Filtering combined in a 
unique way for Multiple Time Series Analysis. A brief discussion of 
the technical aspects is given below;

State Vector. The state of a system is defined as a collec­
tion of all information from the present and past history of the 
process sufficient to predict its future behavior. Sufficient means 
that the State Vector contains only uncorrelated elements.

A more mathematical definition of the State Vector of a pro­
cess is: the basis of a linear vector space spanned by the predictors
of the present and future observations of the process which has been 
derived from the present and past observations of the system. For a 
stationary multidimensional process y(t), the State Space will be 
spanned by the components of the predictors y(t+k|t) k= 0, 1, 2, . . .
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where y(t+k|t) is the best k step ahead linear predictor of y(t+k) 
given y(t), y(t-l), y(t-2) . . . .  The basis for this predictor State 
Space at time t is called the State Vector x(t).

Since in practice there are many processes and systems for 
which theoretical models are not available and statistical models have 
to be developed directly from the data, the PROJECT program develops the 

statistical model directly from the data identifying the state of the 

system from a canonical correlation analysis of the observed data 
and by using"State Vector Canonical Models whose parameters are uniquely 
defined from the input-output properties of the system.

The AR Mathematical Model. Consider the AR model:

■ Vt-l + ?t.2 + ■ • ■ + Vt-P ■ “t+l
where y^ is the p dimensional vector of the observed series, Al, . . .,
Ap are pxp matrices and u^^^ is the one step ahead forecast error
and p is the order of the AR model.

The Akaike Information Criterion (AIC). The AIC is defined as:
AIC = -2 (maximum log likelihood)

+2 (number of free parameters within the model).
To quote Cameron and Mehra in "User Manual for State
Space Forecasting & Modeling Building Program."

This criterion is used in the identification of both State Vector 
and Autoregressive Models. When several competing models are 
being fitted to a single or multiple time series process, the model 
with the smallest value of the AIC is chosen as the best model.
The AIC provides a consistant criterion for comparing increasing 
model goodness of fit (measured by the likelihood function) versus 
increasing model complexity (measured by the number of parameters). 
It quantifies the idea of parsimony in statistical model building.
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State Space Models. Let be a pxl vector of an observed time 
series. Then a state vector model of the process is defined as;

*t+l ^^t ^“t+1 (3.5.1)

= Hx^ (3.5.2)

where x^ is an nxl vector of state variables 
H is a pxn matrix
F is a nxn matrix
G is a nxp matrix

is a pxl vector of one-step ahead prediction errors or
"innovations" which is a zero mean white noise process, is defined
as = ŷ _|_̂  - The notation 7^+1/% is the prediction of y at
time t for one step ahead (t+1). Matrices F, G and H depend on the
statistical properties of the process. The covariance matrix of 
is denoted by S. The system of equations (3.5.1) and (3.5.2) are com­
pletely specified in terms of the quantities (n, F, G, H, E).

For a Canonical State Space Model, a unique determination of the
State Vector x(t) and the matrices F, G and H can be obtained by per­
forming a canonical correlation analysis between the two sets of random 
variables;

i. the present and past values of the process 
y(t), y(t-l)y(t-2)...,y(t-m)

and
ii. the present and future predictors for the process 

y(t), y(t+l/t), y(t+2/t), . . .
The AIC (Akaike Information Criterion) is used to determine both m
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and the components of the State Vector x(t). The parameters of F, G
and H are obtained from the Canonical Correlation Analysis.

It was shown in this chapter that the State Vector Model of 
equation (3.5.1) and (3.5.2) is equivalent to an ARMA model in the 
sense that both models will output a series with identical statisti­
cal properties. Cameron and Mehra, nevertheless, point out that there 
are several advantages of State Vector Models over ARMA. These advan­
tages are

i. Once the State Vector Model is identified, prediction or 
forecasting is done trivially by setting u^ = 0 for all
future values of it. The prediction of some of the series
when the future values for the rest are known is also done 
easily by using a Kalman Filter.

ii. A multidimensional ARMA model of the type Yj- + B^yc + . . .
+ B^yc-m = ut + A ^ u ^ + . . . + ALUt-i of matrices (B^ . . .
Bm, A^ . . . Aĵ ) may produce a y^ series with identical pro­
perties. (This problem does not arise for univariate series.) 
The same problem exists for the State Vector but it is easily 
solved by restricting (F, G, H) to the so-called 'Canonical 
Forms'. The restrictions on (B^ . . .B^, A^ . . . Aĵ ) are 
more complicated and are difficult to incorporate in an iden­
tification program [28].
Stochastic Realization Theory: The Stochastic Realization pro­

blem is that of determining the internal structure of a State Vector 
Model given its external behavior: determine (n, F, G, H, E) given the
correlation function (C^, C^, C^. . .) of the output y^. Future condi­
tions such as the minimality of n and the uniqueness of (F, F, H, E) are 
imposed to develop a parsimonious representation whose parameters can be 
identified uniquely from the data. The correlation function (C^, C^,...) 
is not exactly known and must be estimated from the observed time series 
(ŷ , yg, ' . . y^). In PROJECT, this problem is solved by using tools
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of Statistical Decision Theory and Canonical Correlation Analysis.
Canonical Correlation Analysis. Canonical Correlation Analysis 

can be considered as a generalization of regression analysis : a regres­
sion problem is concerned with finding a linear combination of components 
of a vector random variable which has maximum correlation with a scalar 
variable whilst Canonical Correlation Analysis is concerned with finding 
the maximum correlation between linear combinations of components from 
two vector random variables. For each of the two vector random vari­
ables, the canonical correlation analysis finds linear combinations of 
the original vectors which are independent of each other and which have 
zero means and unit variances. In the State Space program, the two vec­
tor random variables considered are the predictor and data vector 
spaces, and the basis of each of these is found through the Canonical 
Correlation Analysis.

ARMA Models. Autoregressive Moving Average models for a multi­
ple series y(t) have the form:

y(t) = A^y(t-l) + . . . + A^y(t-p) + 
u(t) - B^u(t-l) - . . .  - BqU(t-q) where 
u(t) is a p dimensional vector,
A^ and B^ are pxp dimensional matrices and u(t) are 
the residual errors.

There is one-to-one transformation between State Space models 
and ARMA models. Some of the equivalences of AR, MA and ARMA to State 
Space models are given below. The materials are from the seminar given 
by Raman Mehra on State Space forecasting on November 20-23, 1980 in 
Boston, Massachusetts.
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let

EQUIVALENCE OF MA AND STATE VECTOR MODEL 

y(t) = u(t) - B^u(t-l) - . . . _ Bqu(t-q)

x(t) =

u(t)
u(t-l)

u(t-q)

State Vector Model:

u(t) 0 ................ 0 u(t-l) I
u(t-l) I 0 ............... 0 u(t-2) 0
• 0 1 0 ........... 0
• • . +

u(t-q) 0 ............0 I 0 u(t-q-l) 0
u(t)

x(t) = $x(t-l) + ru(t) 

y(t) = [I - - Bg . . . - B ]x(t)
= Hx(t)
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EQUIVALENCE OF AR AND STATE SPACE MODEL

y(t) = A^y(t-l) + . . . + A^y(t-p) + u(t)

let

or

x(t) =

y(t)
y(t-l)

y(t-p+l)

Then

y(t) = [I 0 0 . . . 0]x(t)
= Hx(t)

y(t) ^1 ^ 2 ..............% y(t-l) 1
y(t-l) I 0 ..............0 y(t-2) 0
• 0 1 0 .............0 0

• • +
• .

• . •
y(t-p+l) 0 .............. l' "0 y(t-p) _0 _

u(t)

x(t) = $x(t-i) + ru(t)
+

white
noise
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EQUIVALENCE OF ARMA AND STATE VECTOR MODEL

y(t)

LET

.. - BqU(t-q)

y(t)
y(t-l)

y(t-p+l)
u(t)
u(t-l)

u(t-q+l)

THEN

-B -B

x(t) = x(t-l) +

y(t) = [I 0 ... 0]x(t)

I
0

u(t)
I
0
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In general, Raman Mehra claims that if n is the dimension of the State 
Space Vector x(t), then the equivalent ARMA model has n AR and n-1
MA parameters, i.e., the State Space model is equivalent to ARMA (n,n-l).

Forecast Generation. Given the State Space model; 
x(t+l) = F*x(t) + G'u(t+1) 
y(t) = H*x(t)

then k forecasts for future values are recursively generated by assuming 
u(t+k) = 0 for k>0,

i.e. x(t4-k) = F*x(t+k-l)
= F*F*x(t+k-2)
= F**k"x(t)

and
y(t+k) = H*x(t+k)

= H'F**k x(t)

It is in the forecast generations that the Kalman filtering is used. Fig­
ure 3.2 shows the model of the process and optimal filter for the discrete 

case.
State Space Model Development Program Structure. The major func­

tions performed in the State Space model building and forecasting program 
are:

1. Input of the time series to be forecast and the optional 
model and forecast control parameters.

2. Creation of a stationary series by regular or seasonal 
differencing or transformation.

3. Creation of the data space from present and past values 
of the series.
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FIGURE 3.1
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4. Creation of the predictor space from forecasts of
present and future values of the series.

5. Iterative performance of Canonical Correlation Analyses
between the data and predictor spaces.

6. If the canonical correlation is significant, addition 
of a new element to the predictor space basis vector.

7. When all independent elements of the predictor space
have been tried, compute the transition matrix from the 
canonical correlation results and compute the impulse 
response matrix from the autoregressive model.

8. Generate the forecasts and the residual one-step-ahead
forecast errors for the fitted model over the historical
data.

9. Perform diagnostic checks on the residuals and calculate 
goodness of fit statistics.

10. Generate forecasts and confidence limits from the model
and un-difference and/or un-transform the forecasts back 
to the original data levels.

PROJECT does not use nonlinear searches in developing estimates 
of the parameters. The Canonical Correlation and AR modelling techniques 
provide asymptotically efficient estimates of all system parameters.

The direct development, testing and use of State Space model 
for a two dimensional process is now illustrated. Cameron and Mehra 
make the claim that minimal user interaction is required in using the 
PROJECT program. The numbered paragraphs refer to the corresponding
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numbers on the sample computer printout from PROJECT.
A.l First the data for both series are entered; the data vec­

tor at time t is =(YlDAT(t), Y2DAT(y))^‘
A. 2 The development of a State Space program requires each 

given data series in the multidimensional process to be stationary or to 
be induced to a stationary process. Options are available for automatic 
and specified differencing.

A. 3 The dimension of the State Vector is increased one 
element at a time until further additions would be correlated to pre­
vious elements of the basis as judged by a suitable test criterion.
The first element added to the State Vector is YlDAT(t). This element
is the current value at time t of the first time series. The second
element added to X^ is Y2DAT(t) as being the current value at time t 
of the second time series. The third element added to X^ is YlDAT(t+l). 
This element is the best one-step-ahead predictor at time t for the first 
time series. The fourth element added to the State Vector X^ is 
Y2DAT(t+l). This element is the best one-step-ahead predictor at time 
t for the second time series: the best predictor for Y2DAT(t+l) given 

the data Y^, ^t-1’ ^t-2‘ * ' Similarly, the fifth element added to the 
State Vector is Y2DAT(t+2). This element is the best two-steps-ahead 
predictor at time t for the second time series. No further uncorrelated 
elements can be added to the State Vector. Hence, the dimension of the 
State Vector X^ is 5x1. X^ has the form:
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ŸlDAT(t)
Y2DAT(t)
YlDAT(t+l)
Y2DAT(t+l)
Y2DAT(t+2J

A.4 The transition matrix F is calculated automatically by 
the program according to

*t+i ■

F has a dimension of nxn or in this case, 5x5.
A.5 The program automatically calculates the matrix H which

relates the State Vector x^ to the observation time series vector Y^,

i.e., Y^ = Hx^ where H has dimension pxn or, in our case, 2x5.

A. 6 G is also calculated automatically from the equation 
= Fx^ + GUj.̂  ̂where u^^^ has dimension pxl or in our example 2x1 

and is defined as û ^̂  ̂= Y^^^ - Y^+l/t ^t+1 the State Vector 
at time t+1. G and H are the matrices calculated above.

A.7 The innovation vector u^ for the State Space model is the
vector of residuals errors for one-step-ahead forecasts. The residual 
errors for a well-fitted model are uncorrelated and identically dis­
tributed random variables with zero mean.

The PROJECT program calculates the mean vector for the residual
errors.

A.8 The program calculates the covariance matrix Z of the 
residual errors. For a well-fitted model, the diagonal elements of the
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covariance matrix (i.e. the residual variances) should be significantly 
less than those of the original data. The off-diagonal elements of the 
residual covariance matrix representing the cross covariance of the 
residuals should be close to zero since one of the assumptions for the 
residuals is to be uncorrelated.

A 9. The normalized correlations for the residuals are cal­
culated. The correlations of the residuals should be small for a well- 
fitted model. A measure of their significance is provided by their 
standard deviation given after the last correlation. No residual cor­
relations should be greater than two standard deviations away from zero 
for a well-fitting model.

AlO. An overall measure of goodness of fit of the State Space 
model is provided by a Relative Goodness of Fit Criterion. The higher 
the value of the Relative Goodness of Fit, the better the model fits 

the data.
2All. The program calculates an R test statistic equal to 

one minus the ratio of the residual error variance to the beginning 
variance of each of the original series. In our example, the first 
element is the R-squared test of .829 indicating that 82.9% of the vari­
ance in the first time series has been explained by the State Space 
model.

Conclusions

2.6.1 Kalman Filters. Kalman Filtering based on State Space 
models is emerging as a general approach to forecasting. Some of its
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advantages are:
i. It is a flexible approach to obtain optimal forecasts 

for a large number of different models for linear, non­
linear and time varying processes,

ii. Kalman Filtering is the most general approach to statis­
tical estimation and prediction. It has been shown by 

Harrison and Stevens [63] that all forecasting methods 
are special cases of Kalman Filters.

iii. Kalman Filters provide complete probability distribution 
on forecasts so that confidence limits and expected 
values of loss functions can be evaluated explicitly, 

iv. These filters can deal with changes in the model, the 
parameters and the variances. The filters not only can 
detect significant ciiangas in the time series but also 
can adapt to these changes.

Limitations: The difficulty with Kalman Filters is that a lot
of technical questions are yet to be answered. The approach itself has 
grown out of engineering. Many statisticians and operations researchers 
know little about the approach or have difficulty understanding the 
State Space notation. Practical difficulties such as initial estimates 
for parameters, variances, covariances and the transition matrix still 
exist.

2.6.2 State Space Forecasting. When comparing State Space 
forecasting to the Box-Jenkins approach, Drs. Alan Cameron and Raman 

Mehra, the creators of State Space forecasting, find seasonal advantages
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of the next method over BJ. These advantages are:
i. No sharp discontinuity in complexity when going from 

univariate to multivariate .case
ii. Order selection done automatically
iii. Generally nonlinear search not required
iv. One computer command performs all three steps of 

Identification, Estimation and Forecasting 
V .  Computationally faster procedure.

In respect to the superiority of the State Space models over 
the BJ approach, the International Airline Passenger data of Table 4.1

were trained via the PROJECT program of the State Space forecasting.
State Space forecasting does not make any provision for transformation 
of the data in order to induce homoscedasticity. Apparently homosce- 
dasticity is expected to be induced by differencing the time series.
The model that the State Space program identified has the form:

(1-*B) (1-B) (l-B^Z) Zj. = â.

This is very different from the model which Box and Jenkins [11, p. 306] 
identified for the classic International Airlines data:

(1-B) (1-B^^> = (1-0B) (l-eB^^)a^

and which has been generally acknowledged to be the definite model for 
description of this well-known series. Clearly, the State Space program 
.showed no MA components.

When State Space forecasting is compared against the Bayesian 
Approach, Dr. Cameron and Mehra claim
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i. Bayesian Forecasting requires the user to specify a 
model structure. State Space Forecasting identifies 
the model structure from the data,

ii. All the desirable features of Bayesian Forecasting
(short data lengths, a priori information, adaptability) 
can be incorporated in State Space Forecasting. Dif­
ferent State Space models can be related to each other,

iii. State Space Forecasting generates and bridges the gap 
between the Box-Jenkins and Bayesian Forecasting.

In chapter seven the controversies in literature on forecasting 
will be discussed; a part will be dedicated to the State Space approach 
and its competative edge over the other forecasting methods as claimed 
by Dr. Mehra and Alan Cameron.
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EXAMPLE 1

A STATE SPACE MODEL FOR A 
TWO DIMENSIONAL PROCESS

RUNNH: PROBE FIN
COMMAND ?SEL YlDAT, Y2DAT
COMMAND ?PROJECT YlDAT, Y2DAT PRINT RES, MAT, COR A.l

STATE SPACE FORECAST

500 OBSERVATIONS, 2 SERIES 
RANGE = 001 -500

NO REGULAR OR SEASONAL DIFFERENCING PERFORMED 
THE FOLLOWING ARE THE ELEMENTS OF THE STATE VECTOR

A.2 
A. 3

YlDAT(T) 
Y2DAT(T) 
YlDAT(T+1) 
Y2DAT(T+1) 
Y2DAT(T+2)
F MATRIX

5
ROW

ROWS
1 0.0000

5 COLUMNS
0.0000 1.0000 0.0000

A.
0.0000

ROW 2 0.0000 0.0000 0.0000 1.0000 0.0000
ROW 3 -.4411 0.0445 0.9088 0.0058 0.0000
ROW 4 0.0000 0.0000 0.0000 0.0000 1.0000
ROW 5 -.0006 0.4808 0.0213 -1.2196 1.5656
H MATRIX

2
ROW

ROWS
1 1.0000

5 COLUMNS
0.0000 0.0000 0.0000

A,
0.0000

ROW 2 0.0000 1.0000 0.0000 0.0000 0.0000
G MATRIX

5
ROW

ROWS
1 1.0000

2 COLUMNS
0.0000

. A
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5 ROWS

ROW 2 0.0000 1.0000
ROW 3 1.6910 -.0692
ROW 4 0.0144 1.4841
ROW 5 -.0265 1.0198
RESIDUAL
ROW

MEAN VECTOR
2 ROWS 1 COLUMNS 

1 -.0007
ROW 2 0.0001
RESIDUAL
ROW

COVARIANCE MATRIX 
2 ROWS 2 COLUMNS

1 0.9579 -.0216
ROW 2 -.0216 1.0669
NORMALIZED CORRELATIONS FOR RESIDUALS 

2 ROWS 2 COLUMNS 
LAG 1
ROW 1 0.072 0.013
ROW 2 0.017 0.008
LAG 2
ROW 1 -.008 -.005
ROW 2 -.040 -.002
LAG 3
ROW 1 -.017 0.021
ROW 2 0.042 -.033
LAG 4
ROW 1 0.033 -.010
ROW 2 -.027 0.004
LAG 5
ROW 1 0.019 -.008
ROW 2 -.037 0.013
LAG 6
ROW 1 0.049 0.004
ROW 2 -.028 -.013
LAG 7
ROW 1 0.016 0.056

A. 7

A. 8

A.9
19 LAGS
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ROW 2 0.039 -.030
LAG 8
ROW 1 0.007 -.015
ROW 2 0.016 0.045
LAG 9
ROW 1 -.041 -.036
ROW 2 0.012 0.050
LAG 10
ROW 1 0.029 0.013
ROW 2 0.009 0.039
STANDARD DEVIATION IN RESIDUAL CORRELATIONS 0.04
RELATIVE GOODNESS OF FIT ( 16 D.F. ) 1615.7239
R SQUARED TEST
YlDAT
Y2DAT

ORIGINAL DATA DIFFERENCED DATA 
0.82936 0.82936 
0.78328 0.78328

A. 10 
A. 11

COMMAND ?



CHAPTER FOUR

ADAPTIVE FILTERING

Any astronomer can predict just where every 
star will be at half past eleven tonight; he 
can make no such prediction about his daughter

-James Truslow Adams

4.1 Introduction 
This chapter will deal with techniques developed to modify 

forecasting parameters in a dynamic manner. In this sense, the para­
meters may be altered at each time period depending on the flow of 
forecast errors or the additional information that has built up and 
concerns the behavior of the time series.

The adaptive filtering approach of the general ARMA model of
the form

= +l=t_l + *2%t-2 + ' ' ' + *p%t_p + *t

- ®l®t-l " ®2®t-2 - • • • - 8q*t-q <4.1.1)

and the adaptive-response-rate-single exponential smoothing (ARRSES) 
will be examined in detail. Adaptive filtering is to the general ARMA 
model of (4.1.1) what ARRSES is to single exponential smoothing.
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There are several adaptive methods of forecasting available.
The author feels that the ones proposed by Trigg and Leach [136] for the 
case of single exponential smoothing and the one proposed by Spyros 
Matridakis and Steven Wheelwright [82] for the case of integrated AEMA 
model respectively are representative, probably most widely applied and 
perform reasonably well.

4.2 Adaptive Response Rate Single Exponential Smoothing (ARRSES)
Adaptive-response-rate-single exponential smoothing (ARRSES) 

has an advantage over single exponential smoothing; it does not require 
specification of a value for a. This feature is particularly attractive 
when an extremely large number of items needs to be forecasted. Even 
more important is the ability of ARRSES to change the value of a on an 
ongoing basis when changes in the pattern of the data occur.

It is a common procedure to use different values of the 
smoothing constant at different times in the analysis of a common series. 

A large value of a, which seemed to be appropriate at the start of an 
exponential smoothing procedure when the procedure is based on only a 
few observations, is no longer appropriate in light of more information 
concerning the time series. Instead, a smaller value of a should be in­
troduced since the forecast should not any more rely heavily on early 
forecasts. ARRSES is adaptive in the sense that the value of a will 
change automatically when there is a basic pattern requiring a different 
alpha.

ARRSES is based on the same equations as a single exponential 
smoothing. Formula (2.2.4) of chapter II gives us the equation for



89
single exponential smoothing.

St+i = ctẐ  + (l-ot)S^ (4.2.1)

which in the case of a changing over time becomes

t̂+l = “A  + (4-2-2)
The parameter a varies and is calculated according to

E
“t+l - I mT I (4-2-3)

where = ge^ + (l-g)E^_^ (4.2.4)

= g|e^| + (1-B)M^_^ (4.2.5)

and e^ = (4.2.6)

B is usually set to .1 or .2
From (4.2.3) we can see that a will vary with the ratio of 

actual to absolute error values. Equation (4.2.4) smoothes the actual 
errors while (4.2.5) smoothes the absolute error values. Again, the 
objective of this procedure is to allow the forecasting model to react 
faster to sudden changes in the level or a shift in the demand pat­
tern.

Several other techniques that are beyond the scope of this 
dissertation have been developed to automatically control the values of 
one or more smoothing constants. The most widespread and established
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ones are found in W.M. Chow [35] whose adaptive control technique 
monitors several exponential smoothing constants, Roberts and Reed [119] 
whose adaptive-control technique, called SAFT, an acronym for Self Adapt­
ive Forecasting Technique, is an extension of Chow’s method, and 
Montgomery [95] whose scheme is similar to the Roberts and Reed method. 
Montgomery and Johnson [96], pp. 175-188] have an excellent presentation 
of all the above adaptive control forecasting methods, their advantages 
and disadvantages, and differentiates these methods according to their 
accuracy and computational simplicity.

4.3 An Integrated ARMA Adaptive Filtering 
for Time Series Forecasting

4.3.1 Historical Overview. Spyros Makridakis and Steven 
liheel̂ nright [83, p. 676] define adaptive filtering to be a method of 
time-series forecasting which determines the optimal set of parameters 
(weights) to be applied in such a way that the square of the errors 
will be minimized. It is a time series method belonging to the group 
of ARMA techniques.

Forecasting with adaptive filtering is first reported by 
the above authors in two articles in 1973. The authors extend 

the concept of adaptive filtering from its limited AR form to se­
quential ARMA models [82]. Several other.people contribute to the 
popularity of this method. Among them are C.D. Lewis with two papers 
in 1973 and 1975 and A.J. Long who in 1975 extended the concept of 
adaptive filtering to include mixed ARMA models which in turn led to 
the generalization of the method so it could deal with all types of
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processes and data [83, p. 309]. Since then, the technique of adaptive 
filtering has become widely used, and its theoretical development has 
evolved in several directions. Use of adaptive filtering was reported 
to have been extended to multivariate processes [83, p. 309].

A theoretical description of adaptive filtering for an ARMA 
model will be given in the next sections based primarily on the pioneer 
work of Spyros Makridakis and Steven C. Wheelwright [82, 83 and 79].

4.3.2 The Adaptive Filter. The use of heuristic optimization 
procedure - the method of deepest descent - in identifying the filter 
parameters and obtaining values for the impulse response function is 
credited to Widrow, Makridakis and Wheelwright [82, p. 426]. Most 
other filtering techniques use analytical optimization procedures to 
determine filter parameter values.

As a methodology for time series forecasting, adaptive filter­
ing bases its forecast on a weighted sum of past observations. The 
complete expression of the adaptive filtering AR model is, therefore.

=t = *lt:t_l + +2t%t_2 + +f[t-3 + ' ' ' + +pt%t_p +

*kt%t-k + ®t t = p+1, p+2, . . ., n. (4.3.2.1)

Equation (4.3.2.1) is one of the two major components of Box-Jenkins 
methodology for time series analysis. (The other component is the MA 
process and consists of a weighing of past error terms.)
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The fact that equation (4.3.2.1) is part of the ARMA models of 
the Box-Jenkins methodology has caused some people to overlook the major 
differences between the AR model of the Box-Jenkins methodology and equa­
tion (4.3.2.1). The difference is that in the ARMA models of the Box- 
Jenkins methodology the parameters (|)̂ of the AR model are fixed while 
the adaptive filtering approach has the particularly attractive ability 
to adjust the parameters (|)̂ of (4.3.2.1) as new data become available. 
However, this may be an advantage with some data series and a disadvan­

tage with others [79, p. 227].
Some of the advantages of adaptive filtering are that it is 

conceptually and computationally simple; it requires only a small num­
ber of data points; it has few constraints connected with its use, and, 
above all, is a truly self-adaptive method that can adjust automatically 
to changing data patterns. The formula for modifying the filtering 
parameters of (4.3.2.1) according to the method of steepest descent is

'f’it " *it-l + 2ke X (4.3.2.2)t t-i 
i = 1, 2, . . ., p
t = p+2, p+2, . . ., n

where is the new adapted parameter

is the old parameter 
k is a learning constant that determines the speed of

adaptation 
e^ is the residual error

 ̂ is the time-series value at period t-i
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Expression (4.3.2.2) will approach the optimal parameter values (the 
ones that minimize MSB) as long as k lies within certain limits. It 
has been shown by B. Widrow that by repeatedly using equation (4.3.2.2) 
under the necessary conditions parameter values that result in succes­
sively smaller MSE can be easily attained [83, p. 287].

The subjective feelings of the forecaster can be incorporated 
in the value of k. For example, when the forecaster expects a continua­
tion of the basic data pattern, a "normal" value of k, such as 1/p, can 
be used. If change in the data pattern is expected, then the value of 
k might be increased; whereas a change in the amount of randomness, but 
no basic change in the pattern, might lead the forecaster to decrease 
the value of k [82, p. 427].

To speed convergence to the optimum values, a value of k as 
close to 1 as possible will usually require fewer iterations of (4.3.2.2) 
to achieve a minimum MSE. Such a value of k, nevertheless, can result 
in divergence; instead of a smaller MSE on each iteration, the MSE 

increases. To avoid this problem, k must be set equal to or smaller 
than 1/p [83, p. 287]. When this is done and the data are standardized, 
convergence towards a minimum MSE is assured. The sufficient conditions 
for convergence of the adaptive filtering algorithm (AFA) are given in 
[83, pp. 310-313] where for an AR process this condition is assured as 
long as the learning constant k is within the bounds

0 < K < - ^ ---- , t = p+1, p+2, . . . n (4.3.2.3)
Ê x f
i=t-p
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2 2 For MA models, should be substituted for to obtain

0 < K < — -- (4.3.2.4)

t=i-q
2 2Finally, for mixed ARMA models, both and e^ should be included in the 

denominator giving

T T Z  — , (4.3.2.5)
E + I 

i=t-p i=t-q

Adaptive filtering bad three specific weaknesses in the past, 
that have recently been overcome. These weaknesses were:

i. Failure to make efficient use of prior information in 
arriving at initial estimates of the parameter values.

When adaptive filtering is being applied and no prior informa­
tion is available, then a practical procedure for initializing the para­
meters is to set

= *2 = *3 = ' • ' = = p (4.3.2.6)

Using then the method of deepest descent formula (4.3.2.2), we can
obtain an improved set of weights as more information becomes available. 
This process consists of calculating X^ and e^ from equation (4.3.2.1) 
using the first p data points. We substitute these values and the 
appropriate X^ into (4.2.2.2) to determine an improved set of weights
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This sequence of steps can then be repeated by dropping the 
first data point in the set of pX values and adding the next 
data point (p+1). Thus, a new set of data points can be com­
bined with the revised weights to obtain values for Xt+1 and 
e^+i. This procedure can be applied until all existing obser­
vations have been used. [82, p. 429]

One now can return to the first p data points, retrain the most recent
set of weight values and repeat the process. If the data series is
stationary and if k satisfies the necessary conditions [83, pp. 310-
313], then this process will converge toward the optimal set of
weights $*.

This iterative procedure is computationally time consuming.
The use of Yule-Walker equations (4.3.2.7) rather than equation (4.3.2.6) 
can eliminate this drawback. The Yule-Walker equations express the 
autocorrelations of p time lags as a linear function of the autocorrela­
tions of other time lags in the following manner.

Pi = d,l + fgPi + . . . + $pPp_i

P2 = *iPi + *2 + ' ' ' + V p-2 (4.3.2.7)

p̂ ~ *iPp_i + *2pp_2 + , , . +

In matrix form, equation (5.3.2.7) can be written as

p = $ P (4.3.2.8)P P P

Solving (4.3.2.8) for we get

% = (4.3.2.9)
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By replacing the theoretical autocorrelations by the estimated

autocorrelations r^, we can determine, using (4.3.2.9), a starting set
of weights for applying the iterative procedure described above (i.e.,
the Yule-Walker equations). Doing this, we substantially reduce the
number of computations required to approach the optimal set of weights,
*

ii. Difficulty of comparison of applications among different 
time series if data are not standardized.

Certain benefits are obtained by standardizing the values 
so they fall between 0 and 1; although, it is possible to apply adaptive 
filtering to a time series without standardizing the data values.

When the time series is stationary, standardization assures 
that equation (4.3.2.2) will give convergence providing learning con­
stant k is less tha 1/p and tends to speed up the process. One satis­
factory and easy procedure for standardization consists of dividing 
each in the set of such p values by the square root of the sum of 
the squared values. The result of the division are the standardize 
values

X
X^ = ----   (4.3,2.10)

f

iii. Required stationarity in the data.
The concept of stationarity that so far has been assured is not 

expected to hold in most business time series. We can overcome this
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problem of not requiring stationarity through repeated use of adaptive 
filters which is equivalent to taking successive differences of the 
time series. Indeed, if the time series (t=l,2,....n), is not 
stationary in the first degree, a filter with weight equal to l(i.e. 
(j)̂  ̂= 1) and k=0 can transform the series into one that is stationary 
at the first level. Equation (4.3.2.1) becomes

, (4.3.2.11)t t—1

and the error becomes

= X^ - X^ = X^ - X^_^ = (1-B) X^ t=2,3.... n

where B is the backward shift operator. The above equation (4.3.2.11) 
is exactly equivalent to taking the first difference (1-B) of the 
series. If non-stationarity exists at the second level, a filter with 
<|)ĵ =̂2, 4^^=-l, k=0 can be applied to give

\  \-2 (4.3.2.12)

and the error

+ %t_2 -

2This filter is equivalent to taking the second difference (1-B) of 
the series.

In practice, examination of the autocorrelation function for
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the time series is used to determine stationarity.
Whether or not the aim is filtering (i.e., separate the noise 

from the signal or pattern) or forecasting, elimination of non- 
stationarity through the use of a sequence of filters will eventually 
give a differenced series that is stationary. Once stationarity has 
been achieved, the output of the filters can be defined as:

and equation (4.3.2.1) becomes

Xt = 4l%t-l + *2*t-2 + • • • + *p%c-p + ®t

where is now a stationary series.

Choosing the appropriate degree of the AR process requires 
examination of the autocorrelation coefficients and partial autocorrela­
tions. Makridakis and Wheelwright [79] give an empirical rule of thumb 
that can serve as a guideline when using adaptive filtering.

As a practical rule, one can choose the degree of the AR process - 
the number of weights - to equal the time lag corresponding to the 
largest positive autocorrelations coefficient after a time lag of 
3. This is equivalent to setting p equal to the length of sea­
sonality. If the data are not seasonal, p can be set equal to 1,
2, or 3. Setting p equal to, say, 12 if monthly seasonality is 
present may result in specifying too many parameters (a non- 
parsimonious model) but this is a disadvantage to be compared with 
the advantage of considerably less complexity in using the method. 
Similarly, for non-seasonal data, p can be set equal to 3, thus 
providing a simple yet general approach for dealing with seasonal 
and non-seasonal data. Again, doing so will mean that too many 
parameters may be used. When this is the case, their values will 
be close to zero. For forecasting purposes, therefore, there will 
be little harm. [79, pp. 231-232]
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The choice of the degree for the general MA model

%t = Gf - - 82*t-2 - • • • - Vt-q <4.3.2.13)

is similar to the AR choice. The degree should be equal to the time lag 
of the largest autocorrelation coefficient. Following this rule 

will usually result in an adequate model and in random residuals [79, 

p. 232].
A much more general approach in using adaptive filtering can be 

achieved with the standard AEMA model of the form:

+ • • • + V t - p  + S  (4.3.2.U)

- - ®2=t-2 - • • • - %®t-q

Equation (4.3.2.2) can be used to modify the parameters using adaptive 
filtering, and its equivalent form (4.3.2.15) can be used to modify the 
0^ parameters:

4 =  ®it-l - K  V i  (4.3.2.15)

Inclusion of the MA term in the general AEMA model adds more complexity 
than is justified by modest gains in accuracy. Thus, restricting the 
approach of repeated applications of adaptive filtering to models only 
of the form given by (4.3.2.1) is recommended [82, p. 432].

4.3.3 Comparison of AEMA Methodologies and Adaptive Filtering. 
There are some similarities between AEMA forecasting methodologies and
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adaptive filtering - mainly in the representation of the model. But 
there are also some very unique differences. The most important dif­
ference is that the parameters c{)̂ are updated in the adaptive filtering 
approach as new observations become available; whereas, in the Box- 
Jenkins methodology, these parameters remain fixed. Also equation
(4.3.2.2) involves use of the error terms which typically are used only 
in the MA component of the ARMA models.

Adaptive filtering combining characteristics of both AR and MA 
processes requires very little knowledge to identify the appropriate AR 
or MA model. In the case of an AR model, for example, the order of 
this model is generally set equal to the length of seasonality which 
can be determined from the autocorrelation coefficients. If the data 
are not seasonal, then p is set equal to 2 or 3 [82, p. 427]. Makridakis 
and Wheelwright see no reason why adaptive filtering can not be used in 
a completely parsimonious model as is the Box-Jenkins methodology.
They just believe that whatever is lost in parsimony is gained in sim­
plicity; so, in their work on adaptive filtering, parsimony has inten­
tionally been considered secondary.

Adaptive-response-rate exponential smoothing and adaptive 
filtering deal much better with step changes and transient situations 
than methods based on classical statistics because they update their 
parameters to account for changes in pattern. Furthermore, they can 
deal with changes in trend much better than fixed model/fixed parameters 
methods. However, even these two methods cannot do as well as the 
Kalman filters which deal with variable models, variable parameters
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and variable variances simultaneously [83, p. 424].

4.3.4 Example of Adaptive Filtering and Comments. The set 
of time series data for international airline passengers taken from Box- 
Jenkins, Table 4.1, was used for forecasting with both the adaptive 

filtering and Box-Jenkins approach. A program written in BASIC was used 
to apply the adaptive filtering approach to the first 102 observations, 
and also, some program was used to obtain a forecast applying the Box- 
Jenkins methodology. (Makridakis and Wheelwright [82] do not mention 
which program was used for the BJ methodology or who did the forecast­
ing.) The BJ methodology resulted in a smaller MSE over the data values 
for which the ARMA model was fitted, but adaptive filtering gave a smaller 
MSE for the forecast values as sho\m in Table 4.2. . In other, words,

...it appears that the Box-Jenkins approach *overestimates' the 
series by including some of the noise as part of the pattern.
It is perhaps somewhat ironic that Box-Jenkins is used largely 
for forecasting and adaptive filtering is used primarily for fil­
tering when Table 4.2 suggests that their relative advantages 
indicate that just the opposite might be more appropriate....

Makridakis and Wheelwright imply that classical statistical 
estimation procedures attempt to minimize the MSE of the fitted model 
which is appropriate for the past but may be inappropriate for the 
future. If the criterion is to minimize the MSE of the model fitted 
to historical data, classical estimation procedures can provide a min­
imum MSE by assuming a fixed model with fixed parameters and variance. 
However, when the MSE of the future is to be minimized, adaptive- 
response-rate-exponential smoothing, adaptive filtering or the Kalman 
filters can do as well for future periods as classical estimation
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TABLE 4.1
INTERNATIONAL AIRLINE PASSENGERS: MONTHLY TOTALS

(THOUSANDS OF PASSENGERS)
JANUARY 1949 - DECEMBER 1960*

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 183 162 146 166
1952 171 180 193 181 183 218 230 242 209 • 191 ■ 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 281 277 317 313 318 174 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 505 508 461 390 432
*144 observations

procedures even when the data pattern does not change. When there are 
changes in the data, since these changes can be identified and incor­
porated in forecasting, these methods may do better than the classical 
estimation procedures [83, p. 424].
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TABLE 4.2

COMPARISON OF FORECASTING RESULTS 
(CUMULATIVE DECOMPOSED FORECASTING RESULTS)

Mean
percentage

error

Mean
absolute

percentage
error

Mean
squared
error

1-12 months ahead
Adaptive filtering 0.923 3.430 208.8
Box-Jenkins -6.44 6.799 989.4

13-24 months ahead
Adaptive filtering 2.644 4.130 364.3
Box-Jenkins -10.141 10.323 2,042.4

25-36 months
Adaptive filtering 6.663 7.640 1,752.8
Box-Jenkins -11.656 11.777 2,928.1



CHAPTER FIVE

ADAPTIVE ESTIMATION PROCEDURES

I always avoid prophesying beforehand because it 
is much better to prophesy after the event has
already taken place. -Winston Churchill

5.1 Introduction 
Adaptive estimation procedure (AEP) is another approach that has 

been developed to modify forecasting parameters in a dynamic manner. It is 
a technique similar to the approach of adaptive filtering in the sense that 
it, too, is a fully automated procedure for estimating and updating time- 
varying parameters of linear and nonlinear models in real time [18].

AEP was originally developed for multivariate time series causal 
modeling by Carbone in 1975 and Carbone and Longini in 1975 and 1976 [30, 
141]. In 1979, Stuart Bretschneider, Robert Carbone and Richard Longini 
[18] extended the applicability of the Carbone-Longini adaptive estimation 
procedure and adapted it to univariate time series forecasting through the 
use of the distributed lag forecast model. In "An Adaptive Approach to 
Time-Series Forecasting" a description of AEP is given; the similarities 
and differences between the adaptive filtering (AP) and adaptive estimation 
procedure (AEP) are pointed out; a comparison with adaptive filtering, the 

Box Jenkins methodology and multiple regression analysis, as it applies to

104
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time series analysis, is provided. The authors of this paper [18] also 
provide the background for the discussion presented in the next sections.

5.2 Carbone-Longini AEP Approach 
Consider the following model for time series forecasting:

Yi = i= 1, 2, . . ., T (5.2.1)
k=l

where is the p+i th element of the series
p is the number of lagged variables specified 

is the p+i-k element of the time series
is the parameter associated with the kth lagged variable at ob­
servation i 
is the random noise or disturbance term

To ensure stationarity of the time series, first or second order differences 
are taken, and after selecting an appropriate value for p, the time-varying 
parameters of equation (5.2.1) are left to be estimated.

Estimates of the parameters are obtained in the case of the 
adaptive filtering approach (AF) by applying the Widrow-Hoff least mean 
square (LMS) algorithm [142, 141]. As was pointed out in Chapter IV of 
this dissertation, close approximate solutions to the Wiener Hopf equation 
are obtained via the method of steepest descent. This equation defines, 
for stationary data, optimal estimates of fixed parameters of linear models 
through minimization of mean square error (MSE) [18, p.233].

The LMS adaptive algorithm can be written for model (5.2.1) as
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îik = + 2k k = 1, 2, ... N (5.2.2)

where k is the damping factor to control stability such that 0<k<l and

h  ' J ,  ♦i-i.k \ k

is a predicted value of computed by applying the estimates for observa­
tion i-1 to the data at i.

The original derivation of equation (5.2.2) employed a standard 
transformation to the data. This transformation introduced an intercept 
term into the forecast and required transformation of parameter estimates 
between each forecasting and estimation step [18, p. 234]. As was pointed 
out in Chapter IV, Wheelwright and Makridakis modified LMS by introducing 
the standardization of the input values as

X^. = 7 = -  , 3=1. 2, ...p+1 (5.2.4)

The transformation of (5.2.4) avoids the creation of the intercept term but 
does not eliminate the need for transformation of parameter estimates be­
tween each forecasting and estimation step. To overcome the problem, 
adaptive filtering was implemented according to the following procedures;

i) To determine whether or not difference transformation of the 
data is necessary, autocorrelations of p or more lags are estimated and 
analyzed.
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ii) Initial estimates for the parameters are specified in order to 

apply equation (5.2.2). The Yule-Walker approach is one among several ap­
proaches suggested to achieve this goal.

iii) Once initial estimates for the parameters are specified, a 
value for the k is selected and equation (5.2.2) is applied iteratively 
starting with the first observation and continuing through the final obser­
vation. Taking the ending parameter estimates from the first iteration, 
the process is repeated several times until reduction between iterations 
in the mean square error (MSE) becomes negligible. The resulting para­
meters from the above process are then used to forecast the time series for 
time T+l. Equation (5.2.2) provides the basis for revising values of the 
parameters as new observations become available. At this point, though, 
many believe that it is uncertain that the application of (5.2.2) to new 
observations will allow the parameters to accurately adapt to new condi­
tions [18, p. 234]. Widrow, McCool, Larimore and Johnson [144] claim that 
the LMS algorithm has been developed to provide approximate estimates of 
fixed parameters that minimize mean squared error - not to capture time 
variation in parameters. Preliminary results indicate difficulties with 
LMS to track time variation in parameters [18, p. 234].

Here is where Robert Carbone and Richard Longini introduced an 
alternative form of updating estimates of the parameters in (5.2.1) by 
using the following equation:

'*’ij *i-l,j+| *i-l,j
^i J  (5.2.5)

for all j
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where X.. = aX. .+(l-a )X.  ̂ , 0< a <1

and, thus, forming another methodology of adaptive filtering, the Carbone- 
Longini Adaptive Estimation Procedure (AEP) approach. In contrast to
(5.2.2), "the AEP algorithm was established in a heuristic manner through 
experimentation and logical considerations, rather than via a pure deduc­
tive process. It is based upon engineering concepts in feedback theory 
and pattern recognition and is designed to capture without use of ^  priori 
knowledge the time variation that may arise in parameters." [18, p. 235] 

AEP is very similar to AF in the sense that autocorrelations are 
first examined, initial estimates of the parameters and a value for k are 
selected followed by implementation of a training process. In AF, the 
training process is given by (5.2.2) whereas, in AEP, it is given by 
(5.2.5). Also, in AEP no standardization of the data is necessary since 
it is built into (5.2.5). There are two principal distinctions within 
the training process. One complete training iteration consists of ini­
tially moving through the data from observation one to T followed by 
moving backwards beginning with T to the first observation. This com­
prises a complete training cycle. The forward-backward mode in the train­
ing process eliminates potential problems in phase shift [18, p. 235]. 
Also, in equation (5.2.5) a correction limit may be imposed to detect un­
warranted overreactions to possible outliers or bad data. Once a final 
set of parameters is estimated, forecasts are made on the basis of the 
terminal values of parameters obtained from the forward portion of the 
last training cycle. As new observations become available, application of 

equation (5.2.5) allows the parameters of equation (5.2.1) to be updated
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to new conditions that may arise.

In both the AF and the AEP algorithms, the selection of the damp­
ing factor k plays an important role. A large value of k will result in 
faster adaptation but, at the same time, may cause oscillations. Under 
stationary conditions, a small value for k will cause slow adaptation, and 
since overreactions to transient errors are reduced, we will end up with 
best fit performance. In contrast, under dynamic environments, a compromise 
between fast adaptation, necessary to track variations in the parameters 
and slow adaptation for containing unwarranted oscillations, will result 
in best performance on historical data.

Fitting historical data and forecasting future observations, how­
ever, are different tasks that require different prerequisites [18, p. 235]. 
For forecasting purposes, it may be that better performance is achieved 
with a faster rate of adaptation (i.e., larger value for k) irrespective 
of conditions experienced in the past. This will lead though, in most 
cases, to a poorer fit of the historical data due to the increased atten­
tion (and weight for this matter) given to the more recent observations of 
the time series. As a result of a faster rate of adaptation, final para­
meter estimates would be more reflective of prevalent conditions at that 
time since the algorithms are then set for tracking parameter variations 
over the time series [18, p. 235].

5.3 A Comparative Study of Adaptive Filtering (AF), Box-Jenkins (BJ),
• Adaptive Estimation Procedure (AEP) and Ordinary Least Squares (OLS)

The "International airlines passengers data" found in Time Series 
Analysis Forecasting and Control were used again by Stuart Bretschneider,
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Robert Carbone and Richard Longini in applying the AEP and OLS procedures. 
Box and Jenkins originally examined this time series, shown in Table 5.1, 
in applying their technique to modeling seasonal data [11, p. 300-321]. 
Later, Makridakis and Wheelwright, as mentioned in Chapter IV of this 
manuscript, using the above set of data, demonstrated AF and also made com­
parisons between the AF and BJ approaches.

The comparative study done by Bretschneider, Carbone and Longini 
involved training the first 102 observations of the time series for devel­
oping the forecasting model. The remaining 36 observations were used for 
comparison with the forecasted values so as to assess forecast performance. 
Forecasts were made on the basis of one month ahead, two months ahead, and 
so on, up to thirty-six months ahead. Each month-ahead forecast was used 
to project successive values of the series (a technique also known as boot­
strapping). In the context of a twelve-lag distributive model, for example, 
the forecast for period 138 is obtained by using projected values of the 
series for periods 126 through 137 as though they were actual values.
Tables 5.2, 5.3, 5.4, 5.6, and 5.8 first appeared in [18, pp. 236-239].

In Table 5.2 for the AF approach, prior to the estimation process, 
the first differences of the data were taken to eliminate non-stationarity 
revealed by the examination of the autocorrelation function. Makridakis 
and Wheelwright initialized parameters for (5.2.2) with solutions of the 
Yule-Walker equations and specified k = .025. More than twenty-five train­
ing iterations resulted in an MSE of 91.46 for the final fit.

For the AEP approach, Stuart Bretschneider, Robert Carbone and 
Richard Longini also used a twelve-lag formulation with a first difference
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TABLE 5.1

INTERNATIONAL AIRLINE PASSENGERS: MONTHLY TOTALS
(THOUSANDS OF PASSENGERS)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

*144 observations

TABLE 5.2
MEAN SQUARE ERROR OF FIT BY FORECASTING TECHNIQUE

Technique ̂ Mean Square Error (MSE) of Fit

OLS 88.46
BJ 71.85
AF(LMS) 91.46
•AEP 100.18
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TABLE 5.3

COMPARISON OF PARAMETER ESTIMATES FOR THE 
(By Technique)

TWELVE-LAG MODELS

Variables OLS AF(LMS)
EAP

Begin End

Lag 1 .0124 -.014 .0106 .0102
Lag 2 -.0831 -.101 -.0023 -.0023
Lag 3 .0140 -.014 -.0119 -.0124
Lag 4 .1083 -.110 -.0405 -.0426
Lag 5 .0092 -.039 -.0002 -.0002
Lag 6 -.0721 -.075 -.0021 -.0022
Lag 7 -.0268 -.049 -.0391 -.0415
Lag 8 -.1104 -.153 -.0147 -.0155
Lag 9 .0149 -.011 -.0114 -.0120
Lag 10 -.1065 -.140 -.0029 -.0030
Lag 11 .0865 .086 .0854 .0828
Lag 12 .9562 .925 1.0513 1.0236
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on the first 102 observations to develop AEP and OLS model. In applying 
AEP, equation (5.2.5) was initialized with each weight equal to 1/12, k=.06, 
a=.01, and the initial mean of each lag variable equal to ten [14, p. 237]. 
The training data were processed through thirty training cycles with a cor­
rection limit of .1. Since equation (5.2.5) requires all data entries to 
be positive, a scaling factor needed to be added to all values when negative 
data entries were present. A simple method used for the above data in se­
lecting a scale involved adding one to the absolute value of the largest 
negative number.

5.4 Results of the Comparative Study
Table 5.3 presents parameter estimates for OLS, LMS (AF) AND AEP 

twelve-lag models. Each technique identified the twelfth lag as the most 
significant factor. Applying these results to the forecasting process, 
three indicators of forecast performance were calculated over a variety 
of forecast horizons. Mean percentage error (MPE) provides a measure of 
bias by indicating the tendency of a model to over or under predict while 
the mean absolute percentage error (MAPE) and (MSE) are measurements of 
forecast performance.

Table 5.4 presents decomposed forecast statistics by separate 
twelve-month periods. The twelve-lag model produced better forecast 
results than the Box-Jenkins approach irrespective of the parameter 
estimation technique applied. When considering the third year out, AEP 
exhibits the most robust results. While the indicators of performance 
for AEP remained relatively constant over the time horizon, those for 
all other models produced exponentially increasing errors.
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TABLE 5.4

COMPARISON OF DECOMPOSED FORECASTING 
RESULTS BY TWELVE-MONTH PERIOD

Mean
Percent
Error
(MPE)

Mean 
Absolute 

Percent Error 
(MAPE)

Mean
Squared
Error
(MSE)

Months 1-12
OLS -.308 3.703 247.2
Adaptive filtering .923 3.430 208.8
Box-Jenkins -6.44 6.799 989.4
AEP -1.86 4.68 448.6

Months 13-24
OLS 1.464 3.137 206.3
Adaptive filtering 4.428 4.830 519.4
Box-Jenkins -13.842 13.847 3095.4
AEP -3.740 4.42 454.6

Months 25-36
OLS 10.599 10.559 2454.1
Adaptive filtering 14.66 14.66 4529.8
Box-Jenkins -14.685 14.685 4699.5
AEP -1.25 4.52 546.7

Table 5.5 shows the rankings of the four methods in the various 
forecast horizons using both the MSE and MAPE criteria.

The cumulative results in Table 5.6 illustrate the change in 
performance characteristics at the time the horizon is extended. The 
effectiveness of the method appears to be related to the forecast hori­
zon as shown in Table 5.7: over the first twelve months, LMS has mini­
mum MSE; over the twenty-four month horizon, OLS performs best: over 
a thirty-six month period, AEP produces a superior performance.
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TABLE 5.5

RANKINGS OF THE DECOMPOSED FORECASTING RESULTS BY TWELVE-MONTH PERIOD 

MAPE MSE
Months Months

Method 1-12 13-24 25-36 Overall 1-12 13-24 25-36 Overall
OLS 2 1 2 1 2 1 2 1
AF 1 3 3 3 1 3 3 3
FJ 4 4 4 • 4 4 4 4 4
AEP 3 2 1 2 3 2 1 2

TABLE 5.6
CUMULATIVE OF DECOMPOSED FORECASTING RESULTS

Mean
Percent
Error
(MPE)

Mean 
Absolute 

Percent Error 
(MAPE)

Mean
Squared
Error
(MSE)

1-12 months ahead
OLS -.308 3.703 247.2
Adaptive filtering .923 3.43 208.8
Box-Jenkins -6.44 6.799 989.4
AEP -1.86 4.68 448.6

1-24 months ahead
OLS .578 3.42 226.7
Adaptive filtering 2.644 4.13 364.3
Box-Jenkins -10.141 10.323 2042.4
AEP -2.80 4.55 451.6

1-36 months ahead
OLS 3.90 5.79 969.2
Adaptive filtering 6.663 7.64 1752.8
Box-Jenkins -11.65 11.77 2928.1
AEP -1.45 4.54 483.3
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TABLE 5.7

RANKINGS OF CUMULATIVE DECOMPOSED FORECASTING RESULTS

MAPE MSE
Months Months

Method 1-12 1-24 1-36 Overall 1-12 1-24 1-36 Overall
OLS 2 1 2 1 2 1 2 1
AF 1 2 3 2 1 2 3 2
BJ 4 4 4 4 4 4 4 4
AEP 3 3 1 3 3 3 1 3

Table 5.8 considers the very short run by using a forecast hori­
zon of six months.

TABLE 5.8
COMPARISON OF SHORT-RUN FORECASTING RESULTS 

(1-6 months ahead)

Method
MPE

(mean percent error) MAPE MSE
Rankings 

MAPE ■ MSE
OLS 3.196 3.196 184.6 3 3
AF 3.902 3.902 259.5 4 4
BJ 1.703 2.041 92.5 1 1
AEP 2.820 2.820 ..153.6 2 2

In Table 5.8, BJ produced the best performance with AEP providing the 

second best. This is understandable in light of BJ's superior fit for 
this data [18, p. 239].
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5.5 Implications of the Results and Conclusions
There seems to be computationally very little difference between 

LMS or AF and AEP, AF and AEP produced more accurate results when com­
pared with the BJ methodology. There also appears to be a surprising 
relationship between fit performance and overall forecast performance. 
Bretschnelder, Carbone and Longlnl state:

The AEP approach which yielded the largest MSE of fit for the histor­
ical data, provided the most stable and accurate forecast over the 
longest time horizon. The question that arises Is whether this last 
observation Is a result of the particular data examined, the method­
ology was applied to the data. The answer appears to be in a combi­
nation of the last two reasons. As stated before, when applying AEP 
or adaptive filtering, the specification of a larger learning con­
stant during the training process allows parameter estimates to be 
more reactive to changes In the data. This should result In an 
Improved forecasting capability even If a poorer fit performance Is 
exhibited due to tracking errors Incorporated In the training pro­
cess [18, p. 240].

The poor performance of the BJ procedure lead Stuart Bretschnelder, 
Robert Carbone and Richard Longlnl to wonder about Its empirical useful­
ness In terms of Improving forecast capability through Its complex Iden­
tification process. They consider AF and AEP an alternative approach to 
forecasting that does not depend upon a criterion of fit but rather one 
of tracking or reacting to changes in the time series as they occur.

In chapter VII where the controversies In forecasting will be 
examined, some comments will be made and some explanations will be given 
for the deceiving poor performance of the BJ methodology when compared 
with the flashy performance of. the AF and AEP procedures.



CHAPTER SIX

COMBINATION OF FORECASTS

Time present and time past are both perhaps present in time 
future and time future contained in time past.

T.S. Eliot

6.1 Introduction

There are many cases in which two or more forecasts have been
made of the same event. Most forecasters, when this occurs, tend to
accept the better forecast and discard any other. J. M. Bates and
C. W. J. Granger [8] note that

Whilst this may have some merit where analysis is the principal 
objective of the exercise, this is not a wise procedure if the 
objective is to make as good a forecast as possible, since the 
discarded forecast nearly always contains some useful independent 
information. This independent information may be of two kinds;

i. One forecast is based on variables or information that 
the other forecast has not considered.

ii. The forecast makes a different assumption about the form 
of the relationship between the variables.

Of the two kinds of information stated above, the first kind leads to 
situations in which a combined forecast improves upon the better indi­
vidual forecast more often than does the second.

The first step that a forecaster should take before combining 
individual forecasts is to check that the individual sets of forecasts 
are unbiased. Once this assumption is met, the forecaster should choose

118
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a method for determining the weights to be assigned to each of the 
individual forecasts before combining.

In the next few sections, a brief discussion of the theoretical 
approach in combining forecasts will be made, and a few examples will 
be given which illustrate the superiority of the combined forecast over 
the individual ones. Some conclusions will also be made.

The main source of discussion to be made is based on the work 
and findings of Reid [117], C. W. J. Granger [53], J. M. Bates and 
C. W. J. Granger [8] and C. W. J. Granger and Paul Newbold [54 and 105].

6.2 Theoretical Approach of a Combined Forecast

Table 1 shows one-step forecast errors of total airline 
passenger-miles for the months of 1953 by the Box-Jenkins methodology 
and Brown's Exponential Smoothing approach. This example first appeared 
in Operational Research Quarterly, Vol. 20, No. 4, page 452. This is 
the simplest case of combining forecasts:

(Combined forecast) = ^(Brown + Box Jenkins).
For 1953, the MSE for the combined is less than for the two 

original forecasts. This was also done for the whole period 1951-1960 
when an enumeration of these and other forecasts was made at a later 
stage and the combined had MSE of 130.2 versus 177.7 for the Brown and 
148.6 for the Box-Jenkins approach. Thus, a very simple method of com­
bining has provided a set of forecasts that on average is superior to 
both constituent forecasts.

In the above example, equal weights were given to each of the 
individual forecasts. In many cases, though, one would wish to give
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TABLE 6.1

FORECAST ERRORS OF PASSENGER MILES FLOWN 
1953

Month
Brown's Exponential 
Smoothing Forecast 

errors

Box-Jenkins
Adaptive

Forecasting
errors

Combined Forecast 
(h Brown + 

ig Box-Jenkins) 
errors

January 1 -3 -1
February 6 -10 -2
March 18 24 21
April 18 22 20
May 3 -9 -3
June -17 -22 -19.5
July -24 10 -7
August -16 2 -7
September -12 -11 -11.5
October -9 -10 -9.5
November -12 -12 -12
December -13 -7 -10

Variance of errors 196 188 150

greater weight to the better set of forecasts (i.e., forecasts that 
seemed to contain the lower MSE). We are faced again with the problem 
of determining these weights, and the intention is to choose a method 
which is likely to yield low errors for the combined forecasts.

In the search for more flexible weighting schemes, we assume 
that a linear combined forecast is obtained by giving weights k and (1-k) 
respectively to the two forecasts sets. The problem is one of choosing 
k. We also assume that both forecasts were unbiased (either naturally 
or after correction for the average percentage - or absolute - bias has
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been applied). If we denote the error variances of the two forecasts 
2 2by 0^,02 for all values of time t and by p their correlation coefficient,

then the variance (or mean squared error since the forecasts were as-
2sumed unbiased) of the combined forecast is given by

= k V  + (l-k)^a^ + 2pka.(l-k)o. (6.2.1)c l  Z 1 z

The combined forecast is also unbiased since it is the linear combina­
tion of the two sets of forecasts with weights k and (1-k). We choose

2to minimize the overall variance with respect to the parameter k 
since the choice of k should be made so that the errors of the combined 
forecasts are as small as possible. Differentiating with respect to 
k and equating to zero, we obtain a solution:

02 - POi*2
k = ----------------  (6.2.2)

+ *2 - 2<>V2

In the case where P=0, equation (6.2.2) reduces to

4
k = ------- (6.2.3)

Assuming second order stationarity, it can be shown [8, p. 463] that 

the MSE of (6.2.1) is at least as small as that of the best individual 
forecast method. Since this requires that the second order moments are 
known ex ante ([117], p. 229), which is not the case in forecasting,
J. M. Bates and C. W. J. Granger [8, p̂ 453] consider ways of
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estimating k that neither require the knowledge of the second moments
nor need quite such a prohibitive assumption as stationarity.

Equations (6.2.2) and (6.2.3) are used as a basis for some of
the methods that follow below. Thought was given to the possibility
that the performance of one of the forecasts might be changing over
time (perhaps improving) and that a method based on an estimate of the
error variance since the beginning of the forecasts might not therefore
be appropriate [8, p. 453]. Consequently, methods (ill) and (iv) below
give more weight to recent errors than those of the past.

Five methods are considered and outlined below. We denote by
e. the error in the forecast from method i for time period t.1, t

T-1 ,

T-1
C = I w^e^ e (6.2.4)

t=l ’ ’

The weights k^ have in all cases been determined from past (known) 
errors except for k^ which has been arbitrarily chosen as .5 for all 
methods. The methods are:

^2
(i) k^ = -------

Ei+Ej
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^2
(ii) k = xk + (1-x) ------  for 0 < x < 1

El 4. El

(iii) k^ =

(iv) k^ =
s' - c

s' + s' -

e
(v) k^ = xk^_i + (l-x){

2,T-1'

l®l,T-ll '®2,T-l'

where u,x and w are parameters to be chosen.
Bates and Granger apply the various combining formulas to the

international airline passenger data, looking at several pairs of uni­
variate one-step-ahead forecasts, with generally successful results.
The rather poor estimate of C in method (iv) led this method to give 
worse results than the others on the above study and the suggestion was 
made that (iv) ought to be modified to

Sg - zC
k =   0 < z < 1.

2 2 + $2 - 2zC

Newbold and Granger []05] consider the combination of one- 
step-ahead Box-Jenkins, Holt-Winters, and stepwise autoregressive
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forecasts for the 80 monthly series collection of both seasonal and 
nonseasonal macroeconomic series and micro sales data. It appears that 
procedures that ignore correlation between the forecast errors (methods 
i,ii and iii) are considerably more successful than those that attempt 
to take account of it. It is also true that the combined forecast of 
Box-Jenkins with one of the fully automatic procedures outperforms both 
individual forecasts on about 40 percent of all occasions for the more 
successful combining methods.

In another study, Granger and Newbold [56] give an example 
which uses 20 one-step-ahead quarterly forecasts of real inventory in­
vestment generated by the Wharton-EFU econometric model [54, p. 276]. 
Forecasts of the same quantity are generated from a univariate Box- 
Jenkins procedure and combined with the model forecasts. Although the 
Box-Jenkins forecast outperforms the econometric forecast, the combined 
forecast considerably outperforms the better individual forecast. Ap-- 
patently, the econometric forecast contains very useful information 
absent in the Box-Jenkins forecast.

Many of the results discussed in this section can be extended 
to the combination of more than two forecasts as discussed in Granger 
[53], Reid [117] and Newbold and Granger [105]. Again, similar results, as 

in the case of combining two forecasts, can be obtained when we extend 
the combination to more than two forecasts.

6.'3 Conclusion

There is a considerable gain when an improved forecast is 
obtained using a combination of forecasting approaches. Combining
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forecasts is relatively easy to do, is often successful and eliminates 
the necessity of deciding which of a pair of forecasts is preferred.
The reason a combined forecast may be preferable is that very often nei­
ther of the constituent forecasts is using all the data in the available 

information set in an optimal fashion. Granger [53, p.- 160] points 
out that "success of combination suggests that a more general model 
should be attempted, including the better features of the models under­
lying the constituent forecasts." As a result, combining forecasts will 
be particularly successful when the constituent.forecasts are based on 

quite different philosophies such as using a Box-Jenkins model and a 
regression model. Granger and Newbold [56] have shown that combining 
statistical and econometric forecasts can be highly rewarding.



CHAPTER SEVEN

CONTROVERSIES IN FORECASTING

An unsophisticated forecaster uses statistics as a drunken man 
uses lamp posts - for support rather than for illumination.

After Andrew Lang

Given the availability of so many forecasting techniques, many 
forecasters attempt to assess a technique's relative worth and try to 
reach some conclusion as to which method performs better than the rest. 
Many studies involving various forecasting procedures do little more 
than cause debates among researchers. The disconcerting aspect of these 
debates stems from the fact that many researchers use the various fore­
casting methodologies inaccurately.

One classic example of such a debate is a study by Reid [117] 
and a similar study by Newbold and Granger [105]. Newbold and Granger 
discuss the results of their work as well as Reid's work. In this study, 
Reid, according to Newbold and Granger in Forecasting Economic Time 
Series;

...allowed for the first time a comparison of the performance of 
Box-Jenkins and various exponential smoothing predictors over a 
large set of real data. Reid assembled a collection of 113 macro- 
economic time series and generated forecasts, employing methods he 
deemed reasonable, to each series. Both the Box-Jenkins and 
Brown's generalized exponential smoothing predictors were applied 
to every series in the collection. Holt Winters was applied to 69 
series and Harrison's to 47. The Brow predictor modified to take 
account of the possibility of first-order autoregression in the 
one-step forecast error was also evaluated....

126
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Reid found for the one-step-ahead prediction that Box-Jenkins 
outperformed Brown's method on 88 percent of the trials, it out­
performed Holt-Winters 70 percent and Harrison 77 percent of the time;

In a further larger study, Newbold and Granger analyzed a collection 
of 106 time series, 80 of which were monthly and 26 quarterly. The 
collection included both seasonal and non-seasonal macroeconomic 
series and micro sales data. The Box-Jenkins, Holt-Winters and 
stepwise autoregression methods were applied to every series in 
the collection...[105].

The results of the comparison of the Box-Jenkins versus Holt-Winters for
one-step-ahead forecasts is very similar to that obtained by Reid.

Other researchers disagree with the conclusion that the Box- 
Jenkins approach is superior to the one by Brown, Holt-Winters and 
Harrison. A study by Groff [57], for example, concludes that "the 
forecasting errors of the best of the Box-Jenkins models that were 
tested are either approximately equal to or greater than the errors of 
the corresponding exponentially smoothed models for most series." 
Similarly, Guerts and Ibrahim [,51 , p 18], although they examined only 
a single series, find that the "exponentially smoothed models patterned 
on Brown's model and the Box-Jenkins approach seem to perform equally 
well."

The findings of Groff and Guerts and Ibrahim are interesting, 
but erroneously supported. Groff uses the Box-Jenkins methodology in­
correctly. C. Chatfield [ 80 , p 129] claims that "Groff's version of 
Box-Jenkins bears little resemblance to that originally proposed by Box 
and Jenkins. Groff's results should be disregarded since the Box- 
Jenkins procedure was misinterpreted." Anderson [80] is more specific 
about Groff's use of Box-Jenkins methodology out of its context. "All
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he did," Anderson claims, "was to try out a specific selection of ARIMA 
models." Guerts and Ibrahim, on the other hand, overgeneralized from 
their examination of only one time series.

Not only do forecasters disagree as to the preeminence of a 
single forecasting approach over another, but they also disagree over 
the superiority of various combinations of forecasts. Once again New- 
bold and Granger contributed to this field. Newbold and Granger [105] 
find that a "slight improvement in accuracy is obtained when the Box- 
Jenkins is combined with one of the fully automatic procedures of Holt- 
Winters and stepwise autoregressive approach." Newbold and Granger also 
claim that, even though the Box-Jenkins forecast on the average is 
better than the econometric forecast, the latter contains very useful 
information absent in the former. This information is brought to light 
when the two forecasts are combined. "After all," they claim, "it would 
be reasonable to expect a combination to be most profitable when the 
individual forecasts are very dissimilar in nature" [105]. But if one can 
improve forecasting accuracy by combining the forecast of a univariate 
Box-Jenkins model with an econometric model, such as regression, why 
handicap the Box-Jenkins model with an inappropriate univariate sto­
chastic model, where a transfer function model would seem more appro­
priate?

As far as combining a Box-Jenkins forecast with one from the 
class of models in the stepwise autoregressive or the Holt-Winters 
method, Newbold and Granger ,[105,p 136] point out that "proponents of 
the Box-Jenkins approach may find the attempt to combine Box-Jenkins 
forecasts with those derived from less sophisticated univariate methods
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intuitively unpromising." They acknowledge that

After all, the class of models considered in the stepwise autore­
gression procedure and the non-seasonal variant of the Holt- 
Winters method are merely subsets of the general ARIMA class of 
models. It is of course true that if one knew that a given time 
series was generated by a particular process of the [ARIMA (p,d,q)] 
class, optimal forecasts could be derived from that model alone. 
However, much as the Box-Jenkins model-building process tells us 
about the underlying generating mechanism, we can never be abso­
lutely certain that a particular model is appropriate...

To this statement of Newbold and Granger, Professor G. M. Jenkins [see
105, p. 148] replies

Since the Holt-Winters and stepwise autoregression methods 
correspond to special cases of the ARIMA models proposed by Profes­
sor Box and myself, it follows that a linear combination of these 
forecasts with a Box-Jenkins forecast results in a forecast which 
corresponds to another more elaborate model in the class of ARIMA 
processes. If the later model gives better forecasts than the 
forecast from the original Box-Jenkins model, the question then 
arises as to why a close approximation to the more elaborate model, 
if needed, was not arrived at during the model building stage.

Professor M. B. Priestly agrees with Professor Jenkins' point 
of view on the combination of forecasts. Professor Priestly [see 105, p. 
153] comments that Newbold and Granger's suggestion about combining 
forecasts is an interesting one, but its validity seems to depend on 
the assumption that the model used in the Box-Jenkins approach is in­
adequate; otherwise, the Box-Jenkins forecast alone would be optimal.

Still other researchers also find conflicting results when 
studying the combination of forecasts. J. M. Craddock [see 105, p. 156] 
reports success obtained from the combination of forecasts in long-range 
weather forecasting while D. J. Reid reports an example in which the 
combined forecast is outperformed by both individual forecasts. These 
are conflicting reports which basically reflect the decision maker's
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philosophy toward forecasting situations. The element which makes these 
philosophies differ is mainly the forecaster’s degree of expertise.

Because of these conflicting results some researchers attempt 
to explain how various factors affect the accuracy of a forecasting 
technique. Two such researchers are Chatfield and Prothero.

C. Chatfield and D. L. Prothero [33] make a critical appraisal 
of the Box-Jenkins procedure which is used to forecast sales of an engin­
eered product for a lead time of up to 12 months. A total of 77 monthly 
observations are given. Based on the findings of their analysis Chat­
field and Prothero conclude that the Box-Jenkins procedure involves a 
subjective element which allows one to choose from a wide class of 
models. They see this greater flexibility as both the strength and 
weakness of the Box-Jenkins approach. There is an advantage to being 
able to choose from a wide class of models rather than being restricted 
to one particular model, but at the same time, the subjective assessment 
involved in choosing a model means that considerable experience is re­
quired in interpreting sample correlation functions. For their set of 
data, Chatfield and Prothero found that the Box-Jenkins procedure was 
less successful since the data exhibit high multiplicative seasonal 
variation. They cited as one possible reason for the unsatisfactory 
Box-Jenkins performance the use of an erroneous logarithmic transforma­
tion of the data.

G. Tunnicliff Wilson [see 33, p. 315] pinpoints the reason for 
the poor performance of the Box-Jenkins methodology in the study by Chat­
field and Prothero. He reports that the primary culprit of the above study



131
is the logarithmic transformation applied to the data in an effort to 
stabilize the amplitude of the seasonal variation. According to Tunni­
cliff Wilson, "visual examination of the transformed series showed evi­
dence of overtransformation." As far as the inappropriateness of the 
Box-Jenkins methodology on multiplicative seasonal data is concerned, 
he adds that the models proposed by Box and Jenkins are extremely 
flexible and in practice have been found capable of adequately repre­
senting a wide variety of series including seasonal sales data. In an 
attempt to explain how different forecasters arrive at conflicting 
conclusions, Tunnicliff Wilson points out that "many statisticians are 
more familiar with the use of curve fitting methods rather than dif­
ference equations for representing time series." He believes that the 
unfamiliarity of some forecasters with the difference equation models 
can very well pose a problem and account for differing results.

Professor P. J. Harrison [see 33, p. 319] also endeavored to
explain the discrepancy in the results of Chatfield's and Prothero's
study. Harrison claims that the Box-Jenkins approach was used out of
context. The professor explains with the following:

If I were to visit the Amazon Jungle; meet a native; tell him about 
cars; give him a book on how to drive; then his chief lets him visit 
civilization for the first time; he sees a Rolls-Royce; gets in it 
and crashes it; who or what is to blame?

I think that we can be pretty sure that we would not blame the
Rolls. Either I, the chief or the native or all are at fault. Why?
Because of course the Rolls has been tested outside its design con­
text.

Harrison concurs with Wilson who believes that the differing results can 
be accounted for by evaluating the role of the forecaster and not just 
the forecast methodology chosen.
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Newbold [see 33, p. 324] also discusses the weakness of the 

Chatfield and Prothero study. He questions whether forecasts made of 
just one series from one base point can be expected to say very much 
about the general merits of the forecasting method employed. As for 
Chatfield and Prothero's regarding of the flexibility in the Box- 
Jenkins approach as a potential defect, "presumably on the grounds that 
given enough rope a man might hang himself," Newbold also adds, "Is it 
not.also the case that given very little rope one can do very little with 
it?" Just as Wilson and Harrison, Newbold too, believes that the key 
to the weak performance of the Box-Jenkins methodology lies in the fore­
caster and not in the method itself.

The debate stemming from the Chatfield and Prothero study is 
similar to that debate arising from the Makridakis and Hibon study of 
1979. Once again the forecasters and not the methodologies examined 
account for the questionable results.

The purpose of Makridakis and Hibon's study is to assess 
forecasting performance by evaluating the accuracy of various forecast­
ing methodologies. In their paper, "Accuracy of Forecasting," they 
examine 111 time series collected from a variety of sources including 
several countries, industries and companies. In this study, taking n̂  

as the number of data points in the jth series, n^-12 points were used 
to develop a forecasting model and, subsequently 12 forecasts were ob­
tained. The error e „  is defined as

-  X^j , t  = nu-11, ny-lO, . . . ,  n̂
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where is the actual data value at period t,

X^j is the value forecast by the jth method and 

e^j is the forecast error.

To assess forecast accuracy, forecasters, and Makridakis and 
Hibon in their study, measure the forecast error e^ bearing in mind 
that different accuracy criteria may produce different rankings over a 
set of forecasting methodologies. The most common measures of accuracy 
also used by Makridakis and Hibon, are the mean square error (MSE), 
Theil's U coefficient and the mean absolute precentage error (MAPE) for 
the above data as

(a) The mean absolute percentage error (MAPE):

1  ̂ I M
MAPE = ---- I ----X 100

K X^

(b) The mean square error (MSE) = Je^/K

(c) Theil's U-statistic =[{^e^/^(X^-X^_l_j^)^}]

where e^ = X^ - X^, X^ is the actual value, X^ is the one-period- 
ahead forecasted value. The MSE involves a quadratic loss function and 
is preferred when more weight is to be given to big errors. Its disad­
vantage is that it does not allow for comparisons across methodologies 
since it is an absolute measure related to a specific series. The U- 
coefficient is a relative measure; it assumes a quadratic loss function

! ..
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and has several other properties that make its use attractive [129, pp 
21-36]. Its disadvantage is that its interpretation is more difficult 
than the MAPE; moreover, the U-statistic has no upper bound so a few 
very large values can easily distort the comparisons.

Makridakis and Hibon concluded that a decision maker who would 
like to apply a single forecasting method to the 111 time series would 
have obtained very different results depending upon which loss function 
he wanted to minimize and whether he wanted to minimize the errors in 
the model fitting or the errors in the forecasting phase. Overall, 
however, "he would have done as well by using simpler rather than more 
sophisticated methods" [80, p 116].

M. B. Priestley [see 80, p. 127] and Guerts and Ibrahim [51, p.- 
187] agree with Makridakis and Hibon's’conclusion that different results 
would have been obtained in the study had a different criterion measur­
ing forecasting accuracy been chosen. This criterion, though, according 
to Priestly, must be specified before one can start to consider the 
optimal forecast derived from a particular model. Priestley believes 
that Makridakis and Hibon "apparently follow the reverse procedure, 
i.e., they first calculate the forecast, and consider afterward how best 
to assess its accuracy." In any case, Priestley disagrees with the 
Makridakis and Hibon attempt to classify series according to which fore­
casting approach performs best - something that was done extensively 
throughout their study. As Preistley explains

I do not believe that it is very fruitful to attempt to classify 
series according to which forecasting techniques perform 'best.'
The performance of any particular technique when applied to a par­
ticular series depends essentially on (a) the model which the
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series obeys; (b) our ability to identify and fit this model 
correctly and (c) the criterion chosen to measure forecasting ac­
curacy.

I agree with Professor Priestley. Studies that attempt to clas­

sify forecasting techniques and assess forecast performance reveal mostly 
the degree of sophistication of the forecaster and his ability to justi­
fy applying one forecasting technique over another. This also seems to 
be the opinion of other researchers who participated in the discussion 
of Makridakis and Hibon's study. C. Chatfield, for example, believes 
that the reason that empirical studies sometime give different results 
may depend on the selected sample of time series and more likely on the 
skill of the analysts and on their individual interpretation of a par­
ticular forecasting method. Dr. Chatfield [see 80, p. 130] argues that 
"empirical studies say more about the respective analysts than they do 
about the methods."

So far it has been clear that irrespective of the forecasting 
methodologies evaluated or the particular study conducted, the reason 
for arriving at conflicting results can be traced to the forecaster's 
ability to properly set up a comparative study and use the competing 
forecasting techniques in their design context. Other studies whose 
controversial results can be traced mainly to the forecasters are the 
Makridakis and Wheelwright [82] for the Adaptive Filtering (AF) and the 
Carbone, Longini and Bretschneider [18] study for the Adaptive Estimation 
Procedure (AEP).

The above researchers claim that AF and AEP procedures give 
better forecasts than the Box-Jenkins methodology when applied to the
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famous airline passenger data. (These data are shown in Table 5.2. A 
complete description of their findings is presented in Chapter Four for 
the AF and Chapter Five for the AEP procedure, respectively.) The 
strength of the AF and AEP, according to their respective authors, 
relies on the fact that the parameters of their model are adjusted every 
time a new observation becomes available. Let us assume that we fore­
cast 36 months ahead. If no new observation becomes available during 
these 36 months and the forecast is done through bootstrapping, i.e.,, 
use the one period.ahead forecast as if it were an actual value, 

there is no way for the AF and AEP procedures to change their parameters 
since no new observation became available. This being the case, it is 
extremely unlikely that an AF or AEP model, which yielded largêr M.S.E. of 
fit for the historical data, can provide the most stable and accurate 
forecast over the 36-month time horizon. The only way the AF and AEP 
procedures can update their parameters is by the inclusion of a new 
observation in their data from a month to month basis forecasting. In 
the latter case, a 36-month-ahead forecast using the AF and AEP pro­
cedures will require 35 updates of the parameters of the model. Com­
parison, in this case, between AF, AEP and BJ, although meaningless 
from a theoretical point of view, would have been more appropriate and 
fair, if every time the AF and AEP models profited from the additional 
information provided by the inclusion in the training data set of a 
newcomer data point, the same point had been added to the training data 
set for the BJ model. In any case, Chatfield [see 80, p. 129] reports 
that Makridakis and Wheelwright made their comparisons for a single base
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period. Paul Newbold [see 33, p. 234] believes that forecasts made of 
just one series from one base point "can be expected to say very little 
about the general merits of the forecasting method employed." Chatfield 
goes on to say that "when forecasts were made for different base periods 
in the forecast period, it turned out that AF was worse on average than 
Box-Jenkins and Holt-Winters." Incidentally, the forecast comparisons 
made in the study by Makridakis and Hibon [80] were also done for a 
single base period at time (n-12). So in the AF and AEP versus BJ 
controversy, again we have a comparative study which tries to compare 
non-comparable methodologies (automatic procedures such as AF and AEP 
whose parameters are continuously updated versus human intervention 
procedures whose model parameters are fixed) and also makes its fore­
cast comparisions for a single base period in time. Once again, it is 
clearly the forecaster who must take the blame.

There are many automatic forecasting methodologies which are 
described by many as "black boxes" and whose intentions are to simplify 
the forecaster's role in the model building and forecasting process.
Of course these automated procedures are as good as the human that 
built them. It is very unlikely that a machine can be designed with 
the magnitude of artificial intelligence required to perform sophisti­
cated tasks such as identification of the proper model among the general 
class of models in the BJ methodologies.

This point is particularly germane since the unfortunate and 
unfair choice of having the BJ methodology represented by an automatic 
BJ procedure has already been implemented at a comparison contest in
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conjunction with an ORSA/TIMS meeting meeting in Los Angeles in 1979.
The competing forecasting techniques were AF, AEP, BJ, State Space and 
Combination of Forecasts. Allan V. Cameron and Raman K. Mehra [29] are 
the researchers who developed and automated the State Space methodology. 
State Space, they claim, is important to business and economic fore­
casting applications because

It provides a proven new forecasting methodology. At the 
recent National ORSA/TIMS contest, it was judged as ’best indivi- 
ual forecasting technique.’

Even if one accepts the results of the contest at face value, 
all that can be said is, in this empirical study, for the particular 
set of time series examined, for the particular base period used, and 
for the specific forecast performance criterion chosen to assess the 
forecast performance, the State Space method seems to give, on the 
average, better results than the other forecasting methodologies.
Mehra and Cameron, however, seem to use the ORSA/TIMS contest judgement 
(’’best forecast technique and a proven new methodology”) as justification 
for the very existence of their methodology. In the following para­
graphs, it will be proven that the results were erroneous - mainly 
because of the unfit choice of an automatic procedure to represent the 
BJ methodology.

In the comparative study of the 1979 ORSA/TIMS Forecasting 
Tournament, four series were examined:
Series 1: Lay-off rates, "seasonally adjusted" monthly series 1952-1968 
Series 2: Index of new business formation, monthly series 1949-1965 
Series 3: Non durable inventories, 1958-1970
Series 4: Housing starts, 1959-1971.
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The data was for the United States; the first two series were taken from 
the Business Conditions Digest data tape, the second two were unseason- 
ally adjusted series provided by the Bureau of the Census. The data 
are shown in Tables 7.1, 7.2, 7.3 and 7.4, respectively.

TABLE 7.1
LAY-OFF RATE ’SEASONALLY ADJUSTED,' MONTHLY, 1952-1968

(The first 168 observations are used as training 
data and the last 36 observations are used to 
assess the model's forecasting performance.)

1.50 1.50 1.40 1.60 1.30 1.50 3.00 1.30 0.90 0.80 0.80 1.00
0.90 1.00 1.00 1.10 1.20 1.20 1.40 1.70 1.90 2.20 2.50 2.60
2.90 2.70 2.80 2.70 2.40 2.30 2.10 2.20 2.10 1.90 1.80 1.80
1.50 1.40 1.50 1.40 1.40 1.70 1.80 1.70 1.40 1.50 1.30 1.50
1.60 ■ 2.20 1.80 1.60 2.20 1.80 1.70 1.50 1.80 1.60 1.60 1.50
1.50 1.70 1.50 1.70 2.00 1.70 1.80 2.10 2.30 2.70 2.90 2.80
3.30 3.20 3.50 3.30 3.10 2.40 2.50 2.30 2.20 2.00 1.90 2.00
1.80 1.70 1.70 1.70 1.70 1.80 1.80 2.00 2.10 2.90 2.40 1.90
1.50 1.90 2.40 2.30 2.30 2.50 2.40 2.60 2.40 2.60 2.60 2.80
2.70 3.00 2.50 2.10 2.30 2.20 2.30 1.90 2.20 1.80 1.90 1.90
1.90 2.00 1.80 1.80 2.00 2.00 2.00 2.20 2.00 2.10 1.90 1.90
2.00 1.80 1.90 1.90 1.80 1.80 1.70 1.90 1.90 1.80 1.80 1.70
1.70 1.90 1.80 1.60 1.70 1.60 1.60 1.50 1.60 1.70 1.50 1.60
1.40 1.40 1.40 1.50 1.40 1.40 1.40 1.60 1.40 1.40 1.40 1.40

1.20 1.10 1.10 1.20 1.10 1.30 1.40 1.20 1.00 1.10 1.20 1.30
1.40 1.50 1.60 1.50 1.40 1.30 1.40 1.30 1.30 1.30 1.20 1.20
1.40 1.30 1.20 1.20 1.20 1.20 1.30 1.40 1.20 1.20 1.10 1.10
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TABLE 7.2

INDEX OF NEW BUSINESS FORMATION, MONTHLY, 1949-1965
(The first 168 observations are used as training 
data and the last 36 observations are used to 
assess the model's forecasting performance.)

96.2 91.7 88.2 88.3 85.6 85.5 83.4 84.3 86.2 86.1 88.2 90.0
88.9 91.5 93.1 95.1 94.2 95.8 94.5 93.5 92.8 92.6 93.2 92.2
93.1 93.4 94.8 91.8 92.1 91.7 92.2 91.9 93.7 94.1 95.7 94.9
96.0 96.6 97.2 96.5 98.4 99.4 97.2 99.9 100.1 99.8 99.0 98.7
99.0 98.9 98.0 98.2 95.7 94.0 94.4 94.0 90.6 90.7 89.2 90.0
88.7 88.1 87.8 89.8 90.1 90.2 91.0 92.4' 92.9 94.5 95.3 95.1
98.5 100.0 100.1 99.4 99.5 100.2 100.0 99.1 99.2 97.9 97.8 97.4
97.4 97.8 97.6 96.3 96.4 95.0 94.7 94.2 93.2 94.4 92.6 93.0
91.7 91.5 91.9 91.7 91.1 91.8 91.3 90.3 89.7 88.9 88.1 86.6
86.3 85.4 84.9 84.8 87.7 88.3 89.8 91.9 92.9 93.0 93.9 94.6
96.5 97.0 98.3 98.6 97.8 96.4 96.3 96.1 96.1 95.3 96.8 97.0
97.6 96.1 94.7 94.8 93.0 93.2 92.6 91.0 90.6 90.3 87.9 87.3
85.3 87.1 88.0 88.4 88.7 89.0 88.5 87.7 87.8 89.3 90.2 90.1
90.0 90.7 90.9 90.6 90.6 90.4 90.5 91.1 91.2 91.2 90.7 90.9

91.6 92.8 93.1 91.9 92.4 92.8 93.4 94.3 94.0 94.3 94.0 94.5
95.2 95.8 95.7 96.8 98.0 96.4 96.3 96.6 99.0 99.8 98.2 98.7
99.0 99.1 98.6 97.3 97.9 98.7 99.1 98.3 98.7 98.2 98.7 99.5
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TABLE 7.3
NON-DURABLE INVENTORIES, MONTHLY, 1958-1970

(The first 120 observations are used as training 
data and the last 36 observations are used to 
assess the model's forecasting performance.)

20317 20182 20042 19850 19742 19773 19565 19632 19588 19773 19942 20120
20141 20719 20010 20038 20131 20318 20290 20400 20463 20675 20791 21002
21169 21124 20954 21029 21216 21343 21295 21420 21464 21502 21496 21559
21823 21868 21822 21957 21937 21994 21916 22062 22016 22186 22374 22545
22701 22728 22645 22565 22742 22917 22880 23031 23250 23448 23588 23735
23859 23831 23675 23583 23602 23647 23497 23609 23703 24035 24281 24343
24399 24507 24469 24408 24399 24136 24044 24089 24151 24576 24833 25048
25263 25232 25126 25044 25041 24944 24970 25066 25065 25303 25659 26061
25452 26626 26704 26815 27001 27167 27286 27309 27330 27571 27882 28207
28762 28921 29010 29190 29236 29088 29015 29003 29052 29169 29410 29798

30201 30207 30213 30370 30616 30553 30738 30913 30840 31212 31490 31823
32070 32337 32400 32882 32942 32651 32634 32852 32964 33208 33509 33758
33920 34253 34182 34540 34604 34462 34212 34097 34032 34521 34876 34976
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TABLE 7.4
HOUSING STARTS, MONTHLY, 1959-1971

(The first 120 observations are used as training 
data and the last 36 observations are used to 
assess the model's forecasting performance.)

99.2 100.0 130.7 156.0 156.0 153.3 149.7 142.5 140.1 123.4 106.5 96.4
87.4 93.5 93.8 124.8 133.8 128.1 118.3 135.1 102.6 113.2 94.5 70.9
73.1 79.2 109.3 117.1 131.6 140.6 129.9 130.3 131.2 129.9 106.1 86.6
83.6 78.5 118.1 152.4 157.6 140.2 140.1 149.5 117.0 138.0 122.5 95.0
81.8 90.7 128.5 166.4 176.4 158.1 153.5 147.6 145.7 168.3 121.1 96.8
99.3 102.2 132.2 150.9 155.9 162.4 143.0 141.3 123.2 142.9 113.1 94.5
85.8 83.0 124.1 151.3 157.7 158.6 141.5 131.6 126.2 135.2 112.7 101.9
81.9 79.0 122.4 143.0 133.9 123.5 100.0 103.7 91.9 79.1 75.1 62.3
61.7 63.2 92.9 115.9 134.2 131.6 126.1 130.2 125.8 137.0 120.2 83.1
82.7 87.2 128.6 164.9 144.5 142.5 142.5 141.0 139.5 143.3 129.5 99.3

105.8 94.6 135.6 159.9 157.7 150.5 126.5 127.5 132.9 125.8 97.4 85.3
69.2 77.2 117.8 130.6 127.3 141.9 143.5 131.5 133.8 143.8 128.3 124.1
114.8 104.6 169.3 203.6 203.5 196.8 197.0 205.9 175.6 181.7 176.4 155.3
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The methods that competed for the "best forecasting technique"

were:
A: Box-Jenkins methodology provided by David Reilly, Automatic Fore­

casting Systems Incorporated;
B: AEP by Robert Carbone and Stuart Bretschneider, Ohio State

University;
C: AF also by Robert Carbone and Stuart Bretschneider;
D: State Space by Alan Cameron, University of California, Irvine;
E: Combining forecasts by C. W. J. Granger, University of California, 

San Diego.
Table 7.5 is taken from [29, Lecture 5, p 5] and shows the mean 

squared errors for the various cases and the following table (Table 7.6)

TABLE 7.5
MEAN SQUARED ERROR 
(ONE-STEP FORECASTS)

Method Series 1 Series 2
Series 3 

(E05) Series 4

Box-Jenkins .24000 .88300 .31200 345.5
AEP .01350 .90800 .32300 215.2
AF .01500 .87600 .30200 213.8
State Space .01300 .80200 .24800 114.3
Combined .01350 .84900 .31200 160.1

[29, Lecture 5, p 6] shows the rankings of the five methods using both 
the mean squared error (MSE) and mean absolute error (MAE) criteria.
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TABLE 7.6

RANKINGS OF FORECASTING METHODS USING MSE AND MAE CRITERIA
(ONE-STEP FORECASTS)

Method

Mean Squared Error 
Rank By Series

Mean Absolute Error 
Rank By Series

1 2 3 4 Overall 1 2 3 4 Overall

Box-Jenkins 5 4 4 5 5 5 5 5 5 5
AEP 2 5 5 4 4 3 3 3 3 3
AF 4 3 2 3 3 4 4 4 4 4
State Space 1 1 1 1 1 1 1 1 1 1
Combined 3 2 3 2 2 2 2 2 2 2

The overall rankings are found by ranking the totals of the 
individual ranks for the four series. It is of interest to notice that 
the ranking of methods may vary depending on which performance criterion 
is used, i.e., depending on whether MSE or MAE is chosen to evaluate the 
model's performance. What is more interesting is that the BJ method­
ology is ranked last overall, irrespective of the error criterion. The 
BJ methodology continued’to perform poorly for the six-step and twelve- 
step-ahead forecasts. Many researchers, including Stern [see 105, p. 150], 
Priestley [see 105, p. 152], believe that no automatic procedure can out­
perform one which permits intervention by a knowledgeable researcher.

When the same data were used to apply the BJ methodology in 
the original form proposed by Professors Box and Jenkins (i.e., a human 
intervention or forecaster-cooperative form) a much better performance
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was achieved. The structure of the automatic BJ model and that of the 
forecaster-cooperative BJ model are compared below.

Series Automatic BJ Model Forecaster-Cooperative BJ Model

1 (l-.45B-.35B^)(z^-1.65)=a^ (1+.1912B)(1-B)z^=a^

2 (l-.25B^)(l-B)Zj.=a^ (1-.8224B) (l-B)z^=(l-.6341B)a^

3 (l-.18B^^)(l-B)z^=.07 7+a^ (1+.2164B-.3068B^^)(1-B)(1-B^^)z^=

(l-.7963B^^)a^

4 (1-.75B)(1-.7B^^)X (1+.4216B+.22433V.3342B^^)(1-B)x

(Zj.-122)=a^ (l-B^^)Zj. = (l-.7149B^^)a^

The rankings for the one-, six-, and twelve-step-ahead fore­
casts for the automatic versus forecaster-cooperative BJ models are 
shown in Table 7.7, 7.8 and 7.9 respectively. The new rankings indicate 
that for the four time series examined and using the MSE as the error 
criterion in evaluating the models’ performances, the BJ methodology 
achieved results as good as or better than the results of the other 
methodologies.

David Reilly reports that for the automated BJ methodology,
"all four series were treated identically with respect to model building



146

TABLE 7.7

OVERALL RANKINGS BY MSE FOR ONE-STEP-AHEAD FORECAST 
(36 OBSERVATIONS)

Method Series 1 Series 2 Series 3 Series 4
New
Rank

Old
Rank

BJ (Cooperative) .013 .793 .295 117.1 1 — —

BJ (Automatic) .024 .883 .312 345.5 ---- 5
AEP .0135 .908 .323 215.2 5 4
AF .015 .876 .302 213.8 4 3
State Space .013 .802 .248 114.3 3 2
Combined .0135 .849 .312 160.1 1 1

TABLE 7.8
OVERALL RANKINGS BY MSE FOR SIX-STEP- 

(31 OBSERVATIONS)
-AHEAD FORECAST

Method Series 1
Series 

Series 2 (E06)
3

Series 4
New
Rank

Old
Rank

BJ(Cooperative) .033 3.76 .122 549 1 — —

BJ (Automatic) .068 3.55 .232 1206 ---- 4
AEP .078 4.82 .228 1010 5 5
AF .035 3.81 186 972 4 3
State Space .033 3.23 .172 622 2 1
Combined .044 3.51 .107 714 3 2
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TABLE 7.9

OVERALL RANKINGS BY MSE FOR TWELVE-STEP-AHEAD FORECAST
(25 FORECASTS)

Method Series 1 Series 2
Series 3 
(E06) Series 4

New
Rank

Old
Rank

BJ (Cooperative) .048 9.45 .299 1574 1 —

BJ (Automatic) .101 10.51 .465 1683 — 3
AEP .265 16.78 .791 2444 5 5
AF .032 11.81 .505 1864 4 3
State Space .048 8.89 .433 2004 3 2
Combined .085 8.21 .174 1866 1 1

even though two were labelled non-seasonal and two were labelled sea-, 
sonal. Box-Jenkins procedures allow the data to speak for themselves 
and, in this case, the Box-Jenkins procedures correctly selected sea­
sonal coefficients for the seasonal series."

Apparently, through the automatic version of the BJ methodology 
provided by David Reilly, the data could not speak for themselves; they 
otherwise would have spoken out that the supposedly seasonally adjusted 
data of Series One, for example, still showed seasonality of period 12 
and that also a logarithmic transformation was necessary for the series. 
Using the non-automatic version of the BJ methodology, as originally 
prepared by Box and Jenkins, it was found that one particular residual 
at time t=7 seemed to be an anomaly in the data. Indeed the seventh 
observation of Series One in Table 7.1 has a value of three, by far the
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largest value in the sample! If an intervention model is fitted to the 
data with a pulse at lag seven we get the model

VlnY = -.296VÇ + (l-.32B^^)a. 
±.09

Or if we distribute the pulse at lags six, seven, eight we get

VlnY = (.206 + l.OOB + .28B^)V£ + (l-.26B^^)a 
±.l ±.l ±.l ±.07

The latter is a much better model for Series One since the In transfor­
mation of the data removes the heteroscedasticity and the intervention 
model takes care of the anomaly of the data at time t=7.

This is exactly why it is so important for the researcher to 
spend a lot of time trying to find out as much about his data as he possibly 
can. Harrison [see 33, p. 319] claims that "to treat a data series in iso­
lation is to confess to ignorance." Every time series is different and 
requires careful consideration. An automatic procedure that indiscrimi- 
nantly treats every time series in the same way is bound to miss some 
information which may be significant to the model building process. 
Throughout the model building process, the researcher should consult the 
experts who, knowing more about the data and the particular situation, 
should intuitively be able to determine whether it is reasonable to ex­
pect cyclical, seasonal or stationary behavior in the data. An outlier 
in the residual may reveal an event which can only be explained by 
someone who has worked closely with the data. Even a thoroughly checked
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and otherwise acceptable model should be rejected if it implies results 
absurd or internally inconsistent.

A good forecaster starts with his data. The forecaster is 
frequently not an expert in forecasting techniques applying a method to 
data he knows nothing about, but rather an expert in the data using math­
ematical methods and judgement to make a prediction [see 80, p. 120].

Professor Jenkins epitomized the constant effort required by 
the forecaster who strives for excellence with the following: "People
should fall in love with the data, but hate their model" [69].

A researcher’s failure to carefully study his data is just one 
cause of incorrect results and, eventually, controversy among researchers. 
Controversy is also caused by forecasting methodologies which have been 
applied in ways that are inconsistent with the assumptions used to develop 
the methodologies, by comparing fixed model fixed parameters methodologies 
with methodologies whose models have variable parameters, by forecasts 
which are made of just one series from one base point, by inappropriate 
comparison criterion, by overgeneralization of the findings of a single 
forecasting study, by the researcher’s potential bias, and finally, con­
troversy may also be caused due to program variation and sophistication 
indebted in the forecasting software.

All the above reasons for conflicting findings and results have 
one thing in common: the forecaster behind them. A forecaster must
simply formulate the problem, define the objectives and use or develop 
the analytic method that believes is the most appropriate for the
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situation. A forecasting technique is only as good as the forecaster 
who uses it. There is no such thing as a "naive forecast;" there are, 
however, "naive forecasters!"



CHAPTER EIGHT

CONCLUDING REMARKS

My interest is in the future because I am 
going to spend the rest of my life there

C.F. Kettering

As was set forth in the introduction, all comparative 
forecasting studies have been examined and a perspective of what has 
been done collectively in this area has been developed.

Brief synopses of the most currently considered and used 
methodologies in comparative studies of univariate techniques have 
been developed in a single place.

The ORSA-TIMS data have been carefully scrutinized and 
reanalyzed. New BJ models have been built. As a result, it was shown 
that a forecaster's skill is definitely an issue in comparative studies.

The validity and merit of comparative studies has been called 
into question. If they are going to be done, then they should have some
appropriate statistical experimental design. However, D.J. Reid has in­
dicated that

It is not feasible to select a random sample of time series 
for analysis. This implies that it is not possible to make
inference about the population of all time series using conven­
tional statistical techniques. What we can do, is get just an 
impression of the worth of particular techniques [117].

151
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A list of fallacies that have occurred in comparative studies 
has been delineated. These fallacies are the basis of the major contro­
versies and inconsistencies that have emerged from past comparative 
studies.

A State Space model has been developed for the analysis of the 
International Airlines data. This model was used to compare forecasting 
results with those that Box and Jenkins produced for the same data set. 
The same training data and same forecast lead times were used. State 
Space could not compete with the originally Box-Jenkins derived model. 
This further study illustrates how dependent comparative studies are on 
the data sets selected.

It has been demonstrated that there is considerable variability 
in software packages put forth for the analysis of time series. Part of 
the difficulty that forecasters have may be due to the software they use 
for their analysis.

Being familiar now with the plethora of fallacies that re­
searchers commit in their comparative studies, one might very appropri­
ately ask the question: why do we have comparative studies? Comparative
studies, the way they are done, misleadingly report rankings of fore­
casting methods. Perhaps, they should instead report rankings of the 
forecaster's sophistication behind the reported methodologies. Even 
in the case where competent and conscientious forecasters participate in 
a comparative study, the results of their findings bear little impact.
As noted above, it is not feasible to select a random sample of time 

series for analysis. This implies that it is not possible to make
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inference about the population of all time series using conventional 
statistical techniques. From an empirical point of view, we are not 
certain that, when we compare particular methodologies, the same rankings 
will hold when a different training data set from the same series will 

be used.
Researchers are attempting the impossible when they attempt to 

find a forecast methodology which remains best regardless of which data 
is analyzed.

In comparative studies, not only are the forecast methodologies 
being compared but also implicitly, the forecaster’s abilities are being 
compared. The forecaster is judged because he decides how to use a 
methodology.

Because of the role of the subjective forecaster in forecasting, 
forecasting is both a science and an art. As Professor Jenkins eluci­

dates,
A forecaster must exercise creativity combined with solid knowledge 
when identification of the forecasting model is made. If. . .
[a forecaster]. . . could possibly make this a mechanical process, 
then science would cease to exist altogether because there would 
be no room for creativity. In this sense, forecasting and time 
series modelling is no different then any other science. There 
are always anxious that have to be satisfied and rules that have 
to be obeyed, but there is also room for creative thinking.*

It is from this "creative thinking" that controversy arises: without a
"solid knowledge" a forecaster cannot hope to accurately use a fore­
casting methodology.

*Professor Gwilym Jenkins made this statement in a conversation he 
and I had during the Univariate and Multivariate Box-Jenkins Seminar on 
November 17, 1980.
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Future comparative studies should consider Multivariate ap­
proaches. If improvement is reported with the use of Multivariate as 
compared to Univariate methodologies, then ml1 univariate comparative 
studi-s would be obsolete.

Forecasters also need to establish more appropriate criteria 
to assess forecasting performance. For example, researchers should 
develop a criterion with a loss function incorporated in it.

Further, researchers should actc:;.r't- to set up experimental 
designs which would allow comparative studies to be of some practice use 

to forecasters.
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