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ABSTRACT

In all aspects of the mining, processing, and 
handling of coal, fine particles are generated that are 
in many cases wasted. These fines can be agglomerated 
into strong and durable pellets by use of an organic 
binder which eliminates the need for grinding at the coal 
burning power plant. When heated, the water in the binder 
vaporizes, causing a rapid pressure build-up inside the 
pellet and degradation of the binder, resulting in the 
return of the coal to fine sized particles.
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DEVELOPMENT AND PROPERTIES OP A SELF-BURSTING PELLET AS 
AGGLOMERATED PROM COAL PINES BY USE OP 

AN ORGANIC BINDER

CHAPTER I 

BACKGROUND AND LITERATURE SEARCH

With the development of more mechanized systems for 
the mining, preparation and transportation of coal has come 
an increase in the amount of fine particles produced and sub­
sequently wasted. It has been estimated that if these fines 
are not recaptured, up to 30^ of some coals could be lost.

Continuous mining methods result in an extraordinary 
amount of coal fines which are washed out in the process of 
coal preparation. Tailing ponds receive much of the waste as 
the dust settles out in still water.(9,44) Coal seams at great 
depth are now accessible, but due to the friable nature of 
such coal, waste problems are compounded. Mechanical crush­
ing is frequently employed to clean undesirable minerals and 
ash from the coal, but again, much fine coal is lost in the
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process. Some Is lost due to the inability of froth floata­
tion or gravity separation techniques to recover the finer 
fractions, some is blown away. Most must be disposed of in 
some way by the operation (47).

Further losses are experienced in the transportation 
of coal. Open - top railroad car losses are normally about 
25È of the total weight of the coal shipped. Similar losses 
are known in truck transportation(33). Conveyor belts also 
inflict heavy damage to the rather fragile coal and the fines 
may be lost.

But concurrent with the increased production of and 
potential loss of coal fines has come an increased need to 
utilize all available coal. The price has increased as have 
mining costs, and excessive waste is uneconomical. Addition­
ally, as the supply of liquid petroleum is dwindling, greater 
attention is being focused on coal. Furthermore, stricter 
environmental controls have been enacted, and polluted mine 
water, wind losses, burning of impure coal etc. are no longer 
acceptable.

It might be thought that the existence of coal fines 
would be a boon to the industry rather than a problem, since 
it is well known that nearly all coal-fired electrical plants 
must grind their coal to minus 200 mesh before injecting it 
into the furnace to gain maximum burning efficiency. By 
acquiring coal fines directly from the mine the grinding step 
could be eliminated. Unfortunately, unless the electric



plant Is near enough to the mine, cleaning operation or major 
pipeline, so that the fines can be pumped in slurry form, there 
is no economical way to transport them (17,^5).

The Taconite Industry

A solution proposed for the production of iron from 
low-grade iron ores (taconite) has recently been applied to 
the coal industry. By adding a bentonitic binder to the fines 
produced by the crushing and separating of the iron ore, and 
rotating the mixture in a balling drum, small pellets can be 
produced which are sufficiently strong and elastic to allow 
proper handling and transportation to the blast furnace. (See 
for example 5,^1).

Unfortunately, the presence of the clay decreases the 
thermal efficiency of the process and except in rare cases 
contributes to the slag and ash produced, causing some to in­
vestigate the use of organic binders instead of the inorganic 
bentonite (21,24).

At the present time some in the coal industry are at­
tempting to agglomerate coal fines using the experience gained 
in the taconite industry, producing coal pellets which have 
moderately high physical characteristics (10,16,52,54).How­
ever, since the pellet is to be burned, the clay binder 
increases the ash content to unacceptably high levels, and 
the pellets so produced are in many cases too weak to be 
transported if the water content is greater than 3^ (21,52).



Organic Binders

Numerous organic binders have been Investigated from 
llgnln to various hydrocarbon compounds (most notably coal 
tar pitch, fuel oil and kerosene). As might be expected 
several problems have arisen to dampen the enthusiasm of the 
Investigators. When heated, such mixtures frequently give 
off unacceptably high levels of noxious gasses. If the pel­
lets encounter heat before they are burned, they may "melt"
Into a sticky paste, making handling nearly Impossible. Fur­
thermore the excessive cost of such petroleum binders drives 
up the cost of the coal product.

Probably the most serious drawback to the use of these 
organic additives Is that they are all rather slow-burning, 
much slower than that of pulverized coal. In some cases the 
burning of the binder actually masks the heat value of the 
coal. It Is this problem of the low-effIclency burning pro­
cess of coal pellets as presently produced to which this work 
Is primarily addressed.

Self - Bursting Pellets

Preliminary research with an oll-ln-water emulsion 
containing hydrocarbon solvents has proved Interesting. Pel­
lets with this emulsion as the binder exhibited excellent 
physical characteristics. They had acceptably high compressive 
strength, were somewhat elastic, and were rather resistant to 
alteration by water once dried (21).



In addition, the use of an increased percentage of 
water in the binder provides a solution to the slow burning 
aspect of the previously produced pellets, and eliminates 
the need for regrinding the coal pellets at the power plant 
as well. As the pellet is introduced into the furnace or 
preliminary heating chamber, the heat vaporizes the moisture 
inside the pellet causing both a rapid internal pressure 
build-up and degradation of the binder, reducing its com­
pressive strength to a very low level. Confining or en­
casing the pellet maintains the pressure until the pellet 
actually bursts or the confining environment loads the pel­
let with loads it can no longer withstand. The pellet ex­
plodes or disintegrates, and reduces to powder once again, 
allowing the efficient combustion of pulverized coal to 
control.

Coal Used In Study 
The coal selected for laboratory agglomeration was 

studied solely for its ease of access to this investigator, 
not for any other property. The principles derived herein 
are sufficiently general, and although it is thought that 
they are adaptable to nearly every coal, each coal reacts 
differently and must be investigated separately for particular 
responses. For comparison purposes the coal used in this study 
is known as the Stigler coal, and was surface mined in south 
central Haskell County, Oklahoma. Of low to medium volatile rank, 
this bituminous coal is typically of low sulfur and ash content 
and is used for electrical power generation and coke manufacture.



Much of the pyritic sulfur present In fresh samples of the 
coal was removed in the grinding and sieving process. The 
chemical make-up of the coal varies from mine to mine as can 
be seen in Table One, with the range of values given in paren­
theses (18, 32).



TABLE 1
AVERAGE CHEMICAL ANALYSIS OF STIGLER COAL, 

HASKELL COUNTY, OKLAHOMA
Rank Bituminous; low to medium volatile 

(24.2 to 2 7.4^ volatile matter)
Sulfur Low; Average = 1.5>» (range 0.4 to 5.2$)
Ash Low; Average = 4.4$ (range 4.2 to 5.1$)
BTU Average = l4,40C Btu/lb (range 13,869 to 

15,030 Btu/lb)
Fixed Carbon Average = 67.0$ (range 63.2 to 70.1$)
Ash Softening 
Temperature

2,l80°F



CHAPTER II 

LABORATORY EXPERIMENTATION

The production of suitable pellets from coal fines is 
at least a four stage process; mixing, pelletizing, warming 
and coating. The coal fines themselves can be acquired in 
many ways, whether as waste from a mine operation, product of 
a separator, or as in this case, raw coal ground, dried and 
passed through a 200 mesh sieve. Each of the remaining four 
operations can likewise be carried out in an almost limitless 
number of ways.

The mixing stage consists of adding to a known quantity 
of dried fines a suitable amount of binder of known concentra­
tion. Catalysts or additional water may be deemed beneficial. 
This could be a one step or several step process, as deter­
mined necessary for the particular coal used and characteris­
tics desired. Typical binders are bentonite, coal tar, oil, 
hydrocarbon derivatives, waxes, cross-linked polymers, organic 
polymers and many other organic derivatives. A two-armed, 
kneading type mixer is best suited for mixing such a combina­
tion, with some provision to scrape the bottom and sides of

8



Figure 1. The Agglomeration Drum



Figure 2. Typical Pellets as Agglomerated
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the container to insure complete spreading. In this paper a 
linear linking wax derivative was chosen as a binder, and a 
rotating, variable speed mixer was used.

Once the binder is evenly spread throughout the fines, 
the entire amount of moist material can be placed in the ag­
glomerating or balling drum. The huge rotary kilns in use by 
the taconite industry can be approximated on a laboratory 
scale by a rotating pan driven by compressed air, maintained 
at constant revolution by a regulator. Both the rpm and the 
tilt of the pan or drum as well as the temperature applied, 
can be adjusted to achieve a variety of energy levels within 
the drum. The constant rolling action combined with the ag­
glomerating nature of a proper binder transforms moist fines 
into pellets, with physical characteristics such as size, 
strength and stability depending on the energy level. The 
accompanying picture is of the balling apparatus used in this 
experiment.

It may be beneficial to warm the fresh pellets shortly 
after agglomeration to increase the initial strength. This 
can be done in any oven or hot air grate, but the warming 
temperature should have as its goal the drying out of the 
surface of the pellets and curing of the binder. A tempera­
ture slightly above the boiling point of water is sufficient, 
while higher temperatures may tend to devolatilize the coal 
itself, thereby lowering its BTÜ content, as well as weakening 
the pellet. A temperature of 120°C was chosen for the follow-

11



ing experiment.
The coating of the pellets is a crucial step for two 

reasons. If it is suspected that the pellets may be sub­
jected to water action (rain while stockpiled, on a railroad 
car, etc) before reaching the user, an insoluble film must 
protect the pellet from being dissolved or altered by the wa- ; 
ter. Few potential binders would be unaffected, but effective 
coating removes the problem. The waxy binder used herein is 
water soluble and uncoated pellets have absolutely no strength 
when soaked in water. In addition, the film must be suffici­
ently strong to aid in entrapment of internal pressures which 
develop in the pellet when heated, aiding its bursting and 
return to its powdered state. Several cross-linking polymers, 
rubber derivatives, and organic materials fulfill these needs 
although none have been developed specifically for such pur­
poses, and it is reasonable to assume that future polymers 
will perform even better. A cross-linking organic polymer 
was used in this experiment to coat the pellets.

Factorial Design

Obviously many factors are involved in the production 
of such coal pellets. Many have already been briefly dis­
cussed, others are rather obvious. As can be seen from the 
following list they fall into three broad categories, but the 
list could well be much longer.

12



Preparation 
Type binder
Concentration of binder
Amount of binder
Initial moisture content
Additives to water (salt content, pH, etc)
Method of mixing 
Order of mixing 
Temperature of mixing 
Size of sample 
Catalysts
Surrounding conditions (temperature and humidity)
Agglomeration
Revolutions per minute 
Time of agglomeration 
Tilt of drum 
Variable rpm 
Variable tilt 
Temperature
Curing
Prior gel time 
Warming time 
Warming temperature 
Aging time 
Aging temperature 
Coating

It would be impractical to thoroughly study the ef­
fects of all these factors as well as their interactions. A 
well-known statistical method known as the method of factorial 
design is therefore employed to provide a look at selected 
factors. Commonly three of the most important factors are 
selected in this method and varied in a controlled way allow­
ing the effect of each factor to be determined with the same 
accuracy as if only one factor were varied at a time. In 
addition the interaction between the selected factors can also 
be determined.

13



The three factors which have been selected for study 
are l) concentration of binder (from the preparation group)
2) rpm and 3) temperature (unrelated factors from the agglom­
eration group). Simultaneously, three of the factors from 
the curing group are also studied including warming, aging 
and coating, although not in the statistical matrix.

In this factorial design method, each of the three 
selected factors are assigned upper and lower values, and 
each combination of factors is then tested experimentally.
In this way a great deal of information can be obtained from 
only 2^ = 2^ = 8 trials. In Table 2, the high and low values 
of each factor are represented as + or - respectively, and 
the possible combinations are listed.

TABLE 2
SYMBOLS FOR TREATMENT COMBINATIONS

Trial
No.

Symbols for 
Combination

A
Concentration 
Of Binder, %

High = 25 
Low = 15

B
RPM

High = 50 
Low = 30

C
Temperature,

OC
High = 90 
Low = room

1 (1) - - -

2 a + - -
3 b - + -
4 ab + + -
5 c - - +
6 ac + - +
7 be - + +
8 abc + + +

1#



In order to eliminate repetitive error, the sequence 
of trials was run in a random order, and a replicate series 
was also carried out, (again in a random order) designated as 
trials 1, 2, 3. . . .8, and Ir, 2r, 3r. . . .Br respectively.

Responses

The resulting pellets were first evaluated for total 
yield of pellets caught on a #8 sieve. In each case, all of 
the fines agglomerated into pellets of one size or another, 
those passing the sieve were discarded. In an industrial sit­
uation they would probably be returned to the drum for further 
agglomeration.

To determine the average stability of the pellets the 
standard l8" drop test was performed on raw pellets and on 
others warmed at 120°C for 15 minutes. The drop test consists 
of dropping the pellet onto a steel plate from a height of l8" 
until the pellet breaks into smaller fragments. A value of 8 
to 10 was considered satisfactory although the test was con­
tinued if necessary up to a maximum of 2 5, at which time a 
subjective judgement was made based on the elasticity of the 
pellet,. Such pellets were then given an index of either 25 
or elastic. All results were the average of the response of 
several pellets.

The average crushing strength of both raw and warmed 
pellets was evaluated simply as the vertical load necessary 
to crush a single pellet. The raw pellets straight from the

15



agglomerating drum seldom exhibited any crushing strength, 
but were rather plastic. Warming for 15 minutes produced a 
thin, frail shell which was able to withstand a slight load. 
Aging increased the strength dramatically.

An effort to determine the average resistance to alter­
ation by water consisted of soaking both raw and warmed pel­
lets in water for 15 minutes, draining and drying them.
Seldom did pellets remain after such treatment unless coated 
with an impermeable shell. When coated pellets were so test­
ed, very little alteration occurred.

All three of the foregoing tests were run on both raw 
and warmed pellets. Two days later, the same tests were re­
peated on both raw and warmed "aged" pellets and coated pel­
lets. In each test the set of individual pellets selected 
for investigation represented the entire yield in size and 
shape.

Results

The results of all these trials are tabulated in Tables 
3 and 4,

16



TABLE 3 
RESULTS OF THE PRIMARY RUN

A B C Drop Index Kg Rain Wash *
CoatedCone RPM Heat Crushing Strength

Aged
Raw

Aged
Warm

Coated

No.
Yield
gms

Binder
15/25* 30 /50 70 /200 Raw Warm

Aged
Raw

Aged
Warm Raw Warm

Aged
Raw

Aged
Warm Raw Warm

Aged
Raw

Aged
Warm

6 71 + - + 21 19 21 e . P 0.4 3 .06 2.35 0 10 0 10 85 95
3 64 - + - 25 7 e e P 0.3 2 .6 6 2.05 20 0 0 10 100 100

2 58 + - - 25 12 e e P 0.6 4.77 2 .07 10 25 10 10 100 90

8 59 + + + 25 8 e e P 0.2 4 .1 6 1.55 0 10 0 0 90 90

5 85 - - + 12 9 20 e 0.1 0.3 0.82 1.74 25 20 15 10 100 95
4 45 + + - 25 25 e e P 0.9 4 .7 6 2 .9 6 10 10 5 10 100 70

1 69 - - - 22 3 e 25 0.1 0.2 2.01 0.93 0 0 0 0 90 90

7 60 - + + 24 13 e e 0.2 0.3 2,21 1.96 10 10 0 10 85 100

6 3 .8 22.3 12 25 25 0.4 3 .06 1.95 9.4 10.6 3.8 7.5 93.75 91.25



TABLE k
RESULTS OP THE REPLICATE RUN

A B C Drop Index Kg Rain Wash *
Cone RPM Heat Crushing Strength Coated Coated

No.
Yield
gms

Binder
15/25* 30 /50

of
70/200 Raw Warm

Aged
Raw

Aged
Warm Raw Warm

Aged
Raw

Aged
Warm Raw //arm

Aged
Raw

Aged
Warm

Aged
Raw

Aged
Warm

3r 65 - + - 23 7 e e P 0 .2 2.46 1.71 15 15 0 15 100 100

6r 56 + - + 25 11 e e P 0.3 4 .0 3 1.91 10 10 0 0 100 95
5r 78 - - + 10 6 e e 0 .1 0 .2 2 .1 8 2 .07 10 20 0 5 100 100
2r 53 + - - 18 16 e e P 0.3 3 .29 1.57 10 30 0 0 100 100

56 + + 25 22 e e P 0.5 4 .03 2 .9 8 10 20 0 0 100 100
Ir 67 - - - 14 20 e e P 0.6 2 .6 2 1.25 10 40 0 48 95 95
8r 54 + + + 25 20 e e P 0 .6 4.91 2.12 15 10 0 0 100 90

7r 60 - + + 12 19 e e P 0.5 2 .32 1 ;58 10 30 30 0 100 95

61.1 19 .0 15.12 e e P 0.4 3.23 1.90 11.2!5 21.Ç 3.8 8.5 99.4 96 .8

I-"00



Interpretation of the Results

The effects of the three major factors studied (ie.con­
centration of binder, rpm, and temperature) can be statisti­
cally quantified. Likewise the interactions between the fac­
tors can be quantified (15).

Using the symbolic expressions introduced in Table 2, 
we find the effect of factor A, (i,e,concentration of binder) 
by averaging the responses corresponding to all trials contain­
ing ’a' (i.e. at the higher level of factor A) and all those 
not containing 'a' (i.e. at the lower level of factor A) and 
determining the difference. Specifically the main effect of 
A on the average responses is found by:

Average yield at higher level of A 
= 1/4 (a + ab + ac + abc)

Average yield at lower level of A 
= -1/4 ( l + b - t - c + b c )

Therefore the main effect of A can be rearranged as follows:
A = 1/4(a + ab + ac + abc -1 - b -c -be)

Likewise,
B = 1/4(b + ab + be + abc -1 - a - c  -ac)
C = 1/4 (c -H ac + be + abc - 1 - a - b - a b )

Similarly,
AB = 1/4(l + ab + c + abc - a - b - ac - be)
AC = 1/4(1 + b + ac + abc - a - c  -ab -be)
BC = 1/4(1 + a + be + abc - b - c - a b - a c )
ABC = 1/4(a 4- b + c + abc - 1 - ab - ac - be)
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Due to the fact that the sample is small, a determina­
tion of the standard deviation may not be accurate. However 
by using the method of pooled variance we can approximate its 
square by summing the squares of the differences between the 
primary and replicate responses and dividing by 2 and multi­
plying by the inverse of the degree of freedom (in this case 
8, after losing 8 out of l6 due to averaging).

Sp2 = I 1 \
— a—

The variance of the effect, V(Ei), is 
V(Ei) = Sp^

For a confidence interval of 95^ and a degree of freedom of 8, 
the 't' distribution ratio is 2.31, which implies that for a 
95^ confidence interval 

Ei + tVv(Ei)
= Ei + 2.3.yv(Ei)

The system of 7 effects has been calculated for each of the 
responses which yield meaningful information. They are repro­
duced in Tables 5 - 1 6  below.

Note that there are no statistical studies for the 
responses of the Drop Index for both aged raw and aged warm 
states. After two days of aging nearly all pellets were 
elastic, with drop indices >25. No study is possible.

Likewise no study for the crushing strength of raw 
pellets is possible. All were rather plastic and supported 
essentially no load.

20



TABLE 5
CALCULATION OP EFFECTS OF FACTORS ON AVERAGE PELLET YIELD

Symbol 21 ^1 Yg Yavg d=Yi-Y2 d2

1 8 69 67 68 2 4
a 4 58 53 55.5 5 25

b 6 64 65 64,5 -1 1
ab 2 45 56 50 .5 -11 121
c 7 85 78 81 .5 7 49

ac 3 71 56 63 .5 15 225

be c 60 60 60 0 0
abc 1 59 54 56 .5 5 25

Avg = 62 .5 %:: 450

= JL52- {_1_) = 28.12 2 \ 8 /2
3 -V(Ej_) = -Î2_ = 7.03

*8,0.05 = 2.31 
t yv(Ej_) = 2.31v/fTÔT 

=  6.12

A = 1/4(_48) = -12.00 + 6.12 
3 = 1/4(-37) = -9.25 + 6.12 
C = 1/4(23) = 5.75 + 6.12 
rB = 1/4(13) = 3.25 + 6.12 
AC = 1/4(5) = 1.25 + 6.12 
BC = l/4(-20) = -5.0 + 6.12 
.ABC - l/4(l6) =4.0 + 6.12
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TABLE 6
CALCULATION CP EFFECTS OF FACTORS ON THE

AVERAGE DROP INDEX OF RAW PELLETS

Symbol ^1 Yg Yavg d=Yi-Y2 d2

1 8 22 14 18 8 64

a 4 25 18 21.5 7 49
b 6 25 23 24 2 4

ab 2 25 25 25 0 0
c 7 12 10 11 2 4
ac 3 21 25 23 -4 16
be C 24 12 18 12 144
abc 1 25 25 25 0 0

Avg =20.65 Z:: 281

oSo- = %
2 \df

V(Z.) = in = 4.39

"8,0.05 = 2-31 
t yv(Si) = 2.3iy 4.39 

= 4.85

= 1/4 ('23.32) = 5.88 + 4.85 
B = 1/4(18.48) = 4.62 + 4.85 
C = 1/4(-11.52) = -2.88 + 4.85 
AB = 1/4(-7.52) = -1.88 + 4.85 
nC = 1/4(14.48) = 3.62 + 4.85 
BC = 1/4(-0.48) = -0.12 + 4.85 
ABC = 1/4 (-2.48) = -0.62 + 4.85
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TABLE 7
CALCULATION OF EFFECTS OF FACTORS ON THE

AVERAGE DROP INDEX OF WARMED PELLETS

Symbol ji Yi ^2 Yavg d=Yi-Y2 d2

1 8 3 20 11.5 -17 289

a 4 12 16 14 -4 16

b 6 7 7 7 0 0
ab 2 25 22 23 .5 3 9
c 7 9 6 7.5 3 9
ac 3 19 11 15 8 64

be c 13 19 16 -6 36

abc 1 8 20 14 -12 144

Avg=13.58 1 567

o

567 1

V(S, ) = = 8.86

"3 ,0.05 = 2-31
t yv(Ei) = a.siyïïTs?

= 6.88

; = l/U(24.5) = 6.12 + 6.88
3 = 1/4(12.5) = 3.12 + 6.88
C = 1/4(-3.5) = 0.88 + 6.88
A3 = 1/4 (4.5) = 1.12 + 6.88
;c = 1/4(-1 3.5) = -3.38 + 6.88 
3C = 1/4(2 .5 ) = 0.62 + 6.88 
A3C = 1/4 (-2 3.5) = -5.88 + 6.88
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T.ABLE 8
CALCULATION OP EFFECTS OP PACTORS ON THE AVERAGE

CRUSHING STRENGTH OF WARNED PELLETS

Symbol TT ^1 Y2 Yavg d=Yi-Y2 d2
1 8 0.2 0.6 0.4 -.4 .16

a 4 0.6 0.3 0.45 .3 .09
b 6 0.3 0.2 0.25 .1 .01
ab 2 0.9 0.5 0.7 .4 .16

c 7 0.3 0.2 0.25 .1 .01
ac 3 0.4 0.3 0.35 .1 .01
be C 0.3 0.5 0.4 -.2 .04
abc 1 0.2 0.6 0.4 -.4 .16

Avg=0.4 : .64

oSo- = %

= - f - (4 ) =
s -V(S, ) = _±2_ = 0.01
h

"3,0.05 = 2.31
t x/ v TbTT = 2 . 3 i y T r r

= 0.23

A = 1/4(0.6) = 0.15 + 0.23 
3 = 1/4(0.3) = 0.08 + 0.23 
C = l/4(-0.4) = -0.1 + 0.23 
■AB = 1/4(0.30) = 0.08 + 0.23 
AC = l/4(-0.4) = -0.1 + 0.23 
BC = 1/4(0.1) = 0.02 + 0.23 
ABC = l/4(-0.5) = -0.12 + 0.23
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TABLE 9
CALCULATION OF EFFECTS OF FACTORS ON THE AVERAGE

CRUSHING STRENGTH OF AGED, RAW PELLETS

Symbol M.
?1 ?2 Yavg d=Yi-Y2 d2

1 8 2 .0 1 2 .6 2 2.32 -o.6i .37
a 4 4.77 3.29 4.03 1.48 2.19
b 6 2 .6 6 2.46 2 .56 0 .2 0.04
ab 2 4.76 4.03 4.40 0.73 0.53
c 7 0 .82 2 .1 8 1 .50 -1 .3 6 1 .85

ac 3 3 .0 6 4.03 3.54 -0.97 0 .94

be C 2 .2 1 2.32 2 .2 6 -0.11 0.01

abc 1 4.16 4.91 4.54 -0.75 0 .56

Avg = 3.15 %=6.4o

Sd2
2
i

df
1 = 0.41

V(E. ) = = 0.10
4

"8,0 .0 5 = 2.31 
t v/vTiTT = 2.3iyôTT

= 0.73

; = 1/4(7.87) = 1.97 + 0.73 
B = 1/4(2.37) = 0.59 + 0.73 
C = 1/4(-1.47) = -0.37 + 0.73
A3 = 1/4(0.37) = 0.09 ± 0.73
AC = 1/4(0.77) = 0.19 ± 0.73
BC = 1/4(1.15) = 0.29 + 0.73
ABC = 1/4(0.11) = 0.03 + 0.73
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TABLE 10
CALCULATION OP EFFECTS OF FACTORS ON THE AVERAGE

CRUSHING STRENGTH OP AGED, WARMED PELLETS

Symbol Jl'T ?1 ?2 Yavg d=Yi-Y2 <2

1 8 0.93 1 .2 5 1 .09 -0.32 0.10
a 4 2 .0 7 1.57 1.82 0.5 0.25

b 6 2 .0 5 1.71 1.88 0.34 0.12
ab 2 2 .9 6 2 .9 8 2.97 -0.02 0.00

c 7 1.74 2 .0 7 1.90 -0.33 0.11
ac 3 2.35 1.91 2.13 0.44 0.19

bo c 1 .9 6 1 .5 8 1.77 0.38 0.14

abc 1 1.55 2.12 1.64 -0.57 0.32

Avg = 1.92 Z:si. 23

oSo- =

08

= 0,02

"8,0.05 = 2-31 
t yv(Ei) = 2.31v/ÔTôr 

= 0.33

A = 1/4(2.12) = 0.53 + 0.33
B = 1/4(1.52) = 0.38 + 0.33 
C = 1/4(-0.12) = -0.03 + 0.33 
A3 = 1/4(0.20) =-0.05 + 0.33 
AC = 1/4 (-1.52) = -0 .3 8 + 0.33 
BC = 1/4(-2.36) = -0.59 + 0.33 
ABC = 1 /4 (-0.52) = -0 .1 3 + 0.33
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TABLE 11
CALCULATION OF EFFECTS OF FACTORS ON THE AVERAGE

RESISTANCE TO WATER DAMAGE OF RAW PELLETS

Symbol M.ir Yi Yg %avg d=Yi-Y2
1 8 0 10 5 10 100
a 4 10 10 10 0 0
b 6 20 15 17.5 5 25
ab 2 10 10 10 0 0
c 7 25 10 17.5 15 225
ac 3 0 10 5 10 100

be C 10 10 10 0 0

abc 1 0 15 7.5 15 225
Avg = 10.3 .675

v(E.) = 10.55

= 42.19

^8,0.05 = 2.31
t v/v(Ei) = 2.31vA o .55

= 7.50

; = 1/4(-17.5) = -4.38 + 7.50 
3 = 1/4(7.5) = 1.88 + 7.50 
C = 1/4(-2.5) = -0.62 + 7.50 
A3 = 1/4(-2.5) = -0.62 + 7.50 
AC = 1/4(-12.5) = -3.12 + 7.50 
3C = i/ii(-17.5) = -4.38 
ABC = 1/4(22.5) = 5.62 + 7.50
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TABLE 12
CALCULATION OF EFFECTS OF FACTORS ON THE AVERAGE

RESISTANCE TO WATER DAMAGE OF WARMED PELLETS

Symbol # ^1 ^2 Yavg d=Yi-Y2 32

1 8 0 40 20 40 1600

a 4 25 30 27 .5 5 25

b 6 0 15 7.5 15 225

ab 2 10 20 15 10 100

c 7 20 20 20 0 0

ac 3 10 10 10 0 0

be c 10 30 20 20 400
abc 1 10 10 10 0 0

Avg= 16.25 ][=2350

So- = 2
2350

( - r )  -
146.88

V(S. ) = = 36.724

"3,0.05 = 2.31
t v/v(Ei) = 2.31^ 36.72

= 14.00

A = 1/4 (-5.0C) = -1 .2 5 + 14.00 
B = 1 /4 (-2 5.00) = -6 .2 5 + 14.00 
C = 1/4 (-10.00) = -2 .5 0 + 14.00 
A3 = 1/4 (0) = 0 + 14.00 
AC = 1/4 (-35.00) = -8.75 + 14.00 
BC = 1/4 (25.00) = 6 .2 5 ,+ 14.00 
A3C = 1/4 (0 ) = 0 + 1 4 . 0 0
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TABLE 13
CALCULATION OP EFFECTS OF FACTORS ON THE AVERAGE
RESISTANCE TO WATER DAMAGE OF AGED, RAW PELLETS

Symbol ^1 Yg Yavg d=Yi-Y2
1 8 0 0 0 0 0
a U 10 0 5 10 100

b 6 0 0 0 0 0

ab 2 5 0 2.5 5 25
c 7 15 0 7.5 15 225

ac 3 0 0 0 0 0
be c 0 30 15 30 900
abc 1 0 0 0 0 0

Avg = 3.75 Z:: 1250

So“ = %

= J£22- |JL_j = 78.12
s 2

V(E.) = _±SL =19.53ii

t8 ,0 .0 5 = 2.31 
t \/v(Ej_) = 2.31^/1.9.53

=  10.21

A = l/U (-15.00) = -3.75 + 10.21 
B = l/U (5) = 1.25 + 10.21 
C = l/U (15) = 3.75 ± 10.21 
.AB = l/U (-10) = -2 .5 0 + 10.21 
AC = l/U (-30) = -7.5 ± 10.21 
BC = l/U (10) = 2.5 ± 10.21 
ABC = l/U (-5) = -1.25 + 10.21
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T.ABLE l4
CALCULATION OP EFFECTS OF FACTORS ON THE AVERAGE RESISTANCE

TO WATER DAMAGE OF AGED, WARMED PELLETS

Symbol .21 ^1 72 7a V g d=Yi-Y2 d2

1 8 0 48 24 48 2304

a 4 10 0 5 10 100

b 6 10 15 12.5 5 25

ab 2 10 0 5 10 100

c 7 10 5 7.5 5 25

ac 3 10 0 5 10 100

be C 10 0 5 10 100

abc 1 0 0 0 0 0
Avg = 8 .2754

oSo- = %
2 \df

= 2754 I ^ 172.12

7(2,) = = 43 .03
Ix

^8,0.05 = 2'31
t yv(Si) = 2.31^/43.03

=  15.15

; = 1/4 (-34) = -8.5 + 15.15
3 = 1/4(.19) = .4.75 ± 15.15
C = 1/4 (-29) = -7.25 + 15.15
-AB = 1/4 (9) = 2.25 + 15.15 
AC = 1/4(19) = 4.75 + 15.15
BC = 1/4(4) = 1.00 + 15.15 
ABC = 1/4(-14) = -3.5 + 15.15
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Ti^BLE 15
CALCULATION OP EFFECTS OF FACTORS ON THE AVERAGE RESISTANCE

TO WATER DAMAGE OF AGED, RAW, COATED PELLETS

Symbol IL
^1 Y2 Yavg d=Y%-Yg ^2

1 8 90 95 9 2 .5 5 25

a 4 100 100 100 0 0

b 6 100 100 100 0 0

ab 2 100 100 100 0 0
c 7 100 100 100 0 0
ac 3 85 100 92 .5 15 225

be c 85 100 92 .5 15 225

abc 1 90 100 95 10 100
Avg = 9 6 .6 S 575

So- = %

= |-L-j = 35.94

q 2
V(Z, ) = = 8 .98

4

^3 ,0.05 = 2.31
t yv{Ej,) = 2.31^/8.98

= 6.92

A = 1/4(2 .5) = 0 .6 2 + 6.92  

B = 1/4(2.5) = 0 .6 2 + 6.92  

C = 1/4(-12.5) = -3.125 + 6 .92  

A3 = 1/4(2.5) = 0 .6 2 + 6.92  

AC = 1/4(-12.5) = -3.125 + 6 .9 2  

BC = 1/4(-12.5) = -3.125 + 6 .9 2  

ABC = 1/4(17.5) = 4 .3 8 + 6 .9 2
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T/^BLE 16
CALCULATION OF EFFECTS OP FACTORS ON THE AVERAGE RESISTANCE

TO WATER DAI^AGE OF AGED, WARNED, COATED PELLETS

Symbol # ^1 Yg Yavg d=Yi-Yg d2

1 8 90 95 9 2 .5 5 25

a 4 90 100 95 10 100
b 6 100 100 100 0 0
ab 2 70 100 85 30 900

c 7 95 100 97.5 5 25

ac 3 95 95 95 0 0

be C 100 95 97.5 5 25

abc 1 90 90 90 0 0
Avg = 94 .1 ][:1075

= ( - 5- )  '  «7.19
S 2V(E, ) = = 16 .80

^8 ,0 .0 5 = 2 .3 1  

t yv(E^) = 2.3i\/~T5T5b
= 9 .47

A = 1/4(-22.5) = -5.62 + 9.47  

B = 1/4(-7.5) = -1.88 + 9.47  

C = 1/4(7.5) = 1.88 + 9.47  

AB = 1/4 (-22.5) = -5 .62 + 9.47  

AC = 1/4(2.5) = 0.62 + 9.47  

30 = 1/4(-2 .5) = -0 .62 + 9.47  

.ABC = 1/4(12.5) = 3.12 + 9 .47
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Statistical Observations

In an experiment such as this, with so many factors 
to control and unknowns to approximate, many sources of error 
can exist. It Is thought that subsequent research can build 
on this work eliminating more of the experimental and sys­
tematic errors. Some cautions and recommendations follow, 
but given the data as collected and calculated, some very 
Interesting observations can be made, keeping In mind that 
the variances of the effects are In almost every case far too 
large for certainty. (These large variances reemphasize the 
need for more carefully controlled experiments with more sen­
sitive equipment than was available for this study).

Yield

On first glance the extremely negative effect of bind­
er concentration (A = -12.00 + 6.12) might seem anomalous, but 
a higher concentration Implies less water available for wetting. 
Evidently the binder at higher concentrations tends to remain 
Immobile, not spreading out and agglomerating other particles 
and small pellets. Better mixing techniques, alternate con­
centrations or use of a different binder may Improve yield.

The highly negative effect of rpm (B = -9.25 + 6.12)
Is more predictable. The greater the energy available to the 
process In the agglomeration drum, the stronger and more 
spherical the pellets, with the material more consolidated.
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However, weaker pellets are destroyed, and there is less chance 
for each pellet to "grow".

Increased heat of agglomeration aided in the spreading 
of the binder, (C = 5.75 + 6.12), On the other hand, the 
interaction of temperature and rpm produced a large negative 
effect, (BC = -5.0 + 6.12), This high state of energy tends 
both to destroy the pellets and evaporate the water in the 
binder.

The negative effects of A and B are overcome in the 
interactions, (AB = 3.25 + 6.12; AC = 1.25 + 6.12; and 
ABC = 4.00 + 6.12)

It is worth noting that the highest average yield was 
produced at low binder concentration, low rpm, and high tem­
perature .

Drop Index Raw

The effect of both A and B on raw drop index was strong­
ly positive (A = 5.88 + 4.85; B = 4.62 + 4.85) and furthermore, 
whenever either A or B was high, the drop index was high, 
while when both were low, the index was low (l = l8, 'c' = 11, 
compared to the overall index of 20.7).

Correspondingly, the effect of C was negative (C = -2.88 
+ 4 ,8 5), but this was overcome in the interaction with A
(AC = 3 .6 2 + 4 .85)
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Drop Index Warmed 
After warming the pellets for 15 minutes at 120°C the 

effects of A and B remained strongly positive (A = 6.12 + 6.88; 
B = 3.12 + 6.88). Interestingly, even though the effect of C 
was also positive (C = 0.88 + 6.88) the interaction of all 
three was strongly negative (ABC = -5.88 + 6.88), presumably 
because the individual indices of'b* and ’c'were both quite low.

Crushing Strength Warmed 
The crushing strength of raw unaged pellets was essen­

tially zero. Warming for 15 minutes sufficiently dried the 
shell to generate a weak crushing resistance. The individual 
effects were all quite small, with only A being much greater 
than 30fo of t y  v(Ej_) = + 0.23. Consequently, very little can 
be deduced from the effects. It. is worth noting that trial 
AB produced reasonably strong pellets.

After warming, the smaller pellets exhibited a higher 
crushing strength than did the larger ones. The surface dry­
ing included a greater percentage of the total volume of the 
smaller pellets, producing a greater crushing strength.

Crushing Strength; Aged, Raw 
Again, the variance of the effects is quite large, in 

all but one case larger than the effects. The effect of binder 
concentration was highly positive, (A = 1.97 + 0.73) with the 
four highest responses resulting when the higher concentration 
was used. None of the interactions with A were strong however.
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All of the effects were positive except C (C = -0,37 + 0.73)
which was slightly negative.

Crushing Strength; Aged, Warmed 
Binder concentration once again exhibited the strongest 

positive effect (A = 0.53 + 0.33), while C, alone or in any 
interaction produced negative effects.

All Rain Wash Tests 
There seems to be very little correlation or prediction 

of effects from one response to another, perhaps due to the 
subjective and error-prone nature of this test. No doubt bet­
ter results could be gained by using a binder that is not water 
soluble.

The effects, variances and differences of effects between 
raw and warmed states are tabulated in Table 17. Of greater 
possible interest is Table l8, which shows the average values 
of the effects of the 12 meaningful tests, and the number of 
times an effect greatly affected the outcome.

The effect A, binder concentration, was strongly posi­
tive 5 and strongly negative 4 times out of the 12. In addi­
tion its average effect was far greater than any other. This 
effect must be a part of any future follow-up to this research. 
Of the other two primary effects, B and C had strong influences 
5 and 4 times respectively.
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TABLE 17 RESULTS AND EFFECTS

Rain Wash/t retentionCrushing Strength, KgDrop Index

16,
14-15

10,
8-9

13,
11-12 2117-18 2017 18 20-21151411 125-62-3

1.440.53 4.38 -1.25 0.62 -5.62 6.251.97 •3.13 -3.75 8.50 4.750.156.12 0.74-12.0C 5.88

4.75 6.00 0.62 -1.88 2.500.59 0.38 0.21 1.88 -6.25 8.13 1.253.12 1.5 0.08■9.25 4.62

3.75 -7.25 11.00•0.1 0.37 •0.03 0.40 -0.62 -2.50 1.88 -3.12 1.88 -5.005.75 0.88 •3.76■2.88U)

5.62 6.24-0.62 -0.62 2.50 2.25 -4.75 0.620.09 0.05 0.040.083.25 1.12 -3.001.88AB

4.75 -32.25 •3.12 0.62 •3.74-3.12 -8.75 -7.505.630.19 -0.38 0.570.11.25 3.62 •3.38 7.00AC

-3.12 -0.62 -2.506.25 -10.63 1.00 1.502.50.29 -0 .59  0.88 4.380.02-0.12•5.00 0.62 •0.74BC

1.263.124.382.001.25 3.505.625.620.160.03 0.13- 0.1214.264.00 •0.62 •5.88ABC

»6.92t7.50 +14.00+0.23 +0.73 +0.33+6.12 +4.85 +6.88



TABLE 18 
AVERAGE VALUES OF EFFECTS

Algebraic Absolute # Strongly (+) # Strongly (-)
A, -1.69 4 .2 3 5 4
B, -0.80 2 .8 9 3 2
c . -0.32 2 .4 3 1 3
AB, —0 • 26 1 .51 - 1
AC, -1.33 3 .0 6 1 4
BC, -0 .2 6 2.04 1 4
ABC, 0 .47 2.39 3 1

TABLE 19 

EFFECT OF WARTONG
Raw Warmed fo Change

DI Fresh 20.7 13.56 3̂4#
Aged e e 0^

CS Fresh call 0.1 0.4 +300#
Aged 3.15 1 .9 2 -39^

RW Fresh 10.3 16.25 :4-58̂
Aged 3.75 8.0 +113%

Coating 96 .6 94 .1
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Warming
Even though the effect of warming was not a part of the 

statistical array, its significant role is easily discernible, 
as is seen in Table 19. Warming the raw pellets for 15 minutes 
immediately after their production increased their crushing 
strength markedly. However, at the same time, warming made 
the pellets more brittle, resulting in a much lower drop index.

Raw and warmed pellets from each trial were kept sepâ r 
rate for two days and the tests were repeated. By this time, 
the binder had cured to where both types were nearly elastic, 
with very high drop indices; no difference remained between 
raw and warmed. However, the warmed pellets did not develop 
the high crushing strengths that the unwarmed ones gained with 
age. In the long run, the initial warming proved quite detri­
mental to the crushing strength. Warming may have somewhat 
improved a pellet's resistance to water, but given the nature 
of the data, it is difficult to tell.

Aging
Aging is by far the single most Important parameter 

studied as can be seen in Table 20. While being detrimental 
to the resistance to water damage in uncoated pellets, aging 
dramatically increased the crushing strength and elasticity 
of both raw and warmed pellets. By the end of two days the 
pellets were quite stable and easily transportable.

Coating
As seen in Table 21, coating did not appreciably alter
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TABLE 20 
EFFECT OF AGING
Fresh Aged ^ Change

DI Raw 20.70 25 + 21^
DI Wârtned 13.56 25 + 84#
CS Raw call 0.10 3 .1 5 +3,0500

CS Warmed 0.40 1 .9 2 + 3800
RW Raw 10.3 3.75 - 640
RW Warmed 16 .25 8.0 - 510

TABLE 21 
EFFECT OF COATING
Aged Avg Coated 0 Change

DI Raw 25
25 00

DI Warmed 25

CS Raw 3 .1 5
^.53 1.82 -280

CS Warmed 1 .9 2

RW Raw 3.75 N.A.
9 6 .6 +2 ,4760

RW Warmed 8.0 94 .1 +1,0760
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either the drop index or the crushing strength of the pellets. 
But great improvement was seen in the rainwash test of both 
raw and warmed pellets. Uncoated pellets were virtually de­
stroyed by the water action, but once coated, there was essen­
tially no damage. It is thought that much of the reported 
minor loss in coated pellets was due to mechanical damage not 
water damage, and responses much nearer 100^ would be more 
accurate.

General Errors

There are several potential sources of error that should 
be discussed, one being the number of variables investigated.
Of the three controlled variables, one turned out to be very 
important, the others less so. Three more variables were 
studied as responses, but not in the statistical matrix. All 
proved to be highly important. No doubt other variables, which 
were not varied in a controlled way, play a potentially more 
important role, such as moisture content of coal batch, tem­
perature and humidity of surroundings, type binder, mixing 
style, curing time and temperature etc. Without further study, 
it is impossible to tell.

The levels, (high and low), of the variables may have 
been chosen improperly. Only if the variation is nearly linear 
between the two levels can such an analysis represent the true 
situation. If the response oscillates between the two levels, 
a multi-level experiment would reveal it, while a two level 
investigation would not,
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In this experiment, 100 gms of coal fines were agglom­
erated with 25 ml of binder, and the yield of pellets caught 
on a # 8 sieve averaged 6 2 .5 gms. A, series of l4 tests were 
run on small samples from each trial, and by the end of the 
tests, few pellets remained. In order to increase the accuracy 
of the results larger samples should be used which would ne­
cessitate the use of a larger agglomerating drum. At least 20 
pellets, representing the spectrum of sizes of the pellets, 
should be tested and their responses averaged to obtain the 
average response for each of the l4 tests. Testing such a 
large number of pellets was impossible on this scale, but fu­
ture work should eliminate this possible source of error.

Experimental Observations

Discussed briefly below are several observations, in­
sights and warnings gained in the experimental process. Hope­
fully, these will allow future research to proceed more smoothly 
and accurately.

In the preparation of the binder, great care is needed. 
Small amounts of binder must be mixed with the proper amount of 
water, and care must be taken to insure precision. Heating and 
agitation aids in dissolving the binder material, but continued 
application may cause evaporation of the water, changing the 
concentration.

A variable speed mixer is not adequate for mixing the 
binder and coal. A two-armed kneading type mixer is preferred
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with provision for scraping the sides and bottom of the mixing 
bowl. Adding the binder to the coal slowly, perhaps as a spray 
would help eliminate the formation of large "blobs", which are 
difficult to break up. Total mixing is of paramount importance 
in these controlled trials. It was noticed that if small 
balls remain after mixing, spreading of the binder and agglom­
eration of fines into pellets is hindered. The balls tend to 
become pellets, and the finer fractions have little ability to 
agglomerate in the presence of balls which contain a large 
amount of binder. All of the coal agglomerated to some degree 
however, even that which did not become part of a larger pel­
let. After 5 minutes of agglomeration, none of the coal was 
"dirty". That portion which passed a # 8 sieve was discarded, 
although it would probably be rerouted back into the drum for 
more growth in an industrial cycle. After each trial, the drum 
was cleaned to remove remaining material sticking to the inside. 
Sticking was minimal, but it was removed to assure the integrity 
of each trial. Such residue, if allowed to remain would dis­
courage further sticking in less precise processes.

The heat applied during half of the trials was in the 
form of hot air, approximately 95°C, blown onto the back of 
the drum. The air could not of course be blown onto the coal 
fines or pellets, but in this manner the agglomerating envi­
ronment was heated, and the coal was heated when in contact 
with the drum. Pellets so produced were moderately warm to 
the touch, but not hot.
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Raw pellets, when first produced, were very nearly 
plastic. They possessed essentially no crushing strength, 
and the normal elevated drop index probably represented their 
cohesiveness rather than a strength property. Both the drop 
index and the crushing strength determinations were rather 
subjective, although an effort was made to standardize the 
tests.

Due to the small yields, only 5 pellets normally re­
presented the trial for each of the eight drop index and 
crushing strength tests with a larger amount being used for 
the rainwash and coating tests. A larger number of pellets 
available for testing would have probably yielded less scat­
ter in the responses.

Once dried at 110°C for 15 minutes, the drop and crush­
ing tests were noticeably size dependent. Smaller pellets 
dried faster and developed a larger crushing strength, but 
the dried pellets, which had not had time to cure thoroughly 
became less cohesive, resulting in a decrease in the drop 
index. Larger pellets were less affected by 15 minutes of 
drying. On the other hand, once aged at room temperature in 
an open container for 2 days, sufficient time for the binder 
to cure, the larger pellets gained a large crushing resistance, 
whereas the smaller ones increased much less. Pellets which 
had been initially warmed to gain some crushing resistance did 
not gain the high crushing strengths after two days that the 
non-warmed pellets obtained.
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The rainwash tests on uncoated pellets were nearly 
meaningless. The binder used in this experiment was a water 
soluble polymer and once immersed in water, pellets made from 
it readily dissolved. In this modified test a known weight of 
pellets were allowed to soak for 15 minutes, after which the 
water was drained off. The remaining pellets and saturated 
fines were heated in an oven until all water had evaporated.
Any pellet or portion of pellets retaining strength was 
weighed, and the percentage of original weight was recorded.
In no case did a single pellet remain Intact throughout the 
process. In all likelihood, although this was not tested, no 
pellet retained any strength while saturated. Some strength 
returned with drying, and no doubt much of the recorded per­
centage consists of rehardened material. But even with this 
optimistic process, in which any hardened piece was acceptable, 
the greatest amount remaining was 27^. A more realistic test 
would yield percentages much closer to zero. No doubt subse­
quent work can identify binders which will make uncoated pel­
lets less susceptible to water damage.

When the pellets were protected by an insoluble film 
coating however, virtually no water damage was noted when the 
same test was performed. The pellets were coated with a cross- 
linked polymer, which when it dries forms an unbroken film 
on the surface to which it is applied (in appearance much like 
the familiar Saran Wrap). The coating was accomplished with the 
polymer freshly mixed, soon after an insolubilizing catalyst

45



was added. The pellets were submersed In the fresh mixture 
before it hardened into a gel, withdrawn and placed on a 
drying plate. The entire plate was then heated at 120° C. to 
facilitate the drying of the film. Once removed, the pellets 
exhibited very little change in strength and stability char­
acteristics while the resistance to water damage increased 
dramatically.

A problem existed in the removal of the coated pellets 
from the drying plate during preliminary experiments which 
was only partially solved, and its effect bears to a minor 
degree on these trials. The film is designed to adhere to 
smooth surfaces, and consequently the pellets coated with 
unhardened polymer stick fast to the plate as they dry. The 
problem was alleviated somewhat by pre-coating the plate with 
the same film. This film, once dried, is designed to be able 
to be peeled from the plate with care. Pellets covered with a 
fresh batch of the same, still liquid polymer were placed on 
the film covered drying plate. Once the shell hardened, the 
plate film was peeled up bringing the pellets with it. Less 
damage was thus done to the pellets themselves, and it is 
thought that better technique would completely eliminate this 
hazard to the pellet. It is also likely that much of the dam­
age to the coated pellets in the rain wash test was due to the 
mechanical breaking of the shell on removal from the plate, 
as no damage was noted to any pellet while being soaked, drained, 
or dried. Clearly the coating removed the danger of extensive
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water damage, as the lowest percentage retained in the coated 
tests was 85 ,̂ compared to the highest percentage retained in 
the uncoated tests of 270.

Self-Bursting Pellets
Protection from potential water damage is only one of 

the shell's two functions. It must also aid in the bursting 
process. Once the pellet is introduced into the presence of 
heat, gasses of devolatilization are given off and the moisture 
in the binder and coal undergoes a phase change, causing 
pressure to build up internally. Much of this pressurized 
steam and gas would be vented into the heating chamber or 
furnace unless the shell is intact and can maintain it. Once 
the internal pressure exceeds the tensile strength of the 
shell, the pellet will burst and be reduced to fine sized 
particles similar to those normally introduced into a coal 
burning furnace.

The pellets as produced in this experiment burst in 
the presence of high heat of several kinds, from an open 
flame to hot, convective gasses to a radiant heat furnace. 
Larger pellets, (diameter= 1/2") take correspondingly longer 
to burst than do smaller ones, but all pellets burst within 
two seconds.

Explosions are a function of both rapid expansion and 
confinement, and both are needed in this case. A pellet rest­
ing on a grate or plate heated from below will generally not 
burst, since the pressures, tend to dissipate prior to high inter­
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nal pressure build-up. For individual tests it was found that 
holding a pellet in the hot environment with a pair of tongs 
or tweezers provided sufficient confinement for bursting. This 
confinement is thought to be much more easily developed on 
an industrial scale than for a single pellet. Recommendations 
are presented in Chapter 6.
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CHAPTER I I I

FORMULATION OF EQUATIONS DESCRIBING 
SELF-BURSTING PELLET

Several factors work together to yield a tendency for 
the coal pellet to burst when suddenly heated by an external 
source. It is well known that coal when heated undergoes 
devolatilization of certain fractions. Gases are evolved and 
will leave the coal (as in a coke oven) if not maintained in­
ternally. Due to the impermeable shell and confinement of the 
pellets as proposed, the gases cannot easily escape. Their 
sudden appearance and expansion when heated rapidly causes an 
internal pressure buildup, primarily caused by the difference 
in diffusivities in the outer, reacted portion as compared to 
the inner core, not yet affected by the external heat (38).

As the coal devolatilizes pores develop which can cause 
unrestrained coal to swell. In fact coals must have this pro­
perty if they are to be used for coking. Depending on the 
nature of the confinement, the tendency to swell will either 
increase the internal pressure (if the shell is rigid or pack­
ing is tight) or decrease the internal pressure (if the shell 
or packing will allow the volume increase) (56).
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Probably the most important factor involved in 
internal pressure build-up is due to the phase change of the 
moisture inside the pellet from liquid to vapor. The intense 
heating conditions to which the pellet is subjected would first 
vaporize the moisture near the pellet surface. The large 
volume change of the moisture produces an intense and nearly 
instantaneous pressure build-up.

Perhaps other factors could be identified which 
contribute to the internal pressure build-up. It is likely 
however, that the phase change is the most significant, and 
it is this factor which is modeled in this paper. Incorpor­
ation of all effects into one comprehensive model is left 
to subsequent work.

Description of the Physical Model 
As can be seen in Figure 3, the pellet has a radius 

of r^, and is introduced suddenly into a furnace, the gases 
of which are of uniform temperature T“, (a convective, well- 
stirred fluid). Pressure is atmospheric both inside and 
outside the pellet at t = 0.

Figure 3. The Coordinate System

Pegicn
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The convective heat affects only the pellet surface 
at t = 0, but the effects migrate inward with increasing 
time. The problem is readily seen as a stefan problem in 
spherical coordinates (a moving boundary problem due to 
phase change). Numerous models have been proposed which 
deal with similar problems (see for example 14, 39), but 
most notably Saito and Seki's work describing pressure 
build-up in a moist sand mold when molten metal is intro­
duced . (40)

Assumptions
The present theoretical model which conforms to the 

physical model of Chapter II is based on the following as­
sumptions :

1. No liquid water movement is present in the pellet. 
The water is held in place as a constituent of the binder
(a cross-linked polymer, waxy derivative, or other material), 
which serves to reduce the permeability to a very low level. 
The water disassociates from the polymer only as it vaporizes,

2. Air and other gas in the pellet have no significant 
effect on the internal heat transfer, since their enthalpies 
are significantly smaller than that of water vapor. (This 
assumption ignores the gases of devolatilization of the coal)

3. Laminar flow is assumed, i.e. Darcy's Law is valid 
for the vapor flow through the pellet. The permeability of 
the pellet is so low that high velocity flow is impossible, 
as demonstrated by the fact that the high velocity terms in
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the conservation of momentum equation are less than 1% of 
the Darcy term.

4. Thermal conductivity, diffusivity, heat capacity, 
porosity and mobility are constant in each region. It is well 
known that thermal conductivity and diffusivity do vary with 
temperature, but at the range of temperatures employed in 
this research, the change is slight. Furthermore, the 
specific heat and density of the solid are only slightly 
dependent in pressure and temperature. The use of constant 
porosity and permeability values ignores the possibility
of pellet swelling.

5. Thermal equilibrium between the solid particles 
and the moisture at every point in the inner, wet region is 
assumed. This is reasonable since the temperature change in 
the wet region takes place comparatively slowly.

6. The critical build-up of pressure is at the moving 
front due to the vapor generation, and is caused by the dif­
ference in permeabilities across the boundary. The presence 
of an impermeable film on the pellet surface is not considered, 
although it would serve to accelerate the build-up as it en­
traps the generated steam.

7. Although it is known that as coal is heated it both 
devdlatilizes and swells, both effects are assumed to be 
negligible (or if preferred to cancel one another). This is 
done in order to isolate the more important effect of the 
phase change.
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Applicable Equations 
From the foregoing assumptions the following equa­

tions can be introduced. (All equations are fully derived 
in Appendix 2).

Mass Transfer in Region One

Ô ei Ml  ̂ /  o '5 Pl\  = ----;------ ri2 e i ---- ) (S ^ ri < rg) (1)
6 t 4> r 1̂  6 n  y 6 r ly

It is worth pointing out here that equation one includes an 
expression of conservation of momentum, as demonstrated in 
Appendix Two.

Mass Transfer in Region Two
By assumptions 1 and 5 there is no mass transfer in 

Region Two.

Mass Balance at the Moving Boundary

Region 1

V2 ,62
S
Region 2

V2 , £2

S Ml
6 r-

Ml Ô Pi
S (£2 - ei) = —  £i  ri, ri = S (2)

Energy Transfer in Region One 
Solid

S T k (1-*) 5 / 5 T
P_ C_ (1-4)---   = ----------- ri2  HF (T -T ) (3)
® ® 6 t ri2 Ô rV 5 r / ^ ®
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Fluid

^ ^\6 t * 6 rij r 6r% \ S rJ St

HF
+ —  (T^-T ) (4)

<D ® 9

Energy Transfer in Region Two
Since there is no mass transfer in region two, energy

transfer is by conduction only.
6 T2 k 6 / <ST2\

p C - - - - - - - -  - -  I rz ---  J » 0 < r2 S (5)
^ ^ 6 t r2 5r2 y ôr2J

VI Energy Balance at Moving Boundary

Region'T''"7̂ Ŝ
V2 , f 2

\ :

Region 2 
V2 , €2

(eihi - £2h2) S - -ki -g^+fk2 ^  (eihi|^).

ri, r2= S (6)

Initial and Boundary Conditions
The initial and boundary conditions relevant to the 

present problem are;
@ r - r : Ti = T„; = 0  (7)
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@ r = 0: |£2. = 0; = 0  (8)

@ t = 0; Ti = ?2 = Ti; Pi = Pg = Pi (9)

@ r = ro: (rg, t) = X (T̂ -T) (10)

Simplification of Equations
The solution of such a set of intricate equations is 

obviously quite difficult. Analytical solution is unreason­
able and numerical solution requires an advanced knowledge 
of numerical methods as well as a sophisticated computer 
with massive storage space. It is suggested that these 
equations be solved in the future by one with such knowledge 
and access to such a computer, but they are not solved here­
in. However, acceptable results can be obtained by simpli­
fying and non-dimensionalizing the equations.

By assuming that all energy transfer is by conduction 
through the pellet matrix only, (i.e., that the liquid or 
vapor content does not participate in the conduction), energy 
transfer is the same in both regions. Equations (3) and (5) 
therefore, can be rewritten as follows;

5T
C_p_— - = —  0 < r < ro (11)
® ®6t
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Which can also be expressed as

!!=/!!! . !  !!\ o < r < r. <12,
5t ysrô r 5ry

In non-dimensional form,
ÔT* 6%T* 2 ST*
  = ---  + —    0 < r* < ro* (12a)
St* Sr*2 r* 5r*

As discussed in Appendix B, the energy balance equation 
at the moving boundary can be expressed as

(ho-hi)(mass) = qi - qa = —  S+ - —  | S-

Here, at the evaporation front, the difference in enthalpies 
is known as the latent heat of vaporization as is denoted 
by L. The mass crossing the moving boundary is £2 S, leaving

(ST ST
—  I S+ - —  I S-) (13)

Sr Sr

Which, in dimensionless form is
/ST* ST* \

S* = N ( ---  I S*+------ I S*-\ (13a)
ysr* Sr* J

The solution of equations (12a) and (13a) by the finite dif­
ference method yields the temperature distribution throughout 
the pellet when the following initial and boundary conditions 
are applied.

T(r,0) = T., 0 < r < r , T. < T„ (14)X X Cl
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T ( S , t )  =  Tg ( 1 5 )

6T
ôr (Oft) = 0 (16)

ATkg gt (rO' t) = A (T„ -T) (17)

Equations (14 - 17) can be expressed in non-dimensional form 
as follows.

T* (r*f 0) = TŸ (14a)
T* (S*f t*) = T* (15a)

1 ^  (Of t*) = 0 (16a)

(ST* = -G T* (17a)
Ignoring all effects of the shell in this simplified 

treatmentf the pressure distribution can be found once the 
temperature distribution is established. The continuity 
equation for region 1 still holds:

* 4 t  ^ ^  If) S < r < ro (18)

In its non-dimensional form

A* 4t^ " p k  ÂP* E* S* ^ r* < 1 (18a)

In this case is quite small f and the left hand side will
be neglected for convience. Therefore since
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H î )  = 0

r*2 gf ÔP*i ^  = f (t*) (19)

only. We assume that the basic interaction between the 
pressure and the temperature and moisture takes place at 
the moving boundary due to the phase change. We know that 
by virtue of the ideal gas law

p = Rq El T (20)

Which in non dimensional form is

p* = eî (1 - D T*) (20a)

Since no mass is lost or stored, the continuity equation at 
the moving boundary can be written

e.̂ v^ (S, t) = Ez 0" (21)

In dimensionless form

A S* = El (21a)

From equations (. 19 and 21a) we see that at the
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moving boundary (i.e. r* = S*)

r = f (t) = S*^ (A S*) (22)

*Substituting for s % accoridng to equation (17 a)

r*2 P* = A S*2 ||J. (1 - DT*) (23)

We know the boundary condition

p (r̂ , t) = (24)

Which implies

p* (1, t*) = 1 (24a)

Using this information we can integrate equation (20) to 
obtain an expression for p*,

[l - DT* (r* t*)] 
r

p* = 1 + A S* f    dr (25)

remembering that S*, / and T* are all known from the

determination of the temperature distribution, equations 
(9a) through 14a) above.
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CHAPTER IV 

SOLUTION AND INTERPRETATION OF EQUATIONS

Solution of the simplified set of equations was accom­
plished by a combination of the finite element method and the 
finite difference method. Since the finite element method is 
best suited for spatial relationships and the finite difference 
for temporal relationships the two methods are used accordingly. 
Numerous other schemes exist in the literature for solution of 
such a system of equations (3%)but the combination method em­
ployed here was developed for its accuracy.

Scheme of Solution

The first step in the solution is to develop the tem­
perature profile as given by equation 12a and the initial and 
boundary conditions 13a through 17a. Once the temperature 
profile is known and the velocity of the moving boundary is 
calculated, the pressure at the moving boundary can be found 
from equation 25 and the equation of state 20a.

Both temperature and pressure profiles are important 
in understanding the nature of the self-bursting phenomenon 
since the evaporation of the water due to rising temperature
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causes both a rapid pressure build-up and deterioration of the
binder to the point where its compressive strength is quite
small. The return of the pellet to fine particles is due to 
both of these factors, as well as the others listed in Chapter 
Three.

The values of the dimensionless constants appearing in 
the governing equations were calculated using the following 
values for the necessary parameters. Some of these are stan­
dard or tabulated values, some are calculated, and others are 
assumed or measured.

Cg = 1.297 X 103 J/kg°K
K = 10 md = 9 .87 X 10-15^2

kg = 0 .1159 J/sm°K 
L = 2 .2 6 X  10  ̂J/kg

= 1 atm = 1 X 10^ N/m^
Rq = 8.31% J/g mole °K 
ro = 0.002m 
Te = 100°C = 373°K 
T^ = 20°C = 293°K 
T = 600°C = 873°K

= 0 .2 5

1 .2 9 X 10"? m^/s
\ = 234 .2 J/sm^ °K

1.429 X 10"5 Ns/m^ 
Pp =  7 3 6 .8 kg/m3 

1000 kg/m^

a

U

PI
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(j) = 0,20
Em = 4)% Pm = 50 kg/m^
The values of the constants as calculated follow. 
D = — --------- = 0.517, 0.617, 0.682

T »

G =   = 4.043

A = ___
(T„-Tg)

N =    = .00176

2

very small.
In the derivation of equation 22 it was assumed that

^1* KP^ciP
Graphical Presentation of Results

According to the major simplifying assumption proposed 
in Chapter three, conduction is due to and through the solid 
coal particles only. Neither the vapor in region one nor the 
moisture in region two participates in the conduction process. 
If this were the only factor influencing the temperature pro­
file of the pellet when heated, the plot of temperature versus 
location would be as presented in Figure 4.

However, another factor influences the temperature pro­
file. The phase change of liquid to moisture which occurs at 
the moving front uses up a significant amount of the conducted 
energy, and retards the temperature rise at any point in the
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wet region. Instead of a change in temperature the energy is 
expended in changing the physical state of the liquid (with a 
resultant change in volume and pressure) and is termed the 
"latent heat of vaporization". See Figure 5.

Typical temperature histories at specific points in the 
pellet are shown in Figure 6 . Temperature at any point in­
creases rather slowly at first when some distance behind the 
evaporation boundary. As the boundary nears the point in ques­
tion the temperature rises rapidly to the evaporation tempera­
ture. Here, however, the temperature remains nearly constant 
while all the liquid is restructured into vapor, after which 
normal conduction occurs. At r = rp/2, the evaporation temper­
ature is reached in 0.75 seconds, given an ambient heating 
temperature of 400°C.

The rising temperature decreases the compressive strength 
of the pellet as the water entrained in the binder is vaporized. 
No longer is the matrix rigid and the pellet is no more able to 
withstand any external loading, including even the weight of 2 

or 3 pellets stacked on top of it. The pellet automatically 
reduces to dust with any disturbance.

Pressure build-up internally contributes to the process. 
Under certain conditions the pressure difference across the 
boundary and the resultant mass transfer so disrupts the matrix 
that it bursts into small fragments. Figure 7 shows the pres­
sure generated at the moving boundary as the boundary travels 
toward the center. As in this typical figure, for every set of 
parameters used the maximum pressure developed occurred when
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the moving boundary was in the range 0.5 ^  s* <  0.6, as shown 
in Figure 8 although the numeric values varied. If the pel­
let were to burst at this point it is conceivable (as is borne 
out in experiments) that the unaffected core would remain 
intact. But if so, it would likewise be directly heated and 
disintegrated soon afterwards.

Interpretation of Results

The remaining graphs Figures 9 through U6 show the 
result of varying combinations of the dimensionless constants 
N, G, A, and D. These combinations represent various design 
considerations and pellet characteristics as values for kgi 
r*o> T„ , a,  ̂ <=s and Pg are changed.

Prom these dimensionless graphs and associated data the 
following worthwhile conclusions can be drawn. Many are con­
sistent with simple logic, others expected from the equations. 
Unfortunately, experimental verification was beyond the scope 
of this investigation, but all of the conclusions agree quali­
tatively with conclusions drawn from previous studies involving 
similar problems.

1) It is worth pointing out that the time for the sur­
face to reach evaporation temperature is about 10^ of the total 
drying time.

2) Decreasing drying time improves the efficiency of the 
operation. Drying time decreases with:

a) higher initial temperature, T̂ . However, the
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Figure 8 . Pressure generated at the
moving boundary.

69



range of possible initial temperatures is low, and 
effects are minimal.

b) higher ambient temperature T « . This parameter 
is one of the easiest to adjust in an industrial 
situation, and its effects are large.

c) higher thermal conductivities, 1% and thermal 
diffusivities, a . These parameters hasten 
the conduction of energy to the interior.

d) decreased pellet radius, r̂ .
e) decreased initial water content w or e . WithIP. m

less water to evaporate, the conduction is less 
retarded and the velocity of the moving boundary 
increases. However, with lower quantities of 
water being evaporated, the pressures generated 
at the moving front will be less.

3) Schulz, et al., (42) experimentally investigated the 
conditions under which iron ore pellet decrepitation occurs 
during drying. Their conclusions were confirmed in a qualita­
tive sense by this analysis. Iron ore pellet decrepitation 
has been shown to be related to high internal pressure gradients, 
(l9knd on the assumption that high pressure gradients are asso­
ciated with coal pellet bursting, the mathematical predictions 
contained in this study support all of Schulz’s findings. The 
internal pressure gradient

a) is inversely proportional to pellet radius, r@. 
Since by assumption Tg = 100°C, and pressure is
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highly temperature dependent, under the same 
heating condition (Too ) the gradient would 
decrease as the radius increases.

b) increases with the ambient temperature.
c) increases, but only mildly so with the initial

water content eIP.
d) decreases with an increase in porosity, c|>
e) decreases with an increase in pellet permeability,

K.
It is left for future researchers to determine the in­

stant of pellet bursting experimentally and mathematically.
Here it has been shown that given the assumed, measured and 
tabulated values for the terms above, the temperature profile 
and internal pressure build-up are sufficiently high to cause 
the pellet to return to fine size particles, thus eliminating 
the grinding stage of coal preparation at an electrical plant.
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TABLE 22
VALUES FOR THE VARIABLES AND DIMENSIONLESS 
CONSTANTS USED IN SOLUTION OP EQUATIONS

Case No, Variables D G A N
1 T_̂  = 500°C .517 4,04 6,00 3 .18

2 T = 600°C .572 4,04 6,78 3.98

3 T^ = 700°C .617 4,04 7.55 4 ,7 8

h k = .1159 J/sm°K Case 2
5 k = .1739 J/sm°K .572 2 ,6 95 6 ,78 5.97
6 k = .2318 j/sm°K .572 2 ,0 2 6 ,78 7 .9 6

7 r = ,002m 0 Case 2
8 r^ = ,0035m .572 7 .0 7 6,78 3 .98

9 r^ = ,005m .572 10 ,10 6 ,78 3.98

10 Eg = 50 kg/m^ Case 2
11 Eg = 100 kg/m^ .572 4,04 13 ,56 1.99
12 Eg = 150 kg/m-̂ .572 4,04 20,34 1.33
13 (j) = ,1 .572 4,04 3.39 7 .96

14 4> = ,2 Case 2
15 0 = .3 .572 4,04 10.17 2 .65

16 K = 9 .8 7 X 1 0 " ^ V Case 2
17 K = 19.74 X 10"^^m^ .572 4.04 3.39 3 .9 8

18 K = 29.61 X 10"̂ .572 4,04 2 ,2 6 3.98

19 a = 1 ,2 9 X 10"'^m^/s Case 2
20 a = 1,94 X 10"^ m2/s .572 4,04 10,17 2,65

21 a = 2 ,5 8 X 10"^ m2/s '.572 4,04 13,56 1.99
22 Iron Ore .572 7 .3 0 476 15.64
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Figure 9, The temperature profile at intervals
during the heating process for case 1 in which
T„ = 500°C.
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Figure 10-, The temperature profile at intervals
during the heating process for case 2 In which
Too = 6000c.
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Figure 11,The temperature profile at intervals
during the heating process for case 3 in which
Too = 700°C.
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Figure 12. The temperature profile at intervals
during the heating process for case 4 in which
k = .1159 J/sm°K.
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Figure 13. The temperature profile at intervals
during the heating process for case 5 in which
k = .1739 J/sm°K.
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Figure 15. The temperature profile at intervals 
during the heating process for case 7 in which 
rg = ,002m.
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Figure l6,The temperature profile at Intervals 
during the heating process for case 8 in which
r^ = .0035m.
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Figure 17. The temperature profile at intervals
during the heating process for case 9 in which
r^ = .OOSm,
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Figure i8. The temperature profile at intervals
during the heating process for case 10 in which
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Figure 19, The temperature profile at intervals 
during the heating process for case 11 in which 
E = 100 kg/m3.
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Figure 21, The temperature profile at intervals
during the heating process for case 13 in which
<p = 0,1.
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Figure 22, The temperature profile at Intervals
during the heating orocess for case l4 in which
* = 0.2.
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Figure 23. The temperature profile at intervals 
during the heating process for case 15 in which 
<f> = 0.3.
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Figure 24, The temperature profile at intervals
during the heating process for case l6 in which
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Figure 25. The temperature profile at intervals
during the heating^process for case 17 in whichK = 19.74 X 10-15*2.
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Figure 26, The temperature profile at intervals 
during the heating process for case l8 in which K = 29.61 X 10-l5m2.
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Figure 27, The temperature profile at intervals
during the heating process for case 19 in which
a = 1.29 X 10"'mVs.
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during the heating process for case 20 in which 
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Figure 29. The temperature profile at intervals
during the heating process for case 21 in which
a =.2.58 X 10-fm2/s.
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Figure 30, The temperature profile at Intervals 
during the heating process for case 22, a typical 
iron ore pellet.

94



0.00 -I

0.25-
I -

lil
û:
^  0.50 -
6
S012ÜJ

0.75 -
V)
COÜJ

- 700

g
1
bJ
2

1.00 600

o
TOTAL
DRYING

TIME
.25- - 500

1.50
0.00 0.06 0.12 0.19 0.25

DIMENSIONLESS TIME, t *

Figure 31, , Variation in the temperature histories
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Figure 32 . Variation in the temperature histories
at r = Tq /2 of heated coal pellets due to changes
in thermal conductivity. Cases 4, 5, and 6.
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Figure 33. Variation in the temperature histories
at r = ro/2 of heated coal pellets due to changes
in pellet radius. Cases 7, 8, and 9.
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Figure 35 . Variation in the temperature histories
at r = r /2 of heated coal pellets due to changes
in pellet porosity. Cases 13, l4. and 15.
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Figure 37 . Variation in the temperature histories
at r = rQ/2 of heated coal pellets due to changes
in thermal diffusivity. Cases 19, 20, and 21.
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Figure 39 . Variation in pressure generated at the moving 
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Figure 43. Variation in pressure generated at the moving boundary 
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107



(n
UJ
cr
Ui
£
O
2

Ul
cr3
g?
UiSE
cc0
m"o.
uT(T

1
g5
UJ_l
1en
Z
UJ
2  o

4.00 -

3.50 -

3,00 -

2.50-

2.00 -

1.50 -

1.00 -

0.00 0.25 0.50 0.75 1.00

DIMENSIONLESS BOUNDARY POSITION. S *
Figure 44 . Variation in pressure generated at the moving boundary 
due to changes in permeability in outer zone. Cases l6, 17 and l8.

108



cn
LücrI
Icra.
cr0
-of
ÜJ

1
g

I
U J

4.00-

3.50-

3.00-

2.50-

a*2.58XlO"^ mVs 
a= 1.94X10“̂  mVs 
a* 1.29X10“̂  m2/s

2.00-

0.00 0.25 0.50 0.75 1.00
DIMENSIONLESS BOUNDARY POSITION, S *

Figure 45 . Variation in pressure generated at the moving boundary 
due to changes in thermal diffusivity. Cases 19» 20 and 21.

109



<n
UJ
(T

g 70.00 -|

i
s

60.00 -
CL
UJ
q:

(Og  50.00 -
Q_
0:o
Q. 40.00 -
ë
gcn
g  30.00 -
CL

IRON ORE PELLET

cn
g
g

1
2

20.00 -

O 10.00-
COAL PELLET

0.00
0.25 0.500.00 0.75 1.00

DIMENSIONLESS BOUNDARY POSITION, S *

Figure 46 . Pressure generated at the moving 
boundary of a typical coal pellet compared to 
that of an iron ore pellet. Cases 2 and 22,

110



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS 
FOR FURTHER WORK

In previous sections of this paper certain conclusions 
have been drawn and recommendations for future use or study 
have been made. These will be combined in this chapter for 
easy reference and will in most cases be expanded and supple­
mented.

Experimental
The experimental portion of this research has served to 

show that a self-bursting pellet with acceptably high strength 
and stability characteristics can be agglomerated with relative 
ease. Left for future investigators are many unanswered ques­
tions concerning proper binder, conditions of agglomeration, 
evaluation schemes, etc.

It was pointed out that the experimental apparatus used 
was not optimum. The most urgent need is for a two-armed, 
kneading type mixer for mixing the coal and the binder with 
provision for scraping the bottom and the sides of the non- 
sticking. mixing.bowl. Such a mixer would spread the binder 
much more evenly throughout the fines and eliminate the "globs"
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of moist material left by the variable speed mixer as used.
Testing for the resultant crushing strength could also 

be improved on. In this experiment the load was applied man­
ually to the pellet atop a spring loaded weighing scale, and 
the"weight" of the load recorded. Obviously more consistent 
and accurate measurements could result from lateral confine­
ment and controlled loading, but such technique was beyond the 
scope of this investigation.

A much larger sample size would necessitate a larger 
agglomerating drum, but would allow a larger number of pellets 
to be tested for each response. This would presumably reduce 
the scatter in the data, nullifying the impact of anomalous 
readings.

Subsequent research could investigate many different 
binders, and isolate those which would produce acceptable pel­
lets. All potential binders must not only produce strong, sta­
ble pellets but must burn without releasing harmful gases.
These investigations could center their effects on linear link­
ing wax derivatives such as in this paper, cross linking organic 
polymers, rigid gels, etc. Since it has been shown feasible that 
returning the pellet to dust at the plant can be accomplished 
without the use of a shell, it would be advantageous to elimi­
nate the shell. This could be accomplished by using a binder 
that is insoluble in water, possessing long storage life de.r- 
spite potential harsh conditions that may be encountered before 
reaching the plant. Eliminating the shell would drastically
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reduce the cost of pellet production, enhancing the marginal 
economic picture of this research.

The environment of agglomeration must be better con­
trolled In order to Isolate the effects of binder concentration, 
energy levels, etc. It Is suspected that the relative humidity 
and the temperature of the laboratory air have a significant 
effect on the growth of the pellets. On an Industrial scale 
these and other factors could not be well controlled, but their 
known levels could be compensated for by altering binder con­
centration, energy of mixing, etc.

In order to gain the most Information from future exper­
iments they should be carried out at multiple levels, not just 
the high/low scheme employed here. A five-level response In­
vestigation would be more able to determine the optimum levels 
of the parameters Investigated. Without such a multi-level 
scheme It Is also impossible to discover an oscillating response, 
since a two-level experiment assumes a linear variation between 
the extreme levels.

It must be remembered that each coal acts and reacts 
differently. Before this method can be applied to any Indus­
trial situation the coal to be used must be completely studied 
and understood. The five-level Investigation proposed above 
would establish a proper technique for the necessary Industrial 
Investigation.
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Mathematical
The equations developed in this study model only the 

effect of the phase change of the water in the binder to steam 
when the pellet is heated. This is thought to be the most 
significant factor in the internal pressure build-up, but it 
is recognized that other factors, i.e. the formation of gases 
of devolatilization, and the swelling of the coal, are not in­
significant. Indeed high speed photographic studies have shown 
that powdered coal devolatilizes rapidly and to a great extent 
when suddenly introduced into a very hot environment. As the 
coal devolatilizes pores open to allow the gases to escape, 
causing the coal to swell. If such studies apply to agglomerated 
coal fines,then the presence of steam would accelerate the pro­
cess. Certainly these factors are interrelated and a true 
modeling of the internal pressure build-up should include them 
all. This has not been done; it awaits further studies.

However, the equations as developed do provide a look 
at the important phase change phenomenon, and show that pres­
sure builds up rapidly and extensively, causing the confined 
pellet to burst.

As was discussed in Chapter Three, solution of the ini­
tial set of equations was likewise deferred to subsequent in­
vestigations and a simplified although adequate set of equations 
was solved to yield meaningful results. It is suggested that 
one with an advanced knowledge of numerical methods and access 
to a large computer solve these equations to gain a more complete
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understanding of the reaction.
It was found in the experimental stage of this study 

that a confining shell was not necessary to maintain the inter­
nal pressures inside the pellet for bursting to occur, and the 
shell was not included in the model. (Its presence however 
would accentuate the process). The effect of confining the 
pellet mechanically was sufficient to produce bursting.

Chapter Four detailed the internal pressure and tempera­
ture gradients as determined from the derived equations. It is 
reasonable to assume that the gradients accurately represent 
the true situation, since the liquid-steam phase change is well 
known and studied and the equations are built on this knowledge 
and reasonable assumptions. It would be enlightening to test 
the results experimentally in an attempt to verify them. The 
temperature profile could be measured directly with sensors 
placed inside the heated pellet, while the pressures could be 
gained by inference.

Industrial
As future research solves the remaining problems, an 

economic study would be necessary to determine this method's 
industrial feasibility. Elimination of the need for a protec­
tive shell greatly improves the outlook. Most importantly, the 
elimination of the expensive grinding stage at the electrical 
plant makes the moderately costly agglomeration of waste fines 
attractive.

This, of course, is accomplished by the bursting of the
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heated pellet. The confining of individual pellets while 
heating is much more easily accomplished on an industrial scale 
than in the laboratory. Numerous schemes could be proposed to 
return the pellets to fine size particles such as these that 
are discussed below.

If large numbers of pellets were rapidly introduced into 
a very hot, convective furnace, it is possible that sufficient 
confinement may be provided by the rising gases and nearby ex­
ploding pellets to allow bursting. However, this has not been 
tested, and could only be tested on an industrial scale. In 
this researcher's opinion successful bursting with this method 
is not a foregone conclusion, and other methods must be devel­
oped.

Sufficient confinement could be achieved by redesign of 
feed line nozzles. Developed for injecting powdered coal into 
the furnace, present nozzles would be incapable of handling 
pellets and redesign is necessary under any condition. By re­
placing the jet with a constricting nozzle which would either 
be pre-heated or simply heated by the nearby furnace, pellets 
would readily burst as they neared the point of injection.
After being reduced to fines once again, the coal could be in­
jected as before and no redesign of the furnace is necessary.

Even as the pressure builds up inside the pellet the 
compressive strength of the reacted portion decreases. In a 
pre-heating chamber in the feed line moderate external loading 
would serve both to confine the exploding pellets and jostle them
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enough to insure complete destruction. Metallic balls mixed 
with the pellets which could be removed magnetically before 
leaving the chamber would provide the load necessary. Other 
foreign objects, such as larger glass balls, which could be 
removed easily by a strainer would accomplish the same purpose.

A heating chamber constructed of ceramic material, glass 
or other substance not affected by microwave radiation would 
allow bursting to occur by another method. Both coal parti­
cles and binder could be heated rapidly and effectively by low 
level microwave radiation, again causing phase-change of the 
moisture in a confined environment. Individual pellets heated 
in a microwave oven completely lose their compressive strength 
and the confinement and loading of a packed bed would insure 
bursting.

Summary
The feasibility of the manufacture of a self-bursting 

coal pellet has been demonstrated. The coal fines agglomerated 
from waste material are utilized in such a way that the normal 
grinding of all coal at a power plant is eliminated. The pellet 
returns to fine particles as a combined result of internal pres­
sure build up, volume change and decrease of compressive strength,
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APPENDIX A

NOMENCLATURE

Parameters and Variables

c = specific heat (J/kg K)
2 3F = specific internal area per unit volume (m /m )

h = enthalpy (J/kg)
H = heat transfer coefficient (J/Sm^ °K)
k = thermal conductivity (J/sm°K)
K = permeability of dry region (mf)
L = latent heat of vaporization (J/kg)
m = mass (kg)
M = mobility of moist pellet = K*/w, (M^/sN)

2p = pressure (N/m )
q = flow (m̂ /s)
r = radial distance from pellet center (m)
r^ = pellet radius (m)

= ideal gas constant (J/g mole °K)
S = distance of moving front from center (m)
S = dS/dt
t = time (s)
T = temperature (°K)
V = Darcy velocity (m/s)
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w water saturation (%)
a thermal diffusivity of moist pellet (mf/s)
6 = inèrtial resistance coefficient (m-1)
E mass density of water (kg/m )
X surface heat transfer coefficient (J/smf
y = 2absolute viscosity (Ns/m )
p = density (kg/m̂ )
*

2 3porosity of pellet (m /m )
$ 2viscous dissipation function (N/m S)

’k)

Dinensionless Constants

£2 Rq U 01
—

D =

G =

k (T - T„) 
N = ---------

Eo L a

M* = ^ f-P
y k
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Dimensionless Parameters and Variables

p* = dimensionless pressure (= p/p̂ )̂
r* = dimensionless radial distance (= r/r^)
S* = dimensionless position of moving boundary 

{= S/r^)
t* = dimensionless time (= at/r^^)
T* = dimensionless temperature (= (T^-T)/ (T^-Tg)) 
e* = dimensionless mass density (= e/e^)

Suffixes
o — heating surface
1 dry region
2 wet region
00 external conditions
g water vapor
i initial state
m = liquid
P = pellet
s solid
A atmospheric
E evaporation

120



APPENDIX B

Derivation of Equations

Mass Transfer in Region One
The continuity equation for compressible fluid flow

is

= -div * (P V)

But for flow in porous media 

= -div • p4)W ̂  

or = -div * e V

where e = p<j)w

From Darcy's Law we know

^ zE 4eW L P ?r 

which yields in spherical coordinates

fit
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Since by definition, M = ~

6t =1 6?t I S < r i < r o  (1)

Mass Balance at the Moving Boundary 
Region 1 3
vi, El V Region 2

S *2, S2

By conservation
El (V1 - S) = £2(V - S) @ ri = r2 = S

However, by assumptions 1 and 5, V2 = 0
El (Vi - S) = E2 (-S)

S (E 1 - S2 ) — e 1 V 1

By Darcy's Law V2 = - ^

and as before M = — 4)

' (r., =

Energy Transfer in Region One
The equation for conservation of energy of a fluid 

moving through a porous media has been developed and consists 
of two parts, that of the solid and that of the fluid, in 
this case water vapor. (36)
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Solid
ÔT k (1-4) 5 / 6T\

p^C (1-*) — - = — ----- -- |ri% — -)+ HP (Tg-Ts) (3)
® ® St ri^ 6r

Fluid
p C = ^2_ — ( ^  + 1
^ fit (j) ôrij ri^ 6r 1 y «Sriy 5t * 6r

H F+ p $ +   (T - T )
* ® 9

where u  ̂= the energy dissipated per unit volume

= ; ( # )# IV + gPgVZ

g = internal resistance coefficient.
However, at low velocity flow for which Darcy's Law applies, 
the 6 term = 0, and the energy dissipated per unit volume 
is equal in magnitude and opposite in sign to the term ̂  ^  . 
The remaining terms are applicable to this nroblera.

p c + - 5
^ ^ \6t * 5rW r 6ri\^ 6r y St

+ r  (Is - ■'g> (4)

Energy Transferred in Region Two
Since there is no mass transfer in region two, and the 

solid and liquid are in thermal equilibrium energy transfer is 
by conduction through the moist pillet only. The heat con­
duction equation in spherical coordinates is
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6T2 k 6 2 6T2
p C ---  = — z" -----  (^2  ) f 0£ ^2 ±  S (5)
P P 6t rz ôr2 6rz

Energy Balance at Moving Boundary
Region 2
V2f G 2

Region 1

S
The energy balance equation is

(mass) (hi + (—^) + qi = (mass) (h2 + (̂ ^̂ ) ̂ ) + qz

However, for any flow less than supersonic flow, the velocity 
term is much less than the enthalpy term and can be neglected, 
which leaves the relationship

(h2 - hi) (mass) = qi - qa

As in the derivation of equation 2, the continuity equation 
for mass transfer at the moving boundary is

G 1 (Vi - S) = G2 (V2 - S) 

but by assumptions 1 and 5, V2 = 0

G 1 V 1 - G 1 S = —G2  S

Substituting
(h2-hi) (siVi-GiS) = qi-qz

Expanding
• •

(h2“hi)(giV i) - Gih2S + GihiS = qi~q2
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For manipulation purposes add adn subtract ezhz S
(h2“hi) (eiVi) - EihzS + ejhiS + sgbzS - G2h2S = qi-q2

and simplify
eiVi(h2"hi) + h2 S(e2“ei) + S(eihi-e2h2) = qi-qz

Since from before
e iV 1 - e iS = — e 2S 
(e2~ei) S = -ElVi

Substituting, expanding and simplifying
EiVi (h2”hi) + hzf-EiVi) + S (Eihi-E2h2) = qi-qz

EiVih2 - GiVih2 “ £ iVih1 + S (Eihi“E2b2) = qi-qz

(Eihi“E2h2) S = qi-qz + eiVihj

From the general Fourier equation
qi = -k VT = -ki and q2 = -k2

Also from Darcy's Law as before 
vi = - : ^  = __%i i?! ̂ u 5r1 $ 6r1

Substituting yields
(Eihi-E2h2)S = -ki + k2 ^  Eihi -fft

where r , r = S1 2

125



APPENDIX C

COMPUTER PROGRAM
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FÜKTHAK IV ai RELEASE 2.0 UATE - E0269 11/44/30 PAGE 0002

to00

0046 T= 1T*0T,

0049 CALL STlf65(051,652,0F,NLO,X,NNH,6LPtALF,G,NF)

0050 OC 30 1=1,KAH
0051 00 30 3=1,NAM
0052 513= 051(1,3)
0053 GSl(i,3)= S1J*WT*0S2(1,31/2.
0054 30 052(1.31= 513 DT#GS2(1,31/2.

0055 CALL FCnCE(GS2,Tl,GF,NNMl

0056 UC 300 1=1,ANM
0057 OU 300 3=1.NAM
0058 300 655(1,31= GSI(1,31

0059 EF(lSTOP.EQ.il GO TU 6000
0060 00 200 1=1«AAM
0061 200 GF(I1= GF(11-055(1,NF14TE
0062 OU 201 1=1,NNM
0063 GSS(I,WF1= 0.
0064 201 GSS(NF,I1= 0.
0065 GSS(NF.AF1= 1.
0066 6000 CGN11NUE
0067 OU 203 1=1,NNM
0068 203 FS(I,I1= GFCll
0069 CALL LEQTIFIGSS,!,NNV,NRHAX,FS,0,V K ,|ERl
0070 OC 202 1=1,AAH
0071 202 12(11= FS(1 ,11
0072 IFdSTüP.EO.Il GU 70 7000
0073 72(NF1= 1.
0074 7000 CONTINUE

0U75 KA1B= KAl
0076 CALL PRESUN(P,NEH,A,Û,T2.X.1E,OT,XF.xe.SUF.SOR,NF,NB,ISTQP,|

C 1£NÜ,DX.G,AN*NP,ir,TF.7U.KAl1
0077 1F(KA1«EÛ.KAlül GU TC 4000
0078 1TT= KAI/1P41P
0079 IFIKAI.AE.ITTJ GO TO 4000
0080 PRINT 4,17,7
0081 4 rCAMAT(/* 17='.15." TIMES',F.12.5,/)
0082 PRINT S,SOF ,SOH,NF,NO
0083 5 FORMAT!' SDF=',E12.5,' SUL='.C11.S,' NF=',15,' NW='.:S./

00S4 PRINT 2,(1.72(11.1=1,NNM)
0085 OL 400 1=1,NNM
0086 400 11(11= 72(11
0087 CALL GWAPH(X,71,0,,0.25.-2..0.5,4.,4.,' R '.' 7 '.l.l.NNH.I
0088 4000 CONTINUE
0089 PPIKAI 1= P
0090 XXIKAI 1= XF
0091 ThlKAl 1= 72(NE1
0092 TTIKAI 1= IT4UT

0093 5000 CCNTINUE
0094 DU 20 $ 1=1 ,NNM
0095 204 Il ( 11= T2(1 1
0096 1000 CONTINUE



FUHTRAN fV Gl WELEASE 2.0 MAIN UATE 60269 ll/44/Jfl PAGE OOUJ

H
to
VO

0097
0098
0099
0100 
0101 
0102
0103
0104
0105

CALL PLCT(S.,0.$-J*
NITTs KAI 

NITT*2
CALL GRAPH(%X,PP.0.,0.25,0..1.0,4..S.,' S 
CALL PLOT(S.,0..-3)
CALL 6f<APH(Tf»Th»0.t0DT ,-2.,0,5,4,,4.,'TlME*.*
CALL PLUriS..O..9991
STOPEND

P ••I.l.NITT.M.lI 

T •• ItltNITTtM.U



POHTRAM iV Cl RELEASE 2.0 DATE = 60269 11/44/30 PAGE UOOl

0001 SUBROUTINE STIFNSIGSl,CS2eCf,NUD,X,NNM,NEW,ALF,G,NF)

0002 DIMENSION GSlllOl,1011.GS21101.lOll.GFflOI)
0003 DIMENSION X(I03).NCU(100.21
0004 DIMENSION ELX12)«LLP121.51(2.21.5212,21

0005 DO 10 1=1,NhM
0006 DO 10 J=1.NNM
0007 CSlll.J)= 0.
0008 to cs2(:.ji= 0.

0009 DC 80 K-l.NEM
0010 DO 40 1=1.2
0011 M -  NOOlN.l)
0012 40 ELX411= XlNIl
0013 ALF1= ALF
0014 IFlN.EG.lNF-lll ALF1= ALF$10.
0015 CALL ELSTIFIELX.SI.S2.ELF1
0016 DO 65 T=1.2
0017 M =  KOOlN.ll
0018 00 65 J=1.2
0019 hJ= KQOIN.JI
0020 GSI(NI.N3l= GSI ( M  .NJI4S1 ( 1 ,J1
0021 65 GS2(N1.NJ1= GS21N1,NJ14S2(l,Jl$ALfl
0022 80 CONTINUE
0023 GS21NNM,NNM1= ALF4G4GS2I NM>.NNHI
0024 RETURN
0025 END

Wo



M
WH

FÜNTWAN IV G 1 

OOOt 

0002
0003
0004
0005
0006
0007

0008 
OOOO 
0010 
0011 
0012

nkLEASE 2.0 DATE = 00269 11/44/30 PAGE 0001

SUUHUUTINE ELST1FIELX.SI.S2.LI.F )

DIMENSION 51(2.21,52(2.21«ELX(21,ELF(21

0%= ELX(21-ELX(11 
51(1,11= DX/3.
51(2.21- 51(1.11 
51(1.21= DX/6.
51(2,11= 51(1.21

C= ELX(21/ELX(Il
52(1.11= (l.*(ELX(21*ALOG(tl/DX-l.l*2.1/DX 
52(1.21= (l.-(ELX(21*ALUG(Cl/OX-l.l$2.1/DX 
52(2.11= (-!.-(ELX(114ALOG(C 1/DX-1.1#2.1/OX 
52(2.21= (1.+(E1X(11$ALUG(C1/DX-1.1*2.1/0X

0013
0014

RETURN
END



F0H1KAN IV Gl RELEASE 2.0 FUHCL UATE = 80269 11/44/38 PAGE 0001

HW
to

0001 c SUBROUTINE FQR(.ElGS2tTi GFtNNMI
0002 c UIHtNSION GS24101,1011,T(102#,GF<101)
0003 DO 100 1=1,hhM0004 F=0.0005 DC 101 L»10006 101 F= F«GS2(ltL)4TlLI0007 100 CF(1)= F0008 RETURN0009 END



FORTRAN IV Gl 

0001
RELEASE 2.0 PHESUH 00269 >«AGb 0001

SUmUUTINE PHESUH f P .NEM • A «O »î «X . TE.OT .XF.XB.SOF .SOO.NF* NH. ISTUP» 
e IS»lENO,OX.G,AN,NP.#T,TF,TO,KAll

C
Cc

DIMENSION T(IOJ)«Xf103)

FIKD FRONT

W
W

0003
0004
0005
0006
0007
0008
000900100011 
0012
0013
00140015
0016
0017
0018
0019
0020 0021 
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047 
0046
0049
0050
0051
0052
0053

NP= 0 
P= O.
ISs O
DC 10 1=1#NEM 
TL= n i )
TH= TCI4II 
CL* A8S(TL-TE)/TE 
ER= ABSCTR-1EI/TE 
IF(EL.LT.l.E-j) TL=1.E-3*TE 
:F(EH.LT.l.E-3) nM=l.E-3+TE 
IF(TL.EC.TE) GO TO II 
IFIÎH.EQ.IE) GU TO 12
IFfTL.GT.TE. ÂNü .TR.LT.TE) GU TU 13 
GC TO 10

11 XF^ XI 11 
1S= I 
JGs 0eu TU 5000

12 Xl= XIIFI)
&S= 1*1 
:G= o
GC TO 5000

13 XF- XII141X1 (+1) X(I))*ITE T|I))/ITII*1) Tll)) 
IS- I
1G= 1 

5000 hP= NP41 
10 CCNTINUE

IFI IS.EQ.O) KAis KAI+1 
IFI IS.EQ.O) GU TU 4000 
IFINP.GT.I) GO TC 5001 
ISTüP= 0 
1END= 1END*1
irilENO.GT.l) GU TO 2000 
CL= ITIIS41) TIIS))/OX 
0H= O.
CQ TU 3000 

2000 CCNTINUE
DL= ITINF) TINF 1))/0X 
CH= ITINF411 TINF))/0X 

3000 SOs AN40R 
TT= OT4IT
SliD= CXF-XDI/ITF-ÏB)
IFIILNO.LO.1) GO TO 5002 
IFISOO.LT.SO) GU TU SCOI 

5002 C CMINUE
KAI= KAI4I 
XE= XF 
TU- TF 
DS= SD4DT 
XN= XF-DX
IFCXN.LT.O.) 1STLP=1



e e o o  e e o o e e e e e o o o e e o c o o e e e e o oe o 9 o  e c e c o e o c e c o c o e o e e c c e e c c ef (D c ̂ «cĉcm N O' 0) »uN̂ O'Omsou'*wM#'o<QBNO'e»UA;̂
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