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ABSTRACT 

The Wagwater trough in eastern Jamaica i a fault-bounded half graben that 

formed as a result of regional dextral shear at a releasing bend connecting the 

Septentiornal-Oriente-Swan-Motagua and Plantain Garden-Swan fault systems. There are 

two major stage of tectonic development: (1) Paleocene to Middle Eocene fault 

mechanical crustal subsidence (66-51 Ma; .66), (2) Middle Eocene to Middle 

Miocene thermal subsidence (51-10 Ma), and (3) Middle Miocene to Holocene cru tal 

shortening (10-0 Ma; ). Clastic sedimentation prevailed during the period of fault 

mechanical crustal subsidence with the deposition of the Wagwater Formation and 

Richmond Formation, while the period of thermal subsidence was period with carbonate 

deposition of the Yellow Limestone and White Limestone Groups. Early-rifting 

commenced with the sedimentation of Wagwater alluvium. A marine tran gre sion 

allowed the deposition of Richmond helf and lope depo its and later Yellow and White 

Limestone deposits. Middle Miocene marks a period of time when regional dextral shear 

was reversed . The Wagwater Trough experienced negative tectonic ubsidence cau ed by 

regional sinistral shear at a constraining bend. This cau ed cru ta! shortening and urface 

expo ure of the ediments of the Wagwater Trough. By constraining the pre ent-day 

depth to ba ement u ing the Bouguer gravity anomaly, basin sub idence produced 

ediment thickne ses up to 6,000 meter . 

Two end-m mber rifting heat flow model likely bracket and constrain the heat 

flow of the basin: (1) calculated from a pre ent-day heat flow of 0.96 H.F. . and (2) 

calculated from a pre ent-day heat flow of 1.4 H.F. . Both modeled thermal condition 

allow for the hale la er of the Richmond Formation to rang from mature enough to be 
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in the early oil and mid oil windows for the 0.96 H.F. . model to middl and late oil 

windows and gas window for the 1 .4 H.F. . model. The fir t in situ oi l for the rifting l .4 

H.F. U. model commenced at 52 Ma, while that for the rifting 0.96 H.F. . model i 49 

Ma. Fir t expu lsion time was 50 Ma for rifting 1.4 H.F.U. model and was 41 Ma for the 

rifting 0.96 H.F. U . case. Hydrocarbons could potentially accumulate in traps based on 

two cases: the impermeable fault model and the permeable fault model. 

XIV 



1. INTRODUCTION 

1.1 Statement of Problem 

On the east side of the island of Jamaica there is a rift basin with a complex 

geo logic history called the Wagwater trough. Mann and Burke (1990) stated that the 

Wagwater Trough is an exceptionally well exposed example of a tran ver e intra-arc rift 

that formed during an abrupt transition from convergent to trike-slip tectonics. It began 

rifting during the Paleocene and continued into the Eocene (Mann and Burk, 1990). 

Wescott and Ethridge (1983) stated that during the Early Paleocene Period, Jamaica was 

part of an emergent landmass that rifted from north to south, and the Wagwater Trough 

developed as a graben separating lands to the east and west. It is comprised mainly of 

elastic rocks with some limestone deposits and igneous lava and ash flows. 

By performing a basin analysis of the Wagwater Trough, models can be 

developed to determine basin subsidence history, thermal prope11ies, and hydrocarbon 

potential. This will help in determining the basin evolution history and the probability to 

pro pect the region for oi l and gas production. 

1.2 Location and Physiography 

The island of Jamaica measures approximat ly 225 km a t to w t and 100 km 

north to so uth and li s on the northern boundary of the aribbean Plate. It o ri ginall y 

formed a an mergent landma s on the icaraguan Ri se (Figure 1.2.1) (Mann et al., 

1985 and rden, 1975). 



Figure 1.2.1: Map showing the orientation of the Caribbean Plate, Nicaraguan Rise, and 
Jamaica. Presently, the Caribbean Plate is moving in an eastward direction relative to the 
surrounding plates. Jamaica lies on the northern boundary of the Caribbean Plate and is 
just south of the Cayman Trough. It is part of the Nicaraguan Rise. Spreading zones are 
traced in red, collision zones are traced in blue, and transform zones are traced in green. 

The Nicaraguan rise is a broad submarine swell of intermediate crustal thickne s 

km). It extends from Honduras, Central America to southern Haiti , Hispafiola 

(Figure 1.2.1 ). During the Jurassic and into the Cretaceous, the Nicaraguan Ri e was a 

mobile belt of vast submarine lava flows and mafic intrusions. A this active volcanism 

ubsided, Paleogene elastic and chemical sedimentation became the dominate mechanism 

for i land growth on Jamaica. (Arden, 1969). 
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The Wagwater trough is a northwest to southeast trending fault bounded ba in 

located between the Benbow inlier and the Blue Mountain inlier (Figure 1.2.2) (We cott 

and Ethridge, 1983; Mann and Burke, 1990). 

Wagwater Trough 

- Extent of Paleogene Rocks near the Wagwater Trough 

Elevation in Meters 
High . 2243 

Low 0 0 25 50 K1lome1ers 

Figure 1.2.2: Relief Map of Jamaica. The Wagwater Trough trend norihwest to 
southeast in the northern and central regions, and it trends west to east in the outhern 
region. The extent of the Wagwater Trough is colored in red . The area selected for thi 
study is the northernmost region. It has experienced the lea t amount of post-ba inal 
deformation (After Perry, 1984). 
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2. STRATIGRAPHIC SETTING 

2.1 Introduction 

The Wagwater Trough has a minimum of 6,800 meter of Early Paleogen cla tic 

sediment unconformably overlaying Albian to Maa trichtian volcanic, volcaniclastic, and 

plutonic rocks. These basement rocks are typical of those found in arcs built entir ly of 

oceanic crust, and they have been interpreted as an intra-oceanic arc complex, active 

throughout most of the Cretaceous (Mann et al. , 1985; Mann and Burke 1990; Roobol, 

1972; Horsfield and Roobol , 1974; Draper, 1979; Grippi and Burke, 1980). 

Mesozoic rocks in Jamaica are exposed in a number of elongate in! ier that have 

been uplifted along northwest-striking, reverse faults (Mann et al., 1985). There are three 

Mesozoic inliers near the Wagwater Trough: The Blue Mountain inlier to the ea t and the 

Central and Benbow inliers to the west. The rocks of these three inlier in Ea tern 

Jamaica make up a significant amount of the elastic ource material for edirn nt found 

within the Wagwater Trough. The unconformity between the Late retaceou and arly 

Eocene divides the pre-rifting .Jurassic and Cretaceous rock from the Earl Paleogen 

cla tic depo it which make up the majority the edimentation in the Wagwater Trough . 

2.2 Early Paleogene Formations 

There are three di tinct period of Paleogene edimentation in the Wagwat r 

trough: early-rifting coar e alluvium d po its in alluvial fan and alluvial fan-d lta 

(Wag ater Formation), late-rifting coar e andy and hale d po its in deltas and 

ubmarine slope fan (Richmond Formation) , and po t-rifting d ep marine lime tone 
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depo it and slide (Yell ow and White Lime tone Formati on ) (F igur 2.2.2) (Mann and 

Burke, 1990). 

Perry (1984) uggested that these three periods of sedimentation in th Wagwater 

Trough were related to deposition due to ubsidence from rifting. During initial riftin g 

stages, Middle to Late Paleocene terrestrial deposition in the trough of allu ium in fan 

was further transported north out of the trough through allu ial fan-deltas (Figure 2.2.1 a). 

This depositional event is marked by the Wagwater Formation. During the Late 

Paleocene and into the early to Middle Eocene, a marine transgression into the trough 

was reflected by deposition of coarse delta facies in the trough and delta-front turbidites 

in the more northern region of the trough beyond the shelf (Figure 2 .2. lb). This period i 

marked by the deposition of the Richmond Formation. As rifting cea ed and sediment 

supply began to diminish, Middle to Late Eocene, deep sea limestone depo its began to 

accumulate (Figure 2.2.1 c). These depo its are the Yellow Limestone Formation during 

the Late Eocene and Early Oligocene and the White Lime tone Formation during the 

Middle Oligocene and M iocene. 
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a. b. 

c. 

Figure 2.2.1: Models showing inferred depositional environments during three different 
stages of depo ition by Perry (1984): a. early-ri fting depo ition in a lluvial fans and fan-
delta (Wagwater Formation), b. late-ri ft ing deposition in deltas, ubmarine slope and 
ba in floor (Richmond Formation), and c. post-rifting deep-water carbonate bank (Font 
Hill Formation of the Yellow Limestone Group). 
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2.3 Early-Rifting Wagwater Formation 

Mann and Burke (1990) divided the lithology of the Wagwater Fonnation into 

three members: Ginger River, Pencar River, and Dry River Member . The e m mbcr 

mark a period of dominantly subaerial deposition with a brief period of marine 

depo ition. 

Ginger River Member. The Ginger River Member ha a maximum mea ured 

thickness of 3800 meters. It is mostl y a very poorly orted. purple. pol ymict 

conglomerate. The conglomerate clasts contain metamorphic and vo lcanic rock fragment 

ranging in size from pebbles to boulder up to three meter in diameter. o plutonic rock 

clasts are found in the Ginger River Member. The conglomerate are cla t-supported with 

a poorly-sorted muddy-sand matrix. The bed are ma sive with thicknesses up to ten 

meters (Mann and Burk, 1990; We cott and Ethridge, 1983). The depositional 

environment of the Ginger River Member is that of a proximal alluvial fan depo it. Th 

larg grain sizes of the clasts indicate that depo ition occurred in period of high 

discharge in fluvial channels from adjacent highlands on to the head of the fan. The fan 

appear to be d po ited adjacent to th carp of the Wagwater fault zon (Mann and 

Burke. 1990; We cott and thridge, 1983). 

The Ginger River Member wa un ucces fully dated u ing microfo ii b Ming-

Jung and Robin on (1987). The Ginger Ri ver Member wa re lati el dated by Mann and 

Burke (1990) t be Paleocene in age. b cau it conformabl underli the Pen ar Ri er 

Member which ha been dated by Ming-Jung and Robin on ( 1987) to be Late t 

Paleocen to arl ie t ocen (Jung and Robin on. 1987: Mann and Burke. 1990). 
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Pencar River Member. Confom1ably overlying the Ginger River ember i a 

300 meter section of andstones and conglomerates. This unit is confined main! to the 

southern and central region of the Wagwater trough and pinches out in the northern 

region. In the north-central region of the trough, it con ists of a dark grey to green, coar e 

andstone and conglomerate. Ripple marks are present on ome bedding surfaces . Below 

the conformable contact with the overlying Dry River Member there are thin Jen e of 

grey, limestone. This unit represents a brief landward transgression of sea water into the 

Wagwater Trough, and, near the top of the Pencar River Member, a eaward regre sion 

(Mann and Burke, 1990). 

The age of the Pencar River Member wa determined by Ming-Jung and 

Robinson (1987) using the fossils Coccolithus pelagicus, Toweiu , Discoa ter 

multiradiatus, and Fasciculithus . They determined that the Pencar River Member had an 

age of Late Paleocene to Early Eocene or zones P9 and P 10 by Martini ( 1971 ). 

Dry River Member. The Dry River Member conformably overlies the Pencar 

River Member and has a measured thickness up to 1000 meters. The Dry River Member 

consists mainly of inter-bedded poorly orted, purple and polymict conglomerate , 

andstone , and shales. Lithologicall y, they are similar to the Ginger River Member, but 

distinguished by its dark red to purple color and it granodioritic cla t content. Th y ar 

mas ive, cla t- upported conglomerates that hav a mud- and matrix with crude 

horizontal lamina . The Clast include granodiorite rock , porphyritic olcanic rock . 

metamorphic rock , and a few limestone and gyp um fragment . Bedding is rarely een 

except where Jen s of coarse andstone weakly define bedding (Mann and Burke. 1990; 

We cott and thridge, 1983). 
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Because there are no fo sil dat . the age of the Dr) River \,rn det rmincd 

relative! by Mann and Burke (1990) to be Late Paleocene b cau e it i overlain b) the 

arly Eocene Richmond Fonnation. 

Petroleum Potential of the Wagwater Formation. The Wagwater formation i 

con idered to have a low petroleum potential. It generally ha a T pe III k rogen, 

because it contains an abundance of terrigenous, woody materials. Jn general the 

sandstones and conglomerates of the Wagwater Formations are very immature and poor! 

orted with low poro ity and permeability. The Wagwater Formation probably has both 

low reservoir potential and low source rock potential. However, some coar e, better-

011ed sandstone and conglomerate of the formation, probabl representing channel 

infillings, may provide small stratigraphic traps of reasonable poro ity and p rm abi lity 

(Eva, 1980). 

Newcastle and Halberstadt Volcanics. Green ( 1977) identified five ma i e 

andesite and dacite lava flows which individually range up to 600 m in thickne . Th 

ewcastle Volcanic Formation i most abundant in the Dr River Member of the 

Wagwater Formation but can al o be found in the Ginger Riv r and Pencar River 

Member of the Wagwater Formation and even ome in th Road ide Member of the 

Richmond Formation. They are composed of porphyritic ande ite, dacite. and quartz 

k ratophyre lava flows and their edimentary derivative (RooboL 1972: Mann and 

Burke, 1990). Th ewca tie dacites onl outcrop in the central and outhern region of 

the Wagwater Trough. In the southern portion of the Wagwater Trough, a 200-300 met r 

thick ba alt pillow la a pile outcrop near the town of Halber tadt known a the 
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Halber tadt Volcanics. It i contained within the Paleocene Pencar Ri er cmb r ( ann 

and Burke. 1990). 

2.4 Late-Rifting Richmond Formation 

Mann and Burke (1990) divided the Richmond Formation into four sedimentar 

members: Port Maria. Roadside, Albany, and Langley Members. The Riclunond 

Formation is thicker in the northern section of the Wagwater Trough (1200 meter ) 

relative to the southern section of the Wagwater Trough ( 1000 meters). Depositional 

paleo-currents of the Richmond formation indicate two main directions of flow from th 

ides of the basin (about 45E) and parallel to the Wagwater and Yallahs- ilver Hill 

fault zones 30W) Mann and Burke (1990) uggested that the deposition of the 

Richmond Formation continued to be affected by the underlying boundary faults of the 

graben. (Mann and Burke, l 990; Cambray and Jung, l 970; Mann 1983). 

Port Maria Member. The Port Maria Member make up part of the ba e of the 

Richmond Formation with thicknesses measured up to 250 meters. It consi ts of calcite 

cemented brown-weathering conglomerate beds that are generally cla t-supported and 

mas i e inter-bedded andstone and silt layers (Mann and Burke, 1990; W cott and 

Ethridge, 1983). It i di tinguished from the Dry River Member of the Wagwater 

Formation by it un-weathered grey color, weathered brown color, and calcite cement 

pre ence. The calcite cemented cla t are generally smal !er in size and better rounded 

than th Dry Ri er Member. The cla t are made up of lime ton , andstone, 

granodi rite, and m tamorphic rock fragments. Rudist, mollu k, and other lime ton 

fragment are fairly common and indicate deposition in a marine en ironment a a 

ubmarine lump d po it. This unit is on! exposed m ea cliff between ju t north of 
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Port Maria and Anotto Bay (Mann and Burk . 1990: We cott and Ethridge. 198...,: 

Trechmann, 1 924 ). 

Trechmann (1924) used the mollusks from the cliff near the city of Po11 Maria to 

a sign an age of Early to Middle Eocene to the Port Maria Member. 

Roadside Member. The Roadside member i the thickest and be t e po ed 

member of the Richmond Formation. It consists of 800 meter of thin horizontal inter-

beds of sandstone, siltstone, and mud tone, each a few centimeter to a few ten of 

centimeters thick. The sandstone beds are graded and fine upward into the o rlying 

mudstone. The andstone units common! have parallel laminations and are 

amalgamated. They appear as sheet ands; however, when een in more exten i 

exposures they have definite lenticular shapes (Mann and Burke, 1990; Wescott and 

thridge, l 983). 

Flutes, groove . and load casts are een on the bottom urfac s of the sand tone 

layers. Paleocurrent studies from so le marks indicate that current direction were both 

parall el and perpendicular to the bounding faults of th Wagwater Trough. Horizontally 

larninat d and ton · layer are overlain by ripple cro -l ami nated and tone and 

ilt tone and then parallel laminated shale . Each andstone- hale couplet i int rpreted 

a Bouma B- - equences by Wescott and Ethridge (1983). The inter-bedded and tone 

and hale equences are ex tensive ly bioturbated by ertical and hori zontal feeding and 

dwelling burrow, including Thala inoide (Figure 2.4. 1). According to kdale et al. 

( 1984), it i part of the ruziana ichnofacie . and depo ition occurred in the ub-litt ral 

zone at about _oo meter water depth. ann and Burk ( 1990) mea ured th proportion 

of andstone to ilt tone/ ha! in th Road ide Member to range from about I: 1 to 1 :4 
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(Mann and Burke, 1990; Wescott and Ethridge 1983 ; Cambray and Jung, 1970; Ekdale 

et al., 1984). 

Figure 2.4.1: Thalassinoides fossil burrows found in and below the base of the sandstone 
layer identified in figure 2.4.2. According to Ekdale et al. (1984), these trace fossils 
indicate a depositional depth of about 200 meters. It appears that bioturbated layers were 
disturbed and ripped up as turbidity currents brought new sediments. The surface viewed 
in this particular sample is the bottom side of the hand sample. 

The Roadside Member contains an abundance of Early Eocene planktonic 

foraminifera that include Tremastegina lopeztrigoi and Helicostegina sp. annofos ils 

are indicative of NP12 zone or Early Eocene, because it contain an abundanc of 

Martha terite tribrachiatus and D;soaster lodoensis (Ming-Jung and Robin on , 1987). 
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Figure 2.4.2: Roadside Member of the Richmond Formation along highway 3 between 
Whitehall and Albany. It consist of horizontal and thin-bedded sandstone, siltston , and 
mud tone. The sandstone beds are graded and some of their basal surfaces are marked by 
flute, groove, and load casts. The sandstone units commonly have parallel lamination , 
are commonly amalgamated, and in more extensive exposures, definite lenticular shape . 
Bioturbation is common throughout the unit. The location of the bioturbated ample in 
figure 2.4.1 is identified by the red arrow (Mann and Burke, 1990; We cott and Ethridge, 
1983). 

Albany Member. Contained within the Roadside Member are two mapable units: 

th Albany Beds and the Nutfie ld Volcanics (mentioned later in thi paper). The Albany 

Bed consist of clast- upported conglomerate b ds that have ver poor-sorting. The clast 

cornpo ition i imilar to the Port Maria Member; however the clast size are mailer than 

th Port Maria Member (pebble to cobble ized). Mollu k and c ral h ad ar common 

in thi la r, indicating marine depo ition. Jndi idual conglomerate bed ar lenticular 
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and bounded by scour urfaces. Thi member indicate a period of shelf slumping and 

contains blocks of thinly bedded andstone and shale typical of the overlying and 

underlying Roadside Member (Maim and Burke, 1990; Wescott and Ethridge, 1983 ). 

Figure 2.4.3: Albany M mber of the Richmond Formation along highway A3 between 
Whitehall and Albany. It is composed of ma sive, very poorl orted conglomerate with 
a sand mudstone matrix. The bed are clast-supported, but appear matri -supported. The 
painted red dot can be used for cale. Each represents one foot in mea ur ment (W cott 
and Ethridge, 1983). 
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Langley Member. The Langley Member conformably overli th Road idc 

Memb r. It rnea ure about 200 met r in thickne s, and con i t of evenly bedded 

alternating dark gr and greeni h-grey organic-rich laminated mud tone and ilt tone. 

The laminae a erage two to three mm in thickne . There are coar r, graded lay r f 

ilt to coarse sand tone, of similar thickne s to the mudstone and containing h II 

fragments. The Langley member has similar properties to the Road ide Member, and, in 

order to help simpli fy the models in this study, the two are combined and called the 

Roadside Member (Mann and Burke, 1990). 

The age of the Langley Member was determined in part by Robinson (1969) u ing 

the pecies Globorotalia palmerae which indicated the Acarinia pentacamerata zone a 

well as benthonic pecie , hell fragments , and algal detritus. Ming-J ung and Robin on 

(1987) determined that nannofossils from the lower part of the m mber yield an age of 

Early to Middle Eocene or the P 14 zone Mann and Burke, 1990). 

Petroleum Potential of the Richmond Formation. The petroleum potential of 

the Richmond formation is better than the Wagwater Formation; however, much of the 

publi hed literature states that it sti ll ha a low petroleum potential. The Richmond 

formation contain a reasonably large proportion of marin mud tone and hale , often 

containing thin horizon of lignite ( va, 1980 and Robin on, 1976). The e could local! 

act a ource bed and/or ea ls for hydrocarbon . Reservoir potential i not ery hi gh in 

the and Jen . Pr -cement poro it in the and tone laye r rang fr m 55% to 10% with 

an a erage alue of 25%. Howev r, calcite cement ha filled in the poro ity in the 

amp! that ere collect d and retained po t-cement poro it in thin ection i le than 

5% effi ctive poro it (Perry, 1984). 
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Figure 2.4.4: A buckle fold in the Roadside Member along highway A3 between 
Whitehall and Albany. These types of folds are likely common throughout the Wagwater 
Trough, because there is ubstantial deformation that has occurred since the Middle 
Miocene. Owing to the weak nature of the rock, caused by the abundance of weak shale 
layers, ductile deformation (flexural lip) i common. Pictured in this photo for cale ar 
members of Dr. John Pigott' 2007 Basin Analysis class on a field trip in Jamaica. 

Nutfield Volcanics. In the center of the northernmost region of the Wagwater 

Trough, near the town of utfield, the utfield olcanic flow conformably outcrop in 

th Road ide Member of the Richmond Formation o er an area of everal quarc 

kilometer . They are the younge t volcanic unit in the Wagwater trough and con i t of a 

heet of ba altic pillow lava conformably o erlain by a dacite flow (Roobo l, 1972; Mann 

and Burke, 1990). The maximum thickne of the ba alt-dacit unit i about l 00 met r 

(Mann, 1983). ruption occurr d in a marine environment during the depo iti on of the 

Richmond Formation a re ult of xten ive rifting. 
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Figure 2.4.5: Interpreted pillow lava structure in the ba alt member of the utfield 
Volcanics along utfield Road , north of the town of utfield. Pillows are interpreted by 
red outlines . Thi ba alt unit accompanied early rifting. It was erupted in a marine 
environrn nt. 

2.5 Deep Marine Late Paleogene Limestone Deposits 

There are three lime tone groups that were depo ited po t-rifting in the Wagwater 

Trough: Yellow Limestone, White Lime tone, and Coa tal Lime ton Group . o t of 

the d po it d lime tone has been eroded away ince the r gion ha been uplifted (- 10 

Ma). About a minimum thickne s of 1500 meter of lime tone was depo ited within the 

Wagwater Trough befor ero ion (Gr n, ] 977). 

Yellow Lime tone Group. The oc ne Yellow Lime tone Group i the fir t of 

the t o gr up of wide pread lime ton throughout Jamaica. The top of Langley mber 

of the Richmond Formation grade into the olde t formation in th Y cllovv Lime tone 
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Group. the Font Hill Limestone Formation. It wa depo ited po t-Wagwater ri fti ng 

during a period of gradual subsidence. It i described as deep-marine biomicrite that ar 

bioclastic at the base (Mann and Burke, 1990; Robinson. 1974). 

White Limestone Group. The ocen -Miocene White Lime tone Group is the 

econd of the two groups of limestone that are exposed throughout Jamaica. The White 

Limestone Group formations and facies are controlled by fault blocks. It comprise the 

most commonly exposed rocks throughout Jamaica; however, the only formation in the 

White Limestone Group found in the Wagwater region i the Montpeli r Formation. The 

Montpelier Formation is a series of submarine slope chalk deposits. It is possible that 

other White Limestone formations could have been depo ited ; however, only the 

Montpelier Formation was preserved (Mann and Burke, 1990). 

Coastal Limestone Group. The Pleistocene coastal limestone group con ists of 

small outcrops found along the coast northwest of Anotto Bay. It is rich in coral heads 

and other modern reef fossils, and it i lik ly a tratigraphic equivalent to the Falmouth 

and Hope Gate Formations found in the Discovery Bay region. 
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3. TECTONIC SETTING 

3.1 Introduction 

Tectonics in Jamaica played a major in the development of the Wagwat r Trough. 

Today, Jamaica lie entirely within a 200 km wide seism ic zone of left-l ateral tran form 

motion between the orth American and Caribbean plates. Ju t north of Jamaica, 

extending from Belize to Haiti , is the narrow rift basin called the Cayman trough. Two 

major through-going transform fault , related to the boundary between the Caribbean 

Plate and the Cayman Trough, pass through the i land of Jamaica. The first i the 

Septentrional -Oriente-Swan-Motagua fault system. It passes to the north of Jamaica and 

bounds the Cayman Trough pull-apart structure (Mann et al., 1985 ; Holcombe et aL 

1973 ). The second fault is the Plantain Garden-Swan fault system. It extends from the 

Dominican Republic in central Hi spafiola, through Jamaica. The faults m rge on the 

island of Jamaica as the Duanvale Fault Zone (Mann et al., 1985 ; Burke et . al, 1980; 

Mann, 1983). 

CAYMAN TROUGH 

Plantain Garde n-Swan 

Figure 3.1.1: Map showing a po ibl e Pal ocene po iti on of Jamaica . The Wag water 
Trough (Red) formed along a relea ing bend in the pr ent-day ptenti rnal-Orient-

an-M otagua and the Pl antain Garden- . wan fault ystem (Blue). 
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CAYMAN TROUGH 

Plantain Garden-Swan 

Figure 3.1.2: Map showing the present-day Septentiomal-Orient-Swan-Motagua and the 
Plantain Garden-Swan fault systems connecting at a restraining bend (B lue). The e fault 
ystems separate the Cayman Trough (Light Grey) from the Caribbean Plate. The 

restraining bend is directly over the Wagwater Trough (Red), and as a r ult significant 
uplift and faulting has occurred (after Man11 and Burke, 1990). 

The Wagwater Trough is highly faulted and deformed. There are a number of 

major faults that affect the Wagwater Trough (Figure 3.1.3). The major basi n bounding 

faults are the Wagwater Fault on the West and the Yallahs-Silver Hill Fault on the Ea t 

Figure 3.1.4). These faults trend northwest to southeast. These basin bounding faults wer 

reactivated with reverse motion during the Late Miocene. We t to East trending fault 

formed during the Late Miocene as left-lateral trike-slip faults (after Mann and Burke, 

1990). 

CutTently the total rate of relative plate motion in the Ca man Trough is at lea t 2 

cm y( 1 and perhaps as fast a 4 cm yr-1(Mann et a l.. 1985; Macdonald and Holcombe. 

1978; ykes et al.. 1982). U ing a combination of field and sei mic data. it appear . a a 

general rule. that trike- lip fa ult in this part of the Caribbean parallel predict d eat-

trending intra-plate lip line (Mann et a l., 1985; Jordan. 1975). Reverse faults. howe er. 
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common ly strike n rthwe t to outhea t and are a oc iated with uplifted land area uch 

a Jamaica and Hi panola (Mann et al.. 1985; Mann t al.. 1984; Burke et al., 1980). 
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The Wagwater Trough 
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- 750- 1,000 

- 500 - 750 
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250 - 500 
0 - 250 
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Figure 3.1.3: Map howing all the mapped faults in the orthern Wagwater Trough 
region. Thi area ha e n an immen e amount of faulting and deformation (after Min 
and Geology Division, 1978, multiple h et ). 
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Figure 3.1.4: Map showing the major faults in the no1ihern Wagwater Trough region. In 
order to simplify the model, only the major faul ts w ill be included in the modeling 
process (see figure 3.1.3 for a ll the mapped faults) . Faults trending northwest to southeast 
were original bas in-forming faults that were reactivated as r verse fa ul ts during the Late 
Miocene. West to East trending faul ts fo rmed during the Late Miocene as left-l ateral 
trike- lip fa ults (afi er Mann and Burke, 1990). 
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3.2 Tectonic Model for the Developm ent of the Wagwater Trough 

Perry (1984) uggest d that Paleogene rifting in ea t rn Jamaica (Wagvvater 

Trough) is a re ult of a failed rift a ociated with the preading in the ayman Trough. 

The Wagwater trough initially rifted in the Paleocene and continued into the ocen 

(Mann and Burke, 1990). 

Early Paleocene Rifting. The Ginger River Member of the Wagwater Formation 

was interpreted by Mann and Burke (1990) a occupying a half-graben formed along the 

Wagwater fau lt zone ( ee figure 3.2.1 ). This rifting wa part of a much larger regional 

extensional event at the distal end of the Cayman Trough pul l-apart ba in and on the 

icaraguan rise. o preserved deposition occuned in the eroding highlands on the 

footwall (western) block of the Wagwater fau lt zone. During this period of rifting 

depo ition wa dominantly subaerial in alluvial fan and fan-delta , becau e no incur ion 

of eawater had occurred within the trough (We cott and Etheridge, 1983). 

Late Paleocene Rifting. Continued rifting in the Late Paleocene wa 

accompanied by depo ition of the Pencar River Member during a brief incur ion of 

eawater into the trough. In the southern region of the trough evaporite and terrestrial red 

bed edimentation occurred. s sea level went down, continued down-throw of the block 

all owed for depo ition of the Dry River Member of the Wagwater Formation ( ann and 

Burke, 1990). 

Early Eocene Rifting. Rifting and olcani m continued in the Early -ocen but 

111 a ubmarine etting. The Wagwat r fault zo ne remained activ , but the Yallah - iher 

Hill fault zon reacti ated for the fir t time ince the Mesozoic. ubmarine tide and 
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turbidite of the Richmond Formation wer depo ited during thi period . Thi mark the 

nd of the main rifting phas in the Wagwatcr Trough, although ome fault ma) hav 

remained active throughout the Eocene (Mann and Burke, 1990). 

Middle Eocene-Miocene Carbonate Growth. Localized ubmarine slide of the 

Middle to Late Eocene age in basinal carbonate rock over the Wagwat r Trough indicat 

the persistence of steep slopes, perhaps related to the rejuvenated faults (Robin on, 

1967). During this period of time deep-water carbonates developed a the basin lowly 

subsided. 

Late Miocene-Present Basin Inversion. East-west, left-lateral trike-slip motion 

on the Enriquillo-Plantain Garden fault zone reactivated the half-graben at a restraining 

bend (Mann et al. , 1985). Reverse motion on or close to the Wagwater fau lt zone cau ed 

the rift sequence to be moved back up a long the old exten ional fault surface. The 

Yallahs-Sil er Hill fault zone may have been reactivated a a back-thru t during ba in 

inversion. This uplifting of the facie in the ba in has expo ed the rocks at the urface, 

al lowing for field analysis . 
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Figure 3.2.1: Schematic cross-section model de eloped by Mann and Burk 
( 1990) showing the stages of tectonic development of the Wagwat r Trough. (1) The 
Ginger River Member of the Wagwater Formation occupie a half-graben formed along 
the Wagwater fault zone. (2) Continued rifting in the Late Paleocene wa accompanied 
by depo ition of the Pencar River Member during a brief incursion of eawater into the 
trough. As sea level receded, continued down-throw of the block allowed for depo ition 
of the Dry River Member. (3) Rifting and volcanism continued in the Early Eocene in a 
ubmarine etting. The Wagwater fault zone remained activ , and the Yallahs- ilver Hill 

fau lt zone reactivated. Submarine slides and turbidite of the Richmond Formation wer 
d po ited during this period. Thi mark the end of th main rifting pha e in the 
Wagwater Trough. (4) Localized ubmarine slide of the Middle to Late ocen ag in 
basinal carbonate rocks over the Wagwater Trough indicate the per i t nc of teep 
slopes, perhap related to the rejuvenated faults. (5) Deep water carbonat s developed a 
the ba in lowly subsided. (6) Reverse motion cau ed the rift equence to be mo ed back 
up along the old extensional fault urface (after Mann and Burke, 1990; We cott and 
Etheridge. 1983; Robinson, 1967; Mann et al., 1985). 

3.3 Tectonic Development of the Caribbean Region 

Geo logic developm nt in the aribbean region complex. The ong111 of the 

aribbean plate ha two po ibilitie : generated by eaf1oor preading b tv.; n Yucatan 

and outh merica and . therefore, repre ent litho ph re of the arm of the Atlantic; or 

g nerated in the Pacific (Farallon Plate litho pher ) uch that Proto- aribbean cru t 

whi h wa already formed by the eparation of the merica wa then ubductcd bcn ath 
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the pper Cretaceous to enozo1c arc y tern of the aribbean Plate during the 

vve tward drift to the mericas from Africa (PindelL 1994). Pindell (1994) ugge tcd that 

it i mo t likely that the aribbean Plate i from Pacific origin. 

The tectonic events 111 Jamaica are direct! related to the movem nt of th 

Caribbean Plate. During the Mesozoic, the breakup of Pangaea created immense rifting 

throughout the region as orth America separated from South merica. While thi rifting 
'-' 

continued, the Farallon plate continued to subduct ben ath the Antille mairne, which i 

th tart of the formation of the Caribbean Plate. 
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Figure 3.3. l: Th Caribbean region during the Late lbian. ubduction began on the 
ea tern ide of the ntille , and th aribbean Plat began to grow in iLe and conve · 
a t\ ard. The ea t ide of Jamaica was al o part of th i land ar above the ubduction 

z n . (from Pindell, 1993). 

27 



B the Late lbian. ubduction had begun on th ea t rn id of the ntille . and 

tarting from thi period. the aribbean Plate began to gro\\- in ize and om x ea tward 

into the Atlantic (Figure 3.3.1). It hould al o be noted that during thi time the a t idc 

of Jamaica wa also part of the i land arc above the subduction zone. HO\A.·ev r. by 

Maastrichtian time, the i land arc/subduction zone sy tern had advanced ea t of Jamaica. 

leaving it a an emergent landmas (Pindell, 1994; Wescott and Ethridge. 1983; Mann et 

al., 1985). 

1nt}lr.t11 .. 111.."'I 
1npl 1. 1um.l"-'" 

,. Maastncht1an -70Ma 

Figure 3.3.2: The aribbean region during the Maa trichtian. Th i land arc/ ubduction 
zone stem had ad anced ea t of Jamaica, leaving it a an emergent landma (after 
Pind IL 1993). 

During the enozo1c, the aribbean Plat continued migration r lativel; 

a tward. Th Yucatan block pre ented imp! ea tward moti n of the icaraguan Ri e 

and Jamaica with the r t of the Caribbean Plate . Con equently. Jamaica wa int rnall) 
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deformed a th Wagwat r and ontpelier Trough form d 1n Jamaica. and thcr rift , 

form d in the icaraguan Ri e (Figure 3.3.3) (Pind II 1994). 
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Figure 3.3.3: The Caribbean region during the Pal ocene. Jamaica wa internally 
deformed as the Wagwater and Montpelier Troughs rifted in Jamaica (after Pindell. 
1993). 

The Middle Eocene wa mark d by the termination of Bahamian- ntillean 

colli ion and the on et of platform deposition 1n Cuba (Figur 3.3.4). Rifting of the 

Wagwater and Montpelier Trough 111 Jamaica lowed and c a ed b th nd of thi 

period a the ayman Trough nucleated a a pull-apart basin between Yucatan and 

Jamaica preading 111 an ea t-west direction. Thi would become th northern aribb an 

boundary (Pindell, 1994 ). 
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Figure 3.3.4: The Caribbean region during the Middle Eocene. Rifting of the Wagwater 
and Montpelier Troughs in Jamaica slowed and ceased by the end of this period as the 
Cayman Trough nucleated as a pull-apart basin between Yucatan and Jamaica spreading 
in an east-west direction. (after Pindell, 1993). 

Oligocene and Early Miocene time wa marked by a passive period in Jamaica. 

The Caribbean Plate with Jamaica continued to move ea tward, and the Cayman Trough 

continued to spread apart, while the Wagwater and Montpelier Trough had littl to no 

preading at aJI. During thi period, carbonate bank and immense limestone depo ition 

occurred on in Jamaica a the Yellow Limestone and White Lime tone Group . 
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Figure 3.3.5: The Caribbean region during the Oli gocene and Early Miocene. Rifti ng of 
the Wagwater and Montpelier Trough in Jamaica had cea ed altogether. Carbonate 
bank and immen e limestone depos iti on occurr d on Jamaica as the Yc ll ov Lim t ne 
and White Lim stone Groups. (aft r Pinde ll , 1993) . 
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Continued preading of the ayman Trough and interaction of the Caribbean 

Plate with Cuba and Hi pailola caused left-lateral trike- lip fault to fo rm on the 

northern boundary of the Caribbean Plate between the outhern end of the ayman 

spreading center and IIispafiola. The e fault make a re training bend in the Wag ater 

Trough, causing reactivation of the basin bounding faults as rever e fault . 
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Figure 3.3.6: Th aribbean region during the Late Mioc n . trike- lip fault make a 
re tra1n1ng bend in the Wagwater Trough. cau ing r activation of the ba in bounding 
fault a re er e fault (after Pindell. 1993). 



4. PETROLEUM EXPLORA TIO HISTORY IN JAMAICA 

4.1 Introduction 

The earch for oil in Jamaica can be divided into two pha e . the fir t invol mg 

private industry entirely. and the second involving. primarily. the tate-owncd company. 

Petroleum Corporation of Jamaica (PCJ). The fir t phase panned the period from 195- t 

1973, and the second phase covers the period from 1974 to the pre nt. The exploratory 

operations have been conducted both onshore and offshore. the Pedro Bank being the 

main offshore target. Eleven wells have been drilled in Jamaican territory. Between 1955 

and 1973, seven exploratory wells were drilled. ix onshore and one off hore. The 

on hore wells were dri lied at egril Spots (1955). near Munro in th anta Cruz 

Mountains (1956), in the southern part of the Cockpit Country (1957), We t egril 

(1957), Portland Ridge (1971 ), and Content, Westmoreland (I 972) (Wright. 1996). 

After the Petroleum Corporation of Jamaica was formed in June 1979. the 

momentum of exploration activity increa ed. During the period 1981-1982, PCJ, with 

assi tance from the Inter-American Development Bank. drill d three well on hor at 

Hertford in Westmoreland, Retrieve. St. Jame , and Wind or, t Ann. n offshore ell 

on Pedro Bank wa drilled by nion Texa I AGIP in 1981. The most encouraging 

d elopment involved oil and ga hows in two of the well , (Wind or and Retrie e) 

drilled by Petroleum Corporation of Jamaica. Further d velopment ha been tagnant. and 

at thi time. all of Jamaica i open to exploration activity from pri ate indu tr (Wright 

1996). 
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Year 0_Qerator Well Total DeQ_th I 
1955 Canadian Ba et al egril pot 192- m 

1956 Pan Jamaican anta Cruz 2662 m 

1957 Pan Jamaican Wet oril b 2818 m 

1957 Pan Jamaican Cockpit 1684 m 

1970 Oxy- ignal Pedro Bank 1979 m 

1971 Oxy-Signal Portland Ridge 2262 m 

1972 Kirby-Weaver Content 2319 m 

1981 Petroleum Corporation of Jamaica (PCJ) Hertford 3035 m 

1982 PCJ Windsor 3907 m 

1982 PCJ Retrieve 3447 m 

1982 Union Texas/ AGIP/PCJ Arawak 4588 m 

Table 4.1.1: Table of eleven exploration well drilled in Jamaica. 

Retrieve-1 

6 7 
+ LOCO 

Figure 4.1.1: Map howing the location of th exploration w II ( xc pt for Pedro Bank 
which wa drill d on the off: hore Pedro Bank outhwe t of Jamaica (f'r m P troleum 

orporation of Jamaica). 
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4.2 Petro leum Corporation of Jamaica Wind or #1 

Wind or #1 i located on the north coa t of Jamaica near the tO\\ n or nn . It 

ha a total drilling depth of "907 meter , and it wa drilled becau of it proxirnit to a 

gas seep and anticline structure mapped at the urface and confirm d by ei mic. The 

well was eventually abandoned as a dry hole; however it did have minor oil and ga 

shO\ . One core was recovered from the well and it was bleeding brown oil and minor 

gas bubbles from hairline fractures. 

Figure 4.2.1 : Photograph of drilling operati on on hore at Wind or # 1, t nn in 1982. 
Thi ell had mall oil how and minor ga how . It had one core recovered and \\a 
ti ght lime tone bleeding brown oil and minor ga bubble from hairline fracture . 
Wind or # l prov d that ediment in the Jamaican region are capable of generating 
h drocarbon (from Wright, 1996). 
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4.3 Petroleum Potential of the Wagwater Trough 

There has been no petroleum exploration in the Wagwater Trough to date. The 

clo est well to the Wagwater Trough is Wind or # 1. However. it i not in the Wagwater 

Trough and i located more than 25 km from the western edg of the Wagwater Trough. 

Eva ( 1980) stated that many of the sediment in the Wagwater Belt are likely to have 

been heated to considerable temperature , and that heat flow i relati el high in active 

marginal basins. Perry (1984) stated that the heat flow is s ignificant enough to be 

favorable for the early maturation of hydrocarbons within the Wagwater Trough, and thi 

is due to the clo e association of thermo-tectonic events in the Cayman and Wagwat r 

Trough , plus a thick overburden of sediments in the trough. Thu hydrocarbon ha e 

probably been generated at depth in the Wagwater Belt. He further explained that 

abandoned-rift basins and aulacogen have commonly proven to be ideal exploration 

target . 
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5. GRAVITY MODELING PRINCIPLE 

5.1 Introduction 

In order to perform any basin analy i at all.. the depth to the ba ement mu t be 

known. sually thi is determined from seismic and well-data. How ver. in the 

Wagwater Trough no such data exists. o by using a regional Bouguer anomaly map 

(Figure 5.1.1) published by the Jamaican Geologic urvey. the Bouguer anomaly data 

can be used to determine the depth to basement. For this study a combination of field 

data, published data, and published maps were used to extrapolate lithologic formation 

and facies into the subsurface. Five cross-sections wer created u ing a combination of 

collected field. published geologic map, and published data (Figure 5.1.1 ). The Bouguer 

anomaly data were used to constrain the cross-sections. The ba ic theory behind the 

method u ed is described in the following ection . 
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Figure 5.1.1: Base map of the orthern Wagwater Tro ugh. The locations of fourteen 
virtual wells and five cross-section and sub equently 2-D models are labeled on th map. 
Cross-sections E-W 1, E-W 2, and E-W 3 run we t-to-east and cro -section -S 1 and 

- 2 run north-to south. 
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5.2 The Bouguer Anomaly 

Free-Air Correction. The free-air correction which is added to the measured 

gravity value to correct it to a sea-level value is calculated in equation 5.2.1 (Fowler. 

1990). 

2h 
OBF =Bo - B(h) = R Bo 

Equation 5.2.1: The free-air correction. OB pis the free-air correction, Bo is the measured 
gravity, B(h) is the gravity at elevation h, and R is the radiu of the Earth. 

As gravity decrea es with height above the surface, points above ea level are 

corrected to sea level by add ing 2hgr/R. This correction amounts to 3. 1 x 10-6 m s-2 per 

meter of elevation . A more accurate value of this correction can be made by using 

McCullagh-s formu la for the gravitational attraction of a rotating spheroid (Equation 

5.2 .2). 

BF= Bobs - B(A.) + OBF =Bobs - B(A.) ( 1 - ZRh) 

Equation 5.2.2: McCu ll ah' fonnu la for the gra itational attraction of a rotating 
spheroid . BF i the free-air anomaly, Bobs i the ob erved or measu red gravit alue, 
B(A.) i the lat itude variation correction, and OBF is the free-air correction (Fowler, 1990). 

Bouguer Plate Correction. The Bouguer plate correction compen ate for the 

effi ct of a la er of rock who e thickne corre pond to the elevation difference bet een 

the mea urement and the reference levels, and it compensate for the gravi tational 

attraction of the rock between the mea ur ment point and ea le el. Thi i a urning 
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that the e rock ar of infinite horizontal extent. Th Bouguer plate correction i gi\'cn by 

equation 5.2.3 (Fowler. l 990; Lowrie, 2007). 

= 2nGph 

Equation 5.2 .3: The Bouguer plate correction. gsr is the Bouguer plate corr ction, G i 
Gravitational or ewtonian Constant (6.67 x 1 o-J I m3 kg- 1 s-2), pis Density in kg m- , hi 
height above ea level in meters (Fowler, 1990; Lowrie, 2007) . 

The datum for the Bouguer plate and terrain corrections is sea level and a tandard 

density of 2.7 kg m-3 (Fowler, 1990). 

Bouguer Anomaly. Combining the free-air, Bouguer plate, and terrain 

corrections together allows the Bouguer anomaly to be calculated (equation 5.2.4). 

BB =BF - DBBP + DBr =Bobs - B(A) + DBF - DBB + DBr 
Equation 5.2.4: The Bouguer anomaly. BB is the Bouguer anomaly, BF is the free-air 
anomaly, 8B8 is the Bouguer correction, DBr i the terrain correction, Bobs i the 
ob erved or measured gravity value, B(--1.) i the latitude variation correction, and DBF i 
the free-air correction (Fowler, 1990). 
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Figure 5.2.1: Map hawing the Bouguer anomal va lue in the northern Wagwater 
Trough. The higher alues trend from the Blue Mountain in the outhea t to ard 
Oracabe sa and Port Maria in the northwe t (after ndrew et al.. 1992). 

5.3 Determining Basement Depth U ing th e Bouguer Anomaly 

The ouguer anomaly can be u ed to determine th depth to a cry talline 

ba ement in a edimentary ba in, becau e the Bouguer anomaly correct for levation 

chang and is. th r fore, cted by change in urfac elevation. Bouguer gra it · 

map ntial l how three thing with re p ct to the ba in: ( 1) a change in depth of the 

cry tallin ba ement ro k . (2) a change in den ity of either the ba cmcnt r k or 
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o crlying edimentary trata. (3) or the pre ence of an igneou intrusion. ince there i, 

not enough data to know whether the change in the Bouguer anomaly i control led by a 

change in depth of the ba ement or den ity of the basement and/or sed imentary rock . it 

was as urned that the simplest m thod would be used: a change in depth of the ba em nt 

rock with density for all layers remaining con tant. It is known that the utfi Id 

Vo lcanic formed flow . pillows. and dikes in the northern region of the tudy area (see 

cross-section A-A·, figure 4.1.2). However. no oth r intru ions have been documented in 

the study area. Densitie for the various rock layer were determined using value 

publi hed by Wadge et al. (1983), who determined the depth-to-ba ement for the Blue 

Mountain Inlier, ju tea t of the Wagwater Trough. Th e value are found in table 5.3. 1 

Geolo_g_ic Units A verag_e Densities 
Cretaceous Basement 2.84 g cm-3 

Pa leogene Clastic Sediments 2.59 g cm:J 
Paleog n Limestone 2.61 g cm·-' 
N utfield Volcanic 2.82 g cm·-' 

Table 5.3.1: Density value inserted into GYM- YS(PRO). Thi softwar i u ed to 
calculate the basement depth using the Bouguer anomaly (Wadge et al. , 

To implify the proce s, each cros - ection i creat d eparately in a program 

called GM- Y (PRO). developed by orthwe t Geoph 1c A oc. B creating a cro -

section and adding in density values for each lithologic unit. including the ba cment, the 

d pth of the basement can be con trained as the data i fit to th Bouguer anomaly data 

point (figure 5.3. l ). 
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6. BASIN MODELING METHODS 

6.1 Introduction 

The evolution of sedimentary basin controlled by a combination of 

geomechanical factors such as basin subsidence (growing) and basin uplift (de truction 

cau ed by erosion) (Pigott and Sattayarak, 1993). A petroleum system in a sedimentary 

basin was defined by Metwalli and Pigott (2005) as ·a dynamic, inter-dependent 

assemblage of materials and processes linked together within non-discrete spatial-

temporal boundaries in a sedimentary basin, which provides the accumulation of 

hydrocarbon". Some of these materials include source rocks, re ervoir rock , and eals. 

and essential processes include formation of traps, migration pathways. accumulation of 

hydrocarbons, and preservation through time. Different stages in ba in evolution, marked 

by local changes in the tectonic regime, allow the source rock to be buried, generating 

hydrocarbons, transportation, and re ervoir-trap accumulation. Source generation critical 

include source generation volume or total organic carbon (TOC). quantit , quality or 

kerogen type. and maturity or designated ource rock . Re ervoir-trap accumulation 

criticals refer to the quality (permeability and porosity), hydrocarbon type, ea! and 

clo ure of re ervoir rock . Migration criticals deal with migration pathway and 

mechani ms (Metwalli and Pigott, 2005). 

In thi tudy, basin modeling oftware. de eloped b Platte River ociate . will 

b u ed in both one and two dimen ion ( 1-D and 2-0) to calculate maturit of 

hydrocarbon in ource rock . migration of hydrocarb n from out of the our rock 

and migration of hydrocarbons into the reser oi r rock . 
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6.2 One Dimensional (1-D) Basin Modeling Principles 

The primary function of Ba inMod 1-D i to con truct a geo logic model of 

stratigraphy versu time and depth in which a number of parameter can be inputted o 

that a much data as available can be exploited (BasinMod 1-D Manual, 2005). 

Data gathered for BasinMod 1-D include formation top depths, age , thickne 

lithologies, initial TOC value , kerogen type , and m a ured poro ities. Thi can be u ed 

to model tectonic ubsidence, thermal maturation. and burial hi tory of the basin. Due to 

the ab ence of true well data, 14 virtual wells were placed in trategic location in the 

basin. Therefore much of the data used in BasinMod 1-D needed to bee timated u mg a 

much urface data a possibl . The e as umptions will be di cu ed later in thi th 1 • 

Formation fype Begin Top Present Eroded Lithology Organofacies I Initial 
or Age Depth Thick Thick Kerogen 

Event Name (my) (m) (m] [m] TOC 
lo./} 

Surface Erosion E 10 -2450 

LS-dep D 51 1500 Limestone Type II (BMOD-10 LLNL) 3 

Ero-dep D 54 950 Sandstone Type II [BMOD-1 D LLNL) 6 

Ero F 57 0 950 Sandstone Type II [BMOD-1 D LLNLJ 6 

Pd F 63 950 610 Sandstone Type Ill [BMOD-1 D LLNL) 5 

Ppr F 63.6 1560 220 Sandstone Type II (BMOD-1 D LLNL) 7 

Pg F 65.6 1780 1110 Sandstone Type Ill (BMOD-10 LLNL) 10 

Figure 6.2.1: Data input to Ba inMod 1-0. Formations are entered with both a top depth 
and pre ent thickne , eroded depo it are entered with onl an eroded thickn , and 
ero ion event are entered with thickne of ro ion . 
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6.3 ub id ence Principles. 

There are four model that cau e sub idence in a ba in : ( 1) water loading, (2 ) 

sediment load ing, (3) flexure, and (4) tectonic . Sub idence from wat r loading (, \\ 1) 

cau e ub idence using the r lationship in equation 6.3.1 (Metwalli and Pigott. 2005). 

Pw Sw 1 = liSL * ---
Pm -pw 

Equation 6.3.1: ub idence due to water-loading. S\1'1 i the amount of ubsid nee cau ed 
by water loading, SL is the change in sea level. p 11 • i the den ity of ea water (1.028 kg 
m-3), p 111 is the density of the mantle (3.3 kg m-3) (Metwalli and Pigott, 2005). 

In erting densit value into the equation give the relation hip between water loading 

and ea level change ( quation 6.3.2). 

Sw1 = 0.452 * liSL 

Equation 6.3.2: Relation hip between sea I vel change and ub idence due to water 
loading. 

Thi mean that for every one kilometer of ea level ri e, the ba in ubsid 452 meter . 

ub idence from sed iment loading (, sedt) i directly related to th amount of 

edimentation in a ba in by quation 6.3.3 ( etwalli and Pigott, 2005). 



Ps - Pw 
S sedl = S * ---

Pm -pw 
Equation 6.3.3 : ubsidence due to sediment loading. Where Ssedl i ub id nee due to 
ediment loading, Sis sediment thickne , and Ps i the ediment density kg m-3) 

(Metwal Ii and Pigott, 2005). 

This equation can be simplified to show the re lationship that one kilometer of ediment 

ha on sediment loading subsidence (Equation 6.3.4). 

Ssedl = 0.71 km 

Equation 6.3.4: Relationship showing that for ever l km of diment loaded onto a 
basi n, 0. 71 km of basin sub idence occur . 

For every one ki lomet r of ediment deposited in a basin, 710 meters of ub idence 

occur . ubs idence due to flecture (Sflex) contrubut less than one percent of ba in 

ub idence, and it i not significant enought to be u ed in th i tudy. Tectonic ub id nee 

(Srec) ha th mo t profound effect in basin ubsicence. It can b quantitati ely d crib d 

in equation 6.3.5 (Metwalli and Pigott, 2005). 

ti ( 1- * [CPm - (1- a *2T:t; tc)- (a* r2 *Pm)] 
Scee = -----'------ --'------)-----------

Pm * ( 1 - a * Tm - Pw 
Equation 6.3.5: Tectoni c ubsidence equation. S1ec i th amount of tectonic ub idence, 
le i the thickne of the cru t, t1 is the thickn of the lithospher , Pm i the den ity of the 
mantle (3.33 kg m- ), Pc i the den it of the cru t (2.8 kg m-3). P11 i th den it of 
eawat r (1.03 kg m- ). a i the thermal expan ion co fficient (3.3 *10-: C- 1

), (3 i the 
tret hing factor, and T111 i the temperature of the manli ( 1350 ) (Met wall i and Pigott. 

200 ). 



Th total ub idence in a basin i a um of the ub idcnce cau ed b) tectonic . 

ediment loading, and water loading. The proce u ed to determine the amount of load-

induced ub idence i i o tatic back stripping. Thi method remove edirnent layers, 

correcting for deornpation, fluctuation of sea level, and ea depth. The tect nic 

ubsid nee i expressed by equation 6.3.6 (Metawalli and Pigott, 2005 after Pigott and 

atta arak, 1993). 

Scee = Scotal - Ssedl - Swl ± 11SL 

Equation 6.3.6: Total sub idence equation. Srec i correct d subsidece. rorat is total 
ub idence, Ssedt is sediment loading, Swt is water loading. and 6.SL i ea I vel change. 
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Figure 6.3.1: Generalized back tripped ub idence plot. A c plained in equation 6.3.6. 
th t tal ubsidenc i the urn of tectonic ub idenc and the I ad-induced ub idencc 
(water-loading and edirnent-loading) (from Ba inMod 1-0 Manual, 2005). 
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6.4 Stretching Factor P (Beta) 

When basins are tretched the cru t and litho phere i thinn d. More tre hing 

causes more thinning just a less tretching cau e le thinning. mentioned in the 

Tectonic ub idence Equation (Equation 6.3 .5), beta i the tretching factor. i 

calculated from the ratio of lithosphere thickne before tretching/rifting to litho phere 

thickne imm diately after tretching/rifting (Equation 6.4. l ). 

{J = TlithO 

Tuch 

Equation 6.4. l : Stretching Factor (/3). Ttl/h i the litho phere thickne 1mm diatel after 
stretcing and T1i11in i th th i ckne of the Ii tho pher before tretchi ng. 

When is greater than one it ignifie ba in tretching or exten ion, when 1 

than one it ignifie compaction or uplift, and when qual to one mean that no chang 

ha occurred. 

Mann and Burke (1990) stated that becaus th age of rifting i too old and ba in 

inver ion ha occurred it i imposs ible to calculat fJ without borehole data. However, 

u ing a method d ised by Mctwal li and Pigott (2005), fJ can b calculated from tect nic 

ub idence, str tching along fault , and chang in ba in olume. 

Determining p From Tectonic Subsidence (1-D). can b calculated in each of 

th irtual well u ing a method de i ed b Pigott Metwalli and Pigott (2005) . 1-0 

tectonic ub idenc can b modelled u ing Ba inMod 1-0 (Fi gure 6.4.1 ). mg the 

amount of fault mechanical tectonic ub idence (rifting) determined from th Ba in d 

1-D model , be calcu lated u ing equation 6.3.5 as urning that the thickne c or the 
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cru t and Ii tho phere before subsidence are 40 km and 120 km re p cti\·el). and 

as urning uniform e ' tension as a first approximation that the beta f the cru t i 

equi alent to the beta of the lithosphere (Allen and All n. 2005). plift can be calculated 

in the ame manner u ing a negative value for tectonic ub idence. and it mu t be 

calculat d eparately from fault mechanical subsidence. Howe er. becau e uplift often 

follow rifting the thickne s of the cru t and lithosphere are not alway 40 km and 120 

km respectively at the beginning of uplift. and the value mu t be calculated. 
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Figure 6.4. l: Graph of tectonic ub id nc er u tim for VW-14. Tectonic ub id nee 
an be di ided into three tages: fault mechanical ub id nee (exten ion). thermal 
ub idence (drifting), and n gative subsidence ( hortening). Beta i only calculat d for 

rifting and uplift. Cla tic dimentation (Wagwater and Richmond Formation ) o curred 
during the period of fault mechanical ub id nee. and carbonate edimentation (Yellow 
and White Lime ton Group ) occurred during th period of thermal ub idence. 
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tc = tco / f3 

tuch = tucholf3 
Equation 6.4.2: Thickness of cru t and lithosphere after rifting (/c and 111111 ) is equal to the 
thickness of the crust and lithosphere before rifting Ucn and 1111'10) di ided by /J. The alue 
of lcn and l111w are assumed to be km and 120 km respectively. 

After the new thicknesses of the crust and litho phere after rifting i determined 

they do not remain the same. Because this litho phere has been thinnned and is no longer 

in equi librium, it begins to equilabrate and thicken throughout the period of thermal 

subsidence before uplift. Crust i al o thickened by adding sediment during this period 

and its thickness at the end of the period i determined in equation 6.4.3. 

tcf = t c + ts 

Equation 6.4.3: The thickness of the crust after the thermal ub idence period Uc.r) is 
equal to the thicknes of the crust after rifting Uc) plu the thickne of the diment 
depo ited during the thermal subsidence period (15 ). 

To determin the thickne s of the litho phere before uplift, a graphical 

relation hip calculated, u ing equation 6.4.4, between litho ph r thickne and time i 

u ed (Figure 6.4.2), assuming post-rift oceanic litho phere b haves empirically a 

continental litho pher . Lithosphere thickne after rifting i plotted on th line in the 

graph. and th corr ponding time i determined. The p riod of time for thermal 

ub diencc i added to that line and the corre ponding litho ph re thickne i the 
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thickne s of the lithosphere ju t b fore uplift. The example in red illu trate thi method : 

a lithosphere thickne after rifting of 72 km during a period of 41 milli n year of 

thermal sub idence will thicken to 111 km ju t before uplift. The maximum thickne that 

the litho phere can reach during thermal sub idence is 120 km. 

Tlith = 0.00232)(3 .154 * 107)(t) 
Equation 6.4.4: Thickness of the lithosphere (T1111i) as a function of post rift time (t) 
(derived from Turcotte and Schubert, 2003) 
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Figure 6.4.2: Graph bowing the rate at which post-rifting thinned litho phere thickens 
with re pect to time (black line). This can be used to determine how much the litho phere 
has thickened during the thermal subsid nee period making it pos ible to calculate for 
the period of uplift. Litho phere thickne after rifting is plotted on the line in th graph, 
and the corresponding time i determined. The period of time for thermal sub dicnce i 
added to that line and the corresponding litho phere thickne i the thickne s of the 
lithosphere just before uplift. The example in r d illu trates thi method: a lithosphere 
thickne after rifting of 72 km dur ing a period of 41 million year of thermal ub idence 
wil l thicken to 111 km just before uplift (from equation 6.4.4, derived from Turcotte and 

chubert, 2003 ). 
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Determining p From Cross- ection (2-D). can be calculated from --D model 

u ing a ratio between the change in length prior to and po t rifting. Figure 6.4 .3 how 

how the distance between the two faults increa es as the ba in i tretched. Th ratio f 

these distances is determined using equation 6.4.5 (Pigott. unpublished lecture notes). 

a, 

Figure 6.4.3: Schmatic howing an increase in distance as a re ult in ri fting. The unit 
with length a0 are tretched and faulted to have a length a 1 (after Pigott. unpubli hed 
lecture note ). 

ai (J = -
ao 

Equation 6.4.5: B ta (/J) is calculat d a the ratio of the di tance aft r rifting (a 1) to the 
di tance b fore rifting (a0) 
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Derminining p From Basin Volume (3-D). There are three model G r tr tching 

from lien and lien (2005): niform. di continuou . and continuou depth-d pendent 

stretching (Figure 6.4.4). niform exten ion models the cru t and litho phcre ext nding 

by identical amount . Di continuous depth dependent exten ion mod I the cru t 

extending by a different amount to the litho ph r . neces itating a decoupling between 

the two layers. The cru tal and subcrustal e ten ion are independent but ar uniform 

through the crust and subcrustal litho phere. ontinuous depth depend nt e ten ion 

models the stretching as a continuous function of depth in the subcru ta! litho ph re. and 

crustal stretch ing i the ame as in the continuou and di continuou depth depend nt 

exsten ion model . 

(il) UNIFORM 
STRETCHING 

I , ... , - I 

I : l I 
I 
I 
I I 

(b) DISCONTINUOUS 
DEPTH DEPENDENT 

-
I ,1 
I I 
I I 
I 

l I 
I I 
I I 

(c) 

I 

CONTINUOUS 
DEPTH DEPENDENT 

I I 

Figure 6.4.4: chematic diagrams to illu trat difference between (a) uniform. (b) 
di continuou , and (c) depth-dependent stretching. It is a um d that uniform tretching 
i the ca e in the Wagwat r Trough (From lien and llen, 2005). 
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It i po ible that p can be determined u ing th crustal volume of the tretched 

ba in assuming rifting conforms to the uni form stretching model. Thi mean that 

extension is uniform and the crust and ubcrustal lithosphere extend by identical 

amounts .. The amount of tretching in a ba in can imply be determined by taking the 

ratio of the basin volume at the end of rifting to the basin olume during the initial rifting 

stages. This is illustrated in equation 6.4.6 (Pigott, unpublished lecture notes; Allen and 

Allen, 2005). 

{J = -
Vo 

Equation 6.4.6: Beta is the cubed root of the volume of the basin (determined from th 
volume of diments deposited) after rifting divided by the volume of the ba in as it 
begins to rift and form. 
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6.5 Heat Flow Principle 

Thermal hi story i important in modelling maturity and kinetic . The econd !av\ 

of thermodynamics tates that, in a closed sy tern. no proce e wi 11 tend to occur that 

increa e the net organization (or decrease the net entropy) of the y tern (Encyclopredia 

Britannica, 2009). When referring to the tran fer of energy or heat in a y tern it can 

mathematically be solved by the Thermal Boundary Value Solution which means the 

Temporal Heat Storage in system is equal to the the um of the heat flux entering and the 

internal heat generated in a system minus the heat flux out of the sy tern (Equation 

6.5.1 )(Metwalli and Pigott. 2005). 

pciJT 
ac 

a ar a [Kx, y, z] a - F + G x,y,z x,y,z 
Eq uation 6.5.1: The thermal boundary value olution. pc i compo it heat flux, T i 
temperature, I is time, Ki thermal conductivity, Fi heat flux out, and G is internal heat 
generation (Metwal Ii and Pigott, 2005). 

Equation 6.5.1 can be interpreted in cru ta! term as the litho pheric thermal state 

equal to the sum of the patial rate of heat now change and radioactive heat generation 

m1nu the heat loss due to refraction and fluid flow. If cooling plution , mountain front 

h drological flO\, , and radioacti ity i negli gible. then a tim invari ant t ady- tare 

condition i pre nt, and th um of the equation i zero ( quation 6.5.2) ( etwalli and 

Pigott, 2005). 
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pear 
at 

a ar a [Kx, y, z] a - F + G = O x,y,z x,y,z 

Equation 6.5.2: The thermal boundary value solution et equal to zero. Thi can be done 
when cooling plutons, mountain front hydrological flow. and radioactivity is n gligible. 
creating a time invariant teady- tate condition. 

If constant temperature endpoints are pecifi d, the integration of equation 6.4.2 yield 

the cla ic Fourier Heat Flow Equation (Equation 6.5.3). 

ar 
Qx,y,z = -Kx,y,za z,y,z 

and implified: 
-k t:.T 

Q = lO (t:.z) 

Equation 6.5.3: Th Fourier Heat Flow Equation. Qi Heat flow, k i thermal 
conductivity. and tff is the geothermal gradient (Metwalli and Pigott. 2005). 

t:.z 

inc the thermal conductivity is con tant in a y tern the onl factor that control 

the amount of heat flow in a y tern i th geothermal gradient. hange in maturation 

and kinetic change exponentially with re pect to temperature and linearly with re pe t to 

time. Therefore, pre entday heat flow can be u ed in ord r to con truct paleoh at nov. 

throughout th ba in. 1 lowever. rifting au e dramatic variation in h at that afG t 

temperature for million of ear after the rifting event (Ba inmod l-D anual. 
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To help model thi more accurately Ba inMod offer everal approache to constru t 

pal oheat flow. 

Steady State Heat Flow. One of the model for heat flow i in the teady tate. 

Thi is calculated using a heat flow/thermal conductivity model. ach tim interval of the 

model i calculated ind pendently of the prior time interval, u ing equation 5.5.4 which 

ha a basic relationship: Heat Flow = Thermal Conductivity * Temperature Gradient. 

z 

T = To + Qs f k;z) dz 
0 
u 

T = T + Q zi - zi-1 
o s L k · 

i=l l 

Equation 6.5.4: Steady-state heat flow equation. To is surface temperature, Qs i urface 
heat flow, and ki i thermal conductivit for bed i (Ba inmod 1-D Manual , 2005). 
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Ok Apply I Reset Cancel Help 

Figure 6.5.1: Thermal steady- tate parameters used in Ba inMod 1-D. 

Rifting Hea t Flow. Ri fting cause pul e 111 thermal hi story that make it very 

difficult to mode l. Thi can cause damatic heat ari ation that affect temperature fo r 

million of years after the rifting e ent. There have been erveral different approaches put 

fo1ih to model rifiting, but there is still no uni er ally accepted h at fl ow model in the 

literatur . Bas inMod offer a rifting heat fl ow option that i a implificati on of the Jar i 

and McKenzie finite rifiting model ( 1980) which i probab ly the most widely ace pted 

theory ( lien and Allen, 2005). All pr elent ri ft ing heat f1 ow mod I cem to agree that 

rifting invo l e two phas (Ba inmod 1-D Manual, 2005), a ri fting pha c and a 

ub idenc or drifting pha e (F igure 6.5.2). The ri ft ing pha e in ol tretching, 

thinning, and fa ulting of the cru t accompa ni ed by rncrea d heat Ilow due to cru ta! 
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thinning and upw lling of the a theno phere. Th ub idenc or drifting pha a po t-

rift period with exponential thermal decay due to re-e tab Ii hment of th rmal qui! ibrium 

in mantle litho phere and astheno phere. 

STRETCHING -::J 3D 
IL. ::c -
0 2D 

IL. 

Q,) ::c 1D 

Continuous 00 

I' 
1 1 
I < 
I 1 
I < 
I I 
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' \ / Instantaneous 
\/ 
'' A 

' 

0 . J 3!' OJ 

Time Prior to and After Rifting (Ma) 

Figure 6.5.2: Heat flow changes due to rifting event . Rifting in olve a rifting pha 
and a ubsidence or drifting pha e (from BasinMod 1-D Manual. 2005). 

Rifting cenano e m to range from in tantaneou rifting follow d by a udden 

mcreas in heat flux to a maximum followed by exponential deca to continuou rifting 

h re tretching occur o er a long period of tim during which heat i di ipated. 

Ba inmod u e a thermal d cay equation to mod I rifting h at now (Equation 6.5. -). 
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F(t) = k;, · { 1 +TI t nb 0 (-1) 0 +1 x exp[-n2n 2 (t - Lit) k/a 2]} 

Equation 6.5.5 : The thermal decay equation. F(t) is the heat flux at the uface at time/, t 
is the time of rifting, k is the thermal conductivity, kTi is the heat flow prior to rifting, z 
based on present day heat flow, b11 is the Eigenvalue coefficient, and a is the thicknes of 
the lithosphere. 

In order to calculate rifting heat flow in BasinMod beta is required. Values for 

beta are obtained by either accepting a default value of two or entering a specific value 

(BasinMod 1-D manual, 2005). In this study, calculated from basin volume changes, is 

inputed into the rifting events table in BasinMod 1-D (Figure 6.5.3). BasinMod 1-D u es 

these betas along with the present-day heat flow to calculate the paleoheat flow (Figure 

6.5.4 and 6.5.5). 
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Figure 6.5.3: Thermal rifting parameters and rifting events u ed in Ba inMod 1-D. Betas 
are used in the rifting events to calculate the various heat flow value during rifting. 

The north coast of Jamaica has two modern published heat flow value that, in 

this tudy, wi ll be used as end members for the pre ent-day heat flow in the Wagwater 

Trough: 0.96 1-J.F. .. calculated by O' eal (1984) in PetroJamaica' operated Wind or 1 

by t. Ann' (Case 1) and 1.4 H.F .. published as a more regional value by Perry (1984). 

Jnputting these two case of heat flow into BasinMod 1-D give the paleoheat flow alue 

in figure 6.5.4 and 6.5.5. For both ca e , however. the initial heat flow i et to 1.5 

H.F. . wh ich i the worldwide average (Pigott. I cture note ). 
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Age J Heat Flow 
(my) (HFU] 

0 0.96 
5.1 1.07099 
1 0 1.23551 
10.2 1 .23672 
15.3 1.26812 
20.4 1.29985 
25.5 1.3306 
30.6 1.35819 
35.7 1.37932 
40 .8 1.39045 
45.9 1.3925 
51 1.38153 
66 1.5 

Figure 6.5.4: (Case 1) Rifting heat fl ow values calcu lated from a ri ft ing beta of 1.66, 
upli ft beta of 0.81, and a present-day heat flow of 0.96 H.F.U. 

Age Heat Flow 
[my) (HFU) 

-== ...=. 

0 1.4 
5.1 1.56185 
10 1.80178 
10.2 1.80355 
15.3 1.84934 
20 .4 1.89561 
25 .5 1.94046 
30.6 1.9807 
35.7 2.01151 
40.8 2.02773 
45.9 2.0307 4 
51 2.01473 
66 1.5 

Figure 6.5.5: (Case 2) Rifting heat flow value calculated from a rifting beta of I .66. 
uplift beta of 0.81, and a pr sent-day heat flow of 1.4 H.F. . 
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6.6 Two-Dimensional (2-D) Basin Modeling Principle 

Ba inMod 2-D allows u er to take data from we! I in Ba inMod 1-D and conn ct 

the horizon creating two-dimen ional cross-sections. These cross-section model variou 

values such as porosity, permeability, temperature, maturity, and e pelled hydrocarbon 

for various formations for variou model age (Figure 5.1.2 through 5.1.6). BasinMod __ 

D requires depth and age horizon for data imput. This data is obtained from the 

basement corrected cross-sections obtained using a Bouguer correction map. It i 

essential to have lithologic, surface temperature, heat flow, kerogen type, and TOC data 

in 2-D modeling (Figure 6.6. 1 ). 

Depth -Converted 
Seismic 

lnter1iretation 
BasinMod 1-D 

Data File 

2-D Model Construction 
(See Table 1 and Figure2) 

2-D Model Calibration 
and Calculation 

(See Figures 2 and 3) 

Output 

Graphs : 
Xvs. Time 
X vs . Depth 

Burial History 

Create X-Section 
by Drawing in 

Horizons 

Figure 6.6.1: Ba inMod 2-D working flow chart. Overview of 2-D Ba inMod 
procedure (from Ba inMod 2-D Manual. 2005). 

In order for BasinMod 2-D to p rform a proper ba in analy i . a framework of 

hori zon , unconformiti s, and faults mu t fir t be created (Figur 6.6.2) . Fir t, well are 

in rted from Ba inMod 1-D. Then hori zon , unc nformiti , and fault ar drawn 
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between thew lls. Horizons generally represent the contact between formation . Finally. 

horizons are attached to faults. unconfom1itie . and other horizons when pinch-out 

occur. single period of time can be assigned to the whole line. or the time can be 

adju ted. In the models created in this tudy. mo t of the horizon repre ented the same 

period of time with the exception of when formations would pinch out. In order for a 

formation to pinch out in BasinMod 2-D, two horizons must connect in both space and 

time. When two horizons connect a green circle appears in BasinMod to ignify the 

connection. The same circle appears when horizons attach to faults (purple) and 

unconformities (red). 

After all the framework is properly set up, calculations can be run to determine 

the different geologic units (Figure 6.6.3). Lithologies. kerogen types. and TOC can be 

added to all the units. In order for BasinMod to calculate the model for the basin. the 

cross-section must be divided into data cells based on horizontal di tance and time. 
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Figure 6.6.2: Preparation of 2-D mode l in BasinMod shown for -W 2. Fir t, well s are 
in erted from BasinMod 1-0. Then horizons, unconformities, and faults are drawn 
between the well . F inally, horizon are attached to fault , unconformities and other 
horizon when pinch-outs occur. These attachment are repre ented by a gr en circle. 
Da hed lines rep resent depos its that have been eroded. Figure 6.6.2a represent the cro -
ection with respect to depth while figure 6.6.2b with re pect to time . 

76 



VW-3 VW-11 

+ 

0 

1000 

s 
.5 a_ 
Q) 

0 
2000 

3000 

-5000 0000 20000 30000 

a. VE - 4::2 X Distance (m) 

VW-3 VW-11 VV. -12 VW-'< + + + + -1000--.-----------------------------

1000 

s 
.5 a_ 
Q) 

0 
2000 

3000 

-5000 0 10000 20000 30000 

X Distance (m) 

Figure 6.6.3: Preparation of 2-0 model in BasinMod hown for E-W 2 continu d from 
figure 6.6.2. fter all the horizon , unconformitie , and fault ar atta h d to each other, 
and the appropriate age are a igned to each, event can be calculated (Figure 6.6."" a). 
Th se e ents are assigned lithology type , TO value , and kerogcn t pe . fter thi is 
compl te, data cells u ed in calculating the model in Ba inMod 2-0 arc a ign d to the 
model (Figure 6.6.Jb). 
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6. 7 Hydrocarbon Migration Principle 

BasinFlow oftware was used to model pos ible hydrocarbon mi grati on pathvvay 

and traps. BasinFlow is a part of the Platte Ri ver Associate oftware package. It 

combines source rock and carrier bed data with hydrodynamic to model mi gration and 

entrapment potential. Basin View oftware is used to ee the modeled migration pathways 

and traps on a map. BasinMod 1-D files were used to build flow models, first w !ls 

uploaded to the Basin View and fault locations gathered from structural maps were drawn 

to the coordinated layer (Figure 6. 7 .1 ). 

E 
>-

27000 .,.---- - - ---------------------------, 

VW-7 
2500 0 

20000 

VW-1 E-W l VW-1 0 VW-2 

VW-9 

X m 

Figure 6.7.1: Map view of faults, well location , and 2-0 line in Ba in Vic oft are . 
Fault are drawn in light purple, well are marked by red cro c . and 2-0 lin are drawn 
as black line . 
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A Ba inflow file is g nerat d in Ba in View oft ware and upl oaded to th 

BasinFlow for h drodynamic calculations then di played in Ba in View. Interrelation hip 

between the input data and Platte River' oftware package i hown in figure 6.7.2 . 

Basin ViE!\'l Ft'oj ect Integrntor Flow Chart 

ZMAP/Surfer 
Petrosys CPS3 

dat grd asc 

BasinFlow 
bfl 

Basin View 
.prp 

B.a le h Cal cu.la bo n 
well > b of 
gnd > csg 

csg 

Basin.l\lod '.! -0 

_J c._I.• 2dp 

Figure 6.7.2 : Interrelationship between the input data and the oftware package in 
BasinMod, Basin View, and BasinFlow. Basin View uses input from w II created in 
BasinMod 1-D to generate grids that map various basin values such as unit tructure, 
thickness, and maturity. It is also used as a ba e for Ba inflow to flow dir ctions 
from where hydrocarbons are forming (source) to where they are trapp d in a 
reservoir (from BasinFlow Manual, 2005). 

llydrocarbon migration m BasinFlow i modeled usmg the concept o[ a 

"hydrocarbon potential surface" . Hydrocarbon (oil and ga ) migration paths are normal to 

th contour of the h drocarbon potential urfac and there is potential for hydrocarbon 

to accumulate (trap) within closed contour around low on the potential urface . The 

hydrocarbon potential in Ba inFlo is calculated ba ed on the n t effect of three physical 

param ter that affect th migration of hydrocarbon in the ub urface: (1 ) the buoyancy 
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of hydrocarbon . (2) the flow of ub urface v.ater or h1drod1 namic dri\ e. and (3 ) th 

ffect of capillary ten ion at the interface between h drocarbon and water betv\·een grain 

of sediment or ca pi I lary threshold pressure. ny or all of the e forces for econdary 

migration can be used in Basinflow. 

Hydrocarbon Buoyancy. Hydrocarbon ha e buo ancy relative to their 

subsurface environment, because it ha a lower den ity than the urrounding rock and 

pore water. The buoyancy force that drive hydrocarbon migration is always directed in 

opposition to the force of gravity. Mechanical potential energy p r unit ma s of a fluid in 

the ubsurface can be determined u ing equation 6.7.1 (Ba inflow Manual. 2005; 

Hubbe1i, 1953). 

p 
<p = Gz +-

p 

Equation 6. 7.1: Mechanical potential energy. cp i the mechanical potential energ . G i 
the gravitation constant (6.67300 X ] o·l I m3 kg-I ·2), elevation (depth), pis pre Ur , 
and p i the fluid den it . 

The mechanical potential energy equation i de cribed a '"th ork r quired to 

tran port a unit ma of water from ea-lev I and atmo pheric pre ure to th le ation 

and pr s ure of the point considered"' (Hubbert, 1953). The upward buoyancy force r 

oil and ga under h dro tatic condition wa given by Verweij ( 1993) in equation 6.7.2. 
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-G [Pw - Pol Po] 

-G [Pw - Pg/ Pg] 

Equation 6.7.2: The upward buoyancy force for oil and gas under hydrostatic condition . 
Pw is the density of water in the forn1ation, p 0 is the density of oil in the subsurface. and PR 
is the density of gas in the subsurface (Verweij, 1993). 

The method used to calculate hydrocarbon buoyancy in BasinFlow i similar to 

that given by Verweij (1993). The hydrocarbon buoyancy head i calculated in 

BasinFlow at each grid point using equation 6.7.3. 

[
Pw - Phc] H buoy = Zcarrier 

Phc 
Equation 6.7.3: Hydrocarbon buoyancy head. Hbuoy is the hydrocarbon buoyancy. Pw is 
the density of water, Ph is the density of hydrocarbons, and Zcam er is the depth of the 
carrier bed. 

Hydrodynamic Drive. The flow of ground water through a carrier bed will af:fi ct 

hydrocarbon migration and accumulation in traps. Th potential energy of the 

groundwater flow is proportional to the hydraulic head. A potentiometric surface was 

defined by Dahlberg (1995) as '·a calculated imaginary urface, the topography of which 

r fleet g ographic variation in the fluid potential of the formation ater within a 

particular aquifer or ubsurface reser oir" (BasinFlow Manual, 2005). Dalb rg' (1995) 

equation is written in BasinFlow as equation 6.7.5. 
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Hw = Zcarrier + Pp ore/(pwG) 

Equation 6.7.4: The hydraulic head equation . H \I i h draulic head of water and P pore i 
the pore pressure. 

The hydrodynamic head (Hhydro) is calculated in BasinFlow using equation 6.7.5. 

Pw 
Hhydro = Hw(- ) 

Phc 
Equation 6.7.5: The hydrodynamic head equation. Hhydro is hydrodynamic head, H11 is 
the hyd raulic head, p11• is the density of water, and p\\' is the den ity of hydrocarbon . 

Capillary Threshold Pressure. Capi llary threshold pressure results from 

hydrocarbon-water interfacial surface tension. It is expre ed as a pressure difference 

across the interface. Variations in capillary thre hold pre ure re ult in a dri ing fore for 

oil and gas. Capi ll ary pre sure i calculated in Ba inflow accord ing to the Willis (198'1) 

quation 6. 7 .6. Capillary pressure is represented in th i equation a a function of the pore-

throat radius. 

Pcap = 2Yhc-w/rc 

Equation 6.7.6. The capillary threshold pre sure equation. P cup i the the capillary 
pre ure, Yhc-w i the interfacial surface ten ion betw en hydro arbon and ub urfacc 
por water, and r, is the pore-throat radiu . 
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7. BASIN ANALYSIS AND MODEL 

7.1 Introd uction 

As mentioned previou ly, for the petroleum ystem analy i . ource rock . carrier 

beds. re ervoir rock . and eals are es ential elements. while trap formation, migration 

pathway , hydrocarbon accumulation. and hydrocarbon preservation are e ntial 

proce es. 

The Richmond Road ide Member is chosen as the main potential for both ource 

rock and reservoir. It formed in an anoxic depositional environment with restricted ater 

circulation. The hale layer have the best source rock potential with type II kerogen. and 

a TO average of 6 %. While its reservoir potential is not excellent. the and layer in the 

Roadside Member do prov ide adequate potential for migration and storage of 

hydrocarbons. 

Five cro s- ection ( -W L E-W 2. E-W 3. -S 1. and 2) previou ly 

mentioned were u ed in Ba inMod 2-0 to perform multiple 2-0 ba in analy s (Figure 

5.1.2 through 5.1.6). However before data wa loaded into BasinMod 2-D. 1-D ba in 

analy e were performed on fourteen virtual well in Ba inMod 1-D (Table 7.1.1 ). 



1 -
Vir1ual Approx. pprox. Location in ro - ection levation 

Well ame Latitude Longitude (m abo\ e L) 

VW-1 18.312 -76.950 We t End of E-W I 41 -_) 

VW-2 18.312 -76.802 Ea t nd of -WI -25 

VW-3 18.250 -76.950 Wet nd of -W 2 500 

VW-4 18.250 -76.664 Ea t End of E- W 2 -50 

VW-5 18.185 -76.839 Wet End of E-W 3 300 

VW-6 18.185 -76.715 Ea t ndofE-W3 600 

VW-7 18.378 -76.872 orth nd of - I -50 

VW-8 18.134 -76. 784 South nd of -S 2 500 

VW-9 18 .281 -76. 784 orth End of - ..., -50 

VW-10 18.312 -76.872 Inter ection of E-W I and - I 100 

VW-11 18.225 -76.872 Inter ection of E-W 2 and - I '.WO 

VW-12 18.250 -76.784 Inter ection of -W 2 and - 2 100 

VW-13 18.185 -76.872 Inter ection of E-W 3 and - I 300 

v -14 18.185 -76.784 Inter ection of -W 3 and - 2 500 

Table 7.1.1: The names and location of 14 virtual well in the Wagwater Trough. R fer 
to figure 7.1.1 for location of the irtual well . 
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Figure 7.1.1: Base map showing th location of the fourteen vi1iual well s and five cro -
sections. 
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7.2 Ba in ub idence Analysis 

The Wagwater Trough xhibit a thre -pha ub id nee hi tory: an earl) pha e 

of fault mechanical ubsidence (66 Ma - 51 Ma). a econd pha e of wide pread thermal 

ub idence (51 Ma - I 0 Ma), and a period of negati e ubsidence or hortening ( 10 Ma -

Present). Clastic depo ition i a sociat d with the fault mechanical p riod \ hich include 

the Wagwater and Richmond Formation . The Yellow and White Lime ton Group w r 

depo ited during the thermal sub idence period. Due to negative ub idence since the 

Middle Miocene, shortening and uplift ha exposed much of the edirnent to ero ion. 

Modeling tectonic subsidence in Ba inMod 1-D yield an under tanding of ba in 

ub idence and help calculate There are three major tag oft ctonic ub idence in 

the Wagwater Trough: 66-51 Ma fault mechanical ubsidence or rifting, 5 l -10 Ma 

thermal sub idence or drifting, and 10-0 Ma negative subsidence or uplift. Beta can only 

be calculated for the periods of fault mechanical tectonic ub idence and negati e 

tectonic sub idence. Becau e thermal tectonic ubsidence cover a long period of time 

with relatively low rate of tectonic ub idence, a calculated B would be inaccurate. wa 

calculated using the three method pre iou ly mentioned ( 1-0. 2-D. and 3-D) for the 

period of fault mechanical tectonic ub idence from 66-51 Ma and negati e ub iden c 

from 10-0 Ma. 

Table 7.2.1 how calculated b ta from model d t ctonic ubsidcnce ( 1-D) for 

each irtual ell. i generally greater in well clo r to the outlw:c t along the ba. in 

bounding fault h re ub idence i greater. B ta cal ulated u ing the 1-D m thod 

average 1.53 for the period of fault mechanical tectoni sub idence and 0.66 for th 

periodofnegative ub idence. 
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Beta 66-51 Ma 
(Fault Mechanica l Beta 10-0 Ma 

Well# Tectonic Subsidence) (Negative Subsidence) 
VW-1 1.31 0.80 
VW-2 1.24 0.77 
VW-3 1.55 0.70 
VW-4 1.19 0.96 
VW-5 2.34 0.24 
VW-6 1.14 0.91 
VW-7 1.37 0.74 
VW-8 1.93 0.41 
VW-9 1.21 0.81 
VW-10 1.30 0.74 
VW-11 1.77 0.54 
VW-1 2 1.29 0.69 
VW-13 2.32 0.29 
VW-14 1.46 0.58 
Average: 1.53 0.66 

Ta ble 7.2.l: Betas calculated using tectonic sub idence in each virtual well (l-D). The 
average for the period of fault-mechanical subsidence (66 -57 Ma) is 1 .53. Thi s means 
that the bas in deformed to be one and one half time longer than ini t iall y. The average 
for up lift (10-0 Ma) is 0.66 , meaning that the bas in shortened by one third. 

Table 7.2.2 shows betas calcul ated from the change in modeled tectoni c extension 

along faults (2-D) fo r each cross-section. Beta calculated using the 2-D method average 

1.42 fo r the peri od of fau lt mechanical tectoni c ub idence and 0.86 fo r the period of 

negati ve subsidence . 

Cross-section Beta 66-51 Ma Beta 10-0 Ma 
E-W 1 1.30 0.85 
E-W 2 1.28 0.91 
E-W 3 1.50 0.71 
N-5 1 1.55 0.85 
N-S 2 1.47 0.98 
Average: 1.42 0.86 

Table 7.2.2: Betas calcul ated using the change in cro - ectiona l length (2-D). 
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Table 7.2.3 hows betas calculated from the change in modeled ba in volume (3 -

D) for the basin. Betas calculated using the 3-D method are 1.66 for the period of fault 

mechanical tectonic subsidence and 0.81 for the period of negati ve ub idence. 

Beta 66-51 Ma Beta 10-0 Ma 
Basinwide (3-D} 1.66 0 .81 

Table 7.2.3: Betas calculated using the change in basin vo lume (3 -D). 

The average betas calculated using the 1-D and 3-D methods agree well with each 

other; however the betas calculated using the 2-D methods are slightly lower. This is 

likely due to the fact that the cross-sections are not perpendicular to the rifting axis in the 

basin (Figure 7.2.16). It should also be assumed that the beta calculations have implicit 

uncertainty owing to lack of knowledge concerning the bounding fault trajectories and to 

the complications of simple versus pure regional hear. 

Figures 7.2.1 to 7.2.14 show the tectonic ubsidence history modeled in each 

virtual well. A ll of the virtual wells exhibit three tages in their tectonic subsidence 

history: fault mechanical tectonic subsidence (66-51 Ma) , thermal tectonic subsidence 

(51 -1 0 Ma), and negative tectonic subsidence (10-0 Ma). Well located closer to the 

major basin bounding fault in the southwest exhib it greater fault mechanical tectonic 

subsidences and negative subsidences. 
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Figure 7.2.15 to 7.2.21 are a nc of tructural contour map of elevation of the 

contact between the Me ozoic ba ement and Paleogene sediment in meter ub ea \\ith 

cro s- ection E-W 2 and -S 1. Th e map and cro s- ection demon tratc the 

development of the basin at the major periods of change. 

At 66 Ma the rifting in the trough was ju t commencing. Thi period of time 

repr ents the unconformity between the Mesozoic Rock of the region and Ginger River 

Member deposited in the Wagwater Trough. Figure 7.2.15 is a map and two cro -

sections E-W 2 and -S 1 showing structural depth to basement in meters sub ea at 66 

Ma. Elevation i currently zero, becau e the figure represents the period ju t before 

rifting. 

From 66 Ma to 63.6 Ma the ba in initiated fault mechanical subsidence as a half 

graben with northeast to outhwest exten ion owing to imple dextral hear in a relea ing 

bend along the eptentiornal-Orient-Swan-Motagua, Duanvale, and Plantain Garden-

way fault zone . During this period, the Ginger River Member of the Wagwat r 

Formation wa depo ited as ubaerial al luvial fan conglomerate shed from the outhwe t 

Cretaceou inlier. Figure 7.2.16 i a map and two cro - ection 

hawing tructural depth to ba ement in meter sub ca at 63 .6 Ma. 

-W 2 and 

From 63.6 Ma to 63 Ma, the ba in continued fault mechanical ub id nee a a half 

graben with northea t to outhwe t extension owing to imple dextral hear in a relea ing 

bend along the ept ntiornal-Orient- v an-Motagua, Duanvale, and Plantain Garden-

wa fault zon . Thi p riod mark a tran gre ion of eawat r into the ba in, and th' 

Pcncar Ri er Mernb r of the Wag ater Formation ' a dcpo ited a deltaic and tone. 

and conglomerate hed from the outJ1, e t retaccou inlier. figure 7.2.17 i a map and 

I 0'1 



two cro - ection E-W 2 and 

ub ea at 63 Ma. 

1 howing tructural depth to ba ement tn m ter 

From 63 Ma to 57 Ma, the basin continued fault mechanical ubsidence a a half 

graben. However, toward the end of thi period, ubsidence began in the north a \N 11. 

There wa a brief marine transgression during the Pencar River time (63.6 - 63 Ma). Thi 

wa then followed by a marine regression near the end of Pencar River time, and the Dry 

River Member of the Wagwater Formation was deposited as subaerial alluvial fan and 

fan-delta conglomerates shed from the outhwest Cretaceou inlier. Figure 7.2.18 i a 

map and two cross-sections E-W 2 and -S 1 showing structural depth to ba ement in 

meter sub ea at 57 Ma. 

From 57 Ma to 51 Ma, the basin continued fault mechanical ubsidence. During 

this period, subsidence continued throughout th region and the Yallah - ilver Hill Fault 

Zone activated as westward-dipping normal fault . A tran gression of eawater during 

this period produced sediments in the Richmond formation as delta , fan-delta , marine 

shelf, and marine lope and tone, shale, and conglom rate depo it . Figure 7.2.19 i a 

map and two cro - ections E-W 2 and 

m ter subsea at 51 Ma. 

1 hawing structural depth to ba emcnt in 

From 51 Ma to 10 Ma. the ba in c a cd fault mechanical ub idence and thermal 

tectonic ubsidence became th main drive for ba in ub id nee. During thi period. th 

Yellow and White Lime tone Group were depo ited a d p v\atcr h If bank and lope 

dep it . Figure 7.2.20 i a map and t o era - ection E- 2 and hO\\ing 

tructural depth to ba ement in met r ub ea at 10 Ma. 
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From 1 O Ma to 0 Ma. the basin cea ed ub idence and uplift and hortening. \\ ith 

a beta of 0.81, occurred along the ba in faults. Ero ion remO\'ed the majority of the 

Yellow and White Limestone Groups and expos d the member of the Richmond and 

Wagwater Formation at the urface. Figure 7.2.21 i a map and two cro - ection -W 

2 and - 1 showing tructural depth to basement in meter ubsea at pre ent. 

Mann and Burke (1990) pre ented a qualitati e model of basin de lopment and 

rifting history (Figure 3.2.2). They predicted that the basin developed originally as a half-

graben that rifted along the Wagwater Fault Zone on the we t ide of the ba in. 

Compari on between the their two dim n ional qualitative model and the three 

dimensional quantitative model in thi tudy hows that a initial ba in ub idenc 

occurred, a half-graben developed along faults to the southwest and filled with alluvial 

deposit . As rifting continued into the Early Eocene, ba in-wide ub idence and marine 

tran gres ion allowed depo ition of sediments over a larger ar a and tran portation 

farther away from the original Me ozoic source. 
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Figure 7.2.22 is a map of the major fault in the northern Wagwater Trough with 

active age ranges. In general, the north northwest to south southeast triking faults that 

bound the western side of the Trough formed first during the Paleocene as normal fault 

activated as a result of dextral shear. During the Early Eocene, the Yall ahs-Silver Hill 

fault zone activated. In the M iddle M iocene, the east-west striking faults activated with 

s1111 tral strike-slip motion. 
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Figure 7.2.22: Map of the major fau lts in the northern Wagwater Trough with acti e ag 
range . 
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Figure 7.2.23: Bouguer Anomal Map sup rimposed on the pre ent-day ba ement 
tructure map. 

A a form of validation, the Bougu r Anomal can be compared to the pre ent-

day bas ment tructure map (Figure 7.2.23). The high valu for the Bouguer nomal 

trend with the highs in the ba ement tructure. Hioher value I:> trend northwe t to 

outhea t. Th i help upport th accuracy of the ba ment tructure map. 

In ummar , it i proposed that the e olution and development of the Wagwater 

Trough i cau ed by regional implc h ar along the eptentiornal-Ori nt- wan- otagua, 

Duan ale, and Plantain Garden- wa fault zon . of the ba in \Ya cau db) 
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dextraJ shear along a releasing bend during the Paleocene and Eocene. By the Middle 

Miocene, motion along the fault zone had changed to sinistral simple shear which caused 

shortening along a restraining bend . 
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7.3 Total Organic Carbon Content 

Initial total organic carbon content (TO ) has not been mea ur d for the 

formation in the Wagwat r Trough. To e timate these value a correlation between 

edim ntation rat and TOC developed by John on-fbach (1982) 'Wa u ed. I lis m thod 

show a direct relation hip between mea ur d TOC valu and edim ntation rate 1n 

cla tic ediment (Figure 7.3.1 ). Thi relation hip exi t because increa ing dimentation 

rate increases burial rate and incr ases preservation of organic material (Metwalli and 

Pigott, 2005) Using Johnson-Ibach' method and a suming that cla tic deposition in the 

Wagwater Trough wa continuous, edimentation rate were calculated and con erted to 

initial TOC value u ing the graph in figure 7.3.1. sing the graph in figure 7.3.1, 

average sed imentation rate i converted to TOC. The Richmond Road ide Member would 

have a TOC of 6.0 %. 
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SEDIMENTAT ION RATE (m/M.Y.) 

Figure 7.3.1: Graph ho ing the correlation between edimentation rat to total organic 
C content increa c directly with edimentation rate (fr m 

alculatcd geologic unit in thi tudy are marked b ' red cro 
carbon c ntent (T ) . 
.J hn on-Ibach. 1982). 
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Average Total Organic 
Formation Member edimentation 

Rate (m/M.Y :l Carbon (0/o) 

Ginger River 1051 10 

Wagwater Pencar River 621 7 

Dry River 276 5 

Port Maria 389 6 

Richmond Roadside/Langley 325 6 

!ban Beds 589 7 

Yellov. Lime tone Font Hill 37 1.5 

Table 7.3.1: Estimated TOC content value fo r the different ed imentary unit . They 
were determined u ing the correlation of sed imentation rate to TOC (hgur 6.3.1 ). 

7.4 Heat Flow 

urrentl the hi ghe t heat flow in the orthern Caribbean region is 2.25 H. . . at 

the Mid-Cayman pr ad ing cent r. The heat flow declines to about 1.4 H.F. . off the 

north coa t of Jamaica (Perry, 1984). O' ea] (1984) calculated the heat flow from the 

th rmaJ gradient u ing the Fourier equation in Petroleum orporation of Jamaica· 

Wind or # 1 well to be 0.96 H.F. . ince there are no heat flow mea urement vvithin the 

Wagwater Trough. the two heat now value ( 1.4 and 0.96 I I.F . .) wer u ed a end 

member to bracket and con train the heat now model for the Wagv:ater Trough. mg 

th method de ribcd earlier, pal o-heat flo'v'v data were calculated u ing b ta calculated 

u ing th 3-0 m thod and th pre ent-day h at flovv ( 1.4 and 0.96 II.F. .). Thr c heat 

n 'v\ C ndition W re LI cd:. rifting heat now condition \vith pre -cnt-day heat flow at 
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0.96 H.F. (Rifting 0.96 Model ), rifting heat flow conditions with pre ent-day heat flO\\ 

at 1.4 H.F. (Rifting 1.4 Models), and teady-state beat flow condition . It i not likely 

that heat flow remained constant throughout basin however, teady-state 

conditions were used to create model for comparison. 
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Figure 7.4.1: Modeled teady-state (constant) heat flow for VW-1. All other virtual we ll 
in this tudy exhibit the same heat flow in steady-state conditions. 
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Figure 7.4.2: Modeled Heat Oow for rifting 0.96 and 1.4 condition for VW-1. II at flO\ 
greater in the rifting 1 .4 model than the 0.96 model. 
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Figure 7.4.3: Modeled Heat fl ow for rift ing 0.96 and 1.4 cond itions fo r VW-2 . 
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Figure 7.4.4: Mod led Heat flow for rifting 0.96 and 1.4 condition for VW-3. 
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Figure 7.4.5: Model d Heat flow for rifting 0.96 and J ..+ conditi n for VW-4. 
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Figure 7.4.6: Modeled H at fl ow for rifting 0.96 and 1.4 condi tion 
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Figure 7.4.7: Modeled Heat flow for rifting 0.96 and ] .4 condition for VW-6 . 
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Figure 7.4.8: Model d H at flow for rifting 0.96 and 1.4 condition for V -7 . 
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Figure 7.4.9: Modeled H at flow for rifting 0.96 and I .4 condition fo r YW-8 . 
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Figure 7.4.10: Modeled H at flow for rifting 0.96 and 1.4 condition for VW-9 . 
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Figure 7.4.11: Modeled Heat flow for rifting 0.96 and 1.4 condition for VW-10. 
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Figure 7.4.12: Mod led Heat f1o fo r rifting 0.96 and 1.4 condition for V -11. 
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Figure 7.4.13: Mod led Heat flow for rifting 0.96 and 1.4 condition for VW-12. 
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Figure 7.4.14 : Modeled Heat flow for rifting 0.96 and 1.4 condition for VW-J '"'. 

I '"' 1 



Rifting 0.96 Model V\'.'-14 R96 mod 

VW-14 

1 4 

1 3 
::> u. 
I 
s 12 0 u:: 
-ro 
Q) 

I 
11 

0 .9 
60 50 4-0 30 20 10 

O 1-- Hoost Fl.,...· I 
Age (my) 

Rifting 1 .4 Model VW-14 R1 4.mod 

VW-14 

21 Eoc O il Mio Pll I 

2 

1 9 

::> \ LL 
I 1 B 

3: 
0 u:: 
-ro 1 7 \ Q) 
I 

16 \ 15 

\ Erc--04'0 

1 4 

60 40 JO 20 10 
O 1-- Hest Flow I 

Age (my) 

Figure 7.4.15: Modeled Heat fl ow for ri fting 0.96 and 1.4 co ndi tion fo r VW-1 4. 



In ummar , whil heat flow in the teady- tate condition remain con tant 

throughout ba in histor , heat flow in rifting condition doe not remain con tant. mce 

there a active rifting in the ba in, it can be a urned that rifting heat flo'v\ condition 

are a better model for the Wagwater Trough. Rifting heat flow v a calculat d in 

BasinMod 1-D using th beta calculated using th 3-D method and two pre ent-day heat 

flows (0.96 H.F.U. and 1.4 H.F.U.) . Th heat flow curves for the rifting 0.96 condition 

are lower than the curves for the rifting I .4 model. 

7.5 Maturi ty 

The primary potential source rock for this tudy are th hale layer inter-bedded 

with and tone layer in the Richmond Road ide Formation. ource rock volume and 

quality (e.g. TOC. %R0• and kerogen type) of the e formation were analyzed u ing both 

1-D and 2-D ba in modeling oftware. In each well, a maturit analy i v a conducted 

eparately for three ca e : stead tate heat flow. rifting h at flow with pre nt-day h at 

flow at 0.96 H.F. .. and rifting heat flow with pre ent-da h at now at 1.4 1 I. F. . 

Among anou methods red by ba in modeling oftware. maturity YR LL L wa 

cho n for thi anal i . VR LL L i a t chnique propo ed by La\vrence Li rmorc 

ational Laboratorie (LL L). u ing itrinit r Oectance (Y R) toe aluate th maturation 

f ource rock , with the primary a umption that VR i related to the compo ition of 

kcrogen, and that maturation reaction are the function of time. tcmperatur . and 

pre ure. m hich pre ure i a urned to be great en ugh o that only temperature and 

tim could ha direct effi ct on uch reaction . The outpuL of the c calculations are 

di pla cd in the graph of tratigraph ver u time or depth. 
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Comparison of steady-state heat flow conditions in figure 7.5.1 to rifting heat 

flow 0.96 conditions in figure 7.5.2 show that there is ery little differ nc in the 

maturity of the rock units, and therefore , steady-state heat flow condition will be 

assumed similar to rifting heat flow 0.96 conditions. Re ults indicate that the timing and 

level of maturation in the cases of rifting heat flow model (present-day: 0.96 H.F. .) to 

be lower than the rifting heat flow model (present-day: 1.4 H.F. .). Thi i directly 

related to the higher heat flow curves for the rifting 1.4 cases than the 0. 96 case . 
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Figure 7.5.1: Burial Hi tory of VW-1 in steady- tate heat flow condition . Comparison 

of steady- tate heat flow conditions to rifting heat flow 0.96 condition in fi gur 7.5.2 

how that there i very little diffi rence in the maturity of th rock unit , and th r fo re, 

teady- tate conditions will not continued to be di played. 
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Ba inMod 2-D allow fo r a more complete maturity model to be generated 

because it models maturity for an area. The e two-dimen ional mod I are ho\vn in 

figure 7.5.16 through 7.5.25. Maturity results in 2-D are simil ar to 1-D result in that th 

rifting 1.4 heat flow conditions are more mature than the rifting 0.96 heat flov\· 

condition . 

In summary, maturity analysis ha shown that the thermal conditions were 

adequate for the Roadside Member of the Richmond Formation to have produced oil and 

gas in both rifting heat flow conditions. Rifting 1.4 heat flow conditions. however, have 

reach maturities greater than 2.6 % Ro in the deeper portions of the Road ide Member of 

the Richmond Formation; whereas, rifting 0.96 heat flow condition have reached 

maturities no greater than 2.6 %Ro. 
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7.6 Migra tion, Accumulation, an d Traps 

Though there ha been no petroleum exploration in the Wag\vatcr Trough. it i 

pos ible to calculate its hypothetical exploration potential u 111g the data available. 

H drocarbon migration occurs given the availability of one or more of the follo\\ing 

driving forces (Metwalli and Pigott. 2005): buoyancy or the upward force that pore wat r 

exerts on the less dense hydrocarbon (oil and ga ); compaction or the los of pore fluid 

as a re ult of the reduction in pore space a gram are packed closer together; 

hydrodynamic (water drive) or the flow of pore fluid through a carrier bed; diffu i e or 

particle of hydrocarbon (liquid or gas) intermingling a a re ult of their pontan ou 

movement cau ed by thermal agitation. Hydrocarbon migration i divided into two 

pha e : (1) primary migration, often referred to as fluid expul ion (i.e. the movem nt of 

g nerated hydrocarbon out of the source rock ). and (2) econdary migration (i.e. the 

movement of fluid into the re ervoir ). 

Primary Migration (fluid expulsion). For primary migration. compaction and 

buoyancy are likely the major driving force in the study. A edimcntation progre e . 

gra111 in underlying layers are packed more clo ely owing to the o erlying load. re ulting 

in th lo s of fluid in th pore spac . For thi rea on. hydrocarbon . which arc le den e 

than the ub urface water and urrounding rock, are th fir t to be driven out f the 

ourc rock . 

For hydrocarbon originating from kcrogen Ba in od 1-D u three method - f 

expul ion: (1) correlation of cxpul ion fficienC) for oil and ga '" ith cal ulated vitrinite 

rcnectance. (2) correlation of expul ion efficicnc with tran fi rmation ratio. and C') 

por it aturation. 
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The imple t method. the expul ion efficiency. i a calculation of th amount r 

g nerated hydrocarbon that are expelled from the ource rock according to percentage · 

a igned to different maturity alues (%Ro) for oil and gas. At a given vitrinite value, the 

expulsion efficiency i multiplied by the amount of hydrocarbon g nerated to get the 

amount expelled. The poro ity saturation approach e timate how much of the poro ity 

will be saturated with oil before expul ion begins. porosity thre hold i a igned for 

each ource rock formation. Once the porosity ha been saturated to this thre hold, 

hydrocarbons generated beyond this threshold are expelled. For thi tudy, aturation 

threshold is assigned a default BasinMod 1-0 value of 0.2. 

Figure 7.6.1 to 7.6.15 show the hypothetical timing and quantity of in itu 

production and expulsion of hydrocarbon for the fourteen virtual wells in this tudy. The 

arlie t in situ oil in the Richmond formation in the rifting 1.4 H.F. . condition 

commenced at 52 Ma, while that in the rifting 0.96 H.F.U. condition commenced at 49 

Ma. Fir t expulsion time wa 50 Ma for rifting 1.4 H.F. . condition and 41 Ma for the 

rifting 0.96 H.F. . condition . The timing of hydrocarbon production is directly related 

to h at flow becau e rifting heat flow 1.4 condition demon trate higher heat flow than 

rifting heat flow 0.96 conditions. 

The poro ity reduction peaks for figure 7.6.1 to 7.6.15 imply potential advection 

rate and time of extruded water from compacting ediment . The e water may or may 

not have the potential to carry or pu h hydrocarbon through migration pathwa . 

Th refore, the earl high peak (57 - 53 Ma) and the ccondary p ak (5" - Ma) \vould 

ha e little effect, but the final flat peak (50 - I 0 Ma) would have the grcate t potential 

impact. 
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Figure 7.6.10: Hypoth tical total hydrocarbon er u time graph in VW-9 for rifting hea t 
flow conditions with pre ent-day h at flow at 0.96 H.F. . and 1.4 H.F. 
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Figure 7.6.11: H pothetical total hydrocarbon vers us time graph in VW-10 for rifting 
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Figure 7.6.12: Hypothetica l total hydrocarbon ver u time graph in VW-11 for rifting 
h at flow condition with pre ent-day heat flow at 0.96 H.F. . and 1.4 H.F. 
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Figure 7.6.15: 11 pothetical total hydrocarbon v rsu time graph in VW-1 4 fo r rifting 
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econdary Migration. econdary migration. hov.;e\·er. i · much more complex 

than primary migration and might involve multiple driving force . uch a · buo;anc;. 

compaction. hydrod namic. and diffu i e drive (Metwalli and Pigott. 200-). 

According to lithological propertie . the Road id Member of th Richmond 

Formation is the mo t likely candidat for a sourc . re e1 oir. and al. It contain long 
'-' 

andstone len es inter-bedded with shale layers. The sand tone bed would be the 

re ervoir, and the shale beds would be the ource rock and eal. ome a sumption are 

made to simplify the modeling proces : (1) the sand tone bed are continuou allowing 

hydrocarbon to flow until trapped structurall y, (2) becau e the and tone bed are 

assumed continuous, hydrocarbons can only be trapped structurall y and no tratit:>raphic 

traps are modeled, and (3) the horizontal permeability of the Road ide Memb r i l 00 md 

and is constant throughout the basin and formation. 

In order to effectively model h drocarbon flow in the Wagwater trough. two end 

memb r of the model were creat d: (1) flow wh re fault arc et a impcrm able 

boundarie so that the flow only occur within the pore of the formation and (2) flov. 

where fau lts are et a highly permeabl and do not inhibit the flow of hydrocarbon . F r 

ca e I the fault permeability wa t to 1 md. and ca e II the fault perm abilit wa et t 

l 000 md with the exception of the bounding fault to the outhwe t where permeability 

wa et to 1 md for both ca e . 

Trap for hydrocarbon accumulation w re model d and located \\here there are 

clo urc on tructural high . ln the figure . trap are hov,, in gray fi r n n-hydr carb n 

filled trap and green or red for oil and ga fill d trap re pectivcly. ln ca c I trap al ng 
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fault boundarie are the mo t common trapping mechani m: hov, eve r, ca II u e 

perm eabl fault and all the traps are four-way clo ures on tructural hi gh or anti cline . 

Case I: Impermeable Faults 

Horizontal Permeab1lity/Ero/8 Flow Output=FlowModel bfl @ O (my) 
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Figure 7.6.16: (Ca e I) For modeling purpo es horizontal permeability of th Road ide 
Member of the Richmond Formation i as urned to be 100 md and con tant through ut 
the basin except for the fau lts. In this ca e the faults are modeled at 1 md. Thi will create 
a modeled case where faults baJTiers for oil and gas flow and con train flow within the 
individual fault blocks. 
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Elevat1on/Ero/BFlow Output=Flo ¥Model bfl @ 0 (my) 
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Figure 7.6. 17: (Case I) Pos ible oil trap along impermeabl fault zone and four-way 
clo ur s with migration pathways in the Roadside Member of th Richmond Formation at 
present day. Fau lts are assumed impermeable (1 md) . Migration line £ roil are 
di pla ed a gr en arrow while accumulated oil in trap i di pla ed in green. nfill d 
trap are displayed in grey. ote that the flows are re tricted within th ir r p ctive fault 
block . Most of the oil generation and accumulation occur in the tern part f the 
tudy ar a near the Wagwat r Fault. ot enough burial occurred in the a t rn half to 

generate a ignificant amount of oil. 
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Gas TrapslEro/BFlow Output=FlowModel bfl@ 0 (my) 
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Figure 7.6.18: (Ca e I) Possible gas traps along impermeabl fault zone and four-wa 
closures with migration pathways in the Road ide Member of the Richmond Formation at 
pre ent day. Fau lts are assumed imperm able ( 1 md). Migration line for ga ar 
disp layed a red arrows while accumulated ga in trap is displayed in red. nfilled trap 
are di played hown in grey. ote that the flow are re tricted within th ir re p ctive 
fau lt blocks. Ga generation and migrat ion trends are similar to the oil from figure 7.6.17 . 
Howe er there was more migration of gas in into the ast rn region than oil. 
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In ca e I. the permeability f the fa ult i modeled at l md. Thi . create s a modeled 

ca e where fault baITi r con train flow within the individual fa ult block . The fl O\\ of 

h drocarbons is re tricted and confined within the individual fault block . o t of the oil 

g neration and accumulation occur in the we tern part of the tudy area n ar the 

Wagwater Fault. Not enough burial occurred in the ea t rn half to generate a igni ficant 

amount of oil. Gas generation and migration trend are imilar to the oil. Howe r ther 

was more migration of ga in into the ea tern region than oil. 

In case IL the fault are a sumed to have a permeability of 1000 md. Thi will 

create a model ca e where all the flow i free, and the flows are not re tricted within their 

re pective fault block , and hydrocarbons are al low d to flow freely aero the fault . 

Because faults are a urned permeable in this modeL there are fewer trap than the 

permeable model (Case I). 
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Ca e II: Permeable Fault 

Horizontal Permeabtl rty/Ero/BFlow Output=FlowModelPerm bfl @ 0 (my) 
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Figure 7.6.19: (Ca e II) For modeling purpo cs horizontal permeability of the Road id 
Member of the Richmond Formation i a urned to be I 00 md and con tant throughout 
th ba in exc pt for th faults. In this ca e the fau lt ar as um d to ha ea perm ability 
of I 000 md. Thi wil l create a model case wher all the flow i free a the mod I doe not 
identi[ fau lt a a hindrance to flow. 
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Elevat1on/Ero/8 Flow Output=FlowModelPerm bfl@ 0 (my) 
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Figure 7.6.20: (Case II) Pos ible oil trap along four-way clo ur with migration 
pathways in the Road ide Member of the Richmond Formation at pr ent day. With the 
exception of the ba in bounding fault in the we t, fault are a urned permeabl ( 1000 
md). Migration lines for oil are di played a green arrow v hi! accumulated oil in trap 
i displayed in green . nfilled trap are di played in grey. ote that the flow are not 
re tricted within their respective fault block , and h drocarbon are allowed to now 
freely aero s the fault . Because faults are assumed permeable in thi model. th re are 
fewer trap than the permeable model (ca 1 ). 
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Figure 7.6.21: (Ca e II) Po ible ga trap along four-way clo ur s with migration 
pathway in the ocene Road ide Member of the Richmond Formation at pre ent day. 
Fault are a urned permeable ( 1000 md). Migration line for ga are di pla ed a red 
arrow while accumulated ga in traps is di played in red. nfill d trap are di pla ed in 
grey. ote that the flow are not re tricted within their re pecti e fault block . Then; ar 
fewer trap than the permeable model (ca e 1 ), becau the fault arc a urned to be 
permeable. 

After all i aid and done, there i a ignificant problem in the model. Ith ugh 

two end-member, all perm abl versus all imperm able fault , are u ed. there i alway 

the po ibilit of ome fault being permeable and oth r being imperm abl . and fault 

changing their p rmeabilit with time. l o Basin View u uall u e e1 m1 data t 

determine the depth of th unit urfa between w II . Without ci mi . \\hi h i the 

ca in thi tud , tructur and flow calculation ar made onl ' u ing the "" 11 a datL 
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points. extrapolating ev rything in between. Therefore the e model are likely inaccurate 

and should be u ed for a preliminary studies only. 
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8. QUALITATIVE RISK ASSESSME T OF THE WAGW ATER TROUGH 

Ri k analy i u es a qualitativ input to produce an arithmetic output. Petroleum 

ystem criticals are assessed on a scale of one to ten. Ten repre ent an excel I nt or 

favorable critical wh ile one represent a poor or unfavorable critical. fter performing a 

modeled basin analysis, a risk analy is for prospects in the basin can be performed. 

Metwalli and Pigott (2005) divided a petroleum ystem into ten sy tern critical to 

effectively perform a risk analysis of the petroleum ystem. They are source rock 

quantity, source rock quality, ource rock maturity, migration pathway connectivity. 

migration pathway permeability, migration pathway charge due to hydrocarbon buo anc 

and hydrodynamic drive, re ervoir vo lume, reservoir quality due to poro it and 

permeability condition , eal potential including strength and clo ure, and timing. Table 

7.3 lists each of these criticals with an a igned value between 1 and I 0. The e value are 

decided upon using data from the ba in analys is model. 

Petroleum System Criticals Risk Value 
Source Rock Critical Quantity 4 

Quality 4 
Maturity 9 

Migrat ion Criticals Pathway Connectivity ..., 

Permeability ..., 
.) 

Charge s 
Re ervoir Seal Criticals Volume 5 

Quality (Porosity and Permeabi lity) 4 
Seal (Integrity and Clo ur ) 4 

Window Tim ing 3 
Arithmetic Total 44 

Table 8.2: A qualitative a essment of the favorabilit of the Wagwater petrol um 
tern . The ten petroleum system critical are a igned a alue that rat their 

effccti en a. Jue of t n m an they are ex tremely cffi cti ve while a valu of one 
mean th y are not ffective at al I. 
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umming the ri k alue for the t 11 petroleum ' tem critical. gi \ e a :core or-+-+ 
out of a po ible 100. smg the range in table 8.3. the petroleum ) ' tem in the 

Wagwater Trough i determined to ha e high ri k for economical xploration. 

Arithmetic Total I nterJ>_reta ti on 
10 - 29 Very High Risk (V ry Unfavorable) 

30-49 Risk _{_U nfavorablel 
50 - 69 Moderate Risk ( utral) 

70 - 89 Some Risk (Favorable) 

90 - I 00 Ver:y Low Risk (Very Favorabl ) 

Table 8.3: Interpretation of the arithmetic total determined from table 7.2. The petroleum 
y tern of the Wagwater Trough ha an arithmetic total of 44. Thi categorize the tem 

as high ri k and unfavorable. 
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9. SUMMARY OF PETROLEUM SYSTEM ANALYSIS 

The tectonic subsidence analyse of 14 virtual well onshore. Jamaica reveal one fault 

mechanical epi ode and one uplift or shortening episode: 66-51 Ma I 1.66 and 10-0 Ma 

I 0.81 9.1). The elastic sediments of the Wagwater and Richmond Formation 

were deposited from 66-51 Ma during a period of fault mechanical tectonic ubsid nee. 

The carbonate formations of the Yellow and White Limestone Group were deposited 

from 51 -10 Ma during a period of thermal tectonic subsidence. Much of the sediments of 

the Wagwater Trough have been eroded during a period of uplift from 10 Ma to pre ent. 
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Figure 9.1: Tectonic subsidence and tectonic subsidence rate from VW-14. hawing the 
t ctonic episodes and b tas tlu·ough time. 
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In thi tud). th hal layer of the Eocene Roadside Member of the Richmond 

Formation has been identified a potential primary ource rock . ource rock \'Olume and 

quality (e.g. TOC and kerogen typ ) of the formation \.vere anal yLed u ing both 1-0 and 

2-D ba in modeling software. In each well, maturity anal y i \.Va conducted paratel) 

for three ca e : teady-state heat flow, rifting heat now with pre nt-da) heat flow of 

0.96. and rifting heat flow with present-day heat flow of 1.4. The two rifting ca wer 

created as end members for th actual ba in heat flow. with the teady- tate heat flovv· 

case being very similar to the rifting heat flow with pre ent-day heat flow of 0.96 ca e. 

Due to the higher present-day heat flow, the rifting ca e of 1.4 H.F. . ha ourc ro k 

are more mature than the 0.96 H.F. . rifting case. 

The first in situ oil for the rifting 1.4 H.F. . ca e commenced at 52 Ma, while that 

for the rifting 0.96 H.F. . ca e is 49 Ma. Fir t expulsion tim wa 50 Ma for rifting 1.4 

H.F. . case and was 41 Ma for the rifting 0. 96 H.F. . ca e. 

In summary, four ca e (Rifting 1.4 H.F. . vs. Rifting 0.96 I I.F.U. Heat Flo\\. 

Case and Impermeable and Permeable Faults Case ) which most lik ly bound the 

unc rtaint of the ba in tudy hav been pre ented . The lack of vitrinite r flectance do 

not allow the two heat flow models to be geo alidated. Therefore. both rifting condition 

mu t b u ed to bracket uncertaint . Without the know! dge of fault permeabilitic . 

neither ca e (permeable or impermeable) can be geovalidated. Therefore. both perm ab! 

and impermeable fault mod ls mu t be u ed to brack t uncertaint) . 
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J 0. CONCLUSIONS 

1. With r spect to tectonic subsidence. the Wagwater Trough ha one fault 

mechanical tectonic subsidence period (66-51 Ma I 1.66 and one uplift or 

shortening period (10-0 Ma I 0.81 

2. Average betas calculated using the three method (1-D, 2-D. and 3-D) are imilar. 

The 2-D method calculated betas that were slightly lower than the 1-D and 3-D 

methods because the cross-sections are at oblique angle to the axi of maximum 

extension and maximum shortening. 

3. Rifting initiated as a result of dextral hear during the Early Paleocene (Wagwater 

time) on the southwest side of the northern Wagwater Trough as the hanging wal I 

of the Wagwater Fault went down toward the nor1hea t. Movement on the fault 

continued through the Early Eocene (Richmond time). The Yallahs- ii er Hill 

Fault activated on the east side of the Wagwater Trough during the occne a its 

hanging wall went down to the west. 

4. Tectonic hortening, due to a rever al in the trike- lip tectonic from dextral to 

sinistral hear, has caused negative subsidence along a re training b nd. Thi ha 

exposed the basin rocks to ero ion. Most of orthern Wagwater Trough ha 

exposures of the Richmond Formation at the urface. 

5. Maturity of the potential source rocks wa modeled for teady- tate and two 

rifting heat flow case : present-day heat flow at 0.96 H.F. . and pr ent-da heat 

fl.ow at 1.4 H.F.U. The two rifting heat flow ca e brack t the true heat flow 

models in the basin, with the st ad y-state heat flow case to create model s er 

similar to the rifting heat flow ca e with pre ent-day heat f1ow at 0.96 H.F. . 
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6. Th Richmond Formation i in both the oil and gas windov.·s for both rifting h at 

flow cases, and it ha likely produced both oil and gas. 

7. The Richmond Formation has the best re ervoir propertie in the Wagwater 

Trough due to its sandstone lithology and good sorting; however. cementation ha 

significantly reduced the porosity (less that 5% effective porosity). 

8. The migration and accumulation of hydrocarbon is direct! relat d to the 

permeability of faults. The impermeable fault model confine hydrocarbon 

migration within the individual fault blocks into many mostly three-way and two-

way fault bounded closures. The permeable fault model allows the hydrocarbons 

to migrate through faults and into a few four-way structural closures. 

9. The first in situ oil in the Richmond formation in the rifting 1.4 H.F. U. case 

commenced at 52 Ma, while that in the rifting 0.96 H.F.U. ca e is 49 Ma. Fir t 

expulsion time was 50 Ma for rifting 1.4 H.F. . case and was 41 Ma for the 

rifting 0.96 H.F. . case. 

10. The risk involved in exploring the Wagwater Trough for hydrocarbon ery 

high, scoring 45 out of 100. It is likely that most of the hydrocarbons in the 

Richmond Formation have escaped to the surface, and xploration is limited to 

the deeper zones only. 

11. This model of the 3-D evolution of the Cenozoic Wagwater Trough should erve 

only a a preliminary basin tudy. ln order to more accurately model the 3-D heat 

flow, hydrocarbon migration, and hydrocarbon volume the fol lowing i 

warrant d: borehole t mperature, source rock geochemical, and fault permeabilit 

measurements, and for a p rfect world 3-D sei mic. 
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FORMAT 

I. Location of Field ta ti on. 

APPE DIX B 

FIELD STATIONS 

II. Formation(s) and member( ) name. 

III. Orientation of formation(s) and feature( ) 

IV. Li tho logic and Outcrop de cription 

V. ample(s) collected 

VI. Photograph 

FIELD STATIONS 

T TIO 020 

I. Highwa A3 road cut ( orth oCBloV\ing Point), 18 2"' .217 W76 53 .T,8 

II. Yellow Lime tone Formation. Font Hill ember 
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T TIO 021 

I. We t aero the bay from Blowing Point, N 18 22.815 W76 53 .668 

II. Richmond Formation, Road ide Member 

IV. About 50 meters of interbedded sand and shale. Sand tone la ers are lensoidal 

and have thicknesses up to about 3 meters 

VI. 

TATION 022 

I. Blowing Point (North of Port Maria), 18 22.780 W76 53.474 

TI. Richmond Formation, Port Maria Member 

III. orthea t Dip le than 20 degrees 

rv. Interb dded and tone · ith onglomerat . Conglomerate up to 9 meter thick. 

and ton lay r up t I met r thick. 
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T TIO 023 

I. Highway A3 east of White Hall, N18 17.870 W76 52.270 

II. Richmond Formation 

III. Bedding Strike: 312° Dip: 57° SW 

IV. 15 meters of inter-bedded sands and hale . Sand channel do not appear laterally 

continuous if greater than 6 inches thick. Sand layers increase in numbers and 

thickness up-section. 

V. Sample T-108 is part of a 2 ft thick Sandstone channel that i not laterally 

continuous. Sample T-2908 and T-3008 taken as well. 

VI. 

20'"' 



T TIO Q_4 

I. Highwa 3 a t of White HalL 18 17.463 W76 -1.877 

11. Richmond Formation 

IV. onglomerate 

T TIO 025 

I. Highway A3 ea t of Whit 1 all, 18 17.499 W76 -1.877 

Il. Richmond Formation 

Ill. B dding Strike: 296° Dip 7° S 

IV. 16 met rs of inter-bedd d and ton and hale layer . 

V. ample T-208 wa taken from center of 14 inch and ith ii tain . ample T-

I. 

308 was taken from a layer of bioturbat d sand and ilt. ample T-408 wa tak n 

from a andstone layer right on top ofT-308. ample T-508 i taken from a la er 

le than one cm of nodular carbonate rock. ample -608 i tak n from a 

ilt tone layer. 

_04 



TATIO 026 

I. Highwa A3 east of White Hall (near tation 025). 18 17.505 W76 51 .855 

II. Richmond Formation 

STATIO 027 

I. Highway A3 east of Albany, 18 17.722 W76 51.120 

II. Richmond Formation. Albany Member 

III. Dips slightly to the northwest 

IV. 7 meters of c1ast supported conglomerate. Cobble clasts vary in ize up to 15 

centimeters in diameter with the majority of clasts being 2 to 5 centimeter m 

diameter. The channels are an average of 1 to 2 met rs in thickne s which 

increases to the west. 

VI. 

_05 



T TI 029 

r. Beach uth of Robin Bay. 118 17.684 W76 47 .644 

II. Coa tal Lime tone 

IV. Beach of well- orted and well-r und d pebble with few cobble . Al o en here 

i coa ta! Jim stone with many fo ii including coral . 

STATION 030 

I. orth of Robins Bay, Nl8 19.004 W76 48.631 

II. Richmond Formation, Roadside Member 

TV. Inter-bedded and tone and hale with about 80% of the layer a and tone. 

TATIO 031 

I. orth of Robins Bay, NI 8 19.165 W76 48.398 

II. Likely Richmond Formation and oastal Limestone contact 

IlI. trike: 346 Dip: 20 

IV. on-lay red Lime ton uncomformibly o rlay a la ered cla tic unit. la ti 

I. 

unit contain carbonate and. on-lay red lime tone ha fO ii of coral and 

oth r re f organi m . 
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TATIO 038 

I. Town of Richmond, 18 14.481 W76 53 .434 

II. Richmond formation 

III. Strike: 144 Dip: 43 SW 

IV. Layer of pebble sized conglomerate overlays sandstone. 

V. Sample T-1008 taken of the sandstone. 

VI. 

STAT10 039 

1. 18 14.171 W76 52.608 

II. Richmond Formation, Road ide M mber 

1II. trike: 158 Dip : 12 W 

IV. Sandstone 



T TfO 040 

I. Road between Highgate and Orange JI ill. 18 .67-t W76 49.941 

II. Richmond Formation. Road ide ember 

III. trike: 186 Dip: 15 W 

IV. Sandstone bed vary 10 cm to 70 cm in thickness. and hale bed remain fairly 

con tant with a thickne of 6 centimeter . 

V. ample T-1108andT-1208taken. 

TATIO 041 

I. Road between Highgate and Orange Hill, 18 15.681 W76 49.925 

1 I. Richmond Formation, Roadside Member 

lll. Strike: 182 Dip: 50 W 

IV. Large and tone beds about 36 centimeter thick. 

TATTON 042 

I. Road between Highgate and Orange Hill, 18 15. 748 W76 49.800 

II. Richmond Formation. Road ide Member 

fV. Large and tone bed about 36 centim ter thick. 
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T TIO 043 

I. Road between Highgate and Orange Hill, 18 15 . 786 W76 49. 739 

IL Richmond Formation, Roadside Member 

III. Strike: 213 Dip: 36 W 

IV . 10 meters of sandstone beds varying from 15 - 30 centimeter in thickn s , int r-

bedded with less than 3 centimeters thick shale beds. 

V . Sample T-1308 taken of the sandstone. 

VI. 

_09 



TATIO 044 

I. Road between Highgate and Orange Hill, 18 15 .917 W76 49.617 

II. Richmond Formation, Roadside Member 

III. Strike: 320 Dip: 38 N 

IV . 60 meters of sandstone beds similar to station 043 . 

VI. 

2 10 



STATIO 045 

I. Road between Highgate and Orange Hill, 18 16.152 W76 49.578 

II . Richmond Formation, Roadside Member 

III. Strike: I 00 Dip: 10 W 

IV . Inter-bedded sandstone and shale. 

VI. 
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TATIO 046 

I. Road between Highgate and Orange Hill , N 18 16.275 W76 49. 33 1 

II . Richmond Formation, Roadside Member 

III. Strike: 094 Dip: 18 S 

IV. 10 meters of inter-bedded sandstone and shale 

VI. 

STATION 047 

I. Highway A3 west of Water Valley, Nl 8 17.311 W76 50.358 

II. Richmond Formation, Albany Member 

IV. Albany Conglomerate Bed 

STATION 048 

I. Highway A3 east of Albany, NJ 8 17.674 W76 51.000 

II . Richmond Formation, Albany Member 

IV . lbany Conglomerate Bed 

21 2 



T TIO 049 

I. Highway A3 at of Albany, 18 17.684 W76 51.213 

[J. Richmond Formation, Roadside Member 

III. Strike 145 Dip 30 W 

IV. 2-6 centimeter thick beds of equally thick andstone and shale 

V. T-3408, T-3508, T-3608, and T-3708 

VI. 
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TATIO 050 

I. Fold east of White Hall on highway A3 , 18 17.684 W76 52.066 

II. Richmond Formation, Roadside Member 

III. Regional Strike: 206 Dip: 02 W 

Forelimb Strike: 169 Dip: 64 W 

Backlimb Strike: 215 Dip: 28 E 

Toplimb Strike: 275 Dip: 04 SE 

IV. This is a beautiful buckle fold in the formation that formed post basin 

development. It is probable that many of the e fold exi t throughout th 

formation and could make possible traps for hydrocarbons. 

V. T-3108, T-3208, T-3308 

2 14 



STATIO 057 

I. Road west of Port Maria, 18 22. 717 W76 54.435 

II. Richmond Formation, Roadside Member 

III. Strike: 095 Dip: 20 S 

IV. 15 centimeters of sandstone exposed (highl y weathered) 

V. T-2008 

VI. 
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STATIO 058 

I. Road west of Port Maria, 18 22.718 W76 54.357 

II. Richmond Formation, Roadside Member 

III. Strike: 143 Dip: 11 SW 

IV. 15 centimeters of poorly exposed sandstone 

V . T-2108 

VI. 
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TATIO 059 

I. Road we t of Port Maria. 18 22. 750 W76 54.073 

II. Riclm1ond Formation, Port Maria Member 

III. trike: 267 Dip: 12 S 

IV. 2 meters exposed of cobble to boulder ized conglomerate with 5-30 centimeter 

of sandstone in the middle. Carbonate cobbles and pebble found in all la er . but 

most of the clasts are volcanic and metamorphic in origin. 

V. Sample T-2208, Sample T-2308, Sample T-2408 (metamorphic and igneou 

conglomerate cla ts), Sample T-2508(carbonate conglomerate Cla t) 

VI. 

TATION 060 

I. Road outh of Fort George, 18 13.652 W76 46.203 

II. Richmond Formation. Port Maria Memb r 

217 



TATTO 061 

I. Road outh of Fort G orge, NI 8 13.633 W76 46.160 

IL Richmond Formation, Port Maria Member 

TATIO 062 

I. Road south of Fort George, 18 13.320 W76 45.996 

II . Richmond Formation, Port Maria Member 

V. T-2608 

STATION 063 

I. Road south of Fort George, 18 13.155 W76 46.007 

II. Richmond Formation, Roadside Member 

III. Strike: 146 Dip: 42 W 

V. T-2708 

VI. 
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T TIO 064 

I. Road west of Fort George, N 18 14.533 W76 46.345 

II. Richmond Formation, Roadside Member 

ST TIO 065 

I. Road west of Fort George, 18 14.567 W76 46.825 

II. Richmond Formation, Roadside Member 

STATION 066 

I. Road west of Fo11 George, NI 8 14.406 W76 46.850 

II. Richmond Formation, Roadside Member 

VI. 

STATIO 067 

I. Road we l of Fort George, 18 14.362 W76 46.838 

Il. Richmond Formation, Road ide Member 
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T TIO 068 

I. Road west of Fort George, 18 14.448 W76 46.880 

II. Rjchmond Formation, Road ide Member 

VI. 

STATION 069 

I. Road south of Windsor Ca tie, 18 15. 782 W76 44.363 

II. White Lime tone Formation 

__ Q 



STATIO 070 

I. Road south of Windsor Castle, 18 15.294 W76 44.405 

II. White Limestone Formation, Montpellier Member Equivalent 

III. Strike: 240 Dip 12 E 

IV . White chalk beds 

V. T-2808 

VI. 

STATION 071 

I. Road south of Windsor Castle, N18 14.982 W76 44.587 

II. White Limestone Formation, Montpellier Member Equivalent 

STATION 072 

I. Road south of Windsor Castle, 18 14.749 W76 44.684 

II. White Limestone Formation, Montpellier Member Equivalent 
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T TIO 073 

I. Road south of Windsor Castle, 18 15. 773 W76 44.368 

II. White Limestone Formation 

IV. Similar to station 069 

STATIO 084 

I. Nutfie ld Road (north ofNutfield), 18 19.106 W76 49.642 

II. Nutfield Volcanics 

IV . 5 meters of porphoritic vesicular ba alt found in pillow-like tructur 

V. T-1408 

VI. 

STATIO 102 

I. Road outhofOrcabe a 1821.771 W7656.721 ' 

II. Richmond Formation 
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T TIO 103 

I. Road outh of Orcabessa, 18 21.582 W76 56.892 

JI. Richmond Formation 

STATIO 104 

I. Road south of Orcabessa, 18 20.562 W76 57.342 

II. Yellow Limestone Formation, Font Hill Member 

STATION 105 

I. Road south ofOrcabessa, 18 19.700 W76 57.126 

II. Yellow Limestone Formation, Font Hill Memb r 

STATIO 106 

I. Blowing Point, NJ 8 22.952 W76 53.546 

II. Richmond Formation, Port Maria Member 

III. Northeast Dip less than 20 degree 
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APPENDIX C 

VIRTUAL WELLS 

Num ber Latitude Longitude Northing Y Easting X Approx. Elevation 
(km) (km) (m above L) 

VR-1 18 .312 -76.950 18 5 425 

VR-2 18.312 -76.802 !8 17 -25 

VR-3 18.250 -76.950 10 5 500 

VR-4 l 8.250 -76.664 10 33 -50 

VR-5 18.185 -76.839 5 14 300 

VR-6 l 8.185 -76.715 5 27 600 

VR-7 18.3 78 -76.872 25 lO -50 

VR-8 18.134 -76.784 0 !8 500 

VR-9 18.281 -76.784 !5 18 -50 

VR-10 18.312 -76.872 18 lO !00 

VR-11 18.225 -76.872 lO lO 200 

VR-12 18.250 -76.784 lO 18 !00 

VR-13 l 8.185 -76.872 5 10 300 

VR-14 l 8.185 -76.784 5 !8 500 
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Virtual Well# 1 

Fo rmation Type Begin Top 
or Age Depth 

Event Name (myj (m] 

Surfa ce [ rosion E 10 
LS-dep D 47 
LS F 51 
Ero F 55 240 
Ep F 57 1610 
Pd F 60.9 2130 

Virtual Well# 2 

Formation Type Begin Top 
or Age Depth 

Event Name (my] [m) 

Surface Ero s ion E 10 
LS-dep D 51 
Ero-dep D 53. 1 
Ero F 57 
Pd F 60.9 900 

Virtual Well # 3 

Formation Type Begin Top 
or Age Depth 

Event Name (my] [m] 

Surfnce Ero s ion E 10 
LS-dep D 49.1 
LS F 51 
Ero F 57 70 
Pd F 63 1070 
Ppr F 63.6 1630 
Pg F 66 1940 

Virtual Well # 4 

Formation Type Begin I Top 
or Age Depth 

Event Name [my) [m] 

LS F 51 
Ero F 57 

Virtual Well# 5 

Formation 
or 

Event Name 

Surfa ce Erosion 

LS-dep 
Ero-dep 
Pd dep 
Pprdep 
Pg dep 

Type] Begin 
Age 
[my) 

E 1 O 
D 51 
D 
D 
D 
D 
F 

57 
63 
63.6 
63.8 
65.7 

0 
1 u 

Top 
Depth 

(m) 

I 

] 

Present 
Thick 

[m) 

240 
lJ/O 

210 

Present 
Thick 

[m] 

900 
230 

Present 
Thick 

(m] 

/0 
1000 
560 
310 
1120 

Present 
Thick 

[m] 

1510 
1560 

Pre sent 
Thick 

[m) 

2070 

Eroded 
Thick 

(m] 

1360 
1360 

Eroded 
Thick 

(m] 

-2000 
1500 
500 

Eroded 
Thick 

(m] 

- 1430 
1430 

I Eroded 
Thick 

(m) 

Eroded 
Thick 

[m) 

5000 
1500 
1500 
1290 
230 
480 
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Lithology 

Limestone 
Li mestone 
Sandstone 
Sands tone 
Sandstone 

Lithology 

Limeston e 
Sands tone 
Sands tone 
Sands tone 

Lithology 

Li mestone 
Limestone 

Sandstone 
Sandstone 
Sa ndstone 
Sandstone 

Lithology 

Limestone 

Sandstone 

Lithology 

Limestone 
Sandstone 
Sandstone 
Sands tone 
Sondston e 
Sands tone 

Organofacies I 
Ke ro gen 

Type II (BMOD-1 D LLNL] 
Type II (BMOD-1 D LLNL] 
Type II (B MOD 1 D LLNL] 
Type Il l iBMOD-1 D LLNLJ 
Type 111 (B MOD-1 D LLNL) 

Organofacies I 
Kero gen 

Type II (BMOD-1 D LLNL) 
Type II [B MOD-1 D LLNL) 
Type II [B MOD-1 D LLNL) 
Type Ill (BMOD- 1 D LLNL) 

Organofacies I 
Kero gen 

Type II (BMOD-1 D LLNL) 
Type 11 (BMOD-1 D LLNL] 
Type II (BMOD-1 D LLNL) 
Type Ill (BMOD-1 D LLNL) 
Type II [BMOD-1 D LLNL) 
Type 111 iB MOD 1 D LLNL) 

Organofacies I 
Kerogen 

Type II (BMOD-1 D LLNL] 
Type 11 (BMOD- lD LLNL) 

Organofacies I 
Kerogen 

Type 11 (BMOD-lD LLNL) 

3 
6 
6 
7 

7 
10 

I 
3 
6 

J 
Type II [BMOD-1 D LLNL) 6 
Type 111 (BMOD 1 D LLNL) 5 
Type 11 (BMOD 1 D LNLJ T 
Type 111 (BMOD 1 D LLNL) 1 0 
!i'.e_e 11UOMOD- 1 D LLNL) 10 

Initial 
TOC 
l"I 

Initia l 
TOC 
l"I 

Initia l 
TOC 
l"I 

Initial 
TOC 
l"I 

Initial 
TOC 
l"I 



Virtual Well# 6 

Form ati on Typ e Begin Top Prese nt Erod ed Lithology Orgonofacies / Initial 
or Age Depth Thick Thi ck Kerogen TOC 

Ev ent Name (my) (m) (m) (ml l"l 
Surface Erosion E 10 -5 70 
LS-dep D 25.56 570 Li m es tone Typ e II (B MOD- 1 D LLNLJ 
LS F St 930 Li mestone Ty pe II (B MOD 1 D LLNL) 
Ero F 57 930 HlO Sa ndstone Ty pe II (B MOD 1 D LLNL) 

Virtual Well # 7 

Formation Typ e Begin Top Present Erod ed Lithology Organofacies I Initia l 
or Ag e Depth Thi ck Thick Kero gen TOC 

Event Name (my) (m) (m) (m) !"I 
Surface Erosion E 10 -1500 
LS-dep D 51 1500 Limestone Type II (B MOD-1 D LLNL) 
Ero F 55 1660 San dsto ne Type II (BMOD-1 D LLNL) 6 
E F 57 1660 430 San dsto ne T e Il l BMOD- 1 D LLNL 

Virtual Well # 8 

Formation Type Begin Top Present Eroded Lithology I Organofacies I I Initial 
or Age Depth Thick Thick Kerogen TOC 

Event Name (my) [m) (m) (m) (%] 

Surface Ero s ion E 10 -37 40 
LS-dep D 51 1500 Limeston e Type II (B MOD- 1 D LLNL) 3 
Ero-d ep D 57 133 0 Sa nd stone Type II (BMOD-1 D LLNL) 6 
Pd-dep D 63 580 Sandstone Ty pe Ill (BMOD-1 D LLNLJ 5 
Ppr-dep D 63 .6 200 Sand stone Ty pe II (BMOD-1 D LLNL) 7 
Pg-dep D 63.8 130 Sandstone Ty pe 11 1 (B MOD-1 D LLNL) 10 
Pg F 66 0 21 70 Sa ndstone Ty pe Ill (BMOD-1 D LLNL( 10 

Virtual Well# 9 

Formation Type Begin Top Present Eroded Litho logy Organofacies I Initial 
or Age Depth Thick Thi ck Kerog en TOC 

Event Name (my) [m) [m) [m) l"I 
Surface Ero s ion E 10 - 1500 

LS-de p D 51 1500 Li meston e Typ e II [B MOD ID LLNL) 

Ero F 57 1?30 Sand stone Typ e II [BMOD-1 D LLNL) 

Virtual Well# 10 

Formation Type Beg in Top Present Eroded Li th ology Organofacies I Initial 
or Ag e Depth Th ick Thick Ke ro gen TOC 

Event Name [my) (m) (m) [m) l"l 
Su rface Ero sio n E 10 -22 10 
LS dep D 51 1500 Li m es tone Type II (BMOD ID LLNLJ 3 
Ero dep D 53 71 0 Sa nds tone Typ e II (BMOD 1 D LLNLJ 6 

(• F 54 0 190 Son dstone Type 111 (BMOD 1 D LLNL) , 
Ero F 190 110 Sondstone ryp e II (B MOD-1 D LLNL) 6 
(p F 57 900 90 Sondstone Type Ill [BMOD- 1 D LLNL) 6 
Pd F 62. 1 990 JOU So ndstone T e Ill BMOD-1 D LLNL 5 
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Virtual Well# 11 

Formation Type Begin Top Present Eroded Lithology Organofacie s I Initial 
or Age Depth Thick Thick Kero gen TOC 

Event Name (my) (m] (m] (m) l"I 
Su rface Ero sion E 10 -2450 
LS dep D 5 1 1500 Li mes ton e Type II (BMOD 1 D LLNL) 
Ero-dep D 54 950 Sandston e Typ e II (B MOD 1 D LLNL) 
Ero F 57 9"0 Sond ston e Typ e II (BMOD-1 D LLNL) 
Pd F 63 ll'10 GlO Sand ston e Typ e Ill (BM00-1 D LLNL) 5 
Ppr F 63.6 1560 220 Sandston e Typ e II (BMOD-1 D LLNL) 
p F 65.6 1100 1110 Sond stone T e Ill BMOD-10 LLNL 10 

Virtual Well # 12 

Formotion Type Begin Top Present Eroded Lithology Organofacies I Initial or Age Depth Thick Thick Kerogen TOC Event Name (mYI (m] (m) (m) l"I 
Surface Erosion E 10 -2410 
LS-dep D 51 1500 Lime sto ne Type II (BMOD· I D LLNL) 
Ero-dep D 55.3 910 Sandstone Type II (BMOD-1 D LLNL) 6 
Ero F 57 0 370 Sondston e Type II (B MOD-10 LLNL) 
Pd F 63 370 290 Sonds tone Type Ill (BMOD-10 LLNL) 
p F 63.3 660 1 I 0 Sandstone T e Ill BMOD·lD LLNL 10 

Virtual Well # 13 

Formation Type Begin J Top l Present J Eroded I Lithology l Organofacies I l Initial 
or Age Depth Thick Thick Kerogen TDC 

Event Name (my) (m] (m) (m] (%) 
Surface Erosion E 10 -3270 
LS·dep D 51 1500 Limestone Type II (BMOD-1 D LLNL) 3 
Ero-dep D 57 1"1 0 Sandston e Type II (BMOD-1 D LLNL) 6 
Pd-dep D 59 .6 360 Sondston e Type Ill (BMOD-10 LLNL) 5 
Pd F 63 0 460 Sandstone Type Ill (BMOD-1 D LLNL) 5 
Ppr F 63.6 460 320 Sandstone Type II (BMOD- 1 D LLNL] 7 
Pg F 65.85 780 2690 l Sandstone Type Ill (BMOD-1 D LLNL) 10 

Virtual Well# 14 

Formation I Typel Begin Top Present Eroded I Lithology Organofacies I Initial 
or Age Depth Thick Thick Kerogen TOC 

Event Name (my) (m] (m) (m) (%) 

Surface Eros ion E 10 -3200 
LS-dep D 51 1500 Lime stone Type II (BMOD- 1 D LLNL) 3 
Ero-dep D 57 1330 Sand stone Type II (B MOD- 1 D LLNL) 6 
Pd-dep D 63 370 Sand ston e Type Ill (OMOD-1 D LLNL) 5 
Fault Hiatu s H 63.8 

Pg F 65.05 0 700 l Sand ston e Type Ill fBM OD ID LLNL) 10 

227 



APPENDIXD 

GEOLOGIC MAP OF THE NORTHERN W AGW ATER TROUGH 

0 5 10 

Kilometers 

Strike and Dip Direction 
Major Faults 

- Cross-section 
Geologic Rock Units 
[§!] Alluvium 
E2l Undifferentiated Cenozoic Limestone 

Pembroke Hal l Formation 
Richmond 
Formation 
"' Nutfield Volcan ics 
I Roadside Member 

Albany Beds 
Port Maria Member 

Wagwatar 
Formation 

f-Pi:i3 Dry River Member 
New Castle Volcanic Formation 

f P.i;ir.'J Pencar River Member 
(:li!jjij Ginger River Member 

Undifferentiated Cretaceous 
Igneous and Metamorphic Rock 

- ' .. -3.·:. .. :"··.··" .... j ::.:··.;k· .. 
(after Mann and Bw-ke, 1990 · after Mines and Geo logy Division, 1978) 
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