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Abstract 

Spectral analysis provides the frequency information of the data. 

Fourier tansform projects the data from time domain into frequency domain, 

while the time information is completely lost after the procedure. Time­

frequency analysis is a procedure to localiza the frequency content in time. 

Wavelet transform is a method to do the time-frequency analysis of the data. 

Many methods of wavelet transform have been developed such as the 

continuous wavelet transform, the multiresolution analysis, the wavelet packet 

and the matching pursuit decomposition. Each method has its own advantages 

of providing a time-frequency representation of the data. In the thesis, 

different methods of wavelet transform are introduced and performed on 

different data. The advantages and the disadvantages of different methods are 

analyzed so that different methods of wavelet transform could be applied in 

different situations. In practice, different methods should be used together to 

provide an good time-frequency representation for different data. 
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Introduction 

Spectral analysis is an important procedure that is applied in many stages of 

seismic data analysis. The Fourier transform, one of the most fundamental methods in 

designing filters and in spectral analysis, is used to transform a given time series of data 

into the sum of a series of sinusoidal components. Traditionally, the 1-D Fourier transform 

is used to transform the data from the time domain to the frequency domain. However, the 

result is a global average representation of the frequency content of the time series and 

loses chronological information completely. It proves to be inadequate in giving a 

sufficient representation of a data set that has many local features. The ability to localize 

the frequency content in time is improved by perfomiing the Fourier transform within a 

sliding short window. However, improvement of time localization can only be obtained by 

shortening the window length, which in tum decreases the frequency localization. Thus it 

is very limited in achieving good time and frequency resolution simultaneously according 

to the Heisenberg-Gabor Uncertainty Principle. 

A new concept for spectral analysis, called time-frequency analysis usmg the 

wavelet transform, has been _developed to further improve the time localization of 

frequency content. The method decomposes a signal into a family of elementary signals 

c.nd rhe signal may be reconstructed by the superposition of these elementary signals. 

These elementary signals are the fundamental unit in the time-frequency plane and are thus 



call kernel atoms. The choice of the kernel atoms must satisfy the condition that they are 

compactly supported both in time and frequency. 

The concept was first introduced by Gabor in 1946, in which he developed the idea 

of the decomposition of signals into minimal grains of information (or "time-frequency 

atoms"). Since then, many methods have been developed about wavelet transform. Morlet 

( 1982) constructed Mori et wavelet bases to be used as the kernel atoms instead of Gabor 

atoms. Grossmann et al. (1984) introduced continuous wavelet transform instead of 

looking only at discreet set of wavelets. Mallat ( 1989) introduced pyramid decomposition 

to perform multi-resolution analysis on the orthogonal wavelet bases. Mallat (1993) 

introduced another redundant algorithm, the Matching Pursuit Decomposition, and 

applied the method with the choice of modulated Gabor atom bases, which is the 

sinusoidal component with varied Gausian modulation. Feauveau (1990) introduced b[­

orthogonal bases instead of orthogonal bases, which has become very useful in image 

processing. Other bases were introduced, which were no longer wavelet bases (in the 

sense of the wavelets with constant shape), e.g. the wavelet packets (a full library of 

orthonormal bases constructed from a quadrature mirror filter and equipped with an 

algorithm for best basis selection). 

In recent years, the wavelet transform has found many applications in setsffilc 

imaging because of its improved time-frequency localization. Xin-Gong Li, et al. ( 1996) 

applied multi-resolution decompo.sition with the choice of Haar wavelet family to suppress 

the noise in the inversion to reconstruct tomographic models. Grubb and Walden (1997) 
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discussed the possibility of using different attributes from the discrete wavelet transform to 

characterize seismic time series by using multi-resolution decomposition and compactly 

supported Daubechies wavelets. Deighan and Watts (1997) applied a wavelet packet 

method with the choice of Battle-Lemarie wavelet bases, and got better result in 

suppressing the ground-roll by removing certain wavelets. Chakraborty and Okaya (1995) 

applied the Matching Pursuit Decomposition and Gabor wavelets to seismic data and got a 

high-resolution time-frequency image of the data. In my thesis, I dwell on the application 

of Matching Pursuit Decomposition and use the Ricker wavelet, the same order as the 

second derivative of the Gausian function, as the wavelet bases. The result is a much 

improved and clearer time-frequency representation of the seismic data than Fourier 

methods. 

The thesis is divided into six sections. Chapter one gives a quantitative 

introduction to the Fourier transform and Short Time Fourier Transform (STFT). Chapter 

two provides some theoretical background for the continuous wavelet transform and the 

discrete wavelet transform. Chapter three and four provide theoretical explanation for the 

multi-resolution analysis and the wavelet packet. Chapter five introduces the Matching 

Pursuit Decomposition with the application of the Ricker wavelets. Chapter six reports 

initial attempts to do frequency-wavenumber-time decomposition using a combination of 

wavelet and Fourier transforms. This is followed by conclusions and discussions. 
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Chapter 1 Fourier Analysis 

The Fourier Transform 

The Fourier transform is defined as a way to map a signal g = {g(t); t E r }, 

which depends on a parameter t in some domain r, into another signal G = { G(f); f E c; } , 

which depends on a new parameter or independent variable f, which is called frequency. 

As analogous to t, f is an independent variable that takes values in another independent 

domain, denoted c;. 

There are two basic types of Fourier transform, as represented mathematically as 

follows: 

G{f) '\' ( ) -i2Jtfn = .wn Erg n e r is discrete (1.1) 

Or 

r is continuous (1.2) 

The reconstruction of the signal is: 

G(t) = J: G(f) ei2
nn df r is continuous (1.3) 
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A fundamental difference between the discrete and continuous transform is the fact 

that DTFT (Discrete Time Fourier Transform) shows periodicity with a period of 

frequencies from zero to the Nyquist frequency, while CTFT (Continuous Time Fourier 

Transform) is not periodic. Thus we have to restrict our consideration of the spectrum 

within one period when performing DTFT. In addition, both the DTFT and CTFT behave 

differently depending on whether or not the index set r is finite or infinite. The Fourier 

transform may not be sufficient if the limits defirung the infinite sums or integrals do not 

exist. 

The Fourier transform is a way to project a signal from one independent domain 

into a family of monochromatic waves. It is important because it sometimes provides the 

basis for a better comprehension of underlying phenomena and is an essential complement 

to the temporal description. For many years, the Fourier transform was the dominant 

method used to perform frequency analysis. It has the great advantage of ease of use, 

computational efficiency and complementing the information by providing the 

representation in another domain. However, from the mathematical definition, the 

transform results in the loss of all the chronological information after the transform. Thus 

it is only adequate in the case .that the frequency content of the signal is invariant with 

time, which is called a stationary frequency spectrum. In addition, it projects signals into 

infinite sinusoidal series, which represent only global features in the sense that sinusoidal 

components have infinite duration in the time domain and are projected as points 

(monochromatic) in the frequency domain. It is incapable of giving a sufficient 
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representation of a signal that has many transient features . The time localization of the 

frequency content is improved by the short time Fourier transform, which is done by 

applying Fourier transform to the signal within a moving short window. 

The Short Time Fourier Transform 

The short time Fourier Transform (SIFT) is performed by windowing the signal 

prior to successive Fourier Transform within the limited window length. It is a way to 

project signal onto a family of sinusoidal components modulated by a window with certain 

length and time shift. By performing short time Fourier Transform, we obtain a mixed 

representation, joint in time and frequency, which can be defined as follows. 

Given a function h E L 2(91), we construct the corresponding wavelet family { h (b,v) 

; b E 91, v E 91} obtained by shifting and modulating h, where b is the shift, and v is the 

frequency. 

h(b,v) (t) = e-iinvx h(t-b) (1.4) 

The function h is used to concentrate the analysis near the specific point b in the 

time domain. It is called the window function of the analysis. Once the family of the 

window functions is fixed, the SI FT is defined as follows. 
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Fx(t,v)=<x, h1v>= ['x(s)h*(s-t)e-i2ir"'d5 (1.5) 

(* denotes complex conjugate, X(~) is the Fourier transform of x(s).) 

Thus by performing the STFT, we project the analyzed signal onto a family of 

atoms, which are derived from a mother element (the window function h(t)) by time and 

frequency shifts . As a result, we obtain a mixed representation in time and frequency. 

The inverse STFT is defined as follows. 

1 f +co x( s) = 
2 

F ( t , v ) h ct ) ( s ) d t d v 2Jrllhll - co x 'v 

(1 .6) 

The representation (equation ( 1.4)) shows the typical restrictions of the Fourier 

transfo1m: All the atoms in the wavelet family have the same shape. Therefore the high-

frequency components oscillate too much, while the low-frequency components oscillate 

too little within the modulation window. It is not flexible enough to achieve both good 

time and frequency resolution simultaneously. The time-resolution could only be improved 

by shortening the window length, which in return reduces the frequency resolution. As a 

result, this method is not well adapted to describe the structures that have wide range of 

frequency contents. 

The STFT poss~sses the invariance property, which means the STFT of a shifted 

copy of the signal x equals the corresponding time-shifted copy of the STFT of the signal. 
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The STFT is generally an extremely redundant algorithm. As a result, it is possible to use 

in the inverse STFT a window function that is different from the one used in the forward 

STFT. What is more, the resulting time-frequency spectrum F x(t,v) from equation (1.5) is 

the convolution of the Fourier transform of the window function with the Fourier 

transform of the signal. A deconvolution is needed to obtain the spectrum of the original 

signal. The translation step is difficult to determine too. Large translation may cause loss 

of the frequency information, while small translation may cause excessive representation of 

the same information. Also the wavelet family {h (b,v) ; b E 91, v E 9t} used in the STFT is 

not generated on an orthogonal basis. 

Data Analysis 

A synthetic trace (Figure 1) is generated by adding two cosme components of 

frequencies 30 Hz and 40 Hz. The Fourier transform of the trace (Figure 2) shows that the 

signal is mainly composed of two harmonic components of frequencies 30 Hz and 40 Hz. 

In the STFT, boxcar-shape windows with different lengths are used. The window lengths 

are 32 samples (Figure 3) and 64 samples (Figure 4) respectively. In both cases, the two 

ha1monic components are basically well resolved, while the frequency contents are 

resolved better in Figure 4 beca.use of the use of a larger window length. 

Another synthetic trace (Figure 6) is generated by adding three harmonic 

componer.ts with frequencies of 30 Hz, 40 Hz and 50 Hz. Two spikes are present at the 

89th sample and l 59th sample respectively. The Fourier transform of the signal (Figure 7) 
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shows that there are mainly three harmonic components present in the signal and there is 

some signal pattern with its energy evenly distributed at all frequencies. In the STFT, two 

types of window shape are used, the boxcar window (Figure 8, Figure 9 and Figure 10 

with the window sizes of 16 samples, 32 samples and 64 samples respectively.) and the 

Gaussian window (Figure 11, Figure 12 and Figure 13 with the window sizes of 16 

samples, 32 samples and 64 samples respectively.). From these six figures, one can see 

that the use of a Gaussian window shows better time-frequency resolution than the use of 

a boxcar window. In both cases, there is the problem that the frequency resolution is 

decreased and the time resolution is increased with a small window size, while the time 

resolution is decreased and the frequency resolution is increased with a larger window 

size. 
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Chapter 2 Continuous Wavelet Transform 

An important feature for the Fourier transform (equation ( 1.1)) is the fact that the 

integration of the analyzed function g(t) is performed over the whole time series, so that 

every point contributes to the calculation of G(f); it is thus difficult to recover local 

frequency information for f from G(f). In order to capture local Fourier information 

(called the instantaneous frequency), we may use an analyzing function 'P that we require 

to be localized both in frequency (around some ~ean frequency ~'+') and in time (around 

some mean time X '+' ). Such a function is generally called a wavelet, which means a wave 

of finite duration. Wavelet analysis decomposes a time series into a family of wavelets that 

ha re compact support both in time and frequency domains . A general family of time-

frequency atoms can b generated by scaling, translating and modulating a single window 

function. The window function performs as a band-pass filter. Thus each wavelet is 

concentrated both in time and frequency. Therefore, wavelet analysis provides information 

concerning the frequency localization in the time domain. By performing the wavelet 

transform, we represent functions or signals simultaneously in terms of a time variable and 

a frequency (or scale) variable. 

Because of th~ H~isenberg uncertainty principle (~~f::;; 1/2, where ~x and ~fare 

the time and frequency resolution respectively and where the minimum value is achieved 

by the Gaussian wavelets), it is i~possible to achieve infinitely precise time and frequency 

resolution simultaneously. As a result, we always have to find a wavelet basis that is well 
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adapted to the time- frequency distribution of the signal. A compromise between time 

resolution and frequency resolution has to be found to perform the wavelet transform. 

Therefore, the time-frequency representation is generally not unique for a given signal, 

which means that we could have multiple choices of wavelet bases to perform the wavelet 

transform. 

Many aspects need to be considered in the wavelet transform method. Among 

these one aspect is the choice of the wavelet family which is optimized for the analysis of a 

given signal. The computation efficiency may be improved greatly with a wavelet choice 

that is better correlated with the signal. Another aspect is the interpretation of the time­

frequency transform. From the introduction of the Short Time Fourier Transform by 

Gabor in the 1940s, many methods have been developed to perform wavelet analysis, 

among which are the continuous wavelet transform (Grossmann, Morlet et al, 1984), 

multi-resolution analysis on an orthogonal wavelet bases (Mallat et al, 1989), Matching 

Pursuit Decomposition (Mallat, 1993), and wavelet packet analysis (Coifman and 

Wickerhauser, 1992). 

Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) is a similar operation to the Short 

Time Fourier Transform (STFT). In the STFT, a time-frequency resolution is achieved by 

sliding a window function to localize the Fourier transform in the time domain, in which 

the time parameter gives the time localization of the center of the window and a frequency 
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parameter gives the Fourier transform of the windowed signal. The STFT is based upon 

time and frequency translations. To the contrary, the CWT is based upon time translations 

and frequency scaling, which means the window shape varies as the frequency content 

changes. 

Let \fl E L 2(9t) be a fixed function. The corresponding family of wavelets is {\f' 

(b,a) ; b E 9t, a E 9t} generated by shifting and scaling \fl defined as follows . 

1 x-b 
\fl (b,a) (x) = .JfQI \fl( a ) (2.1.1) 

in whish b is the time translation, and a is the scale related to the central frequency. \fl is 

the analyzing wavelet. It is also called the mother wavelet of the analysis. The wavelet \fl 

(b,a) is normalized and can be viewed as a copy of the original wavelet \fl re-scaled by the 

scale and centered around the translation. By projecting an arbitrary signal f (x) onto the 

family of functions defined as equation (2.1 ), the associated continuous wavelet transform 

is defined as follows. 

. 1 fH" • x-b T1 (b, a)=< J, \f'(b,a) >= fl---::! f (x)\f' (-)dx (2.1.2) 
-vi a I - oo a 

(* denotes the complex conjugates.) 
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Let \f' E L 2(91), c'I' is defined by 

c'I' = 2 7r f + "' I \f' C ~ ) 12 d ~ 
0 ~ 

(2.1.3) 

( \f'(~) is the Fourier Transform of the wavelet \f'(t)) 

The inverse continuous wavelet transform is 

1 ["'["' \fl (x) f (x) = - Tr (b, a) (b, a~ da db 
C -00 - 00 a 

'¥ 

(2.1.4) 

Equation (2.1.4) could be made clear by taking inner product of both sides of the equation 

with any g E L2(~). 

The Continuous Wavelet Transform (CWT) is the projection of the signal onto a 

family of wavelets with varying scales and time translations. At each shift b, \f' (b.•l is 

generated by scaling \fl with the value a that is related to the central frequency. The value 

of a (scale) is large for wavelets with low central frequency, which results in a long 

·window size in time (low time resolution) and a fine frequency resolution. The value of a 

is small for wavelets with high central frequency, which results in a short window size in 

time (high time resolut:on) and a low frequency resolution. The value Tf Cb.al is the 

expansion coefficient of the signal f (x) on the wavelet \fl (b,a). It contains the frequency 

information (related to the scale a) of the signal f (x) around the translation b. Because the 
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wavelets are dilated by the scale a, which is related to the frequency, the CWT provides a 

more flexible method to achieve a good compromise between the time and frequency 

resolution than the STFT, in which the window shape is constant. 

Like the STFT, the CWT possesses the invariance property too, which means the 

CWT of a shifted copy of the signal equals the corresponding time-shifted copy of the 

CWT of the signal. However, the CWT is a redundant algorithm. In the inverse CWT, it is 

possible to use a wavelet family that is different from the one used in the forward CWT. In 

many circumstances, the redundancy of the continuous transform could be reduced by the 

carefully designed discretization. 

One wavelet used in the thesis is the modulated Gabor wavelet. Examples of 

Gabor wavelets with central frequency (CF) of 15 Hz and 40 Hz and their frequency 

spectrums are given below. 

Figure 1.1, An example of the modulated Gabor wavelet with the central frequency of 40 
Hz. The frequency spectrum of the wavelet is given on the right. 
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Figure 1.2, An example of the modulated Gabor wavelet with the central frequency of 15 
Hz. The frequency spectrum of the wavelet is given on the right. 

Data Analysis 

A trace (Figure 1) is generated by adding two cos1ne components with the 

frequency of 30 Hz and 40 Hz. The CWT of the signal (Figure 5) shows that frequency 

resolution is not as good as the frequency resolution of the STFT with a window size of 

64 samples (Figure 4), however better than the STFT with a window size of 32 samples 

(Figure 3). 

A second trace (Figure 6) is generated by adding three harmonic components and 

two spikes. From the CWT of the signal (Figure 14), the time resolution increases as the 

frequency increases. Two impulses are shown on the CWT with increasing time resolution 

when the frequency increases. 
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A third trace (Figure 15) is a linear chirp, whose analytic function is ec2
m

12 
)i (in 

which a is a constant). Therefore, the frequency content of the signal increases linearly 

with time. The Fourier transform of the signal (Figure 16) shows that the signal is 

decomposed into a wide range of frequencies. The property of the linear increase of 

frequency content with time is not reflected. In the STFT, two types of windows are used 

with the same length, the boxcar window (Figure 1 7) and the Gaussian window (Figure 

18). The linear change of the frequency content with time shown in the STFT with a 

boxcar window is not as smooth as in the STFT with a Gaussian window. The sidelobes 

are clearly evident on the STFT with a boxcar window. The CWT of the signal (Figure 

19) provides a clear description of the linear change of the frequency content with time, 

where the time resolution increases with the increase of the frequency. 

Another trace (Figure 21) is generated by adding a linear chirp and two wavelets 

which are localized at the 84th sample and the 15 8th sample with the central frequencies 

of 40 Hz and 80 Hz respectively. The Fourier transform of the signal (Figure 22) shows 

that the signal has strong energy distributed around 40 Hz. Figure 23 and Figure 24 are 

the STFT of the signal generated with the use of a boxcar window of the window length 

of 32 samples and 64 samples ·respectively. From the comparison of the two figures, the 

use of a long boxcar (a window size of 64 samples, in this situation) generates serious 

sidelobe problem and neither of the two wavelets is clearly well localized in time. Figure 

25 and Figure 26 are the STFT of the signal generated with use of a Gaussian window of 

the window length of 32 samples and 64 samples respectively. There is not much 
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difference between the two figures. A linear frequency increase with time is cleared 

represented and the two wavelets are shown with the frequency contents correctly 

centered at 40 Hz and 80 Hz. However, from the representation of the wavelet centered at 

40 Hz, the time localization of Figure 26 is a little worse than Figure 25 because of the use 

of a bigger window. Figure 27 gives the CWT of the signal. Compared with all the time-

frequency representations given by the STFT, the representation given by the CWT 

provides the best time and frequency representation. Notice the representation of the 

wavelet centered at 80 Hz, it is well-localized in time because of its high frequency 

content. 

Discrete Wavelet Transform 

In the Continuous Wavelet Transform, the wavelet family is generated as follows. 

1 x -b 
\f'(b,a) (x) = Ci \J1( ) 

-vial a 
(2.2. 1) 

The Discrete Wavelet Transform (DWT) is the discretization of the wavelet 

transform. In the Discrete Wavelet Transform (DWT), the values of a and b are restricted 

to discrete values on the time-frequency plane. The discrete wavelet bases are generated 

as {'Pcm,n), mEZ, nE Z. }. There are several possible ways of discretizing the transforms 

(especially in the wavelet case), ·and which method to choose depends on the application. 
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Generally the scale is defined as a = '1-0 rn, and the translation is defined as b = nb0a, where 

'1-0 E 91, bo EZ. 

(2.2.2) 

The DWT is therefore defined as follows. 

(2 .2.3) 

(* denotes the complex conjugate.) 

One concern about the DWT is how to build a complete discretized wavelet basis 

that could represent any signal fin the Hilbert space sufficiently, and to reconstruct the fin 

a numerically stable way from the T f{m.,n). Any function to be used as the kernel wavelet 

needs to meet the following admissibility conditions (Shensa, 1992; Goupillaud et al. , 

1985): 

1. T(t) should be absolutely integrable and square integrable ( i.e., its energy 

is finite): 

f IT (t)I dt < 00 (2.2.4) 
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and 

f l\f(t) 1
2 dt < 00 (2.2.5) 

2. w( (J)) is band limited and has zero mean, where we (J)) lS the Fourier 

Transform of w(t); 

f I 
\f/(m) 
--- I dro < oo (2.2 .6) 

aJ 

After a discretized admissible wavelet basis has been built, the problem left is to 

select the algorithm to perform the DWT. In the following part, three algorithms are 

introduced, the multi-resolution analysis, the wavelet packet analysis and the matching 

pursuit decomposition. The first two algorithms are mainly about how to generate an 

orthonormal wavelet basis and provide a globally optimized time-frequency representation 

on an orthonormal wavelet basis. The last one is mainly concerned with providing a locally 

optimized time-frequency representation on an unorthonormal wavelet basis. 
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Chapter 3 Multi-Resolution Analysis 

The concept of Multi-Resolution Analysis (MRA) was introduced and perfected by 

Meyer and Mallat (1989). It gives a formal and detailed description of the intuitive idea 

that every signal can be constructed by a successive refinement, by adding details to 

approximation, and by iterating this process. It is performed on an orthogonal wavelet 

basis. The method involves the use of the Quadrature Mirror Filter (QMF), which is 

composed of two filters, a lowpass filter and a highpass filter. In a forward analysis, the 

signal is filtered by the two filters. The output of the lowpass filter is the approximation 

and the output of the highpass filter is the detail at the corresponding resolution level. At 

each iteration, the approximation at that resolution level is generated by the lowpass filter 

and the detail is generated by the highpass filter. The approximation is down-sampled by a 

factor of two and is sent to further iteration until a desired accuracy is achieved. In the 

inverse synthesis at a certain resolution level, the approximation and the detail at the next 

lower resolution level are up-sampled (inserting a zero between two successive samples), 

then the two filters are performed respectively and the approximation at that resolution 

level is achieved by adding the outputs from the two filters . 

Precisely, a multi-resolution analysis of L(91) is defined as follows. 

(i) There exists a sequence of nested subspaces 

... =i Y1 =i Yo =i V_1 =i ... ; (3.1) 



(ii) nvm = {O}; (3.2) 
mEZ 

(iii) LJVm is dense in L; (3.3) 
mEZ 

(iv) x(t) E V m C> x(2t) E V m+1; (3.4) 

(v) There exists a function <D so that { <D(t-n) ; n E Z } is a basis of V0. 

(3.5) 

A time-resolution of 2m could be associated with each V m, and the approximation 

of a signal x(t) at this resolution level is obtained by the projection onto the corresponding 

subspace. Due to the condition (iv), a basis of V m can be derived from the basis of Vo as 

follows: 

<Dnm (x) = 2(rn/2) <D(2m x-n) (3.6) 

The approximation of signal f(x) at the resolution level of 2m is 

ax [n, m] = J: f(x) <D nm (x) dx (3.7) 

At each approximation (at the resolution level 2m), some information of the signal 

f(x) is lost, the lost information is called the detail at the resolution 2m. The detail at the 

resolution of 2m could be achiev~d by the orthogonal projection of the original signal on 

the orthogonal complement of Vm in Vmt-1. It has been proved that a space Wm exists at 
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each resolution level 2m that is the orthogonal complement of V min V m+L The relation is 

(3.8) 

Wm is the subspace that satisfies the five conditions described above and is the 

orthogonal complement of V m· Therefore there exists a function o/(t) such that {o/(t-n); 

nEZ} is a basis of W0 and {o/ nm(t) = 2<-ml2) o/(Tm x-n); n, m EZ} constitutes an orthogonal 

bases of Wm· Hence the detail of signal f(x) at the resolution level of 2m is 

(3.9) 

Since <I> E V0 c V_1, and the <D _1 n are an orthonormal basis in Y - 1, we have 

<P(t) = JiL h[ n JD(2t - n) (3 .10) 
n 

with 

h[n] =-J2f: <D(t)CD*(2t - n)dt, (3 .11) 
n=-oo 

Similarly, we have 

36 



qJ(t) = h°L:g[n)l¥(2t- n) (3.12) 
ll 

with 

g[n] =.J2J_:lf'(t)<D• (2t - n)dt, (3 .13) 
n=-oo 

Thus, a pair of quadrature mirror filters are defined as h[ n] and g[ n] among which 

h[n] is a lowpass filter and g[n] is a highpass filter. By using the two filters, a fast 

algorithm to obtain the approximation and the detail of the singal from the next higher 

approximation could be derived. The method is called the pyramidal algorithm and is 

defined as follows. 

According to the equation (3. 7) 

co +co 

=[col Cx)2m 12 
[ F2 L:h[k J<Dc2c2m x - n)- k)Jdx 

k=-CO 

= ~h[kJ[:J(x)2(m+l)IZ<D(2m+I X -(k + 2n))dx 
k=-co 

+co 

= °L:h[k]ax[k +2n,m + 1] 
k=-co 
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Thus, we have proved the formula 

+<X> 

aJn,m] = 2:h[k- 2n]aJk,m + 1] (3.14) 

k=-oo 

Similarly, we have 

dJn,m] = 2:g[k - 2n]aJk,m + 1] (3.15) 

k=-oo 

Hence the coefficients of the approximation and the detail at a fixed resolution 

level can be derived by filtering the known approximation coefficients at the next higher 

level, followed by down-sampling. Operating step by step, a fast and recursive algorithm, 

which involves only the use of two filters, is achieved. Such an algorithm is called a 

pyramidai algorithm. The initialization of the algorithm is performed by a projection of the 

analyzed signal onto V0 . 

H 

G A 

Figure 3 .1. Illustration for the forward analysis of the pyramidal 
algorithm. The unit A maps an approximation to a coarser 
approximation and a detail by the action of a lowpass filter H and a 
highpass filter G (with impulse responses h[n] and g[n] respectively), 
both followed by a downsampling by a factor of 2. 
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The analysis algorithm could be inverted, which leads to a dual algorithm for the 

synthesis. It is an algorithm to derive the approximation at a fixed resolution level from the 

approximation and the detail at the next lower level. It is defined as follows . 

+CX:l 

ax[n,m + l] = 2:h[n - 2k]aJk,m] + :z=g[n - 2k]dJk,m] (3.19) 
k=-CX:l 

s 
G 

H 

Figure 3.2, illustration of the inverse analysis. Each unit S operates on an 

approximation and a detail by producing a finer approximation. It first performs an 

interpolation (inserting a zero between two successive samples), then a filtering by 

h[n] and g[n] respectively, and finally adds the obtained output signals. 

The :MRA is a set of scale-invariant operations that enables us to interpret features 

of signal at different resolution levels. At different resolutions, the details of the 

representation generally characterize different structure features of the signal. It is not 

redundant because of the use of the orthogonal wavelet bases and it also provides a 
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natural framework for the understanding of wavelet bases and for the construction of the 

orthogonal bases. Numerous :MRAs have been proposed corresponding to different 

orthogonal wavelet bases. Among them are the Littlewood-Paley-type :MR.As by Y. 

Meyer, the spline MRAs by G. Battle and P. G. Lemarie, and the compactly supported 

wavelet MRAs by I. Daubechies. The detailed deduction of how to generate an orthogonal 

wavelet basis based on the properties given in conditions (3 .1) to (3. 5) is given in 

Daubechies book (Reference 8). 
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Chapter 4 Wavelet Packet 

Multi-Resolution Analysis provides a scale-invariant interpretation of the signal, 

which means it divides the frequency axis by the same intervals. Therefore, it has some 

consequence for the localization properties in the time-frequency domain. However, 

complex time-frequency structures are always encountered in practice. It is thus desirable 

to be able to modify the time-frequency localization property of the wavelet basis to adapt 

to the features of specific signals and problems" Orthonormal wavelet packet bases use 

quadrature mirror filters to split the parent wavelet space into two subspaces at next level 

and then each subspace is further split into two new subspaces at higher level. The wavelet 

spaces at different levels are associated with different frequency resolution. The splitting is 

repeated until the desired resolution level is met. As a result, many wavelet spaces are 

obtained. By the "best basis algorithm", we could choose from all the wavelet spaces at 

different levels a basis that matches the time-frequency features of the signal best. The 

chosen wavelet spaces divide the frequency axis in separate intervals of various sizes and 

translate in time uniformly. Thus it provides a representation that is well adapted to the 

situation in which the signal has highly variant frequency contents. 

Wavelet Packet algorithm was introduced by Coifman, 1-'Ieyer, and Wickerhauser 

by generalizing the link between multi-resolution approximations and wavelets. In multi­

resolution analysis, a space Yj is decomposed in a lower resolution space Yj+l plus a detail 

space Wj ... 1. This is done by dividing the orthogonal basis { cDj (t - 2j n), nEZ, j E Z} into 

two new orthogonal bases 
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{<l>j+l (t - 2j+l n), nEZ, jEZ} ofVj+l (4.1) 

and 

{\f'j+l (t - 2j+l n), nEZ, jEZ} ofWj+l (4.2) 

The <l>j+l and \f'j+l are calculated by the QMFs h[n] and g[n], in which 

n=+c.o 

<1> 1+1 = Lh[n]<l>
1
(t-2 1 n) (4.3) 

n=-co 

and 

n=+co 

\f'J+I = Lg[n]<l>/t-2fn) (4.4) 
n=-co 

By generalizing the result above to any space Uj , let h[n] and g[n] be a pair of 

QMFs. Let {\f' j( t - 2j n ); j,n E Z} be an orthonormal basis of the space Uj. Define 

n=+cc 

'11
1
°+ 1 = l:h[n]'111(t- 21n) (4. 5) 

n=--oo 

and 
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n=+co 

\f')+i = L g[n ]\f'J (t - 2 in) ( 4.6) 
n=-co 

According to the equation (3 .8), the family 

is equivalent to the orthonormal basis ofUj, which is {'¥ j( t - 2J n ); j,n E Z}. 

Hence instead of dividing only the approximation space Yj-t to construct detail 

spaces Wj and the approximation space Yj, we could set Uj = Wj and divide these detail 

spaces to derive new bases. The recursive splitting of vector spaces is represented in a 

binary tree. Any node W/ of a binary tree is labeled by its depth j and the number p of 

nodes that are on its left at the depth j , as illustrated in Figure ( 4.1 ) . 

Figure 4.1, Wavelet basis splitting of 
the Binary tree. 

0 
0 

w/ w/ W36 w/ 
Figure 4.2, Example of admissible wavelet 
packet binary tree 
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Each node (j, p) of the binary tree corresponds to a space W/, which admits an 

. . . 0 
orthonormal basis { { 'I'f ( t - 2J n ); J,p E Z}. At the root of the tree, we set ~ = V0. 

This approximation space admits an orthogonal basis of scaling functions { ¢(t-n), n E Z}, 

so <D ~ = <D. Now suppose W/ and its orthonormal basis W/ = { '!': (t - 2j n); j, p, n E 

Z} have been constructed at the node (j,p ). The two orthogonal bases at the children 

nodes are defined by the splitting relations ( 4. 5 and 4. 6): 

+«> 

'!'
1

2:i= Lh[n]'I'f (t-2 1n) (4.8) 
n= -<X) 

and 

+«> 

'f!
1
::i+1

= }_:g[n]'I'f (t - 21n) (4 .9) 
n=-CO 

because {'I'/ (t - 2j n), nEZ} is orthonormal. 

From relation (3.8), the two orthonormal bases w;.:~= { \J'
1

2:i (t - 2j n), nEZ } and 

w;:~+i = { 'I';:i+1 
(t - 2j n), nEZ} have the following relationship with W/. 

( 4.1 0) 
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A binary tree of wavelet packet spaces could be obtained by performing the 

splitting defined above recursively where each node is divided in two orthogonal 

subspaces (as shown by the Figure ( 4. 1)). The wavelet at the depth j of the binary tree 

specifies the scale 2j of the time support. Figure 63 is an example of the eight wavelet 

spaces at the depth 3 generated from the Haar wavelet. 

The best basis algorithm (Coifman, Wickerhauser, 1992) selects an "optimal" 

orthonormal basis within the wave packet binary tree. It is a procedure to choose a 

wavelet basis (an example is given in Figure (4.2)) that globally adapts to the signal. In 

their algorithm, the wavelet basis selects a basis that provides the minimum Shannon 

entropy defined as follows: 

N 

LI< J '\fYn >l2 
log2 (I< J' \fYn >12

) (4.11) 
n=l 

The choice of this "optimal" orthogonal basis is thus obtained through a global 

minimization over the entire wavelet bases provided by the binary tree. Figure 64, Figure 

65 and Figure 66 provide the time-frequency representation of three different signals using 

the best tree algorithm. The Haar wavelet is used in all the wavelet packet processing. On 

each figure, the left subplot is the wavelet basis chosen by the best tree algorithm 

introduced above. The subplot on the upper right is the signal input. The subplot on the 

bottom right is the time-frequency representation given by the wavelet packet, in which 
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Figure 63. The Harr wavelet basis from the wavelet packet binary tree at the depth of 3. 
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the horizontal and vertical axes represent respectively the time and frequency axes. Each 

rectangular box Yn at the position [Pn , kn] represents the coefficient of the wavelet at a 

level jn . Thus each rectangular box could be represented by Un, Pn, kn] and it centers 

approximately at the time 2 in (p n + t) and at the frequency 2 - in (kn + t) . The rectangle 

has a width scale of 2 in along time axis and 2- in along frequency axis. It gives an 

approximate idea of the localization in time and frequency of each atom [j 0 , p0 , kn]. An 

example of a best basis and how it divides the frequency and time axes is given in Figure 

(4.3). 

(I) • ¢ [2, 1, 3] 

l 
LJ 

-'> ~ 
[l, 7, O] 

• 
Figure 4.3, An example of a best tree and how tl1e tree divides ilie 
frequency and time axes. The wavelet packet tree on tl1e left divides ilie 
frequency axis in several intervals. The Heisenberg boxes of the 
corresponding wavelet packet basis are on the right. 

In my thesis, several examples of the processing using the "best tree algorithm" 

method are provided with the use of the matlab wavelet toolbox. Figure 64 provides the 

time-frequency representation of' a linear chirp (Figure 15). Figure 65 provides the time-

frequency representation of a linear chirp with two wavelets (Figure 21 ). Figure 66 
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provides the time-frequency representation of a synthetic seismic trace (Figure 29). The 

time-frequency distribution achieved by the method is similar to the CWT. However, some 

signal features are not as clear as the CWT. The frequency localization is not as 

satisfactory as the CWT because the localization property of the Haar wavelets is not as 

good as the Gabor atoms. In the thesis, the effect of the method will not be dwelled on a 

lot. The examples are mainly used to compare with the results from several other wavelet 

methods. 
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Figure 64 . The time-frequency represention of a linear chirp provided by the best tree 

algorithm. The subplot on the upper left is the best tree se lected from the binary tree. 

The su bplot on the upper right is input data. The subplot on the bottom right is the 

time-frequency representation g iven by the best tree a lgorithm. The horizontal and 

vertical axes are the time and frequency axes respecti ve ly. 
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Figure 65. The t ime- freq uency represention of a linear chirp plus two wavelets provided by the 

best tree algor ithm. The subplot on the upper left is the best tree selected from the 

binary tree. The subplot on the upper right is input data. The subplot on the bottom 

right is the time-frequency representation given by the best tree algorithm. The 

horizontal and vertical axes are the time and frequency axes respectively. 
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Figure 66. 
The time-frequency represention of a synthetic seismic trace provided by the best 

tree algorithm. The subplot on the upper left is the best tree selected from the binary 

tree. The subplot on the upper right is input data. The subplot on the bottom right is 

the time-frequency representation given by the best tree algorithm. The horizontal 

and vertical axes are the time and frequency axes respectively. 
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Chapter 5 Matching Pursuit Decomposition 

A wavelet packet tree provides large number of families of orthogonal bases that 

include different types of local time-frequency atoms. A best wavelet packet basis obtained 

by the "best tree algorithm" decomposes the signal in time-frequency atoms that are 

globally adapted to the time-frequency structures of the signal. It is a globally optimized 

time-frequency representation of the signal. However, it can not work well where the 

signal has great non-stationary time-frequency structures. For example, there is no best 

wavelet packet basis if the signal includes different types of high-energy structures, located 

at different times but in the same frequency intervals. 

Thus, the Matching Pursuit Decomposition (MPD) was introduced by Mallat 

(1993) to provide a flexible time-frequency representation of the signal that has highly 

variant local time-frequency structures. It is an algorithm that decomposes any signal into 

a linear expansion of waveforms that belong to a redundant dictionary of functions. At 

each iteration, a waveform is selected from a large dictionary of time-frequency atoms that 

matches the local structures at approximate part best. Therefore, it p.·ovides flexible 

decompositions that are particularly adapted to signal components whose localization in 

time and frequency varies widely. If a structure does not correlate well to any particular 

wavelet basis element, it is sub-decomposed into several elements and its info1mation is 

diluted into these elements. 
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Ricker Wavelet Family 

In time-frequency analysis, it is often desired to represent a signal with as few 

wavelet vectors as possible. Therefore, a wavelet basis that is well adapted to the signal is 

desirable. Ricker wavelets are one of the most frequently used and the most fundamental 

wavelets in seismology. In this thesis, a family of wavelets is defined by dilating, 

translating and modulating a single wavelet function g (t) E L2 (91) . 

The Ricker wavelet is defined as follows. 

g (t,f) = (1-2rc2 f t2
) exp (-n:2 f t2) (5 .1) 

For any scale s > 0, frequency modulation~ and translation -r, we denote y = (s, l:, 

~). The index y is an element of the set r = 91+ x 912 
. A family of wavelet functions is 

generated by scaling, translating, and modulating a single wavelet function as 

1 t - r 
gy(t,f) = c g(-,c;) (5.2) 

-vs s 

A Ricker wavelet family is a family of non-orthogonal bases composed of wavelets 

that ar ~ well localized both in time and frequency (Figure 5. 1 ). It is the second derivati v· 

cf the Gaussian function and also satisfies the admissible conditions as shown in equations 

from (3 .3) to (3.5). B:1 using the Ricker wavelets, the seismic signal is decomposed into 
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fewer wavelets . As a result, a clear representation is achieved. The examples of the time 

series and the frequency spectrum of a 40-Hz Ricker wavelet are given as follows: 

Figure 5.1, An example of Ricker wavelet with the central frequency of 40 Hz and its 
frequency spectrum. 

Matching Pursuit Decomposition 

After a dictionary is defined as a family D = ( gy )y E r of vectors in a Hilbert space 

H = L2 (91), the Matching Pursuit Decomposition is defined as the follows. 

Let f E H . We want to compute a linear expansion off over a set of vectors 

selected from D that match its inner structures best. This is done by successive 

approximations of/ with orthogonal projections on elements ofD. Let gy0 E D, the vector 

f can be decomposed into 

f = <f, gy0> gy0 +Rf (5 .3) 
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where Rf is the residual vector after approximating f in the direction of gy0 . If an 

orthogonal wavelet basis is used, gy0 is orthogonal to Rf, hence the energy conservation is 

maintained. 

111112 = I <J, gy0> 12 +II R/112 
(5.4) 

To minimize II Rf II, we must choose gy0 E D such that I <f, gy0> I is maximum. In 

some cases, it is only possible to find a vector gy0 that is almost the best in the sense that 

(5 .5) 

w here a is an optimality factor that satisfies 0 < a '.S: 1. 

A :MPD is an iterative algorithm that sub-decomposes the residue Rf by projecting 

it on a vector of D that matches Rf best, as was done for j This procedure is repeated 

each time on the resulting residue that is obtained. The choice of a vector gy0 is defined by 

a choice function C, which associates to any subset A of [ an index that belongs to A, 

which is defined as 

Ao= { ~ E r _: I <f, g13> I 2:: a sup)' Erl <f, gy> I} (5. 6) 
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The choice of a vector gy0 that satisfies relation ( 5. 5) is equivalent to the choice of 

the index y0 within Ao, formally defined by Yo = C (Ao). At each iteration, there exists at 

least one choice of wavelet. In practice, there may exist many ways to define the choice 

:function, and it depends upon the specific implementation. 

Let R°.f = f Suppose that we have computed the nth order residue R}, for n ~ 0. 

We choose, with the choice :function C, an element gm E D that closely matches the 

residue Rj 

I <R}, gm> I~ a supp Erl <R}, gp> I (5 .7) 

The residue Rjis sub-decomposed into 

Rj= < R}, gm > gm + Rn+'j (5.8) 

which defines the residue at the order n+ l. With the use of an orthogonal wavelet base, 

Rn+'./is orthogonal to 8rn and the energy conservation is maintained. 

Suppose the decomposition is carried up to the order m, then f is decomposed into the 

concatenated sum 
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m-1 

J = 2:< RnJ,gYn > gYn + Rmj (5.10) 
n=I 

The original vector f is decomposed into a sum of dictionary elements that are 

chosen to match its residues best. When m increases to infinite, the residue R mf approaches 

infinity small. The lower the correlation between the signal residues and the dictionary 

elements, the slower the decay of the residues. Because Ricker wavelet basis is a non-

orthogonal wavelet basis, energy conservation is not maintained in the MPD processing in 

this thesis. 

The MPD is a redundant representation of a signal as an additive superposition of 

elementary functions with a sharp localization in the time-frequency plane. It works 

especially well where the signal has highly non-stationary local features. 

Data Analysis 

A !in.ear chirp (Figure 15) is used to test the effect of the MPD on the signal with 

continuous frequency distribution . From the comparison of the MPD (Figure 20) with the 

CWT (Figure 19), both methods provide approximately the same time-frequency 

distribution of the signal, although the :rvfPD is not as good as the CWT in providing the 

time-frequency representation of a signal with continuous frequency distribution because 

of sharp localization feature in the time- frequency plane of the MPD. 
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Figure 30. The Fourier transform of Plot 29 . 
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Another trace (Figure 21) is generated by adding a linear chirp and two wavelets 

centered at the 84th sample and the 15 8th sample with the central frequencies of 40 Hz 

and 80 Hz respectively. The trace consists of both continuous frequency-changing signals 

such as a linear chirp as well as some highly localized signals such as two wavelets. It is 

used to compare the mutual time-frequency localization property of the CWT (Figure 27) 

and the .MPD (Figure 28). From the comparison, both methods provide approximately the 

same time-frequency distribution information of the signal. However, as shown on the 

second wavelet centered at the l 58th sample, the frequency resolution of .MPD decreases 

greatly because of the wide frequency support for the Ricker wavelets with high central 

frequency. Therefore, the CWT provides a better time-frequency representation for a 

signal with the energy mainly with a continuous frequency distribution pattern. 

The Comparison among different STFTs, CWT and MPD 

The last trace (Figure 29) is a synthetic seismic trace generated by the convolution 

of Ricker wavelets with a reflectivity series. The reflectivity series has (A) a positive spike 

at n=l6(n is the time sample), (B) a positive spike at n=81, (C) a set of 2 (positive­

positive)spikes at n=130 and n=l35, (D) a set of 2(positive-positive)spikes at n=165 and 

n=l 72 and (E) a set of 3(positive-negative-positive)spikes at n=220, n=225 and n=230. 

The Fourier transform of the signal is given in Figure 30. 

Reflection A is created using a 40 Hz Ricker wavelet. Reflection B is created using 

a 40 Hz Ricker wavelet and a 10 Hz Ricker w:ivelet. Event C is generated with a 30 Hz 
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Figure 31. The STFT of Plot 29 with a boxcar window, with the window length of 64 samples. 
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Figure 32. The STFT of Plot 29 with a Gaussian window, with the window length of32 samples. 
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Figure 33. The STFT of Plot 29 with a Gaussian window, with the window length of32 samples. 
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Figure 34. The STFT of Plot 29 with a Gaussian window, with the window length of 64 samples. 
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Ricker wavelet convolved with two individual reflection coefficients. Event D is generated 

with a 30 Hz Ricker wavelet and a 20 Hz Ricker wavelet convolved with two individual 

reflections respectively. Event E is generated with a 30 Hz Ricker wavelet. The Fourier 

transform of the signal (Figure 30) shows the energy of the signal is mainly distributed 

among the middle-frequency range. 

Here, the trace is processed with three methods, the STFT, the CWT and the 

MPD. In the STFT, two types of windows are used, boxcar (Figure 31 and Figure 32 with 

the size of 32 samples and 64 samples respectively) and Gaussian window (Figure 33 and 

Figure 34 with the size of 32 samples and 64 samples respectively). With the use of a big­

size boxcar (Figure 32), the five events are smeared in time. With the use of a small-size 

boxcar (Figure 31 ), the five events are separated in time, however, the time localization is 

poor as the events are represented by squares. The time localization is greatly improved by 

using a Gaussian window in the STFT. With the use of a long Gaussian window (Figure 

34), the five events are not completely separated with some interference between event C 

and event D. However, the property of time localization has been improved greatly 

compared to the STFT with the use of a boxcar window. 

By CWT (Figure 35), the five events are well separated and well located in time, 

with slight interference between them, which may be because for the middle-frequency, the 

window size used in CWT is even longer than 64 samples, since there exists more 

interference than Figure 34. Fi~re 36 is another view of the Figure 35 . It shows that the 

events are not well separated because the envelope of the window is large. 
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Figure 35. The CWT of Plot 29. 
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Figure 37. The MPD of Plot 29. 
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In the WD (Figure 3 7), the five events are separated in both time and frequency 

excellently. The information of the time-frequency distribution is represented correctly. 

Figure 38 is another view of the Figure 37, which shows a pronounced time-localization 

advantage of this method by comparing Figure 38 with Figure 29. 

The Application of the MPD in Real Seismic Data 

In this section, three traces from a real seismic survey are processed. CWT and 

11PD are used on the data and the results are compared. From the seismogram, it can be 

observed that there are three strong ground rolls that come across all the traces. 

Figure 39 is the lst trace from 48 traces of the survey. The Fourier transform 

(Figure 40) of the trace shows that the data is composed of high-amplitude components in 

a wide range of frequencies. The CWT (Figure 41) and the 11PD (Figure 42) are 

compared. Both methods provide relatively the same information of time-frequency 

distribution of the trace. Three strong noises are shown on both representations, with a 

much better time localization of the frequency distribution provided by the MPD. 

Figure 43 is the 24'h trace from 48 traces of the survey. The Fourier transform 

(Figure 44) of the trace shows that the data is composed of high-amplitude components in 

a wide range of frequencies. The CWT (Figure 45) and the MPD (Figure 46) are 

comnared. Three strong noises are spread out compared to trace 1 on both 
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Figure 39. The 1st trace from a real seismic survey. 
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Figure 40. The Fourier transform of Plot 39. 
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Figure 41. The CWT of Plot 39. 
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Figure 42. The MPD of Plot 39. 
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Figure 43. The 24th trace from the seismic survey. 

Plot 44 
800 

700 

600 

500 
Cll 

~ 400 
Q. 
E 
RI 

Jlll~I 300 

~ll.llJ 
-i 

200 

'~ 
-i 

100 -I 

0 
0 20 40 60 80 100 120 140 

freq uency , Hz 

Figure 44. The Fourier transform of Plot 43 . 
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Figure 45. The CWT of Plot 43. 
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Figure 46. The MPD of Plot 43 . 

69 



P lot4 7 
80 

60 

40 

20 

~ 0 Cl 
"iii 

-20 

-40 

-60 

-80 
0 100 200 300 400 500 600 700 800 900 

sample No . 

Figure 47. The 48th trace from the seismic survey. 
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Figure 48. The Fourier transform of Plot 47. 

70 



ci z 

900 

800 

700 

600 

Q) 500 
Ci.. 
E 
"' (/) 400 
Q) 

E 
·.;:::; 300 

200 

100 

900 

800 

700 

600 
ci 
:z 
...!!:! 500 
a... 
E 
"' (/) 400 
Q) 

.s 
300 

200 

100 

20 

20 

Plot 49 

25 

20 

15 

10 

5 

40 60 80 100 120 140 
frequency, Hz 

Figure 49. The CWT of Plot 47. 
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Figure 50. The MPD of Plot 47. 
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representations, with a much better time localization of the frequency distribution 

provided by the MPD. There is a linear moveout of the three groundrolls compared to the 

MPD of the 1st trace (Figure 42). 

Figure 47 is the 48th trace from 48 traces of the survey. The Fourier transform 

(Figure 48) of the trace shows that the data is composed of high-amplitude components in 

a wide range of frequencies. The CWT (Figure 49) and the MPD (Figure 50) are 

compared. Three strong noises are further spread out compared to the lst trace and the 

24th trace on both representations, with a trend of decreasing frequency content with 

time. Compared with the MPDs of the 1st trace and the 24th trace, there is further 

moveouts for the three groundrolls. 
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Chapter 6 Multi-Channel Analysis Using The Wavelet Transform 

Multi-channel processing operations are performed on several traces 

simultaneously. They are generally used to separate events that have different dips or 

moveouts. The 2-D Fourier transform is a basic implementation of multi-channel 

processes. In the 2-D FFT, all the points within the T-X area contribute to each single 

point in the F-K area. Therefore, it is an average F-K representation of all the information 

in the T-X plane. It is a good representation of some coherent signal with certain 

moveouts. However, it is not able to provide a good F-K representation of highly non­

stationary data that has different uncorrelated signal patterns. 

Because different moveout is a distinguished feature of signals and because traces 

are generally composed of different non-stationary frequency signal patterns, an effort is 

made to try to separate different events with different moveouts in a non-stationary trace 

by performing a wavenumber (K) transform after wavelet transform. Because MJ>D has 

the advantage of excellent time localization and middle-frequency localization property, it 

is used to perform the wavelet transform. Here I show initial attempts to analyze some 

characteristics of this multi-channel processing (K-MJ>D transform) procedure. 

The procedure of the K-MJ>D transform is described as follows. After a set of 

traces is obtained, the MPD is performed on each trace. The result of the MJ>D is a time­

freq uency two-dimensional distribution. For each trace, an instantaneous frequency 

speccrum is obtain d for each time sample. Then a traditional Fourier transform is 
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performed over the frequency spectrums of all the traces at each time sample. The final 

result is a three-dimensional time 3 frequency 3 wavenumber distribution. In contrary to 

the traditional F-K transform where the result is a F-K distribution, there is a F-K 

distribution for each time sample after the K-11PD transform. Several examples of the K­

MPD transform are given below. 

64 traces (Figure 51) are generated by the convolution of a 40 Hz Ricker wavelet 

with a linear-moveout reflection series. From the traditional F-K transform (Figure 52), 

the velocity of the event is approximately 4.95 (krn/s). It is very close to the velocity of 

5.0 (krn/s) used in generating the traces. After K-transform is performed after the 11PD, 

the total amount of data is a 256 3 128 3 32 three-dimensional array, with 256 time 

samples, 128 frequency samples and 32 wavenumber samples. At each trace, one wavelet 

is extracted by the 11PD. Two F-K plots are shown here from 256 F-K plots generated. 

Figure 53 is the F-K Figure at the 24th time sample, and Figure 54 is the F-K Figure at the 

64th time sample. They are two slanted ovals with nearly the same F-K distribution 

because the K-transform is performed on the same wavelets extracted by the 11PD. The 

slope of the ovals is a little different from that of the traditional F-K Figure, because the 

MPD instead of the Fourier transform is used before the K-transform. After the 11PD, the 

extracted wavelets have lirnite.d time duration, thus only those K-transforms performed 

near the extracted wavelets could collect the information of the wavelets. Therefore, the 

ovals are broader than the line in the traditional F-K transform because less information is 

taken into the K-transform. 
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Figure 51. 64 traces with linear moveout. The source is a 40 Hz Ricker wavelet. 
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Figure 52. The traditional 2-D Fourier transform of Plot 51 . 
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Figure 53. A slice from the K-MPD transform of the traces in Plot 51. It is the F-K plot at the 24th time 
sample. 
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Figure 54. A slice from the K-MPD transform of the traces in Plot 51. It is the F-K plot at the 64th time 
sample. 
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Another 64 traces (Figure 55) of dispersive waves are generated with different 

moveouts for different frequency components. Different moveouts are produced because 

different frequency components have different velocities. The source wavelet is a 25 Hz 

Ricker wavelet. It propagates horizontally and spreads out as it travels horizontally. The 

traditional F-K transform (Figure 56) shows some resemblance to the velocity curve used 

in the generation of the traces. The MPD extracts a series of wavelets for each trace as the 

signal spreads out. Each wavelet extracted is uncorrelated to other wavelets. Following 

the .MPD, because each wavelet has limited time duration, fewer points will be collected 

from the same wavelet to contribute to the K transform compared with the traditional F-K 

transform where every point contributes to the result. Hence, the ovals on the F-K plot 

generated from the K-.MPD transform are much broader than the sharp line on the 

traditional F-K plot. Because wavelets with high central frequency have longer frequency 

support, the F-K plots generated from high central-frequency wavelets are much sharper 

than those with low central frequency in the K-.MPD transform. Two F-K plots at two 

time samples are included in my thesis. They are the F-K plots at the 18th sample (Figure 

57) and 138th sample (Figure 58) respectively. Those slanted ovals with coherent F-K 

distribution are thought of more or less the F-k distribution for the same wavelet. Their 

slopes bear some resemblance to the slope in the traditional F-K transform (Figure 56). In 

Figure 57, there exists a slanted coherent oval in the low-frequency range. There also exist 

some incoherent shapes, which are thought as because the information collected for the K 

transform is not from the same wavelet. They are generally not useful in discovering the 

moveout pattern of an event. In Figure 58, there exists a slanted coherent oval in the mid­

frequency range. They are sharper than the ovals within th~ low- frequency range because 
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Figure 55. 64 traces of dispersive waves. The source is a 25 Hz Ricker wavelet. 
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Figure 56. The F-K transform of the traces in Plot 55. 
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Figure 57. A slice from the K-MPD transform the the traces in Plot 55. It is the F-K plot at the 18th 
time sample. 

Plot 58 
140 ... .... .. ... . .. .... .. . . .. . . . . .. ...... . ... . . ... ... . . .. . ... ... . 

'"N 
~ 80 
,....., 
<..> 
c:: 
Q) 
:;:, 

60 0-

~ 
LL.. 

40 

20 

0 
0 20 40 60 80 100 120 140 160 

Wavenumber, (cycles/km) 

Figure 58. A slice from the K-MPD transform of the traces in Plot 55. It is the F-K plot at the 138th 
time sample. 
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the wavelets have longerer frequency support than those with low central frequency. The 

majority of energy is distributed in the mid-frequency range instead of distributed in the 

low-frequency range in Figure 51 because the higher frequency components have lower 

velocity. Thus the energy of high-frequency components comes later than low-frequency 

components. 

Figure 59 is another 64 traces generated by the multiplication of a 40 Hz Ricker 

wavelet and a linear chirp. Among them, the Ricker wavelet has linear moveout and linear 

chirp has zero moveout. Because the instantaneous frequency content increases with time 

for a linear chirp, Fourier transform provides only an average frequency representation of 

the frequency change in the signal. Therefore, the traditional F-K transform (Figure 60) 

provides only average F-K information of the traces. It is unable to reflect the change of 

the frequency content with time. Two F-K plots from the K-.MPD transform at two time 

samples are included, which are from the 18th time sample and 18th time sample 

respectively. They clearly show the trend of frequency increase with time. At the 18th time 

sample, two slanted ovals with similar F-K distribution are close and lie within the mid­

frequency and mid-wavenumber range. Two slanted ovals separate more and more into 

high-frequency and low-frequency ranges with time. As shown on Figure 62 (taken from 

the 18th time sample), two ovals have separated far apart into the high-frequency and the 

low-frequency ranges respectively. The slopes of all the ovals in the F-K plots taken from 

the K-1.VfPD transform are relatively the same. 
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Figure 59. 64 non-stationary traces with linear moveout. The source is a 40 Hz Ricker wavelet 
modulated by a linear chirp. 
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Figure 60. The traditional 2-D Fourier transform of the traces in Plot 59. 
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Figure 61. A slice from the K-MPD transform of the traces in Plot 59. It is the F-K plot at the 18th time 
sample. 

Plot 62 
140 .. . ....... .. .. . . .... .. .............. .. ..... .. ................... . ... , 

120 
4 

100 3 .5 

N' 
6 80 

3 

2.5 

2 

40 1.5 

1 

20 
0 .5 

0 
20 40 60 80 100 120 140 160 

Wavenumber, (cycles/km) 

Figure 62. A slice from the K-MPD transform of the traces in Plot 59. It is the F-K plot at the 78th time 
sample. 
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The traditional F-K transform provides average moveout information of the events. 

In the situation where the signal has stationary F-K pattern, it provides excellent moveout 

information of the events. However, in the situation where the signal has non-stationary 

frequency or wavenumber pattern, it can only provide an average representation for all the 

frequency or wavenumber change. From the three examples given above, the first two 

examples are events with stationary signal patterns, which means the distributions of the 

Fourier equivalents of the time and space do not change with the time and space. In that 

case, traditional F-K transform provides an excellent F-K representation of the events. On 

the contrary, the K-MPD transform does not work as well as the traditional F-K transform 

because less information could be included into the K transform due to the limited time 

duration of the wavelets . However, in the situation where the event has non-stationary 

signal as shown in example three, the traditional F-K is unable to reflect the frequency 

change with time. It is a smeared image and the F-K distribution is not well localized. On 

the contrary, the K-MPD transform provides better F-K representation at each time 

because of the excellent time localization property of the MPD. 

The K-MPD works better where the events are composed of non-stationary 

signals. In the case where more than one wavelet are extracted for an event, the F-K plots 

generated from the K-MPD transform at each time only represent part of the moveout 

information of the event because different wavelets are uncorrelated to each other even 

though they are extracted from the same event by the MPD. The F-K images generated by 

the K-MPD are not as sharp as· those generated by the traditional F-K transform in the 

case that the events are composed of stationary signal. The signal patterns in the 
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seismogram are variant. Hence, careful design of the multi-channel processing including 

different processing procedures need to be used m discovering the accurate moveout 

features of seismic events. 
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Chapter 7 Discussion and Conclusion 

Spectral analysis is an important procedure in seismic data processing. It uncovers 

many features contained in the signal other than what can be represented in time alone. 

Many methods have been used to perform spectral analysis. 

Traditional Fourier analysis provides a projection of the signal from the time 

domain to the frequency domain. Every point from the time representation of the signal 

contributes to the frequency representation of the signal in the Fourier transform, and vice 

versa. It supplements the information about the data. However, the time information is 

completely lost after the Fourier transforms. Hence, for non-stationary data where the 

frequency content changes with time, the frequency representation after the Fourier 

transforms is an average representation of the frequency content change through all the 

time. It can't reflect the instantaneous change of the frequency content with time. For 

those highly non-stationary data that have many local features, the Fourier transform may 

even provide misleading frequency features of the data. 

The Short Time Fourier Transform provides the time localization of the frequency 

content by performing the Fourier transform on the data cut from the signal with a 

window and assuming that the result belongs to the point at the center of the window. The 

shape, size and shift of the window are the important aspects in the design of the STFT. 

From the examples given abov.e, two types of window shape are tested, the boxcar 

windcws and the Gau~sian windows. The application of the Gaussian window generally 
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provides a better time resolution because of the excellent time and frequency localization 

property of the Gaussian window. The sidelobe problem is much more pronounced with 

the application of the boxcar window. Therefore, Gaussian windows provide a better 

choice of the window in many situations. However, despite of all the improvements, the 

STFT could not provide a time-frequency representation that is well adapted to the time­

frequency distribution of the signal because the window size is fixed in the STFT. The 

choice of the window size depends on the signal. When the signal contains many low 

frequency contents (e.g., less than 15 Hz), a relatively long window size may provide a 

better representation, e.g., 64 samples . While for the signal contains many middle-to-high 

frequency contents (e.g., 30 Hz to 80 Hz), a small window size may be preferred. In most 

situations, shifting the window on a fine grid provides a sufficient representation. 

The Continuous Wavelet Transform (CWT) provides a better time-frequency 

representation of the signal than the STFT in that the window size changes with the 

frequency change. From the plots discussed in the above, the window size used in CWT is 

sensitive to the changes of high-frequency content. Therefore, the CWT has good time 

localization property for frequency contents within high frequency range. The CWT 

provides a representation that is well adapted to signals with continuous time-frequency 

distribution such as chirps. However, it is still an average representation of the frequency 

content within a window and can not provide a good time-frequency representation to 

signals that have many local features because the time localization of the CWT is not 

sensitive to the changes of frequency content in the range of low to middle frequencies. 

Hence, it can not provide a fle~ble time-frequency representation for signals that have 

many locai features within the low to middle frequencies. 
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The Wavelet Packet is an algorithm to calculate time-frequency representation 

based on a best wavelet tree selected from a wavelet binary tree. It is an algorithm derived 

from Multi-Resolution Analysis. A wavelet binary tree is a family of orthonormal bases 

composed of vectors that are well localized both in time and frequency. It provides a 

scale-variant approximation of the signal. However, large shift of the window is taken in 

order to generate an orthonormal basis. Hence, it may not provide a sufficient 

representation on all the scale levels. 

The MPD is a redundant method that chooses a wavelet among a family of 

wavelets to match the residue of the signal best at each iteration. It is well adapted to the 

local features. In a seismogram, the data can, to the first order, be represented by a 

convolution model, which is the convolution between the wavelet and discrete reflection 

coefficients. A seismogram is generally highly non-stationary data w ·th mainly middle­

frequency content. Using MPD provides sharp time-frequency localization for patterns 

with non-stationary middle-frequency contents. However, for signals with high-frequency 

non-stationary contents, MPD using a Ricker wavelet can not provide a good frequency 

resolution because a Ricker wavelet with high central frequency has a broad frequency 

spectrnm. 

In the STFT, the wavelets with better time and frequency localization property 

prove to be a better choice of the window. Therefore, the application of Gaussian 

windows shows great advantages over the boxcar windows. However, CWT proves to be 

an improvement to the STFT both in theory and a plication. If the signal has continuous 
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time frequency distribution, which means the frequency at a single time point is somewhat 

related to the nearby points, CWT may provide a good time-frequency representation. If 

the signal has many local features within the low to middle frequency range, the MPD 

using the Ricker wavelets proves to be a good method in giving a time-frequency 

representation. 

In the real seismic data, many types of noise coexist with discrete reflections, such 

as coherent noise and incoherent noise. Most ·of the signals in seismic data are non­

stationary and have many different time-frequency features. Many methods of the wavelet 

transform have their own advantages of providing time-frequency distribution to the 

signal. Different methods of F-T analysis need to be used to understand the frequency 

distribution of the signal, depending on the situation. 
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APPENDIX 

A sample program for the extraction of the Ricker wavelets from 
the signal is given in this appendix . It is composed of two part , the 
main progr?m and a subroutine to generate a phase shifted Ricker 
wavelet . 

The following program is the main program. 

c 
c 
c 
c 
c 
c 
c 

c 
c 

The following code is used to extract the wavelets 
from the data . The input file is ' data '. It is a 
trace with 256 samples . The sampling rate is 4ms . 
The output file is 'temp_data'. It contains the shift, 
the central frequency , the wavelet coefficient , the 
correlation coefficient , and the energy decreasing 
coefficient of the wavelet extrated at each iteration . 

INTEGER LT , LF 
REAL W2(256,1 28) 
REAL SR 
REAL RICK(512) , SAM , CORL(512) , COF , FON(512),D(512) , Y, Z 
INTEGER M, Mll...X , J , K, LY,I , LW , TSTART,TBEGIN , TSHIFT , TEMP 
INTEGER SHIFT , S , COONT,Q,FLAG,NFFT,Sl , RECL 
REAL X, CF , F 

The length of the trace is 256 samples. The sample rate 
is 4ms . 

LT=256 
TSTART=l - LW/2 
SR=0.004 
TSHIFT=O 
COF=O . 
PSHIFT=O . 
RECL=O 

c Input file is ' data '. 

OPEN(2 , FILE= ' data ' ) 
DO 7 I=l , LT 
READ ( 2, * ) FON ( I ) 

7 CONTINUE 
CLOSE(2) 

A=O . 
Y=l. 
MAX=l 
FLAG=l 

c The output file is ' temp data'. 
OPEN(3 , FILE='TEMP DATA') 

' flag ' is the indication of the decrease of the energy . 

DO WHILE(FLAG==l) 
MAX=l 
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COUNT=O 
A=O . 
Al=O . 

DO 10 I=l,100 
IF(I . LE . 5) THEN 

LW=l28 
ELSE IF(I . LT . 12) THEN 

LW=64 
ELSE 

LW=32 
END IF 
F=REAL (I) 
SAM=O . 
COF=O . 

CALL RICKROT(RICK , LW , F , SR , TSTART , PSHIFT , COF) 

TBEGIN=l - LW/2 
LY=LT+LW- 2 
DO 15 J=l , 512 
CORL(J)=O . 

15 CONTINUE 

MAX=l 
DO 25 J=l , LY 
TSHIFT=TBEGIN+J-1 
El=O . 
DO 30 K=l , LW 
TSTART=INT(l - LW/2) 
M=TSTART+K-l+TSHIFT 
IF( (M . GE . 1) . AND . (M . LE . LT)) THEN 

SAM=FUN(M) 
ELSE 

SAM=O . 
END IF 
El=El+SAM**2 
CORL(J)=CORL(J)+SAM*RICK(K) 

30 CONTINUE 
CORL(J)=CORL(J)/SQRT(COF) 
IF(El . GT . (lE-3)) THEN 

CORL(J)=CORL(J)/SQRT(El) 
ELSE 

CORL(J)=O . 
END IF 
IF((ABS(CORL(J))-ABS(CORL(MAX) )) . GT. (lE-4)) THEN 

MAX=J 
SHIFT=TSHIFT 

END IF 
25 CONTINUE 

IF((ABS(A)-ABS(CORL(MAX))) . LT . (lE-4)) THEN 
A=C08L(MAX) 
S=SHIFT 
PHASE=PSHIFT 
CF=F 
NFFT=LW 

END IF 
El=O . 
E2=0. 
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10 CONTINUE 

c RICKROT is a subroutine to give a given phase Ricker wavelet . 

CALL RICKROT(RICK , NFFT , CF , SR, TSTART , PHASE , COF) 
AMP=O . 
TSTART=l - NFFT/2 
DO 70 I=l , NFFT 
M=TSTART+S+I - 1 
IF((M . GE . l) . AND. (M . LE . LT)) THEN 

AMP=AMP+FUN(M)*RICK(I) 
END IF 

70 CONTINUE 

AMP=AMP/COF 
El=O . 
DO 60 I=l , LT 
El=El+FUN(I)**2 

60 CONTINUE 
DO 80 I=l, NFFT 
M=TSTART+S+I - 1 
IF((M . GE . l) .AND. (M . LE . LT)) THEN 

FUN(M)=FUN(M) - AMP*RICK(I) 
END IF 

80 CONTINUE 
E2=0 . 
DO 90 I=l , LT 
E2=E2+FUN(I)**2 

90 CONTINUE 

X=Y 
Y=Y*E2/El 
WRITE(3 , *)S,CF,AMP , A, Y 
WRITE(* , *)S , CF , AMP 
RECL=RECL+l 
DO 200 I=l , LT 
IF(ABS(FUN(I)) . LE . 0 . 1) THEN 
COUNT=COUNT+l 
END IF 

200 CONTINUE 
IF( ((X-Y) . LT . (lE - 3)) . AND . (COUNT . GT . LT - 4)) THEN 

FLAG=O 
ELSE 

FLAG=l 
END IF 
END DO 

CLOSS(3) 

END 
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------------------------------------------------------------------------
The following program is the subroutine to generate a ricker wave l et 
with a given phase . 

c subroutine rickrot provides a ricker wavelet with phase rotation 
c wvlt = output wavelet (output) 
c nfft = length of output wavelet (must be a power of 2) (input) 
c cf = center frequency for ricker (input) 
c sr = time sampling rate for wavelet (input) 
c tstart = start time for wavelet (output) 
c pshift = phase rotation (input) 

subroutine rickrot(wvlt,nfft,cf , sr,tstart,pshift , cof) 
dimension wvlt(512) , amp(512) , phase(512) ,temp(512) 
complex work(512),sig(512) 
integer nfft , f , k , w, tstart 
real pi , sr , pshift ,di s , vel 
cof=O. 

C write(* , *)nfft , cf , sr 
pi=3 . 14159265 
do 10 i=l,512 
wvlt(i)=O. 
temp(i)=O . 
amp(i)=O. 
phase(i)=O . 
work ( i) = ( 0 ., 0 . ) 
Sig ( i) = ( 0 • / 0 • ) 

10 continue 
npts=nfft - 1 
call ricker(cf , sr , wvlt , npts , tstart) 
5"igni=l . 
do 11 i=l , nfft 
work(i)=cmplx(wvlt(i) , 0 . ) 

11 continue 
call fork(nfft , work , signi) 
do 2 i=l , nfft 
f=int((i-1)/(sr*nfft)) 
arg=real(work(i) )**2 + aimag(work(i) )**2 
amp(i)=sqrt(arg) 
phase(i)=O. 

2 continue 
c add phase shift to phase spectrum 

do 4 i=l , nfft 
shift=pshift 
if(i . gt . nfft/2) shift=-pshift 
phase(i)=phase(i)+shift*3 . 14159265/180 . 

4 continue 

c convert phase spectrum to complex array sig 
call specomr(sig , amp , phase , nfft) 

c convert to time domain 
signi=-1 . 
call fork(nfft , sig,signi ) 
m=nfft/2 
do 5 i=l , nfft/2 - 1 
t=tstart+(i-l)*sr 
temp(i)=real(sig(m+i+l ) ) 
temp(m+i)=real(sig(i+l)) 

5 continue 
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2010 

temp(m)=real(sig(l)) 
do 2010 i=l , nfft 
t=tstart+sr*(i - 1) 
wvlt(i)=temp(i) 
cof=cof+wvlt(i)**2 
continue 
RETURN 
end 

c A subroutine to give a zero- phase Ricker wavelet . 
subroutine ricker(cf,sr , wvlt , npts , tstart) 
real wvlt(npts) 
integer tstart 
tstart=- (npts+l)/2+1 
pi=3 . 14159265 
do 1 i=l,npts 
t=(tstart+i - l)*sr 
wvlt(i)=(l .- 2 . *(pi*cf*t)**2)*exp( - (pi*cf*t)**2) 

1 continue 
return 
end 

c A subroutine to calculate the Fourier spectrum of a given data . 
SUBROUTINE FORK(lx,cx , signi) 
complex cx(lx) , carg , cexp , cw , ctemp 
j=l 
sc=sqrt(l . /lx) 
do 30 i=l , lx 
if(i . gt . j) go to 10 
ctemp=cx(j)*sc 
cx(j)=cx(i)*sc 
cx(i)=ctemp 

10 m=lx/2 
20 if(j . le . m) go to 30 

j=j - m 
m=m/2 
if(m . ge.l) go to 20 

30 j=j+m 
l=l 

40 istep=2*1 
do 50 m=l , l 
carg=(0 ., 1 . )*(3 . 14159265*signi*(m-1))/l 
cw=cexp(carg) 
do 50 i=m , lx,istep 
ctemp=cw*cx(I+L) 
cx(i+l)=cx(i) - ctemp 

50 cx(i)=cx(i)+ctemp 
l=istep 
if(l . lt . lx) go to 40 
return 
end 

c specomr : convert amplitude and phase to complex array 
subroutine specomr(sig,amp,phase , nf) 
complex sig(nf) 
real amp(nf) , phase(nf) 
do 1 i=l , nf 
x=amp{i)*cos(phase(i)) 
y=amp{i)*sin(phase(i)) 
sig(i)=cmplx(x , y) 
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1 continue 
return 
end 

c specomf : convert complex array to amplitude and phase 
subroutine specomf(sig , amp , phase , nf) 
complex sig(nf) 
real amp(nf) , phase(nf) 
do 1 i=l , nf 
x=real ( sig ( i) ) 
y=aimag ( sig ( i) ) 
amp(i)=sqrt(x**2+y**2) 
if(x . eq . 0 . ) phase(i)=45 . *3 . 14159265/180 . 
if(x . eq . 0 . ) go to 1 
phase(i)=atan(y/x) 

1 continue 
return 
end 

c costap : generate a tapered cosine wavelet 
subroutine cos tap(cf , sr , nsamp , wvlt) 
dimension wvlt(256) 

c calculate period , start - time , and sample rate 
period=l . /cf 
stime=- 1 . S*pe r iod 
sr=l.S*period/nsamp 

c zero out original array 
do 10 i=l , nsamp 

10 wvlt(i)=O . 
c calculate cosine function 

taper=l . 
do 1 i=l , nsamp 
time=stime+(i - l)*sr 
if(time . lt . stime) go to 1 
if(time . gt .-stime) go to 1 
taper=(l .- time/stime) 
wvlt(i)=cos(2 . *3 . 14159265*cf*time)*taper 

c write(7 , *)time , wvlt(i)/taper , wvlt(i) 
1 continue 

return 
end 
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