
INFORMATION TO USERS

Tliis was produced from a copy of a docum ent sent to us for microfilming. While the
most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

1. The sign or “ target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an
indication that the film inspector noticed either blurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been filmed, you will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo
graphed the photographer has followed a definite method in “sectioning”
the material. It is customary to begin filming at the upper left hand com er
of a large sheet and to continue from left to right in equal sections with
small overlaps. If necessary, sectioning is continued again—beginning
below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by
xerography, photographic prints can be purchased at additional cost and
tipped into your xerographic copy. Requests can be made to our
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we
have filmed the best available copy.

University
Microfilms

International
3 0 0 N, Z E E B R O A D , A R B O R , Ml 4 8 1 0 6
18 B E D F O R D ROW, L O N D O N W C 1 R 4 E J , E N G L A N D

8101522

POURNAGHSHBAND, IIASSAN

A NEW APPROACH FOR CONSTRUCTING A RELATIONAL SCHEMA
FROM A SET OF DATA DEPENDENCIES

The University of Oklahoma PH.D. 1980

University
Microfilms

I n te r n Sti 0 n e I m x . Zceb Road, Ann Arbor. M I 48106

THE UNIVERSITY OF OKLAHOMA
•GRADUATE COLLEGE

A NEW APPROACH FOR CONSTRUCTING A
RELATIONAL SCHEMA FROM A SET OF DATA DEPENDENCIES

. A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

BY
HASSAN POURNAGHSHBAND

Norman, Oklahoma
1980

A NEW APPROACH FOR CONSTRUCTING A
RELATIONAL SCHEMA FROM A SET OF DATA DEPENDENCIES

APPROVED BY ^

DISSERTATION COMMITTEE

To my lovely mother, Haji Khanoom.

ACKNOWLEDGMENTS

I. wislx to express my sincere appreciation and deep
gratitude to Dr. John C. Thompson, for his keen interest,
capable guidance, and invaluable encouragement during my
graduate program and particularly throughout the planning
and completion of this study.

I am also sincerely thankful to the members of my
dissertation committee. Dr. S. Lakshmivarahan, Dr. John
T. Minor, Dr. Albert B. Schwarzkopf, and Dr. Bill K.
Walker, for their helpful and valuable suggestions.

It is also my pleasure to thank Ms. Betty Sudduth
for her expert typing of this manuscript.

My special gratitude to my family, Haji Khanoom,
Nahid and Ahmad, Roohangiz and Hossein, Krista and Reza,
Pouri and Mehdi, Hayedeh and Javad, and Massoud, for
their patience and continuing encouragement throughout
my academic career.

Finally, my especial thanks go to someone who has
made my life worthwhile.

Ill

ABSTRACT

It is tl?,e purpose of this work to investigate the
Third and Fourth normal form relational schemas.

The relational model and the notion of relational
data bases were first presented by Codd. Codd introduced
First, Second, the Third normal forms, and presented an
approach, to the 3NF decomposition. He defined a normal
ized relation as one for which each of the underlying
domains contains atomic values only, so that every value
in the relation is in turn atomic.

In addition to Codd's decomposition approach,
another approach to the logical design of relational data
bases was the synthetic approach. Among several attempts
to this approach, Bernstein's algorithm is efficient and
has been proved to be correct.

A new normal form (4NF) was proposed by Fagin in
1977. Fagin presented a decomposition approach to the
4NF relations. His decomposition procedure leads to a
family of 4NF relations which is not necessarily "optimal".

The purpose of this work is to present a new approach
to constructing 4NF relations from functional dependencies

IV

and multivalued dependencies. The objectives of the pro
cedure are two-fold: To make the task as algorithmic as
possible, and to produce an "optimal" 4NF family.

TABLE OF CONTENTS
Page

ABSTRACT iv
LIST OF ILLUSTRATIONS.............................
Chapter

I. INTRODUCTION 1
1.1 H i s t o r y 1
1.2 The Relational Model — Definitions

and N o t a t i o n s 6
1.3 Operations on Relations 9
1.4 Normalization......................... 12
1.5 Data Dependencies..................... 15
1.6 Normal F o r m s 18

II. THE ALGEBRA OF FUNCTIONAL DEPENDENCIES AND
MULTIVALUED DEPENDENCIES 22
2.1 Introduction........................... 22
2.2 The Inference Rules for Data

Dependencies..................... 22
2.2.1 Armstrong's Axiomatization of

Functional Dependencies 23
2.2.2 Inference Rules for Multivalued

Dependencies 26
2.2.3 Inference Rules for Mixed

Dependencies 30
2.3 The Closures of Dependencies.......... 32
2.4 The Principles of Schema Design 36
2.5 Chapter Summary and Remarks 38

III. CONSTRUCTING RELATION SCHEMES FROM DATA
DEPENDENCIES 39
3.1 Introduction........................... 39
3.2 General descriptions of the Approach . . 40

VI

Chapter Page

3.3 A Simple Dependency-to-Relation
Method 41
3.3.1 Proof of Representation......... 43
3.3.2 Proof of Normalization......... 44

3.4 The Dependency-to-Relation Method,
1st Improvement....................... 46
3.4.1 Proof of Representation........ 46

3.5 The Dependency-to-Relation Method,
2nd Improvement....................... 51
3.5.1 Proof of Representation.......... 52

3.6 The Dependency-to-Relation Method,
3rd Improvement....................... 57
3.6.1 Proof of Representation......... 58
3.6.2 Proof of Normalization......... 62

3.7 The Dependency-to-Relation Method,
4 th Improvement....................... 65
3.7.1 Proof of Representation......... 70
3.7.2 Proof of Normalization......... 71

3.8 The Dependency-to-Relation Method,
Final Improvement..................... 75

3.9 Chapter Summary and Remarks 84
IV. CONSTRUCTING CLOSURE II AND CLOSURE III . . . 85

4.1 Introduction........................ 85
4.2 Description of the Closure II Algorithm. 85

4.2.1 Proof of Terminai i o n 89
4.2.2 Proof of Correctness........... 89
4.2.3 Output Analysis................ 92
4.2.4 Speed A n a l y s i s 95

4.3 Description of the Closure III
A l g o r i t h m 95
4.3.1 Proof of Correctness........... 96
4.3.2 Proof of Termination..............101
4.3.3 Output Analysis................... 101
4.3.4 Speed A n a l y s i s 102

VI1

Chapter Page
4.4 Description of the Dectection

Algorithms................................. 103
4.5 Chapter Summary and Remarks 103

V. ANALYSIS OF RELATIONS BY DEPENDENCY-TO-
R E L A T I O N ..106
5.1 Introduction............................... 106
5.2 Properties of Relations Constructed

by FNF A l g o r i t h m s 106
5.2.1 Representation Principle 107
5.2.2 Separation Principle 113
5.2.3 Minimal Redundancy Principle . . . 117

5.2.3.1 Description of the Optimal
Decomposition Algorithm . 129

5.3 Bernstein's Synthetic Approach 131
5.4 Fagin's Decomposition Approach 134
5.5 Chapter Summary and Remarks 137

VI. SUMMARY AND C O N C L U S I O N 138
6.1 S u m m a r y 138
6.2 Analysis of the Approach.................. 139
6.3 Suggestions for Further W o r k 141

BIBLIOGRAPHY 143
APPENDIX.................................. 146

viii

LIST OF ILLUSTRATIONS
Figure Page

1-1 An example of a r e l a t i o n 2
1-2a An example of relational schema

(consisting of three relational schemes). . . 8
l-2b A snapshot of the schema of part "a"..... 8
1-3 The projection operation
1-4 The join o p e r a t i o n11
l~5a An example of a relation with undesirable

p r o p e r t i e s 13
l-5b A different normal form of the schema of

part (a), without undesirable properties . . 13
l-6a A third normal form schema with undesirable

p r o p e r t i e s 16
l-6b The fourth normal form of the schema of

part "a", without undesirable properties . . 16
1-7 Transitive Dependency 20
3-1 Algorithm 3 - 1 42
3-2 Algorithm 3 - 2 47
3—3 Algorithm 3 - 3 53
3-4 Algorithm 3 - 4 59
3-5 Derivation of A — C from A,D —e- B,C

and A D 64
3-6 Algorithm 3 - 5 66
3-7 Algorithm 3 - 6 76
4-1 Algorithm 4 - 1 87
4-2 Algorithm 4 - 2 97

ix

Figure Page
4-3 Algorithm 4 - 3104
5-la An instance of the schema R109
5-lb An instance of the schema S 109
5-2 An instance of the schema S'..........Ill
5-3 Algorithm 5 - 1130
5-4 Algorithm 5 - 2132

X

CHAPTER I

INTRODUCTION

1.1 History
One of the most significant contributions to data

management technology in recent years has been the develop
ment of the relational point of view of a data base. In
this section we will give a very informal discussion of the
relational approach and its problems and will trace its his-
torical developments.

The concept of the relational model of data was first
proposed in 1970 by Codd [10]. Conceptually, a relation can
be viewed as a table, such as the one in Figure 1-1. Note
that the table resembles the traditional file, with rows
corresponding to records of the file and columns correspond
ing to fields of the records [13]. This tabular represen
tation of data makes the computer accessible not only to the
professional users, but also to the casual users with little
or even no programming background. The conceptual simplicity
of the relational model together with its mathematical
elegance have attracted a large number of followers. This

Formal definitions and technical discussions are given later.

An example of a relation

HOUSING TENANT COMPLEX TYPE RENT APT# MANAGER

Jack Nieman Fur. 100 17D Smith
Mary Parkview Unfur. 110 212H Brown
Phil Kraettli Fur. 200 30 5F Rogers
Mark Kraettli Fur. 200 302A Rogers
Mike Kraettli Fur. 200 208C Rogers
John Const. Unfur. 175 126H Rose
Tom Const. Unfur. 175 113F Rose

Figure 1-1

3
dissertation deals mainly with the relational model, and
specifically it considers the problem of "logical schema
design", i.e. how relations should be designed to take ad
vantage of the relational model's strengths.

Shortly after Codd introduced the relational model
for data bases, he observed that certain relationships
(functional dependencies) contained in a relation can cause
data manipulation anomalies (i.e., adding new information,
modifying existing information, or deleting old ones might
be difficult and sometimes impossible). Therefore, he pro
posed a hierarchical set of constraints on relations. These
constraints restrict relations to certain canonical forms,
called Normal forms by Codd. The most desirable of these is
Third normal form (3NF)111]. Subsequently several research
ers proposed various algorithms for constructing 3NF
relations [8,15,29].

All of the above works are based on the axiomatization
of functional dependencies developed by Armstrong [3]. Wang
and Wedekind proposed an algorithm to synthesize the rela
tional schema from a set of functional relationships [29].
However, their algorithm is not correct, in the sense that
it could generate two relations with keys that are function
ally equivalent.

Another approach was made by Bernstein [8]. His work
was based on the approach given by Delobel and Casey [15].
Although the relational schema produced by Bernstein's

4
algorithm is in 3NF, it may contain properties that can
cause data manipulation anomalies. This problem, which was
discovered by Fagin [18] and independently by Zaniolo [31],
stems from the fact that there may exist a special type of
relationship between attributes which is not functional
(a so-called multivalued dependency). Considering this new
concept of relationship, Fagin defined a new normal form
which he called fourth normal form (4NF). Then he proposed
a decomposition approach for constructing 4NF relations [18].
His process begins by forming a single relation consisting
of all attributes of the data base. Then this relation is
broken down into two subrelations in a more desirable form
(i.e., causing less data anomalies). This process continues
for each subrelation not in 4NF, until all of them are in
4NF. The family of 4NF relations constructed in this way is
not necessarily "optimal", and may contain redundant infor
mation. In addition, for a large data base, the original
relation produced by Fagin's approach can be extremely large
(it consists of all attributes of the data base), and thus
makes the problem (i.e., breaking the relations) costly and
time consuming.

The main objective of the new approach given in this
thesis is also to construct 4NF relations. In this approach
(in contrast to Fagin's method), the original and final rela
tions are approximately of the same size. This is in fact
the primary advantage of the approach. Briefly, the process

5
begins by constructing one relation for each relationship
that exists between any pair of attributes (or sets of
attributes). Then these relations are broken down to sub
relations until all of them are in 4NF. The relational
schema constructed by this approach contains the theoretical
minimal number of attributes and thus optimizes the use of
computer memory.

The organization of the thesis is as follows; In
this chapter, basic definitions and notations are given.
Also a detailed discussion about normalization and normal
forms are presented.

In Chapter II, the theoretical bases for designing
a relational data model in general, and for our new approach
in particular, are discussed.

The algorithm for constructing a relational schema in
Fourth Normal Form is presented in Chapter III. The chapter
starts with a simple algorithm which produces a schema not
necessarily in 4NF. Then this simple algorithm is modified
to eliminate undesirable properties of the schema as much as
possible. This modification process is continued until we
come up with an algorithm (which in this dissertation is
called Fourth Normal Form Algorithm, or briefly, FNF) which
produces a schema in 4NF. Theoretical issues and all proofs
regarding the above algorithms are also described in Chapter
III.

In Chapter IV, two algorithms are introduced for finding
Closure II and Closure III (two sets that play significant

6
roles in our approach) for a given set of data dependen
cies. The feasibility of these algorithms and proofs for
their correctness are also discussed in this chapter.

In Chapter V , properties of relations constructed by
the FNF algorithm are examined and they are compared with re
lations constructed by other approaches. Also in this chap
ter a detailed discussion about "optimal" schemas is given.

Finally, in Chapter VI, an investigation of the prac
tical and theoretical consequences of our approach is given.
Also, several directions for further research are pointed
out at this time.

The proofs of those problems related to this research
that have been dealt with in previous work by others are
given in the appendix.

1.2 The Relational Model — Definitions and Notations
Conceptually, a relation can be viewed as a table in

which each row corresponds to a distinct entity (or tuple)
and each column to a distinct attribute. There exists a set
of possible associated values, called the domain of attribute
for each attribute.

Formally, a relation can be defined as follows : Given
a collection of sets D^,Ü2,...,D^ (not necessarily distinct),
a relation of R, defined over ,Ü2,... ,D^/ is a subset of
the cartesian product XD2 x ... xD^. That is, R is a set
of n-elements each of the form (d^,d2,...,d^) where dĵ s ,
for 1 <i <n. Each element of the R is called a tuple of R.
R is said to be a relation of degree n. An attribute is a

7
name assigned to a domain of a relation. While the domains
of a relation need not be distinct, the attribute names
assigned to tliem must be unique within the relation.

Suppose the names of the domains
^l'^2'’’*'^n ^ relation R, then we use notation 1.2.1
for R.

R(Aj^,A2, ... ,A^) (1.2.1),

The attribute set of R is defined as
U = {A^fAg,...,A^} (1.2.2)

We will also use (1.2.3) to designate R on the set of
attributes U.

R(U) (1.2.31
The structure of a relation is sometimes called

the intention (scherne) and the contents of a relation is
referred to as the extension. The contents of a relation
may vary from time to time. That is, tuples may be modi
fied, deleted from a relation, or/and inserted in a rela
tion. The contents of a relation in a particular time is
called its snapshot (or instance). Figure 1-2 indicates
a schema (i.e., a collection of schemes) consisting of
three relation schemes, R^(A,B), R2(C,D,E) and Rg(B,D,F);
and a snapshot of the schema.

Let R(U) be a relation on the set of attributes U,
and let W be a subset of U, then W is a candidate key of
R if it can uniquely identify the tuples of R and no
proper subset of W has this property. A relation may

8

A Relational Schema and its Snapshot
An example of relational schema (consisting of three
relational schemes)

(A,B) = {(a^fbg),(dgb^),(dgfb^)}
RgfCfD, E)= {(c\,d^,e2X(c2,d2,e^)(c3'^2 /^2) / (f dg
RgtBfD, F)= {(b^,d2,f3),(b2,d2,f2)f (bg, di'fi)}

A snapshot of the schema of part "a"

Rl(A, B) RgtC, D, E)

^1 ^1 ®2
^2 ^4 =2 ^1
^3 bi C3 ^2 ®1

<=4
R3 CB, D, F)

^1 ^2 ^3
^2 ^2 ^2
^3 di f.

Figure 1-2

9
have more than one candidate key. An attribute is said
to be prime if it appears in any candidate key of the
relation, and it is called a non-prime attribute otherwise.

1.3 Operations on Relations
Codd has defined [10] a number of operations on

relations. In this dissertation two operations ar-' of
particular interest: Projection and Join.

Let R be a relation defined on the set of attri
butes U = A^,A2r•..fA^. For any W = A^,A2,...,A^, that
is Wcu, the projection of R on W is defined as:

n 4 R(W) = (a^,a2,...,a^) (3̂ ,82, — ,a^)eR (1.3.1)

In other words, we can think of the projection of R onto
W as the operation that takes the relation (instance)
represented by R, then deletes all columns except those
labeled by attributes in W, and finally identifies common
tuples (See Figure 1-).

The join operator which is in some senses an
inverse to the projection operator, in fact connects
attributes of different relations together. The join
(natural join) of a relation R(X,Y) with a relation P(Y,Z)
on Y, is defined as:

R * P = { (x,y ,z) 1 (x,y e R and Cy,z) eP}. (1.3.2)

Figure 1- indicates an example of join operation.

10
The projection operation

Suppose an instance of relation R(A,B,C) is

R(A, B, c. D, E)

^1 "3 °2 ■̂1 ®3
^1 (=3
^2 ^1 «3
^3 =2 ^2 ®2
*3 =3 <̂ 2 ®1

Then the projection of R on A, B and D is

R' (A, B, D)

^1 ^3 ■̂ 1
^1 ^2
^2 "̂ 3
^3 ^1 ^2

Figure 1-3

11

The join operation
If instances of relations R(A,B,C) and P(C,D) are

R(A, B, C) P(C, D)

^1 ^3 ^2 ^1 ^1
^1 ^2 ^3 °2 ^3
^2 ^4 °1 ^4 ^2
^3 ^1 °2
^3 ^1 =4

then the natural join of R with P (i.e., R * P) is

RP(A, B, C, D)

^1 ^3 °2 *̂ 3
^2 ^4 ^1 ^1
®3 ^1 °2 ^3
a-i b, c. d_

Figure 1-4

12

1.4 Normalization

The notion of normalization in relational data
base was first presented by Codd [11]. Codd observed
that certain relations have structural properties that
are undesirable for describing data bases. These unde
sirabilities stem from the fact that some attributes in
a relation are related to each other in a certain way.
For example, in relation TCM of Figure l-5a, there is
a relationship between COMPLEX and MANAGER. That is,
given the complex, we can determine its manager. Note
that in relation TCM the association between a complex
and its manager is repeated for each TENANT. This
repetition causes data manipulation anomalies. These
anomalies can be categorized as follows;

(1). Update anomaly. Suppose the association
between a complex and its manager is
changed (i.e., the complex is no longer
managed by the old manager, but a new
one). Then we need to update all tuples
and change the values of complex and
manager for all tenants of the complex.
On the other hand, if we update only one
tuple, it will not be adequate for
maintaining a consistant schema. This
is known as update anomaly.

13

example of a relation with undesirable
le association between a complex and its
>eated for each tenant.)

TCM(TENANT, COMPLEX, MANAGER)
Jack Nieman Smith
Mary Parkview Brown
Phil Kraettli Rogers
Mark Kraettli Rogers
Mike Kraettli Rogers
John Const. Rose
Tom Const. Rose

b) A different normal form of the schema of part "a",
without undesirable properties.

TC [TENANT, COMPLEX) CM (COMPLEX, MANAGER)
Jack Nieman Nieman Smith
Mary Parkview Parkview Brown
Phil Kraettli Kraettli Rogers
Mark Kraettli Const. Rose
Mike Kraettli
John Const.
Tom Const.

Figure 1-5

14

(2) Insertion anomaly. If a new TENANT moves
into a COMPLEX, and he/she happens to be
the first tenant of the complex, then an
association between the complex and manager
will also be needed to insert the new tuple.
This is called insertion anomaly.

(3) Deletion anomaly. If a TENANT moves out
from a complex, and he/she happens to be
the last tenant of the complex (i.e., no
more tenants are residing in the complex).
then by removing his tuple from the rela
tion, the association between the complex
and its manager also disappears from the
relation. This is known as deletion
anomaly.

Data manipulation anomalies discussed above will
disappear if we convert the schema into a "better" normal
form. (See Figure l-5b).

For a relational schema, in fact, there are usually
different sets of relation schemes that can represent all
of the information needed. Thus, to avoid data manipu
lation anomalies, attempts have been made to introduce
schemas with no undesirable structural properties for des
cribing data bases. These considerations led Codd to
define a series of three normal forms 111] , First Normal

15

Form, Second Normal Form, and Third Normal Form.
Later in 1977, Fagin [18] discovered that even by

putting a schema into Third Normal Form, not all of the
anomaly problems necessarily disappear. This led him to
propose a new normal form, called Fourth Normal Form. An
example of a Third Normal Form schema with undesirable
properties is illustrated in Figure 1-6a. Figure 1-6b
shows the Fourth Normal Form of the schema.

Data manipulation anomalies appear in this third
normal form schema, because of the undesirable relation
ship that exists between attributes EMPLOYEE and CHILD in
relation EDO.

A formal description of all normal forms is given
in section 1 .6.

1.5 Data Dependencies
The problems associated with constructing Fourth

Normal Form relational schemas are tied to the fact that
some attributes determine the values of other attributes.
This can be formalized as the comcept of Functional
Dependency (FD) and Multivalued Dependency (MVD).

The concept of functional dependency is defined as
follows ; if X and Y are distinct collections of attributes
of some relation scheme R, then Y is said to be functionally
dependent on X (or :x functionally determines Y) if, at
every point in time, each X value has no more than one Y

16
a) A Third Normal Form schema with undesirable properties.

(The association between an employee and his/lier depart
ment is repeated for each child.)

EDC(EMPLOYEE, DEPARTMENT, CHILD)
Johnson Accounting Henry
Johnson Accounting Bonnie
Johnson Accounting Ralph
Stewart Personnel Tim
Stewart Personnel Martha
Jones Marketing Joe

The Fourth Normal Form of the schema of part
undesirable properties.

"a", without

ED(EMPLOYEE, DEPARTMENT) EC(EMPLOYEE, CHILD)
Johnson Accounting Johnson Henry
Stewart Personnel Johnson Bonnie
Jones Marketing Johnson Ralph

Stewart
Stewart
Jones

Tim
Martha
Joe

Figure 1-6

17

value associated with it under the relation R. The nota
tion used to denote that Y is functionally dependent on X
in R is

R . X > R,Y (1.4.1)
and if no confusion exists, then R can be omitted.

X > Y (1.4.2)
The concept of Multivalued Dependencies has been pro

posed by Fagin in [18] as follows:
Let R(X^,...,X^,Y^,...,Y^,Z^,...,Z^) be a relation with
m + n + r attribute names. For notation convenience, we
write X for X^,...,X^^ / and Z are defined analogously.
Whenever we write, say, R(X,y,Z), we assume automatically
X, y, and 1 are pairwise disjoint as above. If x^,...,x^
are entries that appear under columns X^,...,X^, then we
write X for (x^,...,x^); ÿ and z are defined analogously.
Define to he {ij:{x,y,z) eR}. Of course is nonempty
if and only if x and z appear together in a tuple of R.
Now, using the following notation to denote that X multi-
determines / in R

R.X — > R.y (1.4.3)
and when no confusion exists

X — 3̂ > V (1.4.4)
the multivalued dependency X — >— > V is said to hold for
R(X,y,Z) if y depends only on x; that is, if V = y , xz xz xz
for each x,z,z' such that V and are nonempty. As
we can see the validity of MVD X — ?— depends not only on

18

tho values of attributes X and)/, but also on the value of
1, the complement of X/. This context dependency of MVDs
makes the problem of schema design much more complicated
than if only FDs were involved.

As an example of Multivalued dependencies see rela
tion EDC of Figure 1-6, for which multivalued dependency
EMPLOYEE — »— > CHILD holds .

1.6 Normal Forms
The concepts of functional dependence and multivalued

dependence play significant roles in the theory which
governs the decomposition of relations into subrelations
in normal forms.

To show how a certain undesirable dependency creates
problems discussed earlier, we will discuss the concepts of
partial dependencies (and fully dependencies), and transit
tive dependencies mentioned by Codd [10,11]. We will also
discuss the Fagin's [18] notion of nontrivial multivalued
dependency.

We say that, Y is fully dependent on X in relation R,
if

(1) X and y are two distinct subcollections of
attributes of relation R,

(2) R.X -- > R.Y, and
(3) Y is not functionally dependent on any proper

subset of X.

19

If condition (3) is not satisfied, then we say, Y is
partially dependent on X in relation R.

Partial dependencies can create data manipulation
anomalies and thus, have to be removed from the schema.
This led Codd to further normalize the first normal form
relations to get the second normal form [11].

A relation R is said to be in First Normal Form (INF),
if and only if all underlying domains contain atomic values
only [13].

A relation R is said to be in Second Normal Form if:
(1) it is in first normal form, and
(2) every non-prime attribute of R is fully depen

dent on each candidate key of R.
To define third normal form relations, we need to

know the concept of "transitive dependencies".
Given a relation R, further suppose that X, Y, and Z

are three distinct collections of attributes of R, and if
the following conditions are true

(1) R.X --> R.Y
(2) R.Y -/-> R.X
(3) R.Y --> R.Z

then it follows that
R.X >R.Z and
R.Z -/-> R.X

Here, Z is said to be transitively dependent on X under
the relation R. This concept is depicted in Figure 1-7.

20

Transitive Dependency

Y

ZX

given FDs
^ implied FDs

Figure lr7

21
A relation is said to be in Third Normal Form (3NF)

if.
(1) it is in second normal form, and
(2) every non-prime attribute of R is non-

transitively dependent on each candidate
key of R.

The concept of "trivial multivalued dependencies"
proposed by Fagin [18], is needed in describing the
fourth normal form relations.

Given relation R(U). where U = {X,Y}, then the
multivalued dependencies X —^ 0 and X —^ Y necessarily
hold for R. These are called Trivial Multivalued
Dependencies (TMD).

A relation R is said to be in Fourth normal Form
(4NF), if whenever a nontrivial multivalued dependency
X ->»• Y holds for R, then so does the functional depen
dency X — A for every attribute A of R. An example
of a schema in 4NF is given in Figure 1-6.

CHAPTER II

THE ALGEBRA OF FUNCTIONAL DEPENDENCIES AND MULTIVALUED
DEPENDENCIES

2.1 Introduction
The theoretical bases for designing a relational

data model in general, and for our new design approach
in particular, are discussed in this chapter. The in
ference rules for functional dependencies and multivalued
dependencies are given in section 2.2, and it is proved
that these rules are complete in the sense that a data
dependency g is a consequence of a set of dependencies
G if and only if g can be derived from G by a sequence of
applications of the rules.

In section 2.3 different closures of dependencies
are defined, and it is shown that two of these closures
are of particular importance for this work.

Finally, the three principles that should be con
sidered in designing a relational schema are presented
in section 2.4. These principles are formally discussed
in Chapter V.

2.2 The Inference Rules for Data Dependencies
When the problem of schema design is of concern,

22

23
it is important to know whether a dependency is implied
by some other dependencies or not. Formally, this means
that a dependency g is a consequence of a set of depen
dencies G if for all relation schemes R, g holds in R if
all dependencies of G hold in R. In previous work, re
searchers have proposed and investigated the complete
sets of inference rules for functional and multivalued
dependencies [3,6,7,18, et al.]. Detailed discussions
for these inference rules are given in the following
subsections :

2.2.1 Armstrong's Axiomatisation of Functional
Dependencies

Axiomatisation of functional dependencies was
studied by Armstrong [3]. In 13] he has presented a set
of axioms, governing sets of functional dependencies. It
is proved [3,7,19] that this set of axioms is complete
for the family of FDs in the sense that, for a family of
FDs, for each set F of FDs from the family, the FDs that
are implied by F are exactly those dependencies that can
be inferred from it using these inference rules. In
other words, we say a set of axioms is complete for a
family of FDs if and only if, for each set F of FDs over
a set of attributes U, if F^ is the set of FDs that
follow logically from F, then every relation over U that
satisfies F, also satisfies the functional dependencies
in F^. For any formal system, the completeness of the

24

set of inference rules is an important concept for the
system. For the family of functional dependencies, as
it is mentioned in I7J, only if a complete set of axioms
is used, the data base designer can be assured that he
has complete knowledge of all FDs that hold in the data
base. This is in fact the basic reason that the com
pleteness of Armstrong's axioms has been an important
basis for research in this area (including the present
research).

The complete set of axioms for the family of func
tional dependencies is given below. In the rules, X,
Y, Z and W are arbitrary subsets of TJ, where U is the
set of all attributes. We write X for the set X, and
XY for the union of two arbitrary sets.
FD Rules ;

FDl (Reflexivity). : If Y ç X then X —> Y.
FD2 (Augmentation): If Z-.cW and X — Y, then

XW -> YZ.
FD3 (Transitivity): If X —^ Y and Y —^ Z, then

X —> Z.
Other Useful Rules:

FD4 CPseudo-Transitivity) ; If X Y and YW -7̂ Z,
then XW -> Z.

FD5 (Union); If X Y and X Z, then X -> YZ.
FD6 (Decomposition) ; If X —>■ YZ, then X —> Y and

X Z.

25
If a and B are attributes of a relation R, then by

applying the Axiom FDl to X = {a,3) we get a3 — cx3,
a3 —^ a3 — > 3, a — > a, and 3 — > 3-

Axiom FD2 means that, knowing f: X — Y, we can
construct another functional dependency, say g: X ,6 Y ,
where the attributes appearing on the left side of g con
sists of X plus some other extraneous attributes 5, whose
values have no effect on the value of Y selected by g.

For Axiom FD3, assume one is given the dependencies
f; X — Y and g; Y —> Z. The axiom claims that there is
a dependency h; X S, Symbolically, h(X,Z) is defined
to be g(.f (X). ,Z) .

Notice that, in the above set of axioms, the Axioms
FD1-FD3 are sufficient, and the other three axioms, that
is FD4-FD6 are implied by the first three axioms. As an
example, Axiom FD 4: can be derived from the Axioms FDl-
FD3 as follows; As our assumption we have f̂ :̂ X —> Y and
f2: YW —>• Z. Now, from f^ and Axiom FD2 we get f X W —>• YW.
By applying Axiom FD3 to fg and f^ we can derive an FD
XW —5- Z, completing the claim. Similarly, it is easy to
show that the other two axioms, FDS and FD6, can also be
derived from the first three axioms.

Let F be a set of functional dependencies over a set
of attributes U. Then the closure of F, denoted by F^, is
defined to be the set of all functional dependencies that
can be obtained by successive application of Axioms FDl,

26

FD2, and FD3 on the set F, over the set of attributes U.
Notice that by Armstrong's theory, if F is a given set of
FDs for a relation R, then each FD in F also exsits in R.

A functional dependency f E F is said to be redun
dant in F if F* = CF - f\)*. Also, H is a nonredundant
covering of a given set of functional dependencies F, if
F^ = and H contains no redundant FDs. As we will see
later, the concepts of closures and covering are impor
tant in constructing the relational schemas from depen
dencies. Letting f ’*' be the general closure of a given
set of dependencies, wo will present in Section 2.3 two
special closures of a set of functional and multivalued
dependencies. These two closures are of particular
importance in constructing a relational schema from a set
of data dependencies using the new design approach dis
cussed in this research.

2.2.2 Inference Rules for Multivalued Dependencies

A set of inference rules for multivalued dependen
cies is presented in 17], and it is proved that the given
set is complete for the family of MVDs. Similar to FDs,
we say that a set of inference rules is complete for the
family of MVDs, if for each, set M of MVDs from the family,
the MVDs that are implied by M are exactly those depen
dencies that can be inferred from it using these infer
ence rules. The complete set of rules for multivalued

27

dependencies is given below. In the rules, X, Y, Z, and
W are arbitrary sets of attributes. We use XY for the
union of two arbitrary sets of attributes X and Y .
MVD Rules ;

MVDO (.Complementation) ; If U = XYZ and YD Z cX, then
X -»■ Y if and only if X — >->Z

MVDl (JReflexivity) : If Y c X then, X — Y.
MVD2 (Augmentation): If Z c W and X — Y then,

XW -5̂ YZ.
MVD3 (Transitivity) : If X —e>->- Y and Y — Z then,

X ->-> Z - Y.
other useful rules:

MVD4 (Pseudo-Transitivity) : If X ->->- Y and YW — >->• Z
then, XW —>-> Z - YW.

MVD5 (Union) : If X — Y and X —>-> Z then,
X YZ.

MVD6 (Decomposition) : If X — Y and X — Z then,
X Y n Z , X Y - Z, and
X Z - Y.

It is interesting to note that for each FD rule
there exists one MVD rule corresponding to it. But
notice, that there is no FD rule corresponding to the
complementation rule of MVDs. in fact, as it was men
tioned in Chapter I, multivalued dependencies are
sensitive to context, while functional dependencies are
context independent. In other words, to know if the MVD

28

X —» Y holds in a relation R(U), where U = XYZ, we also
need to know the values of the attributes in the set U - XY,
that is, Z. As is discussed in [18], an MVD X — Y may
not hold in one relation, but in one of its projections.
This is not true for the case of FDs, because if an
FD X —> Y holds in a relation R(U), it also holds in any
other relation R(U') as long as X (J Y c D ' .

As for FD rules, the inference rules MVDO-MVD3 are
sufficient for multivalued dependencies, and the other
useful rules indicated above (i.e., MVD4-MVD6), can be
derived by rules MVD0-MVD3. This claim can be formalized
as follows 124];
Proposition 2.1 The Decomposition Rule [i.e., MVD6) can
be derived from MVDl—MVD3.
Proof : Suppose we have m^: X —5̂ Y and m^ : X —5̂ Z, then
we need to prove that Cil X —» Y flZ and (iil X —>-> Z - Y,
From MVD m^ and Axiom MVD2 we get m^; X XY, and from
m^ and Axiom MVD2 we get m^ : XY —>■ Z. Now by applying
Axiom MVD3 to m^ and m^ we can derive m^: X — Z - XY.
We can also get m^: X(Z - XY) — Z and m^: X —^ X(Z - XY)
by applying Axiom MVD2 to m^ and m^ respectively. From
MVDs mg and m.̂ , and Axiom MVD3 we can get mg:
X —^ Z - X(Z-XY). Now, it is easy to get m^:
X — Y n Z - X from mg (by boolean manipulations) which
in turn can result to râ g : X(X n Y (1 Z) (Y f) Z-X) (X n Y n Z).
This (i.e., m^g) obviously leads to m^^: X Y A Z,

29
completing the claim for part (i). For part (ii), we may
apply Axiom MVD2 to m^ to get m^g: 2((X-Y)n Z) —» (X-XY)
((X-Y)n Z) which in turn can lead us to X — Z - Y
(boolean manipulations), thus completing the proof. #

As we saw in Proposition 2.1, the Decomposition
Rule can be derived without using the Complementation
Rule MVDO. In fact, in [7] it was concluded that neither
Rule MVD5 nor Rule MVD6 can be derived without using the
complementation rule. This claim has been rejected in
[24] for the Rule MVD6, because as we saw in Proposition
2.1 the Rule MVD6 is obtainable without using the Rule
MVDO. But notice that, the Union Rule can be derived
only if the Complementation Rule is also involved in the
derivation process [7,24]. This claim is formalized in
the following proposition [24].
Proposition 2.2 The Union Rule (i.e., MVD5) cannot be
derived from Rules MVD1-MVD3.
Proof: The proof is given in the Appendix.

The significance of the complementation rule is
more formally stated by Mendelzon [24] and others [3,18].
Indeed, it has been proved that the complementation rule
does not follow from MVD1-MVD6.

In [24] , Mendelzon has also proved that there are
only two minimal complete subsets of the MVD Rules, the
sets {MVDO, MVDl,MVD3} and {MVDO,MVDl,MVD4}. These are
important results that can be of particular interest in

30
designing a relational schema. We will return to this
problem in Chapter III.

Recall that a complete set of inference rules for
functional dependencies was given in section 2.2.1, and
a complete set of inference rules for multivalued depen
dencies was given in this seciton. Now, it is important
to notice that, although FD rules are sufficient when
there are only FDs, and MVD rules are sufficient when
when there are only MVDs, the combination of FD rules
and MVD rules is not sufficient for the case that both
kind of dependencies, functional and multivalued, are
involved. In other words, when we have a set of func
tional and multivalued dependencies, not all of the
obtainable dependencies from this set can be inferred by
the applications of FD rules and MVD rules. Indeed,
there are two additional rules that can be applied only
when both kind of dependencies exists in the set. These
rules are given in the following subsection.

2.2.3 Inference Rules for Mixed Dependencies
In subsections 2.2.1 and 2.2.2 we dealt with the

inference rules for FDs and MVDs respectively. In fact,
in each subsection we concentrated on one type of depen
dency. That, is, we wanted to know what additional FDs
(or MVDs) can be implied by a set of FDs (or MVDs). Now,
suppose G = F (J M is a set of data dependencies, where P
is a set of FDs and M is a set of MVDs. Also, suppose

31
that F' is a set of FDs inferred from F by applying FD
rules, and M' is a set of MVDs inferred from M by the
applications of MVD rules. Now the question is, does
the set G' = F' contain all dependencies implied by
G? If not, what are the additional rules that can be
used to deduce them?

In 17] three rules are introduced for mixed depen
dencies. They are given below. In the rules X, Y, Z,
and Z' arbitrary sets.
FD-MVD Rules;

FD-MVJDl; If X —>• Y then JX Y.
FD-MVD2: If X - » Z and Y ->• Z ' where Z ' c Z and

Y n Z = gr, then X Z '.
additional useful rule:

FD-MVD3: If X Y and XY — ^ Z, then X — > Z - Y.
Note that, the first two rules (FD-MVDl and FD-MVD2)

combined with the FD rules and the MVD rules are suffi
cient for mixed dependencies, and the Rule FD-MVD3 can
be derived from them. The complete proofs concerning
these rules are given in the appendix. Briefly, the Rule
FD-MVDl simply follows from the definitions of functional
and multivalued dependencies, and it means that an FD is
also an MVD. Indeed, as it was mentioned in Chapter I,
functional dependencies are special cases of multivalued
dependencies (notice that the converse of this concept is
not true).

32
As we saw, the set of rules introduced in subsec

tions 2.2.1, 2.2.2, and 2.2.3 are complete for the family
of functional and multivalued dependencies. The proof
of this completeness which originates from [7] is given
in the appendix.

2.3 The Closures of Dependencies
If G = F ^ M is a set of data dependencies, where F

is a set of FDs and M is a set of MVDs, then the closure
of G denoted by is the set of FDs and MVDs that can
be deduced from F jj M by repeated applications of FD
rules, MVD rules, and mixed rules.

Recall from the previous section that the set of
rules {FDl,FD2,FD3,MVDO,MVD1,MVD2,MVD3,FD-MVDl,FD-MVD2}
is sufficient, and thus the axioms of this set are those
that are crucial in designing a relational schema. In
fact, as we saw before, the other axioms are implied by
those given in the above set, and need not be explicitly
considered in the design process. In addition, we claim
that Axioms FDl and MVDl are not needed either for this
work. This is simply because FD X —5- X (or MVD X X)
means, having a set of attributes X, we can determine
(or multidetermine) a set of attributes X, and clearly,
having a set X at our disposal we do not have to deter
mine it. We also claim that Axioms FD2 and MVD2 are
not needed either. In fact, if a set of attributes X

33
determines (or multideterraines) Y, then our method rea
lizes that any set which contains X also determines (or
multideterraines) Y.

Axioms MVDO and FD-MVDl need not be considered
(.explicitly), either, because as we will see in Chapter
III, these rules are implicitly considered in our schema
design.

As: will be discussed in more detail in Chapter III,
the above concepts lead to two special closures that are
of particular interest for our new design approach. We
formally define these closures as follows:
Definition 2.1 If G = F |JM is a set of mixed dependen-

IIcies (FDs and MVDs), the closure II of G, denoted by G ,
is defined to be the set of all dependencies that can be
obtained by successive application of axioms FD4 and MVD4.

An efficient closure II Algorithm which computes
the closure II of a given set of FDs and MVDs is given in
Chapter IV. The feasibility of constructing the closure
II of a set for the real world applications is also dis
cussed in that chapter.
Definition 2.2 Let G = F ̂ M be a set of mixed depen
dencies (FDs and MVDs), then the closure III of G, denoted

IIIby G r is defined to be the set of all dependencies that
can be obtained by successive application of axioms FD4,
MVD4, and FD-MVD2.

In chapter TV, an efficient algorithm which computes

34

the closure III of a given set of functional and multi
valued dependencies is given, and its feasibility is
discussed in detail.

In all the published work of relational data base
design 14,8, et al.], the computation of the closure of
a set of dependencies has been avoided. This is mainly
because the closure of a set of dependencies can be
extremely large even if the original set is small. In
particular it is the Reflexivity and Augmentation Rules,
which produce a large number of dependencies from a
given set. On the other hand, the closure II and closure
III of a set of dependencies will be fairly small, and
therefore we need much less time to compute them than if
we were to compute the general closure.

Here, an example is given to clarify these concepts,
and a formal discussion with all necessary proofs is
given in Chapter IV.
Example 2.1; Given G, the following set of FDs and MVDs;

h'' A B
£3 : B — > D
m^ : C — D

we can construct G^, the closure of
Applying reflexivity rules we get

^3- A — > A

4̂: B B

^5 : C -> C

35

f g : D - > D

Mg : A ->-> A
B —>-> B

; C —4-> C
in̂ : D — î>-> D

ipplying augmentation rules we get

f?: A,C --> B

^8* A,D - B.

fg*- B,A --4> D

^10/ B,C - D
mg: C,A -— >-> D
m^; C,B -— D

applying transitivity rules we get

^11* A -> D

applying complementation rule we get
rag*. C ->-> A,B.

applying Axiom MVDl we get
JOgt A B

■"10= B - ^ D
and finally applying Axiom MVD2 we get

^12* C -»• D

Now, we need to get the union of this new set. That is,
we have to remove those dependencies that are repeated
in the set. This is actually what makes the problem

36

costly and time consuming.
The same process should be applied to this new set

to get more dependencies (if any). We continue this pro
cess until no more newer set is derivable.

As is indicated in the above Example, constructing
the closure of a set of dependencies is very costly and
time consuming (a formal treatment to this problem is
given in Chapter IV. On the other hand, if we want to
construct the closure III [and/or closure II), then we
need only to apply the transitivity rules and FD-MVD2.

Ill IIIf we do so, we get G = {A — > D, C — > D }, and G =
{A — > D}. By comparing G^ with and G^^, for the same
set of dependencies, we can observe how much faster an
algorithm can construct the closure II Cand/or closure III)
of a set of dependencies, than if it was to construct the
general closure of the set.

2.4 The Principles of Schema Design

When constructing a relational schema from a set of
data dependencies, there are principles that have to be
considered. In other words, since the intention is to
construct schemas with no structural properties that are
undesirable for describing data bases (these undesirable
properties were discussed in Section 1.4), we should con
sider these principles when using the dependencies for our
schema design. Therefore, we say, a schema is a desirable

37

one if it satisfies these principles.
The three principles of the schema design that are

of interest for this work are proposed in [6]. These
three principles are representation, separation, and
nonredundancy.

Roughly speaking, representation means that all
information of interest should somehow be represented in
the schema. On the other hand, if any information is
lost during the transformation of dependencies (i.e., the
process of schema design)., then the constructed schema
violates the representation principle, and thus it can
no longer be a desirable schema.

A formal discussion is given in Chapter V. We will
give our own definitions of these principles, and will
prove that the schema constructed by our approach satis
fies them.

By separation,it is meant that in designing a
relational schema, attempts should be made to represent
the basic information separately. This is, in fact, the
motivation behind the normalization process [13]. In
Chapter V, we will formally discuss this issue, and will
prove that the schema constructed by our algorithm is as
normalized as possible, that is, it is in fourth normal
form.

The nonredundancy principle (sometimes called
minimal redundancy) requires that the representation be

38

nonredundant, that is, while the schema must represent
all of the information of interest, but it should not
contain any redundant information. Specifically speaking,
dependencies that can be derived from other explicitly
represented dependencies, need not be explicitly repre
sented. In addition, attributes should be repeated in
as few relations as possible. In Chapter V, heuristics
are employed for this issue, and it is formally shown how
a design approach, can lead to an "optimal" schema.

2.5 Chapter Summary and Remarks
The theoretical bases for designing a relational

schema have been discussed in details. A set of axioms
(FD rules), for the family of functional dependencies has
been given, and it is shown that these axioms are com
plete for this family. Also, a complete set of rules
(,MVD rules) has been presented in this chapter for the
family of MVDs^ It has been stated that the combination
of FD rules and MVD rules is not sufficient for the family
of functional and multivalued dependencies, and thus
additional rules CFD-MVD rules) have been given to complete
the set of rules for FDs and MVDs.

Furthermore, the three design principles, i.e.,
representation, separation, and nonredundancy have been
introduced.

CHAPTER III

CONSTRUCTING RELATION SCHEMES FROM DATA DEPENDENCIES

3.1 Introduction
A design approach for constructing a relational schema

from a set of functional and multivalued dependencies is
examined in this chapter. Since the intention is to pro
pose an approach satisfying the three design principles
discussed in Chapter II, then it is shown in this chapter
that the schema constructed by this method;

(i) "represents" all information of interest in
the schema,

(ii) does not represent any "redundant" information
and - _

(iii) as "normalized" as possible, that is, it
. . is in fourth normal form.

The proofs concerning these principles, and the proofs
of the other related problems are also given in this chapter
(except the proofs for the final algorithm — these proofs
will be given in Chapter V).

It is shown, that although the constructed schema has
no structural properties that are undesirable for describing

39

40

our data base, but it is not necessarily "optimal". This
issue will be examined in details in Chapter V. We will
propose the heuristics that can be employed for designing an
algorithm which can construct an optimal schema.

3.2. General Descriptions of the Approach
We start our work with designing a simple algorithm

and show several undesirable properties of the schema con
structed by this method. That is, we will prove and also
show by examples that some of the design principles are not
satisfied, and thus may cause data manipulation anomalies.
Then we will modify the algorithm to eliminate those unde
sirable properties as much as possible. We will continue
this process of modification until we come up with an algo
rithm which produces a "good" schema. This "good" schema
will not necessarily be "optimal", and thus we will further
modify the algorithm (in Chapter V) to construct a schema
which is both, "good" and "optimal".

Following each algorithm one or more examples are
given to clarify the concepts considered (and/or missed) by
the algorithm.

Also, we will put into account some basic semantics
properties that attributes and relationships among them
(FDs and MVDs) apparently have in the real world.

As a real world example we will consider a "university
housing" data base, which is used as a test case throughout

41

the iterative refinement of the algorithm.

3.3. A Simple Dependency-to-Relation Method
The problem of the schema design is indeed: given a

set of dependencies (FDs and MVDs designated by the data base
administrator), how to construct a relational schema. For
this method, we present an algorithm which gets as input a
set of dependencies, and generates as output a set of relation
schemes with designated keys (Figure 3-1).

The algorithm simply constructs one relation scheme
for each explicitly given dependency (and not for dependencies
that can be inferred from the given set), and designates the
keys as follows: Ci) if the corresponding dependency is an
FD, then the key of the relation scheme would be the attri
butes appearing on the left side of the dependency, and (ii)
if the corresponding dependency is an MVD, then the key of
the scheme would be all of the attributes appearing in the
dependency.

As we will see later, the schema constructed by this
algorithm has some structural properties that are not desir
able for describing the data base. As we mentioned before,
these undesirable properties will be eliminated by further
modification of the algorithm.

Note that, for all of the algorithm presented in this
chapter, we assume without loss of generality that there are
no two FDs and f^ with identical left sides. In fact.

42

Algorithm 3-1

A Simple Algorithm to Construct a Schema From a
Set of Dependencies

INPUT: A set F of m FDs; and a set M of n MVDs.
OUTPUT: A set R of m + n relation schemes (in INF or better)
<<construct relation schemes from FDs>>
do for each c F;

construct a relation scheme consisting of all attri
butes appearing in f^; The set of attributes that
appears on the left side of f i s the key of the rela
tion scheme;

end;
m

R' = U R. ;
i=l 1

<<construct relation schemes from MVDs>>
do for each m^ e M;

construct a relation scheme R^^^ consisting of all
attributes appearing in m^; The set of all attributes
that appears in m̂ ̂ is the key of the relation scheme;

end;
m-f-n

R" = U R. ;
i=m+l

<<put all schemes together>>
R = R'UR”;

eng algorithm;
Figure 3-1.

43

if there are any, we can simply combine them, using Axiom
FD5.

3.3.1. Proof of representation
A schema embodies a set of dependencies (FDs and MVDs)

if each dependency is embodied in at least one relation of
the schema. An FD, g: X — > Y is embodied in a relation
R(A^,A2,...,A^) if [8];

(i) X {Aj^,A2, ... ,A^} ,
(ii) Y £ {A^,A2,...,A^}, and
(iii) X E DOM(X) and y e DOM(Y) implies that g(x) = y

if and only if the tuple {x,y} is in the pro
jection of R on X and Y.

As the reader will notice, it is easy to generalize
the idea to MVDs.

Theorem 3.1. Let R be a relational schema constructed from
a set of dependencies G = FUM, using the algorithm 3-1, then
R represents the same information as G (i.e., embodies F
and M).
Proof; The algorithm constructs one relation (scheme) for
each f^ E F and one relation for each m^ E M. Thus we need
only to prove that each of those relations embodies its cor
responding dependency. Assume that the relation scheme
R^(X,Y) is constructed by dependency g^: X — >Y (or
X — > Y), then obviously X £ {X,Y}, Y £ {X,Y}. And since

44

the projection of R^(X,Y) on X and Y is the itself, thus
X £ DOMCXl and y e DOM(Y) implies that (x) = y if and only
if the tuple {x,y} is in R̂ ,̂ completing the proof. #

3.3.2. Proof of Normalization
The schema constructed by the simple algorithm, clearly

is not in the desirable normal form (i.e., 4NF), but as it
is formally stated below, it is in some degree of normal
forms.

Theorem 3.2. Let R be a relational schema constructed from a
set of dependencies, using the Algorithm 3-1, then R is in
first normal form.
Proof; The proof follows directly from the definition of
first normal form. #

As we saw in the previous subsections, our simple
algorithm satisfies the representation principle, and can only
guarantee a schema of INF. We will show by some examples
that the nonredundancy principle and 4NF schema cannot be
guaranteed by this algorithm.
Example 3.1: Suppose the following data dependencies are
given by the data base administrator:

f^; A — > B,C
ra : D , E > F
m^: D — >—> E,F

then, the algorithm constructs one relation scheme for each
FD or MVD as follows: (underscored attributes are keys)

Rl(A,B,C)

45

«2 (D'E'D
R3 (D,E,F)

and after removing relation (or R^) from the schema, we
get

R,(A,B,C)
X —

R2 (D,E,P)
Although the algorithm works well for the cases like

what we had in the above example, but it may not be appropri
ate for other situations. The following example clarifies
this concept.
Example 3.2: In our UNIVERSITY HOUSING data base, if each
COMPLEX is managed by only one MANAGER, and if each MANAGER
can manage a set of COMPLEXes, then we may have the following
dependencies and their corresponding relation schemes;

f^: COMPLEX — > MANAGER R^ (COMPLEX, MANAGER)
MANAGER — >-> COMPLEX R^ (MANAGER, COMPLEX)

As we can see, R^ and Rg bear the same information
(in the sense of attributes), and R^ represents not only what
it must represent, but also what is represented by R^ (in
the sense that in R̂ ̂not all of the attributes make the key
of the relation). Thus, Rg is redundant and must be removed
from th.e schema.

We can eliminate the above problem, and all problems
of this type (but not necessarily the violation of nonre
dundancy principle), simply by searching for relation schemes

46

with, the same set of attributes and "stronger" relationship/s
among them (recall that an FD is an stronger dependency than
an MVDl. Formal discussion for this issue is given in Chap
ter V. Here we will solve the problem by modifying our sim
ple algorithm. This modification is considered in PART-2 of
the following algorithm (Figure 3-2). Notice that, this part
searches only the set of schemes R' constructed from FDs. It
does not consider the set R" constructed from MVDs because,
it is known from PART-1 of the algorithm, that there are not
any pair of schemes in the set R" that have the same set of
attributes.

3.4. The Dependency-to-Relation Method, 1st Improvement
As it was discussed in the previous subsection, the

simple algorithm (Algorithm 3-1) constructs a schema which
may have undesirable properties. The algorithm presented in
this section (Algorithm 3-2) eliminates some of these unde
sirable properties, but not all of them. Thus the algorithm
will be further modified in the subsequent subsections.

3,4.1. Proof of Representation
Theorem 3.3. Let R be a relational schema constructed from
a set of dependencies G = FDM, using the Algorithm 3-2, then
R represents the same information as G.
Proof : The algorithm first constructs one relation scheme
for each dependency, and then removes a relation scheme

47

Algorithm 3-2

An Algorithm to Construct a Schema From a Set of
Dependencies; 1st Improvement

INPUT: A set F of m FDs; and a set M of n MVDs.
OUTPUT: A set R of relation schemes (in INF or better).
Part-1: <<this part constructs one relation scheme for

each dependency>>
<<construct relation schemes from FDs>>

do for each f^ e F;
construct a relation scheme R̂ ̂ consisting of all
attributes appearing in f^; The set of attributes
that appears on the left side of f^ is the key of
the relation scheme;

end;
m

R' = UR. ;
i=l 1

<<construct relation schemes from MVDs>>
do for each m. e M;

construct a relation scheme R., consisting of alli+m
attributes appearing in m^; The set of all attri
butes that appears in m^ is the key of the relation
scheme;

end;
m+n

R” = UR,;
i=m+l ^

Figure 3-2.

48

Figure 3-2 (continued)

<<put all relation schemes together>>
R = R' U R" ;

end PART-1;
PART-2: <<this part removes a relation R̂ ̂ if it has the

same set of attributes as R^, and the relation
ships of its attributes are not as strong as R^>>

do for each R^ e R for 1 £ i j< r - 1; <<r is cardinality
of R>>

do for each R^ e R for i + 1 _< j _< r;
if U „ = U„ then if]k | >]K | then— R. R. ---- — ' R . ‘ ' R . 'I D 1]

R = R - R.; <<K„ and K_ are1 Ri Rj
else R = R - Rj; keys of R^ and

end; Rj>>
end;

end PART-2;
end algorithm;

49

(with key K„) from the schema R, only if there exists a
i

relation scheme R. (with key K„) in R such that:
3 R j

(i) = R.,
or

(i l l \ = " r . l \ l i

The proof for the case of condition (i) is straight
forward and needs no explanation. For the other case, suppose
relation schemes R. and R. are constructed from dependencies
F^: X — > Y and f j : X ’ — > Y ’ respectively. Since X U Y =
X' U Y' (by assumption), and if we assume X' ̂X, then f^ is
embodied in R^(X', Y') (which is the same as R^(X', a, Y)),
and thus its information will not be lost if we delete Rĵ
from the schema. A similar discussion now can be given if
we relax on the assumption X' ̂ X, completing the proof. #

Although the new algorithm eliminates some of the
problems discussed earlier, the nonredundancy and separation
principles cannot be satisfied. The following examples cla
rify these concepts.
Example 3.3: In our University Housing data base, if each
COMPLEX can specify a set of RENTs for its various apartments,
and if a COMPLEX together with the APT-CAPACITY can determine
the RENT of the apartment, then we may have the following
dependencies ;

g^: COMPLEX,APT-CAPACITY — > RENT
m^: COMPLEX RENT

50

and we can construct the following relation schemes:
Rĵ (COMPLEX, APT-CAPACITY, RENT)
Rg(COMPLEX, RENT)
Although relation scheme R^ of the above schema is

redundant,but it is not removed by the Algorithm 3-2, and
thus violating nonredundancy principle. Indeed, the schema
does not satisfy the separation principle either, since it is
not even in 2NF (it is easy to verify that in relation scheme
R^, attribute RENT is partially dependent on the key).
Example 3.4: Again in our University Housing data base, if
each TENANT lives in only one apartment (APT#) which has one
TYPE and is in one COMPLEX, and if each COMPLEX has only one
TYPE of apartments, then we may have the following functional
dependencies :

f^: TENANT — > APT#,COMPLEX,TYPE
fg: COMPLEX — > TYPE

using the Algorithm 3-2, we can construct the following re
lation schemes:

R^(TENANT, APT#, COMPLEX, TYPE)
Rg(COMPLEX, TYPE)
Notice that, in relation scheme R̂ ,̂ attribute TYPE is

transitively dependent on key TENANT, and thus violates the
3NF (although it is in 2NF).

The above examples indicate that the Algorithm 3-2 may
produce a schema violating either nonredundancy principle or

51

separation principle (and in some cases both).
As a matter of fact, all of these problems arose mainly

because we have completely ignored the composing rules for
FDs and MVDs discussed in Chapter II. Thus, for further mod
ifications of the algorithm these rules will be also consid
ered.

3.5. The Dependency-to-Relation Method, 2nd Improvement
Considering the theoretical tools discussed in Chapter

II, we can now further modify our algorithm. We will first
modify the algorithm using the augmentation rule, and will
prove that the schema constructed in this way is at least in
second normal form (but not necessarily in 3NF or 4NF). Then
we will have one more improvement to our method, this time
considering the transitivity rule. We will see that these
considerations eliminate many of the problems shown previously
in our examples. Finally, we will present an algorithm con
sidering all inference rules for both, FDs and MVDs. Then
we will prove that the relational schema constructed by the
algorithm satisfies all of the three design principles.

It is important to note, that in the algorithm which
follows CFigure 3-3), only explicit dependencies (i.e., those
FDs and MVDs given as part of the data base description) are
considered, and therefore, not all of the problems may be
eliminated by this algorithm. Thus, in Section 3.6 we will
further modify the algorithm by considering not only explicit

52

FDs and MVDs, but also considering implicit dependencies
(i.e., dependencies that are not explicitly presented as
part of the data base description, but can be inferred from
them by applying the inference rules) as well.

3.5.1. Proof of Representation
Theorem 3.4. Let R be a relational schema constructed from
a set of dependencies G = F U M using the Algorithm 3-3, then
R represents the same information as G.
Proof; The proof for the schema constructed by the first two
parts of the algorithm follows from Theorem 3.3. Third part
of the algorithm may remove either an extraneous attribute
from a relation scheme of the schema, or an entire relation
scheme of the schema. We follow the proofs for both cases.
Ci). Removing extraneous attributes from a relation scheme:
a set of attributes is removed from a relation scheme R^ only
if it is a subset of non-key attributrs of another relation
scheme Rj whose key is a subset of the key of relation R̂ .̂
Therefore, only those attributes are removed from a relation,
that not only are represented in another relation, but their
relationship/s are also represented in a stronger form than
original relation.
(ii). Removing a relation scheme from the schema: Relation
scheme R^ is removed from the schema R only if after removing
its extraneous attributes it becomes the same as another
scheme in the schema. Thus its elimination from the schema

53

Algorithm 3-3

An Algorithm to Construct a Schema from a Set of
Dependencies; 2nd Improvement

INPUT: A set F of m FDs; and a set M of n MVDs.
OUTPUT: A set R of relation schemes (in INF or better).
PART-1: <<this part constructs one relation scheme for

each dependency>>
<<construct relation schemes from FDs>>

do for each f^ e F;
construct a relation scheme R̂ ̂consisting of all
attributes appearing in f̂ ;̂ The set of attributes
that appears on the left side of f^ is the key of
the relation scheme;

end;
m

R' = UR.;
i=l 1

<<construct relation schemes from MVDs>>
dp for each m^ E M;

construct a relation scheme R^^^ consisting of all
attributes appearing in m^; The set of all attri
butes that appears in m^ is the key of the relation
scheme ;

end;
m+n

R" = U
i=m+l

Figure 3-3.

54

Figure 3-3 (continued)

<<put all relation schemes together>>
R = R' U R";

end PART-1;
PART-2: <<this part removes a relation R^ if it has the

same set of attribures as R^, and the relation
ships of its attributes are not as strong as
R j »

do for each R^ e R for 1 i r - 1; <<r is cardinality
of R>>

do for each R^ e R for i + 1 ^ j < r;
if = U then if]k] >]K] thenRf Rj

R = R - R. ; « K „ and 1 Ri
K are

jelse R = R - Rj; keys of
R^ and Rj>>

end;
end;

end PART-2;
PART-3: <<this part eliminates explicit partial dependencies

from relation schemes>>
dp for each R^ e R';

do for each Rj e R ’ - R^;
if K„ c K then [

R . R j

55

Figure 3-3 (continued)

Y = %
- Y,

il "«i = Kr

"j

end;
end;

end PART-3;
end algorithm;

56

can be done without losing any information.
As the result, neither elimination of the extraneous

attributes nor removal of the entire relation schemes (in
PART-3), cause losing any information, completing the proof. #

Although the representation principle is not violated
by the Algorithm 3-3 (Theorem 3.4), but the schema construc
ted in this way may not even be in 2NF, and thus violating
separation principle. The following examples and discussions
clarify this problem.
Example 3.5; Given the following dependencies:

f^: A,B — > C,D
fg: B — >D,E

the algorithm first constructs the following relation schemes;
R^(A, B, C, D)

Rg (B, D, E)

and then removes the extraneous attribute D from R^.

R]̂ (A, B, C)

R2 (B, D, E)

Although the schema of the above example is in 2NF
(at least), but there are cases that the schema constructed
by the Algorithm 3-3 is not necessarily in 2NF. This can
simply be indicated by the following example.
Example 3.6: Given the following dependencies;

f^: A,B — > C,D,E

57

^2= F
t ÿ F — > D,G

A — > E

the algorithm first constructs one relation scheme for each
dependency as follows;

(A,B,C,D,E)
RgfByF)
Rg (F,D,G)
RjtAfE)

and then removes the extraneous attribute E from R^.
R,(A,B,C,D)
RgCB.Fl
R3 (F,D,G1
R^CA^El
In the above schema, relation schemes R^, R^, and

R^ are in 2NF Cat least) . But how about R̂ ?̂ R^ is not in
2NF because, attribute D is partially dependent on key {A,B}
(from fg and f^, and by Axiom FD3 we get FD B — > D,G; and
from FD B — > D,G and Axiom FD6 we get FD B — > D) .

The above problems arose mainly because we have con
sidered only those dependencies that are explicitly given,
and not those implied dependencies that can be inferred from
the original set by applying inference rules. This is con
sidered in our next step of modifications.

3.6. The Dependency-to-Relation Method, 3rd Improvement
Recall the Closure II and Closure III of a set of data

dependencies discussed in Chapter II. We need to consider
them here for further improvements to our algorithm. In

58

addition, some subsets of these closures that are formally
stated in the following definitions, are also of particular
interest for further modifications.
Definition 3.1. Let G = F U m be a set of mixed dependencies
(FDs and MVDs), then FD-Closure II of G, denoted by FD-G^^
is defined to be the set of all functional dependencies in
oil.
Definition 3.2. Let G F M be a set of mixed dependencies

I I I(FDs and MVDs), then FD-Closure III of G, denoted by FD-G
is defined to be the set of all functional dependencies in
ciii.

Considering the FD-Closure III of data dependencies,
now we can present the Algorithm 3-4 (Figure 3-4) which as
we will prove later produces schema at least in 2NF.

3.6.1. Proof of Representation
Theorem 3.5. Let R be a relational schema constructed from
a set of dependencies G = F U M using the Algorithm 3-4, then
R represents the same information as G.
Proof; From Theorem 3.4, it follows that the schema construc
ted by the first three parts of the algorithm embodies F and
M. PART-4 of the algorithm removes a set of attributes Y from

T I Ta relation R^ only if (i) Y is in FD-G , which means that
it is represented (implicitly) by some other relation schemes,
and (ii) the relationship of Y with other attributes in those
relations is stronger than the relationship in R^. In other

59

Algorithm 3-4

An Algorithm to Construct a Schema From a Set of
Dependencies; 3rd Improvement

T T TINPUT: A set F of m FDs; a set M of n MVDs; and FD-(F U M) .
OUTPUT: A set R of relation schemes (in 2NF or better).
PART-1: <<this part constructs one relation scheme for each

dependency>>
<<construct relation schemes from FDs>>

^9 for each f^ e F;
construct a relation scheme R^ consisting of all attri
butes appearing in f^; The set of attributes that
appears on the left side of f i s the key of the rela
tion scheme;

end;

m
U , ; — — — — - ' — ■■

• - 1 " ^

<<construct relation schemes from MVDs>>
dp for each m̂ ̂ e M;

construct a relation scheme R̂ ^̂ ̂consisting of all
attributes appearing in m.; The set of all attributes■ 1
that appears in m^ is the key of the relation scheme;

gnd;
m+n

R " = u R ;

i=m+l Figure 3-4

60

Figure 3-4 (continued)
<<put all relation schemes together>>

R = R ' U R " ;

end PART-1;
PART-2; <<this part removes a relation R^ if it has the

same set of attributes as Rj, and the relationships
of its attributes are not as strong as Rj>>

jâo for each R^ e R for 1 _< i ^ r - 1; <<r is cardinality
of R>>

do for each Rj e R for i + l £ j j < r ;
U = U then if |k | >̂ |k 1 thenRf Rj R^ Rj

R = R - R.; <<K and are1 Ri Rj
else R = R - R .; keys of R. and J ^

êM ; Rj>>
end;

end PART-2;
PART-3: <<this part eliminates explicit partial dependencies

from relation schemes>>
do for each R^ e R';

do for each Rj e R; - R^;
if Kr c thgQ [

y =
% - ■ V n cUp - K),R. Rj

% - Y,
if then R = (R - Rĵ) U R̂ l ;

61

Figure 3-4 (continued)
end;

end PART-3;
PART-4; <<this part eliminates implicit partial dependencies

from relation schemes>>
repeat;

T T Tdo for each e (FD-G - G);
da for each R^ e R';

if LEFT . c K then [9]
Y = (.Up - Kp) n RIGHT ,

\ = \ - 'f'
if Up = Kp then R = (R - R .) U r .,

i i
if Y = 0 then R * = R ' U r, (w) , where w = (LEFT_h g j

U 'HI
and LEFT g^ is
the key];

end;
end;

until no relation scheme is added to R';
end PART-4;
end algorithm;

62

words, only those attributes are removed from a relation scheme
that not only are represented in other relation schemes of
the schema, but their relationships are also represented (in
a stronger form than in original relation) by them. Hence, in
PART-4 of the algorithm no information would be lost, complet
ing the proof. #

3.6.2. Proof of Normalization
The schema constructed by the Algorithm 3-4 is not in

the desirable form (i.e., 4NF) yet, but it is in a better
form than the schemas constructed previously. This claim is
formalized by the following theorem.
Theorem 3.6. Let R be a relational schema constructed from
a set of dependencies using the Algorithm 3-4, then R is in
second normal form.
Proof; From Theorem 3.2, it follows that the schema construc
ted by the first part of the algorithm is in first normal
form. Parts 3 and 4 of the algorithm eliminate all partial
dependencies (both, explicit and implicit) from relation
schemes, and thus leaving a 2NF schema. #

Algorithm 3-4 eliminates some of the problems discussed
earlier, but not all of them. It produces a schema which is
at least in 2NF, while the former algorithms could only guar
antee the INF schemas. As it was stated in Chapter I, al
though a schema in 2NF has less undesirable properties than
if it was in INF, but it is not yet completely free of all

63

undesirable properties, and thus, still violates the separa
tion principle. The following examples clarify these concepts
example 3.7: Given the following dependencies:

f2: A,D — > B,C
fg: A — > B,E
m̂ ̂: A — >4» D

the algorithm first constructs the following schemes:
Rj^CA, D, B, Cl

Rg(A, B, El

Rg(A, Dl

and then removes attribute B from R̂ .̂
Rl(A, D, Cl
RgCA, B, El
R3 CA, Dl

and since FD A — > C holds in R^ (see Figure 3-5), then attri
bute C is also partially dependent on key (in R^l, and thus
is removed from R^. Now, R^CAy D) becomes the same as rela
tion R3 and hence it is removed. Finally, relation scheme
R4 (A, Cl is added to the schema by the algorithm.

Rg(A, B, El

R3CA, Dl

R^ (A, Cl

As the reader will notice, all partial dependencies
are removed from the schemes, allowing the schema to be at

64

Derivation of A — > C from A,D — > B,C and A — ■>— > D.

f^: A,D — > B , C assumption
f^’: A,D — > C f^ and axiom FD6
iTiĵ ' : Af D — — > c fĵ * and axiom FD-MVDl

"'r ^ -
■»-> D assumption

: A — ->-> C m^, m^'f and axiom MVD4
f^": A — » C m^", f^'f and axiom FD-I'WD2

Figure 3-5.

65

least in 2NF (in fact, the above schema is in 4NF).
Example 3.8: Given the following dependencies;

f^: A — > B,C,D
fg: B — > C

the algorithm produces the following two schemes:
Rj^(A, B, C, D)
Rg(B, C)

As we can see, the schema is in 2NF but not in 3NF.
This is becuase, in relation scheme attribute C is trans-
itivly dependent on key A (.it is dependent on attribute B) .
This problem can be overcome by decomposing this type of
relation schemes into their projections, using the transitive
dependencies. This issue will be considered in the following
section.

3.7. The Dependency-to-Relation Method, 4th Improvement
In this section we will further modify our algorithm

to construct a . schema at least in 3NF. To do so, we need
to detect those dependencies that exist between two sets of
non-prime attributes Cor between a set of non-prime attributes
and a proper subset of attributes making the key) in a rela
tion scheme. This enables us to decompose the relation scheme
into two of its projections, and thus eliminating many unde
sirable properties Cif not all of them) from the schema.
This is performed in PART-5 of the Algorithm 3-5 [Figure 3-6).

66

Algorithm 3-5

An Algorithm to Construct a Schema From a Set of
Dependencies; 4th Improvement

T I TINPUT: A set F of m FDs; a set M of n MVDs; and FD-(F U M)
OUTPUj : A set R of relation schemes (in 3NF or better) .
PART-1: <<this part constructs one relation scheme for each

dependency>>
<<construct relation schemes from FDs>>

do for each fe;F;
construct a relation scheme R^ consisting of all
attributes appearing in f^; The set of attributes
that appears on the left side of f i s the key of
the relation scheme;

end;
m

R' = U R.;
i=l 1

<<construct relation schemes from MVDs>>
do for each mu e M;

construct a relation scheme R^^^ consisting of all
attributes appearing in m̂ ;̂ The set of all attri
butes that appears in m^ is the key of the relation
scheme:

end;
m+n

R" = U R.;
i=m+l ^

Figure 3-6.

67

Figure 3-6 (continued)

<<put all relation schemes together>>
R = R' U R";

end PART-1;
PART-2: <<this part removes a relation R^ if it has the

same set of attributes as R^, and the relation
ships of its attributes are not as strong as Rj>>

do for each R^ e R for 1 j< i r - 1; <<r is cardinality
of R>>

do for each R^ e R for i + 1 £ j j< r;
if U = U then if | > |k | then

i j i jR = R - R. ; « K and I(_1 R^ Rj
are

else R = R = R . keys of R . and
J ^

end; Rj>>
end;

end PART-2;
PART-3; <<this part eliminates explicit partial dependencies

from relation schemes>>
do for each R. e R';

do for each R. e R' - R.;

~ V "'Ri — ‘

^ ■ ^Ri' '
X = X -

if U_ = then R = (R - R.) U R.];' X X

68

Figure 3-6 [continued)

end;
end;

end PART-3;
PART-4; <<this part eliminates implicit partial dependencies

from relation schemes>>
repeat:

I T Tdo for each e [FD-G - G) ;
do for each R. e R';

if LEFT c K„ then [- 9j - ----
T = tu^ -) n r i g h t ,Ri Ri 9j
«R. = % -

if U„ = K. then R = (R - R,) U R.,1 1
if Y = ^ then R' = R' U R^(w), where w = LEFT^

U Y)
and LEFT is
the key];

end;
end;

until no relation scheme is added to R';
end PART-4;
PART-5: <<this part eliminates transitive dependencies

from relation schemes>>
repeat:

do for each R. e R ’ ;
■' ' X

3

69

Figure 3-6 (continued)

fi = U„ - K <<fi is the set of non-key attributes>>
i i

I T Tdo for each g ̂ e FD-G ;
if Ug c fi then [decompose into
R. (U) with LEFT as the key,1

and R. (K„ U (.fi-RIGHT)) with K as the key, i2 R^ %i
R' = (R - R J U R. U R.] ;1 If ig

end;
end;

until no relation scheme is added to R':
end PART-5;
end algorithm;

70

3.7.1. Proof of Representation
Existence of an MVD in a relation is a necessary and

sufficient condition for that relation to be decomposable into
two of its projections without loss of information. That is,
the original relation can be reconstructed by joining (natural
join) those two projections. This is proved by Fagin in [18].
He has presented the following theorem.
Theorem 3.7. MVD X — >—> Y holds for relation R(X,Y,Z) if and
only if R is the join of its projections R^(X,Y) and RgfXfZ).
Proof; It is simple to verify that R(X,Y,Z) is the join of
its projections R^(X,Y) and R2 (X,Z) if and only if the follow
ing condition holds; Whenever (x,y,z) and (x,y',z') are
tuples of R, then so are (x,y',z) and (x,y,z'). This latter
condition holds iff Y = Y The proof now follows fromxz xz
the definition of MVDs. #

From Fagin's theorem we can conclude the following
corollary.
Corollary 3.1. The existence of a data dependency, FD or
MVD, in a relation is a necessary and sufficient condition
for that relation to be decomposable to its projections with
out loss of information.
Proof : The proof follows from Theorem 3.7 and the axiom
FD-MVDl which is: if an FD X — > Y holds for R, then so does
MVD X — >-> Y. #

Considering Theorem 3.7 and Corollary 3.1, now we can

71

have the following theorem.
Theorem 3.8. Let R be a relational schema constructed from
a set of dependencies G = F U M using the Algorithm 3-5, then R
represents the same information as G.
Proof : From Theorem 3.5 it follows that the relational schema
constructed by the first four parts of the algorithm repre
sents F and M. Fifth part of the algorithm decomposes a re
lation R. into two of its projections R. and R. based on

^ ^1 ^2
an FD (or an MVD). holding in it. Therefore, from Corollary
3.1 it follows that the original relation can be repro
duced from R. and R. using the natural join. Thus, R.

^1 ^2 ^1
and R. represent the same information represented by R.

^2 ^
completing the proof. #

3.7.2. Proof of Normalization
Proposition 3.1. If a relational schema is in nth Normal
Form (nNF) for 2 ^ n ^ 4, then the projection operation on
relations never can convert the schema into a worse Normal
Form, that is mNF for m < n.
Proof: The proof follows from the definition of Normal Forms
(separation principle), and from the definition of projection
operation. #
Theorem 3.9. Let R be a relational schema constructed from
a set of dependenceis using the Algorithm 3-5, then R is in
Third normal form.
Proof: From Theorem 3.6 it follows that the schema

72

constructed by the first four parts of the algorithm is in
2NF. And from Proposition 3.0 it follows that the fifth part
of the algorithm cannot worsen the normalized form of the
schema, thus leaving it to be still at least in 2NF. Now,
because the schema is in 2NF, and since no transitive depen
dency exists in any relation scheme (those dependencies are
all removed by PART-51, thus the schema is in 3NF, completing
the proof. #

While Algorithm 3-5 eliminate all of the problems. The
following examples clarify these concepts.
Example 3.9; Given the following FDs:

A ^ B,D,E,F
*2= B — ;> C
*3 = C — Î D
*4 = E — ;> F

the algorithm first constructs the following relation schemes
R^CA, B, D, E, F).
Rg(B, C)
RgCC, D)
R4 (E, F)

then it decomposes R^ into R̂ ^̂ CE, F) and R^gfAf B, D, E) , and
removes R^^ since it is the same as R^.

R^2(A,B,D,E1
Rg (B,C).
R3 (C,Dl
«4 (E'Fl

73

T I Tand finally, since FD B — > D is in FD-G (it can be
derived from and f^ by applying axiom FD3), the algorithm
decomposes into 8221^^^^^ and

Rl2l(B,D)
Rl22(A'B,E)
RgCBrC)
R3 (Ç,D)
R4 CE,F)

As we can see the schema is in 3NF (it is in fact, in 4NF).
Example 3.10: Given the following dependencies:

f^; A — > B,C,D
m^; D — >—> B

the algorithm first constructs the following relations:
Rĝ (A,B,C,D).
Rg(D,B)

then, it decomposes into Rĵ ĵ (D,B) and R^gCAfCyD) because
FD D — > B holds in R̂ ̂ (from FD A — > B,C,D and Axiom FD6
we can get FD A — > B; from MVD D — » B and FD A — > B and
Axiom FD-MVD2 we can get FD D — > B).

Ril(D,B)
R^2 ÎA,C,D)

The only problem with this schema is, that the rela
tion R_tD,B) is now redundant and must be removed. In fact,z — —

we have already removed this kind of redundant relation schemes

74

in PART-2 of the algorithm. Thus, to eliminate the above
problem we can apply PART-2 of the algorithm for any new
relation scheme constructed by the other parts of the algo
rithm. This consideration is shown in our Final algorithm.
Example 3.11: Given the following dependencies:

f^: A — > B,C,D,E
fg: A,B — > C
fj: D - > E

m^: P — G,E

the algorithm first constructs the following relations:
R^CA,B,C,D,E1
RgCAyB.C)
R3 (D,E)

(F,G,E)
then it removes attribute C from Rg

R^A',B,C,D,E).
RgfA/B)
R3 CD/E)
R4 (F,G,Ei

now Rĵ is decomposed into R^j^(D,E) and of which
Rĵ ̂ is deleted, because it is the same as R3.

R^2 (A,B,C,D1
RgCAvB)
R^fDfE)
R4 ^I'G,E)

75

Note, the problem with this schema is not only that
is redundant, but also is not in 4NF (be

cause, from FD and MVD m^ and axiom FD-MVD2 it follows
that F — > E).

To overcome the above problems we need to further
modify our algorithm. This, which will be in fact, the final
modification regarding the construction of a "desirable"
schema is stated in the following section.

3.8. The Dependency-to-Relation Method, Final Improvement
Now, we are in the final state of the iterative re

finement of the algorithm. The algorithm presented in this
section (Figure 3-7), constructs a schema which will be proved
to be in 4NF (hereafter, we will call this algorithm the
FNF Algorithm). All proofs concerning the FNF Algorithm are
given in Chapter V. In that chapter, we will formally exam
ine the properties of the schema produced by the FNF Algo
rithm, and will propose directions for constructing optimal
schemas.

The proofs of representation and normalization (and
also nonredundancy) for the FNF Algorithm will be given in
Chapter V. Here, we only give an example to show that the
problems discussed earlier are eliminated by the final
algorithm. The data base of the following example is taken
from [18].
Example 3.12: Suppose we have a university data base with

76

Algorithm 3-6

An Algorithm to Construct a Fourth Normal Form Schema
from a Set of Dependencies; (FNF Algorithm)

INPUT: A set F of m FDs; a set M of n MVDs; the set (F U M)̂ ;̂
T T T T T Tthe set (F U M). ; and the set FD-(F U M) .

OUTPUT: A set R of relation schemes in 4NF.
PART-1: <<this part constructs one relation scheme for

each dependency>>
<<construct relation schemes from FDs>>

do for each f\ e F;
construct a relation scheme R^ consisting of all
attributes appearing in f^; The set of attributes
that appears on the left side of f^ is the key of
the relation scheme;

end;

m
R' = U R. ;

i=l 1
<<construct relation schemes from MVDs>>

do for each m. e M;
construct a relation scheme R^^^ consisting of all
attributes appearing in m^; The set of all attri
butes that appears in m^ is the key of the relation
scheme;

end;
Figure 3-7

77

Figuré 3-7 (continued)
m+n

R" = U r .
i=m+l ^

<<put all relation schemes together>>
!

R = R' Ü R";
end PART-1;
PART-2: <<this part removes a relation R^ if it has the

same set of attributes as R^, and the relation
ships of its attributes are not as strong as R^>>

do for each R^ e R for 1 i _< r - 1; <<is cardinality
of R>>

do for each R. e R for i + 1 < j < r;
if Up = U then if_ |Kp | > (K | then

i j i jR = R - R. ; « K p and1 Ri R j
are

else R = R - R .; keys of R.3 ^
end; and R.>>]

end;
end PART-2;
PART-3; <<this part eliminates explicit partial dependencies

from relation schemes>>
do for each R. g R' ;

do for each R . e R' - R.; 3 1
if Kp c K then [— Rj Ri

78

Figure 3-7 (continued)

Y = (ÜR. - KR.) n (%R. - Kp..)'
% = \
if U„ = then R = (R - R.) U r J ;

end;
end;

end PART-3;
PART-4: <<this part eliminates implicit partial dependencies

from relation schemes>>
repeat:

I T Tdo for each g^ e (FD-G - G);
do for each e R';

if LEFT_ c K then [— gj Ri------
'F = CUp - K-) n RIGHT^ ,1 Rf 9j
ÜR. = ÜR. - V'
if = K then R = (R - R.) U r

i i ̂ 1
if T = 0 then R' - R' U (w), where w = (LEFT — --- h g.

U y)
and LEFT is the
key] ;

end;
erid;

until no relation scheme is added to R';
end PART-4;

79

Figure 3-7 (continued)

PART-5; <<this part eliminates transitive dependencies
from relation schemes>>

repeat :
do for each R. e R';

n = U_ - K << Î2 is the set of non-key attributes>>
i i

I I Ido for each e FD-G ;
if U c 0 then [decompose R. into— - 1
R. (U) with LEFT as the key,
^1

and R. (K„ U (0-RIGHT)) with K_ as the key,
^2 1 \

R ' = (R ' - R .) u R . U r .] ;1 Xf Xg
end;

end;
until no relation scheme is added to R':
end PART-5;
PART-6: <<this part decomposes decomposable schemes

constructed from FDs>>
repeat:

do for each R^ e R';
0 = - K , <<0 is the set of non-key attributes>>

i i
I T Tdo for each gy e G ;

if LEFT c 0 and RIGHT c then [decompose R.— 9j - 9j Ri ---- 1
into R^ (RIGHT, u LEFT,) with LEFT, as the

key if:

80

Figure 3-7 Ccontinued)

9j E FD-G^II, and

(RIGHT U LEFT) otherwise; 9j
and R. (LEFT U CU„ - RIGHT)) with all attributes

I2 ^i
appearing in R. as

R' = (R* - R.) U R. U R .] the key; ^
end, 'end;

until no relation scheme is added to R';
end PART-6;
PART-7: <<this part decomposes decomposable schemes con

structed from MVDs>>
repeat:

IIdo for each g^ e G ;
do for each R^ e R" ;

if (LEFT U RIGHT 1 c R. then [decompose R- into
9] 9] 1

R. (LEFT U RIGHT) with LEFT as the key if:1% 9j 9j 9j
9j E FD-G^^, and

(RIGHT U LEFT) otherwise;
and R. (.U_ - RIGHT) with all attributes appearingI2 9j

in R. as the key;
2

R" = (R" - R. 1 U R. U R.] ;
^ ^1 ^2

end;
end;

until no relation scheme is added to R";
repeat PART-2 for the new set R = R' Ü R";

81

Figure 3-7 (continued)

end PART-7;
PART-8: «this part removes those redundant schemes

that are represented (implicitly) by other
schemes of the schema>>

do for each R^ ̂R;
do for each e (G^^ - G);

if (LEFT U RIGHT)=U_ and LEFT_ = then
— Ri \ -----

R = R - R^;
end;

end;
end PART-8;
end algorithm;

82

attributes CLASS, SECTION, STUDENT, MAJOR, EXAM, YEAR, IN
STRUCTOR, RANK, SALARY, TEXT, DAY, and ROOM. If a given
CLASS consists of several SECTIONS , each of which has one
INSTRUCTOR and various STUDENTS. And if each CLASS has a
set of TEXTS, which are used by all SECTIONS of the CLASS.
Also assume, that each SECTION of a CLASS meets on various
DAYS, and on a given DAY, it has one meeting ROOM. We also
know that, each STUDENT has only one MAJOR, and one YEAR.
A STUDENT in a given CLASS and SECTION has several EXAM
scores. And if each INSTRUCTOR has one RANK and one SALARY,
then we can have the following FDs and MVDs:

f^: CLASS,SECTION — > INSTRUCTOR
fg: CLASS,SECTION,DAY — > ROOM
f^î STUDENT — > MAJOR,YEAR
f^: INSTRUCTOR — > RANK,SALARY
m^: CLASS, SECTION — >-> STUDENT, MAJOR, EXAM, YEAR
m^: CLASS,SECTION — >-> INSTRUCTOR,RANK,SALARY
m^: CLASS,SECTION — » DAY,ROOM
m. : CLASS — >-> TEXT

4
mg: CLASS,SECTION,STUDENT — EXAM

the FNF Algorithm first produces the following relation
schemes (one scheme for each dependency):

R^(CLASS, SECTION, INSTRUCTOR)
Rn(CLASS, SECTION, DAY, ROOM)
Rj(STUDENT, MAJOR, YEAR)

(INSTRUCTOR, RANK, SALARY)
Rg(CLASS, SECTION, STUDENT, MAJOR, EXAM, YEAR)
R_(CLASS, SECTION, INSTRUCTOR, RANK, SALARY)D ----- ------- ---------- ---- ------
R^(CLASS, SECTION, DAY, ROOM)
R_(CLASS, TEXT) o
Rg(CLASS, SECTION, STUDENT, EXAM)

then it decomposes R^ into
R̂ ĵ (STUDENT, MAJOR, YEAR) and
R52 (CLASS, SECTION, STUDENT, EXAM).

and it decomposes Rg into
Rgl(CLASS, SECTION, INSTRUCTOR) and
Rg^(CLASS, SECTION, RANK, SALARY)

and since R^^ is the same as R^, Rg2 the same as Rg, and
R is the same as R^, they are all removed from the schema.
Relation scheme R,.„ is also removed from the schema because itoZ

is represented by R^ and R^ (in an stronger form). For the
same reason, R^ which is represented by R^ in a stronger
form, is deleted. Therefore, the final schema constructed
by the algorithm is:

Rĵ (CLASS, SECTION, INSTRUCTOR)
Rg(CLASS, SECTION, DAY, ROOM)
Rj(STUDENT, MAJOR, YEAR)
R^(INSTRUCTOR, RANK, SALARY)
Rq (CLASS, TEXT)
Rg(CLASS, SECTION, STUDENT, EXAM)

84

As reader will notice the constructed schema is in
fourth normal form (the proof and related formal discussions
are given in Chapter V).

3.9. Chapter Summary and Remarks
A new design approach for constructing relational

schemas from dependencies (FDs and MVDs) designated by the
data base administrator, has been proposed and investigated.
After an iterative refinement of the approach, a final algo
rithm (FNF) which produces 4NF relation schemes has been
presented. It has been proved that the schema constructed
by this method satisfies the three design principles (the
proofs concerning the FNF Algorithm will be given in Chap
ter V), and thus it is free from undesirable properties dis
cussed in Chapter I.

CHAPTER IV

CONSTRUCTING CLOSURE II AND CLOSURE III

4.1 Introduction
In this chapter two algorithms are presented for con

structing Closure II and Closure III of a given set of data
dependencies. Also, detailed analyses of these algorithms
are given, and investigations are made to indicate that the
worst case (i.e., the case in which all data dependencies
designated by the data base administrator are completely
chained together) of each algorithm is unlikely to happen
for real world applications. Anyhow, to maintain the con
sistency of the design approach, this special case must
also be considered. An algorithm which detects this case
and warns the data base administrator of the "bad" situation
is given at the end of this chapter.

4.2 Description of the Closure II Algorithm

An FD f: X — >Y is in canonical form if and only if
|y| = 1 , that is, the right side of the function consists
of one attribute [8]. A set of FDs is in canonical form
if and only if all of its member FDs are in canonical form.

Proposition 4.1. For any set of FDs, there exists an
equivalent set (i.e., a set representing the same information)

85

86

of FDs in canonical form.

Proof ; Any FD f; X — > Y (Y = ' ^here n >1)
can easily be converted to a set of FDs F = {f^^^f^,... ,f^}
in canonical form using Axiom FD6.

f^: X -> Y^,
fj: X Ï2-

X Y„;
completing the proof. #

Considering proposition 4.1, we will assume without
loss of generality that the set of FDs used as input to
our Closure II Algorithm (Figure 4-1) is in canonical
form. But, a similar assumption cannot be made for the
set of MVDs, simply because having an MVD m:X—^ f^l'^2'
...,Y^}, does not necessarily result to

m^: X —>-> Y^,
m^: X —^ Yg,

*

m : X — Y . n n
We will also assume that for every FD X — Y (or

MVD X Y) used as input, Y ^ X. This is a reasonable
assumption for real world applications because, FD X —>• X
(or MVD X —» X) means, having a set of attributes X, we
can determine (or multidetermine) a set of attributes X,
and clearly, having a set X at our disposal we do not

87
Algorithm 4-1

An Algorithm to construct the Closure II of a set of data
dependencies
INPUT: A set F of FDs in canonical form; a set M of MVDs;

and G = F |JM.
OUTPUT: Closure II of G, FD-G^^; and .
D = J' =F;
V = J" =M;
repeat

H' = #;
H" = 0 ;

do for each f^eF+M;
do for each fj£j'+J";

if RIGHT^ c: LEFT, then — £.- fj-----
[if f.eJ' [construct an FD f, with

3 KLEFT. =LEFT. U(LEFT. -RIGHT.)and
^i ^i

RIGHT.-=RIGET. ;
k

if RIGHT^ _̂ LEFTj. then

H ' = H Uf%;

else;] ;
else [construct an MVD f^ with

LEFT. =LEFT. U(LEFT. =RIGHT.) and
^k ^i ^i

RIGHT. =RIGHT. -LEFT. ;
k

if RIGHT. cLEFT. then
— V *k —

Figure 4-1

88

Figure 4-1 continued

end;
end.;
D = d Uh ';
V = VUh ";
J' = H';
J" = H";

until H' + H" = 0;
FD-G^^ = D;
MV-G^I = V;

= D + V;
end algorithm;

89

have to determine (or multidetermine) it. Anyhow, those
kind of data dependencies must be detected (if any) to
avoid inconsistency of the approach. A detection algorithm
is presented at the end of this chapter.

4.2.1 Proof of termination
Theorem 4.1. Algorithm 4-1 halts.
Proof; Both, inner loop and innermost loop of the algo
rithm are finite loops because F + M and J ' + j" are
finite sets. At each iteration of outer loop, the inner
most loop generates a number of new data dependencies.
Since the cardinality of the set generated at pass i (for
2 < i < n) is less than the cardinality of the set generated
at pass i - 1 (because, for the worst case in which all
dependencies are chained together, if p dependencies are
generated at pass i - 1, the number of dependencies gener
ated at pass i is p - 1), then the algorithm ultimately
reaches to the point that H' + H" - 0, and hence it
halts. #

4.2.2 Proof of correctness
IITheorem 4.2. Upon termination of the Algorithm 4-1, G

is the Closure II of G, FD-G^^ contains all FDs in G^^,
and MV-G^^ contains all MVDs in G^^.

IIProof: As we can observe, G is calculated by the algo-
T T ^rithm as G = G + (J (H' + H") . , where (H' + H") . is thei=l ^ ^

set of dependencies generated at pass i. Having G at the

90
2first pass, the set (H' + H")^ generated, is in fact G ,

and similarly set (H' + H") , generated at pass n - 1 is
t tt o o ̂ n .

g” . Therefore, we have G = G U U G U--- U g = U Ĝ .̂1=1
Now, the proof of the correctness for this formula will be
similar to the case that G^^ is the transitive closure of
G [28]. The proof is in two parts,

n J T T1) U G crG , where n is the smallest integer satisfying
i=l

G^ UG^^^ = G^. We prove this part by induction.
(basis)
From Definition 2.1 (given in Chapter II), it follows

that GcG^^.
(induction step)
Suppose G' cG^^, i >1, and let <A,B> eG^^^, where

j +1 i<A,B> means A —> B (or A —» B) . Since G = G G, there
exists some C eU such that < (A - C) , (C - A)>eG^ and <C,B>
e G. By the induction hypothesis and the basis step,
<(A-C), (C - A) > E G^^ and C,BeG^^. Since G^^ is closed
under axioms FD4 and MVD4, it follows that <A,B>eG^^,
thus completing the induction.

II P i2) G c.U G . Let <A,B> and <B,C> be arbitrary elements
n Jof.U.G . Then for some positive integers p and q, <A,B>X—1

e G^ and <Ba,C> e G^. Then <Aa ,C>eG^G^ (or <Aa,C>eG^^^).

t The concept is borrowed from the following definition:
Def. Let R be a binary relation on a set A and let n eN.
Then, is defined as follows:

1. R^ is the relation of equality on the set A.
2. R̂ "̂ ̂= R^R

91
n i n iTherefore, <Aa,C>eU G and hence, (j G contains all depen-1=1 1=1

dencies derivable from G using Axioms FD4 and MVD4,
completing the proof of the first part of the theorem.

We claim also that the type of data dependency (FD
or MVD) is considered by the algorithm appropriately. In
fact, for each pair of data dependencies f^ and f̂ to be
checked, four possibilities should be considered:
1) Both f a n d f^ belong to the family of FDs. For this

case the generated dependency would be of type FD.
2) f^ belongs to FDs family, and fj belongs to MVDs

family. Since fbelongs to FDs family, then it also
belongs to MVDs family (Axiom FD-MVDl). Thus, both f^
and fj are MVDs, and the generated dependency is also
an MVD.

3) Both f^ and f^ belong to MVDs family. As for the
caseg the generated data dependency would be of type
MVD.

4) belongs to MVDs family, and f^ belongs to FDs
family. Again, since f^ is an FD, it is also an MVD,
and thus we can generate a data dependency f^ of type
MVD whose right side is the same with the right side
of fj. Now, by applying FD-MVD2 to the pair f^ and
f . we can generate an FD f, , because (i) LEFT, cLEFT,

(in fact, we showed that LEFT, = LEFT,), and (ii)
j m

RIGHT, n LEFT, = (2((by assumption) . Therefore, the
m j

92

resulting dependency for this case is of type FD.
From the above discussion we conclude that the

generated data dependency is of type FD if and only if fj
belongs to the set of FDs, and it is an MVD otherwise.
This is considered in innermost loop of the algorithm
(the statement, if fy eJ' ...), thus completing the
proof. #

4.2.3 Output analysis
At each iteration of the outer loop, a new data

dependency (either FD or MVD) is generated if and only if
there a connection (in the sense of Axioms FD4 and MVD4)
between a pair of dependencies. More connections between
pairs of dependencies exists, more new data dependencies
are generated. Thus, the best case is in fact when there
is no connection between any pair, and therefore, output
is only as large as input. Suppose there are m FDs and
n MVDs as the input to the algorithm, t h e n | | = |F |+ |M]=
ra+n. On the other hand, the worst case happens when all
given data dependencies are completely chained together.
For this case, the number of data dependencies generated

2by the algorithm is proportional to (m+n) , which is
proved by the following theorem.
Theorem 4.3. Let be the Closure II of G = (F [|M) con
structed by the Algorithm 4-1, then for the worst case

11(all dependencies chained together), |G | = (m + n) (m + n
+ D / 2, where m =|f| and n =|m|.

93
Proof: By induction:

(m + n = 1)
If only one data dependency is involved, no new data

dependency is generated by the algorithm (because the
process requires at least a pair of dependencies), and thus
the output consists of only 1 data dependency, that is,
the original one. Using the above formula for m + n = 1,
we also get |G^^| = 1.

(induction step)
If for i data dependencies |G?^j = i»'(i+l)/2, and

if we add a new data dependency to our input set, and
since by our assumption of the worst case, all i data
dependencies have connections with the (i + l)th data
dependency, thus i more dependencies are generated. This
has to be added to 1 (for the added dependency itself)

11to get the total number of data dependencies, ~
i. (i + l)/2 + Ci + 1) = (i + l)*((i + 1) + D/2, thus
completing the induction. #

As we saw, the formula of Theorem 4.3, is for a
situation in which all data dependencies designated by
data base administrator are chained together. As an
example, consider the following case where G is

^1: ^1 ->■ A^f

^2" ^2 A3,
fs: ^3

94

f±: Ai+i'

^m = ^m ^m+1'
^m+1 ^m+2'
^m+2 \+3'

m^ ; ^m+j •̂ m+j+1'

■̂ m+n '''' ■̂ m+n+1
Now, suppose there is a "gap" (to cut the chain)

somewhere in the chain, say, close to the middle of the
set, then we have two subsets each with the approximate
length of (m+n)/2 and both in the worst case (all elements
of each subset are fully chained together). Then to find
the number of elements in we can use the formula of
Theorem 4.3 for each subset and then multiply the result
by 2. Similarly, for 2 gaps in the set, we get 3 subsets,
and we need to compute the number of data dependencies
generated in one of them and multiply it by 3 (assuming
that all subsets are of the same length). By the same
token, if there are j gaps in the set, we get

|G^^| = (4.2.2.1)

To have a better understanding of the formula
(4.2.2.1) for the real world applications, we should
notice that, if (m+n) is not very large (say < 100),

95

then even if J is small, |G^^| won't be too large. And
for the large value of (m+n), J will be comparatively
large too (from the fact that not most of the dependen
cies in a large data base are fully chained), and again

won't be too large.

4.2.4 Speed analysis
At the first pass through the outer loop, and for

each iteration of the inner loop, the innermost loop
executes (m+n) times (m=|F|, and n = |m |), and since
inner loop itself is bounded by m + n iterations, then

2the entire loop executes (m+n) times. If no new depen
dency is generated by this pass (i.e., the best case —
no connections between any pair of dependencies), then

2algorithm terminates in time 0 (p), where p = m+n. Con
sidering the worst case, the outer loop iterates p times
(at each iteration the number of dependencies generated
is one dependency less than the previous iteration), and

3hence, the overall time for the algorithm is below 0(p).
2(best case) = p

(worst case) T^,=p.(p)+p.(p^l)+p.(p-2)+...+l =
P^. (P+1Î/2

4.3 Description of the Closure III Algorithm

All assumptions for this algorithm are the same
as what we had for the Algorithm 4-1. The basic objec-

T T Ttive of the algorithm is to construct G — the

96

Closure III of a given set of data dependencies G, using
Axioms FD4, MVD4, and FD-MVD2. Since which is the
result of applying Axioms FD4 and MVD4 to the set G, can
be constructed by the Algorithm 4-1, then the algorithm

II4-2 gets as input G of G, and applies Axiom FD-MVD2 to
T T T T TG to get G (See Figure 4.2).

Example 4.1: This carefully selected example indicates
the significance of the outer loop of the algorithm. The
proofs of correctness and termination are given later.

Suppose the following set of data dependencies are
given as the input to Algorithm 4-2:

m^: A —>-> {B,C,D},
mg : E — {B,F},
ry: G,II — {B,I},

F,C,E -> {B}.

then, at the first pass the algorithm generates the FD
f^^: G,H {B}

and then using FD f^^, another FD is generated

^12* ^ {B}
and finally, using FD f^gr the algorithm generates

fis! A '->• {F}.

4.3.1 Proof of correctness
Theorem 4.4. Upon termination of the Algorithm 4-2, all
FDs derivable from the set G^^ by applying FD-MVD2 are

T T T T T Tin FD-G , and thus G is the Closure III of G.

97

Algorithm 4-2
An Algorithm to construct the Closure III of a set
of data dependencies
INPUT : MV-G^^ and FD-G^^ of a set of data dependencies G;
OUTPUT: G^II and PD-G^^^ of G;
V =MV-G^^;
D =FD-G^^;
FD-G^^^ =FD-G^^;
repeat
H =V^ =^;

do for each eV;
do for each fj eD;

if RIGHT „ - C RIGHT . then £ . - f. ----
{jLf RIGHT g Q LEFTg = 0 then [construct an

FD f^ with
LEFT_ = LEFT^ and

RIGHTp = RIGHT. ;
*K j

if RIGHT. (CLEFT, then
- V —

H = H Ü fĵ ;
else/]

else V = U
end;

end;

Figure 4-2

98

Figure 4-2 continued

V = V ;

D = H;
FD-G^^^ = FD-G^^^UH;

until 11 = 0 or V = 0}
G^^^ = Fb-G^I^ + MV-G^^;

end algorithm;

99 •

Proof: At the first pass of the algorithm, all MVDs in
the set are checked with all FDs (pair wise) and the new
FDs are generated. For the following passes, not all of
the MVDs of the original set are needed to be checked with
new FDs, and therefore, algorithm considers only those
MVDs that have a chance of generating new FDs. This can
be formalized as follows:
Suppose the input to the algorithm is

f2 = ^2 ^2

Y

”1= «1 — Z^

”>2 = «2 ^2

mij : "j — Zj

"n ^ \ *7

where sets X's, Y's, W's and Z's are not necessarily
disjoint. At pass i, an MVD is removed and
will not be considered for pass i+1, if either

1) Yj_ é Zj for 1 < i < m,
or

2) for all y. c 2. X. and Z. are disjoint —1 -] 1]
XiHZj = P

Part (.1) : If the set H of new FDs generated by pass i is

100

*il’ "if .^12 • W' ->■^2

% - V
then the existence of MVD W. — Z. in the set of MVDs in]]
pass i+1 is not significant, and it does not generate any
newer Functional Dependency. In fact, if any FD is
generated from MVD —» Ẑ and the set H, then it must
be an FD W. —»• Y/ (for some value of k in 1 < k < p) . This] ^
can happen only if Y7 c z. (Axiom FD-MVD2), and it is a

 K —]

contradiction to our assumption because we have
E{Y{,Y^,...,Y'} and

{Y£,Y^,...,Y^} c {Y^,Y2,...,Ynj}
and thus

% ^ V
and by our assumption, no member of {Y^/Ygf.'./Y^} can be
a subset of Z ..

3
Part (2): Again, to prove the redundancy of the MVD
—» Zj for pass i+1, we need to prove that its existence
does not cause generating any newer FD. In fact, if MVD
Wj — Zj and the new set H of FDs, can generate a newer
functional dependency, then it must be FD W . Y^ (for

3 ^
some value of k in 1 < k < p) . This is because there must
be an FD Wĵ —^ Y^ such that Y^ c Z^ and Zj = 0. If

YJ c Z ., then since we haveK — 1

101
E and

{Yj,Y%,...,Y^} Ç {Y^fY; Y^}

then we get
YJ = Y. for some value of h in 1 <h <m. k h - -

And by our assumption, for all Y^ c (including Y^), we
have X.fl Z. = Thus MVD W . —>-> Y/ could be generated X 3 3 K
in pass i, and there is no need to carry MVD —» Z^ to
pass i+1, completing the proof. #

4.3.2 Proof of termination
Theorem 4.5 Algorithm 4-2 halts.
Proof: Both inner loop and innermost loop of the algo
rithm are finite loops because V and D are finite sets
for all iterations of the outer loop. Since at each
iteration of the outer loop either set H or set V (some
times both) becomes smaller^ then the algorithm always
halts. #

4.3.3 Output Analysis
Proposition 4.2 Let F be a set of FDs and M be a set of
MVDs, then the maximum possible number of FDs that can be
generated from F and M using Axion FD-MVD2 is |f |.|m |.
Proof : Consider the following data dependencies:

%=

*2=

102

"2 z
I

"n n
Any FD W ->• Y', generated from the above set by applying
Axiom FD-MVD2 must have the following properties:

W £ {#^,#2,...,#^} and
Y* e , Y ^ } .

Nov;, since there are n possibilities for W and m possi
bilities for Y ', then there are m.n (i.e.,|F|.|M|) possi
bilities for the FD W — Y ' . #

4.3.4 Speed analysis
At each iteration of the inner loop, innermost

loop executes (at most) m times (m = |FD-G^^|), At each
iteration of the outer loop, inner loop iterates n times

IT(n = |MV-G I). Therefore, at each iteration of the outer
loop, the innermost loop executes m.n times. Considering
proposition 4.2, and assuming that each single new func
tional dependency is generated at one iteration of the
outer loop (the worst case), then the outer loop iterates
ih.n times and thus the overall time for the algorithm is

2O.(m.n) . For the best case which most likely happens for
real world applications, all expected FDs are generated
at the first pass of the algorithm, and thus the algorithm

103

halts in time 0 (m.n).

4.4 Description of the Detection Algorithms

As we mentioned earlier, there are some special
cases that will never happen for the real world applica
tions, when the design issue of the relational data base
is of interest. Although we believe in this fact, we
still care about the consistency of the approach, and thus
those special cases will be detected (if they happen). Two
algorithms that detect the two most unusual cases (in the
sense of data dependencies designated by the data base
administrator), and warn the data base administrator of
the "bad" situations are presented in this section. Algo
rithm 4-3 (Figure 4-3) discovers the "fully chained data
dependencies" situation, and Algorithm 4-4 (Figure 4-4)
detects the "reflexive" data dependencies.

4.5 Chapter Summary and Remarks
Two algorithms for computing Closure II and

Closure III of a given set of data dependencies have been
presented. It has been shown that the worst case of
these algorithms is unlikely to happen for real world
applications. In spite of this fact, to maintain the
consistency of the method, two algorithms have been pre
sented to detect these worst cases (if they happen) and
warn the data base administrator of the unexpected
situation.

104
Algorithm 4̂ -3

An Algorithm to detect tlic fully chained data dependencies
situation
INPUT ; A set F of m FDs; and a set M of n MVDs;
OUTPUT; "YES", if all data dependencies in (F [J M) are

chained together, and "NO" otherwise;
[Initialization) m = k = i = 1; count = 0;STEP 1:

STEP 2: (Get the right side of dependency) right=RIGHTg^;
j = 1;

STEP 3; (Check if all dependencies are chained) count
= n - 1 then print "YES", STOP;

STEP 4: (Check if this dependency has been tested) if i =
j or MARK(i) = 1 then go to STEP 7;

STEP 5: (Check the left side of dependency) if right g
LEFT . or MARK(i) = 1 then go to STEP 7;gj -- ^ —

PUSH [right,j,i] into STACK; MARK(i) = 1;
count = count + 1; i = j; go to STEP 2 ;

STEP 6: (Pop from stack), if STACK empty go to STEP 8;
POP STACK in [right,],!]; MARK(i)=0; count =
count - 1;

STEP 7: (Check if all dependencies have been tested for
this right side) if, j <n then j = j + 1 , go to
STEP 3 ; else go to STEP 6 ;

STEP 8: (Termination) m <n then m = m + l , i = m, go
to STEP 2; else print "NO", STOP;

Figure 4-3

10 5

Algorithm 4-4
An Algorithm to detect the reflexive data dependencies

INPUT : A set F of m FDs; and a set M of n MVDs;
OUTPUT; A set X c(F U M) of reflexive data dependencies;

X = gf;
do for each f. E F + M;

if RIGHTr c LEFT. then— f . -

X =
end ;

end algorithm;

Figure 4-4

CHAPTER V

ANALYSIS OF RELATIONS BY DEPENDENCY-TO-RELATION

5.1 Introduction
In Chapter III an algorithm (FNF Algorithm) was pre

sented for constructing a relational schema from a set of
functional dependencies and multivalued dependencies. In
this chapter properties of the relation schemes constructed
by the FNF Algorithm are discussed (section 5.2), and it is
shown that although the schema constructed is desirable (i.e.,
contains no undesirable properties), it is not necessarily
"optimal". Heuristics for choosing "reasonable" decomposi
tions which lead to an "optimal" schema are suggested, and
an algorithm which decomposes a set of decomposable schemes
into an optimal form is given. Finally, two previous app
roaches are examined in sections 5.3 and 5.4, and they are
compared with the new approach.

5.2 Properties of Relations constructed by FNF Algorithm
Recall the three design principles (Representation,

Separation, and Nonredundancy) given in Chapter II. It is
important to characterize the properties of the relational
schema constructed by the FNF Algorithm to see if all three
design principles are satisfied, and thus, to determine
whether the schema is an "ideal" schema or not.

106

107

5.2.1 Representation Principle
The schema constructed by our FNF Algorithm, clearly,

must not violate the representation principle. It must rep
resent all information of interest (i.e., the same informa
tion as input). Different researchers have defined the con
cept of "the same information" in different ways. Four dif
ferent definitions are discussed and compared in [6]. In
this section, we first describe the most common and reason
able definition, and we will show that the schema constructed
by the FNF Algorithm satisfies the representation principle
(assuming this definition). Then representation is defined
in another way, a definition which our schema of FNF Algorithm
does not always satisfy. These alternatives are studied, and
suggestions are given to the possible resolution of the para
dox.
Definition 5.1. Let R and S be two relational schemas, then
S represents the same information as R if they have the same
attributes and databases of S contain the same data as the
databases of R.

The above definition which relys on the corollary 3.1
given in Chapter III, can be clarified by the following ex
amples .
Example 5.1: Suppose an schema R consists of a relation
scheme TACT(TENANT,ATP#,COMPLEX,TYPE), and in addition to FD
TENANT APT#,COMPLEX,TYPE,the FD COMPLEX — > TYPE holds in
TACT, and suppose an instance of relation TACT is as in Fig
ure 5-la. Now, if the schema S consists of two relation

108

schemes CT(COMPLEX,TYPE) and TAG(TENANT,APT#,COMPLEX) which
are indeed, the projections of R on COMPLEX and TYPE; and on
TENANT, APT#, and COMPLEX, then an instance of S is as in
Figure 5-lb. As the reader will notice, the schema S bears
the same information that the schema R does, and thus by def
inition 5.1 schemas R and S are equivalent. This is in fact
because the projection operation has been performed based on
a data dependency, that is, the FD COMPLEX — > TYPE (corollary
3.1). The following example indicates a situation in which
the projections of a relation carry more information (in fact,
nonsense information) than the original relation does.
Example 5.2: Consider the schema R of Example 5.1 and its
snap-shot given in Figure 5-la. Now, if a schema S' consists
of the projections of R on TYPE and APT#; and on TYPE, TENANT,
and COMPLEX, then an instance of S' is as in Figure 5-2. As
we see in Figure 5-2 each TENANT is associated with not only
his APT but also with some other APTs of some other TENANTS.
That is, the schema S' does not represent the same informa
tion as schema R, and thus assuming Definition 5.1 for repre
sentation, they are not equivalent.

Considering Definition 5.1, the FNF Algorithm always
constructs a schema which satisfies the representation prin
ciple. This claim is formalized in the following theorem.
Theorem 5.1. Let R be a schema constructed from a set of data
dependencies G, using the FNF Algorithm, then R represents G.

109

An example of a relation and its projections
instance of the schema R.

TACT(TENANT, APT#, COMPLEX, TYPE)
Jack 17D Nieman Fur.
Mary 212H Parkview Unfur.
Phil 305F Kraettli Fur.
Mark 302A Kraettli Fur.
Mike 208C Kraettli Fur.
John 126H Const. Unfur.
Tom 113F Const. Unfur.

instance of the schema S (projections of R) .
'(COMPLEX, TYPE) TAC(TENANT, APT#, COMPLEX)
Neiman Fur. Jack 17D Nieman
Parkview Unfur. Mary 212H Parkview
Kraettli Fur. Phil 305F Kraettli
Const. Unfur. Mark 302A Kraettli

Mike 208C Kraettli
John 126H Const.
Tom 113F Const.

Figure 5-1.

110

Proof ; PART-1 of the algorithm constructs one relation scheme
for each FD and one relation scheme for each MVD. Therefore,
the schema constructed in PART-1 represents G. In PART-2,
only those schemes that represent the same information as some
other schemes of the schema are deleted, and thus the schema
of PART-2 represents the schema of PART-1 which in turn repre
sents G. PART-3 and PART-4 of the algorithm remove only ex
traneous attributes (i.e., attributes represented elsewhere
in the schema, in stronger form) from relation schemes; and
thus no information is lost in these two PARTs, and the schema
constructed here (at the end of PART-4) represents the schema
of PART-2. The other three parts of the algorithm, that is,
PART-5, PART-6, and PART-7 decompose all of the decomposable
schemes of the schema. All decomposition steps in these PARTs
are based on the data dependencies holding in relation
schemes, and thus considering Corollary 3.1, and assuming
Definition 5.1, the decomposed schema (i.e., the final schema
of the algorithm) represents the schema of PART-4 which in
turn represents G, completing the proof. #
Definition 5.2. Let R and S be two relational schemas, then
S represents the same information as R if it contains the same
attributes and the same data dependencies as R.

Considering Definition 5.2, the FNF Algorithm does not
always construct an schema satisfying the representation prin
ciple. In fact, the schema constructed by the first four
PARTS of the algorithm satisfies the representation principle

Ill

An instance of the schema S',
(different projections of R of Figure 5-la).
AT(APT#, TYPE) TTC(TENANT, TYPE, COMPLEX)

17D Fur. Jack Fur. Nieman
212H Unfur. Mary Unfur. Parkview
305F Fur. Phil Fur. Kraettli
302A Fur. Mark Fur. Kraettli
208C Fur. Mike Fur. Kraettli
126H Unfur. John Unfur. Const.
113F Unfur. Tom Unfur. Const.

Figure 5-2

112

(Theorem 3.5), but PART-5, PART-6, and PART-7 may decompose
relation schemes into subrelations violating some of the data
dependencies. The following example clarifies this concept.
Example 5.3: Given the following data dependencies G,

fjt A , B — Ï' C , D, E
m^ C — B

the algorithm first constructs the following schemes,

"l
R^(A,B,C,D,E)
WCfB)

then it decomposes R1 into I^(C,B) andi^(A,C,D,E), and removes
Rll because it is the same as R^.

Rl2 (A,C,D,E)

Notice that the schema represents the same information as
G (assuming either concepts — Def. 5.1, or Def. 5.2) , and
the schema represents only if Definition 5.1 is consid
ered. In other words, the databases of contain the same
data as the databases of (satisfying Def. 5.1), but the FD
A,B — > C,D,E is no longer represented by the schema (vio
lating Def. 5.2).

One may suggest that instead of converting the schema
into , we could simply remove the relation scheme R2 from
and thus, the schema consisting of R^ satisfies both

definitions of representation. The problem is, that as we
discussed in Chapter II, the representation principle is not

113

the only principle that has to be satisfied by a "good"
schema. The above suggestion, in fact, ignores the separa
tion principle, and thus allows the schema to have undesir
able properties.

One possible solution to the problem is to associate
the dependency which is lost by a decomposition process to
corresponding subrelations, by means of storing it in a spec
ified area. This area then can be looked over when those
subrelations need to be updated. Notice that the proposed
solution can no longer be expedient if the above situation
(i.e., losing a data dependency in a decomposition process)
happens frequently in the schema design.

5.2.2 Separation Principle
Another goal in designing a "good" schema is to con

struct a schema in which the basic "units of information" are
represented separately from each other. This is in fact, the
intuitive motivation behind the normalization process [13].
In other words, the intention is to remove the undesirable
properties (i.e., those properties that cause update anomalies
discussed in Chapter I) from the schema by reducing the in
formation to its more basic units. In this section, we will
show that the schema constructed by the FNF Algorithm, is
free from undesirable properties, and indeed it is in 4NF.
This claim is formally illustrated by the following proposi
tions and theorem.

114

Proposition 5.1. Considering a 2NF relation scheme R(P,N)
where P is the primary key of R, and N is a non-empty set,
then the MVD m: X -»-> Y (or FD f: X — > Y) does not hold in
R if both X and Y are subsets of P.
Proof : (By contradiction)
Since X and YeP, then relation R can be represented as
R(X,Y,A,N), that is, we have

fjt X,Y,A — > N
from f^and Axiom FD-M'/Dl we get

m^ X,Y,A — » N
and if m; X —>-> X holds in R, then from m and m^ and Axiom MV04

we get
ny: X,A — » N

from m^ and f^ and Axiom FD-MVD2 we have
X,A — N

which means N is partially dependent on key. This partial
dependency is a contrary to the fact that the relation R is
in 2NF.
Proposition 5.2. Given a 3NF relation scheme R(P,N) where p
is the primary key of the relation R, and N is a non-empty
set, then the MVD m; X — ^ Y (or FD f ; X — > Y) does not
hold in R if both X and Y are subsets of N.
Proof; (By contradiction)
By our assumption relation R can be indicated as R(P,X,Y,B)
from which we can conclude

f̂ z P — » {X,Y,B}

115

from f and Axiom FD6 we get
fj P — » Y

from f and m (assuming it does hold in R), and Axiom FD-MVD2
we get

f j : X ^ Y

which means attribute Y is transitively dependent on key, and
thus violating 3NF schema characteristics, and contradiction
to our assumption. #
Proposition 5.3. If relation scheme R(P,N) where P is the
primary key of R and N is a non-empty set, is in 2NF, and if
XeP and YeN, then MVD m: X — » Y) (or FD f̂ X — >) does not hold
in R. Proof : (By contradiction)
If P = {X,A} and N = {Y,B} then we have R(X,A, Y,B) and we get

f^: X,A — ^ {Y,B}
from f^ and Axiom FD6 we get

fg: X,A — > Y
from m (assuming it does hold in R) and f^, and Axiom FD-MVD2
we get

f,: X Y
which means a non-prime attribute is partially dependent on
key, and thus violating the fact that R is in 2NF. #
Theorem 5.2. Let R be a relational schema constructed using
the FNF Algorithm, then R is in 4NF.
Proof: From Theorem 3.9 it follows that the schema construc
ted by the first five PARTs of the algorithm is at least in 3NF,
PART-6 and PART-7 of the algorithm decompose any relation

116

scheme in which a nontrivial multivalued dependency such as
X — >—> Y holds, but not the functional dependency X — > C
for every attribute C of that relation. This process which
guarantees the schema to be in 4NF can be formalized as
follows:
First, consider the set of relation schemes R ’ (that is, those
relation schemes in which not all of the attributes make the
key), and suppose R^{.P,N) e R ’ where P is a set of attributes
making the key of R̂ .̂ Now, assuming the MVD X — s— > Y-holds
for Rj., the following possibilities should be considered:

(1) X and Y e P
C2) X and Y e N
C3) X e P and Y e N
(4) X e N and Y e P

Possibilities C D / C2), and (3) are not acceptable according
to propositions (5.1)., C5.2), and (5.3) respectively. For
the case (4), relation R^ can be indicated as R^(Y,A,X,B).

ITTSince MVD X — >— > Y is an element of the set G and X £ A
(i.e., X is a non-prime attribute), and Y c K (i.e., a sub-

i
set of key), then PART-6 of the algorithm decomposes R^ into
R. and R. based on MVD X — >— > Y. Now, MVD X — >-> Y holdsil ^2
in Rĵ , and it is no longer a non-trivial MVD (because
X U Y = Dsii).

By the above discussion we conclude that the set of
relation schemes R' constructed by the first five PARTs of
the algorithm is either already in 4NF, or it is converted

117

to 4NP schema by PART-6.
Second, any relation scheme e R" (i.e., those

relation schemes constructed merely from MVDs, and thus in each
of them the entire set of attributes forms the key) is decom
posed into its projections by PART-7 of the algorithm if a
nontrivial MVD holds in it. Therefore, remaining relation
schemes of R" are in 4NF, and thus the relational schema R
which is R' U R" is in 4NF. #

5.2.3. Minimal Redundancy Principle
By the minimal redundancy principle (sometimes called

nonredundancy principle) it is meant that although the con
structed schema must represent all of the information of
interest, it should not contain any redundant information
(we will discuss the concept of redundancy later in this
section).

As for the representation principle, different re
searchers have defined minimal redundancy in different ways.
Here in this section, we will present and discuss our own
definition of minimality which embodies a quite different view
from those given by others. As a matter of fact, in other
definitions, it is the relation scheme upon which attention
is focused, to check whether it is required for the schema,
or it is redundant. On the other hand, in our definition
of minimality, we place stress on attributes rather than
schemes. In fact, our intention is to avoid the repetition

118
of attributes in the schema as much as possible, and we call
the schema with this characteristic optimal. The interesting
point is, that the optimal schema can be achieved by our
approach. We will return to this point after the following
formal discussions of minimality. We begin with a standard
definition given in literature, and then present our own
definition of minimality.
Definition 5.3 [6] Let R be a schema, then R is minimal if
it does not contain any relation scheme R^ whose data
dependencies are represented by the other schemas in'R.
Definition 5.4 Let R be a schema, then R is minimal if for
any other schema such as S which represents the same infor
mation as R, we have

îlR.I < E|S^I

for all R^e R for all S
Example 5.4: Given the following schema S:
S{R(A,B,C,D,E,F,G)}
and suppose two nontrivial MVDs m^: E —>->G and m^: C,D—» F

hold in R, then R can be decomposed into either R^(E,G) and
R2 (A,B,C,D,E,F), orR^'(C,D,F) and R g ' d e p e n d
ing on the dependency chosen (m^ orm^) for decomposition.
Therefore, the final schema will be either S' or S" (below).

fR,(E,G)
Rg(A/B,C,D,E,F)
Rl'(C,D,F)
R2 '(A,B,C,D,E,G)

Notice that while both S' and S" represent the same information

119

as S, but only S' is the minimal schema. In fact, two
attributes C and D are repeated in schema S", while in schema
S' only one attribute E is repeated twice, and thus we have

E| S^| = IR^I + iRgl = 6 + 2 = 8
for all Sj e S'

slsvl
for all SV e S" |R̂ '| [R̂ "! = 6 + 3 = 9

In the above example, Zjsjj is less than Z|sV|, because we
decomposed S using MVD m^ to get the schema S', and using
MVD m^ to get the schema S"; and this happened because

I LEFT I < IlEFT I . This concept is formalized in the fol- ' m^' ' mg
lowing proposition.

Proposition 5.4. Let R be the only decomposable relation
scheme (i.e., some nontrivial data dependencies hold in it)
in a schema S, and suppose there are alternatives for decom
posing R (i.e., there are more than one nontrivial dependency
holding in R), then decomposition leads to an optimal schema
if the data dependency with the smallest number of attri
butes on its left side is chosen for decomposition.
Proof: Suppose one of the dependencies holding in R(A) is
m: Xj — Yj, and suppose we decide to decompose R based
on m, then we have

S'
(Xj,Yjl

R2 (Xj,r) where = T - AX^ - Y^

120

and thus we get

Z|S}| = |Ril + IR2I = |Xjl + l̂ j! + |Xjl +
for all E S' |p|

l | S ! l = Ix.j + \Y,\ + Ix-I + |A| - |X.| -
for all S| e S'

Z|S!J = |Xj| + |A| (5.2.3.1)
for all e S'

and since |A| is constant, then the value of Z|Sj| depends
only on [Xj], and thus it is minimum if |Xj| is minimum,
completing the proof. #

Notice that Proposition 5.4 assumes a schema with
only one decomposable scheme. Indeed, if there are more
than one decomposable schemes in a schema, then choosing a
data dependency with the smallest left side does not neces
sarily lead to an optimal schema. The following example
clarifies this concept.
Example 5.5: Given the following data dependencies:

A,B,D,E,F — >-> C,G
mg: D,E,F — >-> I,J
m^: D,E — >-> F
m^: J — >-> E

we can first construct the following schema:

R2(D,E,P,I,J)

121

%3 (D,E,F)

Here.- relation, schemes nad are decomposable; No alter
natives exist for R^, and it can be decomposed only based on
dependency m^. Thus, the projections are and
R^^(A,B,D,E,C,G), and since R^^ is the same as R^ it is re-
moced, and we have

R^2(A»B,D,E,C,G).

R3(.D,E,F)
R4(J,E)

For R^, there are two alternatives, it can be decomposed
either based on dependency m^ or dependency m^. If we de
compose Rg based on dependency m^ (with only one attribute
on the left) into ^21 —̂ '— ̂ and ^22 ̂' and remove Rg-,
which is the same as R^, then we get

fRl2^â'â^D,E,Ç,G}

S'
R22CD,F,I,J)
R3(D,E,F)

But, if we decompose R^ based on dependency m^ (with two
attributes on the left) into ^21'^-'— —̂ ̂ and R22'(DfE,^,J),
and remove ^21' which is the same as R^, then we get

122

Rl2(A'B'D,E,Ç,G)
R22'(D,E,I,J)
Rg(D,E,F)
R^(J,E)

and now, by decomposing Rgg' Cno alternative) into Rgg' KJ^E)
and R22' 2(D,^,J), and then removing R22*^ which is the same
as R^ we get

R ĵ 2(A,B,D,E,C,G)
R22'2(D,I,J)
R3 (D,E,F)
R4(.J,E)

S"

Notice that, although we didn't choose the dependency with
the smallest left side to get the schema S", but S" is
optimal. This is because

Z|S?I
for all SV E S"

Z|S!|

= 14

= 15
for all S| e S*

and thus

EiS" Z|S,
for all SV e S for all S| e S*

This happened because, in decomposition process of S', we
used two different data dependencies to decompose Rj, and R^,
while both relation schemes could be decomposed based on

123

the same data dependency (JMVD m^) , and thus generating the
same schemes that could be removed from the schema (in fact,
it is what we did for constructing S"). This claim can be
formally illustrated as follows:

Theorem 5.3. Let S be an schema containing some decomposable
schemes, then decomposition leads to an optimal schema if:

(1) each decomposable scheme that has no.dependency
in common with other schemes, is decomposed based
on the dependency with the smallest left side,
and r

C21 all decomposable schemes that have some depen
dencies in common, are decomposed based on the
common dependency with, the smallest left side.

Proof; The proof for the part Cl) of the theorem directly
follows from Proposition 5.4, and part(2) can be proved as
follows;

Suppose S is a schema, and suppose R £ S with
|r (= p is a subschema consisting merely of the schemes that
have some data dependencies holding in them in common,
then using one of the common data dependencies, say, m:
Xj — Y j, we can decompose them as follows;

124

R

R2 <^2> ^j 1 --- S

*11 (%]'%])
Rl2(Xj,Yi) where PI =

(Xj + ïjl

R2iUj,Yj)
^ 2 2 ' 2̂ where P2 = Ag

(Xj + Yj)

RplCXj.Y.)

Kp2(='j'''p> «here = 4p
(Xj + Yj)

Now, since all relation schemes R̂ ^̂ (for 1 ^ i ^ p) are the
same, we remove all but R^^ f̂ rom the schema, and therefore
we have

R'

*11(%]'?]'
Ri2Cx.,ri)
R22(X.,r2)

*32 *̂ 3'*̂ 3'

*P2(x.,rpi

and hence, we get

125

E|Bjl = |Xjl + |Yjl
for all E R' + \x.\ + [Â l - |Xj| - \Y.\

+ |X.| + I A-1 - |XJ - |Y.|]' *2
+ |Xjl + I A]I - IXjl - lYjl

+ |Xjl + |Apl - |Xj| - |Yj|

S|R|
for all R| e R'

— (|A^ + Ag + A^ + ... + Ap)| +
|Xj| - (p - ll'lYjl

= Z I A. I + |X.| - (p - 1)'|Y I
m=l "]]

(5.2.3.2)

On the other hand, if we decompose each relation scheme
in R, using any arbitrary dependency not in common with other
schemes, then we get

R (i)I I where = 6^ - (Aĵ + Bĵ)

R'
Ro (Ao) ^2

R p 'V P p> where = A — + Bp)

and thus we get

126

r|RV| = lA^I + |B^I + \ĥ \ + |A^
for all RV e R"

+ lAgl + iBgl + lAgl + I&2
lAgl - iBgl

+ IA3I + IB3I + I A31 + IA3
IA3 I - IB3 I

+ lApI + |Bp| + |Ap| - lApI -
lApI - iBpi

SIR̂ I - C| Aĵ + A2 + A3 + ... + Ap I) +
for all RV e R"

| A j + IA2I + ... + |Ap|

(5.2.3.3)

Z|RV| = Z |A I + Z [A I (5.2.3.4)
for all RV e R" ""=1

ZlRV! = Z |A^ + h j (5.2.3.5)
for all R| e R'

Now, by analyzing formulas (5.2.3.2) and (5.2.3.4), we can
conclude that choosing a common dependency (if any) for de
composition is always better (in the sense of optimality)
than considering an arbitrary dependency, even if it has the

127

smallest left side in the set of data dependencies. Indeed,
we need to prove that for all situations, the value of C5.2.3.2)
is less than the value of (.5.2.3.4).

Consider the formula C5.2.3.2) which calculates the
number of attributes (.including repetitions) of a schema
(or a subschema), for a situation that all of the relation
schemes of the schema are decomposed based on the same data
dependency (i.e., a dependency holding in all of them). Now,
assume that one of these schemes is not decomposed based on
the common dependency,but it is decomposed based on an arbi
trary dependency. Then, as it is shown below, there will be
an increase in the number of attributes of the schema.

(a) if all e R are decomposed based on the same
data dependency Xj — >-> Y ̂:

\ + |Xjl - (P - D'lYjl
for all R. e R

^ (a.l)

(b). if all Rj E R (except R^) are decomposed based on
the same data dependency Xj— >-> Y^, and Rĵ is de
composed based on an arbitrary dependency — >B̂ :̂

E|R^| g |Am| + IXjl - I(p - 1) - IJ
for all R^ e R - Rĵ m=l, m̂ k̂

• |Yj| (b.l)

l\l = |A%| + |B^! + |A^| + - (|A^| + |B^|) =
|A^1 + l\l (b.2)

128

if we add (b.ll and (b.2) together we get

z|Ril = £ l\l +,|xJ -(p - 2) . |y.| +
for all e R 3

l̂ kl + l\l

= Z |A I + |X.| - (p - 2) • |Yj +
m=l ^ J J

lAĵ l (b.3)

and we conclude that, {b.2\ is always greater than (a.l), by
indicating that the expression I (b.3) - (a.l)] is always
positive.

E|RJ of (b.3) - Z|R. I of (a.l) = |A. | + \Y.\X X K J
for all R^ e R for all R^ e R

As conclusion, the number of attributes increases at least by
2 (when |Â | = |Yj| =1). By the same token, if the number
of relation schemes that are decomposed based on arbitrary
dependencies is p', then the number of attributes in the
schema increases by

P'2 K | + p' . |Y.|.
[=1 ^ Jk=
The above analysis and the Proposition 5.4, lead to

the conclusion that, when there are choices for decomposition,
we can construct an optimal schema if: (i) those schemes
that have some data dependencies in common, are decomposed
based on the common dependency with the smallest left side.

129

completing the proof. #
Considering Proposition 5.4 and Theorem 5.3, now it

is possible to modify the FNF Algorithm to construct an op
timal schema. To do so, we actually need to modify only
those PARTS of the algorithm in which decompositions take
place= In the FNF Algorithm, a decomposable scheme is decom
posed based on a data dependency holding in it which is en
countered first by the algorithm. Now, since the intention
is the construction of an optimal schema, the algorithm
should categorize all decomposable schemes before practically
decomposing any scheme. Then considering Theorem 5.3, it
should decompose each relation scheme based on an appropri
ate data dependency. One suggestion which leads to an effic
ient implementation of the problem is given in the following
algorithm.

5.2.3.1. Description of the Optimal Decomposition Algorithm
For this (Figure 5-3) algorithm we need to construct

a m X n matrix M, where m is the number of decomposable
schemes R in the schema and n is the cardinality of the set
of data dependencies G which is to be checked for decompo
sition. Then, M. . = 1, if the data dependency g. e G holds

J
for relation scheme e R Ci.e., if Rĵ can be decomposed
based on g .) and M. . = 0 otherwise. In addition we need to 3 1/3
define an array A of n elements, so that Aĵ states the number
of decomposable schemes that data dependency g^ holds for them.

130

Algorithm 5-1

An Algorithm to Decompose a Set of Decomposable Schemes
into an Optimal Form

INPUT: A set R of m decomposable relation schemes; and a
set G of n data dependencies.

OUTPUT: A set of decomposed schemes in optimal form.
STEP 1: Find the element of array A, say A^, which contains

the largest number (.if more than one element, found,
then choose the one such that the corresponding
dependency g^ has the smallest left side), then
remove this element.

STEP 2: Decompose all relation schemes in which data de
pendency g^ holds. These schemes can be found
simply by scanning column k of matrix M. That is,
any row that has a '1* in column k, corresponds to
one of these schemes. Mark these schemes to indi
cate that they have been decomposed. Then update
array A, that is, for any R^ e R that was just
marked and M. . = 1, decrease A. by one.^ f J J

STEP 3: Repeat STEP 1 and STEP 2 until all R^ e R are
marked, that is, all decomposable schemes are
decomposed.

Figure 5-3

131

5. 3 Bernstein's Synthetic Approach
There have been several approaches for designing an

algorithm to synthesize the relational schema from a set
of functional relationships. Wang and Wedekind [29]
proposed such an algorithm to produce third normal form
relations from a given set of functional dependencies.
However, their algorithm could generate two relations with
keys that are functionally equivalent. Another approach
has been made by Bernstein [8]. Bernstein's work was
based on the approach given by Delobel and Casey [15].
The relational schema produced by his algorithm is in
third normal form and contains a minimal number of rela
tions. The fourth normal form schema cannot be achieved
by this algorithm because, only functional dependencies
have been considered and multivalued dependencies have
been ignored. This algorithm is indicated in Figure 5-4.
Example 5-6 : Given •

A X

^2* A,B y

^3* A,B Z

^4- B,Z -> A

^5: B,Z Y

^6 = B,Y A

4 : B,Y -> Z

The nonredundant covering of the above set of FDs is as
follows ;

f^: A —> X

132

Algorithm 5-2

Bernstein's Algorithm to synthesize 3NF schema

INPUT : A set F of FDs.
OUTPUT: A set of relation schemes in 3NF.
STEP 1: Find a nonredundant covering for F. Call this

set G.
STEP 2: Partition all functional dependencies in G, into

groups where all of the FDs in each group have
identical left sides.

STEP 3: Let G^ and G^ be any pair of groups, then merge
these two groups together if there exists a bi
section X <— >Y (X and Y are left sides of groups
Gĝ and G^ respectively) in the closure of G, G^.

STEP 4: Construct a relation scheme for each group by
taking the set union of all the attributes
appearing in that group. The set of attributes
that appears on the left side of any FDs of that
group is the key of the relation scheme.

Figure 5-4

133:

fg: A,B -4. Y
f^: B,Z — »A
f^: B,y — > Z

Notice that is redundant because it could be derived
from ±2 and fj using Axiom FD4. Similarly f^ and fg are
re'dùndant because f ̂ is implied by f ̂ and f g y and fg is
implied by f^ and f^.

Now, from the above set of nonredundant covering,
the algorithm constructs the following third normal form
relational schema:

Rĵ CA, XI
Rg CA, B, Y)
R^(B, Z, A)
R4 (B, Ï, Z)
An important problem concerning the Algorithm 6-1

is finding the nonredundant covering of the set of FDs
(STEP 1) efficiently. Recall from Chapter II that an FD
f^eF is said to be redundant in F if F^ = (F - {f^})^\
In other words, if f^ e (F-[f^})^, then f̂ is redundant
and can be removed from the set F without altering the
closure of the set. To find the nonredundant covering of
F, we need to find the FDs that are redundant, and then
remove them from the set. Therefore, an algorithm which
can decide whether or not a single functional dependency
is in the closure of a given set of FDs, appears to be
essential for synthesizing relations from FDs. A member
ship algorithm, is given in the appendix.

134

5.4 Fagin*s Decomposition Approach
In [18], Fagin has presented a decomposition

approach for constructing the relational schema. In this
approach, he considers both kind of dependencies, func
tional and multivalued, and the schema constructed is in
4NF. He begins his normalization process by forming a
single relation scheme consisting of all attributes of
the data base. Then this relation (if not in 4NF) would
be decomposed into two of its projections. This process
continues for each subrelation not in 4NF, until all of
them are in 4NF. The following example indicates a 4NF
normalization process.
Example 5.7: Reconsider the data base of the Example 3.12
given in Chapter III. The data dependencies are as
follows :

fĵ ; CLASS,SECTION —> INSTRUCTOR
fg: CLASS,SECTION,DAY ROOM
f^: STUDENT MAJOR,YEAR
f^r INSTRUCTOR RANK,SALARY

CLASS,SECTION STUDENT,MAJOR,EXAM,YEAR
CLASS,SECTION INSTRUCTOR,RANK,SALARY
CLASS, SECTION DAY,ROOM

: CLASS -»• TEXT
m^: CLASS,SECTION,STUDENT EXAM

The normalization process begins by forming a single rela
tion scheme R containing all attributes:

135
R (CLASS,SECTION,STUDENT,MAJOR,EXAM,YEAR,INSTRUCTOR,

RANK,SALARY,TEXT,DAY,ROOM)
Based on the MVD the relation scheme R can be decomposed
into R^ and R^ as follows:

R̂ (CLAS S,SECTION,STUDENT,MAJOR,EXAM,YEAR)
R^(CLASS,SECTION,INSTRUCTOR,RANK,SALARY,TEXT,DAY,

ROOM)
Neither R^ nor R^ is in 4NF. can be decomposed based
on m^ into

R^^(CLASS,SECTION,STUDENT,EXAM)
2 (CLASS,SECTION,STUDENT,MAJOR,YEAR)

Although R^^ is in 4NF, R^2 is not. It can be decomposed
based on FD f^ into

Rl21(STUDENT,MJAOR,YEAR)
Ri22(class,SECTION,student)

Both R^21 ^122 in 4NF. We now decompose R2 based
on MVD m2 into

R2 ̂ (CLASS,SECTION,INSTRUCTOR,RANK,SALARY)
R«2 (CLASS,SECTION,TEXT,DAY,ROOM)

Considering FD f^, R2-ĵ can be decomposed into
R221(INSTRUCTOR,RANK,SALARY)
R212(CLASS,SECTION,INSTRUCTOR)

And using MVD m^, Rg2 can be decomposed into
R221(CLASS,TEXT)
R222(CLASS,SECTION,DAY,ROOM)

Now, the schema consisting of the set of relation schemes

t^l'^121'^122'^211'^^12'^221'^22^

136
remove 8^22 the schema (because it is a projection
of R^i' therefore it is redundant) we get the same
set of relation schemes that we got earlier in Chapter III,

using the new method.
As we saw in Section 5.3 and in this section, the

Bernstein's synthetic approach guarantees 3NF schema and
not higher, while the decomposition process can lead to a
4NF family. In addition, synthesized schema satisfies the
representation principle of Definition 5.2 given in Section
5.2, and decomposition leads to a schema which satisfies the
representation principle defined by Definition 5.1 [6].
Although the schema constructed by Fagin's decomposition
method is in 4NF, it is not necessarily optimal. On the
other hand, as it was shown in previous chapters, the
dependency-to-relation approach not only guarantees the
4NF schema, it also can lead to an optimal schema. In
addition, this method does not violate the representation
principle of Definition 5.1, and avoids violating the Defi
nition 5.2 as much as possible.

Considering the above discussion and the idea given
in [6], we can summarize the differences in the following
table:

Method Bernstein's Fagin's Authors

Normal Form 3NF . 4NF 4NF
Data Dependencies FDs FDs+MVDs FDs + MVDS
Definition of
Minimality Def.5.3 ■

Both, Def. 5.3
and Def. 5.4

Definition of
Representation Def. 5.2 Def.5.1

Def. 5.1 and
mostly Def. 5.2

137

5.5. Chapter Summary and Remarks
Properties of the relation schemes constructed by the

FNF Algorithm have been discussed in detail. It has been
proven that the schema constructed is in 4NF and thus free
of undesirable properties. It has been also shown that the
schema may possibly contain some redundant information, and
thus it is not optimal. To solve this problem, heuristics
have been employed and "optimal" has been defined. Furthermore,
an algorithm (which can be efficiently implemented) has been
presented for decomposition of a set of relation schemes
into an optimal form. Finally, properties of relations by
the FNF Algorithm and by the other approaches have been
compared.-

CHAPTER VI

SUIMARY AND CONCLUSION

6.1 Summary

It was the purpose of this thesis to investigate
the basic concepts of the relational model, and to present
an approach for constructing relational schema from func
tional and multivalued dependencies. Although some of the
previous works [8,11,14,18, et al.] have addressed a
similar problem, these approaches present a number of
situations that are not desirable for the data base. Many
of these problems which will be pointed out in the next
section have been resolved by the new method presented in
this thesis.

The theoretical background for the approach was
provided in Chapter II. The algebraic rules for both kind
of dependencies (functional and multivalued), were examined.
We also proposed two special closures for mixed dependencies
(i.e., FDs and MVDs), and demonstrated their importance for
the relational schema design. Two algorithms for computa
tion of these closures along with the extensive analyses of
them were given in Chapter IV.

The main algorithm of the approach was presented in

138

139
Chapter III. The process was started with designing a
simple algorithm to construct one relation scheme for each
explicitly designated dependency. We then examined this
simple algorithm, and discovered a number of problems
presented by it. These problems which were imputed to the
ignorance of the composing rules for data dependencies,
led us to modify the algorithm. Finally, after an iter
ative refinement of the algorithm, we presented the main
algorithm (Fourth Normal Form Algorithm).

In Chapter V we examined the important properties
of the schema constructed by the FNF Algorithm.

We proposed (in Section 5.2) a new concept for
optimality, and made an extensive investigation toward
constructing optimal relational schema.

Finally, in sections 5.3 and 5.4, we examined the
Bernstein's synthetic algorithm and Fagin's decomposition
method. We also compared their methods with the new approach
presented in this dissertation.

6.2 Analysis of the Approach
First of all, since both kind of dependencies have

been considered for the design approach, the constructed
schema is in 4NF, and therefore many of the problems con
cerning the synthesized 3NF schema have been eliminated.

In addition, allowing the data base administrator

140

to inspect the schema at any desirable intermediate level,
leads to practical results as well as theoretical conse
quences. This intervention can be performed efficiently
since it might be categorized based on the different parts
of the FNF algorithm. In other words, the result of each
part of the algorithm can be examined independently —

one part eliminates explicit partial dependencies, another
part concentrates on implicit partial dependencies, another
part is concerned with transitive dependencies, etc. . As an
example, consider a situation in which the set of depen
dencies designated by the data base administrator includes
the following:

f^: EMPLOYEE — > MANAGER
fg: MANAGER — > SALARY
f^: EMPLOYEE — > SALARY.

Syntactically, the dependency f^ can be derived
from dependencies f^ and f^ using Axiom FD3. Note that
what actually is implied by f̂ ̂and f^ is an FD in which
EMPLOYEE determines the SALARY of the MANAGER, and this
is completely different from f^ in which EMPLOYEE deter
mines its own SALARY. Therefore, f^ is not redundant and
should not be removed from the schema. This problem can
be overcome by considering a signal in PART-8 when imple
menting the FNF Algorithm. This signal warns the data
base administrator about deleting a nonredundant relation
from the schema, and hence he can make the proper decision

141

regarding this matter.
Moreover, using the concepts given in Subsection

5.2.3, the FNF Algorithm can be further modified to pro
duce an optimal schema. This could save a large amount
of storage for storing the data, because the repetition
of the attributes has been minimized.

Finally, since the normalization process is per
formed in a step by step manner (i.e., generating INF schema,
then transforming the INF into 2NF, 2NF into 3NF, etc.) ,
the results can be used for the analysis of different
normal forms and their transformations.

6.3 Suggestions for Further Work
This dissertation dealt solely with, the logical

issue of the relational data base. Specifically speaking^
we focused more on the logical significance of the pro
posed algorithms than on their efficiency. Therefore, an
improvement to the approach will be desirable regarding
this matter.

Although this work provides all relevant algorithms,
no actual programming has been done. These algorithms,
especially the FNF Algorithm and those that are used for
constructing the closure II and closure III, should be
tested on real data bases, and their performance evaluated.

Another direction worth investigating is improving
the approach to construct the relational schema satisfying

142

the representation principle of Definition 5.1, and not
violating the Definition 5.2.

Finally, this dissertation leaves the designating
of functional and multivalued dependencies completely in
the hands of the data base administrator. Some work is
needed for the systematic detection of these dependencies

BIBLIOGRAPHY

1. AhOf A.V., C. Beeri, and J.D. Ullman, "The theory of
joins in relational databases", ACM Transactions on
database Systems, September 1979.

2. Aho, A.V., J.E. Hopcroft and J.D. Ullman, "The Design
and Analysis of Computer Algorithms", Addison Wesley,
Mass.,19 74.

3. Armstrong, W.W., "Dependency structure of data base
relationships", Proc. 74 IFIP, North-Holland, 1974,

4. Beeri, C., "On the membership problem for multivalued
dependencies in relational databases", TR229, Dept,
of EECS, Princeton University, 1977.

5. Beeri, C. and P.A. Bernstein, "Computational problems
related to the design of normal farm relation
schemes", ACM Transactions on Database Systems, 1979.

6. Beeri, C., P.A. Bernstein, and N. Goodman, "A sophis
ticate Vs introduction to database normalization
theory", Proc. ACM Intl. Conf. on very large Data
Bases, 1978.

7. Beeri, C ., R. Fagin, and J.H. Howard, "A complete
axiomatisation for functional and multivalued
dependencies", ACM/SIGMOD International Symposium
on Management of Data, 19 77.

8. Bernstein, P.A. "Synthesizing third normal form
relations from functional dependencies", ACM Trans,
on Database Systems. 19 76.

9. Cadiou, J.M. "On Semantic Issues in the Relational
Model of Data", IBM Research Laboratory, San Jose,
CA, 1977.

10. Codd, E.F. "A relational model for large shared data
banks", CACM, 19 70.

143

144

11. Codd, E.F. "Further normalizations of the data base
relational model", In Data Base Systems, Courant
Inst. Computer Science Symposium 6, R. Rustin, Ed.,
Prentice-Mall, Englewood Cliffs, NJ, 1972.

12. Codd, E.F. "Relational Completeness of Data Base Sub
languages", Courant Computer Science Symposia Series,
Vol. 6, Englewood Cliffs, NJ, Prentice-Hall, 1972.

13. Data, C.J. "An Introduction to Database Systems,
Addison Wesley, Mass., 1977,

14. Delobel, C., "Normalization and hierarchical dependencies
in the relational data model", ACM Transactions on
Database Systems, 1978.

15. Delobel, C. and R.C. Casey, "Decomposition of a database
and the theory of Boolean Switching functions-", IBM
J. Res., 1972.

16. Fagin, R. "Functional dependencies in a relational
database and prepositional logic", IBM Res.
Laboratory, San Jose, CA, 1976.

17. Fagin, R. "The decomposition versus synthetic approach
to relational database design. Proc. Third Intl.
Conf. on very large data bases, Tokyo, October 19 77.

18. Fagin, R., Multivalued dependencies and a new norman
form for relational databases", ACM Trans, on
Database Systems, 1977.

19. Fagin, R., "Functional dependencies in a relational
database and prepositional logic", IBM J. Res. and
Develop., November 1977.

20. Fadious, R. , "Mathematical foundations for relational
data bases", doctoral diss., Michigan State Univ.,
1975.

21. Hutt, A.T.F., "A relational data base management
system", John Wiley & Sons, NY 19 79.

22. Hagihard, K., M. Ito, K. Tanighuchi and T. Kasami,
"Decision problems for multivalued dependencies in
relational databases", SIAM J. Comput., May 19 79.

23. Luk, W.S.,"Possible membership of a multivalued
dependency in a relational database". Information
Processing letters, August 1979.

145

24. Meldelzon, A.O. "On axiomatizing multivalued
dependencies in relational databases" J. ACM, 1979.

25. Martin, J., "Computer data-base organization", Prentice-
Hall, Englewood Cliffs, NJ 19 75.

26. Rissanen, J. "Independent components of relations",
ACM Trans, on Database Systems, 19 77.

27. Schmid, H.A. and J.R. Swenson, "On the semantics of
the relational model", ACM/SIGMOD International
Symposium on Management of Data, 19 76.

28. Stant, D.F.,and D.F. McAllister, "Discrete Mathematics
in Computer Science", Prentice-Hall, 19 77.

29. Wang, C.P. and H.H. Wedekind, "Segment Synthetics in
Logical Data Base Design", IBM J. of Res. and'Dev.,
January 19 75.

30. Wiederhold, G. "Data base design", McGraw-Hill, NY,
1977.

31. Zaniolo, C. "Analysis and design of relational schemata
for database systems", doctoral diss., UCLA, 1976.

APPENDIX

tCompleteness of the inference rules for FDs and MVDs

Using the definition it is easy to verify the valid
ity of the inference rules. To prove the completeness of
this set of rules we need to show that each dependency
which is implied by F U n (F is a set of FDs, and M is a
set of MVDs) belongs to (F,M)^.

Recall that a dependency f is implied by F U M if
there is no counterexample relation such that all depen
dencies in F [j M are valid in it but f is not. To shov;
completeness of the rules, we have to show that for each
dependency not in (F,M)^ such a counterexample relation
does exist. Before we present the completeness theorem
we need a few concepts.

Let X be a subset of U. There are several sets Y
such that the MVD X — Y is in (F,M)^, (e.g., X — U-X
is always in (F,M)^. Following Fagin, we use the
notation X —» Ŷ ̂| Y2 | • • • [Yĵ to denote the collection of
MVD’s X Y , X — Yg,..., X —>4- Yĵ . From now on,

"̂ This discussion follows quite closely that of Beeri,
Fagin and Howard f7].

146

147

when this notation is used, we assume that none of the sets
the empty set.

Let us denote by DEP(X) the family of all sets Y for
which X —>-> Y. (DEP(X) is, of course, a function of the
given sets of dependencies F and M.) We have seen that
DEP(X) is closed under boolean operations (MVD5,MVD6).
Therefore, it contains a unique subfamily with the following
properties :

a). The sets in the subfamily are nonempty.
b) Each pair of sets in the subfamily is disjoint.
c) Each set in DEP(,X). is a union of sets from the

subfamily.
This subfamily consists of all nonempty minimal sets in
DEP(X), i.e., those sets that do not contain any other

nonempty set of DEP(X). We call this subfamily the depen
dency basis of X. If Y^y...,Y^ are the sets in the depen
dency basis of X, then as Fagin noted [18], "the general
ized" MVD X contains all the information
about MVDs that have X as their left side.

Let X* denote Üie set of all attributes that are
functionally dependent on X (by functional dependencies in
(F,M)^). Clearly X c X * . X* has the same role for FD's as
DEP(X) has for MVD's. For each A eX* we have X —> A.
Thus, each element of X* appears as a singleton set in
the dependency basis of X. The dependency basis contains
other sets if and only if X* is a proper subset of U.

148

These remaining sets cover U-X*. We note that since
X -5k X* and X* -5k X, it follows that DEP(X) = DEP(X*) and
the dependency basis of X is the same as the dependency
basis of X*.
Theorem 1. (Completeness theorem for FDs and MVDs); Let
F and M be sets of FDs and MVDs, respectively. For each
functional or multivalued dependency that does not belong
to (F,M)^ there exists a relation R(U) such that all the
dependencies in (F,M)^ are valid in R but the given depen
dency is not valid in R.
Proof; Let X be the left side of the dependency that is
not in (,F,M)..̂ . The set X* is a proper subset of U since
otherwise every (functional or multivalued) dependency
v>ith .left side X belongs to (F,M)^. Let W^,...,W^| (m > 1)
be the sets in the dependency basis of X that cover U-X*.
Thus, X*, W^,...,W^ form a partition of U. The MVD X —5k>
X* ... is in (F,M)’*" and, furthermore, if an MVD in
(F,M)^ has X as its left side then its right side is a
union of a subset of X* and some of the sets W^,...,W^^

The relation R(U) is constructed as follows; We
choose the set {0,1} as tlie domain of each of the attri
butes in U. The relation R has 2^ rows, one row for each
sequence of zeros and ones of length m. In the row corr
esponding to a sequence <a^,...,a^> (where â ̂e{G,l}),
each of the attributes in W^ is assigned the value a^
(i = l,...,m). Each attribute in X* is assigned the value

149

1 in all the rows of the relation. For example, if m = 3,
then the row corresponding to the sequence {0,1,1} has
all I's in the X* columns, all G's in the columns, all
I's in the columns and all I's in the columns.

We now want to prove that R satisfies the condition
of the theorem. In what follows, we use the inference
rules for two different purposes. First, we sometimes
show that if some given dependencies are in (F,M)^ then
(F,M)^ also contains some other dependency. That we can
use the rules for this purpose follows directly from the
definition of (F , M) S e c o n d , we also show that if some
dependencies are valid in R then there is another depen
dency that is valid in R. We can use the rules for this
purpose since we have proved that they are valid infer
ence rules for the family of dependencies, i.e., their
application to dependencies that are valid in a relation
always produces dependencies valid in that relation. . We
will indicate our intention each time we use the rules.

We now prove the following three claims about the
relation R that we have just constructed.
(]L) If the right side of an FD is a nonempty subset of

Wj. then the FD is valid in R iff its left side
intersects. W^.

(2) Each MVD that has W^ as its right side is valid in R.
(3) If the right side of an MVD is a nonempty proper

subset of W^ then the MVD is valid in R iff its left

150

side intersects W^.
We first prove one direction of claim 1. For each

fixed row of R, all the attributes in have the same
value. It follows that every attribute in W^ is func
tionally dependent in R on every other attribute in W^
(and, by augmentation, on every set that contains such an
attribute). Thus we have proved that if the left side of
the FD intersects then the FD is valid in R. From this
also follows the corresponding direction of claim 3, since
every FD is also an MVD.

We now prove claim 2 and the oche.r directions of claims
1 and 3. The relation R is the Cartesian product of its
projections R(W^) and R(U-W^). It follows immediately
that the MVD ^ —»• W^ is valid in R arid, by augmentation,
Y —» W^ is valid in R, for every set Y. This proves
claim 2. Now let Y and Z be subsets such that Y is dis
joint from and Z is a nonempty subset of W^. It
follows from the above factorization of R that for each
Y-value (Def: For a set of attributes X, an X-value is
an assignment of values to the attributes of X from their
domains) y , the set Z^(y) contains two Z-values - a 0-
assignment and a 1-assignment to the attributes of Z. In
particular, the FD Y —> Z is not valid in R; this con
cludes the proof of claim 1. If Z is a proper subset of

let A be an attribute in W^-Z. Then Z^(ya) , where ya
is a YA-value, contains only a single Z-value since the

151

attributes of Z must be assigned the same value as the
attribute A. Therefore Z^Xy) 7̂ Z^Xya) and it follows
that the MVD Y —^ Z is not valid in R. This concludes
the proof of claim 3.

We now show that R satisfies the condition of the
theorem.. First, let f be an FD in (F,M).’*'. We show that f
is valid in R. By Axiom FD6 we can assume that f is of
the form Y B where B is a single attribute. Now, if B
is in X* then f is clearly valid in R since in R every
attribute of X* assumes a single value and is, therefore,
functionally dependent on any other attribute. If B is
not in X* then it belongs to some W^. If Y is disjoint
from this then from the MVD X —» W^ and the FD Y —> B
which are both in (F,M)’*' it would follow by rule FD-MVD2
that X — B is in (F,M)^. This is impossible since B is
not in X*. Therefore Y must intersect W^ and Y —5“ B is
valid in R by claim 1.

Now let g; Y —» Z be an MVD in (F,M)^. We show
that g is valid in R. We note that Y — Zf1 X* is valid
in R. We will show that, for each i, Y — Z flWĵ is also
valid in R. First, suppose that, for some i, the set
Z n W\ is either empty or all of Ŵ .̂ By claim 2 above,
Y —>4- W^ is valid in R; as we know, Y — j? is always
valid. Next, suppose that, for some i, ZHw\ is a non
empty proper subset of W^. If Y does not intersect W^
we can use augmentation on Y —>• Z to obtain that U-W^—*>->• Z

152

is in (F,M)^. Since X — is also in (F,M)^ it follows
by MVD3 that X Z-(U-W^) , that is X Z n is in
(F,M)^. This is a contradiction to the assumption that
is a member of the dependency basis of X. Thus Y must
intersect and, by claim 3, Y — Z n i s valid in R.
We have now shown that, for each i, Y — Z fl is valid
in R and also so is Y Z D X*. By taking the union
(MVD4) it follows that Y - » Z is valid in R.

Finally, let us consider the dependency (with ieft
side XI which is known not to be in (JF,Ml̂ . If it is an
FD X — Y then Y is not a subset of X*, so Y intersects
W. for some i. By FD6 if X — Y is valid in R so is
X —> Y n a n d this contradicts claim 1. (Recall that X*
is disjoint from each of the W^.) Therefore X —5- Y is not
valid in R. If the dependency is an MVD X — Y, then
for some i , Y fl W^ must be a nonempty proper subset of
(else since C Y H x* and X — Y fl for each i are in
(F,M)^ the MVD X — Y would be in (F,M)'*)» Now, for this
i, X - » Y n is not valid in R by claim 3. Since
X Wĵ is valid in R, if X —^ Y was also valid in R
we could apply MVD6 to obtain a contradiction. Thus
X —irir Y is not valid in R. #

,153

Mendelzon's Proof of Proposition 2.2^

Proposition. The Union rule (i.e., MVDS) cannot be
derived from rules MVD1-MVD3.
Proof ; Let U = {A,B,C}, G = {A — B,A — C }, and
g = A — BC. Clearly g follows from G via MVDS. Let
S = {MVD1,MVD2,MVD3}; we claim that G^ççG', where G® is
the closure of G under S, and G' = {X —» Y/Y cx or
A ex and Y-X = B or C). To prove this, it suffices to
show that G ' is closed under S, since clearly G is
included in G'. We shall consider each rule of S in turn.

MVDl. Obviously G' contains all dependencies
obtainable by reflex!vity.

MVD2. Suppose X — » Y eG' and X cw. Consider two
cases.
Ca), Y gX; then YZ gXW implies that

XW YZ eG'.
(b) Y c x , A eX, and Y-X=B or C. Suppose

Y-X =B. Then YZ-XW= (Y-X-W) (Z-X-W) =B~W.
If B eW, then YZ-XW=^, which implies
that YZ is contained in XW, so
XW - » Y Z e G ' . If B ̂ W, then YZ-XW=B
and A EXW implies that XW — YZ eG'.
A similar argument holds for Y-X = C.

MVD3. Suppose X Y, Y — Z eG'. There are

This proof follows quite closely that of Mendelzon [24].

154

four cases to consider.
Ca). YcX, Z c Y ; then X contains Z-Y, so

X Z-Y EG'.
(b) YcX, Y does not contain Z, and

A e Y, Z-Y = B or C.
Assume Z-Y = B. If B eX, then Z-Y-X~^
implies that X contains Z-Y, hence
X Z-Y eG'. If B/X, then Z-Y-X=B and
A eX (since A eY and YcrX) ; hence
X — Z-Y eG'. The argument is similar for
Z-Y = C.
(c) Y^X, A E X, Y-X=B or C; Z: ̂ Y, AeY,

Z-Y = B or C.
Suppose Z-Y = B. If B EX, Z-Y-X = 0, hence
X Z-Y as above. If B / X, Z-Y-X=B and we
assumed A eX, so X — Z-Y eG'_. The
argument for Z-Y is similar.
(d) YgX, A eX, Y-X=B or C, and Z cY. Now

Z-Y = p, so X — > Z-Y EG'.
It follows that A —»• BC is not in G^, and therefore
A —>-> BC cannot be derived from {A — B,A C} using
only MVD1-MVD3. #

155
•j*A Membership Algorithm

A membership algorithm which can be applied well to
real world applications is presented below. In this proce
dure EQN is a set of numbers associated with FDs in F.

Membership Algorithm
An Algorithm to decide if an FD is in the closure of a
set of FDs
INPUT ; A set of FDs F in canonical form; and an FD g,

whose left and right sides are LM and RM, where
|RM| = 1.

OUTPUT: "YES", if geF**", and "NO" otherwise.
X = fSj
procedure MEMBER (LM,RÎ 1,EQN)
do for all i e FQN;

if RIGHT^ = RM then_ f. —
if LEFT, c LM then return(.'YES') ;
— -

else
[do for all d e(LEFT^_ - LM);

if d eX then go to end d-loop;
SUB ^ MEMBER(LM,d,EQN - {i}) ;
if SUB = 'NO' then

[EQN = EQN - {i};
exit;
]

t

156

end d-loop;
if SUB = 'YES' then [X = X [j d; return('YES')] ;

]
end i-loop;
return('NO');
end MEMBER;

Proof of termination
Theorem 2 The membership algorithm halts.
Proof; The outer loop is finite because EQN is a finite
set. At each iteration of the inner loop, either the
value of SUB is 'YES' for all d's (including those created
by recursion) in which case the algorithm terminates, or
at least one FD is crossed off the set EQN. Now, since
the number of elements in EQN is finite, the algorithm
ultimately halts. #

Proof of correctness
Theorem 3 Upon termination of the membership algorithm,
the output is "YES" if and only if g e .
Proof : At the first call of the procedure, the right
sides of all FDs in F are checked until an FD f^ whose
right side is the same as the right side of g is found
tif no such an FD is found, g cannot be in the closure
of F, and the algorithm correctly returns "NO" as its

157

output).. If the left side of f^ is a subset of the left
side of g, then clearly g is in the closure of F, and this
is performed by the third statement of the procedure. If
the left side of the f i s not a subset of the left side
of g, then the procedure is recursively called for each
element d in the set difference of these two left sides
(i = e.f LEFT.P -LM). Therefore, the subsequent procedure
call is similar to the first call, and it determines if
there is any FD s(F-{f^}) with the right side of d. • If
found, again its left side is checked and the same pro
cedure is continued until we get to a point in which all
d's are replaced by the left sides of their corresponding
dependencies (or the subsequent left sides), and then this
set is either a subset of the left side of g, or it is not.
The former case indicates that g eF***, and the inner loop
of the algorithm does this job correctly. On the other
hand, the latter condition states that f^ cannot be used
to derive g from the set F, and thus the algorithm checks
for the other FDs in F. Finally, if all FDs of F are
checked (when the outer loop is exhausted) with the same
situation as mentioned above, the algorithm returns "NO"
and terminates. #

Speed analysis
The time analysis of the algorithm can be better

explained by considering the worst situation that may

158

occur. Suppose there are n FDs as follows

^ n * ^ l ' ^ 2 ' * * • ' ^ m n

and suppose we want to know if an FD a —> 3 is in the
closure of the above set. The algorithm first checks for
3 in the left side of FDs. Suppose there is an f^ in the
set such that = 3 (if no such an FD exists, the algo
rithm terminates in 0 Cn)). Now, the worst situation
happens if LEFT„ (1 a = 0, and the algorithm has to search

i
for all A^ e LEFT^ / that is, for m^ attributes in (n - 1)
dependencies. Notice that, even if m^ > (n - 1), the
inner loop may not be executed for more than (n - 1) times.
This is because the nth element of the set LEFT^ cannot

i
be found in the right side of the given FDs (assuming the
first (n - 1) elements have already been found), causing
an exit from the loop. Now the worst situation occurs if
the first element can be found after searching the whole
set, i.e., Cn-11 FDs. Since this dependency is removed
from the set, and the element found is added to the set X
(i.e., a set which keeps track of these attributes to
avoid re-searching for them in the subsequent procedure
calls);, then for the next phase (i.e., searching for the
attributes on the left side of the dependency just

159

removed) we have (n - 2) dependencies to search. Contin
uing a similar procedure we get a total of (n-l) + (n- 2) +
... + 1, and hence the overall time for the algorithm is
below O(n^).

As the reader will notice, the algorithm first
checks the right side of the FDs. And since all FDs are
in canonical form (i.e., they have only one attribute on
their left sides-)', this test can be efficiently imple
mented. The algorithm also checks the left side of the
dependencies, but this test has been minimized. In other
words, the left side of a dependency is checked only if
its right side is appropriate Cin the sense that this
dependency might be used for derivation of the FD of
interest).

In addition, in this algorithm, only those FDs
that might be used for the derivation purpose will be
tested, and the other dependencies will not be checked at
all.

