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ABSTRACT

This work presents exact normal mode solutions for  the forced 

vibrational response of the rectangular parallelepiped with three se ts  

of boundary conditions: ( 1) completely r ig id- lubrica ted boundaries;

(2) two s t r e ss - f ree  and four r ig id- lubrica ted  boundaries; and (3) two 

e la s t i c a l ly  res trained and four r ig id- lubr ica ted  boundaries. Both 

analytical and numerical ve r i f ica t ions  of these solutions are provided. 

Applications are discussed in the f ie lds  of acoustic emission non­

destructive tes t ing  and the cal ibra t ion  of piezoelectr ic  transducers.
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CHAPTER I 

INTRODUCTION

1.1 Background

The forced vibrat ional  response of the rectangular p a ra l l e l e ­

piped i s  of p a r t i c u la r  i n t e r e s t  in the study of wave propagation in 

so l ids  and espec ia l ly  in the charac ter iza t ion  of acoustic emission sources. 

Acoustic emission are  the s t r e s s  waves generated by the rapid release  or 

red is t r ib u t io n  of stored energy tha t  accompany many deformation and f r a c ­

tu re  processes. The two major sources of acoustic emission are p la s t i c  

deformation and crack growth. There has been considerable i n te r e s t  in 

studying the mechanisms associated with these sources in order to pre­

d i c t ,  and eventually perhaps con tro l ,  flaw growth in s t ruc tu ra l  materia ls .

Understanding the r e la t ionsh ip  between source and receiver  in 

acoustic emission experiments has been the motivation for  several recent 

papers f l - 3 ]  which have addressed the dynamic response of p la tes .  How­

ever, many acoust ic emission applica t ions involve specimens of f i n i t e  

dimensions which are not accurately  modeled by a p la te .  Some experi­

mental work has been done on the source-receiver problem in f i n i t e  bodies, 

but very l i t t l e  analy t ica l  work due mainly to the complexity of the math­

ematics describing the specimen response. In f a c t ,  there are no forced 

vibrat ion so lut ions for  para l le lepipeds In the l i t e r a t u r e  and only a few 

free  vibrat ion solu t ions  14-9,12-17] .

1



I t  is  the purpose of th i s  work to help bridge the gap between 

the experimental and the analytical  by providing normal mode solutions 

fo r  the forced vibrational  response of the rectangular paralle lepiped 

with boundary conditions su f f i c i e n t ly  r e a l i s t i c  in a physical sense to 

allow inferences to be made concerning the source event. Obviously, 

the more r e a l i s t i c  the boundary condit ions, the more accurate the in fe r ­

ences. The two se ts  of boundary conditions considered here are (1) a l l  

six  faces r ig id - lub r ica ted  and (2) four r ig id - lubr ica ted  and two s t re ss -  

f ree  faces . These represent approximations to the completely s t r e s s -  

f ree  case,  which has not, as y e t ,  been solved by the c lass ica l  normal 

mode technique. A th i rd  se t  of boundary conditions consist ing of four 

r ig id - lu b r ica ted  and two e la s t i c a l l y  res t ra ined  faces is  considered in 

Chapter IV. The solution to th is  problem is of in te r e s t  because, by 

adjusting the value of the e l a s t i c  modulus, the solutions for  the pre­

vious two se ts  of boundary conditions can be recovered.

1.2 System Response 

Much of what is known about the nature of acoustic emission 

sources has been learned through the use of p iezoelec tr ic  transducers 

coupled to  rectangular paral le lepiped or plate  type specimens. Unfor­

tuna te ly ,  by the time an acoustic emission signal is displayed on an 

output device, the waveform has undergone some very complex t rans fo r ­

mations. An example of these complexities is  demonstrated in the 

simple crack growth monitoring system of Figure 1.1. Here, the speci­

men is  under some type of loading which causes a material flaw to grow,
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td = DECAY TIME ~  I -  10 milliseconds

FIGURE 1.2
TYPICAL VOLTAGE VS TIME OSCILLOSCOPE DISPLAY 

PRODUCED BY AN ACOUSTIC EMISSION BURST



thereby releasing energy In the form of acoust ic  emission. These waves 

r e f l e c t  o f f  the specimen boundaries and are sensed by the p iezoelec tr ic  

transducer. The p iezoelectr ic  crys ta l  generates an e le c t r i c a l  signal 

in proportion to the strength of the received s t r e s s  wave. This signal 

is  then amplified and displayed on an osci l loscope. A typical voltage 

versus time output t race  for  an acoust ic  emission burst  is  shown in 

Figure 1.2. I t s  a ttenuation is  due primarily to damping a t  the speci-  

men-transducer in te r face  [7] and depends, to a much lesse r  extent , on 

the material propert ies .

Using a systems analysis approach. Spanner [8] postulated a 

l in e a r  response for  the crack detect ion system as a whole; Houghton, 

Townsend and Packman [9] confirmed th i s  experimentally. I f  i t  is  assumed 

th a t  the amplifier  and the  oscilloscope introduce no appreciable d i s ­

to r t io n  to the transducer output, there  are s t i l l  three  sources of d i s ­

to r t ion :  the specimen, the specimen-transducer in te r face ,  and the t r a n s ­

ducer i t s e l f .  The measured voltage response of the crack growth moni­

toring system as a function of frequency is  then expressed as

^MEASURED^*^^ ^  ^ R A N S D U C E R /IN T E R F A C E ® S P E C IM E N ^ “  ̂ ®SOURCE^“  ̂ ’ 

where

^TRANSDUCER/INTERFACE ^  ^TRANSDUCER^*^^ ^INTERFACE

is  the combined t ran s fe r  function for  the transducer and the specimen- 

transducer in te r face .

To begin with, the only known quanti ty in equation (1.2.1) is  

%EASURED^“^‘ This i s  the frequency spectrum of the time-domain



oscilloscope output (Fig. 1.2) and can be measured experimentally.

Given a known source and point of app lica t ion ,  may be c a l ­

culated.  For example, an impulse function has a uniform frequency 

spectrum from DC to 20 MHz; the frequency response of a step function 

decays exponentially . Then assuming th a t  the t ran s fe r  function for  the 

specimen (specimen response) can be determined, the t rans-

ducer / in te rface  response. a,B^sDüCER/iNiEBrACE^“> calculated

according to equation (1 . 2 . 1) ,  i . e . ,  the t ransducer/ in terface  can be 

ca l ib ra ted .  Once the t ransducer/ in te rface  i s  ca l ib ra ted ,  the t rans fe r  

function for  any unknown source (of known location) can be obtained 

according to the expression

,  X ^ ______________^MEASURED _____________________  M 2 21
SOURCE ®tr a n sd u c er / in t e r f a c e “̂  ̂ ^s pe c im e n

which is  simply a rearrangement of equation ( 1 . 2 . 1). HgQypgg(w) can 

then be deconvoluted to  obtain the time-domain source waveform. In fe r ­

ences can then be made concerning the nature of  the acoust ic  emission 

source and the mechanisms involved in i t s  production.

Perhaps the system model which is  the most physically  r e a l i s t i c  

is  a simply supported specimen with a uniform loading a t  the specimen- 

transducer in te r face  and otherwise s t r e sa - f re e  boundaries. One approxi­

mation to th i s  system would be a specimen with completely s t r e s s - f r e e  

boundaries. This approximate system is  defined and discussed in the 

ensuing sections of th i s  chapter along with two fur ther  s implif ica t ions 

of le s se r  mathematical d i f f i c u l ty .



1.3 Specimen Response 

The specimen is  assumed to be a. homogeneous, i so t rop ic ,  pe rfec t ­

ly e l a s t i c  so l id .  I t s  wave propagation i s ,  therefore ,  governed by the 

l inear  three-dimensional theory of elastodynamics [10,11]. The coordi­

nate system, dimensions, and s t r e s s  convention are given in Figure 1.3, 

and the governing equation of motion i s  Navier 's equation, which may be 

expressed in terms of wave speeds as

.2:

with

c^V^u+(c| - c^)VV*u+ÎË = ( 1 . 3 . 1 )

—  ̂  ̂u = ujej+ U2S2 + U3S3 = displacement

f = flei+ £ 2 6 2+ f363 = body force per unit mass

Ui = u^(xi,X2,X3,t)

= f^(xi,X2 ,X3,t) i=l,2,3 ;

and

= = longitudinal wave speed

“J = transverse wave speed .

Here, p i s  the densi ty  and x  and p are the Lame e la s t i c  constants . The 

body force term f i s  used to represent acoustic emission burs ts .  No sur­

face forces are considered here since acoustic emission is  primarily a 

body force phenomenon.

The boundary conditions for the completely s t r e s s - f r e e  rec tan­

gular para l le lepiped are as follows:



X,

FIGURE 1.3
COORDINATE SYSTEM, DIMENSIONS AND STRESS CONVENTION



XI = 0 , L i  a i l  = ^ 1 2  = *13 = 0

X2 — 0 , 1,2 ^22 ” ^21 ~ 023 ** 0

X3 = 0,L3 033 = (̂ 31 = 032 = 0 .

Writing the s t resses  in terms of displacements gives

(^11 3 u i 3u 2 3u 3

^ 3 x i 3X2
+

3x3

®22 3 u i 3u 2 3u 3

3x1 ^ ^ 3x2
+

3X3

^33 3 u i 3u 2 3u 3

3 x i
——  +  
3X2 Y 3x 3

3 u i  3u 2
012 -  021 =■

3 u i  3 u 3

013 = 0 3 ,  =

3 u 2 3 u 3

023 = 032  = •

where y  = 1 + -# .  Therefore, the s t r e s s - f r e e  boundary conditions in 

terms of displacements become
3 u i  3 u 2 3 u 3 3 u i  3 u 2 3 u i  3ug

3ui 3 u £ 3 u 3 3 u 2  3ui 3u2 3u3
*2  = 0,i,2 j ^ + T 3; ^ + | ; ^ = 3; ^ + -3; ^  = ^ + - 3̂  = 0 (1.3.2)

3 u i  3vi2 3 u g  3 u g  3 u i  3113 3 u 2

*3 '  3 ) ^ + 8 ^ * ^  3ÏÏT '  °  °

Within the paralle lepiped there  are two types of waves propagating, 

d i la ta t io n a l  and equivoluminal, both of which are three-dimensional in 

nature. Any three-dimensional wave f ro n t ,  no matter what i t s  shape, 

can be represented by an i n f in i t e  se t  of contiguous points ,  each point



10

being the l imiting case of a planar wave f ron t .  Accordingly, d i l a t a ­

tional  waves can be expressed in terms of an i n f in i t e  sum of plane 

longitudinal  waves propagating in every d i rec t ion  and equivoluminal 

waves in terms of  a similar  s e t  of  plane t ransverse waves; hence, the 

notat ion for  the wave speeds, and c^. These two wave types are  

depicted in Figure 1.4.

When e i th e r  a longitudinal or a shear wave r e f l e c t s  o f f  a 

s t r e s s - f r e e  surface,  depending upon the angle of incidence, any one of 

three  things can happen. The incident  wave can e i th e r  r e f l e c t  unchanged; 

a port ion of i t  can be mode converted into  the other wave type, in which 

case two waves are re f lec ted ;  or the incident wave can be e n t i r e ly  con­

verted into a th i rd  wave type, the inhomogeneous wave. The most com­

mon type of inhomogeneous wave i s  the Rayleigh surface wave. These 

mode conversions a t  s t r e s s - f r e e  boundaries are  only part  of what make 

wave propagation problems in sol ids  so d i f f i c u l t .  The other  par t  is 

the occurrence of multiple re f le c t io n s  between the boundaries in f i n i t e  

specimens.

The wave propagation problem can be simplif ied by assuming 

r ig id - lub r ica ted  boundaries. This i s  because re f lec t ions  from r ig id -  

lubricated surfaces are specular,  i . e . ,  no mode conversions occur, only 

phase changes. Therefore, there are no inhomogeneous waves (imaginary 

wave numbers), and the only d i f f i c u l t y  is  mult iple r e f lec t io n s .  

Physically, these boundary conditions suggest a problem in which a body 

i s  vibrat ing inside a container with i n f in i t e ly  r ig id ,  f r i c t io n l e s s  

walls .  Although th i s  is  not representa t ive  of the typical  acoustic 

emission experiment, the solut ion does provide a f i r s t  step in solving



n
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for  the more d i f f i c u l t  s t r e s s - f r e e  cases.

Next in complexity is the solution for the problem of a rec­

tangular  paral le lepiped with four r ig id - lub r ica ted  and two s t r e s s - f r e e  

boundaries. This problem is  considerably more involved than the pre­

vious one due to  the mode conversions on the two s t r e s s - f r e e  faces; 

on the other hand, i t  i s  a lso  more r e a l i s t i c .  Here, there are  longi- 

tudina l-shear  and shear-longitudinal  conversions corresponding to the 

real  wave numbers and shear-inhomogeneous conversions associated with 

the imaginary wave numbers, and as before, there are multiple r e f l e c ­

t ions .

The problem of the paral le lepiped with completely s t r e s s - f r e e  

boundaries is  the most complex of the three presented and also the 

most r e a l i s t i c .  I t  allows for  mode conversions a t  a l l  the boundaries 

as well as mult iple  r e f le c t io n s .  The next section discusses normal 

mode solutions to  these three problems.

1.4 Normal Mode Solutions

The normal mode technique is appropriate for  solving vibration 

or wave propagation problems in f i n i t e  bodies. This i s  t rue  because 

f i n i t e  bodies only v ibrate  a t  d i sc re te  frequencies as opposed to in ­

f i n i t e  bodies which respond to the whole frequency spectrum. The d i s ­

placement pattern  associated with each of the natural frequencies is 

cal led  a normal mode, and a l l  the normal modes combine to give the 

to ta l  v ibrat ion or displacement pattern  of the body. Separation of 

variables is  the approach typ ica l ly  used to determine the natural f r e ­

quencies and normal modes of a given system.



13

In order to solve fo r  the forced vibrat ional  response of any 

system using the normal mode approach, i t  is  necessary to f i r s t  solve 

for  the free vibrational response. The free  vibrat ion problem for  a 

rectangular paralle lepiped with r ig id - lubr ica ted  boundaries was f i r s t  

solved by Ortway [4] in 1913 and repeated by Nadeau [5] in 1964. In 

an e f fo r t  to preserve continuity ,  Nadeau's solution is recas t  in Chapter

I I .  The forced vibrat ion problem is  solved by f i r s t  uncoupling the 

equations of motion using a vector  displacement function, then u t i l i z in g  

a normal mode approach to obtain the desired displacements.

The free  vibrat ion so lution fo r  the case of four r i g id - lu b r i ­

cated and two s t r e s s - f r e e  boundaries is  the work of Kaliski as pre­

sented by Malecki [12]. K a l isk i ' s  original  work [13] is in Polish; 

Malecki's t ex t  provides an English t ran s la t io n .  Several s ign i f ican t  

e rrors  were discovered in th i s  presentation.  As such, the f ree  vibra­

t ion problem is  reworked in i t s  en t i r e ty  in Chapter I I I .  This includes 

many of the d e ta i l s  omitted by Malecki. The forced vibrat ion problem 

is  then solved by the normal mode technique.

Using a straightforward normal mode approach to solve the 

problem of the rectangular paral le lepiped with completely s t r e s s - f re e  

boundaries, one obtains t r i v i a l  solutions only. This is because separa­

t ion of variables assumes factored solutions of the form

U i ( X i , x ^ , X 3 , t )  = X j^ ^ ( x p x ^ ^ (x ^ )X ^ ^ (x ^ )T ( t ) , i = l , 2 , 3  ( 1 . 4 . 1 )

and no member of th is  se t  can s a t i s fy  the completely s t r e s s - f r e e  bound­

ary conditions. In f a c t ,  the use of such solutions leads to the s i t u a ­

t ion where there are more equations than unknowns.
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The addit ional  unknowns can be generated systematically using the 

method of associated periodic i ty  developed by Fromme and Leissa [14,15]. 

They applied th is  technique to obtain a periodic extension of Navier's 

equation ( 1 . 2 . 1) and the s t r e s s - f r e e  boundary conditions and then 

employed Fourier analysis to reduce the par t ia l  d i f f e r e n t i a l  equations 

to a s e t  of algebraic  equations. These equations were then solved to 

obtain the complete eigenspectrum for the f ree  v ibrat ion problem. One 

s ig n i f ican t  drawback to th is  technique is  the need to solve an in f in i t e  

matrix in order to determine the natural frequencies.

Budanov and Orlov [16] obtained a portion of the eigenspectrum 

by assuming a p a r t i cu la r  form for  v*ü and solving fo r  the symmetric 

modes. The antisymmetric modes were not considered, nor were any other 

forms for  v*ü; moreover, several simplifying approximations were made 

in t h e i r  numerical computations. In sp i te  of a l l  t h i s ,  t h e i r  computed 

natural  frequencies for  the r ig id  body modes did compare favorably with 

experimental beam data. There was no indicat ion as to how well th is  

analysis  worked on rectangular paralle lepipeds having dimensions of 

s imilar  magnitude.

The two solutions discussed above are the only known exact 

analytical  solutions fo r  the f ree  vibrat ional  response of the rectan­

gular  paralle lepiped with s t r e s s - f r e e  boundaries. Both of them are 

a lgebra ica l ly  very complex, which may explain why ne i ther  work has 

been referenced in any recent publ icat ions.  Because of th i s  complexity, 

and the need for  a forced vibrat ion solut ion to model acoustic  emission 

a c t iv i t y ,  the author made several attempts to solve th is  problem using 

other  approaches. Unfortunately, none of them were successful.  As a
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consequence, the so lution developed herein for  the forced vibrat ion of 

the rectangular  paral le lepiped with four r ig id - lubr ica ted  and two stress-  

f ree  boundaries probably represents  the best  avai lable  analy t ical  tool 

to model acoustic emission a c t iv i t y  in para lle lepipeds with s t r e s s - f r e e  

boundaries. The completely r ig id - lu b r ica ted  problem mainly provides a 

f i r s t  step in obtaining the more d i f f i c u l t  r ig id - lu b r ic a te d / s t r e s s - f r e e  

solut ion.



CHAPTER I I

RIGID-LUBRICATED BOUNDARIES

2,1 Free Vibration Solution 

The equations of motion fo r  the f ree  v ibrat ion solution are 

Navier 's equations (1 .3 .1)  with the body force terms se t  equal to  zero:

c 2 v 2 u + ( c |  -  c ^ ) v v * u  =  . ( 2 . 1 . 1 )

The r ig id - lub r ica ted  boundary conditions are given as

XI = 0,Li ui  = 0 a 12 = Oi3 -  0

%2 = 0 , 1,2 U2 = 0 021 = 023 = 0

X3 = 0 ,L3 U3 = 0 C31 = C32 = 0

terms of displacements, become
9u2 8113

= 0 ,Li ui  = 0 3xi 3x1
3ui 3U3

%2 = 0 , l2 U2 = 0 3x2 3x2
3u% 3u2

X3 = 0 , 1,3 U3 = 0 3x 3 3x3

( 2 . 1 . 2 )

The problem may be solved by assuming simple harmonic motion 

of the paral le lepiped and normal mode displacement components of the 

form [4-6]

c o s k g X g  c o s k g X g  s i n w ^ t

16
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^2N “ ^ 2N cosk^x^ sinkgXg cosk^x^ sinw^t 

U3JJ = cosk^x^ coskgXg sink^x^ sinw^t ,

(2.1.3)

where the are  the natural frequencies or  eigenvalues of the system. 

In order to s a t i s fy  the boundary condit ions,  the wave numbers must be 

kj  ̂ = n^n/L^, kg = n^n/Lg, and k^ = n^n/Lg with n^, Hg, Ug being the 

integers from zero to i n f in i t y .  The d i rec t ion  of propagation of each 

component wave is  determined by the se t  of in teger  indices NCn^^.Ug.n^). 

Subst i tu t ing the above assumed normal modes into the equations of 

motion (2 . 1 . 1) ,  one obtains fo r  each se t  n.

V 2

^2^3 ^3

IN

"2N (2.1.4)

3N

2 , 2 . . 2 . , 2with 3jjj = (c^aj^-o)^) /(c^-c^)  and a^ = k^ + kg + kg. This se t  of equations 

has a nontr iv ia l  solution i f  and only i f  the déterminent of the 3x3

matrix is equal to  zero, i . e . .

(2.1.5)

Equation (2.1 .5) i s  the c h a rac te r i s t i c  equation. Correspond-
2

ing to i t s  roo ts ,  and 32n“ ^3n""°’ the natural frequencies

of the system

“ in “ ‘̂ a“n

“2N = “3N = ^ “n '

(2 . 1 . 6)

(2.1.7)

I t  can be shown [11,14] th a t  is  associated with d i la ta t ion a l  waves 

and “2n^“3n ^ i th  the two orthogonal polarizat ions of  equivoluminal
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waves. Thus, each displacement component (ui,u2,u3) i s  made up of three 

contr ibutions ,  one due to d i la ta t io n a l  waves and the other two due to 

equivoluminal waves. However, as was mentioned previously, any three-  

dimensional wave front  can be expressed in terms of i n f in i t e  sums of 

plane longitudinal and transverse  wave components so tha t  

“2N"‘*’3N"“tN’ therefore

N

Ug = ^ c o s k ^ x ^  sink^x^ cosk^x^ [(A^^) sinw^^t + (A^jj) sinw^^t] (2.1.8)
N ^

N

with the notation ^  ^  ^  ^  .
N ni=0 iV2=0 113=0

The longitudinal wave amplitude re la t ions  are  determined by

subst i tu t ing  back into equation (2 .1 .4 ) .  This gives the r e s u l t

" kj  ̂ (2.1.9)

A similar  procedure determines the amplitude re la t ions  for  the transverse

waves:

^^2n \  ^^2n \  (2 . 1 . 10)
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Thus, displacements (2 .1.8) become 

N

“ 2 '  Z  c°skiXiSlnkzK2=°:k3*3(kr <''2S>t=^”“tn'=>
N

^  kg (2 . 1 . 11)
"3 " Z  “ = ' ' iV ° = V 2 = i" '^ 3 ’' 3 t

k, k.

These equations represent the f ree  vibrat ion displacements of any point 

within or on the surface of the rectangular paralle lepiped as a function

of time. The displacements (A^^)^, and (A^^)^ must be de te r ­

mined from the i n i t i a l  conditions of the problem.

2.2 Forced Vibration Solution 

The equation of motion governing the forced vibration problem

is (1 .3 .1 ) .  On wri ting th is  equation in component form,
«  3 u i  9 u o  3 u o

c2?2u i + ( c 2 -  c | )  ^  +

a 9 u i  9 u o  9 u o  9 ^U 2

2  9 u i  9 u o  9 u q  9^U3
c 2 ï 2 u 3 + ( c 2 - c 2 )  —  ( _ + _ + _ ) +  £ 3  =  ^

i t  can be seen th a t  the three equations are e l a s t i c a l l y  coupled 

(u^.Ug, and Ug appear in each equation). This prevents a s t r a ig h t ­

forward so lut ion,  in tha t  the equations must f i r s t  be uncoupled, an 

a lgebra ica l ly  cumbersome pro jec t ,  even with the use of Laplace t ran s ­

forms. These d i f f i c u l t i e s  can be minimized by expressing the displace­

ment vector in terms of a vector displacement function Ÿ [14,17,18]:
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u = p [c |v2Ÿ  -  (c^ -  c ^ ) V 7 * ? - |^ ]  , ( 2 . 2 . 2 )

with W = Wiei + ’4'2e2 + 'l'3e 3

'*̂ i %i(xi,X2'X3,t) 1=1,2,3

Subst i tu t ing equation (2.2 .2) into equation (2 .2 .1 ) ,  one obtains the 

r e s u l t

f  ' (2-2-3)

which is  the uncoupled equation of motion in terms of the displacement 

functions. Solving for  the f^-(i=l,2,3) from equation (2.2 .3) then 

allows the determination of the displacements from equation ( 2 . 2 . 2 ).

The solution begins by assuming displacement functions having 

the same spa t ia l  form as the previously assumed normal modes (2 .1.3) but

now being a general function of time (instead of being r e s t r i c te d  to

simple harmonic motion);

^  sink^x^coskgXgCoskgXgT^^ft)
N

Ÿ2 = cosk^x^sinkgXgCOskgXgTgQCt) (2.2.4)
N

VÏ 3 = cosk^x^coskgXgSinkgXgTgQft) .
N

These expressions s a t i s f y  the boundary condit ions, equations (2 .1 .2 ) .  

Substituting equation (2.2.4a) into the appropriate  uncoupled equation 

of motion (2.2.3a) and performing the necessary algebraic  manipulations, 

one gets the following r e su l t s :

o;slnkiXiC.sk^%2Cosk x T in + ( c 2 + c2) Z  
N .... N f

sink^x^cosk^x^cosk^x^ T = -  —  , (2.2.5)
N



21

where represents  the second der iva t ive  of T^^t) with respect  to time, 

e tc .  The next step i s  to multiply both sides of equation (2.2.5) by 

sinA^x^cosA2X2cos&2X2 and in teg ra te  over the spat ia l  domain. However, 

due to the orthogonality of the normal modes, the following is  true:
L, L„ L,

sink^x^sin&^x^coskgXgCos&gXgCoskgXgCos&gXgdx^dXgdXg
0 0 0

0 when.2^fk^

" I Y
with hj^=(l + (1 + and v=l^L2L^ is  the volume of the p a ra l l e l e ­

piped, Therefore, performing the in tegra t ions  on equation (2.2.5) gives

r  l „  1 .  ( 2 -2 -6 )

pn^v f^sink^x^coskgXgCoskgXgdx^dXgdXg.
0 0 0

This expression may be solved by using Laplace transforms and 

assuming th a t  the motion s t a r t s  from re s t  (T^^XO)=T^Q(0)=T^^(0)=T^Q(0)=0)

Thus,

where F^^(s) i s  the transform of the forcing function on the right-hand 

side of equation (2 . 2 . 6 ) and

-  ( s ih c |a7 ) ( s^ c2 o 2 )  '

Using the convolution property and the fac t  th a t  and ŵ Q.=c^oQ,

one can write  the inverse transform of  equation (2.2 .7) as
f t

Tu,( t)  = Fljj(T)Gijj(t-T)dT , ( 2 . 2 . 8 )
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with

pn^v f^(x^.Xg'Xg,?)sink^x^coSgXgCoskgXgdx^dXgdXg
0 0 0

1 slnWcH(C-t)^
2 -,.,Z I : -------------------- : -----------J-“ tN"“ü.N 0)

(2.2.9)

( 2 . 2 . 10)
£N tN

The other  two uncoupled equations of motion, (2.2.3b) and (2 .2 .3c) ,  may 

be t rea ted  in a s imilar  fashion with the re su l ts

( 2 . 2 . 11)

TsaCt) . ( 2 . 2 . 12)

and

“  ■ pn.v

L, L„ L.
f 2 (x^, X2 ,X^, t)cosk^x^sink2X2Cosk2Xgdx^dx2dx2

0 0 0 

L, L„ L.
(2.2.13)

F 3 / T )  = - PTIgV f 2 (x^,X2 , x^ , t)cosk^x^cosk2X2Sink2Xgdx^dx2dx2

0 0 0 (2.2.14)
1 s in u  (t-T ) sinu) (t-T )

= G (c-T) = — Z— T  C— :--------------------- : ----------] ' (2.2.15)2N 

where

“tN " “üN £N tN

"3 '  ( i  + *kio)<i + 6k^o) .

F inally ,  equations (2 .2 .8) through (2.2.15) are  subs ti tu ted  into  the d i s ­

placement functions (2 .2 .4) .  These in turn are  substi tu ted  into equation

( 2 . 2 . 2 ) to a r r ive  a t  the forced v ibrat ion  dispalcement ü(x^,x2 ,Xg,t) for
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any generalized body force (per un i t  mass)

2.3 Response to an Impulse

According to Stephens and Pollock [19], acoutic emission source 

waves are pulselike functions of s t re ss  (force) which are produced by 

the step displacements associated with material y ie ld ing .  This model is 

physically consistent  with both p la s t i c  deformation and crack propaga­

t ion ,  the two major sources of acoustic emission. Assuming a very short  

duration source event within the body, the Dirac del ta  function provides 

an extremely simple mathematical approximation of the resu l t ing  impulsive 

body force. In general ,  th is  body force will be three-dimensional; how­

ever, here for  s implicity  i t  is  assumed to be one-dimensional in the xg 

direc tion  and of amplitude Fg- This may be expressed mathematically as

f = fsêa

f l  = f£ = 0 fg = F^6(xi -  Ci)6(x2 -  “ 5s)'5(t) . (2.3.1)

Note tha t  th is  is an impulsive load applied a t  the point (Si.Sz.Sg) and 

a t  time t =0 (Fig. 2.1).

Substitut ion of the above impulse into the r e su l ts  of the pre­

vious sections gives, from equation (2.2 .14),

8F
FgCx) = -  — coski5icosk2C2Sink3?3 . (2.3.2)

This r e s u l t  is  then combined with equation (2.2.15) and substi tu ted  into 

equation (2 . 2 . 12) to produce the time varying portion of the assumed 

displacement function:

8F coskigicosk2S2sink3g3 sincü.„t sinw „t
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Xz

FIGURE 2.1
IMPULSIVE BODY FORCE APPLIED AT THE POINT 

(Sl.Sg'Sg) and sensed at (x^.Xg.Xg)
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Then from equation (2.2.4) the displacement function becomes

^  8F ^ cosk i5 iCosk2 C2Sln k 3^3 sino) t  sinw  - t
"  4   c . s k : x . c . s k A s i . k a X 3[— -----------

(2.3.4)

Finally,  subs t i tu t ing  the above into equation (2.2 .2) gives the three 

forced v ibra t ion  displacement components shown below;

N
. k ^  

*N

^-1 koko
Ug = ^ ~ 0 T ^  (2 .3 .5)

N
2

N

here

“3 '  2  ^o*3nP°=‘‘i V ° p ' ‘2='2P^'*3='3 '  V  ̂  =

_ s i ^

'  “ ra

P “tN

and
g

^3N ^ T)^ coskiCicosk252sink3^3 .

Not surp r is ing ly ,  these r e su l t s  are  the same as those obtained by Hill 

and Egle [20] using a Green's function approach to the problem.

2.4 Symmetric Boundary Conditions 

Algebraically ,  i t  i s  often advantageous to work a problem over 

a symmetric in te rv a l .  As such, the f ree  and forced vibrat ion solutions 

for  the rectangular para l le lepiped with completely r ig id - lubr ica ted
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faces are  presented here for  the symmetric boundary conditions

=  0
Ll Ll 9u2 3u3

XI = -  — . 2 ui = 0 3xi 3x1

Lz Lz 3u3
X2 = -  -J". T U2 = 0 3X2 3X2

L3 L3 3u^ 3u2
X3 = -  Y * 2 U3 = 0 3X3 3x3

= 0 (2.4.1)

=  0

For the f ree  v ibra t ion  so lu t ion ,  the equation of motion is  again 

equation (2 .1 .1 ) .  Assuming normal modes of the form

Li Ln Lo
“in A^jjSink^(x^+— )cosk2(x2 + -^)cosk2(x2+Y’)slno)jjt

“2N ~ sinkg(x_ + - y )cosk^( ^ 3 sinw^t (2.4.2)

Li Ln Lo
“SN ~ Ag^cosk^(x^ + — )coskg(x^ + -y)sink^(x^ + -j-)sinw^t

and proceeding as in Section 2.1 ,  identical  re su l t s  are obtained for  the 

wave numbers, c h a ra c te r i s t i c  equation, natural frequencies and the 

amplitude r e l a t i o n s .  Therefore, the f ree  vibrat ion displacements for 

the symmetric boundary conditions may be wri t ten  as

N

“ 2 = 2  cosk^ (xi + -^ )  sink2 (%2 + - f )  coskg (x^ +
N
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The forced v ibrat ion solut ion may be handled s im ila r ly .  Assuming 

tha t  the displacement functions can be expressed as

Ln Lij Lc
'i'l = 2  sink^(x^ + -y)coskg(%2 cosk^(x^ + t)

N

^2 = ^  cosk^(x^ +-^)sinkg(Xg +^ )cosk^(x^  (2.4.4)
N

'i'3 = 2  cosk^(x^ + -y)cosk^(x^ + "Y)sink^(x^ + - y ) t )
N

and following the same procedure as in Section 2.2, one obtains similar  

r e s u l t s ,  the only difference being in the arguments of  the spa t ia l  sin 

and cos terms. Instead of k^x^, k^Xg, and k^x^, these arguments should 

be k ^ ( x ^ + - ^ ) , 1 ^ 2 and k^Cx^H--^). In a l l  other respects  the 

functions are  iden t ica l .



CHAPTER I I I

STRESS-FREE/RIGID-LUBRICATED BOUNDARIES

3.1 Free Vibration Solution 

The applicable equation of  motion for  the f ree  v ibration solu­

t ion is  (2 . 1 . 1) ,  which is  repeated here for  convenience:

c ^v2u+(c |  -  c2)VV*u = . (3.1.1)

The boundary conditions consis t  of two s t r e s s - f r e e  faces and four r ig id -  

lubricated faces and can be writ ten as
9 u o  3u 3

x j . O . L ,  u,  .  0 _ . _ . o

3ui 3u3
Xo ~ OjI'o uo — 0 — — T = 0 (3.1.2)^  ^ ^  9x2 9%2

3U]̂  3u2 Sug 9ug 3uj  ̂ 3ug 3u2

A p ic to r ia l  presentation of  th is  system is  shown in Figure 3.1. 

The specimen has a f i n i t e  e la s t i c  modulus and is enclosed on four sides 

by an in f in i t e l y  r ig id  medium such th a t  normal displacements a t  these 

four surfaces are  zero. However, due to lubrication between the con­

tac t ing  surfaces,  t ransverse  motion is  uninhibited. The two Xg faces 

(cross-hatched) are  s t r e s s - f r e e  and, as a r e s u l t ,  incident waves will 

mode convert on re f le c t io n .  The two Xi faces and the two %2 faces,  

being r ig id - lu b r ica ted ,  will r e f l e c t  with no mode conversion. Thus, as

28
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m

FIGURE 3.1
stress- free/RIGID-LÜBRIGATED BOUNDARIES
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the boundary conditions become more complex, so also does the wave 

propagation. This increase in complexity holds t rue  fo r  the normal 

modes and the c h a ra c te r i s t i c  equation as well.  Where in Chapter II i t  

was possible to determine by inspection the exact form of the normal 

modes, th is  no longer holds t ru e ;  ra th e r ,  considerable calcula t ion is 

required.

These ca lcu la t ions  begin with the Helmholtz resolution [11,

21] ,  which says tha t  any vector f i e ld  may be resolved into the gradient 

of  a sca lar  and the curl of  a zero-divergence vector. The vector f i e ld  

of i n te r e s t  here i s  displacement; hence,

Ü = VS + VxV (3 .1 .3)

v-v = 0 , ( 3 . 1 . 4 )

where

S = S(xi,X2 ,X3, t )  = sca la r  po ten t ia l  

V = Vj^ei+V262 +V3S3 = vector  p o ten t ia l

and = V^(xi,x2 , x 3, t ) ,  i= l ,2 ,3 .  Subst i tu t ion of equation (3.1.3)

into  the equation of motion (3 .1 .1)  leads to the separated wave equations

( c . f .  Appendix A):

. (3 .1 .6)

From the above equations i t  can be seen tha t  the sca la r  potential  is 

associated with d i la ta t io n a l  (or i n f in i t e  sums of component plane longi­

tudinal)  waves and the vector potent ia l  with equivoluminal (t ransverse) 

waves. As such, equation (3.1.3) may then be rewrit ten  as
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u = (3.1.7)

with

^2 + " ^  e 3 = uie + U2e + U3e (3.1.8)

g 9V3 3V2  ̂ 3Vi 3V3  ̂ 3V2 3Vi ^
-  = v ^ v = ( — ) a i + ( — - — ) a2 + ( — - ^ ) ê 3  = u iê i+u2a2+u3a3 .

(3.1.9)

The superscr ip ts  d  and e denote the d i la ta t io n a l  and equivoluminal com­

ponents respec t ive ly .  Thus, the Helmholtz resolution mathematically un­

couples the wave motion such th a t  the d i la ta t ion a l  and equivoluminal 

components can be dea l t  with separately .  The price for  th i s  convenience 

is  one additional  equation, the zero divergence gauge condition (3 .1 .4 ) .  

In other  words, there are now four equations to solve, instead of  three ,  

fo r  the three  displacement components ( u i ,u 2 ,u 3>.

The general solutions of the separated wave equations, (3 .1.5) 

and (3 .1 .6 ) ,  as developed in Appendix A, may be par t icu lar ized  to f i t  

the boundary conditions (3 .1 .2) and the Helmholtz resolution (3 .1 .3 ) .  

Hence, the sca la r  and vector po ten t ia ls  must be of the form

= -  cosk^x^coskgXg(A^^cosk^x^ + A^^sink^x^)sinw^t (3.1.10)

and

^IN ~ cosk^x^sinkgX^(B^^cosk^x^ 4-B^^sink^x^)sinw^t

= sink^x^cosk2X2 (C^^cosk^Xg + C^^sink^Xg)sinw^t (3.1.11)

= sink^x^sink2X2(D^jjCosk^X2 + D2jjjSink^X2)sincüjjt .

These are  correct ions to those presented by Kaliski [12]. The associated
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wave numbers are given as

kp = ( k i+  ka)]^  (3.1.12)
. ^ 2  

■V
■C.

= A -  (k! + k | ) ] ^  . (3.1.13)

n n n n
where ki = and kg = ^  as before (n ^ = 0 , l ,2 , . . . ;  i = l , 2) .  On su bs t i ­

tu t ing  the assumed p o ten t ia l s ,  equations (3.1.10) and (3 .1 .11),  into 

equations (3.1.8) and (3 .1 .9 ) ,  one finds the normal modes of the d i l a t a ­

tional  and equivoluminal displacement components to be

uJn = slnk^x^coskgXgEk^ (A^cosk^Xg + Ag^sink^^x^) ]sinw^t =

U2JJ = cosk^x^sink2X2[k2 (A^cosk^X3 + A2^sink^X2)]sinu)jjt = $2jjSinü)j t̂ 

u°N = cosk^x^cosk2X2[kj^(A^sinkj^X3-A2jjCoskj^X3)]sincüjjt = OnnSinw^t

(3.1.14)

“in = V l N "

“2N ^ cosk^x^sink2X2[ (k^B2Q - k̂ D̂ )̂ cosk^x^ - (k^D^^ + sink^x^]sinw^t

“SN " ccsk^x^cosk2X2[(k^C^Q - kgB^lcosk^Xg + (k^C2Q - k2B2N)sink^Xg]sinwQt.

(3.1.15)

Application of the zero divergence gauge condition (3.1.4) to the vector 

potential  v leads to the r e s u l t  that

®2N " ^  ^2^1N̂  ’

which allows a s im pli f ica t ion  of equation (3.1.15) to
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“m  ° (k|+k^)C2^cosk^X3

+ (k^ + k^)C^,]alnk^X3 )slnu,^t

“2H “ cosk^x^sinkgX^t^C(k^ + k^)B^^ + k3k3C3^]cosk^X3 {3.1.16)

■  i^CCki + %[)»%, + klk2C3a]sink;X3)sinWgf

“3N '  V ° = V 2'  '  V l N  •  V lN >  c°skc=3 + < V 2N " ‘"2®2N> '

The equivoluminal displacement components may be put into the 

same form as Kali s k i ' s  [12] by l e t t in g

^3N ^ " k ^ ^ V 2®2N'*' 

^4N “ k " ^ V 2®lN‘‘'

^ 5N " [ (k^ + k^)

^ 6N ^ “ k^[(ki  + k^)B^^ + k^k2C^Q],

and subs t i tu t ing  these amplitudes into equation (3.1 .16).  This y ields  

the r e su l ts

"L = sink^x^cosk2X2(A3j^cosk^X3 + A^^sink^X3)sinai^t = $^slnw^t

" 2N " cosk^x^sinkgXg (Ag^cosk^x^ + Ag^sink^X3) slnw^t = $^slnw^t
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“3N '  + V 6 N ^ '= °= V 3

-  (kjA3^ + k2A5^)stnk|.X3]}3in«,^t =

(3.1.17)

The d i la ta t io n a l  and equivoluminal displacements, equations (3.1.14) and 

(3.1.17) may then be combined according to equation (3.1.7) to  generate 

the normal mode displacement components obtained by Kaliski [12]:

“in  “ '  ■*’i n ““”"n'̂

“2N ' (*2N'^*2N)“ “̂V  ' *2n“‘“V  (3.1.18)

The next step is  to determine the natural frequencies of the 

system. This is  accomplished by subs t i tu t ing  the above normal modes 

in to  the boundary conditions (3 .1 .2 ) .  Twelve of the eighteen boundary 

conditions are s a t i s f i e d  exactly, leaving six equations in the six  un­

knowns A^jj(i=l,2 , . . .  , 6) :

(ki + kg + yk^lcosk^LgA^Q + (k^ + + yk%)sink^L^A^j^ -  (y-Dk^cosk^L^A^j^

-  (y-llk^sink^LgA^Q- (y-llkgCOSk^LgAgQ- (y - l )k 2sink^L2Ag^ = 0

~ “ ^1^2^6N ° (3.1.19)
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2kikj^k^sinkj^L3AiN+ 2kik%ktCosk^L3A2^ +  (k^ -  k^)sink^L^A^^^

- (k̂  - k^)co8k^L3A^^ + k^kgSlnk^LgAg^ - k^k^cosk^L^Ag^ = 0

-  Zkgk^k^sink^LgA^^ + Zkgk&kcCosk^LgAg^ + k^kgSink^L^Ag^

- k ^ k 2CO8k^L3A^^+(k^-k^)s lnk^L3A3^ _ ( k ^ _ k ^ ) c o 8k^L3Ag^ = . 0  .

The amplitude re la t ions  and frequency equations are determined from these 

s ix  expressions. There are several appropriate  combinations depending 

upon the values of sink^L^ and the wave numbers k^ and k^. These are 

summarized in Table 3.1.

The f i r s t  combination includes amplitude re la t ions  (3.1.20) and 

the frequency equation (3 .1 .21);  t h i s  applies when sink^L3=0 and k^ > 0 , 

kg > 0 . I t  represents  horizontal ly  polarized (displacements in x^-Xg 

plane only) shear waves and is sometimes referred  to as an SH wave solu­

t ion .  From equations (3 .1 .14) ,  (3 .1 .17) ,  and (3 .1 .18) ,  i t  can be seen 

tha t  th i s  solution contr ibutes nothing to the Ug displacement component 

and allows for  no mode conversions a t  the boundaries.

The amplitude re la t ion s  and frequency equation associated with 

sink^Lg^O and k^=kg=o are (3.1.22) and (3 .1 .23) ,  respect ively .  The 

l a t t e r  is  derived from the fac t  tha t  the only meaningful solution to 

equations (3.1.19) comes when sinkj^L3=0 and Ag^fO. These are longitu­

dinal waves propagating in the d i rec t ion ,  and because they are nor­

mally incident on the s t r e s s - f r e e  surfaces,  there  are no mode conversions. 

They simply r e f l e c t  back and for th  between the two faces.



TABLE 3.1. Appropriate Modal Coefficients and Frequency Equations, 
S tress-Free/Rigid-Lubricated Boundaries

Modal 
Coefficients

sinkj.L̂ =0

k^>0, k2>0 kĵ =k2=0
sinkj.L̂ 1*0

k̂ >0, kĝ O kĵ ^O, kg-O

IN

2N

3N

"4N

5N

'‘6N

—  A kĵ  5N

0

(3.1.20)

0

G

(3.1.22)

_ P ( - ^ ) A  R4kjk̂ k'*3N

k2_k2
2kik^kt 4M

R(cosk̂ Lg-cosk̂ L̂ ) 
Psinkj^Lj+Rsink^Lj *4N

(3.1.24)

p k |« c |^  
R̂ 2kgk̂ k̂  •’"SN

k2+k|-k^

^  A kg *5N

^ Akg 6N

R(cosk^L^-cosk^L^) 
PsinkjLj+Rsink^L^ *6N

(3.1.25)

toCT>

Frequency
Equations (3.1.21) (3.1.23)

ê =k̂ +k̂ +k̂

(P^+R^)sinkgL,sink^L^+2PR(l-cosk^L^cosk^L,)= O■'£"3 •"t"3’

(3.1.26)

t 3'

P=4(k2+k2)kĵ k|. R--=(k2+k2-k2)'

For the free vibration problem, these values are determined from the initial conditions; in the forced vibration problem, 
from the forcing function.
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The l a s t  two se ts  of amplitude re la t io n s ,  (3.1.24) and (3.1.25),  

share the frequency equation (3.1.26). This equation is  obtained by 

se t t ing  the determinant of equations (3.1.19) equal to zero and dividing 

the r e s u l t  by sink^L^, since sink^L^/O. Whereas for the completely 

r ig id - lubr ica ted  problem the natural frequencies of each of the plane 

wave components could be determined e x p l i c i t ly  from the

frequency equation (2 .1 .5 ) ,  here they must be solved fo r  implic i t ly  

because (3.1.26) is  a transcendental equation, which allows for  mode 

conversions a t  the two s t r e s s - f r e e  surfaces. These mode conversions are 

responsible  for  the increased complexity in the amplitude re la t ions .  

Equations (3 .1 .24) ,  (3 .1 .25) ,  and (3.1.26) thus describe the motion of 

the mode converting longitudinal and v e r t i c a l ly  polarized shear waves. 

This solut ion is also referred  to as the SV/P wave solut ion.

Notice th a t  the case sink^L^fO and k^ > o, k2=0 corresponds to 

modes in which the shear waves propagate in planes only. Conse­

quently, there are no equivoluminal displacements in the x_ d i rec t ion ,  

i . e . ,  u2jj=0 ( re f .  equation (3 .1 .17b)) .  When sink^Lg^O and k^=0, k^ > 0 , 

the inverse condition e x is t s :  shear waves propagate in x^-Xg planes

only, and as a r e s u l t ,  u^^=0 .

For the f ree  vibrat ion problem, the amplitudes designated by 

the a s te r i sks  in Table 3.1 are  determined from the i n i t i a l  conditions; 

in the forced vibrat ion problem of the ensuing sect ion ,  they are de te r ­

mined from the forcing function. The expressions for P and R and the 

amplitude re la t ions  and A^^ from (3.1.25) are a l l  correct ions

to K a l isk i ' s  free vibrat ion solution [12], as are the assumed scalar  and 

vector p o ten t ia l s ,  equations (3.1.10) and (3.1 .11).
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Each of the normal modes defined by equations (3.1.18) 

represents a plane wave component traveling in a direction determined by 

the se t  where and specify the wave numbers

ki  = niïï/Li and kg = Hgir/Lg and re fe rs  to the in f in i t e  se t  of natural 

frequencies. The three-dimensional free vibration displacement components 

are then made up of the in f in i ty  of plane wave components n  t raveling in 

a l l  d irections:

N

^ (3.1.27)
N

u^Cx^.Xg.x^) = U^jjCx^.Xg.X^) ,
N

with ^  2  y  ^  , as before.
N n ^=0  n g =0 n ^=0
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3.2 Forced Vibration Solution 

The equation of In te re s t  for  the forced vibration solution is

c ^ v 2u + ( c | - c ^ ) v v * u  + f = - | ^  , (3.2.1)

and the displacement vector is assumed to be of the form [ 22]

Û = ^  ?jj(xi,X2,X3)T^(t) , (3.2.2)
N

where

*N "  ^IN^i *3N^3 '

and the *^^(1=1 , 2 ,3) are the modal functions defined by equations

(3 .1 .14) ,  (3 .1 .17) ,  and (3.1.18).  Note th a t  these functions represent 

the spa t ia l  portion of the normal modes, and as such, they s a t i s f y  the 

r ig id - lu b r ic a te d / s t r e s s - f r e e  boundary conditions, equations (3 .1 .2) .

Subst i tu t ion  of the assumed displacement (3.2.2) into the 

governing equation of motion (3.2.1) produces the re su l t

Z  = Z  v n  ■ . 13.2.3)
N N

The bracketed term on the l e f t  hand side of th is  expression may be 

simplif ied by subs t i tu t ing  the f ree  vibrat ion displacements of equations

(3.1.23),

U = ^  *^sinw^t , (3.2.4)
N

into  the f ree  v ibrat ion equation of motion (3 .1 .1) ;  thus

. (3.2.5)



40

Equation (3.2.5) is  then subs t i tu ted  into  equation (3 .2 .3)  and the 

resu l ts  rearranged:

I  + '3 .2 .6 )
N

Taking the sca la r  product of both sides of th i s  equation with where 

M(mi,m2) denotes another modal function,  and in tegra t ing  over the spat ia l  

domain, one gets

£-*ydV (3.2.7)
N

I t  can be shown tha t  the governing equations are  s e l f - a d jo in t ;  conse­

quently, the must be orthogonal [23]. This means tha t

= 0  N(ni ,n2) ^ M(mi,m2) , (3.2.8)

and therefore ,

with

N

L, L„ L,

0 0 0

f  (xi,X2,X3,t) *^jj(xi,X2 ,X3)dxidX2<lx3

L, L,

0 0 0

(3.2.9)

(3.2.10)

(3.2.11)

The quantity represents the generalized mass per uni t  density.

The generalized time varying function T^(t) i s  found by assuming 

that  the motion s t a r t s  from r e s t  (t^(0)=t^(0)=0) and taking Laplace

transforms :
(3 .2 .12)

Here
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(3-2-13)N

and w^(s) i s  the transform of  equation (3.2 .10).  The inverse transforms 

of equations (3.2.12) and (3 .2 .13) ,  when combined, y ie ld  the desired 

re su l t

"  WN

t
Wj^(T)sin(Djj(t-T)dT . (3.2.14)

The forced vibration displacements are  obtained by subs t i tu t ing  the 

above back into  equation (3 .2 .2 ) .  Hence, in component form they become

2
N

* l N ( = l ' = 2 ' * 3 ) T N ( t )

z
N

UgCX^.Xg.Xg.C) =
z
N

(j>3jj(Xi,X2 ,X3)Tj^(t) .

(3.2.15)

The time varying function may be determined for  any generalized 

body force (per uni t  mass) according to equations (3 .2 .10) ,  (3.2.11), 

and (3.2.14).

3.3 Response to an Impulse 

The impulsive body force assumed here i s  the same as tha t  

employed in Chapter II and is  wri t ten  as

f  (xi,X2,X3, t )  = F^6(xi -  ? i ) 5(x2 -  C2)'S(x3 -  C3) 5 ( t ) e 3 . (3 .3 .1)

On subs t i tu t ing  th i s  expression into equation (3 .2 .10) ,  one obtains

= Ê *3^(51'S2'S3)6(t) , (3.3.2)
N
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In order to get the time varying function T^, the above is  subs ti tu ted  

into equation (3.2.14). Integration then yie lds

hTjj(t) -  g . (3 .3 .3)

This is then combined with equation (3.2.15) to obtain the displacement 

components produced by a one-dimensional impulse of magnitude applied 

in the xg direc t ion  a t  the point  (Gi.gz'Gs):

F
~ ■ E (I) ’ ^ 2 » (3. 3. 4)

•N

U - ( X t , X „ , X „ , t )  =3(*1 '*2 '*3 '^)  Z a  EL% 'J>3N̂ l̂’ ^2»?3)‘f>3ij(X] .̂X2,X2)sinü3jjt.
N

In performing the ca lcu la t ions ,  the are determined from the charac­

t e r i s t i c  equation (3.1.20) and the quantity i s  evaluated in Appendix 

B.

3.4 S.ymmetric Boundary Conditions 

The symmetric boundary conditions for  the paralle lepiped with 

two s t r e s s - f r e e  and four r ig id - lubr ica ted  boundaries are

Lj Lj 3u2 9ug
*1 '  - IT- IT “ 1 = “ 3^̂  ■ 3^  - °

L L 3ui 3ug
= -  IT '  IT  “ 2 '  ° ° <3.4.1)

Lo 3ui 3uo 3ug 3uq 3ui 3ug 3uo
=3 = " IT '  IT  ° •

Once again, the equation of motion for the f ree  vibration solution is 

equation (3 .1 .1 ) .  Here the sca la r  and vector potent ia ls  are assumed
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to be

= -  "=°^\(^i+"^)cosk^(x+-^)[A^^cosk^(x^+-^) +Ag^sink^(x^+-y) Jsinw^^t

(3.4.2)

and

^IN cosk^(x^ + ^ ) s i n k g ( x 2 + ^ )  [B^^cosk^(x^ + -^ )  + B2^sink^(x^ +-^)]sinu)^t 

^2N (*i '^"^)cosk2(x2 +-^)[C^jjCosk^(x2 + -^ )  +C2jjSlnkj.(x2 +-^)]sinujjjt

' ŜN ^ sinkj^(Xj^+-y)sink2(x2 +-^)[D^jjCosk^(x2 +-^ )  + D2̂ sink^(x^ + ^ )  Jsinw^t

(3.4.3)

Following the same procedure as in Section 3.1 r e su l ts  in the normal 

mode displacement components

"iN = sink^(x^+-^)cosk2(x2+^){k^[A^j^cosk^(x3+^)+A2jjSinkj^(x3+^)]

+ Ag^cosk^(x3+-^) + A^^sink^(x3 + ^ )  }sinw^t

"2N " cosk^(x^-^)sink2(x2+-y)<k2[Aj^jjCOskj^(x3+-y)+A2jjSink^(x3+Y)]
Lo

+ Ag^cosk^(x3 + y )  +AgjjSink^(x3 + Y)}sinuij^t

"3N " cosk^(:^i + T ) cosk2(x2 + ^ )  {k^[A^^sinkj^(x3 + ̂ )  -  A2^cosk^(x3 + ̂ )  ]

+ + k2A^^)cosk^(x3 + -^ )  -  (kiA3^ + k2Ag^)sink^(x3 + ^ )  ] Isinw^t ,

(3.4.4)

which may then be subs ti tu ted  into  the boundary conditions (3 .4 .1) to ob­

ta in  the same ch a rac te r i s t i c  equation and amplitude re la t ions  as before.

The re su l ts  for  the forced vibrat ion case are developed in like 

fashion and y ield  similar  r e s u l t s ,  again the only dif ference is  in the
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L.
arguments of the spa t ia l  sin  and cos terms. Thus, k^ (x^+ -^ ) ,  

k2(x2 + - ^ ) ,  ^nd (*3 "*"^) Should be substi tu ted  for

k^x^, k2X2» k^Xg, and k^x^, respect ively;  otherwise, the r e su l t s  are 

the same.



CHAPTER IV

ELASTICALLY RESTRAINED/RIGID-LUBRICATED BOUNDARIES

4.1 Free and Forced Vibration Solutions

For the f ree  v ibrat ion problem, the two s t r e s s - f r e e  boundaries

of Chapter I I I  are  replaced by two e la s t i c a l l y  res t ra ined  boundaries,

and the four r ig id - lu b r ica ted  boundaries remain unchanged:

3u o  9uq
Xl = 0,Li Ui = 0 ■ ^ = 3 ^ 7 - °

3ui 3uo
X2 = 0,L2 U2 = 0 3̂ " ^ " °  (4.1 .1)

3u. 3u„ 3uq fioUq 3uo 3ui 3uq 3uo

Here eg is  the e l a s t i c  modulus of the upper and lower r e s t r a in t s  and 

Y = 1 + - ^ .  As before, the f ree  v ibrat ion equation of motion is

c ^ V ^ u + ( c ^  -  c ^ ) v v * u  = .  ( 4 . 1 2 )

The development of the normal mode displacement components is 

the same as tha t  in Chapter I I I ,  and as such, only the r e su l ts  are pre­

sented here:

“2N ° co:k^x^sink^x^[kg(A^^cosk^x^ + A^^sink^x^) +A^^cosk^x^ + Ag|,slnk^%^]slnw^t 

U3N = cosk^x^cosk^x^Ik^CA^jjSink^x^ -  A^jjCosk^x^) (4 .1.3)

+ (■ 'A n  + S  V “°=' ' t=‘ 3 -  <’' A n  + V s N ^  slnk^Xj]

45
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These components are then subs t i tu ted  into boundary conditions (4 .1.1) 

with the r e s u l t  th a t  the twelve boundary conditions on the xi and x£ 

faces are s a t i s f i e d  id en t ica l ly  and the remaining six boundary conditions 

on the X3 faces are s a t i s f i e d  when

X(k^ + + Yk%)k^Â Q + e^k^k^Ag^ -  Zpk^k^Ag^ -  e^k^A^^ -  Zukgk^A^^ -  e^k^A^^ = 0

[X(k^ + + Ykj)k^cosk^L3 + s^k^k^sink^L^lli^

+ [X(kJ + k^ + Ykj)k^slnkjL3 -  egk^k^coskgLgOAg,

-  [Zuk^k^cosk^Lg + Ggk^sink^LglAgQ- [Zpk^k^sink^Lg- e^k^cosk^LglA^^

-  [Zukgk^cosk^Lg + egkgSink^LglAgQ-EZpkgk^sink^Lg-egkgCosk^LglAgQ = 0

■ ^1^2^ 6N ^ ° (4.1.4)

Zkik&k^sink^LgA^Q + Zk^k^k^cosk^LgA^Q+ (k^ -  k^)sink^L^Ag^

-  ( k ^ - k 2)cosk^L3A^^ + k3k2Sink|.L3A3j , - k 3k2c:osk|,L3A5̂  = 0

^^2^&^t^2N" ^1^2*4N" ^^2 ” ^ °

-  Zkgk^k^sink^LgA^^ + Zkgk^k^cosk^LgAg^ + k^k^sink^L^A^^^ -  k^k^cosk^L^A^^

+ (k2 -  k^) sink^LgAg^ -  (k2 " \ ) = 0 .

These expressions are valid for  f i n i t e  values of e^.

As in Chapter 3, the appropriate amplitude re la t ions  and f r e ­

quency equations are determined from the above equations and depend upon 

the values of sink^L^ and the wave numbers k^ and k^. Table 4.1 l i s t s  

these combinations. Equations (4 .1 .5) and (4.1 .6) correspond to the SH 

wave motion and are ident ical  to equations (3.1.20) and (3.1.21) from 

Table 3.1. The longitudinal wave motion described by equations (4.1.7)



TABLE 4.1. Appropriate Modal Coefficients and Frequency Equations,
Elastically Restrained/Rigid-Lubricated Boundaries (0<e^<“ )

Modal 
Coefficients

s in k |.L g = 0

kj > 0, ko > 0
sink̂ Ljj*0

k2=kg=0 kj > 0, k2“0 ki>0. kg=0

IN

2N

3N

4N

5N

"6N

^  A 6 2N R4k,k„k^'’‘-*3N R AN-'1 i t
(coskĵ L̂ -cosk̂ L̂ )

sink̂ L̂ 6N̂

- î ü .2k^k kj. *4N

i^*5N
e3(k̂ +k2)kjĵ sinkĵ L2-R(coskjĵ L3-co8ktL3>

Ps ink j^Lj+Rs ink^L^ ■]A,4M

k^k^-k^ 
Zkgk^k^ *6N

‘‘I a

^ A  k̂  6N

0

(4.1.5)

0

0
(4.1.7)

0

0
(4.1.9)

63 (k^+k|+k2) k ŝink^L -̂R(cosk^Lj-cosk^L )̂
PsinkjLj+Rslnk^Lj

*

(4.1.10)

f»'*4

Frequency
Equations (4.1.6)

a^=k|+k|+k2

ê +2ê 6cotk̂ L̂ -6̂ =0

(4.1.8)

6=Xyk,

{e (̂k2+k̂ +k̂ ) k̂̂ sink̂ LgSink̂ Lg-2ê (k̂ k̂ k̂ )kj (̂Psink̂ L̂ cosk̂ L̂ +Rcogkj^L̂ sink̂ Lg) 
- [(P̂ +R̂ )sink̂ L̂ sink̂ L̂ +2PR(l-cosk̂ L̂ cosk̂ L̂ )])sink̂ L̂ -0

(4.1.11)

P=4(k̂ +k̂ )k̂ k̂ R=(k̂ kg-k̂ )^

For the free vibration problem, these values are determined from the initial conditions; in the forced vibration problem, 
from the forcing function.



48

and (4.1.8) is s imilar  to tha t  described by equations (3.1.22) and

(3.1 .23) ,  except more complicated, in th a t  the natural frequencies are 

now a function of both the e l a s t i c  modulus and the wave number k^, 

instead of j u s t  the l a t t e r .  F inally ,  the SV/P motion is  given by 

equations (4 .1 .9 ) ,  (4 .1.10), and (4 .1 .11) .  Here again, the amplitudes 

denoted by the a s te r isks  are determined from the in t ia l  conditions for 

the free vibration problem or from the forcing function for  the forced 

v ibrat ion problem.

A superposition of the displacement due to the wave components 

travel ing  in a l l  d i rec tions y ie lds  the three-dimensional displacement 

components

“ 1 '  Z  “w
N

2N (4 .1.12)
N

2N 
N

with the (i=l,2,3) as given by equations (4 .1 .3) .  This completes the 

f ree  vibration solution for the rectangular paralle lepiped with e l a s t i ­

c a l ly  res t ra ined / r ig id - lub r ica ted  boundaries. The forced vibration solu­

t ion  proceeds exactly as in Section 3.2, and the resu l ts  are the same.

4.2 Reduction to the Previous Cases 

The free  and forced vibration solution for the paralle lepiped 

with e la s t i c a l ly  r e s t ra in ed / r ig id - lu b r ica ted  boundaries is  p a r t icu la r ly  

in te res t ing  in tha t  by allowing », the normal r e s t r a in ts  on the 

faces become r ig id .  Thus, a l l  of the boundaries become r ig id - lubr ica ted
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as in Chapter I I ,  and the same re su l ts  should be obtained. Conversely, 

l e t t in g  -»• “ » the normal s t re sses  acting on the faces approach 

zero, and the s t r e s s - f r e e  so lution of  Chapter I I I  should be recovered. 

From the above, i t  can be seen tha t  the e la s t i c a l l y  res t ra in ed / r ig id -  

lubricated solution can serve as a check on the previous solut ions .

We begin by dividing the normal s t r e s s  boundary conditions on 

the x^ faces (4.1.1c) by e^, and then we l e t  «. The r e s u l t  is 

Ug=0 , which means tha t  the shear s t r e s s  conditions can be writ ten as 

3u ^ /3x2=3u2/ 3x2=0 , and the completely r ig id - lubr ica ted  boundary condi­

tions (2.1.2) have been recovered. The cha rac te r i s t i c  equations, on the 

other hand, must be divided by before allowing ». For the

transcendental equation (4 .1 .11) ,  t h i s  gives
2

(k^ + k^ + k^) kZsink^LgSink^LgSink^Lg = 0 

2
but since (k^ + k^ + k^) k% ^ 0 , the frequency equation becomes

sink^LgSink^LgSink^Lg = 0 . (4 .2 .1)

The implication here is tha t  e i the r

, nil

< V i  ■

or

n = 0 , l , 2 , . . .  ;

n.n
but, k^ = - ^  (n2=0 , l , 2 , . . . ) ,  meaning tha t

(4-2-2)
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However, by d e f in i t io n ,

kg = — (k^ + k^) (4 .2 .3)
\  1 2

k? = (k? + k^) (4 .2 .4)

and

= k^ + k^ + k^ . (4 .2.5)

Combing equations (4.2.2) through (4 .2 .5 ) ,  one obtains the frequency 

equations

“in ^ (4 .2 .6)

“2N ^ “3N ^t°N ’ (4 .2.7)

which are  identica l  to (2 .1 .6)  and (2 .1 .7 ) ,  as expected.

The appropriate amplitude re la t io ns  are recovered by perform­

ing a divis ion and l imit ing operating s imila r  to  the above on equations

(4 .1 .4 ) ,  keeping in mind the re la t ionsh ips  given in equation (4 .2 .2 ) .

This procedure leads to the r e s u l t  tha t

h a  ■ = &6N -  ° ' (4-2-8)

which means th a t  the displacement components of equations (4.1 .3) reduce

to

“2N " cosk^x^sinkgXgCoskgXgCk^A^QSinw^Qt + A^QSinw^^t] (4.2.9)

" 3N ^ cosk^x^coskgXgSinkgXgEkgA^QSinw^^t- (-j^ ^3^"^ k^
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If  we l e t  Aj^ = (A^^)^, and A^  ̂ = (A^^)^ and add up a l l

the normal modes, the displacements obtained are the same as those ob­

tained in Chapter I I ,  equations (2 .1 .11):

N ^

„2  -  2  c.sk^x^sink2X2C0sk^x^{^(A^^)^s ln .^^ t+  CAj^l^sinw^^t} (4.2.10)

"3 ■ 2  ° ° ^ V l ‘=“=V2=^”‘=3*3'§'^N>t=^”“4N‘ ' +

Therefore, allowing the e l a s t i c  modulus of the boundary r e s t r a i n t  on the 

two faces to become in f in i t e l y  large eliminates any displacements 

normal to these surfaces, and the boundary conditions become completely 

r ig id - lu b r ica ted .

Subst i tu t ion of + 0 into equations (4 .1 .1 ) ,  ( 4 .1 .4 ) ,  and the 

equations of Table 4.1 y ie lds  equations (3 .1 .2 ) ,  (3.1.19) and the equa­

t ions  of Table 3.1. Hence, when the e l a s t i c  modulus of the r e s t r a i n t  on 

the Xg faces approaches zero, the boundaries become s t r e s s - f r e e ,  and the 

complete s t r e s s - f r e e / r ig id - lu b r ic a te d  solut ion of Chapter I I I  is  recovered.



CHAPTER V

RESULTS AND CONCLUSIONS

5.1 Numerical Results 

Numerical r e su l ts  were computed for the response of a p a ra l le le ­

piped with s t r e s s - f r e e / r ig id - lu b r ic a te d  boundaries to an impulsive body 

force ( c . f .  Section 3.3 and Appendices B and C). Since the in f in i t e  

se r ies  solutions of equations (3.3.4) had to be truncated and a displace­

ment vs. time curve was the desired r e s u l t ,  i t  was decided tha t  the trunca­

tion should be performed so as to include a l l  the resonant frequencies 

from DC to some cu toff  frequency f^Q. The specimen was a .0254 x .0254 x 

.0254 m ( 1 x 1 x 1  in . )  aluminum (p=2700 kg/m^) block. The two cutoff  

frequencies chosen were 1.25 MHz and 2.0 MHz.

I t  was found tha t  the f i r s t  eleven wave numbers had to be con­

sidered in order to include a l l  the normal modes with natural frequencies 

up to 1.25 MHz. Thus, the normal mode indices varied from

N(0,0,ng) to NClo.lO.n^). Associated with these indices were 480 f r e ­

quencies (modes) which produced s ign i f ican t  displacements in the d irec­

t ion .  The 2.0 MHz cu toff  frequency required the inclusion of the f i r s t  

seventeen wave numbers in the and d irec t ions .  This resulted in 

1574 contr ibuting modes.

Figure 5.1 shows the displacement vs. time history a t  the 

posi tion .0127, .0127, .0147 m due to a 1 N-sec Dirac delta  function
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2.0
INFINITE MEDIA 

fgo -  2 .0  MHz 

feo= 1.25 MHz
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FIGURE 5.1
RESPONSE OF A RECTANGULAR PARALLELEPIPED WITH TWO STRESS-FREE AND FOUR 
RIGID-LUBRICATED FACES TO AN IMPULSIVE POINT LOAD —  TRUNCATED NORMAL 

MODE SOLUTIONS —  COMPARED TO THE INFINITE MEDIA RESPONSE
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impulse acting in the d i rec t ion  a t  .0127, .0127, .0107 m. Since the 

f i r s t  1.74 ysec of time h is tory  is re f lec t ion  f ree ,  th i s  part  of the 

solution may be compared to the exact solut ion for  an i n f in i t e  body 

subjected to  the same loading [24,25]. This solution consists  of an 

i n f in i t e  spike corresponding to the a rr iva l  of the longitudinal wave 

followed by a ramp which drops to zero when the shear wave a rr ives .  The 

other two curves are truncated normal mode solutions to the p a ra l le le ­

piped problem. The dotted portions of these curves begin a t  1.74 ysec, 

the time at  which the f i r s t  re f lec t io n  occurs and indicate tha t  these 

values cannot be compared with the i n f in i t e  media solut ion.  The f__ =
CO

2.0 MHz solution is  obviously a b e t te r  approximation to the i n f in i t e  

media response than is  the f  = 1.25 MHz solu t ion ,  but neither  of  theseCO
truncated solutions does a very good job. More frequencies (normal 

modes) are needed.

To i l l u s t r a t e  th i s  point,  consider the frequency spectrum 

(Fourier transform) of a Dirac delta  function impulse. I t  has a constant 

amplitude for  a l l  frequencies from DC to i n f in i ty .  This means th a t  a l l  

frequency components contr ibute  equally to the computed r e s u l t s .  Thus, 

any truncated representat ion will obviously contain d is to r t io n s ;  the 

fewer the frequencies, the grea ter  the d i s to r t ion .

Figure 5.2 shows the inverted Fourier transform of the i n f in i t e  

space so lut ion.  I t  was calculated using a Fast Fourier Transform (FFT) 

routine which was truncated a t  10 MHz. The dif ference between th i s  solu­

t ion and the i n f in i t e  media response is  due primarily to the Gibbs 

phenomenon [26] which manifests i t s e l f  as a r ipp le  in the output. This 

phenomenon a r ises  whenever a spectral  representat ion is truncated
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abruptly. In th is  case, the frequencies above 10 MHz are eliminated 

from consideration. I t  can be seen from both Figures 5.1 and 5.2 th a t  

the r ipp le  frequency is  roughly equal to the cutoff  frequency f^^.

In numerical computations such as t h i s ,  where i n f in i t e  se r ies  

are involved, the accuracy of the f inal  output is obviously l imited by 

the avai lable  CPU time. This is  compounded by the fac t  tha t  the t r a n s ­

cendental frequency equations (those involving mode conversions) must be 

solved i t e r a t i v e ly .  For the 1.25 MHz cutoff  frequency, the CPU time 

required was 9.5 minutes; the 2.0 MHz solution required 32.25 minutes.

The majori ty of th i s  time was taken in solving for  the natural frequencies. 

The larger  the specimen, the more resonant frequencies there are to find.

In sp i te  of these l im i ta t ions ,  the re su l ts  seem to be headed in the r igh t  

d i rec t ion .

A s im ila r  analysis was performed by Hill and Egle [20] fo r  the 

rectangular paralle lepiped with completely r ig id - lubr ica ted  boundaries.

The nearly 2600 contributing modes (out of the 2x10^ considered) were 

solved for  e x p l i c i t ly  from the two ra ther  simple frequency equations, 

üjjj=c^a and w^=c^a, (2.1 .6) and (2 .1 .7 ) .  Because they could be solved for 

e x p l i c i t ly ,  ra ther  than im p l ic i t ly ,  f a r  more natural frequencies were 

considered. The addit ional  frequencies improved the accuracy to the 

point where the normal mode solu t ion  arid the truncated FFT solut ion were 

v i r tu a l ly  iden t ica l .

5.2 Conclusions and Future Directions

Presented here are exact normal mode solut ions for  the forced 

vibrat ional  response of the rectangular  paralle lepiped with three  se ts  

of boundary conditions: (1) completely r ig id - lubr ica ted  boundaries;
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(2) two s t r e s s - f r e e  and four r ig id - lubr ica ted  boundaries; and (3 ) two 

e l a s t i c a l l y  res t ra ined  and four r ig id- lubr ica ted  boundaries. For cases 

(1) and (2) ,  the response i s  calculated for  a Dirac delta  function 

impulsive body force. An analytical  ve r i f ica t ion  for  both solut ions is 

obtained from the e l a s t i c a l l y  res tra ined solution.

By allowing the e l a s t i c  modulus of the r e s t r a i n t  to approach 

in f in i ty ,  the completely r ig id - lubr ica ted  re su l ts  are obtained. When 

the e l a s t i c  modulus is  allowed to approach zero, the s t r e s s - f r e e / r ig id -  

lubricated solution is  recovered. The fac t  tha t  these reductions can be 

made indicates  tha t  these solutions are probably correc t ,  and although 

not as conclusive in the s t r e s s - f re e / r ig id - lu b r ic a te d  case, the numerical 

resu l ts  tend to reinforce th i s  conclusion.

The forced vibrat ion solution for the rectangular  parallelepiped 

with completely r ig id - lub r ica ted  boundaries might be used to model the 

vibration of a lubricated rubber block completely enclosed in a r ig id  

metal container and stimulated by some internal  source. In th is  case, 

the normal displacements a t  the surface are neglig ible ;  as a r e su l t ,  

there are no mode conversions and hence no inhomogeneous (surface) waves. 

Though not a physically  commonplace problem, the chief value of th is  

solution is the ins igh t  i t  provides into solving the more d i f f i c u l t  

s t r e s s - f r e e  and e la s t i c a l l y  res tra ined cases.

The s t r e s s - f r e e / r ig id - lu b r ic a te d  so lu t ion ,  on the other hand, 

i f  programmed on a s t a t e - o f - th e - a r t  s c i e n t i f i c  computer, could prove to 

be very useful in studying f rac ture  mechanics, and in p a r t i cu la r ,  acoustic 

emission source events. The e l a s t i c a l ly  res t ra ined /r ig id - lub r ica ted  

solution might be even b e t te r  in th is  regard. Both solutions allow for
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mode conversions on two of the six faces , and both therefore take into 

account a l l  three major wave types —  shear, longitudinal and surface 

waves —  which provides a b e t te r  model for  the typical  acoustic 

emission applica t ion .

All three solutions were developed on the premise tha t  acoustic 

emission is  primarily a body force phenomenon. Although th is  is t rue ,  

acoust ic emission is  more conveniently simulated on the surface of a 

specimen. I f  the equation of motion was modified to include surface 

forces [ 22] and the length dimensions and were allowed to become 

very large in comparison to L^, the above solutions could be compared 

to  the work on simulated acoustic emission in plates by Pardee and 

Graham [2] and Hsu, Simons and Hardy [2J. Such a formulation would also 

lend i t s e l f  b e t te r  to experimental ve r i f ica t ion  since surface forces of 

known location are eas i ly  generated, whereas body forces are ne ither  

easy to generate nor to locate . Including the surface forces would 

a lso  allow the weight of the transducer to be modeled.

The ul timate goal is  to completely bridge the gap between the 

experimental and a n a ly t ic a l ,  such that  flaw growth in s t ruc tu ra l  mate­

r i a l s  can be predicted and, perhaps to some extent ,  controlled.  The 

forced vibration solut ion for  the rectangular paralle lepiped with com­

p le te ly  s t r e s s - f r e e  boundaries would be a s ign i f ican t  step in th is  

d i rec t ion .  Unfortunately, none of the three solutions could be extended 

by superposition to a t t a in  the completely s t r e s s - f r e e  solut ion.  In each 

instance,  the twelve shear s t r e s s  boundary conditions were s a t i s f i e d  but 

not the six  normal s t r e s s  conditions. However, the three solutions pre­

sented here do represent  a meaningful contribution to the f i e ld .
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With the inclusion of surface forces,  these solutions could 

very well provide a means of extending Hatano's Rayleigh wave ca l ib ra t ion  

of  p iezoelec tr ic  transducers [26] to  include a l l  three wave types. They 

might also serve to verify  the diffuse  f i e ld  ca l ib ra t ion  technique [27]. 

In conclusion, i f  these three  solutions do nothing e l s e ,  they will have 

a t  l e a s t  broadened the au thor 's  horizons.
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APPENDIX A

Separated Wave Equations 

The governing equation for  wave propagation in solids is 

Navier 's equation, which may be expressed in terms of the longitudinal 

and transverse  wave speeds as

c^V^u+(c^-c^)7V‘u + f  = .  (Al)

Subst i tu t ing the Helmholtz resolutions of displacement

Ü = VS + VxV (A2)

v*v = 0 (A3)

and body force

f = Vf + VxF (A4)

V*F = 0 (A5)

into the equations of motion (Al) gives

c^V^(VS +VxV) + (c^-c^)VV*(VS + Vx V) + (Vf+ VxF) = - | ^  (VS + V x V) (A6 ) 

But since

v 2 ( V S )  = V ( V ^ S )

V V S  =  V ^ s

and

v2(Vx V) = Vx (V^v)

V*V X V = 0 , 

equation (A6 ) may be rewrit ten  as
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7(c^7^S + f - 0 - ) + 7 x  (c^7^V + f - | ^ )  = 0 (A7)

This equation is  s a t i s f i e d  i f  each of the terms in parenthesis vanishes.

Hence, the three  original  equations of motion (Al), each of which in­

cluded both longitudinal and transverse waves, are separated into the 

four independent equations

c^v2s + f = 0  (A8 )

c V v  + F = 0 .  (A9)

Equation (A8 ) defines the longitudinal wave motion and equation (A9) 

the t ransverse wave motion. These are the separated wave equations. 

Conditions (A3) and (A5) allow a unique determination of the three com­

ponents of Ü from the four components of s and v and the four components 

of f  and F.

Free Vibration Case

For the f ree  v ibrat ion case, the body force terms vanish and 

the separated wave equations may be rearranged as

(âlO)

(All)

Both wave equations may be solved by separation of variab les .  The longi­

tudinal wave equation (AlO) may be solved by assuming

S(xi,X2,X3, t )  = W(xi,X2 ,X3) T ( t ) ; (A12)

subs t i tu t ion  of th is  expression into  equation (AlO) yields
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from which

v2w+a2w = 0 (A14)

and

T" +cJa^T = 0. (A15)

Equation (A14) is known as the Helmholtz equation. I t s  solu­

t ion is obtained by subs t i tu t ing  into i t

W = Xi(xi)X2(X2)X3(x3) (A16)

with the r e s u l t

X/’ X," X/'
^ °  -  "I-

Letting

x , ” 2
—  = -  ki (A18)

X ”
T  (A19)

gives the th i rd  equation 

X "
= -  [ a | -  (k^ + kg)] = -  k j .  (A20)

The frequencies may be defined as o> =c.a. and w ^ = c . h e n c e , t h e  solu-36 J6 jG Ü l u
t ions to equations (A15), (A18), (A19), and (A20) are

T(t) = Aicosüjjj t̂ + A2sino)^t (A21 )

and

Xi(xi) = Bicoskixi+ B2Sinkixi (A22)

X2 (x2) = B3COsk2X2 + Bi|Sink2X2 (A23)

X3(x3> = B5COsk3X3 + Bgsink3X3 , (A24)
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which, along with the i n i t i a l  condition t ( 0)=0 , may be combined accord­

ing to equations (A12) and (A16) to give

S = (C ic o sk iX i+ C 2 S in k 2X2 ) (C3Cosk2X2+Ci+sink2X2) (C 5Cosk^X3+CgSink^X 3) s in w ^ t ,

(A25)

the general solution for  the f ree  vibration sca lar  po ten t ia l .  The 

vector potential  components a re  determined analogously;

= (DiCoskiXj+D2SinkjXi) (D3Cosk2X2+Di^sink2X2) (D3Cosk^X3+DgSink^X3)sinw^t 

V2 = (EiC0skiXi+E2SxnkiXi) (E3C0sk2X2+Ei*sink2X2) (EgC0sk^X3+EgSink^X3)sinw^t 

V3 = (F ic o s k iX i+ F 2 s in k iX i )  (F 3COsk2X2+F i*sin k 2X2 ) (F gcosk ^ X 3+ F g sin k ^ X 3) s in w ^ t .

(A26)

In view of the frequency def in i t ions  above, the longitudinal and t rans ­

verse wave numbers may be wri t ten  as
2

k 2 = ÿ - ( k ?  + k2) (AZ7)

k^ = (ki  + k2) . (A28)



APPENDIX B

Calculating the Generalized Mass Term 

The generalized mass term, E^, given by equation (3 .2 .11) ,  is 

expanded here for  computational use:

(B1)
0 0 0

but Consequently, equation (81) may be rewrit ten

as

&  = ’ (B2)

where L i Lp L

^iN = <f)̂ N‘̂ xidx2dx3 , i= l ,2 ,3 .  (33)
0 0 0

The ( i= l ,2 ,3 )  are the modal functions defined by equations (3 .1 .14),  

(3 .1 .17),  and (3.1 .18).

Substituting the modal functions into equations (83) and per­

forming the indicated in tegrat ions r e su l t s  in the following expressions:

+ + A^^A^) + Ag^CÂ ^Ag + A^^A^) ]

^^3N^8 ^^3N^4N^9 \ n ^ 10  ̂^
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^2N “ 4 ^^1N^2N^2 ^2N^3^

+ ‘‘'^2N^Sn^6'^^6N^7^^

■*■ ^^5N^8 ■*'̂ ^5N^6N^9‘‘' ^ 6N^10  ̂^

'^3  ̂1^2 r, 2 ,.2  . . . . . .2
^3N 4 (^1N^3 ^^1N^2n '̂ 2 '’' '̂ 2N̂ 1̂

k

' t

-  Ag^ + ^2^6N̂  ̂ 4 ^2N ^ 2^5N̂  ̂ 5^

. 1

■*■ k^ ^^1"N ̂ ^1^4N ^2^6N̂  ̂ 6 ~ ^IN ̂ ^1^3N '"' ^2^5N^ ̂ 7

Here,

'• [ (^i^4N ^2^ 6N̂  ^8~  ̂ '*’ ^2^6N̂  ^2^5N^ ̂ 9

+ ( \ ^ 3 N ■*■ ^2S n ^  ^10^^*

Hi = (:--

n2 = ( ^ + V ( " - % o )  (B8 )

(B9)

and
Lo sin2k.L-

° T  ^ —  (®’0>

sin^k L_
‘ . ■ - s f - *  I ' m

••  ■
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l-cos(kp+k )L l-cos(k.-k )L
(b m )

l-cos(k»-k)L l-cos(k.+ k)L 
^6 2(k ^ -k ^ )  2(k^ + k^)

sin(kp - k )L sin(k + k )L
^ 7  -  - 2 ( V V  (BIB)

L, sink^L
B s ' f +  (B17)

sin^k L
A g = - 2i T ^  (818)

L sin2k L
^10 = T  4k------  • (B19)

Finally , a l l  of  the above may be combined according to equation (B2) to 

obtain e„.N
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A COMPUTER PROGRAM FOR CALCULATING THE X3-AXIS DISPLACEMENT 

RESPONSE DUE TO AN IMPULSIVE BODY FORCE
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0001
0 0 0 2
0003
0004

0005
0006

0007
0006
0009

0010 
001 1 
0012

0013
0014
0015

0016
0017
0016

0019
0 0 2 0  
0021  
0 0 2 2
0023
0024
0025
0026 
0027 
0026
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039

C
c
c

39

COMMON XL 1•XL2•XL3•XC1•XC 21 XC3tCL•WNO .I ZERO•CT 
COMMON N1#N2«XK1.XK2•XItX2»X3tASYMP 
DIMENSION 03<200)*U3S<200I*FNC150001*D3h(150001 
COMPLEX A#C0EFF,0IFL.DIFT,XKL.XKT»RS.PST.RST.T1,T2.ZER
LONGITUDINAL AND TRANSVERSE WAVE SPEEDS
CL=6150.
CT=3I00.
SPECIMEN DIMENSIONS
XL1=.0254
XL2=.0254
XL3=.02S4
POINT OF APPLICATION OF THE IMPULSIVE LOAD
XCl=XLl/2.
XC2=XL2/2.XC3=.0l07
POINT AT WHICH DISPLACEMENTS ARE SENSED
X1=XC1
X2=XC2
X3=.0147
LOWER AND UPPER FREQUENCY BOUNDS
P1=3.1415926536 
WNL=f I •0E4l*2.4>PI 
WNU=(1.25E61*2.*PI
P AND SV WAVE CHARACTERISTIC FREQUENCIES AND U3 MODAL DISPLACEMENT 
COEFFIClENTS
N=1
2ER0=0 •I2ERO=0 
DELF=2S0.*PI 
DM1N=1.OE-3
a=cmplxio. . i .t
ASYMP=18.
DO 16 3=1,13,2N2=J-I
XN2=N2
XK2=XN2*PI/XL2 
DO 15 1=1,13.2 
K=1
L=1
WN=WNL
Nl=l-1
XN1=N1
XKl=XNl*PI/XLl 
WND=XK1*XK1*XK2*XK2 
1F{MND.GT.ZERCI GO TO 2 
XN3=K
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0098
0099 
01 00 
0101 
0 1 0 2  0103 
01 04
0105
0106
0107
0108 
01 09 
0110  
0111 
01 12 
0113
0 114 
0115
01 16 
0117 
Oil 8
0119
0 1 2 0

0121
0122
01230124
0125
0126
0127
0128 
01 29
01300131
01320133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145

58

15
16

13 WFN=1ZI*0LDWN-0L0ZI**N1/IZl-OLOZI1 
CALL FREQlOLDHNvWNtMFN)

14 CALL MDC4WFN.0R1 
ADR=ABS(DR)
IFCADR.LT.DHINI GO TO 58 
WRITEI6 .*1 1 • J«K»tfFN«OF..N
FNtN)=WFN 
C3N(N1=DR 
N=N+I 
K=K+1
IFCWND.EQ.ZcROI GO TO 39 
IFIWN.LT.HNUI GO TO It 
CONTINUE 
CONTINUE 
NF=N-1 
PRINT 1 
FORMAT!IHl I 
WRITE!6,*1 NF 
PRINT 1 
DO 18 1=1,NF 
WRITE(6,631 FN<I1*D3NC1>
FCRMAT|1IX,2E20.3>
PRINT 1
SUMMING THi MODAL DISPLACEMENTS TO DETERMINE THF U3 DISPLACEMENTS 
AS A FUNCTION OF TIME
T=2,0E-e 
F0=3.7037E-4 
DO 61 M=1 *200 
U3N=0•
U3NS=0,
DO 60 K=1,NF 
DFN=FN(K)
ARG=DFN4T
015P=D3NtKI
PHI=DISP*S1N(ARG1/0FN
PHIS=DISP*(1*-C05(ARG11/(OFN«OFNI
U3N=U3N+FO*PHl
U3NS=U3NS*F0*PHIS

60 CONTINUE 
U3(M)=U3N 
U3SIM1=U3NS

61 T=T+2.0E-e 
PRINT 1
imp I TE (6.621 (U3C HI *M=t *200 1

62 FORMAT!11X.5E20.31 
PRINT 1
WRITE!6.62) (U3S1M1*M=1*200)
PRINT I
STOP
END

18
63
C
C
C
c
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0001 SUBROUTINE FREUCXItX2•MFN)
0002 COMMON CL«CT.WNOfASYMP
0003 COMPLEX D1FL,DIFT.XKL,XKT.RS.PST«FST.TI ,T2.COEFF.ZC.A
0004 A=CMPLX10** 1.1
0005 C=MFN
0006 DO 2 1=1«5
0007 WFL=C4C/CCL*CL1
0006 WFT=C*C/(CT#CT1
0009 OIFL=WFL-HNO
001 0 C|FT=WFT-1KND
001 1 XKL=CSQRTIDIFL1
0012 XKT=CSQRTCDIFT10013 KS=WND-C|FT
0014 PST=-4. 4IKND4XKL4XKT001 5 RST=-fiS*RS
0016 Tl=XKL4XL3
0017 T2= XKT4XL3
001 8 RTI=CABSCT1 1
0019 fiT2=CABS{T210020 COEFF= .5*1 1PST/RST14-CRST/PST) 10021 XFlWND.GT,*FL,AND.WNO.LT.WFT.AND.RT1.GT.ASYMP1 GO TO 400022 IF|WND.GT.WFT.AND.RT2.GT.AStMPl GO TC 41
0023 2C=COEFF4CSXNITI1«CSIN(T2141.-CCQS(TIl«CCOS(T2|0024 GO TO 42
0025 40 2C=A*C0EFF4SINIRT2I-C0S|RT210026 GO TO 42
0027 41 ZC=PST+FST
0026 42 2R=REAL(ZCI
0029 ZI=AXMAGC2C|0030 IFCZR) 3.4.50031 4 XFCZXl 3.6.50032 3 XI=C0033 GO TO 20034 5 X2=C
0035 2 C=(X14X21/2.
0036 6 WFN=C0037 RETURN
0038 END
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0056
0057 
0056

0059
0060 
0061 0062
0063
00640065
0066
0067
0068
0069
0070
0071
0072 
00 73 00 74 
00 750076
0077 
0076
0079
0080 
0081 
0082 
0083 
0034
0085
0086 
0067 
0088
0089
0090
0091

0092
0093
0094
00950096
0097
0098
0099
0 10 0  
01 01

01 02 
0103 
01 04 01 05

c
c
c
34

36

A3=A4*A5A2=RS/I2.*XK2 4XKL*XKT)
A l=-A 24A54PST/RST
CALCULATION OF THE GENERALIZED MASS EK.
DK=XKL-XKT
SK=XKL4XKT
DKL=T1-T2.SKL=Tl+T2
0l=iXL3/2.l«CSi4(CCl/(2.4XKLll 
02=CS1*CCS1/(2.4XKL1I 
03=<XL3/2f)~CS14|CC1/(2.4XKL)1 
C1=C5IN(DKL 1/I2.4DKI 
C2=CSIN1SKL1/(2»4SK|
C3=C1.-CC0S(SKL1 I/(2.4SKI 
C4 = U .-CCOSIDKLI l/(2.*DK)
D4=C1+C2
C5=C3-C4
D6=C3+C4
D7=C1-C2
0 a = ( X L 3 / 2 « | 4 C S 2 4 < C C 2 / C 2 . « X K T I I
D9=CS2*(CS2/C2.4XKT)I
0i0=(XL3/2. >-CS2*(CC2/C2.4XKTn
AE1=A1*A1*D1+2.4A1*A2*D2+A2*A2*D3
AE2-Al«(A3*D44A44D5l4A2«tA3*064A 4*0 71
AE3=A3*A3*D842.4A34A4*D9+A4*A4*010
BEl̂ AEl
BE2=A1*(A5*D4*A6*0S|4A2*(AE4064A6*071 
BE3=A5*A5*D8*2.*A5*A6*D9+A6*A6*010 
0t=XKt*A4*XK2*A6 
02=XK1*A3*XK2*A5
CE1=A1*A1*03*2.*A1*A2«02*A2*A2«01
CE2=Ü1*1A1*D6-A2*041*Q2*( A2*D5-A 1*0 71
CE3=Q1 *01*06-2. *01*02*094-02*02*0 10
E1N=XK t*XKl*AEl*2.*XKl*AE24>AE3
E2N=XK2*XK2*B£l4-2.*XK2*BE2>eE3E3N=DIFL*CEl 4-C XKL4CE2/XKT 14- CCE3/ 01 FT 1
EN=(XLI*XL2/4.1*!ETA1*EIN*ETA2»E2N+ETA3*E3N)
DETERMINATICN OF THE U3 MOCAL DISPLACEMENT COEFFICIENTS
5X1=XK1*X1
SX2=XK2*X2
SX3=XKL*X3
5X4=XKT*X3
P3NX=C0S(SX 11*C0S1SX21*(XKL*1AI*CSIN« SX3)-A2»CC0£(SX3H l4-< 1 ./XKTl *fQl*CCaS(SX4l-02*CSlN( SX41 1 I 
TX1=XK 1*XC1 
TX2=XK2*XC2 
TX3=XKL*XC3 
TX4=XKT*XC3
PJNXC=C0S(TX1 l*CCiS (TX2) *(XKL*( A1*CSINCTX3)-A2*CC0S( TX31 1 

1+(I./XKTl♦(01*CCOS< TX4l-02*CSINC TX4))I 
C=P3NXC*P3NX/EN 
DP=FEAL(D)
RETURNEND

KO



I I I I I I I I I I
o o o Oo o o o o o o o Oo o o o o o o o o o o o o o o o o o o o o o o o o o o

a <Ji toCDOi s 0» p 00s ro p mO' to to** 03 01O' towto roOi topO' Np CDO' o "4 O' » vOp roo O' 01o o 03s 01to p  CDo (Dw rop o 01'0 o s towuWp p 01 o o O' 0101s 03s o CD<D N Ul torop romo roO' (Jj p Ct'mT mT T ni mT T TtnmT T T TT T T ? mmT mT mT T T T mmT mT T T T m m
o o o o o o o Oo o o o o Oo Oo o o o o o o o o o o o o o o o o o o o o o o o
P- p LJu u wp P •>0) p p P P p p www wp p O' wu ww wu wu p

1 1 1 1 : 1 I I I I I I I : I I I I : I I I I
Ûo o o o o o o Oo o o o o Oo o o o o o o o o o o o o o o o o o o o o o o o o

ÜI ro p p s s to u <D09wwCO «001 totoro toCD e roUl to O' toUl roCD
o «0Ul •0 01 O' CO 01s CD rotowO' 01s roo o p o o U0* p too s Ul 01p roO' O'

«0 (D OD p Ul O' p o 09too o O' o p 00 01Ul toto Iw o 10 in O'CD01N•g 01wroP
rrT7 7 7 7 m ? T 7 7 7 m T 7 7 7 7 7 7 7 7 7 7 m  m 7 m 7 7 n 7 7 m7 m7 7 m  m

o o o o o o o o Oo o o o Oo o o o o o o o o o o o o o Oo o o o o o o o Oo o
P » u u wu p •D- P 00 p p p P p p p p 01wu UlUl Ul 01P p p u UJu u Ul Ul Ui p

I I I I
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

O' lOCD 09 toto 0»o 01roCDmO' O'O' lO01Ul to (0 01Ul p to roUl ro01 towro
<1»ro P 01CD01ODo too o O'CDOCD•4 o o o 01CDp roUl 0*-g «0 p O' o Ul lAp o o
toO' P 01rop lOlOs o •J•g 01roro-001O' O' o O' •g•0mUl -go -gCDo «0CDmUl W01roO' to
m7 mm7 7 m7 rt)m7 7 m7 m7 7 7 7 m7 7 mmm mmmmm7 mm7 m7 mmm m

o Oo o o o o o o o o Oo o AOo o o o o o o o o o o o o o o o o o o o o o o o
p O' p Ul Ul wp p p p p P p p O' P p p 01p p p p Ul Ul Ul Ul p p p p Ul Ul Ul Ul p wUl Ul Ul

08



81

o o o o o o o o m Cl Cl o o o o Oo o o o o o o o o o Oo o o o o o o o Cl ##
•• •* • m •J*•J* Y•J*•j* -• * Y —Y Y** YY Y•

UJ lU UJ UJ UJ wUJ lU UJ Ul Ul Ul UJ JJUJ Ul Ul Ul UJ UJ UJ Ul Ul Ul Ul Ul Ul Ul Ul lU UJ Ul UJ Ul Ul Ul Ul UJ Ul Ul
in4"o r* O' 0*C4 o «0 in4 CO iO Cl 4 N4 « o f*-<00 N 0 0 0 cvCJ 0 o in Cl O' 0 m O' o m
o N O' « o N n o CJ inm Cl o in 4 n in N 4 0 0 4 N 4 No 0 0 O' O' 4 4 N o 0 0

m •0O' O' CO in Cl Cl o 4 o Cl m in N CDOD O« 0 S 0  0 0 N c- 0 0 0 0 0 0 m in 0*4

o o o o o o o o e o Oe o o o o OOo c o o o o Oe OOo o o o e o o o Oo o OI I I I I I I I I


