## INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.
i. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

## HILL, ERIC VON KRUMREIG

THE VIBRATIONAL RESPONSE OF THE RECTANGULAR PARALLELEPIPED

PLEASE NOTE：
In all cases this material has been filmed in the best possible way from the available copy．Problems encountered with this document have been identified here with a check mark - ．

1．Glossy photographs $\qquad$
2．Colored illustrations $\qquad$
3．Photographs with dark background $\qquad$
4．Illustrations are poor copy $\qquad$
5．Drint shows through as there is text on both sides of page $\qquad$
6．Indistinct，broken or small print on several pages $\qquad$

7．Tightly bound copy with print lost in spine $\qquad$
8．Computer printout pages with indistinct print $\qquad$
9．Page（s） $\qquad$ lacking when material received，and not available from school or author

10．Page（s）seem to be missing in numbering only as text： follows

11．Poor carbon copy $\qquad$
12．Not original copy，several pages with blurred type $\qquad$
13．Appendix pages are poor copy $\qquad$
14．Original copy with light type $\qquad$
15．Curling and wrinkled pages $\qquad$
16．Other $\qquad$

# THE UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE

THE VIBRATIONAL RESPONSE OF THE RECTANGULAR PARALLELEPIPED

## A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
ERIC von KRUMREIG HILL
Norman, Oklahoma
1980

THE VIBRATIONAL RESPONSE OF THE RECTANGULAR PARALLELEPIPED


## ACKNOWLEDGMENTS

I acknowledge first and foremost my Father in Heaven for inspiring me when I have worked for it and for loving me even when I have not. Much the same could be said for my wife, Marilynn, who is the finest woman I have ever met. She makes life worthwhile. I also give thanks to Dr. Davis M. Egle, my earthly source of inspiration, a man of great enthusiasm and humility and a lover of truth. Thanks must also go to Dr. Charles W. Bert for his immense storehouse of knowledge, to Dr . James N. Huffaker for his course, Mathematical Methods in Physics, and to Dr. Akhtar S. Khan and Dr. Luther W. White for their kindness and encouragement. Finally, I thank Mrs. Rose Benda for typing this dissertation and Mr. Brian Burrough for the art work. Their work speaks for itself.

## ABSTRACT

This work presents exact normal mode solutions for the forced vibrational response of the rectangular parallelepiped with three sets of boundary conditions: (1) completely rigid-lubricated boundaries; (2) two stress-free and four rigid-lubricated boundaries; and (3) two elastically restrained and four rigid-lubricated boundaries. Both analytical and numerical verifications of these solutions are provided. Applications are discussed in the fields of acoustic emission nondestructive testing and the calibration of piezoelectric transducers.

## TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ..... iii
ABSTRACT ..... iv
TABLE OF CONTENTS ..... $v$
LIST OF FIGURES ..... vii
LIST OF TABLES ..... viii
Chapter
I. INTRODUCTION ..... 1
1.1 Background ..... 1
1.2 System Response ..... 2
1.3 Specimen Response ..... 7
1.4 Normal Mode Solutions ..... 12
II. RIGID-LUBRICATED BOUNDARIES ..... 16
2.1 Free Vibration Solution ..... 16
2.2 Forced Vibration Solution ..... 19
2.3 Response to an Impulse ..... 23
2.4 Symmetric Boundary Conditions ..... 25
III. STRESS-FREE/RIGID-LUBRICATED BOUNDARIES ..... 28
3.1 Free Vibration Solution ..... 28
3.2 Forced Vibration Solution ..... 39
3.3 Response to an Impulse ..... 41
3.4 Symmetric Boundary Conditions. ..... 42
IV. ELASTICALLY RESTRAINED/RIGID-LUBRICATED BOUNDARIES ..... 45
4.1 Free and Forced Vibration Solutions ..... 45
4.2 Reduction to the Preyious Cases ..... 48
v. RESULTS AND CONCLUSIONS ..... 52
5.1 Numerical Results ..... 52
5.2 Conclusions and Future Directions ..... 56

## Page

REFERENCES ..... 60
BIBLIOGRAPHY ..... 63
APPENDICES ..... 64
A Separated Wave Equations ..... 65
B Calculating the Generalized Mass Term ..... 69
C A Computer Program for Calculating the $x_{3}$-Axis
Displacement Response Due to an Impulsive Body Force ..... 72

## LIST OF FIGURES

Figure Page
1.1 Crack Growth Monitoring Svstem ..... 3
1.2 Typical Voltage vs. Time Oscilloscope Display Produced by an Acoustic Emission Burst ..... 4
1.3 Coordinate System, Dimensions and Stress Convention ..... 8
1.4 Waves Propagating Within an Elastic Solid ..... 11
2.1 Impulsive Body Force Applied at the Point $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and Sensed ai ( $x_{1}, x_{2}, x_{3}$ ) ..... 24
3.1 Stress-Free/Rigid-Lubricated Boundaries ..... 29
5.1 Response of a Rectangular Parallelepiped with Two Stress- Free and Four Rigid-Lubricated Faces to an Impulsive Point Load - Truncated Normal Mode Solutions - Compared to the Infinite Media Response ..... 53
5.2 Truncated FFT Representation of the Infinite Media Response to an Impulsive Point Load ..... 55

## LIST OF TABLES

Page

3.1 Appropriate Modal Coefficients and Frequency
Equations, Stress-Free/Rigid-Lubricated Boundaries ..... 36
4.1 Appropriate Modal Coefficients and Frequency Equations, Elastically Restrained/Rigid-Lubricated Boundaries $\left(0<e_{3}<\infty\right)$47

## CHAPTER I

INTRODUCTION

### 1.1 Background

The forced vibrational response of the rectangular parallelepiped is of particular interest in the study of wave propagation in solids and especially in the characterization of acoustic emission sources. Acoustic emission are the stress waves generated by the rapid release or redistribution of stored energy that accompany many deformation and fracture processes. The two major sources of acoustic emission are plastic deformation and crack growth. There has been considerable interest in studying the mechanisms associated with these sources in order to predict, and eventually perhaps control, flaw growth in structural materials.

Understanding the relationship between source and receiver in acoustic emission experiments has been the motivation for several recent papers [1-3] which have addressed the dynamic response of plates. However, many acoustic emission applications involve specimens of finite dimensions which are not accurately modeled by a plate. Some experimenta] work has been done on the source-receiver problem in finite bodies, but very little analytical work due mainly to the complexity of the mathematics describing the specimen response. In fact, there are no forced vibration solutions for parallelepipeds in the literature and only a few free vibration solutions [4-9,12-17].

It is the purpose of this work to help bridge the gap between the experimental and the analytical by providing normal mode solutions for the forced vibrational response of the rectangular parallelepiped with boundary conditions sufficiently realistic in a physical sense to allow inferences to be made concerning the source event. Obviously, the more realistic the boundary conditions, the more accurate the inferences. The two sets of boundary conditions considered here are (1) all six faces rigid-lubricated and (2) four rigid-lubricated and two stressfree faces. These represent approximations to the completely stressfree case, which has not, as yet, been solved by the classical normal mode technique. A third set of boundary conditions consisting of four rigid-lubricated and two elastically restrained faces is considered in Chapter IV. The solution to this problem is of interest because, by adjusting the value of the elastic modulus, the solutions for the previous two sets of boundary conditions can be recovered.

### 1.2 System Response

Much of what is known about the nature of acoustic emission sources has been learned through the use of piezoelectric transducers coupled to rectangular parallelepiped or plate type specimens. Unfortunately, by the time an acoustic emission signal is displayed on an output device, the waveform has undergone some very complex transformations. An example of these complexities is demonstrated in the simple crack growth monitoring system of Figure 1.1. Here, the specimen is under some type of loading which causes a material flaw to grow,


FIGURE 1.1
CRACK GROWTH MONITORING SYSTEM


FIGURE 1.2
TYPICAL VOLTAGE VS TIME OSCILLOSCOPE DISPLAY PRODUCED BY AN ACOUSTIC EMISSION BURST
thereby releasing energy in the form of acoustic emission. These waves reflect off the specimen boundaries and are sensed by the piezoelectric transducer. The piezoelectric crystal generates an electrical signal in proportion to the strength of the received stress wave. This signal is then amplified and displayed on an oscilloscope. A typical voltage versus time output trace for an acoustic emission burst is shown in Figure 1.2. Its attenuation is due primarily to damping at the speci-men-transducer interface [7] and depends, to a much lesser extent, on the material properties.

Using a systems analysis approach, Spanner [8] postulated a linear response for the crack detection system as a whole; Houghton, Townsend and Packman [9] confirmed this experimentally. If it is assumed that the amplifier and the oscilloscope introduce ns appreciable distortion to the transducer output, there are still three sources of distortion: the specimen, the specimen-transducer interface, and the transducer itself. The measured voltage response of the crack growth monitoring system as a function of frequency is then expressed as
$H_{\text {MEASURED }}(\omega)=H_{\text {TRANSDUCER/INTERFACE }}(\omega) \operatorname{H}_{\text {SPECIMEN }}(\omega) H_{\text {SOURCE }}(\omega)$, (1.2.1) where

$$
\mathrm{H}_{\text {TRANSDUCER/INTERFACE }}(\omega)=\mathrm{H}_{\text {TRANSDUCER }}(\omega) \mathrm{H}_{\text {INTERFACE }}(\omega)
$$

is the combined transfer function for the transducer and the specimentransducer interface.

To begin with, the only known quantity in equation (1.2.1) is H MEASURED ${ }^{(\omega)}$. This is the frequency spectrum of the time-domain
oscilloscope output (Fig. 1.2) and can be measured experimentally. Given a known source and point of application, HeASURED $\left.^{( } \omega\right)$ may be calculated. For example, an impulse function has a uniform frequency spectrum from $D C$ to 20 MHz ; the frequency response of a step function decays exponentially. Then assuming that the transfer function for the specimen (specimen response) $\mathrm{H}_{\text {SPECIMEN }}(\omega)$ can be determined, the transducer/interface response, $\left.H_{\text {TRANSDUCER/INTERFACE }}{ }^{( } \omega\right)$ may be calculated according to equation (1.2.1), i.e., the transducer/interface can be calibrated. Once the transducer/interface is calibrated, the transfer function for any unknown source (of known location) can be obtained according to the expression

$$
\begin{equation*}
\mathrm{H}_{\text {SOURCE }}(\omega)=\frac{\mathrm{H}_{\text {MEASURED }}(\omega)}{\mathrm{H}_{\text {TRANSDUCER/INTERFACE }}(\omega) \mathrm{H}_{\text {SPECIMEN }}(\omega)}, \tag{1.2.2}
\end{equation*}
$$

which is simply a rearrangement of equation (1.2.1). $\mathrm{H}_{\text {SOURCE }}{ }^{(\omega)}$ can then be deconvoluted to obtain the time-domain source waveform. Inferences can then be made concerning the nature of the acoustic emission source and the mechanisms involved in its production.

Perhaps the system model which is the most physically realistic is a simply supported specimen with a uniform loading at the specimentransducer interface and otherwise stress-free boundaries. One approximation to this system would be a specimen with completely stress-free boundaries. This approximate system is defined and discussed in the ensuing sections of this chapter along with two further simplifications of lesser mathematical difficulty.

### 1.3 Specimen Response

The specimen is assumed to be a homogeneous, isotropic, perfectly elastic solid. Its wave propagation is, therefore, governed by the linear three-dimensional theory of elastodynamics $[10,11]$. The coordinate system, dimensions, and stress convention are given in Figure 1.3, and the governing equation of motion is Navier's equation, which may be expressed in terms of wave speeds as

$$
\begin{equation*}
c_{t}^{2} \nabla^{2} \bar{u}+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{u}+\bar{f}=\frac{\partial^{2} \bar{u}}{\partial t^{2}} \tag{1.3.1}
\end{equation*}
$$

with

$$
\begin{aligned}
& \bar{u}=u_{1} \hat{e}_{1}+u_{2} \hat{e}_{2}+u_{3} \hat{e}_{3}=\text { displacement } \\
& \bar{f}=f_{1} \hat{e}_{1}+f_{2} \hat{e}_{2}+f_{3} \hat{e}_{3}=\text { body force per unit mass } \\
& u_{i}=u_{i}\left(x_{1}, x_{2}, x_{3}, t\right) \\
& f_{i}=f_{i}\left(x_{1}, x_{2}, x_{3}, t\right) \quad i=1,2,3 ; \\
& \nabla=\frac{\partial}{\partial x_{1}} \hat{e}_{1}+\frac{\partial}{\partial x_{2}} \hat{e}_{2}+\frac{\partial}{\partial x_{3}} \hat{e} ;
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{\ell}=\left[\frac{\lambda+2 \mu}{\rho}\right]^{\frac{1}{2}}=\text { longitudinal wave speed } \\
& c_{t}=\left[\frac{\mu}{\rho}\right]^{\frac{1}{2}}=\text { transverse wave speed } .
\end{aligned}
$$

Here, $\rho$ is the density and $\lambda$ and $\mu$ are the Lamé elastic constants. The body force term $\bar{f}$ is used to represent acoustic emission bursts. No surface forces are considered here since acoustic emission is primarily a body force phenomenon.

The boundary conditions for the completely stress-free rectangular parallelepiped are as follows:


FIGURE 1.3
COORDINATE SYSTEM, DIMENSIONS AND STRESS CONVENTION

$$
\begin{array}{ll}
x_{1}=0, L_{1} & \sigma_{11}=\sigma_{12}=\sigma_{13}=0 \\
x_{2}=0, L_{2} & \sigma_{22}=\sigma_{21}=\sigma_{23}=0 \\
x_{3}=0, L_{3} & \sigma_{33}=\sigma_{31}=\sigma_{32}=0
\end{array}
$$

Writing the stresses in terms of displacements gives

$$
\begin{aligned}
& \frac{\sigma_{11}}{\lambda}=\gamma \frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}} \\
& \frac{\sigma_{22}}{\lambda}=\frac{\partial u_{1}}{\partial x_{1}}+\gamma \frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}} \\
& \frac{\sigma_{33}}{\lambda}=\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\gamma \frac{\partial u_{3}}{\partial x_{3}} \\
& \sigma_{12}=\sigma_{21}=\mu\left[\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right] \\
& \sigma_{13}=\sigma_{31}=\mu\left[\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}\right] \\
& \sigma_{23}=\sigma_{32}=\mu\left[\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right]
\end{aligned}
$$

where $\gamma=1+\frac{2 \mu}{\lambda}$. Therefore, the stress-free boundary conditions in terms of displacements become

$$
\begin{array}{ll}
x_{1}=0, L_{1} & \gamma \frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}=\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}=\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}=0 \\
x_{2}=0, L_{2} & \frac{\partial u_{1}}{\partial x_{1}}+\gamma \frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}=\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{2}}=\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}=0  \tag{1.3.2}\\
x_{3}=0, L_{3} & \frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\gamma \frac{\partial u_{3}}{\partial x_{1}}=\frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{3}}=\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{3}}=0
\end{array}
$$

Within the parallelepiped there are two types of waves propagating, dilatational and equivoluminal, both of which are three-dimensional in nature. Any three-dimensional wave front, no matter what its shape, can be represented by an infinite set of contiguous points, each point
being the limiting case of a planar wave front. Accordingly, dilatational waves can be expressed in terms of an infinite sum of plane longitudinal waves propagating in every direction and equivoluminal waves in terms of a similar set of plane transverse waves; hence, the notation for the wave speeds, $c_{\ell}$ and $c_{t}$. These two wave types are depicted in Figure 1.4.

When either a longitudinal or a shear wave reflects off a stress-free surface, depending upon the angle of incidence, any one of three things can happen. The incident wave can either reflect unchanged; a portion of it can be mode converted into the other wave type, in which case two waves are reflected; or the incident wave can be entirely converted into a third wave type, the inhomogeneous wave. The most common type of inhomogeneous wave is the Rayleigh surface wave. These mode conversions at stress-free boundaries are only part of what make wave propagation problems in solids so difficult. The other part is the occurrence of multiple reflections between the boundaries in finite specimens.

The wave propagation problem can be simplified by assuming rigid-lubricated boundaries. This is because reflections from rigidlubricated surfaces are specular, i.e., no mode conversions occur, only phase changes. Therefore, there are no inhomogeneous waves (imaginary wave numbers), and the only difficulty is multiple reflections. Physically, these boundary conditions suggest a problem in which a body is vibrating inside a container with infinitely rigid, frictionless walls. Although this is not representative of the typical acoustic emission experiment, the solution does provide a first step in solving


FIGURE 1.4
Waves propagating within an elastic solid
for the more difficult stress-free cases.
Next in complexity is the solution for the problem of a rectangular parallelepiped with four rigid-lubricated and two stress-free boundaries. This problem is considerably more involved than the previous one due to the mode conversions on the two stress-free faces; on the other hand, it is also more realistic. Here, there are longi-tudinal-shear and shear-longitudinal conversions corresponding to the real wave numbers and shear-inhomogeneous conversions associated with the imaginary wave numbers, and as before, there are multiple reflections.

The problem of the parallelepiped with completely stress-free boundaries is the most complex of the three presented and also the most realistic. It allows for mode conversions at all the boundaries as well as multiple reflections. The next section discusses normal mode solutions to these three problems.

### 1.4 Normal Mode Solutions

The normal mode technique is appropriate for solving vibration or wave propagation problems in finite bodies. This is true because finite bodies only vibrate at discrete frequencies as opposed to infinite bodies which respond to the whole frequency spectrum. The displacement pattern associated with each of the natural frequencies is called a normal mode, and all the normal modes combine to give the total vibration or displacement pattern of the body. Separation of variables is the approach typically used to determine the natural frequencies and normal modes of a given system.

In order to solve for the forced vibrational response of any system using the normal mode approach, it is necessary to first solve for the free vibrational response. The free vibration problem for a rectangular parallelepiped with rigid-lubricated boundaries was first solved by Ortway [4] in 1913 and repeated by Nadeau [5] in 1964. In an effort to preserve continuity, Nadeau's solution is recast in Chapter II. The forced vibration problem is solved by first uncoupling the equations of motion using a vector displacement function, then utilizing a normal mode approach to obtain the desired displacements.

The free vibration solution for the case of four rigid-lubricated and two stress-free boundaries is the work of Kaliski as presented by Malecki [12]. Kaliski's original work [13] is in Polish; Malecki's text provides an English translation. Several significant errors were discovered in this presentation. As such, the free vibration problem is reworked in its entirety in Chapter III. This includes many of the details omitted by Malecki. The forced vibration problem is then solved by the normal mode technique.

Using a straightforward normal mode approach to solve the problem of the rectangular parallelepiped with completely stress-free boundaries, one obtains trivial solutions only. This is because separation of variables assumes factored solutions of the form

$$
\begin{equation*}
u_{i}\left(x_{1}, x_{2}, x_{3}, t\right)=x_{1 i}\left(x_{1}\right) x_{2 i}\left(x_{2}\right) x_{3 i}\left(x_{3}\right) T(t), \quad i=1,2,3 \tag{1.4.1}
\end{equation*}
$$

and no member of this set can satisfy the completely stress-free boundary conditions. In fact, the use of such solutions leads to the situation where there are more equations than unknowns.

The additional unknowns can be generated systematicālly using the method of associated periodicity developed by Fromme and Leissa [14,15]. They applied this technique to obtain a periodic extension of Navier's equation (1.2.1) and the stress-free boundary conditions and then employed Fourier analysis to reduce the partial differential equations to a set of algebraic equations. These equations were then solved to obtain the complete eigenspectrum for the free vibration problem. One significant drawback to this technique is the need to solve an infinite matrix in order to determine the natural frequencies.

Budanov and Orlov [16] obtained a portion of the eigenspectrum by assuming a particular form for $\nabla \cdot \bar{u}$ and solving for the symmetric modes. The antisymmetric modes were not considered, nor were any other forms for $\nabla \cdot \bar{u}$; moreover, several simplifying approximations were made in their numerical computations. In spite of all this, their computed natural frequencies for the rigid body modes did compare favorably with experimental beam data. There was no indication as to how well this analysis worked on rectangular parallelepipeds having dimensions of similar magnitude.

The two solutions discussed above are the only known exact analytical solutions for the free vibrational response of the rectangular parallelepiped with stress-free boundaries. Both of them are algebraically very complex, which may explain why neither work has been referenced in any recent publications. Because of this complexity, and the need for a forced vibration solution to model acoustic emission activity, the author made several attempts to solve this problem using other approaches. Unfortunately, none of them were successful. As a
consequence, the solution developed herein for the forced vibration of the rectangular parallelepiped with four rigid-lubricated and two stressfree boundaries probably represents the best available analytical tool to model acoustic emission activity in parallelepipeds with stress-free boundaries. The completely rigid-lubricated problem mainly provides a first step in obtaining the more difficult rigid-lubricated/stress-free solution.

## CHAPTER II

## RIGID-LUBRICATED BOUNDARIES

### 2.1 Free Vibration Solution

The equations of motion for the free vibration solution are Navier's equations (1.3.1) with the body force terms set equal to zero:

$$
\begin{equation*}
c_{t}^{2} \nabla^{2} \bar{u}+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{u}=\frac{\partial^{2} \bar{u}}{\partial t^{2}} . \tag{2.1.1}
\end{equation*}
$$

The rigid-lubricated boundary conditions are given as

$$
\begin{array}{lll}
\mathbf{x}_{1}=0, \mathrm{~L}_{1} & \mathrm{u}_{1}=0 & \sigma_{12}=\sigma_{13}=0 \\
\mathbf{x}_{2}=0, \mathrm{~L}_{2} & \mathrm{u}_{2}=0 & \sigma_{21}=\sigma_{23}=0 \\
\mathbf{x}_{3}=0, \mathrm{~L}_{3} & \mathrm{u}_{3}=0 & \sigma_{31}=\sigma_{32}=0,
\end{array}
$$

which, in terms of displacements, become

$$
\begin{array}{lll}
\mathrm{x}_{1}=0, \mathrm{~L}_{1} & \mathrm{u}_{1}=0 & \frac{\partial \mathrm{u}_{2}}{\partial \mathrm{x}_{1}}=\frac{\partial \mathrm{u}_{3}}{\partial \mathrm{x}_{1}}=0 \\
\mathrm{x}_{2}=0, \mathrm{~L}_{2} & \mathrm{u}_{2}=0 & \frac{\partial \mathrm{u}_{1}}{\partial \mathrm{x}_{2}}=\frac{\partial \mathrm{u}_{3}}{\partial \mathrm{x}_{2}}=0  \tag{2.1.2}\\
\mathrm{x}_{3}=0, \mathrm{~L}_{3} & \mathrm{u}_{3}=0 & \frac{\partial \mathrm{u}_{1}}{\partial \mathrm{x}_{3}}=\frac{\partial \mathrm{u}_{2}}{\partial \mathrm{x}_{3}}=0
\end{array}
$$

The problem may be solved by assuming simple harmonic motion of the parallelepiped and normal mode displacement components of the form [4-6]

$$
u_{1 N}=A_{1 N} \operatorname{sink} x_{1} \operatorname{cosk}_{2} x_{2} \cos k_{3} x_{3} \sin \omega_{N} t
$$

$$
\begin{align*}
& u_{2 N}=A_{2 N} \cos k_{1} x_{1} \sin k_{2} x_{2} \cos k_{3} x_{3} \sin u_{N} t  \tag{2.1.3}\\
& u_{3 N}=A_{3 N} \cos k_{1} x_{1} \cos k_{2} x_{2} \sin k_{3} x_{3} \sin \omega_{N} t
\end{align*}
$$

where the $\omega_{\mathrm{N}}$ are the natural frequencies or eigenvalues of the system. In order to satisfy the boundary conditions, the wave numbers must. be $k_{1}=n_{1} \Pi / L_{1}, k_{2}=n_{2} \Pi / L_{2}$, and $k_{3}=n_{3} \Pi / L_{3}$ with $n_{1}, n_{2}, n_{3}$ being the integers from zero to infinity. The direction of propagation of each component wave is determined by the set of integer indices $N\left(n_{1}, n_{2}, n_{3}\right)$. Substituting the above assumed normal modes into the equations of motion (2.1.1), one obtains for each set N ,

$$
\left[\begin{array}{ccc}
\beta_{N}+k_{1}^{2} & k_{1} k_{2} & k_{1} k_{3}  \tag{2.1.4}\\
k_{1} k_{2} & \beta_{N}+k_{2}^{2} & k_{2} k_{3} \\
k_{1} k_{3} & k_{2} k_{3} & \beta_{N}+k_{3}^{2}
\end{array}\right]\left\{\begin{array}{c}
A_{1 N} \\
A_{2 N} \\
A_{3 N}
\end{array}\right\}=0
$$

with $\beta_{N}=\left(c_{t}^{2} \alpha_{N}^{2}-\omega_{N}^{2}\right) /\left(c_{l}^{2}-c_{t}^{2}\right)$ and $\alpha_{N}^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2}$. This set of equations has a nontrivial solution if and only if the determinent of the $3 \times 3$ matrix is equal to zero, i.e.,

$$
\begin{equation*}
\left(\beta_{N}+\alpha_{N}^{2}\right) \beta_{N}^{2}=0 \tag{2.1.5}
\end{equation*}
$$

Equation (2.1.5) is the characteristic equation. Corresponding to its roots, $\beta_{1 N}=-\alpha_{N}^{2}$ and $\beta_{2 N}=\beta_{3 N}=0$, are the natural frequencies of the system

$$
\begin{align*}
& \omega_{1 N}=c_{\ell} \alpha_{N}  \tag{2.1.6}\\
& \omega_{2 N}=\omega_{3 N}=c_{t} \alpha_{N} . \tag{2.1.7}
\end{align*}
$$

It can be shown [11,14] that $\omega_{1 N}$ is associated with dilatational waves and $\omega_{2 N}=\omega_{3 N}$ with the two orthogonal polarizations of equivoluminal
waves. Thus, each displacement component ( $u_{1}, u_{2}, u_{3}$ ) is made up of three contributions, one due to dilatational waves and the other two due to equivoluminal waves. However, as was mentioned previously, any threedimensional wave front can be expressed in terms of infinite sums of plane longitudinal and transverse wave components so that $\omega_{1 N}=\omega_{2 N}$ and $\omega_{2 N}=\omega_{3 N}=\omega_{t N}$, and therefore
$u_{1}=\sum_{N} \sin k_{1} x_{1} \operatorname{cosk}_{2} x_{2} \cos k_{3} x_{3}\left[\left(A_{1 N}\right)_{\ell}^{\sin \omega_{\ell N} t+\left(A_{1 N}\right)} \sin _{t N} t\right]$
$u_{2}=\sum_{N} \operatorname{cosk}_{1} x_{1} \operatorname{sink} x_{2} x_{2} \operatorname{cosk}_{3} x_{3}\left[\left(A_{2 N}\right) \sin _{\ell N} t+\left(A_{2 N}\right) \sin _{t N} t\right]$
$u_{3}=\sum_{N} \operatorname{cosk}_{1} x_{1} \operatorname{cosk} x_{2} x_{2} \operatorname{sink} x_{3}\left[\left(A_{3 N}\right)_{\ell} \sin \omega_{\ell N} t+\left(A_{3 N}\right)_{t} \sin \omega_{t N} t\right]$,
with the notation $\sum_{N}=\sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \sum_{n_{3}=0}^{\infty}$.
The longitudinal wave amplitude relations are determined by substituting $\omega_{N}=\omega_{\ell N}$ back into equation (2.1.4). This gives the result

$$
\begin{align*}
& \left(A_{1 N}\right)_{\ell}=\left(A_{1 N}\right)_{\ell} \\
& \left(A_{2 N}\right)_{\ell}=\frac{k_{2}}{k_{1}}\left(A_{1 N}\right)_{\ell}  \tag{2.1.9}\\
& \left(A_{3 N}\right)_{\ell}=\frac{k_{3}}{k_{1}}\left(A_{1 N}\right)_{\ell} .
\end{align*}
$$

A similar procedure determines the amplitude relations for the transverse waves:

$$
\begin{align*}
& \left(A_{1 N}\right)_{t}=\left(A_{1 N}\right)_{t} \\
& \left(A_{2 N}\right)_{t}=\left(A_{2 N}\right)_{t}  \tag{2.1.10}\\
& \left(A_{3 N}\right)_{t}=-\frac{k_{1}}{k_{3}}\left(A_{1 N}\right)_{t}-\frac{k_{2}}{k_{3}}\left(A_{2 N}\right)_{t}
\end{align*}
$$

Thus, displacements (2.1.8) become

$$
\begin{align*}
& u_{1}=\sum_{N} \operatorname{sink} x_{1} x_{1} \cos k_{2} x_{2} \cos k_{3} x_{3}\left\{\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t+\left(A_{1 N}\right)_{t} \sin \omega_{t N} t\right\} \\
& u_{2}=\sum_{N} \cos k_{1} x_{1} \sin k_{2} x_{2} \cos k_{3} x_{3}\left\{\frac{k_{2}}{k_{1}}\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t+\left(A_{2 N}\right)_{t} \sin \omega_{t N} t\right\} \\
& u_{3}=\sum_{N} \operatorname{cosk}_{1} x_{1} \cos k_{2} x_{2} \sin k_{3} x_{3}\left\{\frac{k_{3}}{k_{1}}\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t\right.  \tag{2.1.17}\\
& \\
& -\left[\frac{\left[k_{1}\right.}{k_{3}}\left(A_{1 N}\right)_{t}+\frac{k_{2}}{k_{3}}\left(A_{2 N}\right)_{t}\right]_{\left.\sin \omega_{t N} t\right\}} .
\end{align*}
$$

These equations represent the free vibration displacements of any point within or on the surface of the rectangular parallelepiped as a function of time. The displacements $\left(A_{1 N}\right)_{\ell},\left(A_{1 N}\right)_{t}$, and $\left(A_{2 N}\right)_{t}$ must be determined from the initial conditions of the problem.

### 2.2 Forced Vibration Solution

The equation of motion governing the forced vibration problem is (1.3.1). On writing this equation in component form,

$$
\begin{align*}
& c_{t}^{2} \nabla^{2} u_{1}+\left(c_{l}^{2}-c_{t}^{2}\right) \frac{\partial}{\partial x_{1}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}\right)+f_{1}=\frac{\partial^{2} u_{1}}{\partial t^{2}} \\
& c_{t}^{2} \nabla^{2} u_{2}+\left(c_{l}^{2}-c_{t}^{2}\right) \frac{\partial}{\partial x_{2}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}\right)+f_{2}=\frac{\partial^{2} u_{2}}{\partial t^{2}}  \tag{2.2.1}\\
& c_{t}^{2} \nabla^{2} u_{3}+\left(c_{l}^{2}-c_{t}^{2}\right) \frac{\partial}{\partial x_{3}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}\right)+f_{3}=\frac{\partial^{2} u_{3}}{\partial t^{2}},
\end{align*}
$$

it can be seen that the three equations are elastically coupled ( $u_{1}, u_{2}$, and $u_{3}$ appear in each equation). This prevents a straightforward solution, in that the equations must first be uncoupled, an algebraically cumbersome project, even with the use of Laplace transforms. These difficulties can be minimized by expressing the displacement vector in terms of a vector displacement function $\bar{\Psi}[14,17,18]$ :

$$
\begin{equation*}
\bar{u}=\rho\left[c_{l}^{2} \nabla^{2} \bar{\psi}-\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{\psi}-\frac{\partial^{2} \bar{\psi}}{\partial t^{2}}\right], \tag{2.2.2}
\end{equation*}
$$

with $\quad \bar{\psi}=\Psi_{1} \hat{e}_{1}+\Psi_{2} \hat{e}_{2}+\Psi_{3} \hat{e}_{3}$

$$
\psi_{i}=\psi_{i}\left(x_{1}, x_{2}, x_{3}, t\right) \quad i=1,2,3
$$

Substituting equation (2.2.2) into equation (2.2.1), one obtains the result

$$
\begin{equation*}
\left(c_{l}^{2} \nabla^{2}-\frac{\partial^{2}}{\partial t^{2}}\right)\left(c_{t}^{2} \nabla^{2}-\frac{\partial^{2}}{\partial t^{2}}\right) \bar{\Psi}=-\frac{\bar{f}}{\rho}, \tag{2.2.3}
\end{equation*}
$$

Which is the uncoupled equation of motion in terms of the displacement functions. Solving for the $\Psi_{i}(i=1,2,3)$ from equation (2.2.3) then allows the determination of the displacements from equation (2.2.2).

The solution begins by assuming displacement functions having the same spatial form as the previously assumed normal modes (2.1.3) but now being a general function of time (instead of being restricted to simple harmonic motion):

$$
\begin{align*}
& \Psi_{1}=\sum_{N} \operatorname{sink}_{1} x_{1} \operatorname{cosk} x_{2} x_{2} \operatorname{cosk}{ }_{3} x_{3} T_{1 N}(t) \\
& \Psi_{2}=\sum_{N} \operatorname{cosk}_{1} x_{1} \operatorname{sink} x_{2} x_{2} \operatorname{cosk} x_{3} x_{3 N}(t)  \tag{2.2.4}\\
& \Psi_{3}=\sum_{N} \operatorname{cosk}_{1} x_{1} \operatorname{cosk} x_{2} x_{2} \operatorname{sink} x_{3} x_{3} T_{3 N}(t) .
\end{align*}
$$

These expressions satisfy the boundary conditions, equations (2.1.2). Substituting equation (2.2.4a) into the appropriate uncoupled equation of motion (2.2.3a) and performing the necessary algebraic manipulations, one gets the following results:

$$
\begin{gather*}
c_{l}^{2} c_{t}^{2} \sum_{N} \alpha_{N}^{4} \operatorname{sink}_{1} x_{1} \operatorname{cosk}_{2} x_{2} \operatorname{cosk} x_{3} x_{3} T_{1 N}+\left(c_{l}^{2}+c_{t}^{2}\right) \sum_{N} \alpha_{N}^{2} \operatorname{sink}_{1} x_{1} \cos k_{2} x_{2} \cos k_{3} x_{3} \ddot{T}_{1 N} \\
+\sum_{N} \operatorname{sink} k_{1} x_{1} \cos k_{2} x_{2} \cos k_{3} x_{3} T_{1 N}=-\frac{f_{1}}{\rho}, \tag{2.2.5}
\end{gather*}
$$

Where $\ddot{T}_{1 N}$ represents the second derivative of $T_{1 N}(t)$ with respect to time, etc. The next step is to multiply both sides of equation (2.2.5) by $\sin \ell_{1} x_{1} \cos \ell_{2} x_{2} \cos \ell_{3} x_{3}$ and integrate over the spatial domain. However, due to the orthogonality of the normal modes, the following is true:
$\int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} \operatorname{sink} x_{1} \sin \ell_{1} x_{1} \operatorname{cosk} x_{2} x_{2} \cos \ell_{2} x_{2} \cos k_{3} x_{3} \cos \ell_{3} x_{3} d x_{1} d x_{2} d x_{3}$
$i=1,2,3$,

$$
=\left\{\begin{array}{cc}
0 & \text { when } l_{i} \neq k_{i} \\
\frac{\eta_{1} V}{8} & \text { when } l_{i}=k_{i}
\end{array}\right.
$$

with $\eta_{1}=\left(1+\delta_{k_{2} 0}\right)\left(1+\delta_{k_{3} 0}\right)$ and $V=L_{1} L_{2} L_{3}$ is the volume of the parallelepiped. Therefore, performing the integrations on equation (2.2.5) gives

$$
\begin{align*}
& \dddot{T}_{1 N}+\left(c_{l}^{2}+c_{t}^{2}\right) \alpha_{N}^{2} \ddot{T}_{1 N}+c_{l}^{2} c_{t}^{2} \alpha_{N}^{4} T_{1 N} \\
&=-\frac{8}{\rho \eta_{1} V} \int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} f_{1} \operatorname{sink} x_{1} x_{1} \cos k_{2} x_{2} \cos k_{3} x_{3} d x_{1} d x_{2} d x_{3} . \tag{2.2.6}
\end{align*}
$$

This expression may be solved by using Laplace transforms and assuming that the motion starts from rest $\left(\mathrm{T}_{1 \mathrm{~N}}(0)=\dot{\mathrm{T}}_{1 N}(0)=\ddot{\mathrm{T}}_{1 \mathrm{~N}}(0)=\ddot{\mathrm{T}}_{1 N}(0)=0\right)$. Thus,

$$
\begin{equation*}
\overline{\mathrm{T}}_{1 N}(\mathrm{~s})=\overline{\mathrm{F}}_{1 \mathrm{~N}}(\mathrm{~s}) \overline{\mathrm{G}}_{1 \mathrm{~N}}(\mathrm{~s}), \tag{2.2.7}
\end{equation*}
$$

where $\bar{F}_{1 N}(s)$ is the transform of the forcing function on the right-hand side of equation (2.2.6) and

$$
\bar{G}_{1 N}(s)=\frac{1}{\left(s^{2}+c_{l}^{2} \alpha_{N}^{2}\right)\left(s^{2}+c_{t}^{2} \alpha_{N}^{2}\right)} .
$$

Using the convolution property and the fact that $\omega_{\ell N}=c{ }_{\ell}{ }^{\alpha}$ and $\omega_{t N}=c_{t} \alpha_{N}$, one can write the inverse transform of equation (2.2.7) as

$$
\begin{equation*}
T_{1 N}(t)=\int_{0}^{t} F_{1 N}(\tau) G_{1 N}(t-\tau) d \tau \tag{2.2.8}
\end{equation*}
$$

with

$$
\begin{align*}
& F_{1 N}(\tau)=-\frac{8}{\rho \eta_{1} V} \int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} f_{1}\left(x_{1}, x_{2}, x_{3}, \tau\right) \operatorname{sink}_{1} x_{1} \cos { }_{2} x_{2} \cos { }_{3} x_{3} d x_{1} d x_{2} d x_{3}  \tag{2.2.9}\\
& G_{1 M}(t-\tau)=\frac{1}{\omega_{t N}^{2}-\omega_{\ell N}^{2}}\left[\frac{\sin \omega_{\ell N}(t-\tau)}{\omega_{\ell N}}-\frac{\sin \omega_{t N}(t-\tau)}{\omega_{t N}}\right] . \tag{2.2.10}
\end{align*}
$$

The other two uncoupled equations of motion, (2.2.3b) and (2.2.3c), may be treated in a similar fashion with the results

$$
\begin{align*}
& T_{2 N}(t)=\int_{0}^{t} F_{2 N}(\tau) G_{2 N}(t-\tau) d \tau  \tag{2.2.11}\\
& T_{3 N}(t)=\int_{0}^{t} F_{3 N}(\tau) G_{3 N}(t-\tau) d \tau \tag{2.2.12}
\end{align*}
$$

and

$$
\begin{align*}
& F_{2 N}(\tau)=-\frac{8}{\rho \eta_{2} V} \int_{0}^{L} \int_{0}^{L_{2}} \int_{0}^{L_{3}} f_{2}\left(x_{1}, x_{2}, x_{3}, \tau\right) \operatorname{cosk_{1}x_{1}\operatorname {sink}x_{2}x_{2}\operatorname {cosk}x_{3}x_{3}dx_{1}dx_{2}dx_{3}} \\
& F_{3 N}(\tau)=-\frac{8}{\rho \eta_{3} V} \int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} f_{3}\left(x_{1}, x_{2}, x_{3}, \tau\right) \cos k_{1} x_{1} \operatorname{cosk}_{2} x_{2} \operatorname{sink} x_{3} x_{3} d x_{1} d x_{2} d x_{3}  \tag{2.2.14}\\
& G_{2 N}(t-\tau)=G_{3 N}(t-\tau)=\frac{1}{\omega_{t N}^{2} \omega_{\ell N}{ }^{2}}\left[\frac{\sin \omega_{\ell N}(t-\tau)}{\omega_{\ell N}}-\frac{\sin \omega_{t N}(t-\tau)}{\omega_{t N}}\right], \tag{2.2.15}
\end{align*}
$$

where

$$
\begin{aligned}
& n_{2}=\left(1+\delta_{k_{1} 0}\right)\left(1+\delta_{k_{3} 0}\right) \\
& n_{3}=\left(1+\delta_{k_{1} 0}\right)\left(1+\delta_{k_{2} 0}\right) .
\end{aligned}
$$

Finally, equations (2.2.8) through (2.2.15) are substituted into the displacement functions (2.2.4). These in turn are substituted into equation (2.2.2) to arrive at the forced vibration dispalcement $\bar{u}\left(x_{1}, x_{2}, x_{3}, t\right)$ for
any generalized body force (per unit mass) $\bar{f}\left(x_{1}, x_{2}, x_{3}, t\right)$.

### 2.3 Response to an Impulse

According to Stephens and Pollock [19], acoutic emission source waves are pulselike functions of stress (force) which are produced by the step displacements associated with material yielding. This model is physically consistent with both plastic deformation and crack propagation, the two major sources of acoustic emission. Assuming a very short duration source event within the body, the Dirac delta function provides an extremely simple mathematical approximation of the resulting impulsive body force. In general, this body force wiil be three-dimensional; however, here for simplicity it is assumed to be one-dimensional in the $x_{3}$ direction and of amplitude $F_{0}$. This may be expressed mathematically as

$$
\begin{align*}
& \overline{\mathrm{f}}=\mathrm{f}_{3} \hat{\mathrm{e}}_{3} \\
& \mathrm{f}_{1}=\mathrm{f}_{2}=0 \quad \mathrm{f}_{3}=\mathrm{F}_{0} \delta\left(\mathrm{x}_{1}-\xi_{1}\right) \delta\left(\mathrm{x}_{2}-\xi_{2}\right) \delta\left(\mathrm{x}_{3}-\xi_{3}\right) \delta(\mathrm{t}) . \tag{2.3.1}
\end{align*}
$$

Note that this is an impulsive load applied at the point $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and at time $t=0$ (Fig. 2.1).

Substitution of the above impulse into the results of the previous sections gives, from equation (2.2.14),

$$
\begin{equation*}
F_{3}(\tau)=-\frac{8 F_{o}}{\rho \eta_{3} V} \operatorname{cosk}_{1} \xi_{1} \operatorname{cosk}_{2} \xi_{2} \operatorname{sink}_{3} \xi_{3} \tag{2.3.2}
\end{equation*}
$$

This result is then combined with equation (2.2.15) and substituted into equation (2.2.12) to produce the time varying portion of the assumed displacement function:
$T_{3}(t)=\frac{8 F_{0} \operatorname{cosk}_{1} \xi_{1} \operatorname{cosk}_{2} \xi_{2} \sin k_{3} \xi_{3}}{\rho \eta_{3} V\left(\omega_{\ell N}^{2}-\omega_{t N}{ }^{2}\right)}\left[\frac{\sin \omega_{\ell N}{ }^{t}}{\omega_{\ell N}}-\frac{\sin \omega_{t N}{ }^{t}}{\omega_{t N}}\right]$.


FIGURE 2.1
IMPULSIVE BODY FORCE APPLIED AT THE POINT $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ AND SENSED AT $\left(x_{1}, x_{2}, x_{3}\right)$

Then from equation (2.2.4) the displacement function becomes
$\Psi_{3}=\sum_{N} \frac{8 F_{0} \cos k_{1} \xi_{1} \cos k_{2} \xi_{2} \sin k_{3} \xi_{3}}{\rho \eta_{3} V\left(\omega_{\ell N}^{2}-\omega_{t N}{ }^{2}\right)} \operatorname{cosk}_{1} x_{1} \cos k_{2} x_{2} \operatorname{sink} x_{3} x_{3}\left[\frac{\sin \omega_{\ell N} t}{\omega_{\ell N}}-\frac{\sin \omega_{t N}{ }^{t}}{\omega_{t N}}\right]$.

Finally, substituting the above into equation (2.2.2) gives the three forced vibration displacement components shown below:

$$
\begin{align*}
& u_{1}=\sum_{N} F_{0} \Phi_{3 N} \operatorname{sink}_{1} x_{1} \operatorname{cosk}_{2} x_{2} \operatorname{cosk}_{3} x_{3}\left[\frac{k_{1} k_{3}}{\alpha_{N}^{2}}\left(\Omega_{\ell}-\Omega_{t}\right)\right] \\
& u_{2}=\sum_{N} F_{0} \Phi_{3 N} \operatorname{cosk}_{1} x_{1} \operatorname{sink} x_{2} x_{2} \operatorname{cosk} x_{3} x_{3}\left[\frac{k_{2} k_{3}}{\alpha_{N}^{2}}\left(\Omega_{\ell}-\Omega_{t}\right)\right]  \tag{2.3.5}\\
& u_{3}=\sum_{N} F_{0} \Phi_{3 N} \operatorname{cosk}_{1} x_{1} \operatorname{cosk} x_{2} x_{2} \operatorname{sink}_{3} x_{3}\left[\Omega_{t}+\frac{k_{3}^{2}}{\alpha_{N}^{2}}\left(\Omega_{\ell}-\Omega_{t}\right)\right] ;
\end{align*}
$$

here

$$
\begin{aligned}
& \Omega_{\ell}=\frac{\sin \omega_{\ell N} t}{\omega_{\ell N}} \\
& \Omega_{t}=\frac{\sin \omega_{t N} t}{\omega_{t N}}
\end{aligned}
$$

and

$$
\Phi_{3 \mathrm{~N}}=\frac{8}{n_{3} \mathrm{~V}} \operatorname{cosk}_{1} \xi_{1} \operatorname{cosk}_{2} \xi_{2} \operatorname{sink}_{3} \xi_{3}
$$

Not surprisingly, these results are the same as those obtained by Hill and Egle [20] using a Green's function approach to the problem.

### 2.4 Symmetric Boundary Conditions

Algebraically, it is often advantageous to work a problem over a symmetric interval. As such, the free and forced vibration solutions for the rectangular parallelepiped with completely rigid-lubricated
faces are presented here for the symmetric boundary conditions

$$
\begin{array}{lll}
x_{1}=-\frac{L_{1}}{2}, \frac{L_{1}}{2} & u_{1}=0 & \frac{\partial u_{2}}{\partial x_{1}}=\frac{\partial u_{3}}{\partial x_{1}}=0 \\
x_{2}=-\frac{L_{2}}{2}, \frac{L_{2}}{2} & u_{2}=0 & \frac{\partial u_{1}}{\partial x_{2}}=\frac{\partial u_{3}}{\partial x_{2}}=0  \tag{2.4.1}\\
x_{3}=-\frac{L_{3}}{2}, \frac{L_{3}}{2} & u_{3}=0 & \frac{\partial u_{1}}{\partial x_{3}}=\frac{\partial u_{2}}{\partial x_{3}}=0
\end{array}
$$

For the free vibration solution, the equation of motion is again equation (2.1.1). Assuming normal modes of the form

$$
\begin{align*}
& u_{1 N}=A_{1 N} \sin k_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \cos k_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \cos k_{3}\left(x_{3}+\frac{L_{3}}{2}\right) \sin \omega_{N} t \\
& u_{2 N}=A_{2 N} \cos k_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \sin k_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \cos k_{3}\left(x_{3}+\frac{L_{3}}{2}\right) \sin \omega_{N} t  \tag{2.4.2}\\
& u_{3 N}=A_{3 N} \cos k_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \cos k_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \sin k_{3}\left(x_{3}+\frac{L_{3}}{2}\right) \sin \omega_{N} t
\end{align*}
$$

and proceeding as in Section 2.1, identical results are obtained for the wave numbers, characteristic equation, natural frequencies and the amplitude relations. Therefore, the free vibration displacements for the symmetric boundary conditions may be written as

$$
\begin{gather*}
u_{1}=\sum_{N} \operatorname{sink}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \operatorname{cosk}_{3}\left(x_{3}+\frac{L_{3}}{2}\right)\left\{\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t+\left(A_{1 N}\right)_{t} \sin \omega_{t N} t\right\} \\
u_{2}=\sum_{N} \operatorname{cosk}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{sink}\left(x_{2}+\frac{L_{2}}{2}\right) \cos k_{3}\left(x_{3}+\frac{L_{3}}{2}\right)\left\{\frac{k_{2}}{k_{1}}\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t\right. \\
\left.+\left(A_{2 N}\right)_{t} \sin \omega_{t N} t\right\} \tag{2.4.3}
\end{gather*}
$$

$$
\begin{aligned}
u_{3}=\sum_{N} \cos k_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \sin k_{3} & \left(x_{3}+\frac{L_{3}}{2}\right)\left\{\frac{k_{3}}{k_{1}}\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t\right. \\
& \left.-\left[\frac{k_{1}}{k_{3}}\left(A_{1 N}\right)_{t}+\frac{k_{2}}{k_{3}}\left(A_{2 N}\right)_{t}\right]_{\sin \omega_{t N}} t\right\} .
\end{aligned}
$$

The forced vibration solution may be handled similarly. Assuming that the displacement functions can be expressed as

$$
\begin{align*}
& \Psi_{1}=\sum_{N} \operatorname{sink}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \operatorname{cosk}_{3}\left(x_{3}+\frac{L_{3}}{2}\right) T_{1 N}(t) \\
& \Psi_{2}=\sum_{N} \operatorname{cosk}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{sink}_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \operatorname{cosk}_{3}\left(x_{3}+\frac{L_{3}}{2}\right) T_{2 N}(t)  \tag{2.4.4}\\
& \Psi_{3}=\sum_{N} \operatorname{cosk}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x_{2}+\frac{L_{2}}{2}\right) \operatorname{sink}_{3}\left(x_{3}+\frac{L_{3}}{2}\right) T_{3 N}(t)
\end{align*}
$$

and following the same procedure as in Section 2.2, one obtains similar results, the only difference being in the arguments of the spatial sin and cos terms. Instead of $k_{1} x_{1}, k_{2} x_{2}$, and $k_{3} x_{3}$, these arguments should be $k_{1}\left(x_{1}+\frac{L_{1}}{2}\right), k_{2}\left(x_{2}+\frac{L_{2}}{2}\right)$ and $k_{3}\left(x_{3}+\frac{L_{3}}{2}\right)$. In all other respects the functions are identical.

## CHAPTER III

## STRESS-FREE/RIGID-LUBRICATED BOUNDARIES

### 3.1 Free Vibration Solution

The applicable equation of motion for the free vibration solution is (2.1.1), which is repeated here for convenience:

$$
\begin{equation*}
c_{t}^{2} \nabla^{2} \bar{u}+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{u}=\frac{\partial^{2} \bar{u}}{\partial t^{2}} . \tag{3.1.1}
\end{equation*}
$$

The boundary conditions consist of two stress-free faces and four rigidlubricated faces and can be written as

$$
\begin{array}{lll}
\mathrm{x}_{1}=0, \mathrm{~L}_{1} & \mathrm{u}_{1}=0 & \frac{\partial u_{2}}{\partial \mathrm{x}_{1}}=\frac{\partial u_{3}}{\partial x_{1}}=0 \\
\mathrm{x}_{2}=0, \mathrm{~L}_{2} & u_{2}=0 & \frac{\partial u_{1}}{\partial \mathrm{x}_{2}}=\frac{\partial u_{3}}{\partial \mathrm{x}_{2}}=0 \\
\mathrm{x}_{3}=0, \mathrm{~L}_{3} & \frac{\partial u_{1}}{\partial \mathrm{x}_{1}}+\frac{\partial u_{2}}{\partial \mathrm{x}_{2}}+\gamma \frac{\partial u_{3}}{\partial \mathrm{x}_{3}}=0 & \frac{\partial u_{3}}{\partial \mathrm{x}_{1}}+\frac{\partial u_{1}}{\partial \mathrm{x}_{3}}=\frac{\partial u_{3}}{\partial \mathrm{x}_{2}}+\frac{\partial u_{2}}{\partial x_{3}}=0
\end{array}
$$

A pictorial presentation of this system is shown in Figure 3.1. The specimen has a finite elastic modulus and is enclosed on four sides by an infinitely rigid medium such that normal displacements at these four surfaces are zero. However, due to lubrication between the contacting surfaces, transverse motion is uninhibited. The two $x_{3}$ faces (cross-hatched) are stress-free and, as a result, incident waves will mode convert on reflection. The two $x_{1}$ faces and the two $x_{2}$ faces, being rigid-lubricated, will reflect with no mode conversion. Thus, as


FIGURE 3.1
STRESS-FREE/RIGID-LUBRICATED BOUNDARIES
the boundary conditions become more complex, so also does the wave propagation: This increase in complexity holds true for the normal modes and the characteristic equation as well. Where in Cnapter II it was possible to determine by inspection the exact form of the normal modes, this no longer holds true; rather, considerable calculation is required.

These calculations begin with the Helmholtz resolution [11, 21], which says that any vector field may be resolved into the gradient of a scalar and the curl of a zero-divergence vector. The vector field of interest here is displacement; hence,

$$
\begin{align*}
& \bar{u}=\nabla S+\nabla x \bar{v}  \tag{3.1.3}\\
& \nabla \cdot \bar{v}=0, \tag{3.1.4}
\end{align*}
$$

where

$$
\begin{aligned}
& S=S\left(x_{1}, x_{2}, x_{3}, t\right)=\text { scalar potential } \\
& \bar{v}=V_{1} \hat{e}_{1}+V_{2} \hat{e}_{2}+V_{3} \hat{e}_{3}=\text { vector potential }
\end{aligned}
$$

and $V_{i}=V_{i}\left(x_{1}, x_{2}, x_{3}, t\right), i=1,2,3$. Substitution of equation (3.1.3) into the equation of motion (3.1.1) leads to the separated wave equations (c.f. Appendix A):

$$
\begin{align*}
& \nabla^{2} S=\frac{1}{c_{\ell}{ }^{2}} \frac{\partial^{2} S}{\partial t^{2}}  \tag{3.1.5}\\
& \nabla^{2} \bar{v}=\frac{1}{c_{t}{ }^{2}} \frac{\partial^{2} \bar{v}}{\partial t^{2}} \tag{3.1.6}
\end{align*}
$$

From the above equations it can be seen that the scalar potential is associated with dilatational (or infinite sums of component plane longitudinal) waves and the vector potential with equivoluminal (transverse) waves. As such, equation (3.1.3) may then be rewritten as

$$
\begin{equation*}
\overline{\mathrm{u}}=\bar{u}_{\mathrm{u}}^{\mathrm{D}}+\overline{\mathrm{u}}^{\mathrm{E}} \tag{3.1.7}
\end{equation*}
$$

with
$\bar{u}=\nabla S=\frac{\partial S}{\partial x_{1}} \hat{e}_{1}+\frac{\partial S}{\partial x_{2}} \hat{e}_{2}+\frac{\partial S}{\partial x_{3}} \hat{e}_{3}=u_{1}^{D} \hat{e}+u_{2}^{D} \hat{e}+u_{3}^{D} \hat{e}$
$\bar{u}^{E}=\nabla x \bar{V}=\left(\frac{\partial V_{3}}{\partial x_{2}}-\frac{\partial V_{2}}{\partial x_{3}}\right) \hat{e}_{1}+\left(\frac{\partial V_{1}}{\partial x_{3}}-\frac{\partial V_{3}}{\partial x_{1}}\right) \hat{e}_{2}+\left(\frac{\partial V_{2}}{\partial x_{1}}-\frac{\partial V_{1}}{\partial x_{2}}\right) \hat{e}_{3}=u{ }_{1}^{E} \hat{e}_{1}+u_{2}^{E} \hat{e}_{2}+u{ }_{3}^{E} \hat{e}_{3}$.

The superscripts $D$ and $E$ denote the dilatational and equivoluminal components respectively. Thus, the Helmholtz resolution mathematically uncouples the wave motion such that the dilatational and equivoluminal components can be dealt with separately. The price for this convenience is one additional equation, the zero divergence gauge condition (3.1.4). In other words, there are now four equations to solve, instead of three, for the three displacement components ( $u_{1}, u_{2}, u_{3}$ ).

The general solutions of the separated wave equations, (3.1.5) and (3.1.6), as developed in Appendix A, may be particularized to fit the boundary conditions (3.1.2) and the Helmholtz resolution (3.1.3). Hence, the scalar and vector potentials must be of the form

$$
\begin{equation*}
S_{N}=-\operatorname{cosk}_{1} x_{1} \operatorname{cosk}_{2} x_{2}\left(A_{1 N} \operatorname{cosk}_{\ell} x_{3}+A_{2 N} \operatorname{sink} \ell_{\ell} x_{3}\right) \sin \omega_{N} t \tag{3.1.10}
\end{equation*}
$$

and

$$
\begin{align*}
& V_{1 N}=\operatorname{cosk}_{1} x_{1} \sin k_{2} x_{2}\left(B_{1 N} \cos k_{t} x_{3}+B_{2 N} \sin k_{t} x_{3}\right) \sin \omega_{N} t \\
& V_{2 N}=\sin k_{1} x_{1} \cos k_{2} x_{2}\left(C_{1 N} \cos k_{t} x_{3}+C_{2 N} \sin k_{t} x_{3}\right) \sin \omega_{N} t  \tag{3.1.11}\\
& V_{3 N}=\sin k_{1} x_{1} \sin k_{2} x_{2}\left(D_{1 N} \cos k_{t} x_{3}+D_{2 N} \sin k_{t} x_{3}\right) \sin \omega_{N} t
\end{align*}
$$

These are corrections to those presented by Kaliski [12]. The associated
wave numbers are given as

$$
\begin{align*}
& k_{\ell}=\left[\frac{N_{N} N^{2}}{c_{l}^{2}}-\left(k_{1}^{2}+k_{2}^{2}\right)\right]^{\frac{1}{2}}  \tag{3.1.12}\\
& k_{t}=\left[\frac{\omega_{N} N^{2}}{c_{t}^{2}}-\left(k_{1}^{2}+k_{2}^{2}\right)\right]^{\frac{1}{2}}, \tag{3.1.13}
\end{align*}
$$

where $k_{1}=\frac{n_{1} \Pi}{L_{1}}$ and $k_{2}=\frac{n_{2} \Pi}{L_{2}}$ as before ( $n_{i}=0,1,2, \ldots ; i=1,2$ ). On substituting the assumed potentials, equations (3.1.10) and (3.1.11), into equations (3.1.8) and (3.1.9), one finds the normal modes of the dilatational and equivoluminal displacement components to be

$$
\begin{align*}
& u_{1 N}^{D}=\sin k_{1} x_{1} \cos k_{2} x_{2}\left[k_{1}\left(A_{1 N} \operatorname{cosk}{ }_{\ell} x_{3}+A_{2 N} \sin k_{\ell} x_{3}\right)\right] \sin \omega_{N} t=\Phi_{1 N}^{D} \sin \omega_{N} t \\
& u_{2 N}^{D}=\cos k_{1} x_{1} \sin k_{2} x_{2}\left[k_{2}\left(A_{1 N} \operatorname{cosk} x_{\ell} x_{3}+A_{2 N} \sin k_{\ell} x_{3}\right)\right] \sin \omega_{N} t=\Phi_{2 N}^{D} \sin \omega_{N} t \\
& u_{3 N}^{D}=\cos k_{1} x_{1} \cos k_{2} x_{2}\left[k_{\ell}\left(A_{1 N} \operatorname{sink} x_{\ell}-A_{2 N} \cos k_{\ell} x_{3}\right)\right] \sin \omega_{N} t=\Phi_{3 N}^{D} \sin \omega_{N} t \tag{3.1.14}
\end{align*}
$$

$u_{1 N}^{E}=\sin k_{1} x_{1} \cos k_{2} x_{2}\left[\left(k_{2} D_{1 N}-k_{t} C_{2 N}\right) \cos k_{t} x_{3}+\left(k_{2} D_{2 N}+k_{t} C_{1 N}\right) \sin k_{t} x_{3}\right] \sin \omega_{N} t$ $u_{2 N}^{E}=\cos k_{1} x_{1} \sin k_{2} x_{2}\left[\left(k_{t} B_{2 N}-k_{1} D_{1 N}\right) \cos k_{t} x_{3}-\left(k_{1} D_{2 N}+k_{t} B_{1 N}\right) \sin k_{t} x_{3}\right] \sin \omega_{N} t$ $u_{3 N}^{E}=\cos k_{1} x_{1} \cos k_{2} x_{2}\left[\left(k_{1} C_{1 N}-k_{2} B_{1 N}\right) \cos k_{t} x_{3}+\left(k_{1} C_{2 N}-k_{2} B_{2 N}\right) \sin k_{t} x_{3}\right] \sin \omega_{N} t$.

Application of the zero divergence gauge condition (3.1.4) to the vector potential $\overline{\mathrm{V}}$ leads to the result that

$$
\begin{aligned}
& D_{1 N}=-\frac{1}{k_{t}}\left(k_{1} B_{2 N}+k_{2} C_{2 N}\right) \\
& D_{2 N}=\frac{1}{k_{t}}\left(k_{1} B_{1 N}+k_{2} C_{1 N}\right),
\end{aligned}
$$

which allows a simplification of equation (3.1.15) to

$$
\left.\begin{array}{rl}
u_{1 N}^{E}=\sin _{1} x_{1} \cos k_{2} x_{2}\{ & -\frac{1}{k_{t}}\left[k_{1} k_{2} B_{2 N}+\left(k_{2}^{2}+k_{t}^{2}\right) C_{2 N}\right] \operatorname{cosk}_{t} x_{3} \\
& \left.+\frac{1}{k_{t}}\left[k_{1} k_{2} B_{1 N}+\left(k_{2}^{2}+k_{t}^{2}\right) C_{1 N}\right] \sin k_{t} x_{3}\right\} \sin \omega_{N} t
\end{array} \begin{array}{rl}
u_{2 N}^{E}=\operatorname{cosk}_{1} x_{1} \sin k_{2} x_{2}\left\{\frac{1}{k_{t}}\left[\left(k_{1}^{2}+k_{t}^{2}\right) B_{2 N}+k_{1} k_{2} C_{2 N}\right] \cos k_{t} x_{3}\right. \\
& \left.-\frac{1}{k_{t}}\left[\left(k_{1}^{2}+k_{t}^{2}\right) B_{1 N}+k_{1} k_{2} C_{1 N}\right] \sin k_{t} x_{3}\right\} \sin \omega_{N} t
\end{array}\right\}
$$

The equivoluminal displacement components may be put into the same form as Kaliski's [12] by letting

$$
\begin{aligned}
& A_{3 N}=-\frac{1}{k_{t}}\left[k_{1} k_{2} B_{2 N}+\left(k_{2}^{2}+k_{t}^{2}\right) C_{2 N}\right] \\
& A_{4 N}=\frac{1}{k_{t}}\left[k_{1} k_{2} B_{1 N}+\left(k_{2}^{2}+k_{t}^{2}\right) C_{1 N}\right] \\
& A_{5 N}=\frac{1}{k_{t}}\left[\left(k_{1}^{2}+k_{t}^{2}\right) B_{2 N}+k_{1} k_{2} C_{2 N}\right] \\
& A_{6 N}=-\frac{1}{k_{t}}\left[\left(k_{1}^{2}+k_{t}^{2}\right) B_{1 N}+k_{1} k_{2} C_{1 N}\right],
\end{aligned}
$$

and substituting these amplitudes into equation (3.1.16). This yields the results
$u_{1 N}^{E}=\sin k_{1} x_{1} \cos k_{2} x_{2}\left(A_{3 N} \operatorname{cosk}_{t} x_{3}+A_{4 N} \sin k_{t} x_{3}\right) \sin \omega_{N} t=\Phi_{1 N}^{E} \sin \omega_{N} t$
$u_{2 N}^{E}=\cos k_{1} x_{1} \sin k_{2} x_{2}\left(A_{5 N} \cos k_{t} x_{3}+A_{6 N} \sin k_{t} x_{3}\right) \sin \omega_{N} t=\Phi_{2 N}^{E} \sin \omega_{N} t$

$$
\begin{align*}
u_{3 N}^{E}=\cos k_{1} x_{1} \cos k_{2} x_{2}\left\{\frac{1}{k_{t}}\right. & {\left[\left(k_{1} A_{4 N}+k_{2} A_{6 N}\right) \cos k_{t} x_{3}\right.} \\
& \left.\left.-\left(k_{1} A_{3 N}+k_{2} A_{5 N}\right) \sin k_{t} x_{3}\right]\right\} \sin \omega_{N} t=\Phi_{2 N}^{E} \sin \omega_{N} t \tag{3.1.17}
\end{align*}
$$

The dilatational and equivoluminal displacements, equations (3.1.14) and (3.1.17) may then be combined according to equation (3.1.7) to generate the normal mode displacement components obtained by Kaliski [12]:

$$
\begin{align*}
& u_{1 N}=\left(\phi_{1 N}^{D}+\phi_{1 N}^{E}\right) \sin \omega_{N} t=\phi_{1 N} \sin \omega_{N} t \\
& u_{2 N}=\left(\phi_{2 N}^{D}+\phi_{2 N}^{E}\right) \sin \omega_{N} t=\phi_{2 N} \sin \omega_{N} t  \tag{3.1.18}\\
& u_{3 N}=\left(\phi_{3 N}^{D}+\phi_{3 N}^{E}\right) \sin \omega_{N} t=\phi_{3 N} \sin \omega_{N} t .
\end{align*}
$$

The next step is to determine the natural frequencies of the system. This is accomplished by substituting the above normal modes into the boundary conditions (3.1.2). Twelve of the eighteen boundary conditions are satisfied exactly, leaving six equations in the six unknowns $A_{i N}(i=1,2, \ldots, 6)$ :
$\left(k_{1}^{2}+k_{2}^{2}+\gamma k_{\ell}^{2}\right) A_{1 N}-(\gamma-1) k_{1} A_{3 N}-(\gamma-1) k_{2} A_{5 N}=0$
$\left(k_{1}^{2}+k_{2}^{2}+\gamma k_{\ell}^{2}\right) \cos _{\ell} L_{3} A_{1 N}+\left(k_{1}^{2}+k_{2}^{2}+\gamma k_{\ell}^{2}\right) \sin k_{\ell} L_{3} A_{2 N}-(\gamma-1) k_{1} \cos k_{t} L_{3} A_{3 N}$

- $(\gamma-1) k_{1} \sin k_{t} L_{3} A_{4 N}-(\gamma-1) k_{2} \cos k_{t} L_{3} A_{5 N}-(\gamma-1) k_{2} \sin k_{t} L_{3} A_{6 N}=0$
$2 k_{1} k_{l} k_{t} A_{2 N}-\left(k_{1}^{2}-k_{t}^{2}\right) A_{4 N}-k_{1} k_{2} A_{6 N}=0$

$$
\begin{aligned}
& -2 k_{1} k_{\ell} k_{t} \sin k_{\ell} L_{3} A_{1 N}+2 k_{1} k_{\ell} k_{t} \cos k_{\ell} L_{3} A_{2 N}+\left(k_{1}^{2}-k_{t}^{2}\right) \sin k_{t} L_{3} A_{3 N} \\
& -\left(k_{1}^{2}-k_{t}^{2}\right) \cos k_{t} L_{3} A_{4 N}+k_{1} k_{2} \sin k_{t} L_{3} A_{5 N}-k_{1} k_{2} \cos k_{t} L_{3} A_{6 N}=0 \\
& 2 k_{2} k_{\ell} k_{t} A_{2 N}-k_{1} k_{2} A_{4 N}-\left(k_{2}^{2}-k_{t}^{2}\right) A_{6 N}=0 \\
& -2 k_{2} k_{\ell} k_{t} \sin k_{\ell} L_{3} A_{1 N}+2 k_{2} k_{\ell} k_{t} \cos k_{\ell} L_{3} A_{2 N}+k_{1} k_{2} \sin k_{t} L_{3} A_{3 N} \\
& -\quad k_{1} k_{2} \cos k_{t} L_{3} A_{4 N}+\left(k_{2}^{2}-k_{t}^{2}\right) \sin k_{t} L_{3} A_{5 N}-\left(k_{2}^{2}-k_{t}^{2}\right) \cos k_{t} L_{3} A_{6 N}=0 .
\end{aligned}
$$

The amplitude relations and frequency equations are determined from these six expressions. There are several appropriate combinations depending upon the values of $\sin k_{t} L_{3}$ and the wave numbers $k_{1}$ and $k_{2}$. These are summarized in Table 3.1.

The first combination includes amplitude relations (3.1.20) and the frequency equation (3.1.21); this applies when $\operatorname{sink}_{t} L_{3}=0$ and $k_{1}>0$, $k_{2}>0$. It represents horizontally polarized (displacements in $x_{1}-x_{2}$ plane only) shear waves and is sometimes referred to as an SH wave solution. From equations (3.1.14), (3.1.17), and (3.1.18), it can be seen that this solution contributes nothing to the $u_{3}$ displacement component and allows for no mode conversions at the boundaries.

The amplitude relations and frequency equation associated with sink $L_{3} \neq 0$ and $k_{1}=k_{2}=0$ are (3.1.22) and (3.1.23), respectively. The latter is derived from the fact that the only meaningful solution to equations (3.1.19) comes when $\operatorname{sink}_{\ell} L_{3}=0$ and $A_{2 N} \neq 0$. These are longitudinal waves propagating in the $x_{3}$ direction, and because they are normally incident on the stress-free surfaces, there are no mode conversions. They simply reflect back and forth between the two faces.

TABLE 3.1. Appropriate Modal Coefficients and Frequency Equations, Stress-Free/Rigid-Lubricated Eoundaries


For the free vibration problem, these values are determined from the initial conditions; in the forced vibration problem, from the forcing function.

The last two sets of amplitude relations, (3.1.24) and (3.1.25), share the frequency equation (3.1.26). This equation is obtained by setting the determinant of equations (3.1.19) equal to zero and dividing the result by $\operatorname{sink}_{t} L_{3}$, since $\operatorname{sink}_{t} L_{3} \neq 0$. Whereas for the completely rigid-lubricated problem the natural frequencies of each of the plane wave components $N\left(n_{1}, n_{2}, n_{3}\right)$ could be determined explicitly from the frequency equation (2.1.5), here they must be solved for implicitly because (3.1.26) is a transcendental equation, which allows for mode conversions at the two stress-free surfaces. These mode conversions are responsible for the increased complexity in the amplitude relations. Equations (3.1.24), (3.1.25), and (3.1.26) thus describe the motion of the mode converting longitudinal and vertically polarized shear waves. This solution is also referred to as the SV/P wave solution.

Notice that the case sink $\mathrm{L}_{3} \neq 0$ and $\mathrm{k}_{1}>0, \mathrm{k}_{2}=0$ corresponds to modes in which the shear waves propagate in $x_{1}-x_{3}$ planes only. Consequently, there are no equivoluminal displacements in the $x_{2}$ direction, i.e., $u_{2 \mathrm{~V}}^{\mathrm{E}}=0$ (ref. equation (3.1.17b)). When $\operatorname{sink}_{\mathrm{t}} \mathrm{L}_{3} \neq 0$ and $\mathrm{k}_{1}=0, \mathrm{k}_{2}>0$, the inverse condition exists: shear waves propagate in $x_{2}-x_{3}$ planes only, and as a result, $\mathrm{u}_{1 \mathrm{~N}}^{\mathrm{E}}=0$.

For the free vibration problem, the amplitudes designated by the asterisks in Table 3.1 are determined from the initial conditions; in the forced vibration problem of the ensuing section, they are determined from the forcing function. The expressions for P and R and the amplitude relations $A_{1 N}, A_{2 N}$, and $A_{5 N}$ from (3.1.25) are all corrections to Kaliski's free vibration solution [12], as are the assumed scalar and vector potentials, equations (3.1.10) and (3.1.11).

Each of the normal modes defined by equations (3.1.18)
represents a plane wave component traveling in a direction determined by the set $N\left(n_{1}, n_{2}, n_{3}\right)$, where $n_{1}$ and $n_{2}$ specify the wave numbers $k_{1}=n_{1} \pi / L_{1}$ and $k_{2}=n_{2} \pi / L_{2}$ and $n_{3}$ refers to the infinite set of natural frequencies. The three-dimensional free vibration displacement components are then made up of the infinity of plane wave components N traveling in all directions:

$$
\begin{align*}
& u_{1}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{N} u_{1 N}\left(x_{1}, x_{2}, x_{3}\right) \\
& u_{2}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{N} u_{2 N}\left(x_{1}, x_{2}, x_{3}\right)  \tag{3.1.27}\\
& u_{3}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{N} u_{3 N}\left(x_{1}, x_{2}, x_{3}\right),
\end{align*}
$$

with $\sum_{N}=\sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \sum_{n_{3}=0}^{\infty}$, as before.

### 3.2 Forced Vibration Solution

The equation of interest for the forced vibration solution is

$$
\begin{equation*}
c_{t}^{2} \nabla^{2} \bar{u}+\left(c_{\ell}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{u}+\bar{f}=\frac{\partial^{2} \bar{u}}{\partial t^{2}}, \tag{3.2.1}
\end{equation*}
$$

and the displacement vector is assumed to be of the form [22]

$$
\begin{equation*}
\overline{\mathrm{u}}=\sum_{\mathrm{N}} \bar{\phi}_{\mathrm{N}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \mathrm{T}_{\mathrm{N}}(\mathrm{t}), \tag{3.2.2}
\end{equation*}
$$

where

$$
\bar{\phi}_{N}=\phi_{1 N} \hat{e}_{1}+\phi_{2 N} \hat{e}_{2}+\phi_{3 N} \hat{e}_{3}
$$

and the $\phi_{i N}(i=1,2,3)$ are the modal functions defined by equations (3.1.14), (3.1.17), and (3.1.18). Note that these functions represent the spatial portion of the normal modes, and as such, they satisfy the rigid-lubricated/stress-free boundary conditions, equations (3.1.2).

Substitution of the assumed displacement (3.2.2) into the governing equation of motion (3.2.1) produces the result

$$
\begin{equation*}
\sum_{N}\left[c_{t}^{2} \nabla^{2} \bar{\phi}_{N}+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{\phi}_{N}\right] T_{N}+\bar{f}=\sum_{N} \bar{\phi}_{N} \ddot{T}_{N} \tag{3.2.3}
\end{equation*}
$$

The bracketed term on the left hand side of this expression may be simplified by substituting the free vibration displacements of equations (3.1.23),

$$
\begin{equation*}
\bar{u}=\sum_{N} \bar{\phi}_{N} \sin \omega_{N} t \tag{3.2.4}
\end{equation*}
$$

into the free vibration equation of motion (3.1.1); thus

$$
\begin{equation*}
c_{t}^{2} \nabla^{2} \bar{\phi}_{N}+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{\phi}_{N}=-\omega_{N} \bar{\phi}_{N} . \tag{3.2.5}
\end{equation*}
$$

Equation (3.2.5) is then substituted into equation (3.2.3) and the results rearranged:

$$
\begin{equation*}
\sum_{N} \bar{\phi}_{N}\left(\ddot{T}_{N}+\omega_{N}^{2} T_{N}\right)=\overline{\mathrm{F}} \tag{3.2.6}
\end{equation*}
$$

Taking the scalar product of both sides of this equation with $\bar{\phi}_{M}$, where $M\left(m_{1}, m_{2}\right)$ denotes another modal function, and integrating over the spatial domain, one gets

$$
\begin{equation*}
\sum_{N}\left(\ddot{T}_{N}+\omega_{N}^{2} T_{N}\right) \int_{V} \bar{\phi}_{N} \cdot \bar{\phi}_{M} d V=\int_{V} \tilde{\mathrm{f}} \cdot \bar{\phi}_{M} d V \tag{3.2.7}
\end{equation*}
$$

It can be shown that the governing equations are seif-adjoint; consequently, the $\bar{\phi}_{\mathrm{N}}$ must be orthogonal [23]. This means that

$$
\begin{equation*}
\int_{V} \bar{\phi}_{N} \cdot \bar{\phi}_{M} d V=0 \quad N\left(n_{1}, n_{2}\right) \neq M\left(m_{1}, m_{2}\right) \tag{3.2.8}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\ddot{\mathrm{T}}_{\mathrm{N}}+\omega_{\mathrm{N}}^{2} \mathrm{~T}_{\mathrm{N}}=\mathrm{W}_{\mathrm{N}} \tag{3.2.9}
\end{equation*}
$$

$$
\begin{align*}
& \text { with } \\
& W_{N}(t)=\frac{1}{E_{N}} \int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} \bar{f}\left(x_{1}, x_{2}, x_{3}, t\right) \cdot \bar{\phi}_{N}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}  \tag{3.2.10}\\
& E_{N}=\int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} \bar{\phi}_{N} \cdot \bar{\phi}_{N} \mathrm{dx}_{1} \mathrm{dx} x_{2} d x_{2} . \tag{3.2.11}
\end{align*}
$$

The quantity $\mathrm{E}_{\mathrm{N}}$ represents the generalized mass per unit density:
The generalized time varying function $T_{N}(t)$ is found by assuming that the motion starts from rest $\left(T_{N}(0)=\dot{T}_{N}(0)=0\right)$ and taking Laplace transforms:

$$
\begin{equation*}
\bar{T}_{N}(s)=\overline{\mathrm{V}}_{\mathrm{N}}(\mathrm{~s}) \overline{\mathrm{W}}_{\mathrm{N}}(\mathrm{~s}) \tag{3.2.12}
\end{equation*}
$$

Here

$$
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{N}}(\mathrm{~s})=\frac{1}{\mathrm{~s}^{2}+\omega_{N}^{2}} \tag{3.2.13}
\end{equation*}
$$

and $\bar{W}_{N}(s)$ is the transform of equation (3.2.10). The inverse transforms of equations (3.2.12) and (3.2.13), when combined, yield the desired result

$$
\begin{equation*}
T_{N}(t)=\frac{1}{\omega_{N}} \int_{0}^{t} W_{N}(\tau) \sin \omega_{N}(t-\tau) d \tau \tag{3.2.14}
\end{equation*}
$$

The forced vibration displacements are obtained by substituting the above back into equation (3.2.2). Hence, in component form they become

$$
\begin{align*}
& u_{1}\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{N} \phi_{1 N}\left(x_{1}, x_{2}, x_{3}\right) T_{N}(t) \\
& u_{2}\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{N} \phi_{2 N}\left(x_{1}, x_{2}, x_{3}\right) T_{N}(t)  \tag{3.2.15}\\
& u_{3}\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{N} \phi_{3 N}\left(x_{1}, x_{2}, x_{3}\right) T_{N}(t) .
\end{align*}
$$

The time varying function $\mathrm{T}_{\mathrm{N}}$ may be determined for any generalized body force (per unit mass) according to equations (3.2.10), (3.2.11), and (3.2.14).

### 3.3 Response to an Impulse

The impulsive body force assumed here is the same as that employed in Chapter II and is written as

$$
\begin{equation*}
\overline{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{t}\right)=\mathrm{F}_{0} \delta\left(\mathrm{x}_{1}-\xi_{1}\right) \delta\left(\mathrm{x}_{2}-\xi_{2}\right) \delta\left(\mathrm{x}_{3}-\xi_{3}\right) \delta(\mathrm{t}) \hat{e}_{3} \tag{3.3.1}
\end{equation*}
$$

On substituting this expression into equation (3.2.10), one obtains

$$
\begin{equation*}
W_{N}(t)=\frac{F_{0}}{E_{N}} \phi_{3 N}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \delta(t) \tag{3.3.2}
\end{equation*}
$$

In order to get the time varying function $T_{N}$, the above is substituted into equation (3.2.14). Integration then yields

$$
\begin{equation*}
T_{N}(t)=\frac{F_{0}}{E_{N} \omega_{N}} \phi_{3 N}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \sin \omega_{N} t \tag{3.3.3}
\end{equation*}
$$

This is then combined with equation (3.2.15) to obtain the displacement components produced by a one-dimensional impulse of magnitude $F_{0}$ applied in the $x_{3}$ direction at the point $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ :
$u_{1}\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{N} \frac{F_{0}}{F_{N} \omega_{N}} \phi_{3 N}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \phi_{1 N}\left(x_{1}, x_{2}, x_{3}\right) \sin \omega_{N} t$
$u_{2}\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{N} \frac{F_{0}}{E_{N} \omega_{N}} \phi_{3 N}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \phi_{2 N}\left(x_{1}, x_{2}, x_{3}\right) \sin \omega_{N} t$
$u_{3}\left(x_{1}, x_{2}, x_{3}, t\right)=\sum_{N} \frac{F_{0}}{E_{N} \omega_{N}} \phi_{3 N}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \phi_{3 N}\left(x_{1}, x_{2}, x_{3}\right) \sin \omega_{N} t$.
In performing the calculations, the $\omega_{N}$ are determined from the characteristic equation (3.1.20) and the quantity $E_{N}$ is evaluated in Appendix B.

### 3.4 Symmetric Boundary Conditions

The symmetric boundary conditions for the parallelepiped with two stress-free and four rigid-lubricated boundaries are

$$
\begin{array}{lll}
x_{1}=-\frac{L_{1}}{2}, \frac{L_{1}}{2} & u_{1}=0 & \frac{\partial u_{2}}{\partial x_{1}}=\frac{\partial u_{3}}{\partial x_{1}}=0 \\
x_{2}=-\frac{L_{2}}{2}, \frac{L_{2}}{2} & u_{2}=0 & \frac{\partial u_{1}}{\partial x_{2}}=\frac{\partial u_{3}}{\partial x_{2}}=0  \tag{3.4.1}\\
x_{3}=-\frac{L_{3}}{2}, \frac{L_{3}}{2} & \frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}=0 & \frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{3}}=\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{3}}=0
\end{array}
$$

Once again, the equation of motion for the free vibration solution is equation (3.1.1). Here the scalar and vector potentials are assumed
to be
$S_{N}=-\operatorname{cosk}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x+\frac{L_{2}}{2}\right)\left[A_{1 N} \operatorname{cosk}_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)+A_{2 N} \operatorname{sink} k_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)\right]_{\sin \omega_{N}}{ }^{t}$
and
$V_{1 N}=\operatorname{cosk}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{sink}_{2}\left(x_{2}+\frac{L_{2}}{2}\right)\left[B_{1 N} \operatorname{cosk}_{t}\left(x_{3}+\frac{L_{3}}{2}\right)+B_{2 N} \operatorname{sink}_{t}\left(x_{3}+\frac{L_{3}}{2}\right)\right] \sin \omega_{N} t$ $V_{2 N}=\operatorname{sink}{ }_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x_{2}+\frac{L_{2}}{2}\right)\left[C_{1 N} \cos k_{t}\left(x_{3}+\frac{L_{3}}{2}\right)+C_{2 N} \operatorname{sink}_{t}\left(x_{3}+\frac{L_{3}}{2}\right)\right] \sin \omega_{N} t$ $V_{3 N}=\operatorname{sink}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{sink}_{2}\left(x_{2}+\frac{L_{2}}{2}\right)\left[D_{1 N} \operatorname{cosk}_{t}\left(x_{3}+\frac{L_{3}}{2}\right)+D_{2 N} \operatorname{sink}_{t}\left(x_{3}+\frac{L_{3}}{2}\right)\right] \sin \omega_{N} t$

Following the same procedure as in Section 3.1 results in the normal mode displacement components

$$
\begin{align*}
u_{1 N}= & \operatorname{sink}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x_{2}+\frac{L_{2}}{2}\right)\left\{k_{1}\left[A_{1 N} \operatorname{cosk}_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)+A_{2 N} \sin k_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)\right]\right. \\
& \left.+A_{3 N} \operatorname{cosk}_{t}\left(x_{3}+\frac{L_{3}}{2}\right)+A_{4 N} \operatorname{sink} k_{t}\left(x_{3}+\frac{L_{3}}{2}\right)\right\} \sin \omega_{N} t \\
u_{2 N}= & \operatorname{cosk}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{sink}_{2}\left(x_{2}+\frac{L_{2}}{2}\right)\left\{k_{2}\left[A_{1 N} \operatorname{cosk}_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)+A_{2 N} \operatorname{sink}_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)\right]\right. \\
& \left.+A_{5 N} \operatorname{cosk}_{t}\left(x_{3}+\frac{L_{3}}{2}\right)+A_{6 N} \sin k_{t}\left(x_{3}+\frac{L_{3}}{2}\right)\right\} \sin \omega_{N} t \\
u_{3 N}= & \operatorname{cosk}_{1}\left(x_{1}+\frac{L_{1}}{2}\right) \operatorname{cosk}_{2}\left(x_{2}+\frac{L_{2}}{2}\right)\left\{k_{\ell}\left[A_{1 N} \sin k_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)-A_{2 N} \cos k_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)\right]\right. \\
& +\frac{1}{\left.k_{t}\left[\left(k_{1} A_{4 N}+k_{2} A_{6 N}\right) \operatorname{cosk} k_{t}\left(x_{3}+\frac{L_{3}}{2}\right)-\left(k_{1} A_{3 N}+k_{2} A_{5 N}\right) \operatorname{sink}\left(x_{3}+\frac{L_{3}}{2}\right)\right]\right\} \sin \omega_{N} t,} \tag{3.4.4}
\end{align*}
$$

which may then be substituted into the boundary conditions (3.4.1) to obtain the same characteristic equation and amplitude relations as before. The results for the forced vibration case are developed in like fashion and yield similar results, again the only difference is in the
arguments of the spatial $\sin$ and cos terms. Thus, $k_{1}\left(x_{1}+\frac{L_{1}}{2}\right)$, $k_{2}\left(x_{2}+\frac{L_{2}}{2}\right), k_{\ell}\left(x_{3}+\frac{L_{3}}{2}\right)$, and $k_{t}\left(x_{3}+\frac{L_{3}}{2}\right)$ should be substituted for $k_{1} x_{1}, k_{2} x_{2}, k_{l} x_{3}$, and $k_{t} x_{3}$, respectively; otherwise, the results are the same.

CHAPTER IV

## ELASTICALLY RESTRAINED/RIGID-LUBRICATED BOUNDARIES

### 4.1 Free and Forced Vibration Solutions

For the free vibration problem, the two stress-free boundaries of Chapter III are replaced by two elastically restrained boundaries, and the four rigid-lubricated boundaries remain unchanged:

$$
\begin{align*}
& \mathrm{x}_{1}=0, \mathrm{~L}_{1} \quad \mathrm{u}_{1}=0 \\
& \frac{\partial u_{2}}{\partial x_{1}}=\frac{\partial u_{3}}{\partial x_{1}}=0 \\
& \mathrm{x}_{2}=0, \mathrm{~L}_{2} \quad \mathrm{u}_{2}=0 \\
& \frac{\partial u_{1}}{\partial x_{2}}=\frac{\partial u_{3}}{\partial x_{2}}=0  \tag{4.1.1}\\
& x_{3}=0, L_{3} \quad \frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\gamma \frac{\partial u_{3}}{\partial x_{3}}= \pm \frac{e_{3} u_{3}}{\lambda} \quad \frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{3}}=\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{3}}=0 .
\end{align*}
$$

Here $e_{3}$ is the elastic modulus of the upper and lower restraints and $\gamma=1+\frac{2 \mu}{\lambda}$. As before, the free vibration equation of motion is

$$
\begin{equation*}
c_{t}^{2} \nabla^{2} \bar{u}+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{u}=\frac{\partial^{2} \bar{u}}{\partial t^{2}} \tag{4.12}
\end{equation*}
$$

The development of the normal mode displacement components is the same as that in Chapter III, and as such, only the results are presented here:

$$
\begin{aligned}
u_{1 N}= & \sin k_{1} x_{1} \cos k_{2} x_{2}\left[k_{1}\left(A_{1 N} \cos k_{\ell} x_{3}+A_{2 N} \sin k_{\ell} x_{3}\right)+A_{3 N} \cos k_{t} x_{3}+A_{4 N} \sin k_{t} x_{3}\right] \sin \omega_{N} t \\
u_{2 N}= & \cos k_{1} x_{1} \sin k_{2} x_{2}\left[k_{2}\left(A_{1 N} \cos k_{\ell} x_{3}+A_{2 N} \sin k_{\ell} x_{3}\right)+A_{5 N} \cos k_{t} x_{3}+A_{6 N} \sin k_{t} x_{3}\right] \sin \omega_{N} t \\
u_{3 N}= & \cos k_{1} x_{1} \cos k_{2} x_{2}\left\{k_{\ell}\left(A_{1 N} \sin k_{\ell} x_{3}-A_{2 N} \cos k_{\ell} x_{3}\right)\right. \\
& +\frac{1}{k_{t}}\left[\left(k_{1} A_{4 N}+k_{2} A_{6 N}\right) \cos k_{t} x_{3}-\left(k_{1} A_{3 N}+k_{2} A_{5 N}\right) \sin k_{t} x_{3}\right] \sin \omega_{N N} t
\end{aligned}
$$

These components are then substituted into boundary conditions (4.1.1) with the result that the twelve boundary conditions on the $x_{1}$ and $x_{2}$ faces are satisfied identically and the remaining six boundary conditions on the $x_{3}$ faces are satisfied when

$$
\begin{aligned}
& \lambda\left(k_{1}^{2}+k_{2}^{2}+\gamma k_{\ell}^{2}\right) k_{t} A_{1 N}+e_{3} k_{\ell} k_{t} A_{2 N}-2 \mu k_{1} k_{t} A_{3 N}-e_{3} k_{1} A_{4 N}-2 \mu k_{2} k_{t} A_{5 N}-e_{3} k_{2} A_{6 N}=0 \\
& {\left[\lambda\left(k_{1}^{2}+k_{2}^{2}+\gamma k_{l}^{2}\right) k_{t} \operatorname{cosk}_{\ell} L_{3}+e_{3} k_{\ell} k_{t} \sin k_{\ell} L_{3}\right] A_{1 N}} \\
& \quad+\left[\lambda\left(k_{1}^{2}+k_{2}^{2}+\gamma k_{\ell}^{2}\right) k_{t} \sin k_{\ell} L_{3}-e_{3} k_{\ell} k_{t} \cos k_{\ell} L_{3}\right] A_{2 N} \\
& -\left[2 \mu k_{1} k_{t} \cos k_{t} L_{3}+e_{3} k_{1} \sin k_{t} L_{3}\right] A_{3 N}-\left[2 \mu k_{1} k_{t} \sin k_{t} L_{3}-e_{3} k_{1} \cos k_{t} L_{3}\right] A_{4 N} \\
& -\left[2 \mu k_{2} k_{t} \cos k_{t} L_{3}+e_{3} k_{2} \sin k_{t} L_{3}\right] A_{5 N}-\left[2 \mu k_{2} k_{t} \sin k_{t} L_{3}-e_{3} k_{2} \cos k_{t} L_{3}\right] A_{6 N}=0
\end{aligned}
$$

$$
\begin{equation*}
2 k_{1} k_{\ell} k_{t} A_{2 N}-\left(k_{1}^{2}-k_{t}^{2}\right) A_{4 N}-k_{1} k_{2} A_{6 N}=0 \tag{4.1.4}
\end{equation*}
$$

$-2 k_{1} k_{\ell} k_{t} \sin _{\ell} L_{3} A_{1 N}+2 k_{1} k_{\ell} k_{t} \cos _{\ell} L_{3} A_{2 N}+\left(k_{1}^{2}-k_{t}^{2}\right) \sin k_{t} L_{3} A_{3 N}$

$$
-\left(k_{1}^{2}-k_{t}^{2}\right) \cos k_{t} L_{3} A_{4 N}+k_{1} k_{2} \sin k_{t} L_{3} A_{5 N}-k_{1} k_{2} \cos k_{t} L_{3} A_{6 N}=0
$$

$$
2 k_{2} k_{\ell} k_{t} A_{2 N}-k_{1} k_{2} A_{4 N}-\left(k_{2}^{2}-k_{t}^{2}\right) A_{6 N}=0
$$

$$
\begin{gathered}
-2 k_{2} k_{\ell} k_{t} \sin k_{\ell} L_{3} A_{1 N}+2 k_{2} k_{\ell} k_{t} \cos k_{\ell} L_{3} A_{2 N}+k_{1} k_{2} \sin k_{t} L_{3} A_{3 N}-k_{1} k_{2} \cos k_{1} L_{3} A_{4 N} \\
+\left(k_{2}^{2}-k_{t}^{2}\right) \sin k_{t} L_{3} A_{5 N}-\left(k_{2}^{2}-k_{t}^{2}\right) \cos k_{t} L_{3} A_{6 N}=0 .
\end{gathered}
$$

These expressions are valid for finite values of $\varepsilon_{3}$.
As in Chapter 3, the appropriate amplitude relations and frequency equations are determined from the above equations and depend upon the values of $\sin k_{t} L_{3}$ and the wave numbers $k_{1}$ and $k_{2}$. Table 4.1 lists these combinations. Equations (4.1.5) and (4.1.6) correspond to the SH wave motion and are identical to equations (3.1.20) and (3.1.21) from Table 3.1. The longitudinal wave motion described by equations (4.1.7)

TABLE 4.1. Appropriate Modal Coefficients and Frequency Equations,
Elastically Restrained/Rigid-Lubricated Boundaries ( $0<\mathbf{e}_{3}<\infty$ )

| Modal Coefficients | $\operatorname{sink}_{t_{3}} L_{3}=0$ | sink $L^{L_{3} 3^{\text {fo }}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{k}_{1}>0, \mathrm{k}_{2}>0$ | $k_{1}=k_{2}=0$ | $\mathrm{k}_{1}>0, \mathrm{k}_{2}=0$ | $\mathrm{k}_{1} \geq 0, \mathrm{k}_{2}=0$ |
| $A_{1 N}$$A_{2 N}$ | 0 | $-\frac{e_{3}}{\delta} A_{2 N}$ | $\left[\begin{array}{c} -\frac{P}{R}\left(\frac{k_{1}^{2}-k_{t}^{2}}{2 k_{1} k_{\ell} k_{t}}\right)\left[A_{3 N}-\frac{e_{3}\left(k_{1}^{2}+k_{t}^{2}\right) k_{\ell}}{R} A_{4 N}\right] \\ \frac{k_{1}^{2}-k_{t}^{2}}{2 k_{1} k k_{t}} A_{4 N} \\ {\left[\frac{e_{3}\left(k_{1}^{2}+k_{2}^{2}\right) k_{\ell} \sin k_{\ell} L_{3}-R\left(\operatorname{cosk}_{\ell} L_{3}-\cos k_{t} L_{3}\right)}{P_{s i n} L_{\ell}+R 81 n k_{t} L_{3}}\right]_{4 N}} \\ * \\ 0 \\ \text { (4.1.9) } \end{array}\right.$ | $\left(\frac{k_{1}^{2}+k_{2}^{2}-k_{t}^{2}}{2 k_{2} k_{\ell} k_{t}}\right)\left[\frac{\sin k_{t} L_{3}}{\sin k_{\ell} L_{3}} A_{5 N}+\frac{\left({\left.\cos k_{\ell} L_{3}-\cos k_{t} L_{3}\right)}_{\operatorname{sink}_{\ell} L_{3}}^{A_{6 N}}\right]}{}\right.$ |
|  | 0 | * |  | $\frac{k_{1}^{2}+k_{2}^{2}-k_{t}^{2}}{2 k_{2} k_{\ell} k_{t}} A_{6 N}$ |
| $\mathrm{A}_{3 \mathrm{~N}}$ | $-\frac{k_{2}}{k_{1}} A_{5 N}$ | 0 |  | $\frac{k_{1}}{k_{2}} A_{5 N}$ |
| ${ }^{\text {A }} 4 \mathrm{~N}$ | 0 | 0 |  | $\frac{k_{1}}{k_{2}} A_{6 N}$ |
| $\mathrm{A}_{5 \mathrm{~N}}$ | * | 0 |  | $\frac{\varepsilon_{3}\left(k_{1}^{2}+k_{2}^{2}+k_{t}^{2}\right) k_{\ell} \sin k_{\ell} L_{3}-R\left(\operatorname{cosk}_{\ell} L_{3}-\operatorname{cosk}_{t} L_{3}\right)}{\operatorname{Psink}_{\ell} L_{3}+\operatorname{Rsink}_{t} L_{3}}$ |
| ${ }^{A_{6 N}}$ | 0 | 0 |  | * |
|  | (4.1.5) | (4.1.7) |  | (4.1.10) |
| Frequency | $\omega_{N}=c_{t}{ }^{\alpha}$ | $\mathrm{e}_{3}^{2}+2 \mathrm{e}_{3} \delta \operatorname{cotk}_{2} \mathrm{~L}_{3}-\delta^{2}=0$ | $\begin{array}{r} \left\{e_{3}^{2}\left(k_{1}^{2}+k_{2}^{2}+k_{t}^{2}\right)^{2} k_{\ell}^{2} \operatorname{sink}_{\ell} L_{3} s i n k_{t} L_{3}-2 e_{3}\left(k_{1}^{2}+k_{2}^{2}+\right.\right. \\ - \end{array}$ | $\begin{aligned} & \left.k_{t}^{2}\right) k_{\ell}\left(\operatorname{Paink}_{\ell} L_{3} \cos k_{t} L_{3}+R_{\left.\cos k_{\ell} L_{3} \sin k_{t} L_{3}\right)}^{\left.P R\left(1-\operatorname{cosk}_{\ell} L_{3} \cos k_{t} L_{3}\right)\right] \operatorname{sink} L_{t}=0}\right. \end{aligned}$ |
| Equations | (4.1.6) | (4.1.8) |  | 4.1.11) |
|  | $\alpha^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2}$ | $\delta=\lambda \boldsymbol{\gamma} k_{\ell}$ | $P=4\left(k_{1}^{2}+k_{2}^{2}\right) k_{\ell} k_{t}$ | $R=\left(k_{1}^{2}+k_{2}^{2}-k_{t}^{2}\right)^{2}$ |

For the free vibration problem, these values are determined from the initial conditions; in the forced vibration problem, from the forcing function.
and (4.1.8) is similar to that described by equations (3.1.22) and (3.1.23), except more complicated, in that the natural frequencies are now a function of both the elastic modulus $e_{3}$ and the wave number $k_{\ell}$, instead of just the latter. Finally, the SV/P motion is given by equations (4.1.9), (4.1.10), and (4.1.11). Here again, the amplitudes denoted by the asterisks are determined from the intial conditions for the free vibration problem or from the forcing function for the forced vibration problem.

A superposition of the displacement due to the wave components traveling in all directions yields the three-dimensional displacement components

$$
\begin{align*}
& u_{1}=\sum_{N} u_{1 N} \\
& u_{2}=\sum_{N} u_{2 N}  \tag{4.1.12}\\
& u_{3}=\sum_{N} u_{2 N}
\end{align*}
$$

with the $u_{i N}(i=1,2,3)$ as given by equations (4.1.3). This completes the free vibration solution for the rectangular parallelepiped with elastically restrained/rigid-lubricated boundaries. The forced vibration solution proceeds exactly as in Section 3.2, and the results are the same.

### 4.2 Reduction to the Previous Cases

The free and forced vibration solution for the parallelepiped with elastically restrained/rigid-lubricated boundaries is particularly interesting in that by allowing $e_{3} \rightarrow \infty$, the normal restraints on the $x_{3}$ faces become rigid. Thus, all of the boundaries become rigid-lubricated
as in Chapter II, and the same results should be obtained. Conversely, letting $e_{3} \rightarrow \infty$, the normal stresses acting on the $x_{3}$ faces approach zero, and the stress-free solution of Chapter III should be recovered. From the above, it can be seen that the elastically restrained/rigidlubricated solution can serve as a check on the previous solutions. We begin by dividing the normal stress boundary conditions on the $x_{3}$ faces (4.1.1c) by $e_{3}$, and then we let $e_{3} \rightarrow \infty$. The result is $u_{3}=0$, which means that the shear stress conditions can be written as $\partial u_{1} / \partial x_{3}=\partial u_{2} / \partial x_{3}=0$, and the completely rigid-lubricated boundary conditions (2.1.2) have been recovered. The characteristic equations, on the other hand, must be divided by $e_{3}^{2}$ before allowing $e_{3} \rightarrow \infty$. For the transcendental equation (4.1.11), this gives

$$
\left(k_{1}^{2}+k_{2}^{2}+k_{t}^{2}\right)^{2} k_{l}^{2} \sin k_{l} L_{3} \sin k_{t} L_{3} \sin k_{t} L_{3}=0
$$

but since $\left(k_{1}^{2}+k_{2}^{2}+k_{\ell}^{2}\right)^{2} k_{\ell}^{2} \neq 0$, the frequency equation becomes

$$
\begin{equation*}
\operatorname{sink}_{\ell} L_{3} \operatorname{sink} L_{3} \operatorname{sink}_{t} L_{3}=0 \tag{4.2.1}
\end{equation*}
$$

The implication here is that either

$$
\begin{aligned}
k_{\ell} & =\frac{n \pi}{L_{3}}, \\
\left(k_{t}\right)_{1} & =\frac{n \pi}{L_{3}}
\end{aligned}
$$

or

$$
\left(k_{t}\right)_{2}=\frac{n \pi}{L_{3}} \quad n=0,1,2, \ldots
$$

but, $k_{3}=\frac{n_{3} I}{L_{3}} \quad\left(n_{3}=0,1,2, \ldots\right)$, meaning that

$$
\begin{equation*}
k_{\ell}=\left(k_{t}\right)_{1}=\left(k_{t}\right)_{2}=k_{3} . \tag{4.2.2}
\end{equation*}
$$

However, by definition,

$$
\begin{align*}
& k_{l}^{2}=\frac{\omega_{N}^{2}}{c_{l}^{2}}-\left(k_{1}^{2}+k_{2}^{2}\right)  \tag{4.2.3}\\
& k_{t}^{2}=\frac{\omega_{N}^{2}}{c_{t}^{2}}-\left(k_{1}^{2}+k_{2}^{2}\right) \tag{4.2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha_{N}^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2} \tag{4.2.5}
\end{equation*}
$$

Combing equations (4.2.2) through (4.2.5), one obtains the frequency equations

$$
\begin{align*}
& \omega_{1 N}=c_{\ell} \alpha_{N}  \tag{4.2.6}\\
& \omega_{2 N}=\omega_{3 N}=c_{t} \alpha_{N} \tag{4.2.7}
\end{align*}
$$

which are identical to (2.1.6) and (2.1.7), as expected.
The appropriate amplitude relations are recovered by performing a division and limiting operating similar to the above on equations (4.1.4), keeping in mind the relationships given in equation (4.2.2). This procedure leads to the result that

$$
\begin{equation*}
A_{2 N}=A_{4 N}=A_{6 N}=0 \tag{4.2.8}
\end{equation*}
$$

which means that the displacement components of equations (4.7.3) reduce to
$u_{1 N}=\operatorname{sink}_{1} x_{1} \cos k_{2} x_{2} \cos k_{3} x_{3}\left[k_{1} A_{1 N} \sin \omega_{\ell N} t+A_{3 N} \sin \omega_{t N} t\right]$
$u_{2 N}=\cos k_{1} x_{1} \sin k_{2} x_{2} \cos k_{3} x_{3}\left[k_{2} A_{1 N} \sin \omega_{\ell N} t+A_{5 N} \sin \omega_{t N} t\right]$
$u_{3 N}=\cos k_{1} x_{1} \cos k_{2} x_{2} \sin k_{3} x_{3}\left[k_{3} A_{1 N} \sin \omega_{\ell N} t-\left(\frac{k_{1}}{k_{3}} A_{3 N}+\frac{k_{2}}{k_{3}} A_{5 N}\right) \sin \omega_{t N} t\right]$.

If we let $k_{1} A_{1 N}=\left(A_{1 N}\right)_{\ell}, A_{3 N}=\left(A_{1 N}\right)_{t}$, and $A_{5 N}=\left(A_{2 N}\right)_{t}$ and add up all the normal modes, the displacements obtained are the same as those obtained in Chapter II, equations (2.1.11):
$u_{1}=\sum_{N} \operatorname{sink} x_{1} x_{1} \operatorname{cosk} x_{2} x_{2} \operatorname{cosk} x_{3} x_{3}\left\{\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t+\left(A_{1 N}\right)_{t} \sin \omega_{t N} t\right\}$
$u_{2}=\sum_{N}^{N} \operatorname{cosk} x_{1} x_{1} \sin k_{2} x_{2} \cos k_{3} x_{3}\left\{\frac{k_{2}}{k_{1}}\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t+\left(A_{2 N}\right)_{t} \sin \omega_{t N} t\right\}$
$u_{3}=\sum_{N}^{N} \cos k_{1} x_{1} \cos k_{2} x_{2} \sin k_{3} x_{3}\left\{\frac{k_{3}}{k_{1}}\left(A_{1 N}\right)_{\ell} \sin \omega_{\ell N} t-\left[\frac{k_{1}}{k_{3}}\left(A_{1 N}\right)_{t}+\frac{k_{2}}{k_{3}}\left(A_{2 N}\right)_{t}\right]^{\left.\sin \omega_{t N} t\right\} .}\right.$

Therefore, allowing the elastic modulus of the boundary restraint on the two $x_{3}$ faces to become infinitely large eliminates any displacements normal to these surfaces, and the boundary conditions become completely rigid-lubricated.

Substitution of $e_{3} \rightarrow 0$ into equations (4.1.1), (4.1.4), and the equations of Table 4.1 yields equations (3.1.2), (3.1.19) and the equations of Table 3.1. Hence, when the elastic modulus of the restraint on the $x_{3}$ faces approaches zero, the boundaries become stress-free, and the complete stress-free/rigid-lubricated solution of Chapter III is recovered.

## CHAPTER V

## RESULTS AND CONCLUSIONS

### 5.1 Numerical Results

Numerical results were computed for the response of a parallelepiped with stress-free/rigid-lubricated boundaries to an impulsive body force (c.f. Section 3.3 and Appendices B and C). Since the infinite series solutions of equations (3.3.4) had to be truncated and a displacement vs. time curve was the desired result, it was decided that the truncation should be performed so as to include all the resonant frequencies from $D C$ to some cutoff frequency $f_{c o}$. The specimen was a $.0254 \times .0254 \times$ $.0254 \mathrm{~m}(1 \times 1 \times 1 \mathrm{in}$.$) aluminum ( \rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$ ) block. The twe cutoff frequencies chosen were 1.25 MHz and 2.0 MHz .

It was found that the first eleven wave numbers had to be considered in order to include all the normal modes with natural frequencies up to 1.25 MHz . Thus, the normal mode indices $N\left(n_{1}, n_{2}, n_{3}\right)$ varied from $\mathrm{N}\left(0,0, \mathrm{n}_{3}\right)$ to $\mathrm{N}\left(10,10, \mathrm{n}_{3}\right)$. Associated with these indices were 480 frequencies (modes) which produced significant displacements in the $x_{3}$ direction. The 2.0 MHz cutoff frequency required the inclusion of the first seventeen wave numbers in the $x_{1}$ and $x_{2}$ directions. This resulted in 1574 contributing modes.

Figure 5.1 shows the $u_{3}$ displacement vs. time history at the position . $0127, .0127, .0147 \mathrm{~m}$ due to a $1 \mathrm{~N}-\mathrm{sec}$ Dirac delta function


FIGURE 5.1
RESPONSE OF A RECTANGULAR PARALLELEPIPED WITH TWO STRESS-FREE AND FOUR
RIGID-LUBRICATED FACES TO AN IMPULSIVE POINT LOAD - TRUNCATED NORMAL
MODE SOLUTIONS - COMPARED TO THE INFINITE MEDIA RESPONSE
impulse acting in the $x_{3}$ direction at .0127, . 0127 , . 0107 m . Since the first $1.74 \mu \mathrm{sec}$ of time history is reflection free, this part of the solution may be compared to the exact solution for an infinite body subjected to the same loading [.24,25]. This solution consists of an infinite spike corresponding to the arrival of the longitudinal wave followed by a ramp which drops to zero when the shear wave arrives. The other two curves are truncated normal mode solutions to the parallelepiped problem. The dotted portions of these curves begin at $1.74 \mu \mathrm{sec}$, the time at which the first reflection occurs and indicate that these values cannot be compared with the infinite media solution. The $\mathrm{f}_{\mathrm{co}}=$ 2.0 MHz solution is obviously a better approximation to the infinite media response than is the $f_{C O}=1.25 \mathrm{MHz}$ solution, but neither of these truncated solutions does a very good job. More frequencies (normal modes) are needed.

To illustrate this point, consider the frequency spectrum (Fourier transform) of a Dirac delta function impulse. It has a constant amplitude for all frequencies from $D C$ to infinity. This means that all frequency components contribute equally to the computed results. Thus, any truncated representation will obviously contain distortions; the fewer the frequencies, the greater the distortion.

Figure 5.2 shows the inverted Fourier transform of the infinite space solution. It was calculated using a Fast Fourier Transform (FFT) routine which was truncated at 10 MHz . The difference between this solution and the infinite media response is due primarily to the Gibbs phenomenon [26] which manifests itself as a ripple in the output. This phenomenon arises whenever a spectral representation is truncated


FIGURE 5.2
TRUNCATED FFT REPRESENTATION OF THE INFINITE MEDIA RESPONSE TO AN IMPULSIVE POINT LOAD
abruptly. In this case, the frequencies above 10 MHz are eliminated from consideration. It can be seen from both Figures 5.1 and 5.2 that the ripple frequency is roughly equal to the cutoff frequency $f_{c o}$.

In numerical computations such as this, where infinite series are involved, the accuracy of the final output is obviously limited by the available CPU time. This is compounded by the fact that the transcendental frequency equations (those involving mode conversions) must be solved iteratively. For the 1.25 MHz cutoff frequenc.y, the CPU time required was 9.5 minutes; the 2.0 MHz solution required 32.25 minutes. The majority of this time was taken in solving for the natural frequencies. The larger the specimen, the more resonant frequencies there are to find. In spite of these limitations, the results seem to be headed in the right direction.

A similar anaiysis was performed by Hill and Egle [20] for the rectangular parallelepiped with completely rigid-lubricated boundaries. The nearly 2600 contributing modes (out of the $2 \times 10^{5}$ considered) were solved for explicitly from the two rather simple frequency equations, $\omega_{N}=c_{\ell}{ }^{\alpha}$ and $\omega_{N}=c_{t}{ }^{\alpha}$, (2.1.6) and (2.1.7). Because they could be solved for explicitly, rather than implicitly, far more natural frequencies were considered. The additional frequencies improved the accuracy to the point where the normal mode solution and the truncated FFT solution were virtually identical.

### 5.2 Conclusions and Future Directions

Presented here are exact normal mode solutions for the forced vibrational response of the rectangular parallelepiped with three sets of boundary conditions: (1) completely rigid-lubricated boundaries;
(2) two stress-free and four rigid-lubricated boundaries; and (3) two elastically restrained and four rigid-lubricated boundaries. For cases (1) and (2), the response is calculated for a Dirac delta function impulsive body force. An analytical verification for both solutions is obtained from the elastically restrained solution.

By allowing the elastic modulus of the restraint $e_{3}$ to approach infinity, the completely rigid-lubricated results are obtained. . When the elastic modulus is allowed to approach zero, the stress-free/rigidlubricated solution is recovered. The fact that these reductions can be made indicates that these solutions are probably correct, and although not as conclusive in the stress-free/rigid-lubricated case, the numerical results tend to reinforce this conclusion.

The forced vibration solution for the rectangular parallelepiped with completely rigid-lubricated boundaries might be used to model the vibration of a lubricated rubber block completely enclosed in a rigid metal container and stimulated by some internal source. In this case, the normal displacements at the surface are negligible; as a result, there are no mode conversions and hence no inhomogeneous (surface) waves. Though not a physically commonplace problem, the chief value of this solution is the insight it provides into solving the more difficult stress-free and elastically restrained cases.

The stress-free/rigid-lubricated solution, on the other hand, if programmed on a state-of-the-art scientific computer, could prove to be very useful in studying fracture mechanics, and in particular, acoustic emission source events. The elastically restrained/rigid-lubricated solution might be even better in this regard. Both solutions allow for
mode conversions on two of the six faces, and both therefore take into account all three major wave types - shear, longitudinal and surface waves - which provides a better model for the typical acoustic emission application.

All three solutions were developed on the premise that acoustic emission is primarily a body force phenomenon. Although this is true, acoustic emission is more conveniently simulated on the surface of a specimen. If the equation of motion was modified to include surface forces [22] and the length dimensions $L_{1}$ and $L_{2}$ were allowed to become very large in comparison to $L_{3}$, the above solutions could be compared to the work on simulated acoustic emission in plates by Pardee and Graham [2] and Hsu, Simmons and Hardy [2]. Such a formulation would also lend itself better to experimental verification since surface forces of known location are easily generated, whereas body forces are neither easy to generate nor to locate. Including the surface forces would also allow the weight of the transducer to be modeled.

The ultimate goal is to completely bridge the gap between the experimental and analytical, such that flaw growth in structural materials can be predicted and, perhaps to some extent, controlled. The forced vibration solution for the rectangular parallelepiped with completely stress-free boundaries would be a significant step in this direction. Unfortunately, none of the three solutions could be extended by superposition to attain the completely stress-free solution. In each instance, the twelve shear stress boundary conditions were satisfied but not the six normal stress conditions. However, the three solutions presented here do represent a meaningful contribution to the field.

With the inclusion of surface forces, these solutions could very well provide a means of extending Hatano's Rayleigh wave calibration of piezoelectric transducers [26] to include all three wave types. They might also serve to verify the diffuse field calibration technique [27]. In conclusion, if these three solutions do nothing else, they will have at least broadened the author's horizons.

## REFERENCES

1. Pardee, W.J. and Graham, L.J., "Frequency Analysis of Two Types of Simulated Acoustic Emissions", Journal of the Acoustical Society of America, Vol. 63, No. 3, March 1978, pp. 793-799.
2. Hsu, N.N., Simmons, J.A., and Hardy, S.C., "An Approach to Acoustic Emission Signal Analysis - Theory and Experiment", Materials Evaluation, Vol. 35, No. 10, October 1977, pp. 100-106.
3. Pao, Y.H., Gajewski, R.R., and Ceranoglu, A.N., "Acoustic Emission and Transient Waves in an Elastic Plate", Journal of the Acoustical Society of America, Vol. 65, No. 1, January 1979, pp. 96-105.
4. Ortway, R., "Uber die Abzählung der Eigenschwingungen fester Körper", Annalen der Physik, Ser. 4, Vol. 42, 1913, pp. 745-760.
5. Nadeau, G., Introduction to Elasticity, Holt, Rinehart and Winston, Inc., New York, 1964, pp. 271-274.
6. Mullick, A.B., "Vibration of a Rectangular Parallelepiped of an Orthotropic Elastic Solid", Bulletin of the Calcutta Mathematical Society, Vol. 62, No. 1, 1970, pp. 35-40.
7. Egle, D.M., "On Estimating the Power of Acoustic Emission Events", paper presented at Society for Experimental Stress Analysis Spring Meeting, Chicago, IL, May 11-16, 1975.
8. Spanner, J.C., Acoustic Emission Techniques and Applications, Intex Publishing Co., Evanston, Illinois, 1974, pp. 10-35.
9. Houghton, J.R., Townsend, M.A., and Packman, P.F., "Optimal Design and Evaluation Criteria for Acoustic Emission Pulse Signature Analysis", Journal of the Acoustical Society of America, Vol. 61, No. 3, March 1977. pp. 859-871.
10. Boresi, A.P. and Lynn, P.P., Elasticity in Engineering Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1974, pp. 195-196.
11. Graff, K.F., Wave Motion in Elastic Solids, Ohio State University Press, Columbus, Ohio, 1975.
12. Malecki, I., Physical Foundations of Technical Acoustics, Pergamon

Press, New York, 1969, pp. 595-599.
13. Kaliski, S., Pẹwne Problemy Brzegowe Dynamicznej Teorii Sprezystości i Cial Niesprezystych, Warszawa, 1957.
14. Fromme, J.A., "Vibration of the Rectangular Parallelepiped with Traction Free Boundary", PhD dissertation, Ohio State University, 1967.
15. Fromme, J.A. and Leissa, A.W., "Free Vibration of the Rectangular Parallelepiped" = Journal of the Acoustical Society of America, Vol. 48, No. 1 (Part 2), July 1970, pp. 290-298.
16. Budanov, S.P. and Orlov, B.I., "Natural Oscillations of a Rectangular Parallelepiped", Journal of Applied Math \& Mechanics (P.M.M.), Vol. 41, No. 1, 1977, pp. 148-152.
17. Kaliski, S., "The Dynamical Problem of the Rectangular Parallelepiped", Archiwum Mechaniki Stosowanej, Vol. 10, 1958, pp. 329-370.
18. Papkovich, P.F., "Solution generale des équations différentielles fundamentales d'élasticité exprimée par trois fonctions harmoniques", Comptes Rendus de l'académie des sciences, Vol. 195, 1932, pp. 513515 and erratum p. 836.
19. Stephens, R.W.B. and Pollock, A.A., "Waveforms and Frequency Spectra of Acoustic Emissions", Journal of the Acoustical Society of America, Vol. 50, No. 3 (Part 2), September 1971, pp. 904-910.
20. Hill, E.v.K. and Egle, D.M., "Forced Vibrational Response of a Rectangular Parallelepiped with Rigid-Lubricated Boundaries", submitted for publication.
21. Morse, P. and Feshbach, H., Methods of Theoretical Physics, Vol. 1, McGraw-Hill, New York, 1953, pp. 52-53.
22. Pilkey, W., "Dynamic Response of Elastic Bodies Using the Reciprocal Theorem", Journal of Applied Mechanics, Vol. 34, Transactions of the ASME, Vo1. 89E, No. 3, September 1967, pp. 774-775.
23. Meirovitch, L., Analytical Methods in Vibrations, Macmillan Co., New York, 1967, pp. 138-143.
24. Achenbach, J.D., Elastic Waves in Solids, North-Holland Publishing Co., Amsterdam, 1973, p. 96-100.
25. Rabiner, L.R. and Gold, B., Theory and Application of Digital Signal Processing, Prentice-Ha11, Englewood Cliffs, N.J., 1975, p. 88-101.
26. Hatano, H. and Mori, E., "Acoustic-Emission Transducer and its

Absolute Calibration", Journal of the Acoustical Society of America, Vol. 59, No. 2, February 1976, pp. 344-349.
27. Hill, E.v.K. and Egle, D.M., "A Reciprocity Technique for Estimating the Diffuse-Field Sensitivity of Piezoelectric Transducers", Journal of the Acoustical Society of America, Vol. 67, No. 2, February 1980, pp. 666-672.

## BIBLIOGRAPHY

Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, Applied Mathematics Series 55, National Bureau of Standards, Washington, D.C., 1972.

Biezeno, C.B. and Grammel, R., Engineering Dynamics, Vol. I, Theory of Elasticity, Analytical and Experimental Methods, Blackie \& Son Ltd., London, 1955.

Carrier, G.F. and Pearson, C.E., Partial Differential Equations, Theory and Technique, Academic, New York, 1976.

Churchill, R.V., Operational Mathematics, 3rd Edition, McGaw-Hill, New York, 1972.

Drouillard, T.F., Acoustic Emission, A Bibliography with Abstracts, Plenum, New York, 1979.

Hildebrand, F.B., Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J., 1962.

Hildebrand, F.B., Methods of Applied Mathematics, 2nd Edition, PrenticeHall, Englewood Cliffs, N.J., 1965.

Johnson, D.E. and Johnson, J.R., Mathematical Methods in Engineering and Physics, Ronald, New York, 1965.

Kreyszig, E., Advanced Engineering Mathematics, 3rd Edition, Wiley, New York, 1972.

Meirovitch, L., Elements of Vibration Analysis, McGraw-Hill, New York, 1975.
$0^{\prime}$ Nan, M., Linear Algebra, Harcourt Brace Jovanovich, New York, 1971.

APPENDICES

## APPENDIX A

## Separated Wave Equations

The governing equation for wave propagation in solids is Navier's equation, which may be expressed in terms of the longitudinal and transverse wave speeds as

$$
\begin{equation*}
c_{t}^{2} \nabla^{2} \bar{u}+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot \bar{u}+\bar{f}=\frac{\partial^{2 \bar{u}}}{\partial t^{2}} . \tag{A1}
\end{equation*}
$$

Substituting the Helmholtz resolutions of displacement

$$
\begin{align*}
& \bar{u}=\nabla S+\nabla x \bar{v}  \tag{A2}\\
& \nabla \cdot \overline{\mathrm{v}}=0 \tag{A3}
\end{align*}
$$

and body force

$$
\begin{align*}
& \overline{\mathrm{f}}=\nabla \mathrm{f}+\nabla \times \overline{\mathrm{F}}  \tag{A4}\\
& \nabla \cdot \overline{\mathrm{~F}}=0 \tag{A5}
\end{align*}
$$

into the equations of motion (A1) gives
$c_{t}^{2} \nabla^{2}(\nabla S+\nabla x \bar{V})+\left(c_{l}^{2}-c_{t}^{2}\right) \nabla \nabla \cdot(\nabla S+\nabla x \bar{V})+(\nabla f+\nabla x \bar{F})=\frac{\partial^{2}}{\partial t^{2}}(\nabla S+\nabla x \overline{\mathrm{~V}})$
But since

$$
\begin{aligned}
& \nabla^{2}(\nabla \mathrm{~S})=\nabla\left(\nabla^{2} \mathrm{~S}\right) \\
& \nabla \cdot \nabla \mathrm{S}=\nabla^{2} \mathrm{~S}
\end{aligned}
$$

and

$$
\begin{aligned}
& \nabla^{2}(\nabla \times \overline{\mathrm{V}})=\nabla \times\left(\nabla^{2} \overline{\mathrm{~V}}\right) \\
& \nabla \cdot \nabla \times \overline{\mathrm{V}}=0,
\end{aligned}
$$

equation (A6) may be rewritten as

$$
\begin{equation*}
\nabla\left(c_{\ell}^{2} \nabla^{2} \dot{s}+f-\frac{\partial^{2} S}{\partial t^{2}}\right)+\nabla x\left(c_{t}^{2} \nabla^{2} \bar{v}+\bar{F}-\frac{\partial^{2} \bar{v}}{\partial t^{2}}\right)=0 \tag{A7}
\end{equation*}
$$

This equation is satisfied if each of the terms in parenthesis vanishes. Hence, the three original equations of motion (AT), each of which included both longitudinal and transverse waves, are separated into the four independent equations

$$
\begin{align*}
& c_{\ell}^{2} \nabla^{2} S+f=\frac{\partial^{2} S}{\partial t^{2}}  \tag{A8}\\
& c_{t}^{2} \nabla^{2} \overline{\mathrm{~V}}+\overline{\mathrm{F}}=\frac{\partial^{2} \overline{\mathrm{~V}}}{\partial \mathrm{t}^{2}} \tag{A9}
\end{align*}
$$

Equation (A8) defines the longitudinal wave motion and equation (A9) the transverse wave motion. These are the separated wave equations. Conditions (A3) and (A5) allow a unique determination of the three components of $\bar{u}$ from the four components of $S$ and $\bar{v}$ and the four components of $£$ and $\overline{\mathrm{F}}$.

## Free Vibration Case

For the free vibration case, the body force terms vanish and the separated wave equations may be rearranged as

$$
\begin{align*}
& \nabla^{2} S=\frac{1}{c_{l}^{2}} \frac{\partial^{2} S}{\partial t^{2}}  \tag{A10}\\
& \nabla^{2} \bar{v}=\frac{1}{c_{t}^{2}} \frac{\partial^{2} \bar{v}}{\partial t^{2}} \tag{A17}
\end{align*}
$$

Both wave equations may be solved by separation of variables. The longitudinal wave equation (A10) may be solved by assuming

$$
\begin{equation*}
S\left(x_{1}, x_{2}, x_{3}, t\right)=W\left(x_{1}, x_{2}, x_{3}\right) T(t) ; \tag{A12}
\end{equation*}
$$

substitution of this expression into equation (A10) yields

$$
\begin{equation*}
\frac{\nabla^{2} \mathrm{~W}}{\mathrm{~W}}=\frac{T^{\prime \prime}}{\mathrm{c}_{\ell}^{2} T}=-\alpha_{\ell}^{2} \tag{A13}
\end{equation*}
$$

from which

$$
\begin{equation*}
\nabla^{2} \mathrm{~W}+\alpha_{\ell}^{2} \mathrm{~W}=0 \tag{A14}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{\prime \prime}+c_{\ell}^{2} \alpha_{\ell}^{2} T=0 \tag{A15}
\end{equation*}
$$

Equation (A14) is known as the Helmholtz equation. Its solution is obtained by substituting into it

$$
\begin{equation*}
w=x_{1}\left(x_{1}\right) X_{2}\left(x_{2}\right) X_{3}\left(x_{3}\right) \tag{Al6}
\end{equation*}
$$

with the result

$$
\begin{equation*}
\frac{x_{1}^{\prime \prime}}{x_{1}}+\frac{x_{2}^{\prime \prime}}{x_{2}}+\frac{x_{3}^{\prime \prime}}{x_{3}}=-\alpha_{\ell}^{2} \tag{A17}
\end{equation*}
$$

Letting

$$
\begin{align*}
& \frac{x_{1}^{\prime \prime}}{x_{1}}=-k_{1}^{2}  \tag{A18}\\
& \frac{x_{2}^{\prime \prime}}{x_{2}}=-k_{2}^{2} \tag{A19}
\end{align*}
$$

gives the third equation

$$
\begin{equation*}
\frac{x_{3}^{\prime \prime}}{x_{3}}=-\left[\alpha_{l}^{2}-\left(k_{1}^{2}+k_{2}^{2}\right)\right]=-k_{l}^{2} \tag{A20}
\end{equation*}
$$

The frequencies may be defined as $\omega_{\ell}=c_{\ell} \alpha_{\ell}$ and $\omega_{t}=c_{t} \alpha_{t}$; hence, the solutions to equations (A15), (A18), (A19), and (A20) are

$$
\begin{equation*}
T(t)=A_{1} \cos \omega_{\ell} t+A_{2} \sin \omega_{\ell} t \tag{A21}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{x}_{1}\left(\mathrm{x}_{1}\right)=\mathrm{B}_{1} \cos \mathrm{k}_{1} \mathrm{x}_{1}+\mathrm{B}_{2} \operatorname{sink}_{1} \mathrm{x}_{1}  \tag{A22}\\
& \mathrm{x}_{2}\left(\mathrm{x}_{2}\right)=\mathrm{B}_{3} \cos \mathrm{c}_{2} \mathrm{x}_{2}+\mathrm{B}_{4} \operatorname{sink}_{2} \mathrm{x}_{2}  \tag{A23}\\
& \mathrm{x}_{3}\left(\mathrm{x}_{3}\right)=\mathrm{B}_{5} \operatorname{cosk}_{3} \mathrm{x}_{3}+\mathrm{B}_{6} \operatorname{sink}_{3} \mathrm{x}_{3} \tag{A24}
\end{align*}
$$

which, along with the initial condition $\mathrm{T}(0)=0$, may be combined according to equations (A12) and (A16) to give
$S=\left(C_{1} \operatorname{cosk}_{1} x_{1}+C_{2} \sin k_{2} x_{2}\right)\left(C_{3} \operatorname{cosk}_{2} x_{2}+C_{4} \sin k_{2} x_{2}\right)\left(C_{5} \operatorname{cosk}_{\ell} x_{3}+C_{6} \sin k_{\ell} x_{3}\right) \sin \omega_{\ell} t$,
the general solution for the free vibration scalar potential. The vector potential components are determined analogously:
$V_{1}=\left(D_{1} \cos k_{1} x_{1}+D_{2} \operatorname{sink} x_{1} x_{1}\right)\left(D_{3} \operatorname{cosk}_{2} x_{2}+D_{4} \operatorname{sink} x_{2} x_{2}\right)\left(D_{5} \cos k_{t} x_{3}+D_{6} \sin k_{t} x_{3}\right) \sin \omega_{t} t$ $V_{2}=\left(E_{1} \operatorname{cosk} k_{1} x_{1}+E_{2} \operatorname{sink} x_{1} x_{1}\right)\left(E_{3} \operatorname{cosk}_{2} x_{2}+E_{4} \operatorname{sink}_{2} x_{2}\right)\left(E_{5} \cos k_{t} x_{3}+E_{6} \operatorname{sink} x_{3}\right) \sin \omega_{t} t$ $V_{3}=\left(F_{1} \operatorname{cosk}_{1} x_{1}+F_{2} \operatorname{sink} x_{1} x_{1}\right)\left(F_{3} \operatorname{cosk}_{2} x_{2}+F_{4} \sin k_{2} x_{2}\right)\left(F_{5} \operatorname{cosk}_{t} x_{3}+F_{6} \sin k_{t} x_{3}\right) \sin \omega_{t} t$.

In view of the frequency definitions above, the longitudinal and transverse wave numbers may be written as

$$
\begin{align*}
& k_{l}^{2}=\frac{\omega_{l}^{2}}{c_{l}^{2}}-\left(k_{1}^{2}+k_{2}^{2}\right)  \tag{A27}\\
& k_{t}^{2}=\frac{\omega_{t}^{2}}{c_{t}^{2}}-\left(k_{1}^{2}+k_{2}^{2}\right) . \tag{A28}
\end{align*}
$$

## APPENDIX B

## Calculating the Generalized Mass Term

The generalized mass term, $\mathrm{E}_{\mathrm{N}}$, given by equation (3.2.11), is expanded here for computational use:

$$
\begin{equation*}
E_{N}=\int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} \bar{\phi}_{N} \cdot \bar{\phi}_{N} d x_{1} d x_{2} d x_{3} \tag{B1}
\end{equation*}
$$

but $\bar{\phi}_{N} \cdot \bar{\phi}_{N}=\phi_{1 N}^{2}+\phi_{2 N}^{2}+\phi_{3 N}^{2}$. Consequently, equation (B1) may be rewritten as

$$
\begin{equation*}
E_{N}=E_{1 N}+E_{2 N}+E_{3 N}, \tag{B2}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{i N}=\int_{0}^{L_{1}} \int_{0}^{L_{2}} \int_{0}^{L_{3}} \phi_{i N}^{2} \mathrm{dx}_{1} \mathrm{dx}_{2} \mathrm{dx}_{3}, \quad i=1,2,3 \tag{B3}
\end{equation*}
$$

The $\phi_{i N}(i=1,2,3)$ are the modal functions defined by equations (3.1.14), (3.1.17), and (3.1.18).

Substituting the modal functions into equations (B3) and performing the indicated integrations results in the following expressions:

$$
\begin{align*}
& E_{1 N}=\frac{\eta_{1} L_{1} L_{2}}{4}\left\{k_{1}^{2}\left(A_{1 N}^{2} \Delta_{1}+2 A_{1 N} A_{2 N} \Delta_{2}+A_{2 N}^{2} \Delta_{3}\right)\right. \\
&+2 k_{1}\left[A_{1 N}\left(A_{3 N_{4}} \Delta_{4}+A_{4 N} \Delta_{5}\right)+A_{2 N}\left(A_{3 N} \Delta_{6}+A_{4 N} \Delta_{7}\right)\right] \\
&\left.+\left(A_{3 N}^{2} \Delta_{8}+2 A_{3 N} A_{4 N} \Delta_{9}+A_{4 N}^{2} \Delta_{10}\right)\right\} \tag{B4}
\end{align*}
$$

$$
\begin{align*}
& E_{2 N}= \frac{\eta_{2} L_{1} L_{2}}{4}\left\{k_{2}^{2}\left(A_{1 N}^{2} \Delta_{1}+2 A_{1 N} A_{2 N} \Delta_{2}+A_{2 N}^{2} \Delta_{3}\right)\right. \\
&+2 k_{2}\left[A_{1 N}\left(A_{5 N} \Delta_{4}+A_{6 N} \Delta_{5}\right)+A_{2 N}\left(A_{5 N} \Delta_{6}+A_{6 N} \Delta_{7}\right)\right] \\
&\left.+\left(A_{5 N}^{2} \Delta_{8}+2 A_{5 N} A_{6 N} \Delta_{9}+A_{6 N}^{2} \Delta_{10}\right)\right\}  \tag{B5}\\
& E_{3 N}=\frac{\eta_{3} L_{1} L_{2}}{4}\left\{k_{l}^{2}\left(A_{1 N}^{2} \Delta_{3}+2 A_{1 N} A_{2 N} \Delta_{2}+A_{2 N}^{2} \Delta_{1}\right)\right. \\
&+\frac{k_{\ell}}{k_{t}}\left[A_{1 N}\left(k_{1} A_{4 N}+k_{2} A_{6 N}\right) \Delta_{6}-A_{1 N}\left(k_{1} A_{3 N}+k_{2} A_{5 N}\right) \Delta_{7}\right. \\
&\left.\quad-A_{2 N}\left(k_{1} A_{4 N}+k_{2} A_{6 N}\right) \Delta_{4}+A_{2 N}\left(k_{1} A_{3 N}+k_{2} A_{5 N}\right) \Delta_{5}\right] \\
& \quad \therefore \frac{1}{k_{t}^{2}}\left[\left(k_{1} A_{4 N}+k_{2} A_{6 N}\right)^{2} \Delta_{8}-2\left(k_{1} A_{4 N}+k_{2} A_{6 N}\right)\left(k_{1} A_{3 N}+k_{2} A_{5 N}\right) \Delta_{9}\right. \\
&\left.\left.+\left(k_{1} A_{3 N}+k_{2} A_{5 N}\right)^{2} \Delta_{10}\right]\right\} . \tag{B6}
\end{align*}
$$

Here,

$$
\begin{align*}
& \eta_{1}=\left(1-\delta_{k_{1} 0}\right)\left(1+\delta_{k_{2} 0}\right)  \tag{B7}\\
& \eta_{2}=\left(1+\delta_{k_{1} 0}\right)\left(1-\delta_{k_{2} 0}\right)  \tag{B8}\\
& \eta_{3}=\left(1+\delta_{k_{1} 0}\right)\left(1+\delta_{k_{2} 0}\right), \tag{B9}
\end{align*}
$$

and

$$
\begin{align*}
& \Delta_{1}=\frac{L_{3}}{2}+\frac{\sin 2 k_{\ell} L_{3}}{4 k_{\ell}}  \tag{B10}\\
& \Delta_{2}=\frac{\sin ^{2} k_{\ell} L_{3}}{2 k_{\ell}}  \tag{B11}\\
& \Delta_{3}=\frac{L_{3}}{2}-\frac{\sin 2 k_{\ell} L_{3}}{4 k_{\ell}}  \tag{B12}\\
& \Delta_{4}=\frac{\sin \left(k_{\ell}-k_{t}\right) L_{3}}{2\left(k_{\ell}-k_{t}\right)} \tag{B13}
\end{align*}
$$

$$
\begin{align*}
& \Delta_{5}=\frac{1-\cos \left(k_{\ell}+k_{t}\right) L_{3}}{2\left(k_{\ell}+k_{t}\right)}-\frac{1-\cos \left(k_{\ell}-k_{t}\right) L_{3}}{2\left(k_{\ell}-k_{t}\right)}  \tag{B14}\\
& \Delta_{6}=\frac{1-\cos \left(k_{\ell}-k_{t}\right) L_{3}}{2\left(k_{\ell}-k_{t}\right)}+\frac{1-\cos \left(k_{\ell}+k_{t}\right) L_{3}}{2\left(k_{\ell}+k_{t}\right)}  \tag{B15}\\
& \Delta_{7}=\frac{\sin \left(k_{\ell}-k_{t}\right) L_{3}}{2\left(k_{\ell}-k_{t}\right)}-\frac{\sin \left(k_{\ell}+k_{t}\right) L_{3}}{2\left(k_{\ell}+k_{t}\right)}  \tag{B16}\\
& \Delta_{8}=\frac{L_{3}}{2}+\frac{\sin k_{t} L_{3}}{4 k_{t}}  \tag{B17}\\
& \Delta_{9}=\frac{\sin ^{2} k_{t} L_{3}}{2 k_{t}}  \tag{B18}\\
& \Delta_{10}=\frac{L_{3}}{2}-\frac{\sin 2 k_{t} L_{3}}{4 k_{t}} . \tag{B19}
\end{align*}
$$

Finally, all of the above may be combined according to equation (B2) to obtain $\mathrm{E}_{\mathrm{N}}$.

## APPENDIX C

A COMPUTER PROGRAM FOR CALCULATING THE $X_{3}$-AXIS DISPLACEMENT RESPONSE DUE TO AN IMPULSIVE BODY FORCE


| JJJJJJJJJs | 11 | 222222222 | 77777777777 |
| :---: | :---: | :---: | :---: |
| JJJJJsJJJJ | 111 | 222222222222 | 77777777777 |
| JJ | 1111 | 2222 | $77 \quad 77$ |
| JJ | 11 | 22 | 77 |
| J. | 11 | 22 | 77 |
| JJ | 11 | 22 | 77 |
| JJ | 11 | 22 | 77 |
| JJ | 11 | 22 | 77 |
| JJ JJ | 11 | 22 | 77 |
| JJ JJ | 11 | 22 | 77 |
| dJJJ3JJJ | 111111111 | 22222222222 | 77 |
| JJJJJJ | 11141111 | 22玉222222222 | 77 |


| CEE $=$ RMOO $\cdot$ DES $T=R$ | Staf | + |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLEERMOO,DEST=RMOO | START | PFT | 20.38.41 | PRINTERI | 80.230 | HILL | HLD | At | MEFR |
| POE=RMOO, DEST=RMOO | START | PRT | 20.38 .41 | PRINTERI | ec. 230 | MILL | HLO | At | MEREIC |
| POE=RMOO, DEST=RMOO | Start | PRT | 20.38 .41 | PRINTER1 | 80.230 | HILL | D | AT | ME |
| PCE=RMOO, DES T=RMOO | Staft | PRT | 20.3e.41 | PRINTERI | 80.230 | HitL | HLO | At | MERFI |
| CE =RMOO, DEST $=$ RMOO | Staft | PRT | 20.38 .41 | PR :NTERI | 80.230 | HIL | HLO | AT | MEFR |

CE=RMOO,DEST=FMOO STAFT PRT 20.38 .41 PRINTERI 80.230 HILL HLO AT MERRICK



```
                            COMMON XL&.XL2.XL3.XC1,XC2.XC3.CL.WND,IZERO.CT
    CMMDN NL
    IMENSION U3(200), U3S(200) FNN(15000),03N(15000)
    COMPLEX A, COEFF,OIFL.DIFT,XKL.XKT.RS.PST.RST.TA.TZ.ZER
C
longitudinal and transverse mave speeos
```

```
    CL=6150.
    Cr=3130.
0005
007
008
009
OO
0011
0012
\(c\)
\(c\)
\(c\)
\(c\)
c LOWER AND UPPER FREQUENCY RGUNDS
PI=3.1415926536
PNL=(1.0E4)*2
\(W N U=(1,25 E 6) * 2 \bullet * P I\)
C P and su wave charactefistic frequencies and ub modal displacement COEFFICIENTS
\(\mathrm{N}=1\)
ZERO=0.
\(12 \mathrm{ERO}=0\)
DELF=250.*P1
DM IN = \(1.0 \mathrm{E}-3\)
\(A=C M P L \times(0 . .1\).
ASYMP \(=18\).
DO \(16 \mathrm{~J}=1.13 .2\)
\(\mathrm{N} 2=\mathrm{J}-1\)
XN2=N2
XK2=XN2*PI/XL2
Do \(15 \quad 1=1,13.2\)
\(k=\)
L=1

\(\mathrm{N} 1=1-1\)
\(\times \mathrm{NH}=\mathrm{Na}\)
XK \(1=\mathrm{XNI}\) *PI/XLI
WND \(=x K 1 * \times K 1+x K 2 * X K 2\)
IF(WND.GT.ZERG) GO TO 2
39
XN3 \(=\) K


SUBROUTINE FFEQ(XI, X2,WFN)
COMMON CL.CT.WND,ASYMP
COMPLEX DIFL.,DIFT.XKL,XKT,RS,PST,FST.TI,T2. COEFF, ZC.A A=CMPLX(O..1.)
\begin{tabular}{l}
\(\mathrm{C}=\mathrm{CMPN}\) \\
\hline
\end{tabular}
\(002 t=1,5\)
\(W F L=C * C /\left(C_{L} * C L\right)\)
\(F T=C * C /(C T \neq C T)\)
DIFL=WFL-WND
IFT=WFT-WND
XKL=CS QRTIDIFL)
KKT=CSORT(OIFT)
FS=WNO-CIFT
PST=-4. *WND\#XKL\#XKT
RST \(=-\) RS*RS
\(T 1=X K L * X L 3\)
\(\mathrm{I}=\mathrm{xKT} * \mathrm{XL} 3\)
RTI=CABS (T1)
GT2=CABS(T2)
COEFF \(=\). S* \(^{(1)(P S T / R S T)+(R S T / P S T)) ~}\)
IFIWND.GT OWFL.AND.WND.LT-WFT.AND.RTI.GT.ASYHP) GO TO 40
F(WND.GT.WFT.AND.RTZ.GT.ASYNP) GO TC 41
```



```
C=A*COEFF末SIN(RT2)-COS(RT2)
60 ro 42
ZC=PST+FST
RR=REAL (ZC)
2l=AIMAGIZC
IFIRR) 3.4 .5
If(2R) 3.4 .5
If(21) 3.6 .5
\(\mathrm{x}:=\mathrm{C}\)
GO TO 2
\(\times 2=\mathrm{C}\)
\(\mathrm{C}=(\times 1+\times 2) / 2\).
FN=C
ETURN
END
```




E2*A1*(AS*D4*A6*05) +A2*(A $\leq * 06+A 6 * D 7$
$01=$ XK 1 *A $4+$ XK2 2 A 6
CEI=A1*A1*D3+2
$C E 1=A 1 * A 1 * D 3+2 * * A 1 * A 2 * D 2+A 2 * A 2 * D 1$
$C E 2=01 *(A) * D 6-A 2 * D 4)+a 2 *(A 2 * D 5-A 1 * D 7)$
CE3 $=01 * 01 * 08-2 . * 01 * 02 * D 9+02 * 02 * D 10$
$E I N=X K 1 * X K 1 * A E 1+2 \cdot * X K 1 * A E 2+A E 3$
$E 3 N=D I F L \neq C E 1+(X K L \neq C E 2 / X K T)+(C E 3 / D 1 F T)$
EN=(XL1*XL2/4.) \# (ETA 1 * EIN+ETA $2 * E 2 N+E T A 3 * E 3 N)$
$5 \times 1=x K 1 * x_{1}$
$5 \times 2=x \times 2 * x 2$
SX3 XKL \# $\times 3$
P3NX=COS(SX1)*COS(SX2)*(XKL*(A1*CSIN(SX3)-A2*CCOS(SX3))
+(1./XKT) *(01*CCOS(SX4)-02*CSIN(SX4)))

T $\times 3=$ XKL $\#$ XC3
P3NXC=COS(TX1)*COS(TX2)*(XKL*(A1*CSIN(TX3)-A2*CCOS(TX3))
(f)rxkt)(ol*CCOStTX4)-02*(SIN(TX4))
DF=FEAL(D)
0104
End




