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ABSTRACT

This work presents exact normal mode solutions for the forced
vibrational response of the rectangular parallelepiped with three sets
of boundary conditions: (1) completely rigid-lubricated boundaries;
(2) two stress-free and four rigid-lubricated boundaries; and (3) two
e]astica]]y.restrained and four rigid-lubricated boundaries. Both
analytical and numerical verifications of these solutions are provided.
Applications are discussed in the fields of acoustic emission non-

destructive testing and the calibration of piezoelectric transducers.



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . v v v ¢ v v v v v o v o & e e e e e e e ifi

ABSTRACT & v v v v v v v v v o & e e e s s e v e e e e e e iv

TABLE OF CONTENTS . « « & & ¢ v ¢ v « o s « e e e e e e e e v

LIST OF FIGURES . . . . . . . o e e e e e et e e e e e e e e vii

LIST OF TABLES . . . . . . e e e e e e e e e e e e s v .o vidi
Chapter

I. INTRODUCTION , . . . . . . . . e e e e e e e e e e 1

1.1 Background . . . . . .. e e e e e e e e e 1

1.2 System Response . . . . . .. e e e e e e a e e 2

1.3 Specimen Response . . « . ¢« v v v ¢ ¢ ¢t ¢ v ¢ 0 o e 7

1.4 Normal Mode Solutions . . . . . . Ve e e e e e e 12

11, RIGID-LUBRICATED BOUNDARIES . ., . . . . . . . . e e e 16

2.1 Free Vibration Solution . . . .. e e e e e e e 16

2.2 Forced Vibration Solution . . . . . e e e e e e e 19

2.3 Response toan Impulse . . . . . .. ..+« ... 23

2.4 Symmetric Boundary Conditions . . . . . .. . . . .. 25

I11. STRESS-FREE/RIGID-LUBRICATED BOUNDARIES . . « . « « .+ « . 28

' 3.1 Free Vibration Solution , . . . . . . . ¢+« ¢« . ¢« « .. 28

3.2 Forced Yibration Solution . , . . « . « .+ ¢« ¢« . . . . 39

3.3 Response to an Impulse ., . . v ¢« v v v 70 v o v . a1

3.4 Symmetric Boundary Conditions . + « « v + ¢ ¢« v + « . 42

1V, ELASTICALLY RESTRAINED/RIGID-LUBRICATED BOUNDARIES . . . . 45
4.1 Free and Forced Vibration Solutions . , . « « « . . . 45
4,2 Reduction to the Previous Cases . .« + « + « o o 4 « 48
V. RESULTS AND CONCLUSIONS v & v ¢ ¢ ¢« v ¢ v v ¢ o v « « o « 52

5.1 Numerical Results et e e e e e e e e e e 52
5.2 Conclusions and Future Directions . . . . . . . « . . 56



REFERENCES & v v v v v v o v e e e e e e e e e e e e e e e e e e e 60

BIBLIOGRAPHY . . . . . . . . . e e e e e e e e e e e e e e e e e 63

APPENDICES « & v v ¢ v v e v e e e e e e et e e e e e e e e e e e 64
A Separated Wave Equations . . . . . . . .. .. .00 65
B Calculating the Generalized Mass Term . . . . . . . . . . 69
c A Computer Program for Calculating the x3-Axis

Displacement Response Due to an Impulsive Body Force . . 72

vi



LIST OF FIGURES

Page
Crack Growth Monitoring Svstem . . . . . . . . . . . . . . . 3
Typical Voltage vs. Time Oscilloscope Display
Produced by an Acoustic Emission Burst . . . . . . . . . .. 4
Coordinate System, Dimensions and Stress Convention . . .. 8
Waves Propagating Within an Elastic Selid . . . . . . . .. 11
Impulsive Body Force Applied at the'Point (E1:E2:83)
and Sensed at (X15X2sX3) « « ¢ « o 4 o b e 0 4 e e e .0 . 24
Stress-Free/Rigid-Lubricated Boundaries . . .. . .. . .. 29
Response of a Rectangular Parallelepiped with Two Stress-
Free and Four Rigid-Lubricated Faces to an Impulsive Point
Load — Truncated Normal Mode Solutions — Compared to the
Infinite Media Response . . . . . . . « ¢ ¢ ¢ v ¢ v ¢ o o 53
Truncated FFT Representation of the Infinite Media
Response to an Impulsive Point Load . . . . . . . . .. .. 55

vii



Table
3.1

4.1

LIST OF TABLES

Page
Appropriate Modal Coefficients and Frequency
Equations, Stress-Free/Rigid-Lubricated Boundaries . . . . . 36
Appropriate Modal Coefficients and Frequency
Equations, Elastically Restrained/Rigid-Lubricated
Boundaries (0< ey < ) 47

viii



CHAPTER 1

INTRODUCTION

1.1 Background

The forced yibrational response of the rectangular parallele-
piped is of particular interest in the study of wave propagation in
solids and especially in the characterization of acoustic emission scurces.
Acoustic emission are the stress waves generated by the rapid release or
redistribution Qf stored energy that accompany many deformation and frac-
ture processes. The two major sources of acoustic emission are plastic
deformation and crack growth. There has been considerable interest in
studying the mechanisms associated with these sources in order to pre-
dict, and eventually perhaps control, flaw growth in structural materials.

Understanding the relationship between source and receiver in
acoustic emission experiments has been the motivation for several recent
papers [1-3] which have addressed the dynamic response of plates. How-
ever, many acoustic emission applications involve specimens of finite
dimensions which are not accurately modeled by a plate. Same experi-
mental work has been done on the source-receiver prohlem in finite bodies,
but very little analytical work due mainly to the complexity of the math-
ematics describing the specimen response. In fact, there are no forced
vibration solutions for parallelepipeds in the literature and only a few

free vibration solutions [4-9,12-17].



It is the purpose of this work to help bridge the gap between
the experimental and the analytical by providing normal mode solutions
for the forced vibrational response of the rectangular parallelepiped
with boundary conditions sufficiently realistic in a physical sense to
allow inferences to be made concerning the source event. Obviously,
the more realistic the boundary conditions, the more accurate the infer-
ences. The two sets of boundary conditions considered here are (1) an
six faces rigid-lubricated and (2) four rigid-lubricated and two stress-
free faces. These represent approximations to the completely stress-
free case, which has not, as yet, been solved by the classical normal
mode technique. A third set of bdundary conditions consisting of four
rigid-lubricated and two elastically restrained faces is considered in
Chapter IV. The solution to this problem is of interest because, by
adjusting the value of the elastic modulus, the solutions for the pre-

vious two sets of boundary conditions can be recovered.

1.2 System Response

Much of what is known about the nature of acoustic emission
sources has been learned through the use of piezoe]éctric transducers
coupled to rectangular parallelepiped or plate type specimens. Unfor-
tunately, by the time an acoustic emission signal is displayed on an
output device, the waveform has undergone some very complex transfor-
mations. An example of these complexities is demonstrated in the
simple crack growth monitoring system of Figure 1.1. Here, the speci-

men is under some type of loading which causes a material flaw to grow,
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thereby releasing energy in the form of acoustic emission. These waves
reflect off the specimen boundaries and are sensed by the piezoelectric
transducer. The piezoelectric crystal generates an electrical signal
in proportion to the strength of the received stress wave. This signal
is then amplified and displayed on an oscilloscope. A typical voltage
versus time output trace for an acoustic emission burst is shown in
Figure 1.2. 1Its attenuation is due primarily to damping at the speci-
men-transducer interface [7] and depends, to a much lesser extent, on
the material properties.

Using a systems analysis approach, Spanner [8] postulated a
linear response for the crack detection system as a whole; Houghton,
Townsend and Packman [9] confirmed this experimentally. If it is assumed
that the amplifier and the oscilloscope introduce no appreciable dis-
tortion to the transducer output, there are still three sources of dfs-
tortion: the specimen, the specimen-transducer inte}face, and the trans-
ducer itself. The measured voltage response of the crack growth moni-

toring system as a function of frequency is then expressed as

(o) H (») ® W, (1.2.1)

HMEASURED(M) - HTRANSDUCER/INTERFACE SPECIMEN SOURCE

where

H (w) = H (w) H (w)

TRANSDUCER/INTERFACE TRANSDUCER INTERFACE

is the combined transfer function for the transducer and the specimen-
transducer interface.
To begin with, the only known quantity in equation (1.2.1) is

HMEASURED(“)‘ This is the frequency spectrum of the time-domain



oscilloscope output (Fig. 1.2) and can be measured experimentally.
Given a known source and point of application, HMEASURED(w) may be cal-
culated. For example, an impulse function has a uniform frequency
spectrum from DC to 20 MHz; the frequency response of a step function
decays exponentially. Then assuming that the transfer function for the

specimen (specimen response) H (w) can be determined, the trans-

SPECIMEN

ducer/interface response, (w) may be calculated

H RANSDUCER/INTERFACE
according to equation (1.2.1), i.e., the transducer/interface can be
calibrated. Once the transducer/interface is calibrated, the transfer
function for any unknown source (of known location) can be obtained

according to the expression

Hyoumep(® = HMEASURED(‘?)) _ o (1.2.2)
HrranspuceEr/INTERFACE'Y’ HspEcMEN '
which is simply a rearrangement of equation (1.2.1). HSOURCE(w) can

then be deconvoluted to obtain the time-domain source waveform. Infer-
ences can then be made concerning the nature of the acoustic emission
source and the mechanisms involved in its production.

Perhaps the system model which is the most physically realistic
is a simply supported specimen with a uniform lcading at the specimen-
transducer interface and otherwise stress-free boundaries. One approxi-
mation to this system would be a specimen with completely stress-free
boundaries. This approximate system is defined and discussed in the
ensuing sections of this chapter along with two further simplifications

of lesser mathematical difficulty.




1.3 Specimen Response

The specimen is assumed to be a homogeneous, isotropic, perfect-
1y elastic solid. Its wave propagation is, therefore, governed by the
linear three-dimensional theory of elastodynamics [10,11]. The coordi-
nate system, dimensions, and stress convention are given in Figure 1.3,
and the governing equation of motion is Navier's equation, which may be

expressed in terms of wave speeds as

2=
2925 2 _ A2)gyenaF = 9
ctV u+(c2 ct)VV u+f 3e2 (1.3.1)
with
u = uje; +uye,+uges = displacement
f= f1§1+f2§2+f3é3 = body force per unit mass
u, = ui(xl,xz,X3,t)
fi = fi(xl,xz,x3,t) i=l,2,3 H
9 ~ o - 9 ~
= —— +— +— ’
v 9X1 1 9%y €2 0x3 & s
and '
A+ 2pqk .
Cy = [T] = longitudinal wave speed
1
Cy = [.1‘)1]"2 = transverse wave speed .

Here, p is the density and A and u are the Lamé elastic constants. The
body force term £ is used to represent acoustic emission bursts. No sur-
face forces are considered here since acoustic emission is primarily a
body force phenomenon.

The boundary conditions for the completely stress-free rectan-

gular parallelepiped are as follows:
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=013

=0
g3 =0
032=0t

x; = 0,1 011 = 03
x2 = 0,L; 022 = 03]
x3 = 0,L3 033 = 03]
Writing the stresses in terms of displacements gives
011 duy 8u2 duj
= + +
A Y dX;  3xy  3xg3
0'22 3\.\1 3\12 3\13
X 90X ¥ 0Xy  0X3
033 aul 8u2 GU3
X X3 + 9Xo Y 0X3
Bul 3112
= = —— e —
012 = 0321 U[3x2 3%,
dui; 9dug
013 = 031 = H TR
dunr dug
923 = 032 = Mgty od o
where y = 1+2%,  Therefore, the stress-free
A

terms of displacem

ents become

boundary conditions in

du; 3dup duz duy dup Jduy dug
x1= 0Ly Y gt ot o, T bx, T 0w, dms T omp - O
duj dup duz dup du; duy Odug
x2 = 0,1 Bxl*.Y 3X24-QX3 - Bxl*-3x2 B SX3*-3x2 =0 (1.3.2)
du; duy dug duz duj duz duy
x3 = 0,13 3x14-3x2*.y 9x B 3X1-+3X3 - EXZJ-QX3 -

Within the paralle

lepiped there are

two types of waves propagating,

dilatational and equivoluminal, both of which are three-dimensional in

nature.

Any three-dimensional wave front, no matter what its shape,

can be represented by an infinite set of contiguous points, each point
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being the limiting case of a planar wave front. Accordingly, dilata-
tional waves can be expressed in terms of an infinite sum of plane
longitudinal waves propagating in every direction and equivoluminal
waves in terms of a similar set of plane transverse waves; hence, the

notation for the wave speeds, c, and c,- These two wave types are

%
depicted in Figure 1.4.

When either a longitudinal or a shear wave reflects off a
stress-free surface, depending upon the angle of incidence, any one of
three things can happen. The incident wave can either reflect unchanged;
a portion of it can be mode converted into the other wave type, in which
case two waves are reflected; or the incident wave can be entirely con-
verted into a third wave type, thg inhomogeneous wave. The most com-
mon type of inhomogeneous wave is the Rayleigh surface wave. These
mode conversions at stress-free boundaries are only part of what make
wave propagation problems in solids so difficult. The other part is
the occurrence of multiple reflections between the boundaries in finite
specimens.

The wave propagation problem can be simp]ified by assuming
rigid-Tubricated boundaries. This is because reflections from rigid-
lubricated surfaces are specular, i.e., no mode conversions occur, only
phase changeé. Therefore, there are no inhomogeneous waves (imaginary
wave numbers), and the only difficulty is multiple reflections.
Physically, these boundary conditions suggest a problem in which a body
is vibrating inside a container with infinitely rigid, frictionless
walls. Although this is not representative of the typical acoustic

emission experiment, the solution does provide a first step in solving
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for the more difficult stress-free cases.

Next in complexity is the solution for the problem of a rec-
tangular parallelepiped with four rigid-lubricated and two stress-free
boundaries. This problem is considerably more involved than the pre-
vious one due to the mode conversions on the two stress-free faces;
on the other hand, it is also more realistic. Here, there are longi-
tudinal-shear and shear-longitudinal conversions corresponding to the
real wave numbers and shear-inhomogeneous conversions associated with
the imaginary wave numbers, and as before, there are multiple reflec-
tions.

The problem of the parallelépiped with completely stress-free
boundaries is the most complex of the three presented and also the
most realistic. It allows for mode conversions at all the boundaries
as well as multiple réf1ections. The next section discusses normal

mode solutions to these three prob]emé.

1.4 Normal Mode Solutions

The normal mode technique is appropriate for solving vibration
or wave propagation problems in finite bodies. This is true becausé
finite bodies only vibrate at discreﬁe frequencies és opposed to in-
finite bodies which respond to the whole frequency spectrum. The dis-
placement pattern associated with each of the natural frequencies is
called a normal mode, and all the normal modes combine to give the
total vibration or displacement pattern of the body. Separation of
variables is the approach typically used to determine the natural fre-

quencies and normal modes of a given system.
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In order to solve for the forced vibrational response of any
system using the normal mode approach, it is necessary to first solve
for the free vibrational response. The free vibration problem for a
rectangular parallelepiped with rigid-lubricated boundaries was first
solved hy Ortway [4] in 1913 and repeated by Nadeau [5] in 1964. 1In
an effort to preserve continuity, Nadeau's solution is recast in Chapter
II. The forced vibration problem .is solved by first uncoupling the
equations of motion using a vector displacement function, then utilizing
a normal mode approach to}obtain the desired displacements.

The free vibration solution for the case of four rigid-lubri-
cated and two stress-free boundaries is the work of Kaliski as pre-
sented by Malecki [12]. Kaliski's original work [13] is in Polish;
Malecki's text provides an English translation. Several significant
errors were discovered in this presentation. As such, the free vibra-
tion problem is reworked in its entirety in Chapter III. This includes
many of the details omitted by Malecki. The forced vibration problem
is then solved by the normal mode technique.

Using a straightforward normal mode approach to solve the
problem of the rectangular parallelepiped with completely stress-free
boundaries, one obtains trivial solutions only. This is because separa-

tion of variables assumes factored solutions of the form

u, (x,,%,,%,,t) = Xli(xl)x (x )Xsi(xs)T(t), i=1,2,3 o (1.4.7)

2172
and no member of this set can satisfy the completely stress-free bound-
ary conditions. In fact, the use of such solutions leads to the situa-

tion where there are more equations than unknowns.
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The additional unknowns can be generated systematically using the
method of associated periodicity developed by Fromme and Leissa [14,15].
They applied this technique to obtain a periodic extension of Navier's
equation (1.2.1) and the stress-free boundary conditions and then
employed Fourier analysis to reduce the partial differential equations
to a set of algebraic equations. These equations were then solved to
obtain the complete eigenspectrum for the free vibration problem. One
significant drawback to this technique is the need to solve an infinite
matrix in order to determine the natural frequencies.

Budanov and Orlov [16] obtained a portion of the eigenspectrum
by assuming a particular form for v-u and solving for the symmetric
modes. The antisymmetric modes were not considered, nor were any other
forms for Ve-u; moreover, several simplifying approximations were made
in their numerical computations. In spite of all this, their computed
natural frequencies for the rigid body modes did compare favorably with
experimental beam data. There was no indication as to how well this
analysis worked on rectangular parallelepipeds having dimensions of
similar magnitude.

The two solutions dischssed above are the only known exact
analytical solutions for the free vibrational response of the rectan-
gular parallelepiped with stress-free boundaries. Both of them are
algebraically very complex, which may explain why neither work has
been referenced in any recent publications. Because of this complexity,
and the need for a forced vibration solution to model acoustic emission
activity, the author made several attempts to solve this problem using

other approaches. Unfortunately, none of them were successful. As a
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consequence, the solution developed herein for the forced vibration of
the rectangular parallelepiped with four rigid-lubricated and two stress-
free boundaries probably represents the best available analytical tool

to model acoustic emission activity in parallelepipeds with stress-free
boundaries. The completely rigid-lubricated problem mainly provides a
first step in obtaining the more difficult rigid-lubricated/stress-free

solution.



CHAPTER II

RIGID-LUBRICATED BOUNDARIES

2.1 Free Vibration Solution

The equations of motion for the free vibration solution are

Navier's equations (1.3.1) with the body force terms set equal to zero:

2
2y20 2 _ .2ygy.] = O°U
ctV u-i-(c2 ct)VV u=-7 . (2.1.1)

The rigid-Tubricated boundary conditions are given as

x1 = 0,1y u)
x2 = 0,Ls us
x3 = 0,L3 uj3

0 012 =013=0
0 021 =023 =0
0 031 =032=0 ,

which, in terms of displacements, become

X = O,Ll uy =

x2 = 0,Lp u; =

X3 = 0,L3 uz =

The problem may be

3112 3113
0 —_— — =
dx]  9x)
31.11 SU.3
0 -3';; = E =0 (2.1.2)
8u1 3112
0 e S A" =
0xX3 0X3

solved by assuming simple harmonic motion

of the parallelepiped and normal mode displacement components of the

form [4-6]

Uiy = A1N sinklx1 cosk.x, cosk.x, sinu.t

272 373 N

16
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Uyy = Agy cosk x, sink,x, cosk.x, sinut (2.1.3)

Uan = A3N cosklxl coskzx2 sink3x3 siant s

where the wy are the natural frequancies or eigenvalues of the system.

In order to satisfy the boundary conditions, the wave numbers must. be

k, = nlnlLl, k, = nzn/Lz, and k3 = n3II/L3 with ;s Dy, O being the

1 2
integers from zero to infinity. The direction of propagation of each
component wave is determined by the set of integer indices N(nl,nz,nB).
Substituting the above assumed normal modes into the equations of

motion (2.1.1), one obtains for each set N,

R T
gk,  Btks ok, By 5 =0 (2.1.4)
| kR kg ay+iey | | sy
with By = (cia;-mg)/(ci-ci)'and-a§=ki+-k§+k§. This set of equations

has a nontrivial solution if and only if the determinent of the 3x3

matrix is equal to zero, i.e.,

2,2 _
(Bg*ta)By =0 . (2.1.5)

Equation (2.1.5) is the characteristic equation. Correspond-

ing to its roots, 8 a2 and Boy=By=0» are the natural frequencies

N - T %N
of the system

C o0y (2.1.6)

“IN

Wy = Wge = Coa . (2.1.7)

It can be shown [11,14] that Wy is associated with dilatational waves

and w with the two orthogonal polarizations of equivoluminal

2N “3N
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waves. Thus, each displacement component (uj,u,,us) is made up of three
contributions, one due to dilatational waves and the other two due to
equivoluminal waves. However, as was mentioned previously, any three-
dimensional wave front can be expressed in terms of infinite sums of
plane longitudinal and transverse wave components so that w, =w,. and

IN TN
Won"WaN "Wy and therefore

u, = Zsinklxl coskzx cosk3x3 [(AlN) 281nw2Nt+ (AlN)tsintht]
N
u, = ZCOSklxl smk2x2 cosk 3%q [(AZN) s:.nwz t+ (AZN) tsmtht] (2.1.8)

N

=
1}

3 ZCOSklxl cosk2x2 s:.nk X, [(ABN) sum)l t+(A ) 51ntht] »
N

with the notation Z Z Z Z
n1=0 ny=0 n3=0
The longitudinal wave amplitude relations are determined by

substituting =W back into equation (2.1.4). This gives the result

4,0 =40

ky

(AZN)Q = iI (AlN)z (2.1.9)
k3

By T3 By

A similar procedure determines the amplitude relations for the transverse

waves:
(AlN) t (Aln)t
by, = (g, (2.1.10)
.k &
Bane = 15 G Tk e
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Thus, displacements (2.1.8) bzcome

uy Z sinklxlcoskzxzcosk x3{ (AlN) zsinm Nt + (AlN) tSintht}

3 2
N
Ky
u, = Z cosklxlsinkzxzcosk:;xs{i—]j (AlN) xsmwmt+ (AZN) t_'s:n.ntht:.’r
- ‘
k3 (2.1.11)
u, = Z cosklxlcoskzxzsink3x3{-l-{ (AlN) Q,Sinszt
N
K Ky
- [k—3<A1N) . +§;<A2N) Jsine ot} .

These equations represent the free vibration displacements of any point
within or on the surface of the rectangular parallelepiped as a function
of time. The displacements (A1) ¢ (&), and (A0, must be deter-

mined from the initial conditions of the problem.

2.2 Forced Vibration Solution

The equation of motion governing the forced vibration problem

is (1.3.1). On writing this equation 1in component form,

20 2 5 3 3111‘ 3u2 3U3 321.11
-+ - =

cgveurt(eg=ed) 5, G T ox, Tomy) T T o
duy dup, Jduj 92u,

2y2y, 4 (2 - ¢2) =2 +—+ +f, = 2.

eV vt (eg-el) T Ga tix, ToEy T2 T ez (2.2.1)
du; dup Odug 32u,

292 2_.2y 3 =

cgVugt (e =cp) dx3 (ax1+8x2+81:3)+f3 FI

it can be seen that the three equations are elastically coupled

(ul,uz, and u, appear in each equation). This prevents a straight-
forward solution, in that the equations must first be uncoupled, an
algebraically cumbersome project, even with the use of Laplace trans-
forms. These difficulties can be minimized by expressing the displace-

ment vector in terms of a vector displacement function ¥ [14,17,18]:
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ox
o e o[e2V2F - (o2 - 02) VY. - Y .
u p[czv ¥ (cf ct)VV 7 3g2d (2.2.2)
with g = ‘1‘1&14“1’2;24"1‘3&3
¥, = Wi(xl,xz,x;.,,t) i=1,2,3

Substituting equation (2.2.2) into equation (2.2.1), one obtains the

result

2y2 - , (2.2.3)

82 -
(GZVZ-—-Q')(C gt—{)‘i’ = -

O |+t

which is the uncoupled equation of motion in terms of the displacement
functions. Solving for the ?i(i=1,2,3) from equation (2.2.3) then
allows the determination of the displacements from equation (2.2.2).

The solution begins by éssuming displacement functions having
the same spatial form as the previously assumed normal modes (2.1.3) but
now being a general function of time (instead of being restricted to
simple harmonic motion):

¥y = Z SinklxlcOSkZXZCOSkSXSTlN( t)

N

¥, = Z cosklxlsinkzx cosk3x3T2N(t) (2.2.4)
N

¥q = A cosk xlcosk2x251nk3 3 31‘]( t) .
N

These expressions satisfy the boundary conditions, equations (2.1.2).
Substituting equation (2.2.4a) into the appropriate uncoupled equation
of motion (2.2.3a) and performing the necessary algebraic manipulations,

one gets the following results:

2.2 z 2 2 Z
cycr aNsinklxlcoskzxzcosk3x3TlN+ (c +c ) s:.nk X COSk2x2COSk3x3T]_N

’ 2.
+ 4 51nklxlcosk2x2cosk3x3TlN - p R (2.2.5)
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where §1Nrepresents the second derivative of Tiét) with respect to time,
etc. The next step is to multiply both sides of equation (2.2.5) by
sinzlxlcoszzxzcossz3 and integrate over the spatial domain. However,

due to the orthogonality of the normal modes, the following is true:

L1t hs
J sinklxlsinzlxlcoskzxzcoslzxzcosk3x3cos2333dx1dx2dx3
0 0 O '
. ~ 0 when, li#ki
i=1,2,3, “in,v

3 when 2 :L=k 1

with nl=(14-6k20)(14-6k30) and V=L1L2L3

piped. Therefore, performing the integrations on equation (2.2.5) gives

is the volume of the parallele-

24 2yn2m 2,2k
+ (c‘Q + ct) aNTlN+ czctaNTlN

o (12t
= - J j . f_sink._x cosk.x,cosk. x.dx dx.dx..

en,V 1 171 272 373712
0 0 O

Tin
(2.2.6)

This expression may be solved by using Laplace transforms and
assuming that the motion starts from rest (T (0)=E (0)=T, (0)=T (0)=0).
Thus,

le(s) = F  (8)G  (s) » (2.2.7)
where FlN(s) is the transform of the forcing function on the right-hand
side of equation (2.2.6) and

1
2+c202) (s2+clal) °
(g +egal) (s ctaN)

alN(S) -

Using the convolution property and the fact that W =C Oy and W= %

one can write the inverse transform of equation (2.2.7) as

t
TlN(t) = J FlN(T)GlN(t-T)dT R (2.2.8)
0
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with
s (12"
FlN(T) = - E;:V J f (xl,xz,x3,1‘)sinklxlcosszcosk3x3dxldx2dx3
000 (2.2.9)
sinw,, (t=T) sinw __(t-T)
tN 4N 2N tN

The other two uncoupled equations of motion, (2.2.3b) and (2.2.3c), may

be treated in a similar fashion with the results

t
r
Ty (8) = J Fon (TG, (t-T)dT (2.2.11)
0
Ft
TBN(t) = J F3N(T)G3N(t-r)d1 (2.2.12)
0
and
8 1 2 3
FZN(r) = - S;;V J J J f (xl,x ,x3,'r)cosklxls1nk2x2cosk3x3dxldx2dx3
0 00 (2.2.13)
s (123
FBN(T) = --‘-)—n;‘}* J J f l,xz,xs,'r,c_osklxlcoskzxz31nk3x3dxldx2dx3
000 (2.2.14)
sinw _(t-T) sinw ., (t-T) - .
1 IN tN
G (t-T) =G (t-T) = 2. i [ - ] ’ (2.2.]5)
2N 3N WeN YN WoN Oy
where
n, = (14—5k 0)(14-6k 0)

1 3

ng = (1+ leo)(l+8k20) .

Finally, equations (2.2.8) through (2.2.15) are substituted into the dis-
placement functions (2.2.4). These in turn are substituted into equation

(2.2.2) to arrive at the forced vibration dispalcement E(xl,xz,x3,t) for
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any generalized body force (per unit mass) f(xl,xz,x3,t).

2.3 Response to an Impulse

According to Stephens and Pollock [19], acoutic emission source
waves are pulselike functions of stress (force) which are produced by
the step displacements associated with material yielding. This model is
physically consistent with both plastic deformation and crack propaga-
tion, the two major sources of acoustic emission. Assuming a very short
duration source event within the body, the Dirac delta function provides
an extremely simple mathematical approximation of the resu]tiﬁg impulsive
body force. In general, this body force wiil be three-dimensional; how-
ever, here for simplicity it is assumed to be one-dimensional in the xj

direction and of amplitude Fy. This may be expressed mathematically as

f

faég
f£1=f,=0 f£3=F 8(x1-£1)8(xy~E)8(x3~E3)8(t). (2.3.1)

Note that this is an impulsive load applied at the point (£1,£5,83) and
at time t=0 (Fig. 2.1).

Substitution of the above impulse into the results of the pre-
vious sections gives, from equation (2.2.14),

8F

F3(1) = - anV

cosk;£jcoskyEysinkzEs . (2.3.2)

This result is then combined with equation (2.2.15) and substituted into
equation (2.2.12) to produce the time varying portion of the assumed
displacement function:

8F cosk;fjicosky&ssinkzf; sinw,, t sinw .t
o W N 7 (2.3.3)

N Ve

Ta(t) =
3(t) ongV(wgy F -0 %) w
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L2

FIGURE 2.1

IMPULSIVE BODY FORCE APPLIED AT THE POINT
(51,52,53) AND SENSED AT (xl,xz,x3)
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Then from equation (2.2.4) the displacement function becomes

8Focosk1£1coskzazsink3€3 sinwmt sintht
¥3 —Z IO TI) cosk);x;coskyx,sinkgxs[ - -
= PNty T By . ey
(2.3.4)

Finally, substituting the above into equétion (2.2.2) gives the three

forced vibration displacement components shown below:

kikq
u, = Z F <I>3Nsinklxlcosk2x2cosk Xa [——z (SZ -Q )]

N
koks
Z F ¢ cosklxlsinkzxzcosk [—-—z (9 -9 )] (2.3.5)
N
k 2
uy = Z F @BNcosklxlcosk2x251nk3x3 [« +—;2- (sz -0 )] 4
N
here
31nmmt
2y =
AN
_ sintht
& =%
tN
and

@31\1 = % cosk; & coskyEysink3Ey

Not surprisingly, these results are the same as those obtained by Hill

and Egle [20] using a Green's function approach to the problem.

2.4 Symmetric Boundary Conditions

Algebraically, it is often advantageous to work a problem over
a symmetric interval. As such, the free and forced vibration solutions

for the rectangular parallelepiped with completely rigid-lubricated
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faces are presented here for the symmetric boundary conditions

L) L1 8u2 3u3
A S T i
L, I, 0 duy dug 0 24])
¥2°"720 72 v2 = Xy, 9%y (2.4.
Ly Ls du;  Bu, .
X35 "0 73 43 = dx3 %3

For the free vibration solution, the equation of motion is again

equation (2.1.1). Assuming normal modes of the form

Ly Ly Lq
u A sinkl (xl +—2-) cosk2 (x2+7) (:osk3 (x3 +-7)siant

1N 1N
Ly Ly Ly
Uy = AZNCOSkl (xl +—2—) sink2 (x2 +7) cosk3 (x3 +T) siant (2.4.2)
Ly ) Ly .
u3N = A3N°°Sk1 (xl +-2-) cosk2 (x2 + —2—) s:i.nk3 (x3 + -2—) 51nmNt

and proceeding as in Section 2.1, identical results are obtained for the -
wave numbers, characteristic equation, natural frequencies and the
amplitude relations. Therefore, the free vibration displacements for

the symmetric boundary conditions may be written as

sinw, t+(A )sinw t}

) Ly Ly L3 ;
u, = Z 31nk1 (xl +—2-) coskz(x2 +?) cosk3 (x3 +—2-). (AlN) 2 N N

1
N
Ly, .
u, —Z coskl(x1+—-2—)sn.nk2(x2+ )cosk (x +—-){ (AlN).Q,Sin‘” t
N
+ (AZN) ts:.ntht} (2.4.3)
Ll L +L .
uy = Z coskl(xl+—§—)cosk2(x2+ )81nk (x ){ (A )231nw£Nt
N

kl k ] )
- [k3(A1 t+k3(A2N)t s:antNt .
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The forced vibration solution may be handled similarly. Assuming

that the displacement functions can be expressed as

Ly Ly L3
¥, = Z sinkl (xl +-§-) cosk2 (:ﬂ:2 +7) cosk3 (x3 +—2—) TlN(t)

N
Ly . Ly Ly N
¥y = Z coskl(xl-l--?)s:mkz(xz+—2—)cosk3(x3+?—)T2N(t) (2.4.4)
N
. Ly Ly L3
Y3 = Z cos 1(xl+ 2 )coskz(xz-i- 5 )s:.nk3(x3+—2-)T3N(t)
N

and following the same procedure as in Section 2.2, one obtains similar

results, the only difference being in the arguments of the spatial sin

and cos terms. Instead of klxl’ kzxz’ and k3x3, these arguments should
L L

be kl(xl-+7%), kz(x2-+7§) and k3(x3-+7§9. In all other respects the

functions are identical.



CHAPTER III

STRESS-FREE/RIGID-LUBRICATED BOUNDARIES

3.1 Free Vibration Solution

The applicable equation of motion for the free vibration solu-

tion is (2.1.1), which is repeated here for convenience:
- - 524
cZV2u+ (cg - c2)Veu = a—g . (3.1.1)
The boundary conditions consist of two stress-free faces and four rigid-

lubricated faces and can be written as

8112 BU3
x; = 0,1, u; =0 5;1--:.3—}{?:0
duy dug
X, = 0,L, ug = 0 5}{—2: 5;;=0 (3.1.2)
aul 3112 3113 3u3 al.ll 3113 3112

X3 = 0,L3 + = Q

+ + =
93Xy 0%y | 9xg 3% %3 9%y @ %3

A pictorial presentation of this system is shown in Figure 3.1.
The specimen has a finite elastic modulus and is enclosed on four sides
by an infinitely rigid medium such that normal displacements at these
four surfaces are zero. However, due to lubrication between the con-
tacting surfaces, transverse motion is uninhibited. The two x3 faces
(cross-hatched) are stress-free and, as a result, incident waves will
mode convert on reflection. The two x; faces and the two x, faces,

being rigid-lubricated, will reflect with no mode conversion. Thus, as

28
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FIGURE 3.1
STRESS-FREE/RIGID-LUBRICATED BOUNDARIES
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the boundary conditions become more complex, so also does the wave

propagation. This increase in complexity holds true for the normal

modes and the characteristic equation as well. Where in Chapter II it

was possible to determine by inspection the exact form of the normal

modes, this no longer holds true; rather, considerable calculation is

required.

These calculations begin with the Helmholtz resolution [11,

21], which says that any vector field may be resolved into the gradient

of a scalar and the curl of a zero-divergence vector.

of interest here is displacement; hence,

The vector Tield

(3.1.3)
(3.1.4)

u=VS+VxV
VeV =0,
where
S = S(x1,x5,X3,t) = scalar potential
V= Vléli-vzézi-V3é3 = vector potential
and v, = V,(x1,%;,%3,t), 1=1,2,3. Substitution of equation (3.1.3)

into the equation of motion (3.1.1) leads to the separated wave equations

(c.f. Appendix A):

2
24 1 234§
ves czz Bt2
o5
27 - 1 34V
vev ctz ot

(3.1.5)

(3.1.6)

From the above equations it can be seen that the scalar potential is

associated with dilatational (or infinite sums of component plane longi-

tudinal) waves and the vector potential with equivoluminal (transverse)

waves. As such, equation (3.1.3) may then be rewritten as
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T (3.1.7)
with
~D__._ 88 ~ .38 ~ .38 A _ D~ D~ DA
u —VS—ax1 e1+8x2 e2+8x3 eg=uje+ujse+usze (3.1.8)
-F - 3V3 3V2 . vy 3V3 . oV, 9V R Fa B E~
u =VxV= (8x2-8x3)el+(ax3-axl)e2+(—a-x—l--a—x—z-)e3=u1e1+u2e2+u3e3.
(3.1.9)

The superscripts D and E denote the dilatational and equivoluminal com~-
ponents respectively. Thus, the Helmholtz resolution mathematically un-
couples the wave motion such that the dilatational and equivoluminal
components can be dealt with separately. The price for this convenience
is one additional equation, the zero divergence gauge condition (3.1.4).
In other words{ there are now four equations to solve, instead of three,
for the three displacement components (uj,uj,us).

The general solutions of the separated wave equations, (3.1.5)
and (3.1.6), as developed in Appendix A, may be particularized to fit
the boundary conditions (3.1.2) and the Helmholtz resolution (3.1.3).

Hence, the scalar and vector potentials must be of the form

Sy = - cosk x cosk,x, (AlNCOSksz + A2Nsink2'x3) sinwt (3.1.10)
and
Vig = cosklxlsinkzxz (BlNcosktx3 + BZNSinktXB) sinw t
Vo = sink x cosk,x, (ClNCOSktXB + CZNSinktXB) sinugt - (3.1.11)
VBN = sinklxlsinkzx2 (DlNCOSktXB +D ZNs:i.nkth) sinmNt .

These are corrections to those presented by Kaliski [12]. The associated
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wave numbers are given as

W2
k, = [Nz f+1d)]* (3.1.12)
L
2
k, = [2- adedI® (3.1.13)
t

n I n_I
where k; =-Ii— and k, = jf;-as before (ni=0,1,2,...; i=1,2). On substi-
tuting the assumed potentials, equations (3.1.10) and (3.1.11), into

equations (3.1.8) and (3.1.9), one finds the normal modes of the dilata-

tional and equivoluminal displacement components to be

u?N = sinklxlcoskzxz[kl (AlNCOSk2x3 +A2Nsink£x3)]sinmNt = ¢§NsinmNt

ugN = cosklxlsinkzx?_[k2 (A]_Ncoskﬂ‘x3 +A2Nsink2x3)]sinmNt = <I>12)Nsiant

ugN = cosklxlcoskzxz[k R(AmSinkf,x3 - A2Ncosk 2x3) ]sinmNt = GgNsinmNt
(3.1.14)

uﬁN = sinklxlcoskzxz[ (k2D1N - ktCZN)COSktx3 + (k2D2N + ktClN) sinktx3]siant

ugn = cosklxlsinkzxz[ (ktB N lelN) cosktx3 - (leZN + ktBlN) sink tXB]SinmNt

ugN = ccsklxlcoskzxz[ (lelN - kZBlN) cosk x, + (k1C2N - kZBZN) sinkth]sinmNt .
(3.1.15)

Application of the zero divergence gauge condition (3.1.4) to the vector

potential V leads to the result that

N
Diy = k, (kp By + ko Cop)
D, == (k.,B.. +k.C..)
o =k BBin T RSy o

t

which allows a simplification of equation (3.1.15) to
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u’ = sink, x,cosk.x.{- [k

IN 1% %5 + (k +kt)CZNJc°Sk X

122N 3

+ (k2+k2)c )sink x.}sinw_t

1
I:k121N 2 t'IN t3 N

E _

uyy = cosk,x, sink,x,{ t:I:(k +k )B 1k202N]cosk %3 (3.1.16)
- '—t[(k +k )B +kl 9 lN']Slnk X }siant

E _ .

Ugy = cosklxlcosk xz{ (le szlN)cosk x.+ (kl oN kZBZN) sinktx3}31nmNt.

The equivoluminal displacement components may be put into the

same form as Kaliski's [12] by letting

By = [kl 2By + (kg +kCy ]
Aan T, [kl PPyt Ky +EDCy ]
Aoy = kt[(k +kt)Bzm“"klkzcsz:|
boy = = W LG+ DB+ k0T,

t

and substituting these amplitudes into equation (3.1.16). This yields

the results

E _ _E
ulN = sinklxlcoskzxz(ABNcosk x3+A4 51nk X )s:anNt @leiant
uE = cosk x sink x_ (A_ cosk X, + A, _sink x,)sinw. .t = <I>E sinw_t
2N 1717 2T g NCOSK Ry T gy SIAK Rq /Sy 2N S
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ub = cosk,x. cosk xz{ki[(k A,_+k A )cosktx

3N 11 2 174N 276N 3

_ B
- (klA3N+kZASN)sinktx3]}siant = 9, sinut.

(3.1.17)

The dilatational and equivoluminal displacements, equations (3.1.14) and
(3.1.17) may then be combined according to equation (3.1.7) to generate

the normal mode displacement components obtained by Kaliski [12]:

[~
{

D, E . :
1y = (g *opy)sinugt = ¢, sinut

Upy = (¢2N4-¢§N)sinmNt = ¢2Nsiant (3.1.18)

D E .
w (¢3N+ ¢3N)sinmut = ¢qySinugt.

The next step is to determine the natural frequencies of the
system. This is accomplished by substituting the above normal modes
into the boundary conditions (3.1.2). Twelve of the eighteen boundary
conditions are satisf%ed exactly, leaving six equations in the six un-

knowns AiN(i=1,2,...,6):

2 2 2 . -

(kl+k2+yk2)A1N— (y l)klA3N (y 1)k2A5N =0

(12 + 12 + yk2) cosk, LA, + (k> + k> +ykZ)sink LA, - (y=1)k cosk L.A
17 27 YRy 231N 17 %2 L 273" 2N 1 £33N

- (y-l)kls1nktL A, - (y-l)kzcosktL A - (y-l)k2s1nktL

374N 375N 0

3hey =

2 .2 _
2k kol Ay = (k= kA -k kA =0 (3.1.19)
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2 2 '
Zklkzktsink LA L+ 2k kzktcosk LA+ (kl- kt)sinktL A

27371IN 1 27372N 33N

2 .2 :
- (kl kt)COSktL3A4N + klkZSinktL3A5N - klkZCOSktLBAGN =0
2.k kA -k kA - (k-k>A . =0
270t 2N 17274N 2 t’U6N

- 2k2k zk tsmk zL3A1N + 2k2k zk t:cosk JLL3A2N + klkzsinktL3A3N

2—

2 2
- k k. c + - 1 -
cosk L_A (k2 kt)51nktL A N (k2

2
159008k LaA 0 3%s k )cosk L;A

Pen = 0 -

The amplitude relations and frequency equations are determined from these
six expressions. There are several appropriate combinations depending

upon the values of sink L, and the wave numbers ky and k2. These are

summarized in Table 3.1.
The first combination includes amplitude relations (3.1.20) and

the frequency equation (3.1.21); this applies when sink L,=0 and k1>»0,

3
k, > 0. It represents horizontally polarized (displacements in X, =X,
plane only) shear waves and is sometimes referred to as an SH wave solu-
tion. From equations (3.1.14), (3.1.17), and (3.1.18), it can be seen
that this solution contributes nothing to the uy displacement component
and allows for no mode conversions at the boundaries.

The amplitude relations and frequency equation associated with
sinktL3#0 and k,=k,=0 are (3.1.22) and (3.1.23), respectively. The
latter is deriyed from the fact that the only meaningful solution to

equations (3.1.19) comes when sink,L,=0 and A2N¢0. These are longitu-

3
dinal waves propagating in the Xq direction, and because they are nor-
mally incident on the stress-free surfaces, there are no mode conversions.

They simply reflect back and forth between the two faces.



TABLE 3.1.

Appropriate Modal Coefficients and Frequency Equations,
Stress~Free/Rigid-Lubricated Boundaries

Modal sinktL3=0 sinktLa#O
Coefficients =k_=0 = =
k1>o, k2>0 kl 9 k1>0, k2 0 klzo, k2 0
2_1.2 241232
N o 0 I Pl v _platoke,
1N . R 2k k k3N R'2k,k kTSN
k3-k2 k2 +k2-k2
A 0 * T A ek Aen
2N kkok OGN 2%t
k R(cosk,L_ -cosk L.) k
A3y - Ez' Asy 0 ~ Peink t iRsinktLa Ay k_l Asy
1 L3 t'3 2
k
e |
A 0 0 * ) Aen
A . 0 o ) R(coskLLa—cosktL3) A
5N Pslnk£L3+RsinktL3 6N
Aoy 0 0 0 *
(3.1.20) (3.1.22) (3.1.24) (3.1.25)
wy=c a w=c o (P2+R2)s1nk£L3sinktL3+2PR(1—cosle3cosktL3) =0
Frequency
Equations (3.1.21) (3.1.23) (3.1.26)
2_1,241.241.2 =l (k2412 e (k2412 -12Y 2
a k1+k2+k3' P=4(kI+k2)k k Re:(k2+k3-k2)

For the free vibration problem, these values are determined from the initial conditions; in the forced vibration problem,

from the forcing function.

9¢
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The last two sets of amplitude relations, (3.1.24) and (3.1.25),
share the frequency equation (3.1.26). This equation is obtained by
setting the determinant of equations (3.1.19) equal to zero and dividing
the result by sink L, since sinkth#o. Whereas for the completely
rigid-Tubricated problem the natural frequencies of each of the plane
wave components N(nl,nz,ns) could be determined explicitly from the
frequency equation (2.1.5), here they must be solved for implicitly
because (3.1.26) is a transcendental equation, which allows for mode
conversions at the two stress-free surfaces. These mode conversions are
responsible for the increased complexity in the amplitude relations.
Equations (3.1.24), (3.1.25), and (3.1.26) thus describe the motion of
the mode converting longitudinal and vertically polarized shear waves.
This solution is also referred to as the SV/P wave solution.

Notice that the case sinktL3#0 and k; >0, k,=0 corresponds to

modes in which the shear waves propagate in x - %, planes only. Conse-

1
quently, there are no equivoluminal displacements in the x, direction,
. E _ . . _

i.e., up=0 (ref. equation (3.1.17b)). When s1nktL3#0 and kl—O, k, >0,

the inverse condition exists: shear waves propagate in x - %q planes

2
E _
only, and as a result, ulN—O.

For the free vibration problem, the amplitudes designated by
the asterisks in Table 3.1 are determined from the initial conditions;
in the forced vibration problem of the ensuing section, they are deter-
mined from the forcing function. The expressions for P and R and the
1 Aoy and Ay from (3.1.25) are all corrections
to Kaliski's free vibration solution [12], as are the assumed scalar and

amplitude relations A

vector potentials, equations (3.1.10) and (3.1.11).
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Each of the normal modes defined by equations (3.1.18)
represents a plane wave component traveling in a direction determined by

the set N(nl,nz,n3), where n, and n, specify the wave numbers

1
k1==nlw/Ll and k2 = nzw/Lz and ng refers to the infinite set of natural
frequencies. The three-dimensional free vibration displacement components
are then made up of the infinity of plane wave components N traveling in

all directions:

uy (%y5%55%4) = Z Ny s¥gs%s)
N

uz(xl,xz,x3) = 5‘ u2N(x1;x2,x3) (3.1.27)
N

ug(x,%,y,%4) = Z U (xps%p5x3)
N

with Z = Z Z Z , as before.
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3.2 Forced Vibration Solution

The equation of interest for the forced vibration solution is

202 2_ .2)yyes4F o 22U
ctV u+(c2 ct)VV u+f 32 ° (3.2.1)
and the displacement vector is assumed to be of the form [22]
u = Z EN(xl,xz,x3)TN(t) , (3.2.2)
N

where

By = o1mey * 0oy * by -
and the ¢iN(i=1,2,3) are the modal functions defined by equétions
(3.1.14), (3.1.17), and (3.1.18). Note that these functions represent

the spatial portion of‘the normal modes, and -as such, they satisfy the

rigid-lubricated/stress-free boundary conditions,‘equations (3.1.2).
Substitution of the assumed displacement (3.2.2) into the

governing equation of motion (3.2.1) produces the result
2527 2 _ a2YUVed T = T m
Z [ctv b+ (eZ -V ¢N]TN + £ Z oIy * | (3.2.3)
N N

The bracketed term on the left hand side of this expression may be

simplified by substituting the free vibration displacements of equations

(3.1.23),
a7 = Z Fysinugt (3.2.4)
N

into the free vibration equation of motion (3.1.1); thus

2923 2 L 02)9V03 = - w. 3
e,V 9N+(c£ cZ) VY by Wby - (3.2.5)
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Equation (3.2.5) is then substituted into equation (3.2.3) and the
results rearranged:

Z By(Ty+u2r) = . (3.2.6)
N

Taking the scalar product of both sides of this equation with EM, where
M(m;,mp) denotes another modal function, and integrating over the spatial

domain, one gets
T 2 3 .3 = F.
Z (TN+mNTN) JV oy 4, AV j £24,dV . (3.2.7)
N v

It can be shown that the governing equations are seif-adjoint; conse-

quently, the $N must be orthogonal [23]. This means that

J $..*¢.dV = 0 N(nj,np) # M(m;,m,), (3.2.8)
v

and therefore,

. _—
Tyt ofTy = Wy (3.2.9)
with 1L, L,
WN(t) = El— J J J f(x1,x2,X3,t)'$N(x1,x2,X3)dx1dx2dX3 (3.2.10)
Yo 00 |
Ly By dy
EN = I J J ¢N'¢Ndxldx2dx2. (3.2-11)
0 0 O

The quantity By represents the generalized mass per unit density.

The generalized time varying function TN(t) is found by assuming
that the motion starts from rest (TN(0)=iN(0)=O) and taking Laplace
transforms:

TN(S) = ﬁN(s)ﬁN(s) . (3.2.12)

Here
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VN(S) = T.,.LJZ' (3.2.13)

and WN(S) is the transform of equation (3.2.10). The inverse transforms
of equations (3.2.12) and (3.2.13), when combined, yield the desired
result

. t
TN(t) = -u:'—N- J;) Y\'N('r)sian(t:-T)d'r . (3.2.14)

The forced vibration displacements are obtained by substituting the

above back into equation (3.2.2). Hence, in component form they become
ulf.'xl,xz,x3,t) = Z ¢1N(xl,x2,x3)TN(t)
N

u2(x1,x2,x3,t) = Z ¢2N(xl,x2,x3)TN(t) (3.2.15)
N .

u3(xpa%p0xg,t) = Z ¢ gy (%1 2% %) Ty (€)
N

The time varying“function Ty, May be determined for any generalized
body force (per unit mass) according to equations (3.2.10), (3.2.11),

and (3.2.14).

3.3 Response to an Impulse

The impulsive body force assumed here is the same as that
empioyed in Chapter II and is written as

E(XI,XZ,Xg,t) = F~06(x1—€1)6(x2- 52)6(X3-53)6(t)33 . - (3.3.])
On substituting this expression into equation (3.2.10), one obtains

F
= -2
() = 52 gy (E1E2,E)8C) (3.3.2)
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In order to get the time varying function T, , the above is substituted

into equation (3.2.14). Integration then yields

(£1,82,83)sinw t . (3.3.3)

T (t) = —> -

NwN ¢3N

This is then combined with equation (3.2.15) to obtain the displacement
components produced by a one-dimensional impulse of magnitude Fo applied

in the x3 direction at the point (£;,85,&3):

F
= —0
ul(xl,xz,x3,t) = E o ¢3N(€1,52,53)¢1N(x1,x2,x3)siant

N
F
uy (% 5%,,%4,t) =::E:ENNN by (E1582583) 0o (%) 5%, %) sinw b (3.3.4)
N

F
- o .
u3(xl,x2,x3,t) = Z EN“’N ¢3N(§1,62,63)¢3N(x1,x2,x3)51ant.

In performing the calculations, the wy are determined from the charac-
teristic equation (3.1.20) and the quantity Eg is evaluated in Appendix

B.

3.4 Symmetric Boundary Conditions

The symmetric boundary conditions for the parallelepiped with

two stress-free and four rigid-Tubricated boundaries are

L, L, du,  dug
X] = - -—2—’ T u; = 0 5;{—1- = -é;l— =
L, L du;  dug
2 =
Ly Ly 8u1+8u2 dug o au3+8u1 duz du,y o
= o A + = = - = N
*3 2° 2 39Xy 9%, ' 9xX3 dX1 0dx3 0xp 0x3

Once again, the equation of motion for the free vibration solution is

equation (3.1.1). Here the scalar and vector potentials are assumed
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to be
S, = k. (x, 4L o2 [ K L3 L3
g = - cos l(xl 3 )coskz(x 5) A,y C0S 2(x3+—2—) +A2Nsinkl(x3+—§-) ]siant
(3.4.2)
and
Voo = cosk. (x. +-Lysink. (x. +-2 L3 L3 1
1y = cosk, (x, +3 Ysin 2 (% + 3 )[BlNcoskt(x3+—2—) +BZNsinkt(x3+—2-—)]31ant
- sink. (x. +2L Ly Ly Ls
Voy = sin l(xl > )coskz(xz-i- > )[ClNcoskt(x3+—§—_) +C2Nsinkt(x3+—§~)]sinmNt
i e a1 Lo L, Ly .
Vay = sin l(xl 3 )sinkz(x2+ > )[DlNCOSkt(x3+_é-) +D2Nsinkt(x3+—2-)]smmNt

(3.4.3)
Following the same procedure as in Section 3.1 results in the normal

mode displacement components

C cink (x4l Ly Ly L3
uyy = sin l(xl T) coskz(x2 + ){kl[AlNCOSkz(XS +=°) +A2Nsink2(x3+—2-)]

L L
3 . 3 .
+ A3Ncoskt(x3 +—2 ) +Alﬁ.\151nlc1:(::3 +—-2 )}suunNt

Ls
s:tnqu‘(x3 +—2—)]

L

L
3 . 3 .
+ A5N°°5kt (x3 +—-—2 ) + A6Nsmkt(x3 +--—-2 ) }smmNt

Ly Ly Lq
u,. = COSkl(Xf' 5 ) sink, (x2+-§—){k2[A1Ncosk£(x3 +) +A

2N 2N

Ly L L . L3 L3
5 )coskz(x2+ 5 ){kQ[Amsmkz(x3+ 5) - AchoskR(x3+ > )]
L

1 23y . L3 1res
+ kt[(klA4N+k2A6N)c°Skt(x3+ ) (klA3N+k2A5N)31nkt(x3+ 5 )]}smth ,

ugy = cosk.l(xl-f-

(3.4.4)

which may then be substituted into the boundary conditions (3.4.1) to ob-
tain the same characteristic equation and amplitude relations as before.
The results for the forced vibration case are developed in like

fashion and yield similar results, again the only difference is in the
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. L
arguments of the spatial sin and cos terms. Thus, kl‘*1'*75°’
Ly Ly L3 .
k2(x2+"§-), kg(x3-+759, and kt(x3-+-5ﬁ should be substituted for

klxl, k2x2’ kzxa, and kth, respectively; otherwise, the results are

the same.



CHAPTER IV
ELASTICALLY RESTRAINED/RIGID-LUBRICATED BOUNDARIES

4.1 Free and Forced Vibration Solutions

For the free vibration problem, the two stress-free boundaries
of Chapter III are replaced by two elastically restrained boundaries,

and the four rigid-lubricated boundaries remain unchanged:

0.1 0 duy dug
¥1= 0l u = ax 0%y
Bul 31.13
X, = 0,L, u, =0 KZ=SX—2=O (4.1.1)
du, Ju Jdu esu au du; du du
= 1 2 3 _ 3-3 3 1= 3 2 _
x3 = 0Ly gt on, TV, - T 3%, 9%y oxp  oxg . O

Here ej is the elastic modulus of the upper and lower restraints and
2y

Y = 1+ As before, the free vibration equation of motion is
2_2- 2 2 - 3%
ctV u+(c2'—ct)VVu-E2- . (4.12)

The development of the normal mode displacement components is
the same as that in Chapter III, and as such, only the results are pre-

sented here:

uyy = sink, x, cosk,x, [kl (AlNCOSk,Q,XB + AZNsink'st) +4, cosk x + A4Nsinktx3,]sinmNt

Ugy = cosklxls:i.nkzxz|:k2 (A:mcosk‘qlx3 + AZNSinkZXB) + A5Ncosktx3 + A6Nsinktx3]simuNt

Ugy = coéklxlcoskzxz{kz(Aleink2x3-AZNcostXB) (4.1.3)
+-ﬁL[(klA4N4-k2A6N)cosktx3-(k1A3N4-k2A5N)sinktx3] sinw,t

t

45
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These components are then substituted into boundary conditions (4.1.1)
with the result that the twelve boundary conditions on the x; and x5
faces are satisfied identically and the remaining six boundary conditions
on the x3 faces are satisfied when

2

M + Ky + Yki) ket egkgkifoy = 2uk ki Ay —eglyd g = 2ukok Agy - ek Ay = 0
[mc2 +1k2+ ykz)k cosk,L,+e k k _sink L_J]A
1 T2 YRR e T B3ty e S 3 1y
+ [A(ki + k; + Yki)ktsinkzLB -egkok tcoskzLBJAZN
- [2uklktcosktL3 + eg‘klsinktL:;]A3N - [ZuklktsinktL3 - e:,’klcosktL?’]Al‘N
- [ZukzktcosktLB + e3kzsinktL3]A5N - [ZukzktsinktLS - e3k2cosktL3]A6N =0
2k ko k Ay - (ki - ki)A4N -k kAo = 0 (4.1.4)

. . 2 2\ .
2k kzkts:mk L.A, _+2k kzktcosk LA _+ (kl kt)sa.nk L,A

1 27371IN 1 2737°2N t 33N
2 .2 . -
- (kl kt)COSktL3A4N+klkZSlnktL3A5N_klkZCOSktL3A6N =0
2.k k A~k kA -(k>-k>A _ =0
2 °4t2N 1 274N 2 t’ 6N

- 2k2k zktsuxk JLLBAlN + 2k2k Q,k tcosk 2L3A2N + k1k231nktL3A3'N - klkZCOSleBA 4N

2 .2y . 2
+ (k2 - kt) smkthASN - (k, -

2
5 kt) cosktL A

ahey = 0

These expressions are valid for finite values of eqe

As in Chapter 3, the appropriate amplitude relations and fre-
quency equations are determined from the above equations and depend upon
the values df sink L, and the wave numbers k. and k- Tab]e 4.1 Tists
these combinations. Equations (4.1.5) and (4.1.6) correspond to the SH
wave motion and are identical to equations (3.1.20) and (3.1.21) from

Table 3.1. The longitudinal wave motion described by equations (4.1.7)



TABLE 4.1. Appropriate Modal Coefficients and Frequency Equations,
Elastically Restrained/Rigid-Lubricated Boundaries (0<e3<°)
Modal sinktL3=0 sinktLafo
Coefficients k.l >0, ky>0 k1=k2=0 k; > 0, ky=0 kll o, k2=0
212 24y 2 241212 -
R . e . _ B k2-k2 - ~e3(k]‘_+kt)k9_ (k1+k2 ki sink L, - (cosk,L, cosktLa)A ]
N § 2N R 2k1k£kt 3N R 4N 2k2klkt ainkll.3 5N sinkzL3 6N
2_12
ky ke K24k2-k2
Aon 0 * 2k kA L2 A
22t
2412 - —cosl
. ) Eg.A o [ea(k1+k2)kzsinkzL3 R(coskst <:osktL3)]A El A
3N ky SN Psink L +Reink L, 4N k, SN
ky
* =
A 0 0 %, Aen
2
X , . . e3(k21+k22+k2t)kzsinkzl.a-n(coskzl.a-cosktl.a)
SN PsinkzL3+RsinktL3
Aen 0 0 0 *
(4.1.5) (4.1.7) (4.1.9) (4.1.10)
2 (k24K 24K2) 2K 2 - 2
. ” {ef (k}+k3+k2) “k2sink L,sink L, 2e3(k{-fkg—rkt)kz(Pa1nk£L3coaktL3+Rc°skzLasmktL3)
mN=ctu e3+2e36cotk1L3—6 =0 s
Frequency - [(pP24R )sinkELasinktL3+2PR(1-coak2L3cosktL3)]]sinktL3-0
Equations (4.1.6): (4.1.8) (4.1.11)
’ 2
212412412 = =l (k2412 = 2.2
a?=kZ+kd+k2 8=Avk, P=4(kIHED Kk R: (k%ﬂ(z k2)

x
For the free vibration problem, these values are determined from the initial conditions; in the forced vibration problem,

from the forcing function.

Ly
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and (4.1.8) is sfmi]ar to that described by equations (3.1.22) and
(3.1.23), exbept more complicated, in that the natural fregquencies are
now a function of both the elastic modulus ey and the wave number L
instead of just the latter. Finally, the SV/P motion is given by
equations (4.1.9), (4.1.10), and (4.1.11). Here again, the amplitudes
denoted by the asterisks are determined from the intial conditions for
the free vibration problem or from the forcing function for the forced
vibration problem.

A superposition of the displacement due to the wave components

traveling in all directions yields the three-dimensional displacement

components
u = Z YN
N
up T 2 UaN (4.1.12)
N -
Uz © Z Yo
N

with the g (i=1,2,3) as given by equations (4.1.3). This completes the
free vibration solution for the rectangular parallelepiped with elasti-
cally restrained/rigid-lubricated boundaries. The forced vibration solu-

tion proceeds exactly as in Section 3.2, and the results are the same.

4.2 Reduction to the Previous Cases

The free and forced vibration solution for the parallelepiped
with elastically restrained/rigid-lubricated boundaries is particularly
interesting in that by allowing ey * the normal restraints on the e
faces become rigid. Thus, all of the boundaries become rigid-lubricated
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as in Chapter II, and the same results should be obtained. Conversely,
letting ey > the normal stresses acting on the Xy faces approach
zero, and the stress-free solution of Chapter III should be recovered.
From the above, it can be seen that the elastically restrained/rigid-
lubricated solution can serve as a check on the previous solutions.

We begin by dividing the normal stress boundary conditions on
the x, faces (4.1.1c) by ey> and then we let e, + =. The result is
u3=0, which means that the shear stress conditions can be written as
aul/8x3=8u2/8x3=0, and the completely rigid-lubricated boundary condi-
tions (2.1.2) have been recovered. The characteristic equations, on the

other hand, must be divided by e§ before allowing ey > = For the

transcendental equation (4.1.11), this gives

2
(k§+-k24-k§) k%sinkzL

5 3sinktL351nktL3 =0

2
but since (k§4-k§4-k§) k% # 0, the frequency equation becomes

sink L,sink L,sink L, = 0. (4.2.1)

3 3

The implication here is that either

o nll
k=1,
I
(k) = o4
t’l L3
or
II
(k) = 1 0=0,1,2,...;
3
n3H
but, k3 - (n3=0,l,2,...), meaning that
3

k2=(kt)l=(kt)2=k3' (4.2.2)
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However, by definition,

2
Wy
2 = - (12 4+ 12 2.
k.Q, 'E? (kl-i-kz) (4.2.3)
2
“N
2 = - (k2 2 2.
kt '&:‘2‘ (k1+k2) (4.2.4)
and
a2 = k2+k2+k2 . (4.2.5)

N 1 72 3

Combing equations (4.2.2) through (4.2.5), one obtains the frequency

equations
WiN = C% (4.2.6)
Won = gy = Coay - (4.2.7)

which are identical to (2.1.6) and (2.1.7), as expected.

The appropriate amplitude relations are recovered by perform-
ing a division and 1imiting operating similar to the above on equations
(4.1.4), keeping in mind the relationships given in equation (4.2.2).

This procedure leads to the result that

Bow = By = By = 0> (4.2.8)

which means that the displacement components of equations (4.1.3) reduce

to

up = sink, x, cosk,x,cosk,x, [k Aleinwmt+A3Nsintht]

ugy = cosk,x, sink,x,cosk,x [k2 1ySine Nt+A5Nsmtht] (4.2.9)
ugy = cosklxlcosk x2s1nk3x3[k3 le:.nw - (-g A3N+% ASN)sintht].
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If we let klAlN = (AlN)z’ A3N

the normal modes, the displacements obtained are the same as those ob-

= (AlN)t’ and A5N = (A2N)t and add up all

tained in Chapter II, equations (2.1.11):

u = ZE s1nklxlcosk2x2cosk X {(A )lsinszti-(AlN)tsintht}
N k

u, = Z cosklxlslnk2x2c08k3x3{k (A )ZSianLNt+ (AZN) t:sintht} (4.2.10)
- ky ky .

ug = Z cosk, x, cosk,x,sink, x3{k (A N) g Sinw, = [k—B(AlN)t +E;(A2N) t]s:.ntht:}.
N

Therefore, allowing the elastic modulus of the boundary restraint on the
two Xy faces to become infinitely large ‘eliminates any displacements
normal to these surfaces, and the boundafy conditions become completely
rigid-Tubricated.

Substitution of ey > 0 into equations (4.1.1), (4.1.4), and the
equat1ons of Table 4.1 yields equations (3.1.2), (3.1.19) and the equa-
tions of Table 3.1. Hence, when the elastic modulus of the restraint on

the Xy faces approaches zero, the boundaries become stress-free, and the

complete stress-free/rigid-lubricated solution of Chapter III is recovered.



CHAPTER V

RESULTS AND CONCLUSIONS

" 5.1 Numerical Results

Numerical results were computed for the response of a parallele-
piped with stress-free/rigid-lubricated boundaries to an impulsive body
force (c.f. Section 3.3 and Appendices B and C). Since the infinite
series solutions of equations (3.3.4) had to be truncated and a disﬁ]ace-
ment vs. time curve was the desired result, it was decided that the trunca;
tion should be performed so as to include all the resonant frequencies
from DC to some cutoff frequency fco' The specimen was a .0254 x .0254 x
.0254 m (1x1x1 in.) aluminum (p=2700 kg/m3) block. The twe cutoff
frequencies chosen were 1.25 MHz and 2.0 MHz.

It was found that the first eleven wave numbers had to be con-
sidered in order to include all the normal modes with natural frequencies
up to 1.25 MHz. Thus, the normal mode indices N(nl,nz,nB) varied from
N(O,O,n3) to N(lo,lo,n3). Associated with these indices were 480 fre-
quencies (modes) which prqduced significant dfsp]acements in the X, direc-
tion. The 2.0 MHz cutoff frequency required the inclusion of the first

seventeen wave numbers in the x and.x2 directions. This resulted in

1
1574 contributing modes.
Figure 5.1 shows the u, displacement vs. time history at the

position .0127, .0127, .0147 m due to a 1 N-sec Dirac delta function

52
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FIGURE 5.1

RESPONSE OF A RECTANGULAR PARALLELEPIPED WITH TWO STRESS-FREE AND FOUR
RIGID-LUBRICATED FACES TO AN IMPULSIVE POINT LOAD — TRUNCATED NORMAL
MODE SOLUTIONS — COMPARED TO THE INFINITE MEDIA RESPONSE
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jmpulse acting in the Xq direction at .0127, .0127, .0107 m. Since the
first 1.74 pusec of time history is reflection free, this part of the
solution may be compared to the exact solution for an infinite body
subjected to the same loading [24,25]. This solution consists of an
infinite spike corresponding to the arrival of the longitudinal wave
followed by a ramp which drops to zero when the shear wave arrives. The
other two curves are truncated normal mode solutions to the parallele-
piped problem. The dotted portions of these curves begin at 1.74 usec,
the time at which the first reflection occurs and indicate that these
values cannot be compared with the infinite media solution. The fco =
2.0 MHz solution is obviously a better approximation to the infinite
media response than is the fco = 1.25 MHz solution, but neither of these
truncated solutions does a very good job. More frequencies (normal
modes) are needed. |

To illustrate this point, consider the frequency spectrum
(Fourier transform) of a Dirac delta function impulse. 1t has a constant
amplitude for all frequencies from DC to infinity. This means that all
frequency components contribute equally to the computed results. Thus,
any truncated representation will obviously contain distortions; the
fewer the frequenéies, the greater the distortion.

Figure 5.2 shows the inverted Fourier transform of the infinite
space solution. It was calculated using a Fast Fourier Transform (FFT)
routine which was truncatgd at 10 MHz. The difference between this solu-
tion and the infinite media response is due primarily to the Gibbs
phenomenon [26] which manifests itself as a ripple in the output. This

phenomenon arises whenever a spectral representation is truncated
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FIGURE 5.2
TRUNCATED FFT REPRESENTATION OF THE INFINITE MEDIA

RESPONSE TO AN IMPULSIVE POINT LOAD
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abruptly. In this case, the frequencies above 10 MHz are eliminated
from consideration. It can be seen from both Figures 5.1 and 5.2 that
the ripple frequency is roughly equal to the cutoff frequency fco'

In numerical computations such as this, where infinite series
~are involved, the accuracy of the final output is obviously limited by
the available CPU time. This is compounded by the fact that the trans-
cendental frequency equations (those involving mode conversions) must be
solved'iteratively. For the 1.25 MHz cutoff frequency, the CPU time
required was 9.5 minutes; the 2.0 MHz solution required 32.25 minutes.

The majority of this time was taken in solving for the natural frequencies.
The Targer the specimen, the more resonant frequencies there are to find.
In spite of these limitations, the results seem to be headed in the right
direction.

A similar anaiysis was performed by Hill and Egle [20] for the
rectangular parallelepiped with completely rigid-lubricated boundaries.
The nearly 2600 contributing modes (out of the 2x 105 considered) were
solved for explicitly from the two rather simple frequency equations,
wyy=C g0 and w

N
explicitly, rather than implicitly, far more natural frequencies were

=c, (2.1.6) and (2.1.7). Because they could be solved for

considered. The additional frequencies improved the accuracy to the
point where the normal mode solution and the truncated FFT solution were

virtually identical.

5.2 Conclusions and Future Directions

Presented here are exact normal mode solutions for the forced
vibrational response of the rectangular parallelepiped with three sets

of boundary conditions: (1) completely rigid-lubricated boundaries;
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(2) two stress-free and four rigid-lubricated boundaries; and (3) two
elastically restrained and four rigid-lubricated boundaries. For cases
(1) and (2), the response is calculated for a Dirac delta function
impulsive body force. An analytical verification for both solutions is
obtained from the elastically restrained solution.

By allowing the elastic modulus of the restraint ey to approach
infinity, the completely rigid-lubricated results are obtained. . When
the elastic modulus is allowed to approach zero, the stress-free/rigid-
Tubricated solution is recovered. The fact that these reductions can be
made indicates that these solutions are probably correct, and although
not as conclusive in the stress-free/rigid-lubricated case, the numerical
results tend to reinforce this conclusion.

The forced vibration solution for the rectangular parallelepiped
with compietely rigid-lubricated boundaries mighf be used to model the
vibration of a lubricated rubber block completely enclosed in a rigid
metal container and stimulated by some internal source. In this case,
the normal displacements at the surface are negligible; as a result,
there are no mode conversions and hence no inhomogeneous (surface) waves.
Though not a physically commonplace problem, the chief value of this
solution is the insight it provides into solving the more difficult
stress-free and elastically restrained cases.

The stress-free/rigjd-]ubricated solution, on the other hand,
if programmed on a state-of-the-art scientific computer, could prove to
be very useful in studying fracture mgchanics, and in particular, acoustic
emission source events. The elastically restrained/rigid-lubricated

solution might be even better in this regard. Both solutions allow for
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mode conversions on two of the six faces, and both therefore take into
account all three major wave types — shear, longitudinal and surface
waves — which provides a better model for the typical acoustic
emissicn application.

A11 three solutions were developed on the premise that acoustic
emission is primarily a body force phenomenon. Although this is true,
acoustic emission is more conveniently simulated on the surface of a
specimen. If the equation of motion was modified to include surface
forces [22] and the length dimensions Ll and L2 were allowed to become
very large in comparison to L3, the above solutions could be compared
to the work on simulated acoustic emission in plates by Pardee and
Graham [2] and Hsu, Simmons and Hardy [2]. Such a formulation would also
lend itself better to experimental verification since surface forces of
known location are easily generated, whereas body forces are neither
easy to generate nor to lecate. Including the surface forces would
also allow the weight of the transducer to be modeled.

The ultimate goal is to completely bridge the gap between the
experimental and analytical, such that flaw growth in structural mate-
rials can be pradicted and, perhaps to some extent, controlled. The
forced vibration solution for the rectangular parallelepiped with com-
pletely stress-free boundaries would be a significant step in this
direction. Unfortunately, none of the three solutions could be extended
by superposition to attain the completely stress-free solution. In each
instance, the twelve shear stress boundary conditions were satisfied but
not the six normal stress conditions. However, the three solutions pre-

sented here do represent a meaningful contribution to the field.
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With the inclusion of surface forces, these solutions could
very well provide a means of extending Hatano's Rayleigh wave calibration
of piezoelectric transducers [26] to include all three wave types. They
might also serve to verify the diffuse field calibration technique [27].
In conclusion, if these three solutions do nothing else, they will have

at least broadened the author's horizons.
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APPENDIX A

Separated Wave Equations

The governing equation for wave propagation in solids is

Navier's equation, which may be expressed in terms of the longitudinal

and transverse wave speeds as

2

QO

202= 2 2. = = _
ctV u+(c2’-ct)VV u+f =

i

)

Substituting the Helmholtz resolutions of displacement
u=VS+VxV

V=0

<

and body force

f=VE+VxF

VeF =0
into the equations of motion (A1) gives
cin(VS+Vx\7)+(ci-ctz:)VV-(VS+Vx‘-7)+(Vf+Vx§) = % (Vs+vx V)
But since

v2(VS) =V(V2s)

VeVUS = V2§
and

V2(VxV) = Vx (V2V)

VeVxV =0,

equation (A6) may be rewritten as

65

(A1)

(A2)
(A3)

(A4)
(A5)

(A6)
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2.2, 32s, 202 = 3%y,
V(e 7S+ £~ +Vx (e VV+F-7o7) = 0 (A7)
This equation is satisfied if each of the terms in parenthesis vanishes.
Hence, the three original equations of motion (A1), each of which in-

cluded both longitudinal and transverse waves, are separated into the

four independent equations
32s

252 _

czv S+f = 32 (A8)
202545 = 2T (A9)
t ot

Equation (A8) defines the longitudinal wave motion and equation (A9)
the transverse wave motion. These are the separated wave equations.
Conditions (A3) and (A5) allow a unique determination of the three com-
ponents of u from the four components of S and V and the four components

of £ and F.

Free Vibration Case

For the free vibration case, the body force terms vanish and

the separated wave equations may be rearranged as

2

Q
w

V28 = E]-'z' 5;7 (A]O)
A
72§ = L 3% (A11)
Ef 5t2

Both wave equations may be solved by separation of variables. The longi-

tudinal wave equation (A10) may be solved by assuming
S(X1,X2,X3,t) = W(X]_,Xz,Xg,)T(t); (A12)

substitution of this expression into equation (A10) yields

2 "
Gt AL 13

2
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from which

vzwa-aiw =0 | (A14)

and

T" 4—c§a§T = 0, (A15)

Equation (A14) is known as the Helmholtz equation. Its solu-
tion is obtained by substituting into it
W= X3(x1)Xp(x2)X3(x3) (A16)

with the result

" " "
Xl X2 XS

+ + = - a2, (A17)
X, X, X, L
Letting
X "
+ =~ K (A18)
1
X "
= 5 (A19)
2
gives the third equation
= = - [2-d+:h]l = - &, (A20)

The frequencies may be defined as w,=c,a, and w = o 3 hence, the solu-

tions to equations (A15), (A18), (A19), and (A20) are

T(t) = Ajcosw t+Ajsiny,t - (A21)
and

X1(x]) = Bjcoskjx) + Bysinkix; (A22)

Xz(xz) = BgCOSkzxz"l‘BqSinkzXz (A23)

X3(X3) = B5c08k3X3+BGSink3X3 ’ (A24)



68

which, along with the initial condition T(0)=0, may be combined accord-

ing to equations (A12) and (A16) to give

S = (Cycosk;x1+Crsinkyxy) (C3coskox,+Cysinkyx,) (Cscoskzxgwssinkzx;:,) sinw,t,

)
(A25)
the general solution for the free vibration scalar potential. The

vector potential components are determined analogously:
V; = (Dycosk;x,+D,sink;x;) (D3coskyxo+D,sinkyxy) (D5cosktx3+Dssinktx3)sinmtt
Vy = (Ejcoskx)+Essink;x;) (Ezcoskyxo+Eysinkoxy) (Escosktx3+Essinktx3)sinwtt

V3 = (Fjcosk)x1+Fysink)x1) (F3coskox,+F,sinkox,) (Fscosktx3+FssinktX3)sinwtt.

(A26)

In view of the frequency definitions above, the longitudinal and trans-

verse wave numbers may be written as

2
w
K2 = =2 (k] + k) (A27)
€L
w? 2 .2
ki = -5%- (K] +k3) . (A28)
t
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Calculating the Generalized Mass Term

The generalized mass term, Eys given by equation (3.2.11), is
expanded here for computational use:
Ly L, Lg
E = J J J Oy Oyd¥1dx2dx3; (B1)
0 0 O

- - 2 2 2 . .
but Oy by = b1y boy T 0oy Consequently, equation (B1) may be rewritten

as
By = By tEoytEqy o (B2)
where L, L, Ls
2 .
Ejg = byydx1d%2d%3 , i=1,2,3. (B3)
0 00

The L. (i=1,2,3) are the modal functions defined by equations (3.1.14),
(3.1.17), and (3.1.18).

Substituting the modal functions into equations (B3) and per-
forming the indicated integrations results in the following expressions:

n,L.L

C Mtk a0 2
By = 75 Uk (Apgdy + 28 And) +4,08,)
+ 2k [a (Agea, 8,00 +A) (A8 +A, 0]
2 2
+ (A30g + 2A3NA4NA9 +A 4NA10) } (B4)
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n,L.L

27172 2,.2 2
Egnw = 4 Ukp(Agudy +28) (Ar 8y +4,08,)
+ kLA (Agen, +A580) +A, (Agd +Aa,0)]
2 2
+ (ASNAS + ztta_,’NAm\IAg + AGNAlO) } (B5)
n.L.L
E ot S R P 2
Ban =75 Ukp(Aggdy+ 28 phonly Tagd))
kg
tx, LA (kg Ay * phgy) 8g = A (kA + oA,
= A (g T RgA DB, F A (ki Ag + T A A ]
1 2
Pz LCepd g koA ) Bg= 2k A, koA (k Ay + koA )
t
) 2
+ (k1A3N+ szsu) Aw]}. (B6)
Here,
ny = (L& D=8 ) (88)
and
Lj sin2kzL3
A1 = '—2— +T (B]O)
%
2
sin“k L
- &3
b T T, | (811)
L sin2k, L
_ 3 _ 273
83 =73 4k, (B12)
sin(k, -k )L
A 2t 3 (B13)

L 2(k2 - kt)
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1~ cos(kz + kt:)La 1- cos(kz - kt)L

3
A, = - (B14)
5 2(k, +k.) 2(k, - k) .
1-cos(k, ~k )L l-cos(k,+k )L
B = T2k —zk )t >+ 2(k +2k )t : (B15)
2 t 2 t
sin(kz—kt)l..3 s:ln(qul+kt)L3 (816)
A, = - B
7 z(kﬂ,—kt) 2(k2+kt)
L sink L
_ 3 3
Ag =5 +—_4kt (B17)
2
sin“k L
_ t 3
A = %k, (818)
L sin2k L
=3 ___t3
103 - 4kt (819)

Finally, all of the above may be combined according to equation (B2) to

obtain EN.
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A COMPUTER PROGRAM FOR CALCULATING THE X3-AXIS DISPLACEMENT

RESPONSE DUE TO AN IMPULSIVE BODY FORCE

72
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FORTRAN 1V G1

0001
0002
0003
0004

0005
0006

0007
0008
0009

0010
0011
0012

0013
0014
Q015

0016
0017
oo0ts8

019
0020
0021

0022
0023
0023
0025
Q026
0027
oozs
0029
0030
0031

0032
0033
0034
3035
0036
0037
0038
0039

RELEASE 2.0 MA IN

[a N2 X2l non nonN [aX2Xal

aon

nnoOn

39

DATE = 80230 14/58/741

COMMDN XL 3o XL2eXL3eXClo XC2eXCIsCL o WND ol ZERDCT

CCMMON N1 ¢N2s XKL s XK26 X1 9 X290 X3 ASYMP

DIMENSION U3(200)+U3S{200) oFNL15000) +DIN(L15000)
COMPLEX AsCOEFFyODIFL oDIFT o XKLoXKTsRSsPSTeRSTeThe T242ER

LONGITUDINAL AND TRANSVERSE WAVE SPEEDS

CL=6150.
CY=3110.

SPECIMEN DI MENSICNS

XL1=040254

XL2=,0254

XL3=.0254

POINT OF APPLICATION OF THE IMPULSIVE LCAD
XCl=XL1/2.

XC2=XL 272,

XC3=.0107

POINT AT WHICH DISPLACEMENTS ARE SENSED
X1=xC1

X2=xc2

X3=.0147

LOWER AND UPPER FREQUENCY BGUNDS
PI=3.141592€536

WNL=(1+.0E4)%2,%P1

WNU=(12SE6 )%2+#P]

P AND SV WAVE CHARACTERISTIC FREQUENCIES AND U3 MODAL DISPLACEMENT
COEFFICIENTS

N=1
ZERO=0.
12ERQO=0

DELF=250.%P1

DM IN=1 «0E-3
A=CMPLX(0esle)
ASYMP=18,.

00 16 J=1,13.2
N2=4-1

XN2=N2
XK2=XN2*P I/ XL2

DO 15 (=1,13,2

K=1

L=1

WN=WNL

Ni=1-1

XN1I=N}
XK1=XNI*PI/XL1
WND=XKI*# XK} +XK2*XK2
IF{WND«GT«ZERC) GO TO 2
XN3=K

PAGE 0001

174



FORTRAN IV GI PRELEASE 2.0 MA IN DATE = 80230 14758741 PAGE 0002

0040 WEN=CL #XN3*PI/XL 3
00a1 IF(WFN.GTWNU) GO TO 15

0042 GO TO 14

0043 2 WFL=WN*WN/ (CL¥CL )

0044 WFT=WN®*WN/{CT#*CT)

0045 CIFL=WFL-WND

0046 CIFT=WFT-WND

0047 XKL=CSORT(DIFL)

0048 XKT=CSQRT(D IFT )

0049 RS=WND-DIFT

0050 PST==4 s *WNDEXKL® XK T

0051 RST=-RS*RS :
0052 TI=XKL&XL3

0053 T2=XKT #XL3

0054 RT1=CABS(T1)

0055 RT2=CABS(T2)

0056 COEFF=+5#{ {(PST/RST )+{RST/PST))

0057 TFCWND oGV o WFLoANDeWND e LT o WFT,ANDRT 2o GT (ASYMP) GO TO 40
00S8 IF(WND o GT e WFTeANDesRT2.GTsASYNMP) GO TO 41
0059 2ER=COEFF*CS INC(T 1 J#CSINI(T2)43+~CCOSIT1)#CCOS(T2)
0060 GG TO 42

o061 40 ZER=A% COEFF $S IN{RT2)-COS(RTZ)

0062 GO TO a2

0063 a1 ZER=PST#RST

00€a 42 ZR=REAL (ZER)

0065 Z1=AIMAGL ZER) .
0066 IF(ZR ¢« EQ+ZERO+ANDZ1 «EQ.ZERO) GO TO 7
0067 IF(ZI) 3.20,4

0068 3 KSIGN=1

0069 Go TOo 5

0070 20 KSIGN=2

0071 GO TO S

o072 4 KSIGN=3

0073 5 IF(ZF) 621 48

0074 6 1SIGN=1

0075 IF(L=1) 11.11,9

0076 7 WEN=WN

o07r?7? WN=WN+DELF

0078 IF(WN.LT.WNU)} GD TC 2

0079 GO TO 15

0080 21 ISIGN=2

oos1 IF(L-1) 1141149

0082 8 ISIGN=3

0083 IF(L=1) 11,18,9

0084 9 IF(JSIGN-ISIGN) 12,1012

0oo8s 10 IF(LS IGN-KSIGN) 13,11,13

0086 [ B OLDWN=wWN

0087 oLpzi=2z1

ooss OLDZR=ZR

0089 wN=WN+DELF

0050 IF(WNGT «WNU) GO TO 15 .
0091 LSIGN=KSIGN

00G2 JSIGN=ISIGN

0093 L=l +1

0094 Go TO 2

0055 12 WFN={ ZR*0LD wN~-OLDZR%WN) /{ ZR-CLDZR)

00 9¢& CALL FREQ{OLCWN.:WN,WFN)

2067 GC TO 14
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FORTRAN IV Gl RELEASE 2.0 MA IN DATE = 80230 14/58/741 PAGE 0003

0068 13 WEN={ZI+0LDWN-OLOZI*WN)/ (21-0LDZ1)
0099 CALL FREQ(OLDWNs; WNsWFN)}
0100 14 CALL MDC{WFN.DR)
2101 ADR=ABS{DR)
o102 IF(ADR LT .DMIN) GO TO S8
o103 WRITEL(G a%) 1eJeKeWFNeDFoN
0104 FN{NJI=WFN
0105 C3N(NDI=DR
o106 N=N+1
o107 S8 K=K+1
o108 IF{WNDEQeZERO) GO TO 39
0109 IF{WN.LT.WNU) GO TO it
otiL0 15 CONT INVE
o111 16 CONTINUE
o112 NF=N-~1
0113 PRINT 1
o114 1 FORMAT(LHL)
o115 WRITE(G6+%) NF
o116 PRINT 1
0117 DO 18 I=1eNF
o118 18 WRITE(6463) FN(I)sD3IN(I)
011$ 63 FCRMAT (11X +2E20.3)
o120 PRINT 1
C
C SUMMING TH:E MODAL DISPLACEMENTS TO DETERMINE THF U3 DISPLACEMENTS
C AS A FUNCTION OF TIME .
c
ot21 T=2.0E-8
0122 FO=3.7037E-4
0123 DO 61 M=l .,200
0124 U3N=0«
0125 U3NS=0.
o126 DO 60 K=1eNF
o127 CFN=FN(K)
o128 ARG=DFN*T
0129 D ISP=D3N(K)
0130 PHI=DISP*S IN(ARG )/ DFN
0131 PHIS=DISP*(1.~-COS({ARG) )/ (DFASDFN)
0132 U3IN=U3N+FO*PHI
0133 UINS=U3NS+FO*PHIS
0134 60 CONTINVE
0145 U3 (M)=U3N
0136 U3S{M) =U3NS
0137 61 T=7+2+.0E-8
0138 PRINT 1
20136 WRITE(6462) (U3(M)N=1,200)
0140 €2 FORMAT( 11X, SE20.3)
Olal PRINT 1
0142 WRITE( 6+62) (U3S{M)sM=1,200)
0143 PRINT 1
0144 sTOpP

0145 END
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FORTRAN IV G1

0001
0002
0003
a0 04
0005
0006
0007
0%08
000¢%
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
20027
00z2a
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038

RELEASE 2.0 FREQ

40

4l
42

anpn

DATE = 80230 14758741

SUBROUTINE FREQ({ X1 ¢X2sWFN)

COMMON CL «CToWNDASYMP

COMPLEX DIFLsDIFTeXKL oXKT oRSoPST ¢RST Tl sT2¢COEFF,2ZCeA
A=CMPLX{Oes L)

C=wFN

DO 2 I=1,+5

WFL=C*C/(CL*CL)

WFT=C%C/ (CT*CT)

DIFL=WFL-WND

CIFT=wWFT~WND

XKL=CSQRTY(DIFL)

XKT=CSQRTL(DIFT)

RS=WNOD-CIFT

PST==4 ¢ *WND*XKL*XKT

RST=—RS*RS

T1=XKL#*XLI

T2=XKT*XL3

RT1=CABS(T1)

RY2=CABS(T2)

COEFF=o¢S*{ (PST/RST)I+(RST/PST))

IF (WND oGT oWFL o ANDeWND L. TaWFTAND eRT1eGTeASYMP) GO TO 40
IF(WNDeGTeWFTeANDeRT2eGToASYNP) GO TC 41
2C=COEFF4+CSIN(TL )*CSIN(T2)+1.-CCOS(T11%CCQS(T2)
GO TO 42

ZC=A®COEFF*SINIRT2)-COS(RT2)

GO YO 42

ZC=PST+FST

2R=REAL(2ZC)

ZI=AIMAG(2C)

IF(ZR) 304, S

IF(ZE) 346,45

xX1=C

GO TO 2

x2=C

Cs(X1¢X2) /2.

WFN=C

RETURN

END

PAGE 0001
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FORTRAN IV G1

0001
0002
0003
0003
0005
0006
0007
0208

0009
0010
0o1l1
0012
0013
0014
0015
0016
0017
0018
0016
0020
0021
0022
«023
0024
0025
0026
0927
0028
0029
0030
0031
oV 32
0033
0034
0035
0036
0037
0048
0039
0940
0041
0042
0043
0044
0045
0046
0047
004b
0049
0050
0051
0052
0053
00354
0SS

RELEASE 2.0 MDC

nonNn

23

30

31

32

33

DATE = 80230 14758741

SUBROUT INE MDC(WFN,DR)

COMMON XL1eXL2sXLIsXCLlsXC2eXCIoCLsWNDs1ZERDSCT

COMMON NIsN2e XK1 s XK29e X1 6 X2 ¢ 23

COMPLEX ALloA20A3¢A%4ASeDsDIFLIDIFT o XKL o XKT 9RSePSTsRSTsT1 oT2eDKeSK
COMPLEX DKL oSKLeTT1 +TT2401eC2+D3¢D30D5+06+D7eD8sLCSeD10sC14C2+C30CAH
COMPLEX AEL+AE2+AEI+BE) +BE2+.BE31Q1+0Q2,CE1 sCE2+CEIsELNIE2NEINEN
CONMPLEX P3NX¢PINXCeSX39SXa4+TX3,TX4

COMPLEX CS1+CS2+CC14CC2

DETERMINATION OF THE MODAL COZFF ICIENTS

DIFL=(WFN®WFN/ (CL*CL ) )-wND

DIFT=({ WFN®WFN/(CT*CT )} )-wWND
XKL=CSQRT{DIFL)

XKT=CSQRT{(DIFT)

RS=WNO-DIFT

PST==4 ¢ SWND R XKL*XKT

RST=-RS*RS

T1=XKL*XL3

T2=XKT*XL 3

CS1=CS IN(T1)

CS2=CSIN(T2)

CCE=CCOS(TL)

CC2=CcCcos(T2)

IF(N1 eGVoIZERD+ANDeN2:GT 1 ZERO) GO TO 30
IF(N1+EQ«IZERDANDeN2GTe12ZERO) GO TO 31
IF (N1 «GY +1ZERO«ANDN2.EQ.1ZERD) GO TO 32
ETAL1=0.

ETA2=0 .

ETA3=4.

A6=0.

AS=CMPLX(0¢e0se)

A4=CMPLX(0es0s)

AZ=CMPLX(0es00)

A2=CMPLX(1e»00)

A1=CMPLX{ 0o+ 0.}

GO TO 34

ETAL=L .

ETA2=1.

ETA3=1 .

GO TO 33

ETA1=0.

ETA2=2,

ETA3=2.

GO TO 33

ETAL=2.

ETA2=0.

ETA3=2.

A6=0¢

AS=CMPLX{0¢s004)

A4=CMPLX{(]1+120.)
A3=-RST*[CC1-CC2)/{PST*CSI+RST*CS2)
A2=(XKI®XKLI =D IFT I/ (2 o # XK1 $ XKLEXK T )
Al=—2. ¥XKI1*A3/({ XK1*XKLI-DIFT) .
GO TO 34

AG=1,.
AS=—RST#{(CCI1-CCRI/IPETHCSL1 +RET#CS2)
A4 =XK1/XK2

PAGE 0001
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FORTRAN IV GI

0056
9057
0058

0059
0060
0061
00¢c2
0063
0064
0065
0066
0067
0068
0069
0070
ao7t
0072
0973
0074
0075
0076
0077
0078
0079
0080
ooat
o082
0083
0033
0085
0086
0087
o088
0089
0050
0091

0062
0093
0094
0095
0096

0097
0098
0099
0100
0101

o102
0103
0104
0105

PELEASE 2.0 MDC DATE = 80230

wWwnoon

NnoOn

3¢

A3=Ad%AS
A2=RS/Z{2+ ¥ XK2 & XKLEXKT)
Al=—A2*AS*PST/RST

CALCULATION OF THE GENEFALIZED MASS EN

DK=XKL=XKT

SK=XKL+XKT

DKL=T1-T2.

SKL=T1 472
DI=(XL3/2.14CS1$(CCL/(2e%XKL) )
02=CS1#(CS1/(2+%XKL))
D3=(XL3/72¢)-CS1#{CCL/(2e*XKL))
C1=CSINC(DKL M/ {2 « #DK )
C2=CSIN(SKL )/ (2 +#5K)
C3=C1.-CCOS{SKL ) I/ (24 #5K)
Ca=(1.-CCOS (DKL) )/ (2 +3DK)

DA=C1+C2

€5=C3-Ca

D6=C3+Ca

D7=C1-C2 .
DB=(XL3/2¢)+CS2%(CC2/(2+#XKT))
D9=CS24(CS2/(2.#XKT))
010={XL3/24)-CS28(CC2/(2.%XKT))
AE1=AL1$A1%¥D1+2,#A1 ¥A24D2¢ AZ*A2¢D3
AE2=A1%(A34DA+AS4D5) +A2% (A I4D6+A 44D 7)
AE3=A3%A3%DB+2,%A3%A43D9+AQ*AGSD 10
BE1=AE1
BE2=A1#(AS*D3+A64DS }+A2% (AE4D6+A6SD 7)
BE3=AS#AS¥DB+2. $AS*A6 $D9+A6#A6 %D 10
Q1=XK 1A QA+ XK2*%A6

02=XK] * A3 +XK2*A5
CE1=A1#A18D342,5AL#A24D2+A28A2%D1
CE2=013(A1%D6-A24D4)+Q28(A2#D5-A 14D T)
CE3=Q1%Q1%DB8-2.%0Q1%Q2*D9+Q2%02%D 10
EIN=XK 1#XK 1 %AE L +2. XK 1 #AE2 +AE3
E2N=XK28XK2#BEL +2 4 XK 2# BE2 4BE 3
E3N=DIFL#*CEL + (XKL*CZ2/XKT )+ (CE3/ DIFT)
EN=( XL 1#XL 2/ 8¢ ) $(ETA 1 #E IN+E TA2%E 2N+E TAI#E 3N)

DETEFMINATICN OF THE U3 MOCAL DISPLACEMENY COEFFICIENTS

SX1=XK1%X1
SX2=XK 2#X2
SX3=XKL*X3
SX4=XKT%*X3

PINX=COS(SX1)%COSISX2)*+(XKL»(AI*CSIN(SX3)-A2%CCOSISX3})

L#{(1e/XKT)#(Q1%CCOSISXa)~Q2*CSIN(SX4E)))
TX1=xK 1%XC1
TX2=XK2%XC2
TX3=XKL*XC3
TX4=XKT#XC3

14/58/41

PINXC=COSITXL }*COUS(TX2) S (XKL*{ALSCSIN(TXI)-A2*CCOSITX3))

1+l e/ XKT) ¢ {OARCCOS{TXA}-02#CSIN(TXI) )
C=PINXCxP3INX/EN

DF=FEAL(D)

RETURN

END

PAGE 0002
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