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- ABSTRACT

A large number of problems in engineering science involve the
solution of differential equations subject to some subsidiary condi-
tions, called constraints (of equality or inequality type). While the
derivation of the governing equations is not unduly difficult, it is
considerably more difficult to analyze problems with constraints. Most
practiéal methods of analysis are based on unconstrained minimization
techniques, such as the Lagrange multiplier method and the penalty
function method. These techniques transform a given constrained mini-
mization problem into a set of unconstrained minimization probiems.
In the practical implementation of these methods, one encounters
problems in terms of computer'storage, computational time, and more
importantly numerical instabilities. The present study is concerned
with alternate formulation of two practically important problems
which have received great interest of researchers. The novelty of
the present work 1ies in the use of the finite element method in con-
junction with variational inequality approach and penalty function
method.

The first problem is concerned with elastic-plastic torsion of
a bar subjected to terminal twisting couples. Here the yield criterion
of plasticity imposes inequality constraints on the gradient of the
stress function. The variational inequality approach was used in the

iv



formulation and numerical solution of the problem. The present study
concludes that the variational inequality approach is numerically
accurate and computationally efficient. Several noncircular and non-
rectangular cross section bars were used to show the stress contours
and elasto-plastic interface as a function of the twisting couple.
Application of the method to two- and three-dimensional elasto-plastic
problems is awaiting.

The second problem is concerned with the natural convection of
a laminar incompressible Newtonian Fluid in enclosures. Here the
divergence-free condition on the velocity field is treated as a con-
straint. The penalty function method was employed to formulate the
problem, and the finite element method was used to solve the problem
numerically. A finite element pased on the stream function-vorticity
formulation was. also developed to assess the accuracy and computational
simplicity of the penalty-finite element developed herein. The study
indicates the penalty-finité element is computationally less expensive,
while yielding competitively (or better) accurate solutions for moder-
ately high Rayleigh numbers (5106). Extension of the present work to
time dependent and three dimensional flows.is of great interest to

industry.
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CHAPTER I
INTRODUCTION

1.1 Opening Comments

A Targe number of problems in engineering science involve the
solution of differential equations subject to some subsidiany con-
ditions, called constraints (of equality or inequality type). While
the derivation of the governing equations is not unduly difficult, it
is considerably more difficult to analyze problems with constraints.
Most practical methods of analysis are based on unconstrained minimi-
zation techniques, such as the Lagrange multiplier method and the
penalty function method. These techniques transform a given constrained
minimization problem into a set of unconstrained minimization problems.
In the practical implementation of these methods, one encounters prob-
lems in terms of storage, computational time, and more importantly
numerical instabilities. The.present study is concerned with alternate
formulation of two practically important problems, which have reczived
great attention of researchers. The novelty of the present work lies
in the use of the finite element method in conjunction with the varia-
tional inequality approach and the penalty function method. Two years
ago, when the author began this study, these two methods were just

beginning to attract the attention of engineers and mathematicians



alike. At the present time there are many papers devoted to the
analysis and applications of these techniques (although old in concept,
their use in finite element analysis is new) to many important prob-
lems that have defied satisfactory solutions heretofore. The problems
considered herein are described below.

1. The first problem is the elastic-plastic torsion of a bar,
in which the yield criteria of plasticity impose ineguality constraints
on the gradient of the solution. In addition, the relation between
the stress function and total torque is treated as an equality con-
straint when the torque is given. The location of the elestic-plastic
interface is an unknown. Mathematically, this problem.is described
by an elliptic boundary-value problem and the main difficulty in its
numerical analysis is the construction of a scheme to incorporate the
inequality constraint. The problem is solved using a modern tool of
function analysis, namely the variétiona] inequality approach.

2. The second problem is the steady laminar natural convection
of an incompressib]e Newtonian fluid in enclosures. The Boussinesq
approximation is invoked. The incompressibility condition (i.e.,
divergence free condition) on the velocity field can be viewed as a
constraint. Incorporation of this constraint into the numerical
scheme is of prime concern, while keeping computational costs to a
minimum. Further, when convection dominates the flow, momentum and
thermal boundary layers are formed along the enclosure walls, where
the velocity and temperature have a large gradient; “This rapid
change of velocity and temperature near the well further complicates
the construction of a convergent iterative numerical scheme for the

2



nonlinear terms. The elliptical nature of the governing equation is
weakened by the dominance of the convective term. The primary numer-
ical difficulty in such a (first-order derivative dominated) problem
lies in severe numerical oscillations in the solution, causing the
iteration process to diverge. The penalty function method is employed

to solve the problem.

1.2 Brief Review of Pertinent Literature

The type of constraint, whether it is an equality or inequality,
varies from problem to problem. Examples of equality constraints are
provided by the condition that the first strain invariant is equal to
zero in the stress analysis of rubber-like materials, and the diver-
gence-free condition on thé velocity field in the incompressible fluid
flow analysis. Conservation of (mean) total mass, (mean) total energy
and (mean) squared vorticity in certain meteorological schemes provide
other types of equality constraints in integram form. Examples of
inequa]ity constraints are provided by the yield criteria in plasticity,
Coulomb's law of friction at a boundary, and a free-surface condition
in seepage flow.

In order to incorporate these constraints, the Lagrange multiplier
formulation appears to be the most general and widely used one. How-
ever, in certain problems, for example, in incompressible flow analysis,
the .penalty function method of Courant (1943, 1956) is computationally
more advantageous because it does not introduce new variables (i.e.,
Lagrange mu]tipliérsf into .the formulations. Applications of the

penalty function method in conjunction with the finite element method

3



can be found in the works of Zienkiewicz and his colleagues (1974,
1975, 1976), Hughes et al. (1976), and Reddy and his colleagues (1977,
1978, 1979a, 1979b, 1980a, 1980b). Part of the present work was con-
ducted during this time (1980a). A specific form of the penalty
function method, called 'variational adjustment', was proposed by
Sasaki (1976) for the construction of stable numerical schemes; the
method is also used in the variational objective analysis in meteoro-
logical problems.

Inequality constraints in the past were treated by Pontryagin's
(1962) maximum principle, and the inverse penalty method of Carroll
(1961) in mathematical programming (also see Bellman (1957)).

In the last decade the variational inequality methods have re-
ceived greater attention by French and Italian applied mathematicians
(e.g., Lions and Stampacchia (1967), Stampacchia (1968), and Fichera
(1972)). Direct applications of the variational inequality approach
to mechanics were suggested by Duvaut and Lions (1976). The varia-
tional inequality approach provides an elegant general theory that,
as a special case, includes the classical variational formulation.
However, the construction and implementation of efficient numerical
schemes in specific problems is extremely complex, and forms a topic
of current research (Kikuchi and Oden (1979), and Oden and Kikuchi
(1979)).

Besides the difficulties associated with the numerical solution
of problems with constraints, nonlinear problems require additional

consideration in constructing efficient numerical schemes. In
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nonlinear problems, iterative solution methods generally are used;
they usually consume considerable computing time. Several general
iterative methods were given by Zienkiewicz (1977). Numerical oscill-
ations are often encountered in nonlinear problems involving the
first-order derivatives (e.g., convective term); for example, large
Reynolds number or Rayleigh number flows are known to present numer-
ical difficulties (see Hughes (1979a)).

Use of refined mesh in the finite element method to avoid
numerical oscillations seems to be the first thing numerical analysts
try to do (see Gresho et al., (1979)).' However; this results in a
large system of algebraic equations. Upwind FEM is proposed as an
alternative scheme to suppressvghe numerical oscillations in the
solution (see Zienkiewicz (1977) and Hughes (1979a)). There is a
great deal of research currently underway in devising proper upwind
schemes. The upwind technique is essentially equivalent to the
artificial viscosity method which strengthens the elliptic nature

of the equation (Roache, 1972).

1.3 'Thesis Objectives

The objectives of the present study are:

(1) to develop general iterative numerical schemes for elastic-
plastic torsion problems based on the variational inequality
formulation; and,

(2) to construct numerical schemes for natural convection problems
using. penalty function method.

Following the introduction, Chapter II defines the governing

5



equations of the following problems: (i) elastic-plastic torsion of
a bar; and (ii) natural conQection in enclosures.
In Chapter III, Lagrange multiplier formulation, penalty for-
mulation and variational inequality formulation are summarized.
Chapter IV is devoted to the detailed formulation and numerical
analysis (based on variational inequality) of the elastic-plastic

torsion of a bar. von Mises yielding criterion is applied.

N

napter V sclves natural convection in enc]osures'assuming
steady, Newtonian incompressible fluid under Boussinesq approximation.
The penalty and stream function-vorticity formulations are compared
in accuracy and efficiency.

Finally, primary results are summarized and future research

directions are recommended.



CHAPTER II

GOVERNING EQUATIONS

2.1 Elastic-plastic Torsion of Bar

The problem of elastic-plastic torsion of a bar twisted by
terminal couples can be formulated in terms of a stress function ¢.

The elastic-plastic torsion problem involves finding ¢ such that

v2p = -f in Q (2.1)
2 2 _ ; : 2.2
|V¢|2 sz 0 in a (2.2)
|vo | - T < 0 in @, (2.3)
¢ =0 on 3Q (2.4)
3% - 3¢ on T (2.5)
Bng  any h
T = fgch dxdy | (2.6)

where 2 and Qp denote the elastic and plastic portion of the domain

(i.e., cross section of the bar), 2 = QU R, 32 denotes piecewise

p
smooth boundary, T is the interface of elastic and piastic portions,
ag and = an are outer normal derivatives on T with respect to Qg and
P

Qp, rp is a g1ven plastic (shear) stress, and f = 2G6; here G is the
shear modulus, 6 is the angular twist per unit length, and T is the
applied torque on the bar. Note that eguation (2.3) is an inequality

constraint on the gradient of ¢. It should be pointed out that either



® or T is known and the.other is computed in any given problem.

The first complete description of the elastic-plastic torsion
problem is apparently due to von Mises (1949). Existence and unique-
ness of solution to elastic-plastic torsion of a square cross-
section bar was established by Ting (1966) using a direct approach
on equations (2.1)-(2.6). A different approach, based on the theory
of variational inequalities, was taken by stampacchia (1968), Lions
(1971), and Duvaut and Lions (1976). In the theory of variational
inequalities the problem in (2.1)-(2.6) is formulated as a constrained
(which is an inequality constraint) minimization problem on a res-
tricted function space. Duvaut and Lions (1976) considered existence,
uniqueness, and regularity of solutions to the elastic-plastic
torsion.

A vast majority of papers on variational inequalities dwell on
theoretical aspects such as existence and uniqueness of solutions,
and very little can be found on computational and numerical results.
Numerical solutions to the elastic-plastic torsion problem have been
obtained using finite difference methods, relaxation methods, non-
linear programming methods and finite e]ement.methods. Many- of the
previous works have used direct formulations based on (2.1)-(2.6).
While the theory of variational inequalities is a natural (and per-
haps the most correct) means of formulating the elastic-plastic
torsion problem, its numerical implementation is by no means easy.
This fact is reflected by the very few publications on the applica-
tion of variational,inequality to engineering problems. Numerical
solution of the elastic-plastic torsion by the variational inequality

8



is a recent occurrence. Glowinski and his colleagues (1973, 1976)
presented numerical results for various twist angles for simply and
mul ti-connected domains using Uzawa's method (Arrow et al., 1958).
Recently, Tabata (1976) presented a numerical method for the varia-
tional inequaiity associafed with the elastic-plastic torsion problem.
There the finite element method was used to reduce the problem to a
minimization problem, which was then solved by the interior point
unconstrained minimization technique with the steepest descent method
and the generalized Newton method (Fiacco and McCormick, 1968).
Fiacco and McCormick (1968) pointed out that the gradient method,
which is the basis of Uzawa's method, has slow convergence compared
to the interior-point unconstrained-minimization technique.

The present investigation is concerned with a new numerical
procedure to solve the variational inequality associated with the
elastic-plastic torsion problem (2.1)=(2.6). The main difficulty
with the problem is to locate the elastic-plastic interface. Lanchon
(1970) - treated equations (2.2) and (2.3) as constraints by means of
a Lagrange multiplier, and ft was assumed that the angle of twist is
given instead of the terminal torque; In the present investigation,
equatibn (2.2) is solved by means of the method of characferistics,
and then an iterative procedure is used to solve for.the elastic-
plastic interface. We also reformulate the problem in Lanchon (1970,
1974) for the case in which the torque is given. The present investi-
gation is primarily concerned with a new and effective computational
scheme to solve the elastic-plastic torsion problem; nevertheless,
theoretical aspects; such as the existence and uniqueness.of solution

9



and error estimates, are discussed for the sake of completeness. A
number of numerical examples are presented assuming that von Mises'

yield criterion hoids.

2.2 Natural Convection in Enclosures

Convection phenomena induced by body forces have been the sub-
Jjects of many theoretical and numerical investigations. As pointed
out by Ostrach (1972) convection problems can be classified into two

major types: external problems, such as the flow around a heated rod

or plate caused by existence of a temperature difference between the

body and the fluid; and internal (or confined) problems, such as the

flow in a fluid-filled cavity caused by the temperature differences
between the walls of the cavity. Due to their important role in many
engineering problems of practical interest, internal problems have
received greater attention. These problems include: thermal insula-
tion of buildings, Batchelor (1954); heat transfer through double-
glazed window, Elder (1965a,b) and Gil1 (1966); cooling of electronic
equipment, Pedersen (]971); general circulation of planetary atmos-
pheres, Hart (1972); crystal growth from the melt, Carruthers.(1975);
sterilization of canned foods, Hiddink et al. (1976); cooling fluids
in channels surrounding a nuclear reactor core, Petuklov (1976); con-
vectively cooled underground electric cable systems, Chato and
Abdulhadi (1978) and many others.

For internal high Rayleigh number (i.e. Ra > 103) flows, the

region exterior (i.e. core) to the boundary layer is influenced by

the behavior of the surrounding boundary layer. This coupling of
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the boundary layer and the core region constitutes the main source
of difficulty for obtaining analytical solutions to internal problems,
forcing one to seek numerical solutions. In order to capture the
boundary layer effects, one must use a small mesh near the walls.
This requires the use of a nonuniform mesh in the interest of accu-
racy and computational efficiency (use of a nonuniform mesh is also
necessitated by irregular configurations of enclosures). The inability
of the finite difference methods to accurately describe irregular
domains and permit the use of nonunifdrm; non-rectangular meshes, and
the complexity involved in developing higher-order finite difference
approximations have led the researchers to consider the finite element
method, which is known to have overcome the above mentioned short-
comings of the finite difference method. The feasibility of applying
the finite element method to convection heat transfer in rectangular
enclosures has been studied by Tabarrok and Lin (1977) using the
stream function-vorticity-temperature formulation, Gartling (1977)
using the pressdre-ve]ocity-temperature formulation, Heinrich et al.
(1978), and Reddy and Mamidi (1978) using penalty function methods.
Under the standard assumption of convective heat traﬁsfer (i.e.
Boussinesq approximation holds), the two-dimensional equations
governing a Newtonian fluid in the presence of a temperature gradient
(but in the absence of other body forces) can be written as,

conseryation of mass:

AU LV (2.7)

n



conservation of 1inear momentum:

o 22 '
Alu) = - 5‘;%‘} *l2 g4 (gprap)l - BTT) (2.8)
| 2
- 1 3P oV . + 3V
A(v) = - —;'5y + V[2 ay2 ( 3;)] (2.9)

conservation of energy:

2. .2
AT) = o 2]+ 2T (2.10)
oxX °
where
@ = k/pyCy » A= u 33 +y a"; (2.11)

and x is taken positive downward (i.e. along the acceleration due to
gravity). Here (u,v) are the components of velocity along (x,y) -

directions, P is the pressure, T is the temperature (To is the refer-

ence temperature), p. is the reference velue of the density of the

0
fluid, vis.the kinematic viscosity, B is the coefficient of thermal

expansion, k is the thermal conductivity, C_ is the specific heat at

constant pressure, and g is the acce]eratioi due to gravity. To
complete the description of the equations, equations (2.7)-(2.10)
must be adjoined by appropriate boundary conditions of the problem.
We assume that the following general boundary conditions (of mixed

type) are specified:

o = ax ny + 5;‘"y) = g on 31> T=T on. 3y (2.12)
- ' v — %
t, 2 (2v _)n +v( x)“y' £, on e
2.13)
= ou , oV A (
t, = (g5t ax)x+(2v-—--Pny t, ond,

12



u=uon 392u s V = v on BQZV,'E = P/po (2.14)

Here n = ("x’"y) denotes the unit normal to the boundary 8Q, and 3
and 392 denote disjoint (i.e. Bﬁﬁ # 39&) portions of the total
boundary 92 of the bounded region f. That is,

BQ]u + 392u = Bﬁﬁv + 392v = o0 = BSHT + GQZT (2.15)

That is, aﬂﬁu and 3GHV denote the portions of the boundary on which
the tractions ty and ty, respectjve]y, are specified, and BQZu and
30y, denote the portions on which the velocities are specified.
Quantities with a hat '~' denote specified quantities on the approp-
riate boundary. Further, we use the following variables for the
nondimensionalization. Let d denote the Tength of the enclosure
(along y), & the height (along x), and T and T_ denote the tempera-
tures of the hot and cold walls, respectively.

The above equations in the primitive variables (u,v,p,T) are
often replaced by equations in terms of the descriptive variables
(v,z,T) for numerical approximations. The stream function y is
introduced to satisfy the incompressibility condition (2.7). Define

the stream function by

=9y = .U
u 3y v ~ (2.16)
and the vorticity, z, by
_ dv  ou _ 2
L=ax- o VY. } A (2.17)

Consequently, equations (2.7)-(2.10) reduce to
W= ()t g8 R | (2.18)

13



2

-V =z, (2.19)
it = Laqum). (2.20)
where J(.,.) is the Jacobian,
_ op 3 ap 9 (2.21)
o) =22 2

In order to derive the finite element equations, the mixed for-
mulation in terms of variables (u,v,p,T) may be the most direct one.
However, it is well known that FEM, based on the mixed formulation,
comprises a non-positive definite matrix and zeros appear in the
diagonal in the coefficient matrix. Furthermore, iteration to obtain
nonlinear solutions often diverges in the analysis of the flow which
has a boundary layer. The penalty formulation is an alternative for-
mulation which has the following advantages: (i) in enabling one to
obtain solution for larger Rayleigh number (which is proportional to
the temperature difference of side walls); and, (ii) in reducing
unknown variables (u,v,p,T) to (u,v,T). Stream function-vorticity and
penalty formulations have the same number of unknowns. Comparison of
penalty and stream function-vorticity formulations is discussed in
Chapter V. Since the exact solution is not available, accuracy of
numerical approximations is compared with other results available in
the Titerature. Alternatively, accuracy of solutions is also tested

by convergence.
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CHAPTER III

GENERAL FORMULATION OF CONSTRAINED OPTIMIZATION PROBLEMS

3.1 Introductory Comment

The objective of the present chapter is to give general formula-
tions of constrained optimization problems for various future uses.
Lagrange multiplier formulation, penalty formulation, and varia-.
tional inequality formulation are applied to.satisfy given equality
or inequality constraints.

The problems defined in Chapter II have the general form of:

either A(g) f in @ (3.1)

or u + A(d) = f in  ox[0,T]

where u is an unknown vector, f is the given vector function and A(.)
is a differential operator with respect to §eR" (n-dimension Euclidean
space), and Q is an open bounded domain in R" with piecewise smooth
boundary 32 and T is a given time.

Constraint conditions have forms of

E.(u) = 0 i=1, ..,1 (3.2)

or () 2 0 i1 (3.3)

v

where I and J show the number of constraints. We assume that (3.2)

and (3.3) are independent of time. Eq. (3.2) or (3.3) can be given

15



either at every point x in the domain or by integral form over the
domain. Concrete forms of variables and constraints corresponding
to the problems in Chapter II are summarized in Table 3.1. Boundary

and initial conditions are given by

B(u) =g on @ or ax[0,T] (3.4)

and Uleeg = Y at t=0 ~ (3.5)

where B is a trace operator on the bouhdary which represents essen-
tial and natural boundary conditions. If operator A contains only
the first-order derivative terms, B is the identity, that is, (3.4)

is simply

U g =9 (3.6)

~

where g and u, are given vector functions. In the following dis-
cussion, we concentrate on ‘the formulation of eq; (3;1) with (3.2)

or (3.3) by assuming essential boundary conditions.

3.2 Weak Formulation

From an approximation point of view, it is advantageous to cast
the given differential equation (3.1) into an integral equation,
called the weak form, in order to satisfy (3.1) in an integral sense.
Then the problem of finding u satisfying eq. (3.1) becomes to find u
such that

<u, + A(g) -f,6u>=0 (3.7)

~

for arbitrary function su subject to (3.2), (3.4) and (3.5), where
<a,b> = J asb da.
0 -
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Table 3.1 Equality and inequality constraints

variable u equality E,(u) =0 inequality Ij(g) >0
elastic-plastic = 2_2
torsion of bar ¢ T IQZ¢ da Ve p <0
. . . ou L, av _
natural convection | (i) penalty 1 3y - 0

U, vo T
(ii) stream

function-
vorticity

C’ lp!T

= oY
u ay
=.9Y
VEo9x




When u and &u are subject to inequality (3.3), (3.7) is replaced by
inequality as is discussed in section 3.5. Since integration in (3.7)
is taken in space, (3.7) gives an ordinary differential equation with
respect to time. It is possible to integrate (3.7) over time taking
éu enx0,Tl. However, it is known that numerical schemes based on
the latter integral have no advantages (Oden and Reddy, 1976). Here
we note that equations (3.1) and (3.7) offer the same solution only
when u, + A(u) - f and 6y are continuous. If these contain a finite
number of discontinuities, two solutions are said to be the same
almost everywhere. This implies that a shock type of solution of

(3.1) cannot be obtained uniquely by (3.7)

3.3 Lagrange Multiplier Formulation

Equality constraint (3.2) can be taken into the weak formulation
by introducing Lagrange muitip]iers. As is seen in Table 3.1, there
are two types of constraints. One is defined pointwise and the other
has an. integral form over domain.

(i) pointwise constraint If constraint (3.2) is given

pointwise, the weak form of (3.1) subject to (3.2) can be given by

N
<y, ¥ A(u) - T, Su>+ J & <Ei(9)’ py>=0 (3.8)
i=1

where pi's are Lagrange multipliers and the function of X, § denotes
the first variation. ‘

(ii) constraint in integral form When constraint (3.2) is given

by an integral form over the domain, the weak form corresponding to

(3.1) subject to (3.2) can be expressed by
18



N
< ut+A(u) -f, 6u>+ 7§ 5(}\1 Ei(u)) = 0 (3.9)
u u) =1, .04 i4 Y

where the Lagrange multiplier. is an unknown number.

Inequality constraint (3.3) can be formulated using a Lagrange
multiplier. Formulation of inequality constraint is given in section
3.5. In order to clarify the use of a Lagrange multiplier, an example
is given. '

Example- Steady incompressible creeping flow in two dimensions is

expressed by Stokes' equation,

u VZU -~%§ = pfx

L vy - %f? - of, (3.10)
U, oV _ '

X + W 0 (3.11)

where v2 is Laplace's operator, fx and fy’ components of body force
per unit volume, p is the density of body. Then, the weak form

associated with (3.10) and (3.11) is given by

< quu - %g-- pf , U >+ < uV v --—E + pf 48V >
+ < %§-+ %% , 8p>=0 (3.12)

Eq. (3.12) can be written as

< uvzu + pfx, Su> + < uvzv + pfy, v >

+ By

+ § < p, By

> =0 (3.13)

when homogeneous boundary condition is used. Eq. (3.13) implies
that eqns. (3.10) and (3.11) are equivalent to finding u and v which
minimize the functional
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F(u,v) =I¢ 5 {(au)2 ( ) }'Pp(f u+f v)] dxdy (3.14)

subject to equality constraint (3.11). It is noted that pressure p

plays the role of a Lagrange multiplier.

3.4 Péna]ty Formulation

In 1941, R. Courant (1943, 1956) suggested a novel method of
obtaining better convergence (of the derivatives of the solution) in
the Rayleigh-Ritz method. The method, as applied to the equilibrium
problem for a membrane (Vzu = f in Q and u = 0 on the boundary 3R of
Q) under external pressure f, can be described as follows: Instead of

considering the usual variational problem of minimizing the functional
1 2, 2 -
I(u) = 5 ( ) ( ) + 2u f] dxdy, u = 0 on 3Q, (3.15)

‘the method seeks the minimum of a modified functional obtained from
the original functional by adding terms of higher order which vanish

for the actual solution u:
I (use) = I(u) + ! J e(Vzu-f)zdxdy (3.16)
P Z g

where ¢ is an arbitrary (preselected) positive constant or function.
Courant termed the functional in (3.16) a "sensitized” functional

since it is more sensitive to variations of u without changing the
solution. Another example of the use of this idea is provided by the
inclusion of the essential boundary condition in the Dirichlet problem.

The modified functional is given by
- €
Ip(u,e) = I(u) + 5| u ds. (3.17)

20



For sufficiently large values of ¢, the boundary value problem corres-
ponding to the functional in (3.17) is almost equivalent to that
associated with the functional in (3.15).

Although the idea was motivated by physical considerations,
its value as a technique for trqnsforming a given Eonstrained minimi-
zation problem into a (sequence of) unconstrained minimization
proglem(s) was not recognized immediately. The idea was apparantly
not rigorously pursued for over a decade. In 1954 there was renewed

interest in the penalty function® method (Leitmann, 1962) as a compu-

tational device in mathematical programming (see, for example, the
'logarithmic potential method' of Frisch (1954), and the 'inverse
penalty function technique' of Carroll (1961)). In 1956 Moser proved
convergence of the solution of the penalty problem to the solution

of the original problem. In 1957 a very significant contribution was
made by Rubin and Unger (1957) which took the original technique of
Courant out of the realm of conjecture for a much wider class of
problems. They generalized Courant's technique to multiple variables
and multiple equality constraints, and provided a convergence proof
and a proof of the existence of Lagrange multipliers. Apart from
these results, there was no significant theoretical development of
the technique for a long time. However, the penalty function tech-
nique was often used as a computational device to approximate solutions
of variatioral problems. There have been numerous papers devoted to

various modifications of the method and their applications to

*The word 'penalty function' was first used by T. N. Edelbaum in
%qap2§r 1 of the book on optimization techniques edited by Leitmann
962). .
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particular problems; see Fiacco and McCormick (1968)Iand Hestenes
(1975) for applications in mathematical programming aﬁd optimization,
Babuska (1975) for finite-element applications, and Sasaki (1976) for
an application in meteorology.

Despite its wide use in mathematical programming and optimiza-
tion, the penalty function method was not regarded, until recently, as
a powerful computational device. This is mainly due to two short-
comings: (i) the technique was used in connection with the approximate
solution of variational problems by Rayleigh-Ritz type methods, which
were themselves never regarded as competitive when compared to the
traditional finite difference methods; (ii) in the practical applica-
tion of the penalty function method, the penalty terms "misbehave"
without proper selection of the approximation functions or integration.

These two shortcomings were overcome by the finite element method (and

reduced integration techniques). In 1973, the pénalty function method
was introduced into the finite-element analysis of fluid flow problems
by Zienkiewicz (1974). However, the seconq shortcoming was not over-
come until Zienkiewicz, Taylor and Too (1971) devised, rather ingen-
jously, the so-called reduced integration technique, which was 1atér
used by Zienkiewicz and his colleagues (1975, 1976) in the numerical
integration of the penalty terms. Thus, over three decades after the
original idea was suggested, the penalty function method was brought
into the realm of computational mechanics (especially into finite
element analysis) where it now serves a§ a simple yet effective com-
putational technique of handling physical as well as mathematical
constraints. Exploitation of further generalizations and extensions
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of the technique in the finite-element solution of a variety of
engineering problems is the current state of the technique.
Equation (3.1) subject to equality constraint (3.2) given at
every point can be formulated by the penalty formulation. The
penalty formulation tries to satisfy (3.2) in an approximate sense.

Introducing a penalty functional corresponding to constraint (3.2),

6w =1 3 [ B ey L em o) (3.18)

one can write the weak form of (3.1) subject to (3;2) as

<up +A(y) + £, su>+ 6 (u) =0 (3.19)
Then it is expected that

u_>uand E(u) »0as ¢ »e (3.20)

In order to assure the property (3.20), certain properties on operator
A and boundary conditions are required. Further mathematical theory
of penalty formulation in the Navier-Stokes equation was given by
Reddy (1979a). |

Example In the example in section 3.3, it was shown that the
problem defined by (3.10) and (3.11) is equivalent to minimization of
a functional F(u,v) defined by (3.14) subject to eq. (3.11). For the
same problem, using the penalty formulation, one defines a new func-

tional L_(u,v) using the given parameter € by

L (u,v) = F(u,v) +-§-f (03 + (&)1 2dxdy )

‘and minimizes Ls(u,v)- Then Euler's equations are given by
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2 96 _
uv u8+e-a—x-- of

X
2 00 _
Wov, +ese = pfy (3.22)
where
e = El‘_s.-g-_aie.:.
X oy

Comparing eq. (3.10) and (3.22) we expect that

€9 = -p, 8 ~ 0 and (ua, ve)-+(u,v) as e+,

3.5 Variational Inequality

Variational inequality is a formulation of minimization problems
subject to inequality constraints. Discussion herein is given for the
steady case and evolutionary variational inequality can be referred to
Lions (1971).

The idea of variational inequality may be illustrated best by
the minimization of a quadratic function f(x) on the closed interval
K = [a,b] shown in Figure 3.1. Let c be the point such that f'(c) =0.
Then according to the location of interval K, point Xg which minimizes
f'(x) can be

(i) if b<c, .xy=b and f'(xy) <0
(ii) if a<c<b, Xg=C and f'(x0)=0 (3.23)
(iii) if c<a, Xxy=a and f'(x0)>0
These three cases can be stgted as a single inequality by finding Xq€ K
such that
f'(,xo)(x-xo)éo for any xeK (3.24)
This idea can be extended to a functional rather than a function.
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Minimization of a functional F(u) subject to an inequality constraint
of the type I(u) 20 given in (3.3) can be stated by finding ueK such
that

(P1) F(u) <F(y) for any veK (3.25)
where K= {y:.I(y) 20}. Then the problem (P1) is characterized

by finding ueK such that
(P2) 6F(u: y-u) >0~ for any veK ' (3.26)
where §F(u: y-u) = liin-]f [F(u+t(y-u)) - F(u)l (3.27)
t+0
If there exists a functional F associated with a differential
operator A defined in (3.1) such that for homogenous boundary condi-

tions

6F(u: y-u) = <Ay - f,y-u>,
then (3.26) becomes <Au - f, y-u>>0 | (3.28)

Inequality (3.26) or (3.28) is called a variational inequality.
The implication of (3.28) can be illustrated geometrically in terms

of a projection. Suppose that for given function h, ueK satisfies
<u-h, v-u> >0 for any veK
Then u is said to be a projection of h on K and denoted by
u =P {h

As is shown in Figure 3.2, u is the point which gives minimum dis-

tance between h and a set K. If we identify h in (3.28) by

h=u-op(Au-f] forop>0,
inequality (3.28) is equivalent to a projection form:
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Figure 3.2 Geometrical Interpretation of Projection.
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u =P, {u-p(A(y) - £)} = T(u) (3.29)

Therefore, the solution of (3.28) is to find the fixed point of
equation (3.29). It has been proved that a unique fixed point exists
if mapping T is a .contraction (Lions and Stampacchia, 1967).

It fs noted that an inequality constraint is considered in the
defin%tibn‘of the set K. Then set K is explicitly defined in terms of
a variable itself (e.g., |u| <1), projection of u on K can be easily
. taken into account as is shown later in an example. However, if K is
defined implicitly (e.g., |grad u| <1), finding the solution which
belongs to K can be a difficult problem. The following formulation
introducing a Lagrange multiplier can convert the variationa1 equality
on K to the one on a new set of Lagrange multiplier.

Introducing a set N such that N = {p: p>0} , proBlem (P1) is
equivalent to finding (u,p)e HxXN such that

(P3) L(4.q) <L(u,p) <L(y,p)  for any (y,q) e HxN (3.30)

where L(u,p) = F(u) - [ p I(g) de , H is a set of function u with no

constraint. Here, the constraint I(u) >0 is extended to the condition
p I(u) >0 and p>0 (3.31)

Ineqbality (3.31) implies that inequality constraint on y is released.
Problem (P3) is aminimization problem with respect to u and maximi-
zation with respect to p, called a saddle-point problem. An example
of (P.1) is given in the following.. Here; we introduce the varia-
tional inequality formulation without specifying properties of a

function space H, K and N, functional F; and the operation <.,.>,
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In fact, in order to investigate the mathematical properties such as
the e;istence, uniqueness, and regularity of the solution, the mathe-
matical notion of functional analysis is required and can be referred
to Duvaut and Lions (1976), Kikughi and Oden (1979 ), and Oden and
Kikuchi (1979).

Example Consider a continuous beam on discrete supports when a
beam is not fixed with the support. Therefore, according to a load
condition, some supports do no work. This problem can be solved by
classical continuous-beam"theory by considering all possible cases in
which the actual situation happens. However, variational inequality
offers a much easier formulation. Suppose that potential energy in

terms of a deflection of a beam w given by

2 : .
F(w) = f{ﬂ- (4% 92 fu} dx, £>0 (3.32)
Q ¢ dx®

where f is a given force, and EI is the f]éxura] rigidity. The
solution should be foundtfn the closed set K such that K = {w: w>01}.
Then the corresponding variational inequality can be stated by finding

w €K such that

2 2
f EI dg d (Véw) dx 2> J f(v-w) dx for any veK
dx dx 0 :

Several numerical results by finite element method are given in

Figure 3.3.
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P=1, EI=1, L=1

Figure 3.3 Deflection of Continuous Beam.
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‘CHAPTER IV

*A NUMERICAL METHOD FOR ELASTIC-PLASTIC TORSION BY
VARIATIONAL INEQUALITY

4.1 VARIATIONAL FORMULATIONS

Associated with the elastic-plastic torsion problem (2.1)-(2.6),
we discuss two methods; one due to Lanchon (1970, 1974), called Problem
L, and the other is the new method which we will call Problem P. 1In
each method we consider two cases: In case 1, the angle of twist is
assumed to be given and in case 2 the torque is assumed to be known.

We use the following notation. Let LZ(Q) denote the space of square
integrable functions in © and Hl(n) denote the Sobolev space of order

1 with their first derivatives, belong to LZ(Q), and vanish on the

boundary of Q).

Problem 1

When f (= 2G6) is given, (2.1)-(2.5) are formulated as a minimi-
zation problem on the restricted function space K:
(P1). Find ek such that for given feLZ()
F(¢) < F(3) for yeK (4.1)
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where F(¢) ='J}|v¢[2 - 2fp)dxdy, and K is the closed convex set,
Q

= {oel: |vg]2 - < 0nal IR ()

Here torque T can be computed from (2.6) once ¢ is known. It is easy
to see that the problem P1 is a minimization problem on set K and is
equivalent to the problem described by (2;1)—(2.5). To show this,
first note that equations (2.2)-(2.4) are included in the definition of
K, and it remains to be shown that P1 is equivalent to (2.1) and (2.5).

Suppose that ¢eK minimizes F(4) on K. Then for ¢o; ‘%K,
8F(9, 6 = 0)) 20
or, equivalently, withn=79¢ - 99>

tine L (F (o + en) - F(n) ) = 2 Flg, + en)

€ >0

> 0
e=0

That is, ‘

)

3¢ lo {IV(% + en)|? - 2f(¢°+en)}dxdy 0

e=0

J. {2v¢, + Vn - 2fnldxdy > 0
9]

~ Bd)
-‘J‘ (v2¢o + f)n dxdy - J- (v2¢_ + f)n dxdy + —sg-n ds
N % 0 Jag, n
e
ro%,
“an
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3
-J (qu)o + f)n dxdy "j (V2¢o + f)n dxdy +j / —a-r-?- n ds
e % 3% /T

9, ds 9, a¢o
*J n " *Lﬂﬁwnk'(ﬁrﬂhﬁslo

anp/

where T = Qerln is the interface of the elastic and plastic regions.

p
Sincen =9¢ - ¢y = 0 in B and n can be positive or negative in @
and n=0on 3Q = 39@ U agp, we have

v2¢° +f=0 ing,

W,

(5pde - (570, =0 onrT

p=
which are the same as (2.1) and (2.5).

It is useful to cast Problem 1 into alternate but equivalent forms:

(P1.1) Find ¢eK such that for feL2(q),

B{¢> ¢ = ¢) > (f, 5 = ¢) , for ¥geK (4.3)
where

B(¢,9) =fQV¢ « V¢ dxdy, (f,¢) =J.Qf3 dxdy (4.4)

Equation (4.3) is the variational inequality associated with Problem 1.

Problem 2
Here we assume that the torque T is given, but f is unknown,

Introducing a Lagrange multiplier A, we can state (2.1)-(2.6) as a

saddle-point probiem.
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(P2) Find (¢,A)EKXR such that, for given TeR,
G(4,X) < G(9,2) < 6(3,1) (4.5)
for every ($,2) € K x R. Here G(¢,A) is given by

6(5.0) =jg|v¢|2 dxdy + A(T -J;&p dxdy) (4.6)

and R denotes the set of real numbers; It can be verified that P2 is
equivalent to (2.1)-(2.6). The left inequality in (4.5) gives equa-
tion (2.6) and the right inequality gives (2.1)-(2.5). Alternate

formulations of (4.5) are possible, as stated below:
(P2.1) Find (¢,1) € K x R such that, for given T & R,

B(¢, ¢-0) > (1, 9-9) and T =j2¢ dxdy (4.7)
Q

for every ¢ eK.

Note that Problems 1 and 2 are formulated on a special set K.
From the numerical point of view, it is difficult to construct a finite-
dimensional subspace of K. However, by solving the equation (say, by
the method of characteristics), the set K can be defined by the condi-
tion with respect to ¢ rather than a gradient of ¢. A general formu-
lation would be to include equation (2;2) and (2.3) as a constraint

by means of a Lagrange multiplier (see Lanchon, 1974).

Problem 3

Problem 3 seeks to find a solution to (2.1)-(2.6) over a larger

set (instead of K).
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(L1) Find (¢,P) € H}J(Q) x N such that, for given f € L%(2),
L(45P) < L(¢:P) < L(s,P) (4.8)
for every (9,P) e Hg(n) x N, where
Lo.P) = F(o) - [ P8I - o3) dxty (4.9)

N = {q € L*(Q): q<0 in Q}

It is not difficult to show that Problem 3 is equivalent to Problem 1,
and hence to equations (2.1)-(2.5).

Once again, alternate formulations to (4.8) are possible.

(L1.1) Find (¢,P) € Hé(n) x N such that for given f € L2()

By(¢:0) = (fs0) » Yo €Hi() (4.10)

fﬂ{lwl?— - rg} (P-P)dxdy >0 , YPEN (4.11)
where,

Bp(¢,$) = J;(l - P) vp - V4 dxdy (4.12)
Problem 4

Problem 4 is the same as Problem 3, except that instead of given

f, T is given.

(L2) Find (¢,A,P) € Hé(Q) x R x N = x such that

Q(¢,2,P) < Q(¢,2,P) < Q(,2,P) (4.13)

Q(6575P) < Q($,4,P) < Q($,4,P) (4.14)
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for T €R, and every (¢,x,P)E X, where

Q(¢,A,P) =f |v$|2 dxdy + A(T -J‘Q2¢ dxdy)
Q

-LP(INIZ - 13) dxdy (4.15)
Eduivalence of Problem 4 to the other formulations given herein can be
established. Problem 4 is the most general (and less restrictive) one
for the elastic-plastic torsion prob]em; Equivalent alternate forms of
(4.13) and (4.14) are given by
(L2.1) Find (4,A,p) € x such that
Bp(¢,$) = (X0) 5, T -f2¢ dxdy =0 , TER (4.16)
Q

f(lvasl2 - 12)(F - P) dxdy 16 (4.17)
Q

for every (¢>AsP) € X .

Existence and Uniqueness

Existence and uniqueness of solutions to variational inequalities .
have been established by Lions and Stampacchia (1967) for coercive and
nonnegative forms. Since the variational inequalities considered here
are special cases of those given by Lions and Stampacchia(1967),
existence and uniqueness of solutions follow immediately. Here we
state a theorem on the existence and uniqueness of solutions to a

general variational inequality. Problem 1 is a special case of it.
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‘Theorem 1 (Existence and Uniqueness). Let B(u,v) be a bilinear

form on H (not necessarily symmetric) satisfying the conditions,
(i) |B(u,v)| < C |jul] [lv]| for u,v € H (continuity) (4.18)

(1i) [B(u,u)| > w ||u]|? u>0 (coersivity) (4.19).

where H is a Hilbert space with inner product ((.,.)) and norm ||-||.
Let K be a closed convex set of H, and f be an element of the dual H'

of H. Then there exists a unique solution to the problem of seeking

U ¢ K such that

B(u,v - u) > (f,v - u) for v EK (4.20)
where (.,.) denotes the duality pairing between H' and H.
Proof. Proof of this theorem was given by Lions and Stampacchia

(1967) using the fixed point theorem. Here we prove only the unique-

ness. Let Uy and ué be the solutions of (4.20) in K. Then
B (uys v - up) 2 (f, v - ug)

B (ups v = Up) > (F, v - uy)

By setting v = Uy in the first and v = Uy in the second and adding

we have

-B(u1 - Ups Uy =Up) 20 or B(uy - Uys Uy = Up) < 0

In view of the coercivity (4.19), it follows that [y = up]] = 0or

U-l = U2.
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4.2 Numerical Procedure

Here we describe the solution procedure for Problems P1 and P2.

Solution procedures for Problems L1 and L2 can be found in Lanchon (1970,

and 1974) and Glowinski and Lanchon (1973). In Problem 1 and 2, the
convex set K is unknown from the numerical approximation point of view.
An alternate way to find the elements of K is to seek elements from an

equivalent set, K defined by
K= {o 6 Hla): o] < [opl} (4.21)
wherein ¢p is determined by solving the equation

[vop|% - <5 =0  (4.22)

2
p
The modified problem enables the numerical solution of P1 and P2,
provided (4.22) can be solved for ¢p;
Note that ¢p is the solution of the fully-plastic case. Prager
and Hodge (1951) and Nadai (1950) have given, in connection with the
fully-plastic torsion problem, a physical construction of ¢p as a
surface of constant slope belonging. to a given cross section. Nadai
demonstrated, by means of sandhills, the solution to the fully-
plastic problem (4.22). It is recognized that (4.22) is a hyperbolic
equation (see, for example, Geiringer, 1973), and its solution can be
obtained by means of the theory of characteristics. Here, we exploit
this idea to construct the numerical scheme to solve Problems 1 and 2.

Details of the methodology are given in Appendix:.  The solution pro-

cedure can be summarized as follows:

37



(1) Solve equation (4.22) using the theory presented in Appendix.
(iia) When f is given (1ike in Problem P1) solve equation (4.3).
The finite-dimensional form (or numerical analog) of (4.3) is obtained

by the use of the finite element method:
(o} = PR[1o}- o ([KIs} - {FN)] (4.23)

where Kij is the stiffness matrix, and‘Fj is the load vector,

Kij = B(Ngs Ng) s Fyo= (F, N,)

Here Ni'denotes the shape function, and pz is the projection operator

from finite-dimensional subspace Shc: Hl(g) to Sh nKs Kh. This is
equivalent to finding the minimum of the set (the quantity in the
square brackets, the solution of (4:22)). Note that equation (4.23)

must be saolved iteratively: for f > 0
(oyyq = minflte}, = o([KIe}, - (FN)I, (o3} (4.24)

At the beginning of the iterative procedure, one can choose {¢}o as a

zero vector.
(iib) When T is given (1ike in Problem P2), the same procedure

outlined in (iia) must be followed for (4.7)];
{8}y = min{lle}, - o (KIto}, - (1)1, (o} (4.25)

where A? = (Am, Ni), Ap being the trial value at the m-th iteration on

the second equation in (4.7):

38



Ae] = Ap - p,\(T - {¢A}T {g})

where {¢A} is the converged solution of (4.25) for An and {g} is the

yector

g, = I 2N, dxdy
1 Q 1

At the beginning qf the iteration procedure, a value for A is assumed
and equation (4.25) is solved iteratively for {¢Am} until it converges.
Using {¢m}, one solves equation (4.26) for new Am+1' Using Am+1 in
(4.25), one repeats the procedure until the difference between two con-
secutive iteration values of A differ by a small preassigned value.

Note that equation (4.22) is solved only once for a given problem.
The convergence of the iterative procedure in step (ii) depends on the
relaxation parameters p, p¢, Py etc. More specific comments will be
made later. The approximation error for ¢, for fixed A, is given by

the usual error estimates (see Oden and Reddy, 1976):

k-m+1
”4’0 - ¢”H1(Q) <Ch H%HHk(Q)

where ¢o is the exact solution, and 2m is the order of the differential

equation.

4.3 Numerical Results

First the circular cross-section problem, for which the exact
solution is available, is solved using all four formulations P1.1, P2.1,
L1.1, and L2.1. The finite element mesh is shown in Fig. 4.1a (page 46).
A modified form of successive over-relaxation (SOR) method is used to

obtain the solution and rp=1 is used in all problems.

39



The results are shown in Tables 4.1-4,3. Formulations P1.1 and
P2.1 (present) give more accurate results for ¢ compared to those obtained
by formulations L1.1 and L2;1. However, the square of the gradient of
is more accurately computed by formulations L1.1 and L2.1. This is ex-
pected since in the latter case the gradient condition is included as
part of the problem and therefore is satisfied more closely. However,
formulations L1.1 and L2;1 took more computational time (almost twice)
compared to formulations P1.1 and P2.1. Table 4.4 shows the solution for
the refined mesh shown in Eig; 4.1b. The elastic-plastic torsion solu-
tion for f=4 using mesh (a) gives .a.torque of T=0.49146. The elastic
torsion problem is solved using f=4.0 and also using T=0.49146, and
the solutions are plotted along with the elastic-plastic solution in Fig.
4.2. Note that the elastic solution given by the applied torque T =0.49146
is redistributed due to the constant slope of ¢ in the plastic region.

The choice of the acceleration parameter p is very important for
numerical convergence of the solution. It was shown by Young (1971) that
the acceleration parameter in the SOR method for positive definite linear
equations should be sugh Fhat 0< p<2 for convergence. To find the op-
timum value of Py in (4;24) on the convergence, we solved the elastic-
plastic torsion of a circular shaft for various values of Py Figure 4.3
shows ¢max ys. the number of iterations for various values of p¢ between
zero and two. However, p¢==1 is the best value for the problem and p¢
tends to increase as the mesh parameter h decreases. Optimum value
appears to be the maximum one which gives monotonic convergence.

In the case of PA; Young's estimate is not valid. In our tests we
found that Py around'4.0 gives the fastest rate of convergence. Fig. 4.4a
shows the 1§g‘of‘the difference between values of A in two consecutive
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iterations against the number of iterations. Similarly, it is found
that pb around 0.5 gives the faster convergence for P, the Lagrange
multiplier. Figure 4.4b shows tiie 1og of the difference between values
of P in two consecutive iterations against the number of iterations.
Finally, Fig. 4.4c shows the total number of iterations required for

convergence at mth

iteration on A and P for all four formulations (for
circular cross section) using p¢=1.7; Py =4.0 and pp==0.5.

Using formulation P1.1 several other examples are solved. These
include: square cross section, L-shaped cross section, and square
cross section with a sh't'.' We have used f=2Gp=2, 4, and 6 to compute
the elastic-plastic so1ution; Biaxial symmetry in the square cross
section case, and axial symmetry in the square cross section with a
slit case are'used in the finite element analysis.

Figure 4;5“shows the finite element mesh, and equi-stress function
lines for f=2, 4; and 6 for the square cross section problem. Figure
4.6a shows the nonuniform finite element mesh for the L-shaped cross
section and equi-stress function 1ines for f=2, 4, and 6. The shear
stress distribution is shown in Figure 4.6b. Finally, Figure 4.7
shows the nonuniform mesh for half the domain, equi-stress function
lines and the shear stresses for f=1, 2 and 4. The propagation of
plastic region with increasing f can be seen from Figure 4.8.

Here we presented various variational formulations of the elastic-
plastic torsion problem. We chose for numerical calculation the
projectional form of the formulation which is based on the proof of
existence and uniqueness of solutions. The fully-plastic equation

(4.22) is solved for ¢p by means of the theory of characteristics and
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then an iterative procedure is employed to solve the finite element
analog of equation (4.3) for p. A number of numerical examples are
presented to show the feasibility and effectiveness of the present
method.

As indicated in Section 4.2, the choice of the acceleration
parameter p is very crucial in obtaining convergent solutions. A
working value of p is obtained by trial in the present inQestigation.
Lack of theoretical bounds; analogous to those established by Yqung
(1971) for poSitive definite linear equations, on p in the present
case necessitated numerical investigation of the influence of p on
the convergence. Thus, there exists a need to find theoretical bounds

on p for non-positive definite forms.
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Figufe 4.1 Mesh for circular cross section with r=1.0.
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Figure 4.2 Comparison of elastic and elastic-plastic
solution for circular cross section.
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Table 4.1

Comparison of ¢ by various formulations for circular cross-section

r
L] e R K A
r
0.0 0.75 0.7564 0.7374 0.7564 0.7362
0.25 0.6875 0.6884 0.6703 0.6884 0.6695
0.5 0.5 0.5 0.4909 0.5 0.491
0.75 0.25 0.25 0.2469 0.25 0.2470
1.0 0.0 0.0 0.0 0.0 0.0
Comparison of torque and the lagrange mu1tip11er*

T. 0.5072 0.4915 0.4748 (0.4915)  (0.4748)
A 4.0 (4.0) (4.0) 4,0003 3.9784

* values in parenthesis indicate specified values

Table 4.2

Comparison ofh&%by various formulations for circular cross-section

, ‘Method Method Method Method
r Exact P1.1° L1.1 P2.1 L2.1
0.125 | 0.0625 0.3099  0.3112 0.3097 0.3094
0.375 | 0.5625 0.7801 0.7610 0.7802 0.7568
0.625 | 1.0 1.0195 0.9999 1.0195 " 1.0005
0.875 | 1.0 1.0125 1.0001 1.0125 1.0003
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Table 4.3

Comparison of percentage errors in various formulations for circular
cross-section bar

Quantity Method P1.1 Method L1.1 Method P2,1 Method L2.1 '
®ax 0.0086 0.0168 0.0086 0.0184

A _ . 0.0 0.0054
T 0.031 0.0639 0.031 0.0639

' Table 4.4
Comparison of solution ¢ for c};cu]z; cross-section with fine mesh
Method P1.1 Exact Solution

r \d T ¢ T

0.0 0.7498 0.1082 0.75 0.1

0.1 0.7390 0.2962 0.74 0.3

0.2 0.7094 0.4960 0.71 0.5

0.3 0.6598 0.6975 0.66 0.7

0.4 0.5900 0.9002 0.59 0.9

0.5 0.5 1.0 0.5 1.0

0.6 0.4 1.0 0.4 1.0

0.7 0.3 1.0 0.3 1.0

0.8 0.2 1.0 0.2 1.0

0.9 0.1 1.0 0.1 1.0

1.0 0.0 1.0 0.0 1.0
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4.6b The shear stress distribution for L-shaped cross section .
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CHAPTER V

A COMPARISON OF A PENALTY FINITE ELEMENT MODEL
WITH THE STREAM FUNCTION-VORTICITY MODEL
OF NATURAL CONVECTION IN ENCLOSURES

5.1 Penalty and Stream Function-Vorticity Formulation

For the governing equations of natural convection in enclosures
defined in Chapter II, we now give two formulations, one based on the
primitive variables equations (2.7)-(2.10), and the other based on the
stream function and vorticity equations (2.18)-(2.20). It is conven-
ient to recast these equations in terms of the normalized (i.e., non-
dimensionalized) variables. We use here two different normalizations

(i=1,2):

.x=Wd,y=y1,u=u%ﬁ,v=vmi,e=(FJCV(%J%)

where Gy =0, and Gy = Vs and the quantities with primes denote the non-
dimensional variables. For the sake of brevity, we shall omit the

primes in the following.

5.1.1 Penalty Formulation

The penalty function concept of Courant (1956) involves the reduc-

tion of variational problems which are posed as conditional extremum
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problems to variational problems without the constraints by the intro-
duction of a penalty functional associated with the constraints. The
concept has been known for a long time, and at present, many investiga-
tions are devoted to the exploitation of the concept to other situations
and applications to particular problems. Zienkiewicz (1974), guided by
the analogy betwaen nearly incompressible elasticity and Stokes' problem,
suggested the application of the penalty method to viscous imcompressible
flow problems; the incompressibility condition was treated as the con-
straint (e.g., Heinrich et al., 1978, Marshall et al., 1978 and Reddy,
1978). Another modification was suggested recently by Reddy (1979b,c),
who treated, in order to introduce the stream function into the primary
calculations, the stream function-velocity relations along with the in-
compressibility condition as constraints. The formulation presented by
Reddy (1979b,c) appears to be tﬁe best way to describe the penalty
formulation of natural convection in enclosures.

The penalty method seeks to satisfy the constraint conditions in a
least-square sense. Applied to the problem at hand, i.e. find the solu-
tion (u,v,P,T) to equation (2.7)-(2.10) subject to the constraint condi-
tions in (2.7) and (2.16), the penalty method seeks solutions to the
variational problem,

§1(u,v,9,8) = 81 (u,v,0) +05G(u,v,p) =0 (5.2)
where u,v,y, and 8 are the nondimensional variables, and

GIp(‘U,Vs‘l),e) = JQ { [A(u) - PrRae] 6U+Pr[2-a—u- odu +

X X
9y 94y, ou .9V, 98u ~ 3dv
+ 2'37'5&-*' (57 +W)(——-8_y + )1+ (5.3)

98586 96 9366
+ G220V 4 oY 2Oy
A(v)Sv +A(e)86 + X DX + 5y 3y } dxdy

t svds - f
31y X IBQ]V y MNIT
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€ 2 € 2 2
6(u,v.v) = —}jﬂ(g%»g-;—) dxdy +-£ Lz{(u-%gj-) +(V+%‘,’§-)} dxdy
(5.4)
Here Pr is the Prandtl number, Ra is the Rayleigh number,
P = v/a s R, = g8d(T, - t_)/va (5.5)
r > Ta ~ h c i

and €1 and €y are the penalty parameters (for normalization i = 1).
Note that in the penalty method, the pressure does not appear.
This is because the pressure is the Lagrange multiplier associated with
the incompressibility constraint, which is satisfied only in a weak
sense in the penalty method. However, the Lagrange multiplier can be

computed in the penalty method by (see Polyak, 1971)

au ov

= - ___E _@, ’ 5.6
Pe e Bx+ay)' (5.6)

" Convergence of the solution (ua, Voo Pa’ oo ee) of the penalty formu-
lation to the true solution (as e + ») can be proved (see Bercovier,

1978 and Reddy, 1979a, 1980b).

5.1.2 Stream Function-Vorticity Formulation

In terms of the nondimensional variables, equations (2.18)-(2.20)

can be expressed as

v2r = 8

veg b1J(w,C) + ci y °

-v2y = g, (5.7)
-v2g = aid(w,e) .

where (ai’bi’ci) denote the coefficients for the two types of nondimen-

sionalizations:
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(-a] ’b'l ’c]) = (1 91/PraRa) ’ ('aZ’bZ’CZ) = (_PY',] ,GY‘) . (5-8)

Here Gr denotes the Grashoff number, Gr = Ra/Pr. The variational for-
mulation of equations (5.7) indicates that one of 6, z, and y be speci-
fied on portions of boundary. It is now a common practice (see Tabarrok,
1977) to approximate the boundary values of g using the second equation
in (5.7). The Taylor series expansion is employed to express the stream

function inside the domain in terms of its values on the boundary:

' ‘- '.v2..

- ) ] oY 2 (59)

v = o H(CE) ] (an)+ 5 ( ) (an)%+ ..., .

- %W tan f F3 snl  |w

where (_.)lw is the value at the wall of the enclosure, and An is the2

‘ 9

normal distance from the wall to a point (or node) i. Using Ty =" ——%g

on

and noting thatq;w = constant = 0 along the solid wall of the enclosure,
we obtain (omitting the higher order terms in equation (5.9)),
.
W (an)?

The variational formulation of equations (5.7) is given by

B(z,Z) = b,d(¥,z57) +¢;Q(z)

(5.10)

B(v.¥) = R(Y) , (5.11)
B(,8) = a;d(v,838) ,
where
_ 3p 9q , 9p 9
p.a) = | (3 53+ 3 5 ey,
J(p,q;f) = J J(p,q) f dxdy (5.12)
Q
= 88 ¢ dxdy , R(y) = J zy dxdy .
JORNI i
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Here we assumed that the boundary values of y, z, and 6 are specified.

5.2 Finite-Element Formulations

5.2.1 Penalty-Finite Element Model .

In the penalty method, we discretize the region occupied by the
fluid into a finite set of subregions, called finite elements. We con-
sider a typical finite element, Qe’ and develop the finite element
equations corresponding to the equations (5.2)-(5.4). We assume the

following interpolation of the variables (u,v,y,6) over the element Qg

u = zuNi(x,y) 5 v = zv;NL(x0y)s 9 = 29;N; (x.y)» 6 = 20,N; (x,y), (5.13)

wherein Ni(x,y) are the interpolation (or shape) functions, which depend
on the type of element chosen, and “i’vi’wi’ and 6; are the values of the
functions (u,v,y, and 8) at the i-th node of the element. In thé present
paper a bilinear quadrilateral element (with four nodes) is used.

Since the variational formulation (5.2) is valid in &, it is valid,
in particular, in 2q with tx, ty and q assumed, for the moment, to be
known on the element boundary. Substituting (5.13) into the element
equation corresponding to (5.2) we obtain (collecting the coefficients

of 6ui, 6vi, Gwi and 691),

[K®1{a®} = {F®} , [C®1{e®} = {Q%}, (5.14)
where
[ + 51+ &S] | P 97+ ealsY] 1-epls™]
[KF] = [P ISYT+ eu[SVT | W]+ eg[9] + colS) | ool
'Ez[so'y]T : EZESOXJT : Ez[sx'*'s'y:"_
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¢, = X Y = AN, ~[500
8w gyt Sy sy Ayt [ NAOy) ey SISO,
. e

En _ =0, EE = b, etc.
533 L; N;,gNs,ndxdy o (g0 = 0sxay) 5 33 = S
. .

X o . X \ y . + y X
Hij Aij + Pr(Z Sij + Sij) ’ Hij Aij Pr(zsij + Sij) o

;
(Fer = PR 00 = upvpet s 1o =ce),

X _ [ & ,
X = PR, Ig oN, dxdy + J, e N ds (5.15)
e Tu
o= J iN.ds, Q= aN ds
1 e ¥Y1 1 J e 1 ¢
aglv 39”'

Note that the matrix [A] is computed assuming that u and v are known a-
priori, necessitating the use of an iterative procedure for the solution
of the assembled equations. By setting €9 to zero, one obtains from
equation (5.14), the penalty finite-element model presented by Heinrich

(1978) and Reddy and Mamidi (1978).

5.2.2 Stream Funct1on-Vort5city Finite Element Model

Using interpolation of the form in equation (5.13) in equations

(5.11), we obtain [8° - b;0®1(c®) = (F'%) ,
[8°114%} = (F%%y , (5.16)
[6° - a,014e%r = (0} ,
e _ R e _ .
(5.17)
Te _ 2e _ oon
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and B(.,.), J(.,.3.)s Q(.), and R(.) are given by equation (5.12).

5.2.3 Computational Procedure

The element equations in (5.14) and (5.16) are assembled in the
usual manner to obtain the associated global matrices. However, these
matrix equations are nonlinear and require iterative procedures. The
following iterative procedure is employed in the present study. At the
beginning of the first iteration the matrix coefficients are computed
assuming that the velocity vector is zero. Then the temperature equa-
tion is solved for {8}. Using the computed temperature, the velocity
and stream function equations are solved, completing one cycle of iter-
ation. Using the velocity (and/or stream function) field obtained in
the previous iteration, matrix coefficients for the next iteration are
computed and the procedure is repeated until the Euclidean norm of the
difference of the solutions at any two successive iterations becomes
sufficiently small (say,<10’4). In the present study we used, to accele-
rate the convergence, a weighted sum of the variables in computing the
matrix coefficients for the next iteration. For example, at the end of

r-th iteration we have, 0 <p1,p2 <1,

{u}* = oy {up, + (O-p1)ud. 4, (5.18)

{6}* = pple},. + (1-pp){6}. 5.

One can transfer the nonlinear (convective) terms to the right
side of the equation and assume that it is known from the previous iter-
ation. This gives a constant coefficient matrix and saves computational
time in recomputing the coefficient matrices during each iteration.
However, this procedure is found to result in divergent solutions even
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for moderately high Rayleigh numbers;

The algebraic complexity and the nonlinear nature of the matrices
in equation (5.14) forces one to use numerical integration to evaluate
various matrix coefficients. Another reason which necessitates the use of
numerical integration is the "reduced integration" required by the penalty
method; To establish the existence and uniqueness of solutions, the
penalty-finite element approximatiops should satisfy the continuity and
‘coercivity‘conditions of a generalized Lax?Mi1gram theorem (see Oden and
Reddy, 1976). These conditions are satisfied by the penalty finite-element
approximations, provided the parameter appearing in the coercivity condi-
tion is independent of the mesh size. That is, the finite element chosen
for the penalty method must be such that this parameter does not depend
on the mesh size. It is found that (see Zienkiewicz, Taylor and Too, 1971)
numerical integration of matrix coefficients associated with the penalty
functional G(u,v;%)with one Tess number of Gaussian points (in each direc-
tion) will ensure that the parameter is independent of the mesh size.
Further study in this direction seems to be necessary.

Alternate but more direct explanation of this latter observation is
also given here. The penalty-finite element equation (5.14)] has the

form (E-I = €2 = 8),

([Ky1 + elKy1)MaY = {F} . (5.19)
As ¢ is increased to a large value (in an attempt to satisfy the con-
straints more closely), the magnitude of [K1] in comparison to e[KZ]
becomes negligible in the computer, and we have
e[K,1{a} = (F3 , or [KyJ(a} = L {F} . (5.20)
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This implies that as e is made larger and larger, only constraint equa-
tions are left (which results in a trivial solution since ef1~0); and

the contributions of conservation of momentum and energy are lost. To
circumvent this difficulty two things must be done. First, the magnitude
of € must be such that the matrix [K]] is not negligibly small ccmpared
to {K2]. Second, the matrix [Kzl must be singular so that there are
fewer constraint equations than the number of unknowns. This can be
achieved by‘using reduced integration on the elements of [K2]. That is,
the standard 2x2 Gauss rule must be used to evaluate the elements of [K;1,
whereas only a 1x1 Gauss rule must be used to evaluate the elements of

[KZ]' A value of g1 =€y a=108 was used in all problems discussed here.

5.3 Numerical Results and Discussion

In any approximate method, physics of the problem plays a crucial
role in constructing a reasonable approximation. The finite element
method is no exception. For example, one needs to visualize, using
physical arguments, possible flow and temperature patterns in an enclo-
sure in order to lay a mesh that can reasonably approximate what fs
intuitively expected. In the case of high-Rayleigh-number flows in
rectangular enclosures, a boundary layer apbears (due to the no-slip
boundary condition) at the walls. Since the boundary layer influences
the behavior of the core region, it must be modeled adequately by em-
ploying refined mesh at the walls. Another important consideration,
when using an approximate method, is in the specification of physically
realistic boundary conditions of the problem at hand. In the penalty
formulatiqn, all physical boundary conditions can be handled without
difficulty. .
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Here we compare the numerical results obtained by the penalty-finite
element model and the stream function-vorticity finite element model for
free convection in rectangular enclosures. The right and left vertical
walls of the enclosure are maintained, respectively, at cold and hot
(ec=-.5, 8, = .5) temperatures, and the top and bottom (horizontal) walls
are either insulated or have specified temperature variations (see Figure
5.1, page 73). The models are compared for relative accuracy and compu-
tational time. Since most of the previous investigators presented results
in graphical form, it is not possible to compare the present results quan-
titatively. However, present results are compared for Nusselt numbers,
vorticity and stream function values with those available in the 1iterature.

First, the effect of the two normalizations mentioned earliier on the
numerical convergence was studied. Normalization 1 (i=1) was used in both
models, while Normalization 2 (i =2) was used only in the stream function-
vorticity model. A1l of the calculations were carried in double precision
on an IBM 370/158 computer. It was found that the use of Normalization 2
presents convergence problems for Ra >104 and Pr<1. The numerical pro-
cedure used there employed the constant coefficient matrix, treating {F1}
in equation (5.16) as known from the previous iteration. The slow con-
vergence (or divergence) is a direct result of this numerical procedure,
which yields numerical solution proportional to Cy (or inversely to the
Prandtl number). Thus any error in 96/3y is amplified in this procedure
and leads to non-convergent solution. Normalization 1 was found to give
faster convergence, even for large Rayleigh numbers, for both formulations.

Next, a penalty-finite e]emeht model with stream function included
in the model (i.e., ez;éo) was compared with the penalty-finite element

model without stream function (i.e., e2==0). The model problem used was
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that of a square cavity with top and bottom walls insulated. A 12x12
mesh of linear elements (see Fig. 5.1) was used in both models. The
vorticity was computed at the Gauss points in both models. The stream
function in the second model (eé==0) was calculated using equation (2.17),
in which the velocities are known from the primary calculations. It is
clear from Fig. 5.1 that the results, for isotherms and streamlines (for
Ra==103, Pr=10), obtained by the two models are identical. However, the
computational time required by the first model (82;50) is about fifty
percent more than that required by the second model (ez==0). For this
reason, the remaining problems were analyzed using the second model (€2==0).
The effect of the Rayleigh number (for fixed Prandtl number) on the
velocity and temperature fields was investigated using the two formula-
tions. Figure 5.2 shows the vertical velocity component and the tempera-
ture along the (horizontal) center of the cavity. The results were
obtained by the penalty-finite element model with a 10x10 uniform mesh
for Ra==103, 104, and 12x12 nonuniform mesh for Ra==105, of Tinear
elements. Figure 5.3 shows the isotherms and stream lines obtained by the
penalty-finite element model for R_=10%, and 10%, and P_=1. The
numerical results obtained by the stream function-vorticity finite element
model, for Ra==103 and 104, were found to be very close to those obtained
by the penalty-finite element model and cannot be plotted distinctly on
the present scale. Therefore, the results are compared in Table 5.1 for
Ra==103, 104, and Pr==1; As can be seen from the table, the penalty-
finite element model (PFEM) predicts values of the stream function lower
than those predicted by the stream function-vorticity finite element
model (SVFEM). However, the stream function-vorticity finite-element

model did not give convergent results for these two Rayleigh numbers.
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Thus, the penalty formulation could be used to analyze higher Rayleigh
nurmber flows than those which could be analyzed by the stream function-
vorticity model.

Figure 5.4 and 5.5 are comparisons between the Tinear element (the
present penalty-finite element model) and a quadratic element (Upson et
al., 1980) in which 168 isoparametric elements with 745 nodes are used.
Those figures show that the results obtained by the linear element using
rather coarse mesh agree very well with those by Upson et al. (1980).

In Figures 5.6a and b, vertical velocity and temperature along the
horizontal cross section A-B (see Fig. 5.1) are superposed. This shows
the similarity of solution for various Rayleigh numbers. Figure 5.7
compares distribution of core temperature along cross section C-D obtained
by penalty-finite element model and the experiment given by Elder (1965a).
Since the insulated boundary condition in Elder's experiment is not
satisfied completely, temperature pattern around x=0 and 1 shows signi-
ficant difference. Figure 5.8 shows isotherms and stream lines obtained
using the penalty-finite element model (with 12x12 nonuniform mesh) for
R,=10°%, and P, =1.

Figures 5.3 and 5.8 show that isotherms tend to be vertical in the
(thermal) boundary layer at vertical walls (i.e., vertically stratified)
and they are horizontal in the core region. The vorticity and stream
function values at the center of the enclosure obtained by both formula-
tions are compared in Table 5.2 for various Rayleigh numbers and Prandtl
numbers. Again, the results obtained using the penalty-finite element
model (also see Heinrich et al., 1978) are lower than those obtained

using the stream function-vorticity model. However, the vorticity values
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in the penalty model were computed at the Gaussian points (which do not
coincide with the vorticity center) and therefore cannot be the same as
those computed at the vorticity center.

The vorticity distribution along vertical cross section C-D of the
enclosure is shown in Figure 5.9 for Ra==104. In the penalty-finite
element model, the vorticity was computed from the velocity field at the
Gaussian points. Note that the solutions obtained by both formulations
are almost identical for Pr=1; however, for small Prandtl numbers there
seem to exist small differences in the solutions.

rigures 5.10 and 5.11 show that the influence of the penalty para-
meter € on the solution is sensitive to neither mesh size nor Rayleigh
number.

Tahle 5.3 shows a comparison of the Nusselt number computed by

various inyestigators (for square enclosure, Ra==1.47x104

» Pr=0.733).
Note that the Nusselt number obtained by the penalty-finite element
model is the Towest of all.

Also Figure 5.12 compared the present liner element to the quad-

% 10% and 108, The

ratic element (Upson et a1;, 1980) for Ra==103,10
present results tend to predict smaller values because of the use of
coarse mesh compared to those by Upson et al. (1980).

In Table 5.4 the two finite-element formulations are compared for
.computational time (in CPU), number of iterations taken for convergence,
and the Nusselt number. The penalty-finite element model requires only
slightly more (because of the computation of ¢) time than the stream

function-vorticity model; however, the number of iterations required is

smalier in the former mode]!
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Figure 5.13 shows the effect of Prandtl number on the temperature,
stream function, and vorticity (for Ra==104). These solutions were ob-
tained using the stream function-vorticity finite element model. Similar
plots for the temperature and stream function were obtained by the
penalty finite element model, but due to their close agreement with those
obtained by the stream function-vorticity finite model, they are not
shown here. Qifferent Prandtl numbers, for a fixed Rayleigh number, mean
fluids with different (material) properties. For fluids with low Prandtl
number (i.e., ratio of viscosity to thermal diffusivity), the stream
Tines and vorticity 1ines show symmetry about the center.

Figure 5.14 shows the relative pressure distribution along the
vertical cross section C-D. Pressure is relatively high near the walls
and Tow near the center.

Figures 5.15 through 5.17 show the effect of the aspect ratio
(height to width of the enclosure, ¥=2%/d) on the temperature and flow
fields. A1l of the results were obtained by the penalty-finite element
model. Figure 5.15 shows the isotherms and stream lines for a rectangular
enclosure of aspect ratio 3. The Rayleigh number and Prandtl numbers
are the same as those used by Hellums and Churchill (1962): Ra=l.466x104,
Pr=0.733. The present results agree qualitatively with those of Hellums
and Churchill. Figure 5.16 shows similar results for a rectangular
enclosure of aspect ratio 1.83, and with linear temperature distribution
on the horizontal walls as indicated in the figure (Ra=8,200, Pr=2,450).
This example is the same as that considered by Szekely and Todd (1971),
who have presented experimental and finite difference solutions. The

plotted values of the steady-state isotherms seem to agree well with
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those of Szekely and Todd. In general, it was observed that for larger
aspect ratios the numerical solutions converged faster. Finally, Figure
5.17 shows similar results for an aspect ratio of 16, Ra==105, and Pr=1.
This problem was studied experimentally by Elder (1965a) for slightly
different Rayleigh number (Ra==3x105). A symmetric (about the center)
but nonuniform mesh of 24x14 was used. The isotherms and stream lines
shown in Figure 5.17a are those obtained at the end of 30 iterations,
with the error (in the velocity field) between the last two iterations
being less than 10'3. Due to time Timitation on the job card, the solu-
tion at the end of thirty iterations was stored on a tape using free
format. The computation was initiated with the solution on the tape as
the starting value for the 31st iteration. After 30 more (i.e. total 60)
iterations, the error was found to be only slightly less than that com-
puted at the end of the first thirty iterations, and computation was
terminated plotting the isotherms and stream Tines (see Fig. 5.17b).
While the isotherms remained virtually unaltered, the stream 1ines in the
core region separated into small cells. Also, the stream lines in the
boundary layer remained stratified vertically. The results in Fig. 5.17a
seem to agree, qualitatively, well with those reported by Elder.

We also present numerical results for a nonrectangular enclosure

(see Fig. 5.18). Figure 5.19 shows isotherms and stream lines for Ra==104

and 105, Pr=1. The top and bottom walls were assumed to be insulated.
Since no results are available in the literature at this writing, com-
parison is not made. These results could serve as test cases for future
numerical investigations.

In closing, natural convection in a cylindrical annulus is solved.
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Experimental as well as numerical results using the finite difference
method based on the stream-function formulation was given by Kuehn and
Goldstein (1976). Assuming symmetry with respect to the vertical center-
line, only half of the annulus is considered here. Domain, boundary
conditions, and finite element mesh are shown in Figure 5.20.

Figures 5.21a and b show the isotherms and isostreams for two
Rayleigh numbers (a) Ra=103 and (b) Ra=4.7x104 with Pr=0.706. Heat is
transferred mainly by conduction for case (a) while convection effect is
significant in case (b). Figure 5.22 shows vertical velocity along the
horizontal cross section (shown by broken 1ine in the figure). It is
observed that the inner boundary layer is thinner than the outer boundary
layer. Figures 5.23a and b show the stream function and temperature dis-
tribution along the same cross section. In Figures 5.24a and b, tempera-
ture and vértica] velocity distribution along the half circle (shown by
broken Tline in the figure) are given for two Rayleigh numbers. Position
is shown by angle o (degree) measured from the horizontal Tine passing
through the center of annulus. Rapid change of both temperature and
velocity around o =75 shows the existence of a plume for Ra==4.7x104.

Heat transfer along the inner and outer walls are shown in Figure
5.25. For comparison, analytical solution by Farshchi (1978) and
numerical solution by Kuehn and Goldstein (1976) are given along the

inner wall for Ra =4.7x10%

. The present results show local effects com-
pared to those given by other investigators. Finally, Figures 5.26a
and b show isotherms and isostreams for a problem in which the inner
wall is kept cold while the outer wall is hot. The same number of mesh
as in the previous problem is used. As the temperature difference
between walls is increased, the flqid tends to become stratified.
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This agrees with our intuition.

5.4 Concluding Remarks

Compared to the mixed finite element model of Gartling (1977,
the stream function-vorticity finite element model and the penalty-
finite element model seem to be computationally simpler. The mixed
model, by formulation, results in a large system of (non-positive defi-
nite) equations. Without special consideration, results obtained for
the pressure are often erroneous. The stream function-vorticity model
suffers from the disadvantage that the boundary conditions on the vorti-
city must be known a priori. De Vahl (1968) pointed out that computation
of the boundary values of the vorticity from the stream function could
result in up to 30% error. The results obtained by the penalty method
are on the lower side of those obtained by the stream function-vorticity
model. It is desirable to have experimental results in order to compare
and make an accuracy evaluation of the formulations. The stream function-
vorticity model presents convergence problems for Rayleigh numbers
higher than 104. In the penalty model, one is required to assess an
optimal value of the penalty parameter. For very high Ray]éigh numbers,
the penalty parameter should be very large, and this in turn (coupled
with word Tength in the computer) could cause the equations to become
il1-conditioned.

In the present study, only moderate Rayleigh numbers were studied.

6, say of the order 107-109, most

For Rayleigh numbers higher than 10
traditional numerical schemes have computational difficulties (in terms

of convergence and numerical stability). The so-called upwind differ-
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encing could prove to be very effective. In order to use the upwind
differencing a logical procedure that can be automated on the computer
must be thought out for the finite element method. This area seems to
be open for additional research. Another area for which sufficient
information is lacking is the free convection in non-rectangular (or
irregular) and three-dimensional enclosures. In both cases, unsteady
analyses need to be performed. Theoretical as well as numerical investi-
gations into instabilities at high Rayleigh numbers (say, in the turbu-

lent region) are definitely far from complete.

72



/////////////g//////j//// ¢ y 0

2
- % A 0 B
d
7T T c
insulated insu]ated

ezfo

cpu = 25 sec/iteration,,ymax= 1.1697

N

cpu = 15 sec/iteration,¢max= 1;1689

Figure 5.1. Comparison of isotherms and stream lines
obtained by the penalty-finitz element models
( eZ#O . az=0) for.Ra = 1,000 and Pr=-10.

- 73



0.5

'I
'-0.4
!

g Lo.3 I

-]
I -002
A
)
;{ ~0.1
P 4
. / - - 2 .
10.04 S
' td
20.04. \\r"‘f#,
0y
! " Penalty FEM
(-
3000-: ] Pr = l
)
| h -e  Ra=10]
2 40.01 © Ra=l0
i o Ra=-105
50.0 4 {
H
Vo
60.0 4 L\ !
N
70.0 =

Figure 5.2. Velocity and temperature distribution
along the center lines of the enclosure.

74



Table 5.1. Comparison of the stream function and temperature
values obtained by the penalty-finite element model
(PFEM) and stream function-vorticity finite element
models (SVFEM) (Pr = 1.0, Mesh: 10 x 10)

SL

Quant- ‘Ra = 10° Ra = 10*
ity | x/y PFEM | . SVFEM PFEM SVFEM
0.0 0.0 0.0 0.0 0.0
2 loa 0.1566 |  0.2236 | 0.70671 | 0.9811
.,%?, 0.2 0.5011 0.6094 2.2585 2.7201
gf,‘ 0.3 0.8410 0. 9746 3.7707 - 4.3745
2% |04 . 1.0755 1.2228 4.7925 5.4913
0.5 1.1581 © 1.3008 5.1474 5.8797
1.0 0.5 0.5 0.5 0.5
o |0.9 0.3871 0.3851 0.2646 0.2514
g; 0.8 0.2777 0.2744 0.0883 0.0733
%ﬁ 0.7 0.1765 0.1734 0.001 0.0006
T o6 0.0851 0.0832 " -0.0150 -0.01
0.5 0. 0. 0. | o
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Figure 5.3. lsotherms and stream lines obtained by the penalty-
finite element model for Ra=10,000 and 100,000(Pr=1).
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Figure 5.9 Vorticity distribution along vertical
cross section (Ra=10000, Mesh: 10x10)
(a) stream function -vorticity model (SVFEM)

(b) penalty FEM (PFEM)
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Stream function and vorticity values at the

Table 5.2. T
center of the enclosure (10x10 mesh).
Stream function (y¢) Vorticity (&)
Ra | Pr . PFEM SVFEM PFEM SVFEM
1072 1.1386 1.2636 -31.26 -33.36
107! 1.1561 1.3041 31.41 -34.44
103 1 1.1581 1.3096 -31.31 -34.52
: (1.18)*
10 1.1581 1.3008 -31.32 -34.52
102 1.1581 1.3098 -31.32 -34.52
1072 5.0128 5.4504 -96.32 -83.99
107! 5.0403 5.5451] -101.5 -88.94
wf | 5.1474 5.7823 -103.1 -99,78
] (5.13)*
10 5.2016 5.8797 -106.9 -104.1
102 5.2070 5.8892 -107.3 -104.5

* values from Heinrich et al. (1978), wherein a 4x4 of the 9-node
rectangular elements was used.




€8

Table 5.3. Comparison of the Nusselt number obtained by
various investigators (Ra = 1.47 x 107, Pr = 0.733)

Source . Nusselt number (Nu)* Remarks
PFEM 2.360 4-node rect. element
Present (10x10 mesh)
SV.FEM 2.687 4-node rect. element
(10x10 mesh)
Tabarrok and Lin (1977) 2.695 : 3-node triangular
element(10x10 )
Catton, et al. (1974) 2.1 ~ Galerkin Method
Cormack, et al. (1974) - 2.64 21 x 21 FDM
2.874 11 x 11 FOM
Wilkes, et al. (1966)
2.516 21 x 21 FOM
Ozoe, et al. (1975) 2.75 experiment

* Nusselt number is defined (in the present coordinates) by,

1
average,Nu =f a8

dx .
09y

y=0




Table 5.4. 'Comparison of the Nusselt number,.computational time
and number of iterations required for convergence (n)
for the penalty finite element model (PFEM )and stream
function vorticity finite element model (SVFEM). ;
Penalty finite element Stream function-vorticity
Ra Pr nt cpu Nu n cpu Nu
102 n 3.09 1.0992 |18 2.55 1.2582
| 107 9 | 238 | 1.8 {16 | 2.3 | 1.1367
103 1 8 2.33 1.1666 | 16 2.39 1.1387
- (1.148)*
10 8 2.29 1.1666 | 15 2.34 1.1387
10 8 2.25 1.1666 | 15 2.31 1.1387
102 | 20 5.26 1.9903 | 22 3.35 2.2004
107 | 20 | 5.3 2.0390 | 28 4.28 | 2.2600
10t 1 16 4,26 2.1318 | 26 4.05 2.3962
(2.49*%)
10 17 4.33 2.1440 | 20 3.13 2.4144
102 17 4.37 2.1442 | 20 3.12 2.4146
4

+ convergence tolerance, 10° .
* values given by Heinrich et al., (1978), wherein a 4x4 mesh

of 9-node rectangular elements was used.
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Figure 5.10 Effect of penalty parameter ¢ on the stream function ¢ .
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Figure 5.11 Effect of penalty parameter ¢ on the temperature 6 .
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Fiyure 5.14 Relative pressure distribution along vertical cross section
{(y=0.5) by penalty finite element model .
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

Various iterative numerical schemes are constructed in order to
solve two steady nonlinear problems subject to equality or inequality
constraints. Three formulations to incorporate these constraints are
developed as a basis for constructing numerical schemes. They are
Lagrange multiplier formulation, penalty formulation, and variational
inequality formulation. An iterative procedure is necessary for

solying problems involying nonlinearity.

In the elastic-plastic torsion problem, an iterative scheme
modifying the successive over relaxation method (SOR) is used with
base on the theory of variationai inequality to incorporate inequality
. constraint on the stress function (i.e., von Mises yielding criterion).
When the inequality constraint is expressed by the explicit form in
terms of the stress function (for example, in terms of fully plastic
solution), the inequality condition can be taken into the iteration
procedure of SOR. However, for general inequality constraints, the
use of a Lagrange multiplier is necessary to release an inequality
constraint on the stress function: This Teads to a saddle point
prob]em (i.e., minimization with respect to the stress function and

maximization with respect to the Lagrange multiplier). The saddle
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point can be obtained by two-step iteration which first solves for
the stress function for a given Lagrange multiplier and then obtains
the Lagrange multiplier assuming the stress function. This two-step
iteration procedure is also used to satisfy the relation between
total torque and the stress function when total torque is given. The
optimum acceleration parameter in modified SOR can be found experi-
mentally using the general criterion that the optimum value is the
maximum value that makes the solution monotonically convergent. This
practical criterion can be applied in any iterative procedure which
uses an acceleration parameter.

In the natural convection problem, the penalty formulation to
incorporate the incompressibility condition is shown to be efficient
to solve the flow for high Rayleigh numbers compared to the stream
function-vorticity formulation. In order to obtain a convergent
iterative scheme for nonlinear convective terms. the use of an accele-
ration parameter is very effective. Also, the type of normalization
influences the computational efficiency in practice. However, the
penalty finite element model tends to give smaller values than those
given by the stream function-vorticity model. Importantly, the
penalty parameter is sensitive to neither mesh size nor Rayleigh
number.

In summary, future research is recommended in the following
areas:

(1) Applications of variational inequality in engineering problems
such as determination of the free surface in open channel flow,
underground water flow, and determination of contact surface

between elastic bodies are strongly desired.
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(2)

(3)

(4)

(5)

(6)

In relation to the elastic-plastic torsion problem, hardening

of material and the unloading process should be studied.

Also variational inequality can be used to solve two- or three-
dimensional plasticity problems.

The use of the penalty formulation to incorporate the constraint
in terms of an integral form should be studied.

Time dependent and three dimensional analysis of natural con-
vection problems is of great‘interest.

Natural convection with free surface is an extremely interesting

problem.

103



BIBLIOGRAPHY

Arrow, K. J;, Hurwicz, L., and Uzawa, H., 1958: Studies in Linear and
Non-Linear Programming, Stanford Univ. Press.

Batchelor, G. K., 1954: Heat Transfer by Free Convection Across a
Closed Cavity Between Vertical Boundaries at Different
;empgggture. Quarterly Journal of Applied Mathematics, Vol. 12,

09- L]

Bellman, R., 1957: Dynamic Programming, Princeton University Press,
Princeton, N. dJ.

Bercovier,M. , 1978: Perturbations of Mixed Variational Problems,
Applications to Mixed Finite Element Methods, R.A.I.R.0.,
Analyse Numerique/Numerical Analysis, Vol. 12, 211-236.

Babuska, I., 1971: The Finite Element Method with Penalty, Tech. Note
BN-710, The Institute for Fluid Dynamics and Applied Mathematics,
University of Maryland.

Carroll, C.W., 1961: The Created Response Surface Technique for
Optimizing Nonlinear Restrained Systems. Operations Research,
Vol. 9, No. 2, pp. 169-184.

Carruthers, J. P., 1975; Crystal Growth from the Melt. Treatise on
Solid State Chemistry, Vol. 5, Plenum Press, 325.

Catton, Y., Ayyaswamy, P. S. and Clever, R. C., 1974: Natural
Convection Flow in a Finite Rectangular Slot Arbitrarily Oriented
with Respect to the Gravity Vector., Int. J. Heat Mass Transfer,
Vol. 17, 173-184.

Chato, J. C., 1978: Flow and Heat Transfer in Convectively Cooled
Underground Electric Cable Systems: Part 1 - Temperature
Distributions and Pressure Drop Correlations; Part 2 -
Temperature Distributions and Heat Transfer Correlations.

J. Heat Transfer, Vol. 100, 30-40.

Cormach, P. E., Lead, L. G., and Seinfeld, J. H., 1974: Natural
Convection in a Shallow Cavity with Differentially Heated End
Walls, Part 2, Numerical Solutions, J. Fluid Mechanics, Vol. 65,
231-246.

104



Courant, R., 1943: Variational Methods for the Solution of Problems of
Equilibrium and Vibrations. 'Bulletin of the Americal Mathematical

Society, Vol. 49, pp. 1-23.

» 1956: Calculus of Variations and Supplementary Notes and
Exercises (Mimeographed Notes), Supplementary Notes by M. Kruskal
and H. Rubin, revised and amended by J. Moser, New York
University.

De Vahl, D. G., 1968: Laminar Natural Convection in an Enclosed
?e;tangu]ar Cavity. Int. J. Heat Mass Transfer, Vol. 11,
675-1693.

Duvaut, G., and Lions, J. L., 1976: Inequalities in Mechan1cs and
h151cs, Spr1nger Ver]ag

Elder, J. W., 1965a: Laminar Free Convection in a Vertical Slot.
J. Fluid Mechanics, Vol. 23, 77-98.

1965b: Numerical Experiments with Free Convection in a
Vert1ca1 Slot. J. Fluid Mechanics, Vol. 24, 4, 823-843.

Farshchi, M., 1978: Boundary Layer Regime for Free Convection Flow
Between Horizontal Concentric Cylinders. Master's Thesis,
Aerospace, Mechanical and Nuclear Engineering, the University
of Oklahoma.

Fiacco, A. V., and McCormick, G. P., 1968: Nonlinear Programming:
Sequential’ Unconstra1ned M1n1m1zat1on Techniques, John Wiley
and Sons, Inc.

Fichera, G., 1972: Boundary Value Problems in Elasticity with
Unilateral Constraints. Handbuch der Physik, Vol. 6 a/2.

Frisch, K. R., 1954: Principles of Linear Programming - With
Particular Reference to the Double Gradient Form of the
Logarithmic Potential Method. Memorandum of October 18,
University Institute of Economics, Oslo.

Gartling, D. K., 1977: Convective Heat Transfer Analysis by the
Finite Element Method. Computer Meth. Appl. Mec. Eng., Vol. 12,
365-382.

Geiringer, H. 1973: Ideal Plasticity. Handbuch der Physik, Vol. 6a/3,
Springer-Verlag, New York.

Gill, A. E., 1966: The Boundary Layer Regime for Convection in a
Rectanguliar Cavity. d. Fluid Mechanics, Vol. 26, 3, 515-536.

Glowinski, R. and Lanchon, H., 1973: Torsion Elastoplastique d'une
Barre Cylindrique de Section Multiconnexe. Journal de Mecanique,
Vol. 12, No. 1, 151-172.

105



, Lions, J. L., and Tremolieres, R., 1976: Analyse Numerique
des Inequations Variationnelles, Dunod, Paris.

Gresho, P. and Lee, R.L., 1979: Don't Suppress the Wiggles ~ They're
Telling You Something. (Ed.) Hughes, T.J.R., Presented at the
Winter annual meeting of the American Society of Mechanical
Engineers, New York.

Hart, J. E., 1972: Stability of Thin Non-Rotating Hadley Circulation.
’ J. Atmospheric Sci., Vol. 29, 687.

Heinrich, J. C., Marshall, S. W., and Zienkiewicz, 0. C., 1978:
Penalty Function Solution of Coupled Convective and Conductive
Heat Transfer. Int. Conf. Numer. Mech. in Laminar and Turbulent
Flow, Swansea.

Hellums, J. D. and Churchill, S. W., 1962: Transient and Steady State,
Free and Natural Convection, Numerical Solutions. A.I. Ch. E.
Journal, Vol., 8, 690-695.

Hestenes, M. R., 1975: Optimization Theory: The Finite Dimensional
Case. Wiley-Interscience, New York.

Hiddink, J., et al., 1976: Natural Convection Heating of Liquids in
Closed Containers. Appl. Sci. Res., Vol. 32, 217.

Hughes, T. J. R., ed., 1979a: Finite Element Methods for Convection
Dominated Flows. Presented at the winter annual meeting of the
American Society of Mechanical Engineers, New York.

s T. J. R., Liu, W. K., and Brooks, A., 1979b: Finite Element
Analysis of Incompressible Viscous Flows by the Penalty Function
Formulation., J. Computation Physics, Vol. 30, 1-60.

» Taylor, R.L., and Levy, J.F., 1976: A Finite Element Method
for Incompressible Viscous Flows. Proceedings of the Second
International Symposium on Finite Element Method in Flow
Problems, Italy, Santa Mergherita Ligure.

Kikuchi, N., and Oden, J. T., 1979: Contact Problems in Elasticity.
TICOM Report 79-7, The University of Texas at Austin.

Kuehn, T.H. and Goldstein, R.J., 1976: An Experimental and Theoretical
Study of Natural Convection in the Annulus Between Horizontal
Concentric Cylinders. J. Fluid Mech., Vol. 74, pp. 695-719.

Lanchon, H., 1970: Sur 1a Solution du Probleme de Torsion
Elastoplastique d'une Barre Cylindrique de Section Multiconnexe.
C. R. Acad. Sc., t. 271, series A., 1137-1140.

106



» 1974: Torsion Elastoplastique d'un Arbre Cylindrique de
Section Simplement ou Multiplement Connexe. Journal de
Mecaniaue, Vol. 13, No. 2, 267~-320.

Leitmann, G., 1962: Optimization Techniques: With Applications to
Aerospace Systems, Academic Press, New York.

Lions, J. w., 1971: Optimal Control of System, Springer-Verlag,
New York.

» and Stampacchia, G., 1967: Variational Inequalities.
Communications on Pure and Applied Mathematics, Vol. 20,
493-519.

Marshall, R. S., Heinrich, J. C., and Zienkiewicz, 0.C., 1978:
Natural Convection in a Square Enclosure by a Finite-Element
Penalty Function Method Using Primitive Fluid Variables.
Numerical Heat Transfer, Vol. 1, 315-330.

Nadai, A., 1950: Theory of Flow and Fracture of Solids, McGraw-Hill,
New York.

Oden, J. T., and Kikuchi, N., 1979: Theory of Variational
Inequalities with Applications to Problems of Flow through
Porous Media. TICOM Report 79-4, The University of Texas at
Austin, June.

» and Reddy, J. N., 1976: An Introduction to the Mathematical
heory of Finite Elements, John Wiley, New York.

Ostrach, S., 1972: Natural Convection in Enclosures. Advances in
Heat Transfer, Vol. 8, 161-227.

0zoe, H., Sayan, H., and Churchill, S. W., 1975: Natural Convection
in an Inclined Rectangular Channel of Various Aspect Ratios and
Angles -- Experimental Measurements. Int. J. Heat Mass Transfer,
Vol. 18, 1425-1431.

Pedersen, B. D., Doepken, H. C. and Dolin, P. C., 1971: Development
of a Compressed Gas-Insulated Transmission Line. I.E.E.E.
Winter Power Meeting. Paper 71 TP 193 PWR.

Petuklov, B. S., 1976: Actual Problems of Heat Transfer in Nuclear
Power Engineering. Int. Seminar on Future Energy Production,
Hemisphere Publishing Corporation, Washington D.C., 151-163.

Polyak, B. T., 1971: The Convergence Rate of the Penalty Function
Method, Zh. vychisl. Mat. mat. fiz., Vol. 11, pp. 3-11: English
translation: U.S.S.R. Computational Mathematics and Mathematical

Physics, Vol. 11, pp 1-12.

107



Pontryagin, L. S., Boltyanskii, V., Gamkvelidze, R., and Mishchenko, E.,
1562: Tne Mathematical Theory of Optimal Process., Interscience
Publishers, Inc., New York.

Prager, W., and Hodge Jr., P. G., 1951: Théory of Perfect Solids.
Wiley, New York.

Reddy, J. N., 1979a: On theFinite Element Method with Penalty for
Incompressible .Fluid Flow Problems. The Mathematics of Finite
Elements and ‘Applications III, Whiteman, J. R., ed., Academic
Press, New York, 22/-235. .

» 1979b: Penalty Finite Element Methods for the Solution of
Advection and .Free Convection Flows. ‘Finite Element Methods

in Engineering, Kabaila, A. P., and Pulmano, V. A., eds., The
University of New South Wales, Sydney, Australia, 583-598.

» 1979¢: Penalty Finite Elements: Theory and Application.
Research Report No. QUéAMNE479-6, the University of Oklahoma.

» and Satake, A., 1980a: A Comparison of Various Finite-Element
- Models of Natural Convection in Enclosures. Journal of Heat
Transfer, in press.

» 1980b: On the Mathematical Theory of Penalty-Finite Elements
for Navier-Stokes Equations. ‘Third International Conference on
Finite Elements in Flow Problems, Banff Center, Banff, Alberta,
June 10-13, 1980.

» and Mamidi, D. R., 1978: Penalty Velocity-Stream Function
Finite Element Models for Free Convection Heat Transfer Problems.
Recent Advances in Engineering Science, Sierakowski, R. L., ed.,
University of Florida, Gainesville, 381-386. .

, and Patil, K. H., 1977: Alternate Finite Element Formulations -
of Incompressible Fluid Flow with Application to Geological
Folding. Wellford, L. C. Jr., ed., 129-190, Proc. Symp.
Applications of Computer Methods in Eng., Vol. T, Un%versity

of Southern California, Los Angeles.

Roache, R. J., 1972: Computational Fluid Dynamics, Hermosa Publishers,
Albuquerque.

Rubin, H. and Unger, P., 1957: Motion Under a Strong Constraining
Force. Commun. Pure and Applied Mathematics, Vol. 10, 66-87.

Sasaki, Y. K., 1976: Variational Design of Finite Difference Schemes
for Initial Value Problem with an Integral Invariant. J. Comp.
Physics, Vol. 21, pp. 270-278.

108



Stampacchia, G., 1968: Variational Inequalities. In Theory and
Applications of Monotone Operators, Ghizzeti, A., Ed.,
roceeding of a vanced Study Institute held in Venice,
Italy, 101-192.
Szekely, J., and Todd, M. R., 1971: Natural Convection in a

Rectangular Cavity Transient Behavior and Two Phase Systems in
Laminar Flow. Int.‘J.'Heat'TranSfer, Vol. 14, 467-482.

Tabarrok, B., and Lin, R. C., 1977: Finite Element Analysis of Free
Cznvection Flows., Int. J. Heat and Mass Transfer, Vol. 20,
945-952.

Tabata, M., 1976: A Numerical Method for the Variational Inequality
Including the Elasto-Plastic Torsion Problem, In Theoretical and
Applied Mechanics, Vol. 26, 173-178, Proceeédings of the 26th
Japan National Congress for Applied Mechanics, Japan National
Committee for Theoretical and Applied Mechanics Science Council
of Japan, University of Tokyo Press.

Ting, T.W., 1966: Elastic-Plastic Torsion of a Square Bar. Trans
Amer. Math. Soc., Vol. 123, 369-401,

Upson, C.D., Gresho, P.H., and Lee, R.L., 1980: Finite Element
Simulations of Thermally Induced Convection in an Enclosed
Cavity. Informal Report, UCID-18602, Lawrence Livermore
Laboratory, University of California.

Von Mises, R., 1949: Three Remarks on the Theory of the Ideal Plastic
Body. Reissner Anniversary Volume, Edwards, Ann Arbor, Mich.

Wilkes, J. 0., and Churchill, S. W., 1966: The Finite Difference
Computation of Natural Convection in a Rectangular Enclosure.
Amer. Inst. Chem. Eng. J., Vol. 12, 161-166.

Young, D. M., 1971: Iterative Solution of Large Linear Systems,
Academic Press, New York.

Zienkiewicz, 0. C., 1974: Constrained Variational Principles and
Penalty Function Methods in Finite Element Analysis, Lecture
Notes in Mathematics: Conference on the Numerical Soluticn of
Differential Equations, edited by G. A. Watson, Springer-Verlag,
Berlin, 207-214.

, 1977: The Finite Element Method, Third Edition, McGraw-Hill,
New York.

109



, and Godbole, P. N., 1975: Viscous Incompressible Flow with
Special Reference to Non-Newtonian (Plastic) Fluids. Finite
Elements in Fluids, Vol. 1, R. H. Gallagher, J. T. Oden,

C: Taylor and 0. C. Zienkiewicz (eds.), Wiley-Interscience,

London, pp. 25-55

» and Hinton, E., 1976: Reduced Integration, Function Smoothing
and Non-conformality in Finite Element Analysis. ‘Journal of
Franklin Institute, Vol. 302, 443-461.

s Taylor, R. L., and Too, J. M., 1971: Reduced Integration
echniques in General Analysis of Plates and Shells. Int. d.
Num, Meth. Eng., Vol. 3, 575-586.

110



APPENDIX

NUMERICAL SOLUTION OF |v¢|2 = 'ré in @ c R?

Consider the wave equation

2 2 2
U e (LY - (A.1)
at? X,  oxZ

where C is the wave speed. Let

u=u(t - ¢(x)) (A.2)
be the solution where ¢(x) is a function to be determined. Let

o(x,t) =t - o(x).

Then, (A-1) can be written as

2
2 2 ¢ 24 .

32 ) (24 (;;.) - g%.a b=0 (i =1,2)

2 =1 a2 %9 ax3

. . Ju 32u
Collecting the coefficients of-g— and ’

(7 oY
2
L2 (20 %, cop 2%y

It follows then that y(x,t) = constant,are the characteristic lines, and that

2
. the coefficient of 3—% must vanish:

oy
2 1
1-~¢2 2 (_a_a_‘L)Z =0 or |V¢|2=, %3 (A.4)
i=1 %4
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Thus, ¢(§) =t - ¢(§,t) = t + constant is the solution of (A.4) at point

X for a given t. Suppose that the wave starts at t=0 from the boundary
and propagates into the domain. The initial condition is ¢(§) =0

(which describes the equation for the boundary) and therefore the constant
is zero. The function ¢(§) denotes the time taken by the wave to travel

from the boundary to a point x. Since the wave speed is C, we must have

t = ¢(x) = d(x,0@)/C , C=1/z, (A.5)

where d(f,ag) is the minimum distance from the boundary 32 of the domain @
to the point X

In the numerical scheme, the minimum distance from a given node
(in the finite element mesh) to boundary (nodes) is computed, and then

¢(x) is obtained only at discrete points, namely at the nodal points.

~
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