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INTRODUCTION

This thesis is a study of the structure of a *Simple *ring and
its category of *modules.

We state the definitions needed for a description of the
thesis.

k is an algebraically closed field. G is a linear algebraic
group over k ., A fﬂ._n_g_ is a commutative Noetherian k-algebra which is
a rational G-module such that G acts by k-algebra automorphisms, [MI1,

* ¥
A module M over a ring is an R-module and a rational G-module such

that g(rm) = (gr)(gm) for g in G, r in R and m in M, [MI.
An Eg_g_q_]; of a *ring is an ideal which is a sub*module of R, [M]. A
*ring R is *simple if the only *ideals of R are zero and R , [M].
We define an R-*module M 1o be *simple if the only G-stable
R-sub*modules of M are the zero *module and the *module itself, An

¥ ¥ ¥ ¥
R- module M is semi simple if it is a direct sum of simple R-

* % * * ¥
~ sub modules of itself. A ring R is _semi simple if it is semi-

* *
simple as an R- module.

¥
In the first chapter we establish the category of R- modules




*
and R- module morphisms, In order for an R-module M to be an R-
*
module, we rneed to define a rational G-action on M . With an ap-
propriate definition of G-action we prove that the direct sum of a

* ¥
family of R- modules is an R~ module, the tensor product M ® N of R-
R

*modules M and N is an R-*module, HomR(M,N) is an R-*module if M
is a finitely generated R-*module and M/N is an R—*module if N is
an R-sub*module of M . By considering only the morphisms that pre-
serve G-action we establish a subcategory which is an abelian category.
Since direct limit exists in this category, every R-*module is the
direct limit of its family of finitely generated R-sub*modules. These
are useful results for the development of the theory,

The second chapter contains the theory of *semi*simplicity.
Three equivalent conditions for defining *semi*simplicity are estab-
lished. The conditions are similar to those of semisimplicity in the
category of R-modules. The techniques for proving the equivalence are
also similar except for establishing that every R-*module M contains
a *simple sub*module if every sub*module N of M is a direct summand.
This is because not every principal submodule of M 1is a sub*module.

We also examine the properties of *modules over *simple *rings
when certain restrictions are imposed on the algebraic group. The main
theorem is that when G 1is a connected linear algebraic group and R
is a *simple *ring then every finitely generated R-*module M is R~
torsion-free, Thus, é *simple *ring is an integral domain if G 1is a
connected linear algebraic group. Ve establish this result by proving

that every associated prime of M is G-stable and therefore an *ideal.




R being *simple every associated prime reduces to the zero *ideal
proving that M is torsion-free. If R 1is a finitely generated k-
algebra that is *simple then M is R-projective. This is shown by
proving that MM is RM-free for every maximal ideal M of M,

If further G is a comnected linearly reductive algebraic
group and R a *simple *ring then every finitely generated R-*module
is *semi*simple and, therefore, R-projective, Under the same condi-
tions for G every nonzero R-*module is *semi*simple and, therefore,
R-projective.

If G is a linear algebraic group then k[G] with appropriate
G-action defined on it is a *simple *ring. In Chapter Three, we examine
k[SLn]-*modules with SLn-action for n > 2 when k is algebraically
closed and the characteristic is zero. We prove that every *simple
k[SLn]-*module is R-isomorphic to k[SLn] . This isomorphism preserves
SLn—action as well, Consequently, every k[SLn]-*module is R-isomorphic

g(n) (x)

to either ,n<® ,or R , the isomorphism preserving SLn-
action as well. We call such an isomorphism (R-G)-isomorphism, We
establish the isomorphism by the following sequence of arguments. It is
a fact that for any linear algebraic group G , if G -» GL(V) is a
faithful representation of G in V +then k[G] = k[V + V*] s V* being
the dual of V , [M*]. If W isa *simple G-module then W is the

n % di

*
homomorphic image of & (Ve V) for d, > 0 , the homomorphism
i=1

being that of G-modules. In particular, if G = SLn then k[SLn] =

k[GLn]/(l - D) where k[GLn] = k[xll’x12"“’xnn’l/D] and

vii




D= D(xll,...,xnn) is the determinant form., We define Rn to be an

SLn*module isomorphic to <xll,x22,...,x nl> + Then W is the homo-

®d,
il x k 1
morphic image of @ (Rn ®R )

n , the homomorphism being that of
i=1

SL_-modules, R® R = i « This leads to the isomorphism M =~ R
n x " Re RG

¥ *
if M is simple. Therefore every k[SLn]- module is (R-G)-isomorphic
to R(n) or AX ) + The existence of such an isomorphism follows from
& more general theorem [CPM]. But we construct an explicit form of

the isomorphism in this thesis.
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¥ *
*smr *SIMPLICITY OF “MODULES OVER "SIMPLE *RINGS
CHAPTER I
THE CATEGORY OF R- MODULES

Starting with the basic definitions of this theory, this chap-
ter establishes the category of R-*modules and R-*module *homomorphisms.
Properties of R-*modules and R-*module *homomorphisms needed for the
development of this theory are demonstrated. That this category con-
tains a subcategory which is Abelian is also shown.

Throughout this thesis k 1is an algebraically closed field and
G a linear algebraic group over k . For any algebraic set V , k[V]
denotes its coordinate ring. If R 1is a commutative ring then ModR
is the category of R-modules and R-module homomorphisms. I is an

indexing set.

Definition 1.1 A finite dimensional vector space V over k with G-

action is a G-module if the induced homomorphism G - GL(V) is a

homomorphism of algebralec groups over k . [M]




That is, if ¢ : G + GL(V) is the induced homomorphism then
¢ 1is a homomorphism of groups and is a k-morphism. k-morphism means
that if f € k[GL(V)] then f o ¢ € k[G] . [F]

Definition 1.2 A vector space W over k with G-action is a ra-

tional G-module if W is a union of finite dimensional G-modules in

the above sense. [MJ

¥
Definition 1.3 A ring R 1s a commutative Noetherian k-algebra which

is a rational G-module such that G acts by k-algebra automorphisms.[M]

G acts rationally on R in the following sense. If v €R
and S_= <gv | g € G> , the vector space spammed by gv for all
g € G, then SV is finite dimensional over k and the induced hcmo-
morphism G - GIL{ Sv) is a homomorphism of algebraic groups and

R= U 8§
vER

Definition 1.4 (Notation) <gv | g € G> denotes the vector space

generated over k by gv, for all g € G . <v1,v2,...,vn> denotes

the vector space generated over k by VisVosee e,V

% ¥
Definition 1.5 A module M over a ring R is an R-module and a

rational G-module such that g(rm) = (gr)(gm) , for all g € G,
-r€R, meM. [M]
A module M over a2 ring R 1is said to be an R- module.
* *
A module M over a ring R is a rational G-module in the
following sense. If m € M and VIn = <gm | g € G> then Vm is
finite dimensional over %k and the induced homomorphism G - GI( Vm)

is a homomorpnism of algebraic groups. Moreover M= U V_ .
meM




* ¥ ¥
Definition 1.6 An (B-G)- module homomorphism of modules over a ring

R is an R-module homomorphism preserving G-action.

¥
Definition 1.7 (Notation) If g € G and M en R~ module then g,
denotes the G-action of g on M.

*
Definition 1.8 For each pair (M,N) of R- modules define a set,

* ) ¥
Hom(M,N) , of morphisms of M into N where Hom(M,N) =
{f ¢ HomR(M,N) | <ngg1\-A1 | ¢ € G> is finite dimensional over k} .

* .. *
f is said to be a homomorphism if f € Hom(M,N) .

*
Proposition 1.9 The category whose objects are R- modules and whose

morphisms are *homomorphisms of R-*modules, as defined in 1.8, is a
category and denote it by Mody, .
Proof: We first define composition of *homomorphisms, establishing
that the composite map so defined is a *homomorphism.

For each triple (M,N,L) of R-*modules , define a map
*Hom(M,N) X *Hom(N,L) - *Hom(M,L) by (u,v)=v «u where
u € *Hom(M,N) , V€ *Hom(N,L) and *+ is the usual composition of
maps. Denote v *u by wvu . By the definition of a *homomorphism,
<gNugi;[l | £ € 6> and <gngI:]1 | g € 6> are finite dimensional vector
spaces over k . Let <gNug£;il | g €G> = <fppfpsenesfy | £, € *Hom(M,N)>
and <gng;I1 | g ¢ G> =<hy g, -eesh | h; ¢ *Hom(N,L)> . Then
g vugy | g €G> 4y |1sisn,1sjsm wichis finite
dimensional over k . Moreover wu € HomR(M,L) . Therefore
vu € "Hom(M,L) .
(1) Iet 3,M,M0, be R-'modules and £, € ‘Hom(M,M,)
£, € Hom(, M) , £,
module homomorphisms. Moreover, f‘3( f2fl)’(f3f2)fl € *Hom(Ml,M ).

4
3

*
€ Hom(MB,M4) . f3( f‘2f‘1) = (f‘3f‘2)f1 as R-




Thus composition of *homorphisms is associative.

(ii) For any R-"module M , let lM be the identity map of M onto
M . Then m@Hmﬁ%m. mew,<%w%llgemgk and
therefore finite dimensional over k . Thus, Iy € *Hom(M,M) . Let

£ ¢ "Hon(M,N) and h € 'Hon(NM) for any R-module N . fl =f

and Lh =h as R-module homomorphisms. Also, fl,.,f ¢ *Hom(M,N)

and Lh,h € ‘Hom(N,M) . Therefore, fl =f and Lh=h as k-
*module *homomorphisms. Thus, lM is a left identity in *Hom(M,N)
and a right identity in *Hom(N M) .

(1i1) Let the pairs (M ,N;) and (M,,N,) of R-'modules be distinct.
If f¢ *HonKMi,Nl) n *Hom(Mé,Nz) with £ 70, then f € Hom(M,N,) N
Homp(M,,N,) . This implies that M, =M, end Ny = N, .

(i), (ii) and (iii) establish the propositicn.

For an R-module M +to be an R-*modu1e, M should be a ra-
tional G-module and the G-action on M should satisfy the condition
g(rm) = (gr)(gm) for all g €G , r € R and m € M. We show that
these two conditions are satisfied whenever it is necessary to estab-

lish that an R-module is an R—*module.

*
Proposition 1.10 If {Mi | 1 =i =n} is a finite family of R- modules,

then ® Mi is an R-*module.
i

Proof: M

@ l\IIi is an R-module.
i

(i) Let G act on M as follows: g(r((mi)i)) =g((rmi')i) =

((gr)(egm;)); = (gr)((em;);) = (er)(e((my);)) for all

(g(rm, ),
gEG,rER,mieMi, l=i=<n.

i = A i . -
(i1) Let x (mi)i €M with m, €M, For each m, 3 a G-stable

4




finite dimensional subspace Vm of Mi , over k , such that
i

m €V~ and the homomorphism p. : G - GL(V i ) is a homomorphism of
i i
algebraic groups over k . Let Vx =& Vm , 1=i=n. Vx is
i i

finite dimensional over kX and is G-stable. The induced homomorphism

LG~ GL(VX) is defined by u(g) = ([.Li(g))i forall g €G, If

g:8, €6 then wulge,) = (1(e8,)); = (sl (gy));
((ny(gq)); W (uy(gy)); ) = ulgy dule,) o This proves that p is a
homomorphism of groups.

Now it is sufficient to show that if ¢ € k{GL(Vx)] then

¢ * & € X[G] . The homomorphism p : G - GL(VX) can be factored as

¢2se CL(V_ ) —— GL(V,) where \ is defined by A(g) =

J J
(uj(g))j for all g € G and i is the inclusion map., Therefore,
ix=p. k[ GL(Vm 1 =0 k[GL(Vm Y3 . If o € k[® GL(Vm )] then

J J k J J J

¢ = 3 (® fl’,j) where fﬂj € k[GL(VmJ.)J forall j . But X\ : G~

®CGL(V._ ) and ¢ € @ k[GL(V_ )] . Therefore, o\ = (2 f,.n.) € k[G]
. m, m, . L35

J J k J 2

since fﬂj”‘j € k[G] for all £,j . This proves that p : G > GL(VX)

is a k-morphism and therefore u : G - GL( Vx) is a homomorphism of
algebraic groups.

If x €M then V. is a G-module and M= U V_ . That is,
b'd <af X

¥
M is a rational G-module. .(i) and (ii) establish that M ¢ Mody, .
This completes the proof of Proposition 1.10.

Proposition 1.11 If {M; | i € I} is an infinite family of R-

* ¥
modules then & Mi is an R~ module.
i€l




Proof': 9 Mi is an R-module. If x = (xi)i €M where M = ‘BMi then
i

all but a finite number of X; terms are zero. A G-action defined on
M as in Prop. 1.10 satisfies the required condition for G-action.

VX =9 Vx where all but a finite number of G-modules Vx are
i i

zero modules. This forces Vx to be finite dimensional over k . Vx

is also G-stable. Therefore the argument that the homomorphism p :
G - GL(VX) is a k-morphism is the same as that in Prop. 1.10.

* .
M= U Vx . Therefore M is an R- module. This completes the
XM

proof of Prop. 1.11.

%
Proposition 1.12 Let M be a finitely generated R- module and N an
1

R—*module. If a G-action on HomR(M,N) is defined by g o f = gfg
for all g €G, f € HomR(M,N) then HomR(I‘.I,N) is an R—-*module.
Moreover, Hom(M,N) = *Hom(M,N) .

Proof: Hom (M,N) is an R-module. If f € Hom (M,N) let V, =
<gfg-l | g € &> . It is sufficient to prove that Vf is finite dimen-
sional over k and the homomorphism G - GL(Vf) is a k-morphism.

Let M be generated by MyseeesMy s with m, €M . Then

vo=<m e € G> is finite dimensional over k . ILet v,o=
s .

1IN B

<mi,g21mi,...,gpimi> with gji €G, 1=ics<ss and 2= j=p.

So also let Vf(mi) = <f(mi),h2if(mi),...,hqif(mi)> with hJ.i €G,

l<i<s and 2= J'.S q . Vf(gjimi) = <f(gjimi)’d2if(gjimi)’
...,drif(gjimi)> with dp; €G, 1=iss, 2=j=p and
2<4<r . We now prove that <gfg'l | g € &> is contained in the

span of f’hnf’dﬂifji with 1=i<s, 2=ns<q, 2<lf<r

i




and 2 < j < p and therefore is finite dimensional over k .

_ P
If g € G then gfg l(mi) 3 XJl(g )gf(g m) with
Jj=2

b -
.. € k[G] since M is a rational G-module. 2 X,.(g T )gf(g..m, ) =
J1 J.=2 J1 Ji1 1

D
z A.(g )( 2‘. w (g)d f(g M )) with p,. € k[G] since N is a
522 ji £=2 2 21

rational G-module and f(gﬁmi) €N forall 1,j . Therefore

_ P
gfg 1(mi) b z (g” )u&(g)dhf(g ;ms) with XJl,u.h x[al ,

j=2 £=2 Jl
l<i=<ss, 2=<j=p, 2=L=r. Thus, Vf is contained in the
span of f , hn £, df_ifgji for all i,j,£,n and the induced homo-

i
morphism G - GL(Vf) is a k-morphism. Moreover, HomR(M,N ) =

u Vf and therefore a rational G-module.
fEHom.R(M,N)

Thus, HomR(M,N ) is an R-"module. Moreover, *Hom(M,N) c
Hom,(M,N) . If f ¢ Homp(M,N) then V, = <gfg™’ | g €G> is finite
dimensional over k . Therefore, f € *Hom(M,N) . Thaet is,
HomR(M,N) < *Hom(M,N) . Then *Hom(M,N) = HomR(M,N) . This completes
the proof of Prop. 1.12.

*
Proposition 1.13 ILet M,N be R- modules. If a G-action on

- *
*fom(M,N) is defined by g o f = gfg™> for all g € G , £ € "Hom(M,N)

* *
then Hom(M,N) is an R- module.

*
Proof: We first prove that Hom(M,N) is closed under addition and

* * *
R Hom(M,N) ¢ "Hom(M,N) , thus establishing that Hom(M,N) is an R-
module.

(1) Let f£,f, ¢ *Hom(M,N) .




<g(fy + f‘?_')g':L | g €6 ¢ <gf1g'1 | g €G> + <gf2g'l | g € G> which

¥
is finite dimensional over Xk , Therefore, fl + f2 € Hom(M,N) .

%
(ii) Let r €R, f € Hom(M,N) . R is a rational G-module. There~

fore, let <gr l geG = <TysToaee s> <gi‘g':L | g € G> 1is finite
* -
dimensional over k by the definition of 'Hom(M,N) . Let <gfg 1 |

-1

g €G> = <f,f,...,f > . Then <g(rflg™ | g € G = <(gr)(gfg'l) |

2

g €G> C <xyfy | 1=isn,1=sjsm whichis finite dimensional
*
over k , Therefore, rf ¢ Hom(M,N) ,

¥
(i) and (ii) imply that Hom(M,N) is an R-module,

- *
V,=<gfg™ | g €G> for f € Hom(M,N) is finite dimensional

f
over k ., Therefore the argument in Prop. 1,12 can be modified to prove
that the induced homomorphism G - GL(Vi.) is a k-morphism, Moreover,

* ¥
Hom(M,N) = « U Vf . Then 'Hom(M,N) is a rational G-module
£¢ Hom(M,N)

%
and therefore an R- module. This completes the proof of Proposition

1.13.
Proposition 1.14 Let M and M' be R-*modules. Then MM is
R
*
an R- module,
Proof: M ®M' 1is an R-module.
R
(1) A G-actionon M®M' is defined by g(m®m') = (gm) ® (gn')

R
forall mé€M,n' €M and ge€G. If r€R,meéM, g €G

then g(r(m®m')) =glrm®n') = glrm®m') = g{rm) R gm' =
((gr)(em)) ® gn' = (gr)(gn ® gn') = (gr)g(m ®m') . This satisfies

the requirement for G-action.,




n
(ii) Any element in M Q® M' is of the form 3 m ® m' with m, € M
k i=1 *
t 1 s = =
and m{ € M' forall i . Let Vmi <gm, | g € G and Vmi

%

<gm} | g €G> . Since M and M' are R-modules, V  and V , are
i i

G-modules. Let {al,...,an} and {31,32,...,Bm} be k-bases for Vmi

and V , , respectively. Then {a; ® BJ. l]1<is<n,lsj<mn} isa
i
n
k-basis for V. 87V o+ 1T g €G, then ga. = 2 a,.g)e, with
mx B4 boogm W

m

ai,j € kX[G] for all j . ggj = gil b,j!_(g)ﬁk with b,j(’, € x[G] for all

£ . gle; ®8;) = (go;) ® (g8;) = ( 2 2;5(gla) @ (2 z Dsp(g)B) =

j=1
n m n m
z 3 (s (g)a @b, [A8Bp) = 2 3 (g (g)®b£(g))(a-®B£) with
J=1 £=1 j=1 £=1 J

alj ® bjﬂ € k[G] ® X[G] = k[G x G] . This establishes that the induced
k

homomorphism G - CTL(Vm YV ) 1is a k-morphism. Therefore,
ik i

V ®V , is a rational G-module, So also is Z V ®V , . Let
m, m m m;

ik "1 i "1k
S, =12 V ®V ! Then Mo M' = U S_ 1is a rational G-module,
T e U k x Mg
k
MM > M®M' is a G-module surjection. So by Lemma 1.15, M @ M'
. X R R

is a rational G-module.

(i) and (ii) imply that M ®M' is an R-"module. This completes the
R

proof of Prop. 1.14.
lemma 1.15 Let W and V be finite dimensional G-modules such that

WcV. Then V/W is a G-module,

9




Proof: Iet x 3 X

1,X2,... m

PP S basis of V . The homomorphism p : G -» GL(V) induced by

be a basis of W and Xy s¥Xgse ey XpsX 0y

the G-action on V is a k-morphism. That is, if g € G then
n

gx; = § aJ.i(g)JcJ with aji € k[G] .
Jj=1

(i) VM is a finite dimensional vector space over k with

X

+ + is.
1+ W,...,xn W as basis

(ii) Let yi=xi+W, m+1l<is<n. AG-actionon VA is

defined as gy; = 8% +W for m+1<i=n and gxi+W=
% a..(g)y. . This implies that the homomorphism p : G -+ GL(V/W)

is a k-morphism.
(i) and (ii) establish that V/W is a G-module. This completes the
proof of Lemma 1.15.

¥ *
Proposition 1.16 If N is an R-sub module of an R- module M , then

¥

M/N is an R- module.

Proof: M/N is an R-module.

(1) A G-action on M/N is defined as follows. If g € G and x is

the canonical image of x € M in M/N then let gx =gx . If r €R

then g(rx) = g(rx) = g(rx) = (gr)(ex) = (grlgx = (grlex .
(i1) If x €M then let V= <gx | g € G> and v, = (v, + N)/N =
Vx/vx NNcM/N . The induced homomorphism p : G - GI( Vx) is a k-
morphism and Vx N N .is a G-submodule of Vx . By Lemma 1.15, V}-{ is
a G-module. M/N = U V. is a rational G-module.

- X

X EM/N
(1) and (ii) establish that M/N is an R-'module. This completes the

proof of Prop. 1.16.
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Next we show that the category whose objects are R-*modules and
whose morphisms are (R—G)-*module homomorphisms as defined in 1.6 (writ-
ten as (R-G)-homomorphism) is a category. It is a subeategory of
*ModR . We denote it by Mod(R-G) . We also establish some properties
of Mod(R-G) that make Mod(R-G) an abelian category. We prove that
the direct limit of a direct system of R—*modules over a directed set
exist in this category. Finally we prove that every R-*module is the

¥
direct 1limit of its family of finitely generated sub modules.

*
Definition 1.17 If M and M' are R- modules then let HomRG(M,M')
denote the set of (R-G)-homomorphisms from M to M' .

¥
Proposition 1.18 The category whose objects are R- modules and whose

morphisms are (R-G)-homomorphisms is a subcategory of *ModR .

Proof': (R-G )-homomorphisms of R—*modules are R—*module *homomorphisms.
Therefore for every pair of objects (M,N) of *ModR s HomRG(M,N) c
*Hom(M,N) . Moreover, for any R—*module M , the identity morphism

lM , defined in Prop. 1.9, preserves G-action and, therefore, is an
(R-G)-homomorphism. If M,N,L are R-*modules and f :M->N, g

N - L are (R-G)-homomorphisms then the composite map gf preserves
G-action and therefore is an (R-G)-homomorphism. Thus the category
whose objects are R-"modules and whose morphisms are (R-G)-homomorphisms

R * .
is a subcategory of ModR . This completes the proof of Prop. 1.18.

‘s *
Proposition 1.19 If A € Mod(R-G) then Hom(A, ) and A® _ are
. R

» *
functors from Mod(R-G) to Mod(R-G) . The ordered pair Hom(4, ) ,

A® _ 1is an adjoint pair. That is, if B,C € Mod(R-G) there exists
R

*
an isomorphism & : HomRG(B, Hom(4,C)) - HomRG(A ® B,C) which is
R

11




natural in each variable.

Proof: (i) Iet B € Mod(R-G) . Then 'Hom(A,B) € Mod(R-G) by Prop.
1.13.

(i1) Iet £ : B >C be in Mod(R-G) . Then Hom(A4, )(f) :
*tom(A,B) - ‘Hom(A,C) is defined by o k> f o @ for all o €
*Hom(A,B) . f € HomRG(B,C) c *Hom(B,C) and ¢ € *Hom(A,B) . There-
fore, £ oo € 'Hom(A,C) . If r €R then To+—f orp . f o rp(x) =
flre(x)) = rf(e(x)) =rf oo(x) for all x € A . Therefore

“Hom(4, )(£) 6HOmR(*Hom(A,B),*Hom(A,C)) . If g €G then
goop=~fo(gop)="fo (gqag-l) = gfcpg-l since f ¢ HomRG(,B,C) .
Therefore, f o(go¢) =g o (*Hom(A,_)(f)((p)) . That is,

*Hom(A, )(£) : "Hom(4,B) » ‘Hom(4,C) is in Mod(R-G) .

(iii) Tet M2 N L5 p bein Mod(R-G) . Then *Hom(A,__)(Q)h) :
*Hom( A,M) > *Hom(A,P) 1is defined by f > ohf and ¢hf :

(*om(&, (o) o "Hom(4, )(B)XE) .

(iv) *Hom(A,__)(lA) : *Hom(A,A) - “Hom(A,A) is defined by o >

*
1A<p = ¢ . This implies that Hom(A,_)(lA) =1, .
Hom( A,A)

(i), (ii), (iii), (iv) prove that *Hom(A,_) is a functor
from Mod(R-G) to Mod(R-G) .

Next we establish that A ® _ is a funetor from Mod(R-G) to
R

A® is a functor from Mod(R-G) to the category of abelian

R
groups. Therefore it is sufficient to prove that if B € Mod(R-G) then
A®B is in Mod(R-G) and if f : B - C is in Mod(R-G) then
R

(AR Xf) : A®B->A%C definedby 32 (x, Ry.) 2 (x. ® £(y.))
R R R i 1 i *

12




is in Mod(R-G) .

(i) By Prop. 1.14, if B € Mod(R-G) then A ®B is in Mod(R-G) .

R
(i1) (A Nf)x(z X, ®Yi)) =3 (I‘xi ® f(Yi)) = (2 X, ® f(Yi)) =
R i i
r(Aa® _NI)Z (xi ®yi)) . Therefore (A® )f) ¢ HomR(A ®B,A8C).
i R R R
If ge€G, then g(2(x; 8y,)) =2 (gx; ®@ay;) .
i i

(A g _)(f)(z_j: (ex; ® gy;)) = i (gx; ® fgy;)) = :ZL (ex; ® gf(y;)) since

f € Homp(B,C) . Then (A® )Xz (ex; ®gy;)) = 2 alx; ® £(y;)) .

R i i
This implies (A ® _)(f) € HomRG(A ®B , A®C) . Therefore
R R R
(A® )Xf) : A®@B->A®C is in Mod(R-G) .
- R R
(i) end (ii) imply that A ® _ is a functor from Mod(R-G) to
R

Now we prove the second assertion., Define & :
¥
HomHG(B, Hom(4,C)) + HomRG(A ® B,C) as follows. If f ¢

R

%
HomRG(B,Hom(A,C)) then let f
* ¥
fb : A>C is an R- module homomorphism. Define &(f) : A® B~ C
R
by z a, ®bi -»g f .(ai) for ai €A, bi € B, This map is the same

b
i i "i

denote f(b) for b € B. Then

as the one constructed for proving the adjointness of the pair

HomR(A,C) , Ag_ in Mod.R . Therefore, &(f) ¢ HomR(A®B,C) .
R

It is sufficient to prove that &(f) preserves G-action. Suppose
g €G. Then &(f)gla®b)) = &(f)ga ®gb) = fgb(ga) . £ €
*
HomRG(B, HomR(A,C)) and therefore f preserves G-action. Therefore

, . S|
fgh) =gof(b)=¢go f,« gof =gfig and

13




£ p(88) = gf,g 7 (ga) = gfy(e) = gif)a @) .

*
Now define ¥ : HomRG(A ® B,C) + HomRG(B, Hom(A,C)) as fol-
R

lows. If H:A®B+C)6HmmM®Bﬁ)tMnthH):B+
R R

*Hom(A,C) be defined by b > (i‘b : A>C) where fb(a) = f(a®Db)

for all a € A, b € B, This is essentially the same map as the one

for proving the adjointness of the pair HomR(A,C) y A® in Mod .
R

Therefore, it is sufficient to prove that (i) ¥(f)b) ¢ *Hom(A,C) for
all b ¢ B and (ii) Y¥(f) preserves G-action.

* -
(1) b €B and B is an R- module, Therefore, let <gbg 1 l g €G> =
. 1 .
<by,byseessby | b, € B> . Then ¥Wr)v) = £ . gf,g tA-C is
defined by a > gfb(g_la) = gf(g-la ®b) = f(a®gb) =32 Xif(a ? bi) =
i

3 Af, (2) with a €4, €k forall i . That is, <gfbg’1 |
; 1%

g €G> ¢ <1‘.‘b ’fb ""’fb > and therefore finite dimensional over Xk .,
1 2 n
) ¥
(ii) v: HomRG(A oé B,C) - HomRG(B, Hom(A,C)) . If f € HomHG(A g B,C)

1

and g € G then ¥(go f) = ¥(gfg ) = ‘F(gg-lf) since f preserves

G-action., Therefore, ¥(g o £) = ¥(f) . On the other hand, g o ¥(f) =
gY(f)g'l and g‘I’(f)g’l : B> *Hom(A,C) where b+ (go f . A~ C)

gD

But go f (g—la) = gfg'l(a ®b) =a®b . Therefore,

(a) = gf
g-lba gg':l'b
(g o f)=go¥f).

That & and ¥ are inverse to each other and the isomorphism

*
Homy, (B, Hom(A,C)) =~ Hom_.(A ® B,C) is natural in each variable follows
G RG R

from the isomorphism HomR(B,Hom(A,C)) ~ H.Om.R(A ® B,C) and the fact
R

that it is natural in each variable. This completes the proof of

14




Prop. 1.19.
Remark 1.20 The left exactness of *Hom follows from that of Hom .

So also the right exactness of AR .

R
Proposition 1.21 If M and M' are R-"modules then HOm.RG(l\f[,M') is

en abelian group under the usual addition of morphisms.

Proof: It is sufficient to prove that HomRG(M,M') is a subgroup of
the abelian group HomR(M,M') .

Suppose ¢ € HomRG(M,M') . (-¢) preserves G-action. If
(p,\j/ € HomRG(M,M') then (¥ - ¢) preserves G-action. Thus, (-~p) ,
(¢ - ¥) are in Hom (M,M') . This completes the proof of Prop. 1.21.

Proposition 1.22 Composition of morphisms is bilinear in Mod(R-G) .
f

That is, given R- modules M,N,P and (R-G)-homomorphisms M N,
. fl
N - P , the digtributive laws (g+g') o f=go f+g'of and

go(f +f')=gof+gof' are satisfied.
Proof: The distributive laws are satisfied in ModR .
gf , gf' , gf +gf' , g(f + £') are (R-G)-homomorphisms. Therefore,

But (g + g")f ,

the above equalities are true in Mod(R-G) also.

Proposition 1.23 Mod(R-G) has a zero object such that for each object

A € Mod(R~G) there is a unique homomorphism O - A and a unique
morphism A -0 .

Proof: The zero object O of Mod, is an object of Mod(R-G) since

¥

the zero module is an R- module. If M is an R-*module then each set
HomRG( 0,M) and HomRG(M,O) has exactly one element, the inclusion map
and the zero map, respectively, for if they have more than one element
then 0O cannot be the zero object in ModR . This completes the proof

15




of Prop. 1.23.

Proposition 1.24 For every pair of objects M,N in Mod(R-G) there
N R B

is a diagram in the category M C_ N with p, o i, = Ly s
I € 1 1

2
p2°i2=1N and (1lopl)+(12op2)=lc.

Proof: M,N are in ModR . Therefore there is a diagram in ModR ’
B D

M C N, where C=M8&N, p, and p, are projection maps,
i A
1 2

il and i.2 are inclusion maps satisfying the above equalities. But

¥ . .
M®& N is an R- module (by 1.10). Projection and inclusion maps pre-

Y p
1 2
serve G-action. Therefore, M . M5N . N is the required dia-
i i
1 2

gram in Mod(R-G) . This completes the proof of Prop. 1.2%4.
Propositions 1.21, 1.22, 1.23 and 1.24 establish that Mod(R-G)
is an additive category.

Proposition 1.25 TIf M and M' are R-'modules and f : M- M' is

and( R-G)-homomorphism then the kernel object and the cokernel object in
%

ModR are R- modules. We denote them by ker f and coker f , respec-

tively.

Proof: ker f ='{m ¢ M | f(m) = 0} is an R-module

(i) G-action on ker f is the same as that on M . Therefore,
glrm) = (gr)(egm) forell g €G, r ¢R, m€ ker f ,
(1) Let méker f and V_ =<gm|g €G> . f(gm) = gf(m) = 0 for

all g € G . Therefore, V_C ker f and ker f = U Vm . Vm is
n méker

. . *
a rational G-module since M 1is an R- module. Thus, ker f is a ra-

. ¥
tional G-module and therefore an R- module.
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ecoker £ = M'/f(M) is an R-module.
(1) G-action on f(M) 1is the same as that on M' .
(ii) Any element in f(M) is of the form f(m) with m €M . Vf(m) =

<gf(m) | g € G> c (M) . Thus, £(M) = mLéM Vf(m) . Vf(m) is a ra-

tional G-module since M' is an R-*module. Therefore, f£(M) is a
rational G-module.

(i) and (ii) establish that £(M) is an R-sub*module of M' . By
Prop. 1.16, coker f is an R-*module. This completes the proof of
Prop. 1.25.

*
Proposition 1.26 If M and M' are R- modules then every (R-G)-

homomorphism f : M > M' has a kernel and a cokernel.
Proof: By Prop. 1.25, ker f and coker f are R-*modules.
(1) cConsider the (R-G)-homomorphism i : ker f - M which is the in-
clusion map. Then f o i is the zeromap., If h : P->M is any
( R-G)-homomorphism such that f o h is the zero map then there is a
unique R-module homomorphism h' : P->ker f with h =1 o h' . That
is, we have the following commutative diagram in ModR .

P

h! h

ker £ r— -+ M > M!

If g€G,x€P then i o h'(gx)=hlgx) =gh(x)=gh'(x) since 1
is the inclusion map.. Therefore, h'(gx) = gh'(x) . That is, h' is
an (R-G)-homomorphism. (h' is unique in Mod(RB-G) since it is unique
in Mc.vdR .) Therefore, ker f)—i—rM is the kernel of f : M ->M' in

Mod(R-G) .
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(ii) Consider the canonical mep M s M/ker £ . 1 preserves G-
action. m o 'f is the zero mp. If h : M-+ P is any (R-G)-homo-
morphism then there is a unique R-module homomorphism h' : M/ker f - P
with h=h'om . That is, we have the following commutative diagram

in ModR .

M —2— M/ker
rd

4
s’

h S nt
r'd
V4
"4

P
If g€G and m € Mker £ where m = n(m) with m € M then
h'(m) = n(m) . h'(gm) = h'(gm) = h(gm) = gh(m) = gh'(m) . h' pre-
serves G-action. h' 1s unique in Mod(R-G) since it is unique in
ModR . Therefore, m : M > M/ker £ 1is the gokernel of f:M M in
Mod(R-G) . This completes the proof of Prop. 1.26.
Remark 1,27 The above proposition implies that if f : M > M' is an
( R-G)-homomorphism then the kernel of f in Mod(R-G) is the kernel
of £ in MOdR and the cokernel of f in Mod(R-G) is the cokernel
of f in Mod.R .

Proposition 1.28 If f : M->M' is an (R-G)-homomorphism whose kernel

is 0, then f 1is the kernel of its cokernel., If f : M->M' is an
(R-G)-homomorphism whose cokernel is O , then f 1is the cokernel of
its kernel. An (R-G)-homomorphism whose kernel and cokernel are 0 1is
an ( R-G)-isomorphism.

Proof: Mod is an abelian category. Therefore the above statement is

R

true in Mod By Remark 1.27, the proposition is true in Mod(R-G) .

R .
This eompletes the proof of Prop. 1.28.
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Propositions 1.25, 1.26, 1.28 establish that Mod(R-G) is an abelian
category.
A direct system {M,r} over the directed set I , in Mod(R-G) ,

means that to each 1 € I , there is an R-*Module Mi and to each pair

(1,j) € I x I with i< j , there is an (R-G)-homomorphism nJi DM >

MJ such that for a1l i €1, ni is the identity mep and for i< j <
. L J_ 2

£ in I, njoni—ni.

Proposition 1.29 ILet {M,n} be a direct system over I in Mod(R-G) .

For each pair (j,£) € I x I with j< £ and each m, € Mj , the ele-
ment n?mj - mJ. is an element of & Mi . Then there exists a smallest
i

¥
R-sub module N of @& Mi containing such elements as ngm‘j - mJ. for
i

all pairs (j,£) € I x I with j < & . Moreover the quotient module

%
® Mi/N is an R- module.
i

¥
Proof: If N is an R-sub module of & Mi then @Mi/N is an R~
i i

*
module by Prop. 1.16. Therefore it is sufficient to prove that such an

N exists. We prove this by using Zorn's Lemma. Let A be the collec-

tion of all R—-sub*modules of & Mi containing the set of elements
i

described in the proposition. This collection is nonempty since

® Mi € A, A can be partially ordered by > . If {Ni} is any chain
i

*

in A +then ﬂNi is an R- module in A and is minimal for {Ni} .
Therefore, A has a minimel element N , This completeé the proof of
Proposition 1.29,

We now establish that the above quotient & Mi/N is the
i

appropriate categorical definition of direct limit in the category
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Mod( R-G) .

Proposition 1.30 let {M,n} be a direct system over the directed set

*
I @as in Prop. 1.,29. Let & Mi/N be the R- module deseribed in Prop.
i

*
1.29. If P is an R- module and for each i € I there are (R-G)-

homomorphisms f.‘i : Mi + P such that f‘jng = fi for all i < j , then
there is a unique (R-G)-homomorphism & : 4 Mi/N -+ P such that
i

Hx+N) = f(x) if xeM, coM .

i )
Proof: n : & Mi - FBMi/N is the cokernel of N - ‘BMi . The set

i i i
{fi | 1 € I} induces f : ®M, ~P with f(N) = 0 . Therefore there
i
exists a & : ® Mi/N -+ P satisfying the above conditions. This com-
i

pletes the proof of Prop. 1.30.

¥
Proposition 1.31 Let P be an R- module. Then P is the direct limit

of the family of finitely generated R-sub*modules of P,

Proof: Iet A = {Mi | 1 € I} be the collection of finitely generated
¥

R-sub modules of P. A#¢ . Forif p€P, p# 0, then RVPGA.

1tet Mi’MJ. E A md let Mi = <m1,.-.,ms> and MJ. = <n1,o;-,nr> as R‘

*
modules. V= <gm; | g € G> is a finitely generated vector space
;-

over k . Let Vm. <mi Ty e eaTy >, 1=<1=<s and Vn. =
1 "2 Zi i

S SDy geeaaDy >, 1 <i=r as k-vector spaces. Let V=<m._‘_l,...,m1S ,

1

1 ki

""mszs’nll’ ceesllg > be a finitely generated vector space over k ,
which is G-stable. This implies that RV 1is a finitely generated R-

*

module. Moreover, M, + Mj CRV €A . Thet is, there existsa k. €¢I

0
> RV = and M, + M, ¢ + Define 1 = j if M, ¢ M, and let
O i J - O 1l = J
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“’ij :Mi -rMJ be the embedding of Mi in Mj . By this definition I
is a directed set. Then limpM, = iMi = gMi cP. If p€P then

RVp € A . This implies that P ¢ UM, . Therefore P = limM, . This

completes the proof of Proposition 1.31.
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CHAPTER II
* ¥
SEMI SIMPLICITY

Starting with the definitions of a *simple *ring and a *simple
R-*module, we define a *semi*simple R-*module. We show that if G is
a connected linear algebraic group and R is a *simple *ring then
every finitely generated R—fmodule is R-torsion free and R-projective,
Thus a *simple *ring is an integral domain if G is a connected linear
algebraic group. If further G is a connected, linearly reductive
algebraic group and R is a *simple *ring then every R-*module is
*semi*simple and, therefore, R-projective.

Notation: , = denote G-module isomorphism, R-module iso-

G R RG

morphism and R-G isomorphism, respectively.

!

* *
Definition 2.1 An ideal of a ring R 1is an ideal which is a sub-

*module of R. M3

% * *
Definition 2.2 A ring R is simple if the only ideals of R are

the zero *ideal and R , M1

¥ *
Definition 2.3 An R- module M is simple if the only sub*modules

%
of M are the zero module and M .
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* ¥
Example of a Simple Ring 2.4

If G is a linear algebraic group over k then k[G] is a
finitely generated k-algebra. This can be made into a *ring by de-
fining a G-action on kX[G] . If g € G, f € k[G] then let

g o f(h) = £f(g”th) forall he€G. If A : k[G] - k[G] ® k[G] be

k
n
comultiplication, then A(f) =2 a; ® b, if flxy) = 2 ai(x)bi(y) for
1 i
all x,y €G. Then (g o £)x) = f(g'lx) =3 ai(g'l)bi(x) . So
i
- -1 - :
gof-= E ai(g Jo, end V. = <gf | g €6 ¢ <byyby,eesb > . More-

over, G - GL(Vf) is known to be a k-morphism. Suppose I is a non-
zero *ideal in k[G] . I c k[¢] dimplies V(I)c G . V(I)# O and
V(I) is closed in G, If x € W(I) with x#0,f €¢I with £ #0
and g € G then f(x)=0 and g o f(x) = 0., Therefore,

£(g™ %) = 0 . This implies that g -x € V(I) . That is, Gx ¢ V(I)c
G. But Gx =G . Therefore, V(I) = G . This implies that I =0,
which is a contradiction. Therefore the only *ideals of k[G] are the
zZero *ideal and k[G] .

Remark 2.5 The following proposition leads to the definition of *semi-
*simple R-*modules.

Proposition 2.6 ILet G be a linear algebraic group over kX , R a

*ring and M a nonzero R-*module. Then the following conditions on M
are equivalent,

(1) M is the sum of a family of *Simple sub*modules of M.

(ii) M is the direct sum of a family of *simple sub*modules of M.
(iii) Every sub*module N of M is a direct summand. That is, there

%
exists a sub module N' of M such that M= N @& N' .
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Proof: (i) = (ii). Let M= 2 M, be a sum (not necessarily direct)
iel
* *
of "simple sub modules where I is the indexing set. Let J be a
maximal subset of I such that M' = 3 Mi is a direct sum, If
ieJ
¥ *

jer, Mj N M' is a sub module of Mj . But Mj is simple., There-

' *
fore Mj nM = Mj or the zero module 0 . If Mj nNM' is 0 then
M, + M!' is a direct sum contradicting the maximality of J . There-

J
fore, Mj CM' forall j €I . This implies that M= 2 M, which

Jje&d
is a direct sum,
¥
(ii) = (iii). Let N be a sub module of M where M= I M,
iel
¥ *
is a direet sum of simple sub modules of M . Let J be the maximal
subset of I such that M' =N+ 32 Mi is a direct sum. By repeating
ied

the same argument as above, M' =M . That is, N is a direct summand
of M.

(iii) =» (i). It is sufficient to prove that M contains a
* ¥ *
simple sub module. If M is not simple, let m be a nonzero ele-

*
ment of M . Let V_ = <gm | ¢ € G> . Then RV 1is a submodule of
¥
M. If RVm is not simple, then replace M by RVm . Now we prove
*
that RVm contains a simple sub*module. For this, we use Zorn's
*
Lemma., Let A= {M'cM | méM ,M isa submodule of M} . Since
¥ *

M is not simple, let N be a proper sub module of M . Either m € N
or m§{N . Suppose m € N ., By (iii) there exists a nonzero sub-
¥
module N' of M such that M=N@®N' . Then m ¢ N' and, there-
fore, N' € A, This proves that A # ¢ .

*
Let {Mi} be a chain in A . UMi is a sub module of M and
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m ¢ UM, . Therefore, UM, ¢ A . By Zorn's Lemma A has a maximal
element. Let Ml be the maximal element in A . That is, if M' is
a sub*module of M such that M' does not contain m and M' > M1 ,
then M' = M1 . Let N be a nonzero sub*module of M/M1 where N is
the canonical image of N cM in M/M1 . Since N#0, N#M, so
m€N. Since M=RV_, M=N. Then N = MAL . Therefore, MM
is *simple. By (iii), there exists a sub*module M2 of M such that
M= Ml ® M2 . The canonical map n : M — M/Ml induces an R-module
isomorphism f : M2 —>—>M/Ml . If g€G,m, € ]VI'2 then f(gmz) =
gmy + M, = g(m2 + Ml) = gf(mz) . That is, f preserves G-action.
Therefore, M2 and M/M1 are isomorphic as rational G-modules,
Therefore, M2 is *simple. Thus, M contains a *simple sub*module

M2 . This completes the proof of Prop. 2.6.

Definition 2.7 An R-*module satisfying the above three conditions is

* *
said to be a semi*simple R~ module.

* . 3 * o* . . . * L]
Definition 2,8 A 'ring R 1is said to be semi simple if R 1is semi-

¥
simple as a module over itself.

* ¥ *
Proposition 2.9 Every sub module and every factor module of a semi-

*simple *module is *semi*simple.

Proof: (i) Let N bea sub module of an R-'module M where M is
*semi*simple. Let N' be the sum of all *simple sub*modules of N.
Since M is *semi*simple, M=N'@®M' where M' is a sub*module of
M., If x€N, x#0 then x=n'"+m', n' €N' and m' € M' .
Therefore, m' = x -n' € N and N=N'®&M' N N, a direct sum. This
contradicts the maximality of N' since M' N N is a sub*module of M
and therefore is either *simple or contains a *simple sub*module. Thus,
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N=N'.

(ii) Let N be a sub’module of M . M/N is an R-'module. M is
*semi*simple. Therefore, M =N® N' , N' is the direct sum of
*simple sub*modules of M, by (i). The canonical mep 71 ¢ M ——> M/N
induces an R-module isomorphism f : N' —>M/N . If g€¢G, n' ¢ N'
then f(gn') = g(n' + N) = gf(n') . That is, f preserves G-action.
Therefore, N' and M/N are isomorphic as rational G-modules. There-
fore M/N is the direct sum of *simple sub*modules of M since N!
is, This completes the proof of Corollary 2.9,

~Lemma 2,10 Let G be a connected linear algebraic group., If R is

¥ %
a simple *ring and M a finitely generated nonzero R- module then M
is a torsion free R-module and R’ is an integral domain,

-Proof: R 1is Noetherian. Therefore there are only finitely many as-

sociated primes of M . Let {Ml,M2,...,Mr} = ass(M) . Let each Mi
be the annihilator, ann(ai) , of a; ¢ M, a, # 0 . The zero

divisors Z(R) of M is U Mi . We prove that each Mi is G-stable
i

and, in fact, if g € G +then gMi = Mi for all i .

(i) Let xy ¢ g(Mi) , Xx#70,y7#0 ., Then xy = ga for some

a € M; . Therefore, (g-lx)(g-ly) =a and isin M, . Since M, 1is

a prime ideal either g-lx € Mi or g'ly € Mi . That is, either

x € g(Mi) or y € g(Mi) proving that g(Mi) is a prime ideal for all
g €G and for all i .

(1) M, =em(a,) , 2, €M ,8 #0. If xegM),x#0,g¢€a

then x = ga for some a € Mi , & # 0. Then aa, = 0; = g(aai) =

0; = (ga)(gai) =0 ; »ga € ann(gai) R g(Mi) c a.n.n(gai) . Conversely,
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if r ¢ ann(gai) then r(gai) 0; = (g'lr)ai =03 = g'lr € Mi ;

=T € g(Mi) - ann(gai) c g(Mi) = g(Mi) = ann(gai) for all i,

-

where ga; #0 . (i) and (ii) imply that g(Mi) = Mj for some
l=sj=sr.
(iii) But G is connected and G permutes the finite number of
elements Ml’M2’°"’Mr . This implies that g(Mi) = Mi for all i .
Therefore, Mi is an *ideal of R forall i . But R is *simple.
Therefore, Mi =0 forall i . Then M is R-torsion-free.

R is a finitely generated R-*module. Therefore by the above
result R 1is an integral domain.

This completes the proof of Lemma 2.10.

Proposition 2.11 Let G be a connected linear algebraic group. If

*

R is a finitely generated k-algebra that is simple and M a nonzerc
*

finitely generated R- module, then M is R-projective.

Proof: We first establish that if S is a multiplicatively closed

subset of R and SM is a free S R-module generated by

ml m2 mn
T T e 0 T with m, €M, for all i , then there exists an

% € S such that
(a) F=3 Rm, is a free R-module.
i

() It 8 - {1,a0,a2

or+++} then slF = Sle and are free as S- R-

1 1
m

modules with E£ y cee TE' as basis.

)
T °T1T

(i) R is an integral domain. Let K be its quotient field. An R-

module homomorphism ¢ : M» K ® M = (R-0 )-lM defined as m+~1®m
R
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for all m € M is injective,. (R—O)-]M is a K-vector space and M

is a finitely generated R-module. Therefore, (R-O )'lM is finite di-

m
mensional over K . Let ;1- s eee s l_n_ be the K-basis with m, €M

for all 1 .

(11) Let F=ZRmi§M. Suppose there exist r; € R, l1<isn

B

m,

such that 2 r.m, =0 . Then, Z r, —~=0, But Z 7T, —¢€ (R-O)_lM ’
. 1d . 11 . 11
i i i
By
a K-vector space with T seecs T 88 basis. Therefore r, = 0, 1=

i <n , Therefore, F is a free R-module with My sMyyeee,M S basis.

Moreover, F ¢ M implies (R-O)"lF c (R-0 )—]'M . If x €

m,

(B=0)™M , x #0, then x =2 a ii‘ with o €K and 3o =
i i

a.

3 Ii- . € (R-0)7'F . Thus, (R=0)"YF = (R-0)™M . (B-0)™'M has a
i

m m
K-basis i yese, == . Therefore, (R—O)'J‘F has i yees, = as
1 1 1 1

K-basis, Moreover, (R—O)_JM/F = 0. This implies that 3 d, € R-0
such that SalM/F =0 where §, = {1,d0,d§,...} . That is,
ST |
sg = S5F
(1ii) Now we will prove that 861F is a free SalR module.

' 1 r.m, .

If x €S;F then x =2 -—— with v, €R, c€Z forall
i d
-1 > ol ™ -1
i . Therefore. S0 F 1is generated by T seees T OVer SO R .
1 - noon
Suppose there exist r.,...,r € R such that ——— ¢ ——+ eees +
1 n dal 1
0

n, : o
— ¢« =0 with a, € Z for all i ., This implies 2 = —
a 1 1 . 8
an i d0 dO
0
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for a,8 €2° ,r] €R forall i . Then there exists dY € S; such

*
that dgdg(z r:!Lmi) =0 . But F is a free R- module. Therefore,
i

ri'dg+B =Q forall i . But R is an integral domain and dg+[3 70 .

T,

Therefore, r}!_ =0 forall i . That is, —z:- =0 forall 1.
4
Thus, SalF is free over SalR . Since SalF = SalM , each is gener-
o m m
1 2 n -1
ated by T= T e s T over SOR.

Suppose S is a multiplicatively closed subset of R and

m m
st is a free S R-module generated by I;—}- ) 1—2- s eee s T’(-)‘- with

m, €M, for all i . Then we can replace K by sR in (1), (i1)
and (iii) thus establishing (a) and (b).
(iv) Let M be a maximal ideal of R such that MM is a free RM-

m

module with T o0 -1-1: as basis where m, €M forall i . By
what we have established above there exists a 4 € R - M such that if
F=2FRm , then F is R-free and SIF = S™M as S~ R-modules where
i
S = {l,d,dz,...} . Moreover, SF and S are free ST R-modules
m
with I;i-}-, cee 'li as basis,

Let M' be any maximal ideal of R such that d ¢ M' ., This
implies that ScCR - M' . SF =S"M implies (S™F) . =
(s‘lM) Then (R - M')'lF = (R - M')'lM as (R - M')'1R-

modules. That is, FM' = MM' as RM,—modules. By an argument similar

R-M' °

to that in (iii) we can establish that FM' is a free R, ,-module.
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(v) Now we will establish that there exists a maximal ideal MO of

R such that NB\J is a free HM -module.
0 0

R is a Hilbert ring and is a domain., Therefore the Jacobson
radicel J =0 . This implies that there is a maximal ideal MO of R

such that dO ¢ MO (4, defined in (ii)). For otherwise, d. € J

0 0
which is a contradiction., Then Sy S R - MO . But by (iii), SalF =
SOlM . Therefore, by localizing et R - MO , We have FM = MM . By

0 0

an argument similar to that in (iii) we can establish that FM is
0

RMO-free. Therefore, NE\A is RMO-free.

0
(vi) Let max(R) be the collection of maximal ideals of R . Let

X = {M € max(R) | My is a free HM~module} . By (v), X is nonempty.
If M € X then, by (iv), there exists a 4 ¢ M , such that if M' is
a maximal ideal of R not containing d then MM' is a free RM,—
module,

If U, = {M € max(R) | s § M} then U, is a basic open set in
max(R) under the Zariski topology on max(R) . Therefore, M € X

implies that M € U, ¢ X for some d € R ~M . Thus, X is open in

d
max(R) .

Now we will prove that X is G-stable., If M € X then M L
is a free RM-module. Suppose for g € G , g(M) ,C‘ M' where M' is a
maximal ideal of R, Then M ¢ g'l(M ') , which is a contradiction.

Therefore, g(M) is Ainaximal for all g € G . Now it is sufficient to

prove that Mg( M) is a free Rg( M)-module.

! Ty .
Let i— poeee s T be the basis of MM as free RM—module
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with m, €M forall i, If g € G then let N be the Rg(M)'
glny)  glm,) glm )
module generated by T T . If there exists
T3 -1 > h 0
— € (R -g(M))”™R for all i such that 3 -=(g(m,)) = = with
S, R i s
i i=1 i
S a -1 -1
s €R-g(M) then g( 3 g (ri)g (Si)mi) =0 with g"'s;{ €R - M.
-1
s g (ri) m g
This can be written a8 3 ——————-==— with q.,q ¢ R - M . But
=1 4 1 4 * -
-1
g (r,)

MM is RM-free. Therefore, ——a;—l- = g—- with qi,pi €R-M for
i i

all i . Then, pig-l(ri) =0 for all i . That is, g(pi)ri =0
for all i ., But g(pi) # 0 ., Therefore, r; = 0 for all i since
R 1is an integral domain, Thus, N 1is Rg(M)—free. It remains to be
proved that ME(M) CN.

If yeM,y70 then y=glg™y) . g (¥)= (rym, + rpm, +
cee + rnmn) for some r, € R for all i . Therefore, y = (grl)(gml) +
cee + (grn)(gmn) with gr. € R for all i . Then %-6 N . Thus
Mé(M) € N proving Mé(M) =N. ME(M) is Rg(M)-free for all g € G .
Therefore X is G-stable.,

(vii) We now prove that MM is RM-free for every M ¢ max(R) .

By (vi), X is open in max(R) . Therefore, max(R) - X is
closed in max(R) under Zariski topology and is G-stable, Suppose
mex(R) - X #¢ . (max(R),R) 1is an affine algebraic set and mex(R) - X
is closed in mex(R) . This implies that there exists an ideal I of
R such that max(R) - X = {M € max(R) | M2 I } . max(R) - X is G-

stable since X is., Therefore, I 1is G-stable., This implies that I
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is an *ideal. But R 1is *simple. Therefore, either I =0 or I =R .
But I #R . Therefore, I =0 . Then max(R) - X = max(R) . This
implies that X = ¢ which is a contradiction. Therefore, max(R) - X =
¢ . That is, max(R) = X . Therefore, MM is RM-free for every M €
max(R) .

(viii) R is Noetherian. M is a finitely generated R-module, there-
fore is of finite presentation. Moreover, MM is RM-free for all maxi-
mal ideals M of R . Therefore, M is R-projective. [(X), 3.3.7]
This completes the proof of Proposition 2.11.

Corollary 2,11.1 Let G be a connected linear algebraic group. If R

is a finitely generated k-algebra that is *simple and M a nonzero R-
*module then M is R-flat.
Proof: By Prop, 1.31, M is the direct 1imit of the family of finitely
generated R-sub*modules of M . Every nonzero finitely generated R-
*module is R-projective and the direct limit of a family of R-projective
modules is R-flat. This completes the proof of Cor. 2.11.1.

We quote some definitions and results from Fogarty's Invariant
Theory needed for further development of this theory.

Definition 2.12 If G is an affine group, we say that G is linearly

reductive if every rational G-module is completely reducible. [F, 4.6]
Notation: If M is a rational G-module then W = meM|gn=m,
Y g €G} .

Definition 2.13 If M is a rational G-module, then M is said to be

Gmergodic if M = (0) .

Lemma 2.14 Any rational G-module M contains a unique G-ergodic
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submodule MG . Moreover, M= MG @MG and MG is the unique G-

complement of MG in M., [F -5.2]

Definition 2.15 ILet M be a rational G-module, We denote by PM

the pro,jectiongf_ M onto MG whose kernel is MG . PM is called

the Reynolds operator of M , [F]

Remark 2,16 From the uniqueness of the Reynolds operator, it follows

that if nn : M>M' is a G-homomorphism of rational G-modules, then

1M o PM=PM' on . [F]

Remark 2,17 If M and N are rational G-modules and n : M+ N 1is

a G-homomorphism that is onto then the restriection of m +to MG , that
is, m :MG+NG , 1s onto.

Proof: By the property of Reynolds operator (2.16) we have the follow-

ing commutative diagram of rational G-modules and G~-homomorphisms.

n : M+ N is onto., Therefore, PN omn 1is onto, This implies that

7N o PM is onto., Thus, n :MG—> NG is onto,

*
Lemma 2.18 If R is a ring, N a finitely generated R-*module and

* *
M an R- module then HomR(N ,M) is an R- module with G-action defined

by go f = gfg'l

for all g €G, f € HomR(N,M) « (Prop. 1.12) 1If
HomRG(N ,M) is the collection of (R-G)-homomorphisms of N into M
G
then HomRG( N,M) = HomR( N,M)T
Proof: (i) If f € HomR(N,M)G end g € G then gof =f ., There-

fore, g o f(n) = gf(g-ln) = f(n) . That is, f(g-ln) = g'lf(n) .
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Therefore, f preserves G-action which implies that f € HomRG(N M)
(ii) Conversely, if f € HomRG(N,M) then g o f(n) = gf‘(g-ln) =
gg'f(n) = £(n) forall n €N, g €G . Thatis, f € Hom(N)° .
(i) and (ii) imply that HomRG(N,M) = HomR(N,M)G . This completes
the proof of Lemma 2.18,

Proposition 2,19 Let G be a linearly reductive algebraic group, R

*
a finitely generated k-algebra that is simple, N a finitely generated
*
R-'module and M an R-'module. Let p € Hom(N,M) and f € Hom(M,N)

such that fop=1 the identity map on N . Then there exists an

N 2
(R-G)-homomorphism h : N > M such that f o h = Iy -
Proof: By Prop. 1.12, Hom(NM) and Hom(N,N) are R-"modules with

appropriate G-action.
(i) Consider the R-module homomorphism & : HomR(N M) - HomR(N ,N)
) 2.0 ¢ where ¢ € HomR(N,M) . If g €G, then &(g o ¢) =

g(f o cp)g_l =g o &) . Therefore, & is

folgoo)=rfo (geg ™)

a G-homomorphism, Let V € HomR(N,N) then po V € HomR(N ,M) and

I

fo(povVv)=(fop)oVvY=y since fop-=1 That is, ®(p o ¥) =

N .
¥ . Therefore, $ is onto,
(ii) G is a linearly reductive algebraic group. Therefore,

- G _ G
| HornR(N,M) = HomR(N,M) ® HomR(N,M)G and HomR(N,N) = HomR(N,N) ®
HomR(N ,N)G . (Lemma 2.14). Moreover, by Remark 2.17, the G-homomorphism

G G . G .
& : HomR(N,M) »HomR(N,N) is onto, But IN € HomR(N,N) . This
implies that there exists h ¢ HomR(N,M)G such that &(h) = £ o h =
. _ G

IN . It was proved in Lemma 2.18 that HomRG(N,M) = HomR(N,M) .
Therefore, h € HomRG(N,M) as required,
This completes the proof of Proposition 2.19.
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Corollary 2.19.1 Let G be a connected linearly reductive algebraic

group, R a finitely generated k-algebra that is *simple , M a finitely
generated R-*module and N an R-*module. If ¢ : M>N is an (R-G)-
homomorphism which is onto, then there exists an (R-G)-homomorphism w :
N >M such that ¢ ow = I, . Moreover, M = ker ¢ ® n(N) , direct sum
of R-*modules.

Proof: ¢ : M= N is an R-module homomorphism that is onto. M 1is a

finitely generated R-module. Therefore, N is a finitely generated R-
* .

module, By Prop. 2.11, N is a projective R-module. Therefore, ¢
splits, That is, there exists an R-module homomorphism f : N -+ M such

that oo f =1 But ¢ preserves G-action. Therefore, by Prop.

N [)
2.19, there exists an (R-G)-homomorphism w in HomRG(N ,M) such that

pom=1 Then w : N>M is the required (R-G)-homomorphism. Thus,

N L[]
*
ker ¢ > MK-(-D—-bN is a split exact sequence of R- modules and (R-G)-

.~ -~

i
homomorphisms. Therefore, M = ker ¢ ® n(N) . This completes the proof

of Corollary 2.19.1.

Proposition 2.20 Let G be a connected linearly reductive algebraic

*
group and R a finitely generated k-algebra that is simple. Then every
¥
finitely generated nonzero R- module M 1is a direct sum of finitely
* * ¥ ¥
 generated simple R-sub modules of M . That is, M 1s semi simple,

Proof: R 1is a Noetherian ring, M 1s a finitely generated R-module.

*

Therefore, M is a Noetherian R- module. Therefore, by Prop. 2.6, it
- *

is sufficient to prove that every nonzero sub module N of M is a

direct summand of M .

*
Consider the exact sequence of R- modules and (R-G )-homomorphisms
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N)-—i—> M M/N where i 1is the inclusion map and m is the ca-
nonical map M—~M/N ., i and 7mn are (R-G)-homomorphisms, M is a
finitely generated R-*module. Therefore, by Corollary 2.19.1, M =

N ®n(M/N) where w is a (R-G)-homomorphism = : M/N -+M such that
Nnow = IM/N . Thus, N is a direct summand of M . This completes
the proof of Proposition 2.20.

Corollary 2.20.1 If G is a connected linearly reductive algebraic

’ *
group, R a finitely generated k-algebra that is simple and V a

finite dimensional rational G-module, then R ® V is a finitely gen-
k

* ¥ *
erated R- module and, therefore, semi simple,

Proposition 2.21 Let G be a connected linearly reductive algebraic

*
group and R a finitely generated k-algebra that is simple. Then every
* ¥
nonzero R- module M is the direct sum of finitely generated simple

¥ ¥ *
R-sub modules of M and, therefore, semi simple.

Proof: Let A = {N cM | N 1is a direct sum of finitely generated

*simple sub*modules of M} . M is a nonzero R-*module. Therefore, M
contains a nonzero element m . Let Vm =<em | g €G> . Then RVm
is a finitely generated R-*module. Therefore by Prop. 2.20, RVm is a
direct sum of finitely generated *simple sub*modules of RVm and,
therefore, of M . RVm € A, thus A is nonempty.

Let {M, | i € I} be a chain in A . WM, € A and contains
each Mi . Therefore by Zorn's Lemma A has a maximal element. Let
it be M'. If M ?M s then let x €M -M' RVX is a finitely
generated sub module of M and RV §M' . Let RV =N and M'=
M'@&@N . M' #M" , Therefore, M"/M' is a nonzero R—*module and the

natural map 7 : M" > M"/M' is an (R-G)-homomorphism that is onto.
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M"/M! 1is a finitely generated R-*module. Therefore by Prop. 2.11,
M"'/M' 1is R-projective. Therefore there exists an R-module homomorphism
w ¢ M"M' >M" such that nowm = IM"/M' . But by Prop. 2.19, there
exists an (R-G)-homomorphism =’ : M"/M' - M" such that mow’ = IM"/M' .

¥
Thus we have a split short exact sequence of R- modules and (R=G )-homo-

morphisms M'¢& = Mt > M"/M' where i is the inclusion map.
R/

Therefore, M" =M' & n’(M"M') . M"/M' is a finitely generated R-

* - L] -

module, w” is an (R-G)-homomorphism., Therefore, w’(M"/M') is a

* ¥ ¥
finitely generated sub module of M and therefore, semi simple. Let

¥
r(M"M') = ® Ni where each Ni is a finitely generated simple sub-
i

¥
mcdule of M. Then M'" = M' & (& Ni) « This contradicts the maximal-
i

ity of M' . Therefore, M =M' . This completes the proof of Proposi-
tion 2.21.

Corollary 2.21.1 Let G be a connected linearly reductive algebraic

group. If R 1is a finitely generated k-algebra that is *simple , then
every nonzero R—*module M 1is R-projective.

Proof: Every nonzero R—*module M 1is the direct sum of finitely gen-
erated R-sub*modules of M ., Every finitely generated R-*module is R-
projective by 2.11, Therefore, M 1is R-projective., This completes the
proof of Corollary 2.21,1.

Proposition 2.22 Let G be a connected linearly reductive algebraic

*
group, If R 1is a finitely generated k-algebra that is simple and M
(n) (m)

*
is a nonzero sub module of R s, <o, then M=R for some m ,

l=m=n.

R(n) —~ R be the projection map on the i-th
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%
coordinate. Consider the sequence of R- modules and (R-G)-homomorphisms

given by M et R(n) LH» R where ¢ is the inclusion map. Then
Moo is an (R-G)-homomorphism of M into R . LA w(M) is a sub-
*module of R . But R is *simple. Therefore, T, o wM)=0 or R,
Case (i) If M is *simple, then m, ou : M—>R is either the zero
map or an (R-G)-isomorphism, But M is nonzero and therefore, ", o

is nonzero for some i ., Then, M & R .
RG

% % *
Case (ii) TIf M is not simple, then M is semi simple. There-

* *
fore, M= @M, where M is a simple sub module of p(n) , for all
J

j . By Case (i), M, @ R for all j . Therefore, M = A pop
J Ra RG

some m € Al , 1=m=n since M is an R-submodule of R(n) . This

completes the proof of Proposition 2.22.
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CHAPTER III
*
k[SLn]- MODULES WITH SanACTION

SLn(k) is a connected linearly reductive algebraic group if
n > 2 and the characteristic of k is zero. We denote SLn(k) by
either SLn or G and k[SLn] by R. If SLn-action on R is
defined by g o f(h) = £(g”'h) for all g,h € G, £ € k[SL ] then
k[SLn] is a *simple *ring by 2.4.

In this chapter we establish that every *simple R-*module is
(R-G)~isomorphic to R . Consequently, every R-"module is (R-G)-

(n) (x) _

isomorphic to either R ,10>0, or R
The existence of, but not the explicit form of, the isomorphism
follows from a general theorem of Cline, Parshall and Scott [CPS].
But in this chapter we give the explicit form of the isomorphism for
k[SL_J- modules.
First, we introduce some notations and state the definitions

and facts needed for the sequence of results that lead to the final

statement. R = k[SLn] = k[xll,xlz,...,xnn] with
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T19%11 * Typ%y

X, in the determinant
il

coordinate function for all 1i,j .

Definition 3.1

Y41 %2 " Gy
g=1|:

| %1 %2 7T %

Ay Ayt Ay
-1 .
g =

e
for 211 1i,j .

+ooo+rx

nl nl

I

%12

b ¢

22

n2

=1 where T.
i

LN ]

Definition of G-action on

1 is the cofactor of

x2n
and x.., 1s the
iJ

R, If gc¢ SLn- then let

with aij € k foralli,j . Then

where A.. 1is the cofactor of a..
ij i

SL_-action is defined by g o £(h) = £(g™h) for all g,h € SL_ end

. £ ¢ k[SLn] . Suppose h =

i,Jj . Then go xij(h) = xij(gQIh) where

40

with a,, € k¥ for all
ij




-l = | L ] =
Xij(g h) = Alialj + A2ia2,j + + Anian,j + Therefore, g o xij

Alixlj + A21x2,]‘ + e +'Anixnj for 811 1i,j .
Some facts about G and R. 3.2

n n

1. 2 lele =1 , Therefore, 32 I‘.lx.l is a G-invariant
J=1

J=1
element in R .
%
2. R 1is a simple *ring. Therefore every finitely generated
¥
R- module is projective, by 2.11.
3, V= <xlj’x2j”"’xnj> is a simple G-module for all

l=j=n,

Proof; V= k(n) as k-vector spaces, Suppose u,w € k(n) then

—rereyre—~—

there exists a o ¢ GLn such that ou = w , This implies that

there is a o € SL_~such that ou=w . Then o{<uw) = ol <w>) .

Suppose W 1is a G-submodule of V . Then W contains every

line in W, Then, W=V, That is, V is Ge-simple,

4. RVCR and BV is an R-module, But R is simple,
Therefore, RV =R .

Definition 3.3 Iet R = <€ ;85,40 0,€ > With G-action defined by

g 08 T a8 *ae ¢

3,1, Then g o ei = Allel + Aziez + ovee + Anien for all i ,

ss e 4

@& for a11 i and g is as in

Remgrk 3)4 If v-= <x_u,x21,. . ”Xn1> then V? Rn by the G-module
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homomorphism f : V - Rn defined by X > e for all i . Thus, we

have R®V =2 R ® Rn . Next we establish that R® V = R(n) and
k RG k k RG
therefore R®V = RQR = R
k RG Xk RG
Isomorphism 3.5 R® Rn o R(n) .
k RG
Proof: By 3.4, it is sufficient to prove RQ®V = R(n) .

k RG
%
(1) Consider the exact sequence of R- modules and (R-G)-homomorphisms,

Ki—> ROV -2+ RV =R where K =ker ¢ , i is the injection map

k
n
and ¢ 1s defined as 1 ®@vi>v forall v eV, 2 T, €
1 11
n i=1
R®V . Then ¢ Z I‘1®xil) = § Tiq%gy = 1 . Define an R-
k i=1 i=1
n
homomorphism T : R+->R®V by 1 F 3 T 11 R Xeq v With G-action
k i=1

as defined in 3,1, for g € G , we have

' P216°x21 toerr Iy

((Allcof + Meof A, + eee + A cof Ann)( T,® xll)
t(hpqeof A o g ¥ Apeof Ay g ok e ool Ay (T 4 @

res + (Apgof Ay + Ajpeof Ay eer + Appcof A NIy ® )

coe + ((Anlcof Ao + A e0f A o+ <o + A coOf Ann)(rnl ®xnl)

g(l"_.L:L ® X;q ®xnl)

+

+

+

(4 c0f Ap gyt Apeof Ay 5+ e + A cof A -l,n)(rn-l,l ® x

+

cee 4+ (Anlcof Ay + Apcof A+ see + A cof A:Ln)(rll ® xnl)]

=T

+aoc+r

+ T nlnl'

®x ® X

11 21 21

n
since cofAk =0 if i #%k and 1 if i =%k, That is,
Jl
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n

Z T.. ®x,, is G-invariant. Moreover, r - —r( 3 T,
i=1 il il ‘ 521 1

1®%59) -

Thus, ¢ and n are (R-G)-homomorphisms such that ¢ o n = IR .

Therefore the above short exact sequence splits. Therefore,
R®V = K&®R .
k RG

(ii) Characterization of the elements of K . If x € R®V then
k

x -uooe(x) €K . That is, x - o(x)m(1l) € K . On the other hand, if
n

x €K ,then x= 2 r,K ®x,
il

such that o(x) =32 roX., = 0 . Then
i=1 i

il

o(x)m(1) = 0. That is, x = x - ¢(x)n(l) . Therefore, K =

{x - o(x)n(1) | x € R®V} . Let X=Dy @K, +by ®@xy +oeee t

: 1
P ®x with b. € R for all i .
n nl i
x - o(x)n(1) = bl ® X, * b,y ® Xop * o0t + br'l 2 X1
- f by (Tyy ®xpg + oee + Ty ®x )
n
= 2 (biPygx;q ®xpy =B Tp Xy ®xy = oo

i=1
(1 =Ty )%, @ %y - ver =0T X, B ) .

Coefficient of b. = -T

3 11531 ® %1 - T R R

21%1 © X1

(-7 )xil R X. But from the determinantal

il il
properties of de‘b(xij) ,

-t - T ® %
r,jlxil + erXiz + e ¢+ rjnxin =0 for

+ T, _X.
.l

X, %52

all j #i and I‘i i1

+ e + I'inx. =1 . Therefore, the

1 in

n

. . . . .
coefficient of bi can be written as jiz xij(rlj ® X0 1"2j ® X1

"'+Pnj®xn1) . Let a =r13®x11+r25 ®x21+ '-°+1"nj®xnl

for all 2=<J=nmn. aj is G-invariant for all
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n
<p(aJ) = 121 Pijxil =0, 2=<j=<n, by the property of a determinant,

Therefore, aJ €K for all j . On the other hand, if y € K , then ¥y
n

can be written as 3 b, (x
i=1

120 * Xjq0g * vt xinan) with bi €R,

l<i=n,

(n-1)

(ii1) Now define an (R-G)-homomorphism & : R -+ K as

(0y4¢4,1,0,¢4.,0) = a, where 1 1is the i-th coordinate in

i+l n-l nl)
(0,¢44,0,1,0,.4.,0) . Then (r ) — 12‘.1 a9 where (ri)i € R .

We will prove that & 1is an (R-G)-isomorphism,

If (by);)(b)), € K1) inen (by); =(bf)y=b, = b for ell i , Then

1 i

n-l1 n-1

= ! ! = ! P a
izl b1a1+l izl biai+l . That is, @((bi)) @((bi)) . Thus, ¢ is
well-defined, Let y € K, then y = z: by (x50, (I

i=1
n &

xinan) with bi € R for all i . Therefore, §1 blle —

T ( Z b, x, 1% ) proving that & is onto. If (bi)’(bj'.) € R(n-l)

2<j=n 1i=1

n
. 1 = 1 2
#((b;)) = &((b;)) then §1 by, 2 bja;,, + Thet is,
n n-1
- h! = . .

le (151 (bi bi)rj,iﬂ.) ® X4y O. But XKcR ? V which is a free
R-module generated by {1 ® x 1 | 1 = sn} . Therefore,

n-1

z (b )I' =0 forall 1< Jj=<n, Multiplylng the n equa-
1=1 Ja+l

tions successively by xJ.2 sy 1=Jj=n end adding, we get
n-l

2 ( 2 (b - b!)x ) = 0, Again by the properties of determinants
i=1 j=2 i7J2 .51 :
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- 4 = = 4 Tmi = B!
(bl bl)l 0. That is, bl bl . Similarly, bi b; »

N - = 1 1 i -1,
l<i=n-1. Thus, (bi)i (bi)i proving & is 1-1

oy is G-invariant for all i . Therefore, & is an (R-G)-
homomorphism. Thus, K = R(n"l) , Therefore, R®V = R(n) by
RG k RG
combining (i) and (ii). That is, R® R = R(n) .

x ?re
Isomorphism 3.6 If A is an R~'module then A® (R®R ) = (A ®R)
R k¥ * Re R

® R~ and therefore, A@(R@Rn) >~ AR .
k R k RG k ©

Proof: AQ®(R®R )=(A®R)®R_. The Z-homomorphism is defined by
-/ R x *z ®r x?®

ae(ror)rFs(a®r)®r for a €A, r €R and * €R . It
R x B R ¥ D n n

is sufficient to prove that this is an (R-G)-homomorphism., ILet a € R .

Then a(a ®(r®r )) =ea®(r®r ) and aa@(r®rn)l-w—+

R x R kB Rk
(ca ®r)®rn=a((a®r)®rn)=mp(a®(r®rn)) . Thus, ¢ is an
R k R Xk Rk
R-homomorphism, If g € G then go(a®(r®r ))=gaglr®r )=
n n
R k R k
ge ® (gr ®gr ) and ga ® (gr ®grn)¢+(ga ®gr) ® gr, and
R k R k R k
(e ®gr)®gr =gla®r)ogr =gl(avr)er )=glad(ror)).
R k R k R k R k

Thus, ¢ preserves G-action,

Remark 3.7 ® can be replaced by ® and we get the isomorphism
R k

A@(R@Rn)a
k k RG k k

Isomorphism 3.8 R ® R

Proof: The proof is by induction on 4 .

45




(1) 1If 4=1 then R@Rn gR(n) by 3.5.

k RG
% d-1 (nd"'l)
(ii) Induction Hypothesis: Let R®R ~ R , d>1.,
n
k RG
%d-l % d-1
In 3.6, replace A by R® R . Then |R® Rn ® (R ® Rn) &~
k k R k RG
® d-1 d-1
k % (@)
R®Rn ®Rn. By 3.7, R®Rn ®Rn’-_‘=‘R®Rn . But
k k k k RG k
® d-1
k Yy () .
(R® Rn) ® (R® Rn) ~ R ® R by induction hypothesis end
k R k RG R
d-1 : d
by 3.5. Thus, R®R§1d) > g8 ) e g®) o g2,

X RG R RG
*Remark 3.9 p: SLn > Rn is a faithful representation. Therefore
* ¥ .
k[SLn] = k[Rn + Rn] where k[Rn + Rn] is the k-algebra generated by
¥ * -
by Rn + Rn over k . Rn is the dual of Rn . Rn = <el,e2,...,en>
¥ _ * . * .
(Def. 3.3). Ry = <8,8),...,8> (dual basis). R isa G-module
* -
G-action being defined by g o en(x) = e:(g lx) for all g € G ,
X €R .
n
Lemma 3,10 If W 1s any nonzero SLn-module that is simple, then there
exist 150, 1 =<i<= anda SLn-module homomorphism
m L 54
$: ® (R_®R) -~ W that is onto.
i B

Proof: Choose ¢ € W* . For each x € W , define fX E'k[SLn] by

¥
We refer to "Representative functions on diserete groups and solyable
arithmetic subgroups" by G. D. Mostow, Ameriean Journel, 1970 for
the result. '
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fx(h) = cp(h"lx) for all h € SL, . Then amap ¢ : W -+ k[SLn] can

-

be defined by x+—f_ . Let g € SL . Then gx Ho—r i‘gx and

fx(g-lh) = <p(h—1gx) . Therefore

fgx(h) = g(h7lgx) eand g o £.(h)
o(gx) =g o o(x) ., That ¢ isan SLn-module homomorphism is verified
easily., Since (3 preserves SLn-action and W is SLn-simple, ¢ is
SLn-module injection,

Thus it is sufficient to prove the lemma for SLn-submodules of

. ¥
k[SL, n] . Since X[SL n] = k[Rn + Rn] , any SLn-submodule W -of k[SLn]

£ d
x ds
satisfies Wc 2 (Rn + Rn) 1 for some £ < = . Since SLn-modules are
i=1l

semisimple, W is a direct summand, hence, a homomorphic image of

L .4 L . 4

s (R_+R)*. That is, thereis £ : 3 (R_+ R ) *» W that is

. n n . n n

i=1 d i=1
2 f o1 L ¥ & g

onto., Then we have ® (R_® R_) s (R._+R) R A
=1 " =1 * B

This completes the proof of Lemma 3.10.

onto
—_—

femma 3.11 R ® R* = (n) implies R ®R:G1 = R(W) .
k ° RG x " RrG
* .
Proof: R = Homk( Rn,k) as k-vector spaces, Homk( Rn,k) is a G-module,

G-action being defined by g o f(x) = £( g'lx) for all f ¢ Homk( Rn,k) .
* ‘ * .
Then R, g Homk(Rn,k) . Thus R ? R Iii R «152 Homk(Rn,k) . R i Homk(Rn,k.)

* *
is a free R- module with basis 1 9 e l=i=n. R® Rn is a free
' k

*
Re module with basis 1 ® ei , 1 =1i=n. Therefore we can define
x — x
® : R gHomk( Rn,k) > };omR(R Q]: Rn,R) by 19 et 1e e; where
1®e :R®R »R is defined by 1 ®e,+>e.(e,) for 1 =j=n.
i x B J iv

This completely defines & . That & is an R-module homomorphism fol=-

lows from the fact
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n * A ‘A* ]
z ai ®e, >3 ai ®e. where 2 a, ® e. t R®R_—+> R 1is defined by
=1 i 9 i i i r B

1®e,>a, for a, €R and 1 <j=<n. If Za, e, =
J J J J 1 i

Ir; ®e; for a7, €R, 1 =1i=n, then &, =T, for all i , Then

sk He

za, ® e’ie =5y ®e . Thus & is one-to-one. Let
i i

'.)

hEHomR(R®Rn,R). Let h(1®ei)=ri,lsisn. Then
k

— ¥% ] *
Zri®ei=h. Thus & is onto. ILet g € G . Then go(l@ei)=

T

*
1®go e, go(l@ei)=l®goei where 1 ®g o ei is defined by

* %, -1 ,
= € e
1® eJ. g o ei( ej) i(g J.) . On the other hend,

P . 1
e.) .

X > -1
gole® .ei(l ® ej) =19e(l®g e.) = e(g Thus & preserves

1
G-action, Therefore R ® Homk(R k) HomR RO R s,R) . But
n
k RG k
EeR =&, let a: R®R » §B)
k & Re ( k
- n) . . .
HomR(R % Rn,R) EHomR(R ,R) and the isomorphism & : HomR(R @l; Rn,R) -
HomR(R(n),R) is defined by h > he™ for all h ¢ HomR(R ® R ,R) .
k n

let g €G, then gohtl>(g o h)oc":L where (g o h)a"l(x) =

be the isomorphism . Then

gh(g-la'lx = gha'l(g'lx) for all x € R n) , since a preserves G-
action, But g o (ha” )(J{) = gha” (g x) . That is, & preserves G-

action, Thus, HomR(R®Rn,R) %HomR(R(n),R) . But

n
R(n) Il Hom.R(R R) = d) HomR(R R) and the isomorphism is

§i= i=1

HomR(
defined as follows, Let Wy R - R(n) be the R-module injection into

the i-th coordinate for all 1 <3i=<n , Then if h ¢ HomR( R(n) sR)
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n
hi— & ho Ky under the above isomorphism., ILet g € G, then
i=1

n n
(n)
gohr— & (goh)op, =g( ® hoyp;). Ths, HomF(R ,R) =
i=1 + i=1 * RG

n
ifl HomR(R,R) 5 HomR(R,R) :R and the isomorphism X\ : HomR(‘R,R) -+ R

ig defined by f—f(1) . If g €G, then go fi>(go £)1) =
f(g-ll) = £f(1) . On the other hand, g o (f(1)) = £(1) since
f(1) € x ., That is, \ preserves G-action, Therefore,

HomR(R,R) ~ R, Thus, R ® R* = R(n) . This completes the proof of
RG k ™ ReG

Lemma 3,11,

* *
Proposition- 3,12 Every nonzero simple R- module is (R-G)-isomorphic

to R.
Proof: Let M be a nonzero *simple R-*module. If m€M and m# 0,
then let V_ = <gm | g € G> ., Since G is linearly reductive,

Vm =& Vi where each Vi is G~simple, Since M is *simple, M= RVi
i
for each i , We choose one such Vi and let Vi =V . Then, M= RV

where V is a simple G-submodule of M, Themap u : R® V- RV
k

defined by r ® v+ rv where r € R, v € V is an (R-G)~homomorphism

that is onto, R®V is a finitely generated R-*module. Therefore by
X

~ Cor, 2,201, R®V = RV + ker u . V 1is a simple G-module, By Lemma
k RG
3,10, there is a G-module homomorphism ¢ : & (Rn ® Rn) -V
i=1
®d

i1} *k i 19
with m<e ,d, <=, Then R®}| ® (R_®R) ==L, RV
+ k=1 & 0B X
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® d-1

m
x k
is an (R-G)-homomorphism that is onto. R ® | 2 (Rn @ Rn) is a
k {i=1

*
finitely generated R~ module. Therefore, by Cor. 2.20.1 again,

®d,
m xk 1
R® | 3 (RneRn) > ker(l ® o) ®R®V . But
k |i=1 RG k
®d ®d
) %)k (n%)
R®R ~ R and (R ® Rn) ~ R . Therefore, by Prop.
k ® Re k RG
(my)
2.22, R®V =R for some oy > O . The same proposition applied
k RG
to the (R-G)-isomorphism R ® V = RV @ ker p gives RV = R(p) for
kX RG RG
¥
some p>0, But RV=M and M is simple., Therefore, M == R .

RG
This completes the proof of Proposition 3.12.

*
Corollary 3.12.1 Every nonzero R- module M is (R-G)-isomorphic to
(n) (%)

either R , D<o, o0r R .

* ¥
Proof: By Prop. 2.21, M is the direct sum of simple R-sub modules

of M . Therefore, by Prop. 3.12, M = B®) ncw  or u =z &%),
RG RG

This completes the proof of Cor. 3.12.1.
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