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EVALUATION OF RISKY, INTERTEMPORAL
IMPERFECTLY CORRELATED CASH FLOWS

CHAPTER I

INTRODUCTION

Capital-budgeting is a subset of financial management that is
concerned with the evaluation of long-term investment choices. In
general, capital-budgeting analysis is concerned with the development
of decision rules to select, evaluate, or rank real asset opportunities
on the basis of expected return and risk. These decisions receive con-
siderable managerial attention because the investment opportunities re-
quire a large commitment of resources, the effects of the decision ex-

tend well into the future, and the decisions are difficult to reverse.

Problem Identification

The objective of this study is the development of a capital-
budgeting model that explicitly considers the impact of intertemporally
correlated cash flows. Traditional capital-budgeting risk analysis
often assumes intertemporal independence or utilizes a single-period
market model. An important assumption of this study is that intertem-

poral correlations contribute to the total risk of a capital-budgeting




project. Therefore, risk analysis techniques that assume intertemporal
independence may understate the total risk of a project. Failure to
consider all aspects of risk may lead to incorrect selection and ranking

decisions that adversely affect the value of the firm.

Qverview of Solution Methodology

Chapter II, Review of Related Literature, provides a compre-
hensive review of existing methods of risk analysis. Two broad classes
of solution techniques are presented: variations of present value
analysis and portfolio or market models. Within these classes there
exist many different approaches to risk analysis. Dissatisfaction with
the existing methods of risk analysis, when the cash flows are inter-
temporally correlated, motivated this research to identify a capital-
budgeting model that explicitly considers these interrelationships.

Chapters III and IV develop and evaluate a multivariate capi-
tal-budgeting model. The multivariate approach was selected to accom-
modate autocorrelated cash flows. Multivariate statistical methods
have been developed to simultaneously analyze dependence structures.
Capital-budgeting analysis requires a modification to traditional mul-
tivariate procedures to accommodate differences in the timing of the
cash flows. The element of time is accommodated by transforming the
cash flow distribution to present time.

The assumption of normality is crucial to the development of
this multivariate capital-budgeting model. With multivariate normally
distributed cash flows, analysis of capital-budgeting return and risk

reduces to the evaluation of a mean vector and a variance-covariance

matrix.




The expected net present value is a widely accepted measure of
return. The expected mean cash flows are discounted at the risk-free
rate to accommodate differences in timing.

Risk is defined as the variability of the future cash flow
stream. With such a general definition, there is considerable contro-
versy as to the most appropriate risk measure. In the case of the uni-
variate normal distribution, the variance and the standard deviation

can be shown to have desirable statistical properties. With the assump-

tion of a multivariate normal distribution, the variance-covariance
matrix is the multivariate extension of the univariate variance. The
variance-covariance matrix identifies the total variation about the
centroid of the multivariate normal distribution.

Multivariate distributions may be evaluated geometrically us-
ing isodensity ellipsoids. This geometric representation lends con-
siderable insight to the interrelationships depicted by the variance-
covariance matrix. Capital-budgeting problems often require ranking
of alternative investment opportunities in terms of return and risk.

The variance-covariance matrix depicts total variability; however,
there is considerable difficulty comparing matrices. Because of these
difficulties, scalar representations of the variance-covariance struc-
ture are needed.

The remainder of this study will develop and evaluate three scalar
multivariate risk measures: 1. variance of the net present value distri-
bution; 2. volume of the isovariance ellipsoid; and 3. generalized variance
which is the determinant of the variance-covariance matrix. Each meas-

ure will be developed algebraically and geometrically. Statistical




properties, capabilities, and limitations of each measure will be

evaluated. Finally, the scalar measures will be compared to identify

the preferred scalar multivariate risk measure.

Limiting Assumptions

Throughout the study many assumptions will be made to facili-

tate the development of the multivariate capital-budgeting model. The

most important assumptions are

1.

10,

Asset-by-asset selection methods are appropriate for select-
ing and ranking capital-budgeting projects.

Intertemporal correlation contributes significantly to total
risk.

Timing of the cash flow stream must be accommodated.

Decision makers value real assets in terms of two-parameters,
return and risk.

Multivariate normal distribution is an appropriate model of
capital-budgeting cash flows.

Risk-free rate(s) for future periods is (are) known.

Project useful 1ife is known.

Decision makers are capable of estimating either the probabil-
ity distribution of future cash flows or the relevant moments
of the probability distribution.

Intertemporal correlations vary from independence to perfect
positive. correlation.

Alternative capital-budgeting projects are significantly dif-
ferent and can be meaningfully ordered.




CHAPTER II

REVIEW OF RELATED LITERATURE

Introduction

The theory of asset selection under conditions of perfect cer-
tainty has been well developed and readily accepted by the finance com-
munity.l The essential assumptions of the certainty models are: 1.. per-
fect capital markets; 2. complete and certain knowledge about investment
outcomes; 3. independence of alternatives; and 4. indivisible investment
projects. The above assumptions describe an ideal situation; useful for
academic study, but usually quite different from the "real world".

An approach to studying more difficult or more complicated sit-
uations is to start with the most simple case, then relax the simplify~
ing assumptions to develop a more realistic model. Under conditions of
perfect certainty, the theoretically acceptable approach to capital bud-
geting analysis is the use of discounted cash flow methods (DCF). Given
the future cash flows associated with acceptance of a project, the pres-

ent value of these cash flows are computed and the present value of the

lHaley, C. W. and Schall, L. D. (1973) The Theory of Finan-
cial Decisions. New York: McGraw-Hill, Inc. Chapters 2 and 3, pp. 15-
72. In the second edition (1979) a discussion of asset selection with
perfect certainty will also be found in Chapters 2 and 3.

5




benefits are compared to the present value of the cost. The appropriate
decision rule then is to accept all projects that have a positive net
present value or accept if the present value of the benefits is greater
than or equal to the present value of the cost. See Robichek and Myers?
and Haley and Schall3 for a detailed discussion of financial decision
making with perfect markets and certainty.

The objective of discounting is to account for the differences
in the timing of the cash flows. The appropriate discount rate is the
opportunity cost of funds (a premium for waiting, or Time Value of
Money). The DCF analysis transforms the future cash flows into their
present time equivalent. As long as the assumptions of perfect certain-
ty are met, decisions using the DCF rule will result in either maintain-
ing or increasing the value of the fim; with the amount of increase in
value equal to the net present value of the project.

Relaxing the strong assumptions of perfect certainty results in
the need for more sophisticated capital budgeting approaches. The most
commonly analyzed departure from perfect certainty is the uncertainty
associated with the future benefits and costs. Therefore, these future
cash flows must be estimated and evaluated.

A broad class of analytical techniques have been developed to
study the capital budgeting decision. In general, these solution meth-

ods focus on two aspects of the decision - an analysis of the return to

ZRobichek, A. A. and Myers, S. C. (1965) optimal Fimancing
Decisions. Englewood Cliffs, New Jersey: Prentice-Hall. pp. 9-16.

3Haley and Schall (1973) Chapters 2 and 3.




the owners and the risk or uncertainty in that return. Here risk is de-
fined as the variability of the future cash flows. The remainder of
Chapter II will systematically review models that incorporate risk and

return in financial decision making.

Probabilistic Models

Academics and business practitioners have long recognized that
the risk associated with capital expenditures is a significant dimension
of financial management. The financeliterature for the past twenty
years has been dominanted by models and/or procedures that explicitly
study the impact of risk under varying assumptions. The goals of these
studies have been twofold: 1. to rigorously study the impact of risk
on decision making, and 2. to develop techniques that can easily be
used in the field.

Hillier* developed a probabilistic approach to the capital bud-
geting problem. Recognizing the random nature of future cash flows, he
developed the Probability Distribution of Net Present Value. More
specifically, he assumed that the periodic cash flows are normally dis-
tributed. Relying on the Central Limit Theorem, he argued that the cash
flows, as sums of random variables would be distributed normal or nearly
normal.

Given the assumptions about the cash flows, the expected pres-

ent worth may be defined as:

“Hillier, F. S. (1963) "The Derivation of Probabilistic
Information for the Evaluation of Risky Investments," Management Sci-
ences. Vol. 9: pp. 443-457.




E(PV) = p = 0 | —3 1
(PV) = uy L )] (1)

where M is the mean cash flow during the jth year and i is the rate of
interest which properly reflects the decision makers time value of mon-

ey. Using a decision rule based on return alone, if u_ > 0, the invest-

P
ment should be made since this choice would increase the expected total
wealth of the firm given that i represents the opportunity rate of re-
turn,

Extending his work to explicitly consider risk, Hillier studied
three cases: 1. intertemporally independent cash flows, 2. perfectly
correlated cash flows, and 3. a combination of 1. and 2. with some cash
flows independent and others perfectly correlated. These special cases

result in different values for the standard deviation of the cash flows.

The standard deviation for the independent case is

2 3
n o<
3
o =| I ——= , (2)
Pole0 (1)A

while the standard deviation of the perfectly correlated case is

n g.
g =1 ¢ L . (3)
Plj=0  (1+i)

Given fixed values of cj, cp

cash flows and largest for perfect positive correlation. The third

is smallest in the case of independent




case, the combination case, results in a measure of risk somewhere be-
tween independence and perfect correlation.

Wagle> extended Hillier's analysis by including cases where
the cash flows are less than perfectly positive correlated. Wagle then
discounted these variances and covariances to arrive at a measure of
risk,

0,2 n Tr
0'p2 = I "-—t—z— +2 ¢ _EL%+_1;" . (4)
t=0 (1+1)%%  tEt' (14+)
For a three period project, the variance of the net present value can

be written explicitly as

012 G52 g.2

G2 = - 4 3 -+ (Variance terms)
P+i)® (1#)" (1#1)
(5)
012 013 923 .
+ 2 + + -(Covariance terms)

(1+4)3 ()% (149)5

To derive the discounted risk measure, the variance terms are discounted
by a factor of 2t and the covariance terms are discounted by the sum of
the exponents that reflect the time periods.

With autocorrelated cash flows, the above discounting procedure
assumes that variance and covariance terms can be combined in an addi-

tive manner and result in a meaningful measure of total risk.

SWagle, B. (1967) "A Statistical Analysis of Risk in Capital

Investment Projects," Operational Research Quarterly. Vol. 18: pp.
13-33.
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Hillier, in a later paper® and a monograph’, extended his
earlier analysis to include interrelated projects. Here, he analyzed
both the riskiness of individual projects and the effects on risk of
relationships between projects (portfolios of real assets). The sig-
nificance of this approach is the continued expansion of the probabilis-
tic analysis that was developed in his earlier work. Hillier's® mono-
graph téeats the full range of the real asset selection problem - from
the cash flow estimates to combining assets into firms. Much of this
work is an extension of Weingartner's® classic capital budgeting work
that employed linear and integer programming, dynamic programming and
discrete optimization models to address the problem of interrelation-

ships between projects.

Popular Risk Adjustment Techniques

Risk Adjusted Discount Rates
Using present value models with uncertain cash flows, one needs
to account for both the time value of money and for risk. Two of the
most popular approaches that incorporate both time and risk are the

Risk Adjusted Discount Rate (RAD) and Certainty Equivalence (CE). Both

SHillier, F. S. (1971) "A Basic Model for Capital Budgeting
of Risky Interrelated Projects," Engineering Economist. Vol. 17:
pp. 1-30.

7Hillier, F. S. (1969) 7The Evaluation of Risky Interrelated
Investments. Amsterdam: North-Holland Pub. Co.

81bid.
*Weingartner, H. M. (1963) Mathematical Programming and the

Analysis of Capital Budgeting Problems. Englewood Cliffs, New Jersey:
Prentice-Hall.
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methods are conceptually simple and find significant practitioner sup-
port.1® The foundations of the RAD approach to risk analysis can be
traced to the pioneer stock valuation models of Williams!!, GordonlZ,
and Solomoni3,

The valuation models of Gordon, for example, capitalize future
earnings and/or dividends to arrive at an equilibrium price for the

stock. In the simplest case, current price is

(1-b)Y, 1%
_ 0
Po = &emp (6)
where
Yt = income per share during period t;
Pt = price of a share at end of period t;
b = fraction of income retained in every future period;

k = stockholders' required rate of return;
r = return on investment the firm es expected to earn in
every future period.
Using the Gordon model, one can determine a risk-adjusted dis-
count rate for use in capital budgeting by solving for k in equation 6

above, where

10Klammer, T. (1972) "Empirical Evidence of the Adoption of
Sophisticated Capital Budgeting Techniques," Journal of Business. Vol.
45: pp. 387-397.

HlWilliams, J. B. (1938) The Theory of Investment Value.
Cambridge, Mass.: Harvard University Press.

12Gordon, M. J. (1962) The Investment, Financing, and Valuation
of the Corporation. Homewood, I11.: Richard D. Erwin.

13SoTomon, E. (1963) The Theory of Financial Management. New
York: Columbia University Press.

l4Gordon, M. J. (1962) pp. 44-45.
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(1-b)Y,
k = P + rb. (7)

The value k is the often discussed cost of capital for the firm. Then

the present value of a stream of uncertain returns can be expressed as

PV = 5 —t (8)

where'ﬁf the expected value of the return to be received at time t,

and k

required rate of return appropriate for the risky stream

Ris Roy « v

Essentially, k is a rate of return that reflects both the time value of
money and an adjustment for risk. Using the RAD approach, the risk ad-
justment factor and the time value of money factor are combined to form
the discount rate used in the presenf value computation. RAD approach

adjusts for risk by varying the discount rate.

As a simple technique to consider risk in capital budgeting
analysis, the risk adjusted rate approach is intuitively appealing. A
very logical approach is to apply higher discount rates to the more
risky projects and lower discount rates to less risky projects. In ad-
dition, the theoretical background of stock valuation models provides a
plausible linkage between the investment or capital budgeting decision
and the goal of increasing stockholder welfare.

Several authorslS have criticized this approach on both theo-

retical and practical grounds. First, as time and risk are essentially

15Robichek and Myers (1965) pp. 79-86 and Osteryoung, J. (1979)
Capital Budgeting: Long Term Asset Selection, 2nd ed. Columbus: Grid,
Inc. pp. 102-105.
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separate variables, combining their effects into one number, a risk ad-
justed rate or cost of capital, assumes that uncertainty increases
through time or that uncertainty is expected to be resolved at a con-
stant rate over time.l® When this assumption is not satisfied, the RAD
approach incorrectly evaluates future opportunities. One can overcome
this objection by using different rates for each period and recognizing
the fact that there is some single rate that is equivalent to the series
of rates,

n

k = . (1+k
t=1

t)‘

This remedy, however, leads to the second significant objection. View-
ing equation 7, the risk adjusted rate, k, is equal to the sum of the
dividend yield and a constant growth rate. Using this valuation model
does not give any clues to the appropriate kt to be evaluated. This
model says nothing about how a practitioner might determine the cor-
rect risk adjustment factor. The third objection is that the RAD ad-
Jjusts the wrong element in the present value computation. The RAD ad-
justs the discount rate and does not adjust for the variability of the
cash flow. One normally associates risk with the variability of the
future cash flows not the uncertainty of the discount rate. Uncertain
risk-free rates add another dimension to the risk analysis problem.
Finally, RAD is not an "efficient" estimator of risk because it does not

use all the available information from the probability distribution of

the projects' cash flows.

16Robichek and Myers (1965) p. 84.
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Certainty Equivalence

Certainty Equivalence (CE) is an approach to risk analysis that
overcomes some of the objections to the risk adjusted rate. The CE ap-
proach separates time and risk in the present value framework. Robichek
and Myers!7 argue that whatever the risk of an expected cash flow, E?£,
there is some certain equivalent, s where ngtgl, such that the risk-
averse decision maker is indifferent between CFt énd a cash flow CFt* =
“fﬁﬁf which is certain to be paid. If the gecision makers utility
function in year t is known, the certainty equivalence can easily be
determined.

More explicitly, one can define CEt = &, as the ratio CFt*/Efi.

The present value of an uncertain stream of cash flows using RAD ap-

proach is ___
© Ft
PV = £ T (9)
t=1 (1+k)
where E?£ = expected value of the cash flow to be received at time t;
k = risk adjusted discount rate.

Using a certainty equivalent approach, the present value of a stream of

future cash flows is

(10)

where ay = certainty equivalent, CFt*/Eﬁk

i = riskless rate of interest that reflects only the time value

of money.

17Robichek and Myers (1965) p. 84.
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For both equations (9) and (10) to assign identical values

to each period's cash flows, then

CF.* TF
t t

= . 11

(1+i)F (k) ® (1)

If @ = 1, then the certainty equivalent for any period t can be ex-

pressed as:
1+1)¢

= 12
) 12)

Using equation (12), and assuming it is constant for all t, the impact
of the RAD approach is obvious when one analyzes expected future cash
flows E?E and 5?£+1, which are equal and are considered equally risky;

i.e., Gp = Oy For period t+l,

e B (e b

t+1 ~ (1+k)t+1 - (1+k)t(1+k)

(13)

a

Since Ap = Cpypes the only way Equations (12) and (13) will be equal is
if (1+k)

(1+i). This result is contradictory because k is a risk
adjusted rate, therefore k is supposed to be greater than i to compen-
sate for the additional riskiness of E?i and EF}+1. The only way the
RAD approach will be consistent with CE approach is to define separate
risk adjusted rates kt for each future period. But this means that kt
cannot be identical even if the expected cash flows to which they apply

are considered equally risky. Also, if k1 = k2 = kt+1' then the ex-

pected cash flows in period t cannot be equally risky.
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Although the CE approach satisfies the objection of not com-
bining time and risk elements in one number, this approach still has
some major deficiencies. CE models require the assumption of inter-
termporally independent cash flows.!® This restriction is quite severe
when the actual cash flows are intertemporally, imperfectly correlated.
Also, the utility functions used to develop the ;; values must be inde-
pendent of the cash flows in prior periods. Once again, the CE 1ike
the RAD only uses part of the information available from the probability

distribution of a project's cash flow.!®

Coefficient of Variation

The coefficient of variation (CV), defined as the ratio of the
standard deviation (o) to the expected value (EV), °/EV.2° CV is an in-
tuitively appealing statistic that brings together both risk and return
into a single measure. In capital-budgeting applications, the CV may be
interpreted as the risk per dollar of return. As such, the CV is a
pure number independent of project size; and is useful as a measure of
relative risk.

The CV is particularly useful in comparing capital budgeting
projects that have considerably different absolute magnitudes of expect-

ed-value and standard deviation.2! 1In the above case, CV is preferred

18Haley and Schall (1973) p. 185.
190steryoung (1979) pp. 103-105.

20Gibbons, J. D., Olken, I., and Sobel, M. (1977) selecting
and Ordering Populations: A New Statistical Methodology. New York:
John Wiley and Sons. p. 89.

2lgordon, M. J. (1962) pp. 68-69 and Van Horne, J. C. (1977)
Financial Management and Policy, 4th ed. Englewood Cl1iffs, New Jersey:
Prentice-Hall. p. 118.
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to the use of ¢ as a risk measure because o is highly sensitive to the
scale of the probability distribution of the cash flows, whereas CV is
a pure number that measures relative risk. .

A deficiency of the CV approach to risk analysis is that there
is no clear-cut decision rule for project acceptance in terms of the
value of the firm. Osteryoung, Scott and Roberts?2 in a recent article
propose a modified coefficient of variation (MCVAR) that incorporates
the market price of risk concept frbm the capital asset pricing model
(CAPM). Assuming that the CAPM is relevant for real asset selection,
they define MCVAR as the ratio of the standard deviation of return of
the project to the expected risk premium for the asset as determined by

the security market line

1 9
MCVAR = M“’i,m giGn]

Using MCVAR, they established decision rules for project acceptance
overcoming the lack of a decision rule criticism of CV.

The use and acceptance of MCVAR is dependent upon the accept-
ance of the capital asset pricing model in capital budgeting probiems.
Portfolio theory and the CAPM will be evaluated in the context of capi-

tal budgeting in a later section of this paper.

22Qsteryoung, J. S., Scott, E., and Roberts, G. S. (1977)
"Selecting Capital Projects with the Coefficient of Variation,"
Financial Management. Vol. 6: pp. 65-70.
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Portfolio Theory and Capital Asset Pricing Model

In an attempt to develop a normative theory of asset selection
under uncertainty, much of the theoretical study in finance has focused
on the behavior of security prices and the capital markets. The port-
folio or "market model" approach to valuation has dominated the 1itera-
ture for nearly twenty-five years. This approach has also been ex-
tended to the valuation of real assets. A brief review of modern port-

folio theory and its implications for capital budgeting will follow.

Portfolio Theory
The origins of modern portfolio theory can be traced to the
classic works of Markowitz23 and Tobin.2* From these seeds, the Capital
Asset Pricing Model was developed by Sharpe,25 Lintner,26 and Mossin.27
Empirical testing, additional development, and refinements of market
models has been at the forefront of research in finance. Because of

the vast Titerature, after a brief review of these early works cited

23Markowitz, H. M. (1952) "Portfolio Selection," Journal of
Finance. Vol. 7: pp. 77-91.

24Tobin, J. (1958) “Liquidity Preference as Behavior Towards
Risk," Review of Economic Studies. Vol. 26: pp. 65-86.

25Sharpe, W. F. (1963) "A Simplified Model for Portfolio
Analysis," Management Science. Vol. 9: pp. 272-293; and (1964) "Capi-
tal Asset Prices: A Theory of Market Equilibrium," Journal of Finance.
Vol. 19: pp. 425-442.

26| intner, J. (1965) "The Valuation of Risk Assets and the
Selection of Risky Investments in Stock Portfolios and Capital Budgets,"
Review of Economics and Statistics. Vol. 47: pp. 13-37; and (1965)
"Security Prices, Risk and Maximal Gains from Diversification," Journal
of Finance. Vol. 20: pp. 587-615.

27Mossin, J. (1966) "Equilibrium in a Capital Assets Market,"
Econometrica. Vol. 34: pp. 768-783.
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above, the remainder of this section will focus on the implication for
capital budgeting.

Observing that investors recognize the importance of diversifi-
cation, Markowitz2® developed a model of portfolio selection based on
the rule that investors consider increased expected returns desirable
and increased variability of returns as undesirable. His famous mean-
variance model is based on four basic assumptions:

1. A1l investors maximize one-period expected utility and exhibit
diminishing marginal utility of wealth.

2. Investors' risk estimates are proportional to the variability
of the expected returns.

3. Investors are willing to base their decisions solely in terms
of expected return and risk. That is, utility (U) is a function
of variability of return (¢) and expected return [E(r)]. Sym-
bolically, U = flo,E(r)].

4. For any given level of risk, investors prefer higher returns to
Tower returns. Symbolically, aU/3E(r) > 0. Conversely, for any
given level of return, investors prefer less risk to more risk.
Symbolically, aU/ac < 0.29

Given the above assumptions, the mean-variance portfolio prob-

lem can be formulated as

E = .g Xiusg (14)
i=1
n n
v =1§1 jilcijxixj (15)
where: E = expected return of the portfolio
X. = percentage of the investor's assets which are allocated to

i

28Markowitz, H. M. (1952) pp. 77-91.

2%0r a lucid description of the assumptions underlying modern
portfolio theory, see Francis, J. C. and Archer, S. H. (1979) portfolio
Analysis. 2nd ed. Englewood Cliffs: Prentice Hall.
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the ith security

expected return of the ith security

=
]

)
t

variance of the return of the portfolio

covariance between the returns of security i and

Q
i

iJ
security j (thus o;; 1s the variance of return of
security i).
Two additional conditions are imposed on the model. One that all funds

are invested; symbolically,

1X1 = 1.

ne-

;
The second which disallows short sales; symbolicai]y, X; > 0.

Markowitz3% j1lustrated geometrically the solution of the port-
folio problem for the three and four asset cases. Using isomean 1lines
and isovariance curves, he derived the set of efficient portfolios in
E,V space. In a later monograph, Markowitz3! described the derivation
of the efficient set using classical optimization and mathematical pro-
gramming techniques.32

Responsing to classical criticisms of the Keynsian liquidity
preference schedule, an inverse relationship between the demand for cash
balances and the rate of interest, Tobin33 developed a rational explana-

tion of liquidity preference based on the ideas of uncertainty, risk

30Markowitz, H. M. (1952) pp. 77-91.

31Markowitz, H. M. (1959) portfolio Selection: Efficient Diver-
sification of Investments. New York: John Wiley & Sons.

32For a detailed mathematical solution of the Markowitz vari-
ance-covariance portfolio selection problem, see Francis and Archer
(1979) Chapters 5 and 6.

33Tobin, J. (1958) pp. 65-86.
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aversion, and investor diversification. Given idealized uncertainty and
a two-asset world, cash and consols, he also developed the mean-variance
portfolio model. Although more concerned with the implications for eco-
nomic theory, Tobin's contribution to modern portfolio theory is his
original development of the portfolio separation theorem. Assuming a
riskless asset, cash, with an expected return of zero and a single risky
asset (or portfélio), consols, then an opportunity locus is defined
which desqribes feasible Tinear combinations of riskless and risky as-
sets. This opportunity locus is independent or separate from the indi-
vidual's attitudes toward risk. For the investment portfolio problem,
the separation theorem is critical to the development of an equilibrium
capital market theory.3"

Sharpe3S extended Markowitz's work in determining the efficient
set of portfolios by introducing a simplified or diagonal model that
greatly reduces computational difficulty.38 Sharpe's diagonal model is
described by

. the assumption that the returns of various securities are re-
lated only through cormon relationships with some basic underlying

factor. The return from any security is determined solely by ran-
dom factors and this single outside element; more explicitly:

34For additional discussion of the importance of Tobin's separ-
ation theorem to the development of equilibrium capital market theory,
see Haley & Schall (1973), pp. 125-127 and Francis and Archer (1979),
pp. 152-153.

35Sharpe, W. F. (1963) pp. 277-293.

36Francis and Archer (1979) p. 127 - When using the full co-
variance portfolio analysis technique, (N2-N)/2=4950, covariances must
be estimated if 100 securities are considered. Using Sharpe's model
only 100 regression coefficients must be estimated.
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Ry = Aj+B,I+C, (16)

where: A, and B, are regression parameters for the it fivm

Ri is the return for the ith security

I is the return on some market index
C is a random error term.37:38

Using the convenient notation that the index is treated as the n+l secur-
ity where An+1 is the expected value of I and Qn+1 is the variance about
the expected value, the Markowitz model can be specified using the
Sharpe formulation.

Sharpe showed that the mean-variance index model can be formu-

lated as:
n+l
E = .zlxiAi (17)
i=
~+l o,
LRSI (18)
‘l:

The major significance of this formulation and the reason for its name
as the diagonal model relates to the specification of the variance-co-
variance matrix. Whereas the Markowitz formulation results inan x n
matrix with all non-zero elements, the Sharpe formulation results in a
ntl x n+l diagonal matrix with all off-diagonal elements equal to zero.
The diagonal matrix is much easier to invert, matrix inversion being

the principal computational bottleneck in the various solution tech-

niques.

37Sharpe, W. F. (1963) p. 281.

38For a formal statement of the linear regression model with
an unspecified distribution of error terms, see Neter, J. and Wasserman,
W. (1974) applied Linear Statistical Models. Homewood, I11: Irwin.
pp. 30-31.
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Sharpe compared the index model with the full Markowitz
model obtaining the following results.  First, Sharpe's model is
extremely economical in terms of computer time and storage space re-
quirements. Second, he found that the efficient portfolios, while some-
what different, are very much alike. Subsequent tests have confirmed

Sharpe's results.

Capital Market Theory

With the development of the two-parameter, mean-variance port-
folio models, research interest shifted to the stock market implications
of actual use of such models. This study of market behavior has ac-
quired the familiar name - Capital Market Theory (CMT). The foundations
of the Capital Market Theory can be traced to the capital asset pricing
models of Sharpe,3? Lintner,*0 and Mossin.“*! Essentially, each author
believed that he had developed the more general formulation of capital
market equilibrium using mean-variance analysis. Fama,“2? however, showed
the similarity of the models and demonstrated that one model can be de-
rived directly from another. Many other authors have contributed to the
continued development and empirical testing of what is conveniently
called the capital asset.pricing model. Becausé the subject of this

study is capital-budgeting, not Capital Market Theory, only a brief

39Sharpe, W. F. (1964) pp. 425-442.
40 intner, J. (1965) pp. 587-615.
“1Mossin, J. (1966) pp. 768-783.

“2Fama, E. F. (1968) "Risk, Return, and Equilibrium: Some
Clarifying Comments," Journal of Finance. Vol. 23: pp. 29-40.
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overview of the theory will be presented with greater emphasis on
the implications of CMT for capital budgeting.

A convenient starting point in the discussion of Capital Mar-
ket Theory is a review of the assumptions of the model. Because CMT is a
logical extension of portfolio theory, CMT assumes that all investors
are "Markowitz-efficient investors."*3 Additional assumptions are:

1. Money can be borrowed and lent at a risk-free rate of interest.
The return on short-term U.S. government securities is a suitable
proxy for this rate.

2. A1l investors visualize identical probability distributions for
future rates of return, idealized uncertainty or homogeneous ex-
pectations.

A1l investors have the same one-period investment horizon.

A1l investments are infinitely divisible.

There are no taxes or transactions costs.

A1l changes in the level of interest rates are fully anticipated.

~N oy o bW
. - - . -

The capital markets are in equilibrium.""

Much of the discussion as to the validity of the CAPM centers around the

implications of these assumptions and the effects of relaxing the as-

sumptions on investor decisions and capital budgeting applications.
Given the assumptions or Markowitz-efficient investors with

homogeneous expectations, all investors will envision identical oppor-

tunity sets that can be illustrated as in Figure 1. Figure 1 represents

the mean-standard deviation "Efficient Frontier." Points on the

“3Markowitz, H. M. (1952) pp. 77-91 and Francis & Archer
(1979) p. 148.

“%The above assumptions used to develop the Mean-Variance Capi-
tal Market Theory are conveniently organized in Francis & Archer (1979)
pp. 148-149. In the original papers of Sharpe, Lintner et al., there
is considerable discussion of the role of simplifying assumptions in
economic theory in general and more specifically the importance of these
assumptions in the development of what is called Capital Market Theory.
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efficient frontier (EF) dominate all interior combinations of risk

and return; while points above and to the left are not feasible.

Figure 1: Mean standard deviation
Efficient frentier -

Applying assumption 1, borrowing and lending at a fisk-free

rate, the Capital Market Line, CML, follows. See Figure 2 below.

Figure 2: C(Capital Market Line
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The point of tangency of the CML with the efficient frontier is the mar-
ket portfolio, M. Assuming the market is in equilibrium (assumption 7),
all securities must be held. Analyzing their feasible opportunities,
investors recognize that choices along the CML (Combinations of Rf and
M) dominate all portfolios along the efficient frontier with the excep-
tion of portfolio M. Therefore, all investors will want to invest in M;
and it follows that M must, in equilibrium, be a portfolio containing
all securities, i.e., the market.

The CML is linear in E, o space and can be readily derived
algebraically. Let x represent the percentage of resources invested
in the market portfolio, M; then (1-x) is the amount invested in the
risk-free asset. Let E(Rm), E(Rp) respectively represent the expected
returns on the market and the expected return of the investor's port-
folio. Similarly, et 9 be the standard deviation of the return on
the market portfolio. The expected return on the investor's portfolio
is given by

E(Rp)

(l-x)Rf + XE(Rm) (19)

Re *+ XIE(R_)-Re1. (20)

With the assumption of a risk-free security, the standard deviation of

the investor's portfolio is given by

c(Rp) = X0 (21)

Solving Equations (20) and (21), the CML can be written as

E(R ) - R
ER)) = Re + | —— o(R ), (22)
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which is linear in E,o space. The CML can be viewed as the indifference
line between risk and return. With this interpretation, the risk-free
asset, Rf, is the certainty equivalent of all risky assets that lie
along the CML. The slope coefficient,

E(Rm) - R¢

ag
m

» 1s then viewed as the market price of risk.

Tobin's“> Separation Theorem can readily be interpreted in
terms of the capital market line. Since all investors will seek to be
on the CML, they will all purchase portfolio M. Based on personal risk-
return preferences, investors will either borrow at Rf to move along the
CML above M, or lend at Rf to achieve some combination between Rf and M.
These choices essentially separate the investment decision into two
parts. First, the identification of portfolio M; and second, an appro-
priate financing decision to achieve the desired risk-return preference.

Analysis of investment decisions using the CML only relates to
portfolios. Individual securities will be located within the efficient
set, not on the frontier; therefore, in equilibrium only portfolios can
be located on the CML.

To analyze individual securities, Sharpe“® used his single in-
dex model to develop equilibrium conditions for individual assets. The
single-index model readily shows the decomposition of total risk into

risks associated with the market (called systematic risk) and risk that

%5Tobin, J. (1958) pp. 65-86.
“6Sharpe, W. F. (1963) pp. 272-293.
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is unique to the firm (called unsystematic or residual risk). Sharpe's

diagonal model is
Ry = A;+B,14C (23)

where Ai and Bi are regression parameters for the ith firm;

Ri is the return on the ith

security;
[ is the return on some market index often represented as Rm;
C is random error term.“7
Using least-squares regression, the error term C has an expected value
of zero, constant variance, and is independent of other error terms,
i.e., COV (Ct’ Ct+r) = 0. The variance of R, = variance of (Ai+BiI+C)
can be shown to result from two sources.

Var(Ri) = VAR(Bil)+Var(C) or (24)

Total Risk = Systematic Risk + Unsystematic Risk

In the regression model, the sign and magnitude of the slope coefficient
depends on the correlation between the returns of the firm and the mar-
ket index. If the returns are perfectly positively correlated, i.e.,

a one-to-one positive relationship, then Bi =1land C = 0. This case
describes the condition where total risk = systematic risk. If there

is no relationship between returns of the firm and the market, then Bi

= 0 and C will be large. This case describes the condition where total
risk = unsystematic risk. Since most firms' returns are affected by

the general movement of the economy, the returns for firms will general-

ly show a positive relationship to the market, with Bi and C > 0. The

“7Sharpe, W. F. (1963) pp. 272-293.
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Bi coefficient is an index of systematic risk or a measure of the vola-
tility of the firm's return as compared to the market. When there is
less than perfect correlation, C measures the vertical deviation of the
returns from the regression line. The sum of the squared error terms
(deviations) is a measure of unsystematic risk and is that portion of
total risk that can be reduced or eliminated through diversification.

In equilibrium, only portfolios will 1ie on the CML. Since
the CML measures the risk-return trade-off in terms of systematic risk
only, and individual assets contain unsystematic risk, individual as-
sets must be more risky than points on the CML.

The previous discussion explained the CML, the linear trade-
off between risk and return of portfolios. Sharpe“8 derived the rela-
tionship for individual securities, the security market line (SML), in
terms of the slope coefficient of his single-index model. The security
market line in terms of beta is shown in figure 3,

E(R,)

SMLg

Figure 3: Security Market Line (B)

“8Sharpe, W. F. (1964) pp. 425-442.
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and the equation for the SML is

The SML shows that the expected return on the ith

security is equal to
the risk-free rate plus the product of B; times the risk premium of
the market. Where 8, measures the correlation of returns of asset i
and the market, or is an index of the degree of systematic risk. MNote
that in this model, only systematic risk taking is rewarded with in-
creased expected returns.

Lintners9 derived the SML using a different approach by max-
imizing angle 8 which is the slope of a line from the risk-free security
to an asset in risk-return space. The asset with the larger angle 6
is more desirable. 1In terms of portfolios of assets, 6 will vary de-
pending on the weights of the individual assets, their expected returns,

and the variances and covariances of the assets. Once the maximum 6 is

identified, the system of equations can be solved to define the relation-

ship
E(R.)-R n
E(R;)-Re = —2 " (1 X4 4) (26)
P i=
or E(Ri)-Rf = XCov(Ri,Rm) (27)

if the portfolio in question contains all assets in the market. Lint-

ner's deviation of the SML is equivalent to Sharpe's development in

%9Sharpe, W. F. (1964) Foatnote 22, p. 438.
SO0Lintner, J. (1965) pp. 13-37.




terms of Beta, since By = ———— when Lintner's portfolio repre-

sents the market portfolio. The SML in terms of covariance is shown

as Figure 4.

E( Ry)

SMLCOV

Cov(Ri.Rm)
Figure 4: Security Market Line (Cov)

Fama>! also derived the SML in terms of covariance of asset i
and the market. In developing the third derivation, Fama showed the
equivalence of the various forms of the SML as developed by Sharpe and
Lintner.

Additional work on the CAPM focused on empirical testing and
relaxation of various assumptions. A brief current summary of this
work can be found in Francis and Archer.52

The importance of capital market theory for capital budgeting
will now be addressed. One of the significant problems of simple capi-
tal budgeting rules, such as the risk-adjusted rate or certainty equiva-

lence is the absence of a theoretical basis for the RADR or CE factors.

SlFama, E. F. (1968) pp. 29-40.
52Francis & Archer (1979) Chapter 10, pp. 211-244.
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The CAPM can be extended to develop market determined decision rules
for project selections. The decision rules, however, must be evaluated

in the context of the strenuous assumption of the model.

Capital Asset Pricing Model and Capital Budgeting

The Capital Asset Pricing Model has dominated finance research
in the last two decades. Relaxing assumptions and empirical testing has
led to the study of corporate finance problems in a market context.

One of the initial and logical extensions of the CAPM was in the area of
real asset selection or capital budgeting.

Lintner33, in a companion piece to his derivation of the secur-
ity market line, first addressed the implications for capital budgeting.
In addition to the assumptions of the CAPM, additional assumptions re-
lating to firms are made to extend Capital Market Theory to the capital
budgeting decision. The assumptions are:

1. Corporate management assigns probability zero to default on its
debt, and all investors treat corporate debt as a riskless as-

set -- thus the riskless investment (or borrowing) alternative
is extended from individuals to corporations.

2. Investment opportunities available in any time period are in-
dependent of the size and composition of the capital budget in
any other time period.

3. No Timited liability to corporate stock, no institutional or
legal restrictions on investors.

4, The riskless rate R* is expected by everyone to remain constant
over time. 3%

S3Lintner, J. (1965) pp. 13-37.
SkIbid., p. 39.
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Given these assumptions, the famous Modigliani and Miller35 Propositions
I and II, that for any size and composition of assets, investors are in-
different to the financing decisions of the firm, can be developed from
the capital asset pricing model. In this context, the present values
of the cash flows to any company from its real and financial assets are
equal to the total market value of investors claims to those assets.
The change in market value of the equity, Vo as a result of a capital
budgeting decision is equal to
A(ﬁ'i-wi)
AV, = —— (28)
oi (1+R%)
where
AH. = the net change in expected present value at the end
of the first period as a result of the acquisition

of the asset;

W: = v,2Z
TjRij

of the aggregate dollar returns of the i and j

= market price of risk times the covariance

stocks.
Lintner's results of the capital market approach to capital budgeting
can be summarized as

1. Even with highly idealized uncertainty (model assumptions), the
minimum expected return required to justify the allocation of
funds to a given risky project is an increasing function of each
of the following factors: the risk-free rate of return; the
market price of risk; the variance of the projects' rate of re-
turn; the covariance between the project and existing assets;

5SModigliani, F. and Miller, H. M. (1958) "The Cost of
Capital, Corporation Finance and the Theory of Investment," American
Economic Review. Vol. 49: pp. 261-297.
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and the covariance between the project and other projects in
the capital budget.

2. Investments that significantly reduce risk rationally belong in
capital budgets even at the expense of lowering expected pres-
ent value returns.

3. Due to the various components of risk, in practice it will be
extremely difficult, if not impossible to classify projects into
to homogeneous risk classes.

4. Following the requirements of market equilibrium, all means and
(co)variances have been calculated using the riskless rate. Re-
cognizing the non-linear effect of varying the discount rate,
it necessarily follows that there can be no single risk dis-
count rate to use in computing present values for different
projects for accept/reject decisions even if all projects have
the same degree of risk.

5. The "cost of capital" (as defined for uncertainty anywhere in
the Titerature) is not the appropriate discount rate to use in
capital budgeting decisions.

6. The CAPM does, however, define a "required rate of return as a
positively sloped linear function of the ratio of the project's
aggregate incremental present-value-variance-covariance to its
cost. The slope coefficient is the market price of risk with
the risk-free rate as the intercept.36

Lintner's conclusions follow logically, but are dependent upon the
validity of the strong set of assumptions detailed earlier. Lintner
himself recognized that his results are not directly applicable to
practical decisions and that additional research was needed to develop
practical capital budgeting rules consistent with capital market theory.
Tuttle and Litzenberger37 addressed the problem of capital bud-
geting in a capital market framework by looking at the capability to
diversify by investors. In the first case, they assumed perfect

capital markets made up of small, risk-averse investors with non-diversi-

fied portfolios. In addition, they assumed that all prospective

S8Lintner, J. (1965) pp. 44-47.

57Tuttle, D. L. and Litzenberger, R. H. (1968) "Leverage,
Diversifications and Capital Market Effects on a Risk-Adjusted Capital
Budgeting Framework," Journal of Finance. VO. 23: pp. 427-443,
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investments expected returns are perfectly correlated with the expected
return on existing assets. In this énvironment, the firm can make the
returns from capital budgeting projects risk-equivalent to the firm's
cost of equity capital by employing more or less financial leverage.
This process will then eliminate the need to subjectively determine the
desirability of one risk-return combination versus another. Defining
risk as the estimated standard error of returns and distinguishing be-
tween the risk and return of the project itself and the comparable risk
and return to equity from the project which reflects the amount of bor-
rowing and lending; Tuttle and Litzenberger show that risk and return
of equity is a simple linear combination of the risk and return of the
project. They then showed how this approach could be used to develop a
hurdle rate when the firm has budget constraints or faces mutually ex-
clusive projects.

When faced with diversifying investors, Tuttle and Litzenberger
essentially reiterated the CAPM solution of Lintner's by hypothesizing
a required rate of return determined by the risk-free rate, the market
price of risk, and the covariance of return on the project with the mar-
ket. The significance of this paper lies in the discussion of leverage
by firm in comparison to leverage of investors in a capital market
framework. Brennan38 criticized this approach in that it "takes as
given the effects on a firm's market risk of adopting a particular proj-

ect. The paper, therefore, 1eaves open the questions both of the

58Brennan, M. J. (1973) "An Approach to the Valuation of
Uncertain Income Streams," Journal of Finance. Vol. 28. pp. 661-674.
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determinants of this risk effect, and of the way in which the risk of
projects is to be assessed."

Hamada®® integrated the CAPM into the mainstream of corporate
finance by deriving the Modigliani and Miller (M & M)®0 propositions in
the context of capital market equilibrium. He was able to show that M
and M's risk-class assumption was unnecessary in the market model. In
the no tax case, the capital budgeting criteria must ensure that "the
change in equity value, as a result of projectselection, will at Teast
be larger than any new equity required to finance this project"®! to be
consistent with the CAPM. An approximéte cost of capital, or required

rate of return®2 can be expressed as

dzcov(X,,X,)
CeRe+ kMK e (29)
T dI
This formulation differs from the implied CAPM formulation
E(RA) = Rf+xcov(RA,RM) , (30)

in that Hamada incorporates an adjustment for the firm's change in risk

per dollar of invested capital caused by the investment. For pure scale

59%amada, R. S. (1969) "Portfolio Analysis, Market Equilibrium
and Corporation Finance," Journal of Finance. Vol. 24: pp. 13-31.

50Modigliani and Miller (1958) pp. 261-297.
®lHamada, R. S. (1969) p. 21.

62{ith the development of the CAPM, the term "the cost of capi-
tal" has generally been replaced by the terminology of required rates of
return. This change has been made to call attention to the deep philo-
sophical differences in the derivation in each term; in the context of -
capital budgeting, both terms attempt to identify a discount rate for
future, risky cash flows.

63Hamada develops EQ 29 and attributes this form of the CAPM to
be essentially the Modigliani and Miller position in the framework of
capital market equilibrium.
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or non-diversifying investments that do not change the risk of the firm,

Hamada shows that Eq. (30) above defines the appropriate required rate.
Hamada also addresses the impact of corporate income taxes

on the cost of capital or required rate. He once again derived the

M & M position showing the impact of financial leverage via the sub-

sidy given to shareholders through tax-deductible interest payments.

The after-tax cost of capital is given by

0 \ dicov(rXA’er)
C. = Rell-mqy) + 5= ). (31)

Hamada®* then compares the results and implications of Eq.
(29) to Lintner's decision criteria, Eq. (28) this paper. After de-
scribing Lintner's various omissions and preoccupation with minor
points, Hamada then recalls the 1imiting nature of both models based
on the stringent assumptions.

Litzenberger and Budd®> continued the search to develop appro-
priate capital budgeting rules in a capital market framework. The im-
portance of market evaluations 1ies in the fact that the "firm needs to
know how a change in its riskiness will affect its value."56 Based on

the CAPM, Litzenberger and Budd show that the capital budgeting models

6%Hamada, R. S. (1969) p. 25.

65 itzenberger, R. H. and Budd, A. P. (1970) "Corporate In-
vestment Criteria and the Valuation of Risk Assets," Journal of Finan-
cial and Quantitative Analysis. Vol. 5: pp. 395-419.

661bid., p. 397.




38

of Lintner,®7 Tuttle and Litzenberger,58 and Hamada®® develop essential-
1y equivalent decision rules. They conclude that in the absence of
taxes, the cost of capital is not firm dependent; however, when

taxes are included, the cost of capital depends on the firm undertak-

ing the project.

To attempt to explain the linkage between the financial riski-
ness of an equity share and the earnings riskiness of the underlying
real assets, Litzenberger and Budd reviewed the empirical tests of the
CAPM and proposed additional empirical work. Results of these studies
have shown a marked difference of the importance of earnings variability
on share variability. The major significant problem of market tests is
the use of historical information as a surrogate for future expecta-
tions. The inherent "static" nature of the CAPM poses severe problems
particularly for the evaluation of real assets. Under a dynamic frame-
work the relationship between real and financial sectors is more com-
plex. "Changes in interest rates and/or the general structure of risk
asset prices affects the return to investors independently of the firm's
earnings. This market risk is independent of the firm's portfolio of
productive assets."70

Stapleton’! developed capital budgeting decision rules based

on the CAPM. The focus of his study was toward the use of certainty

7Lintner, J. (1965) pp. 13-37.

68Tuttle, D. S. and Litzenberger, R. H. (1968) pp. 427-443.
69Hamada, R. S. (1969) pp. 13-31.

70Litzenberger, R. H. and Budd, A. P. (1970) p. 407.

71stapleton, R. C. (1971) "Portfolio Analysis, Stock Valuation
and Capital Budgeting Decision Rules for Risky Projects," Journal of
Finance, Vol. 26: pp. 95-117.
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equivalents based on non-diversifyable risk to the shareholders. The
diversification effect of investments within the firm can be ignored
and individual projects are appraised separately. Essentially, his
technique is to derive the certainty equivalent factor based on the cor-
relation between the investment cash flows and the market index. This
approach to evaluating multiperiod real assets was criticized by Bren-
nan’2, Brennan states that Stapleton's purported multiperiod model
Actually employs a single-period certainty-equivalent approach in
which it assumed that the joint probability distribution of all the
future dividend payments on a share can be reduced to a probability
distribution on the present values at the end of one period of all
possible future dividend streams. . . . This procedure would be
legitimate only if, at the end of one period, the investor were to
know with certainty the precise pattern of dividend payments over
the remainder of the horizon...."73
Myers and Turnbull’% summarized the development of CAPM ap-
proaches to the solution of the capital-budgeting problems. Assuming
the validity of the CAPM, they conclude that relatively simple and
general valuation formulae can be developed. Unfortunately, they find
that the real determinants of beta are more complicated than is gener-
ally suspected. They address the problems of measurements of beta, but
the more fundamental problem of how to handle growth opportunities is
also addressed. If the firm has growth opportunities, the observed
beta will generally lead to biased capital-budgeting hurdle rates.

The results of this bias are to create serious questions about the

validity of the CAPM to evaluate real assets.

72Brennan, M. J. (1973) pp. 661-674.
731bid., p. 662.
74Myers, S. C. and Turnbull, S. M. (1977) "Capital Budgeting

and the Capital Asset Pricing Model: Good News and Bad News," Journal
of Finance, Vol. 32: pp. 321-336.
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Multi-Period Capital Asset Pricing
Models and Capital Budgeting

To remedy the obvious (single-period nature) shortcoming of the
CAPM in the valuation of real assets, Brennan?S develops a model that
describes multi-period capital market equilibrium. Brennan essentially
extends the work of Merton?® and Black-Scholes’? to develop a differ-
ential equation approach to the evaluation of a cash flow stream that
captures the dynamic nature of information arrival. Solution of this
differential equation yields the present value of a claim to a risky
future cash flow. By aggregating the net present value of claims to
risky cash flows, the net present values of the assets that generate
the claims can be computed.

Although the model is founded upon the portfolio equilibrium of
the individual investor, projects are risk independent and do not re-
quire the firm to use a portfolio selection approach to project selec-
tion. Also, the net present value of a project is a given number in
this model, not a random variable that must be studied prior to the ac-
ceptance of the project.

In addition to the above features, this model defines the cer-

tainty equivalent of a particular cash flow as an objective, market

75Brennan, M. J. (1973) pp. 661-674,

78Merton, R. C. (1969) "Lifetime Portfolio Selection Under
Uncertainty: The Continuous Time Case," Review of Economics and Statis-
tics. Vol. 51: pp. 247-257.

77Black, R. and Scholes, M. (1973) "The Pricing of Options
and Corporate Liabilities," Journal of Political Economy. Vol. 81:
pp. 637-654.
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determined measure and not derived from the decison makers' utility
function.

Bogue and Rol1178 also formulated a multi-period approach to
the CAPM solution to capital budgeting problems. While reviewing basic
capital market theory and the CAPM, they stressed the importance of the
homogeneous expectations assumption. Without common investor beliefs
about returns, there is no unique price for a risky security that would
prevail in the marketplace. Furthermore, the firm would be uncertain as
to which particular beliefs should be used in reaching a decision.

As a point of departure, Bogue and Roll studied the single-
period capital budgeting protlem. The CAPM provides a theoretically
acceptable solution to this prob1em. In addition, under certain circum-
stances, the single period analysis will provide an appropriate solution
to the multi-period model. When "perfect" secondary markets exist for

the asset,

. the firm only needs to compare the current cost of the project
with the value of forecasted cash flows during the first period and
with forecasted end-of-period secondary market price. The decision
next period as to whether the project should be used in subsequent
periods is completely unaffected by whether it is owned at the end
of the present period.”9

With observed imperfect secondary markets for real assets,
one can still use one-period forecasts. Inthis case, the project is
clearly acceptable if the one-period cash flow and its net salvage value
at the end of period one is greater than the cost. Obviously, using

this decision rule many worthwhile projects would be rejected because

78Bogue, M. C. and Roll, R. (1974) "Capital Budgeting of Risky
Projects with 'Imperfect' Markets for Physical Capital," Journal of
Finance. VYol. 29: pp. 601-613.

791bid., p. 604.
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their salvage values do not reflect the future earning power of the
asset. In this context, additional periods cash flows must be con-
sidered and describe a need for multi-period valuation models.

Bogue and Roll propose an n-period, infinite state; dynamic
programming solution to the multi-period capital budgeting problem. At
each step, one applies the one-period valuation model with the para-
meters of the model depending on the state of the world at the begin-

ning of that period.

Mean~Variance Synthesis

Rubinstein80 elegantly showed that the major problems of
corporate finance: security valuation, asset expansion and capital
structure, can be studied in terms of capital market equilibrium via
the capital asset pricing model. Given the strict assumptions of the
model, he derived the alternative forms of the CAPM and then showed the
logical application to capital budgeting decisions.

The implication of the use of the CAPM versus traditional
weighted average cost of capital measures can be readily identified using
Rubinstein's graphical analysis. In Figure 5, the SML identified the
boundary of acceptable choices in return-risk space. The firm should
accept a project if the project's return-risk ordered pair plots on or
above the market line. Accepting projects A or B will result in an up-

ward revision of share prices as investors observe the disequilibrium

condition of greater return for the risk, or less risk for the return

80Rubinstein, M. (1973) "A Mean-Variance Synthesis of Corporate
Financial Theory," Journal of Finance. Vol. 28: pp. 167-180.
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than warranted by the market risk-return trade-off, the SML. The con-
stant slope of the SML, A, is the market price of risk and is appropriate
to all firms and all projects. All firms in the economy may use A as

the cut-off value for all projects.

E(R;)
SML

WACC — — — — —

|
|
|
l
|
1

l

*
Cov(Rj,Rm) Cov(Rj,Rm)

Figure 5: Comparison of WACC and CML Criteria
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Rubinstein's conclusions differ from the Lintner,8! Tuttle
and Litzenberger82 and Hamada®3 formulation, in that in the absence
of synergy, each project is evaluated on its own merits without con-
sideration of the firm's existing assets. Therefore, within the firm,
diversification can be ignored in capital budgeting decisions. Two
arguments can be made for this non-diversifying behavior. First, in

computing the CAPM decision rule (Eq. 32), the relevant return

E(R,)-R

f
—%——)-COV RoRs > A (32)

J

and covariance relates to the asset in question, not the firm. There-
fore, the contribution of the project to the firm's variance of equity
rate of return does not affect the decision given by CAPM criterion.
Second, investors by their own diversification can eliminate any di-
versifiable risk so the firm need not diversify for investors.
Returning to the WACC criterion where a firm would accept a
project only if E(Rj)>wACCj, one can see in Figure 5 the WACC and
CAPM Tlead to contradictory decisions. Project B is acceptable using
CAPM, but unacceptable using WACC; while project C is acceptable using
WACC, but unacceptable using CAPM. The WACC is invalid because in
fails to consider both risk and return in the decision. WACC sets a
rate of return and ignores risk resulting in a bias against low-risk

projects and a bias for high risk projects. At the point of intersection

81Lintner, J. (1965) pn. 13-37.
82Tuttle, D. L. and Litzenberger, R. H. (1968) pp. 427-443.
83Hamada, R. S. (1969) pp. 13-31.




45

of the SML and WACC lines, the covariance between the project and the
market and the covariance between the firm and the market are equal,
identifying project of the same risk as the firm.

Rubinstein then derived the Modigliani and Miller propositions
in the framework of the CAPM. The significance of this paper is that
the author addresses and integrates the major problems of corporate
finance in a capital market framework at a relatively introductory

level.

Alternative Market Models

The Capital Market Theory based on the Markowitz mean-variance
portfolio model has received wide attention in the finance literature.
Empirical testing has generally confirmed the approach, but throughout
the literature there has been continued concern with the strict assump-
tions required to validate the theory. One of the assumptions that has
strongly been attacked is the adequacy of variance as measure of risk.
Joyce and Vogel8* reach the conclusion that variance is ambiguous and
yields conflicting results when calculated from information generally
available to decision makers. In addition to questions relating to
variance, the comparability of the analysis of financial versus real
assets has directed research into more general models. The remainder
of this review chapter will look to alternate theories of asset selec-
tion: Semi-variance and Stochastic Dominance models that allow for

different risk measures; Time-State-Preference Theory which provides a

84Joyce, J. M. and Vogel, R. C. (1970) "The Uncertainty in Risk:
Is Variance Ambigucus?," Journal of Finance. Vol. 25: pp. 127-134.
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more general approach to the theory of capital market equilibrium; a
review of simulation studies that evaluate all of these models in a
comparative context; and finally, a comparison of theoretical models and
the techniques used by practitioners in the field, This last section
will essentially describe the state-of-the-art and will lead to the
development of capital budgeting risk measures that focus on intertem-

poral, imperfectly correlated cash flows.

Mean/Semi-Variance Model

The adequacy of the two-parameter, mean-variance portfolio
model depends on two critical factors: 1) the shape of the probability
distribution of the cash flows, and, 2) the form of the decision maker's
utitity function. If the cash flows can be described by a symmetric
distribution then the variance is an adequate measure of dispersion or
risk. However, if the distribution is skewed, then decisions based
on a mean-varjance criteria will be insensitive to the assymetric
nature of the distribution. In terms of the utility function, mean-
variance analysis is consistent with maximization of expected utility
for quadratic or any other two parameter distribution. Once again, if
investor's utility is described by higher moments, then the mean-vari-
ance criteria is inadequate.

Markowitz®> recognized the limitations of the variance as a
measure of portfolio risk and proposed the semi-variance as an alternate
measure. The semi-variance measures the down-side, squared deviations

from a reference point. More specifically, let R represent a random

85Markowitz, H. M. (1959).
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variable with a known probability distribution; h is the critical
value against which the actual values of R are compared®® and let
(R-h)" represent (R-h) for (R-h) < 0, then semi-variance can be de-
fined as

Sy = E[(R-h)~]2. &7 (33)

In comparing variance and semi-variance as a risk measure in
portfolio analysis, Markowitz®® selected the variance based on the fol-
Towing considerations: variance is a familiar statistical measure that
is much easier to use with computer analysis; for portfolio problems
based on variance inputs needed are the means, variance and, covariances
while the portfolio problem based on semi-variance requires the estima-
tion of the entire joint probability distribution of returns. Intui-
tively, the semi-variance is a better measure of investor risk. Analy-
sis based on semi-variance concentrates on the elimination of down-side
variation or losses, while variance considers extremely high and low
returns as equally undesirable. With symmetric distributions of re-
turns, portfolio models will select the same efficient set using either
variance or the semi-variance. Given the assumption of normal or nearly
normal returns, Markowitz focused his attention to the more economical,

more familiar variance as a measure of risk.

86Common critical values reported are the mean and zero. Using
the mean, semi-variance measures the deviations below the mean while
using zero for the reference point, semi-variance measures deviations
resulting in a loss.

87Mao, J. C. T. (1970) *“Survey of Capital Budgeting: Theory
and Practice," Journal of Finance. Vol. 25: pp. 349-360.

88Markowitz, H. M. (1959).
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Mao,89 and Mao and Brewster®? argue that the semi-variance is
a better risk measure than the variance particularly for capital bud-
geting analysis. These papers revived Markowitz's arguments for the
semi-variance and described the utility implications for a decision rule
based on semi-variance. Using Tobin's?®! development of the quadratic
utility function for the mean-variance case, Mao®2 developed a hybrid
utility function that would imply a mean/semi-variance criterion. This
utility function is quadratic for returns 1éss than the critical value
and linear for returns greater than the critical value. This hybrid
function depicts a decision maker who is risk averse at low return lev-
els, but is neutral toward risk at high returns.®® Mao states "It does
not seem unreasonable for an investor who is conservative at Tow returns
to become aggressive a high returns." °%

Mao%5 also addressed the computational problems of portfolio
analysis using semi-variance. Recognizing that there is no easy way
to derive the semi-variance for a portfolio from the semi-variances of

the individual projects, Mao shows that to compute portfolio semivariance

89Mao, J. C. T. (1970) "Models of Capital Budgeting, E-V vs.
E-S," Journal of Financial and Quantitative Analysis. Vol. 4: pp. 657-
675.

90Mao, J. C. T. and Brewster, J. F. (1970) "An E-Sh Model of
Capital Budgeting," Engineering Economist. Vol. 15: pp. 103-121.

°1Tobin, J. (1958) pp. 65-86.

%2Mao, J. C. T. (1970) pp. 658-662.

93Here risk and variability are used interchangeably.
34Mao, J. C. T. (1970) p. 661.

351bid, pp. 668-674.
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one must specify the complete joint probability distribution of port-
folio returns. For example, with three individual projects, with
three possible outcomes each, twenty-seven possible portfolios must be
evaluated to determine the joint probability distribution. Mao?6
;ecognizes the operational difficulties associated with semi-variance
analysis, but lays the ground work for further research in fhis area.

Hogan and lw!alr'\r'en‘-a_7 added to the intuitive appeal of semi-vari-
ance by developing an equilibrium capital-market model based on semi-
variance. They define a riskless rate in E-ST space, where ST repre-
sents the square root of the semi-variance, as an investment for which
S; = 0. Following closely with a procedure that parallels Sharpe?d8,
Hogan and Warren shown that the CML can be drawn in mean/semi-standard
deviation (E-S) space analogously to the E-V model. Defining semi-
variance as

E(min[0,R-T13) (34)

where

el
1]

return on portfolio X

—
[}

fixed reference point;

then the riskless rate is the largest value for T for which there exists
a portfolio such that ST = 0. Using this riskless asset, they then

show the existence of a CML by demonstrating that the combination of the

%6Mao, J. C. T. (1970) p. 661.

97Hogan, W. W. and Warren, J. M. (1974) "Toward the Development
of an Equilibrium Capital-Market Model Based on Semivariance," Journal of
Financial and Quantitative Aanlysis. Vol. 9: pp. 1-11.

98Sharpe, W. F. (1964) pp. 425-442.
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riskless asset and any risky portfolio produces a new portfolio for
which ST is proportional to the risk measure of the original portfolio.
Let Y represent the riskless asset and X is any other portfolio, then
for portfolio Z(a) = aX+(1-a)Y, o>0; the semi-standard-deviation of the

return of portfoljo Z(e) is

i

5;[R-Z(a)] = [E(min(0,a(R -T) + (1-a)(Ry-T))2)T%  (35)

aST(RX).

Figure 6: E-S Efficient Frontier, CML
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Figure 6 above depicts the capital market 1ine in E-S space;
as before, the point of tangency of the efficient frontier and the CML
identifies the market portfolio, W. The equation of this CML can be

written as _
E(R,)-T| 9y
E(R)) = T+ [}751-- S_. (36)

To develop a relationship for individual assets similar to the
security market line, Hogan and Warren define the cosemivariance as the
proper measure of realtive security risk. At equilibrium, the expected
return on a security is a linear function of the securities' cosemi-
variance with the tangency or market portfolio. Following Sharpel00
and exploiting the fact that the slope of.the curve a b in Figure 6, in
equilibrium, must equal the slope of the CML, one can solve for this
tangency relation and derive the expression for the expected return for

any asset, i.e., the SML.

&R, )-T
ERy) = T+ |— Swi (37)
W
where
S, = E(min(0,R,-T)2]
Syi = E([min(0,R,-T)1(R.-T1).

99The critical value used to compute the semi-variance is the
risk-free rate. This is a reasonable, but not mandatory, choice.
Hogan and Warren defend this choice as the minimum rate that all invest-
ors would strive to exceed.

100Sharpe, W. F. (1964) pp. 425-442,
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Porter, Bey, and Lewis! 0! extended Hogan and Warren's theoret-
jcal model to develop capital budgeting rules based on semi-variance.
They followed Lintner's!02 Tead to develop an expression for the market
value of the equity which then serves as a basis for capital budgeting
decisions. Assuming that individual firms are small relative to the
market so that capital budge;ing decisions do not affect the market
price of risk, they developed a valuation equation in semi-variance
space analagous to Lintner's193 valuation in variance space.l0%

Haskins105 developed a simplified capital budgeting rule based
on the extension of Sharpe's single index model to incorporate the semi-
variance as the risk measure. Using Hogan and Warren's!06 E-S capital
market model, Haskin's decision rule for diversified investors is to

accept a project if

E(Rj) > T+[E(Rw)-T]yj (38)

101pgrter, R. B., Bey, R. P., and Lewis, D. C. (1975) "The
Development of a Mean-Semivariance Approach to Capital Budgeting,"
Journal of Financial and Quantitative Analysis. Vol. 10: pp. 639-649.

102| yntner, J. (1965) pp. 13-37.
103Refer to Equation (28), p. 33 this paper.

104The derivation of the valuation equation in semi-variance
space is quite tedious because of the assymetric nature of the cosemi-
variance terms. See Porter, Bey, and Lewis, p. 644, for the derivation
of the valuation equation.

105Haskins, C. G. (1978) "Capital Budgeting Decision Rules
for Risky Projects Derived from a Capital Market Model Based on Semi-
variance," Engineering Economist. Vol. 23: pp. 211-222.

106Hogan, W. W. and Warren, J. M. (1974) pp. 1-11, see also
Equation (37), p. 51 this paper.
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where
E(Rj) = expected return of project j
T = semi-variance risk-free rate
E(Rw) = expected return of the market
Yj = semi-variance analogue to the mean-variance B8,

i.e., the cosemivariance of the asset and the
market divided by the semi-variance of the market.
The volatility measure, Yj’ is only affected by project devia-
tions associated with events for which Rw < T, whereas Bj is affected
by project return deviations whenever Rm # E(Rm). According to the
E-S model, a diversified investor is not concerned with adverse re-
turns from a project when Rw > T.
Semi-variance has received considerable recent attention in
the Titerature. Intuitively a risk-measure that accounts for down-side-
risk can be quite valuable. If, however, normal or other symmetric
distributions adequately characterize capital budgeting cash flows, then
the additional computational difficulty of the semi-variance does not
seem warranted. Also, the model, as developed, suffers from the single
period perspective as does the capital asset pricing model. Since
the primary concern of this paper is to identify risk evaluation tech-
niques that incorporate the intertemporal nature of the cash flows in
capital budgeting, more general approaches to risk evaluation need to

be explored.
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Stochastic Dominance Models
"Decision-making under uncertainty may be viewed as choices be-

tween alternative probability distributions of returns, and the individ-
ual chooses between them in accordance to a consistent set of prefer-
ences."107 Decision rules based on the moments of the probability dis-
tribution (i.e., mean-variance or mean semi-variance) require a partic-
ular form of utility function or a specific distribution of returns.
For example, the mean-variance decision rule requires either a two
parameter distribution of returns (more specifically as assumption of
normality) or a two parameter utility function. Dissatisfaction with
the strenuous assumptions of the mean-variance capital asset pricing
model has lead researchers to look for more general models that allow
for less restrictive assumptions for the utility function and the under-
lying probabitity distribution of returns. There is an obvious trade-
off when one 1ooks to more general formulations to solve financial de-
cision problems.

The more restrictive the class of utility functions, the smaller

will be the admissible set and thus more useful will it be in prac-

tical situations. However, more restrictions on the utility func-

tions imply that the admissible set is relevant for a smaller group

of individuals and may involve a severe loss of generality. Thus,

one is interested in determining the admissible set of alternatives

for the most restrictive class of utility functions that is con-

sistent with observed economic phenomena.!08

The concept of dominance has been used in decision making to

eliminate inferior alternatives from further consideration. For example,

107Bawa, V. S. (1975) "Optimal Rules for Ordering Uncertain
lZY‘OSpetitS," Journal of Financial Economics. Vol. 2: pp. 95-121.
p. 95).

1081hid., p. 96.
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using the mean-variance decision rule, dominated choices can be readily
identified. If a project has a larger expected return and a variance

at least as small, or a smaller variance and an expected return at least
as large, one can identify mean-variance dominance. Unfortunately,
these two polar cases do not eliminate many alternatives from further
study.

Analyzing the entire probability distribution of returns rather
than jusﬁ the first two moments, Stochastic Dominance decision rules
have been developed. These decision rules have been identified as
First Order Stochastic Dominance (FSD), Second Order Stochastic Domi-
nance (SSD), and Third Order Stochastic Dominance (TSD). The orderings
from first through third degree are based on more restrictive assump-
tions on the decision maker's utility function.

Quirk and Saposnik!9? developed First Order Stochastic Domi-
nance as the optimal decision rule for the entire class of increasing
utility functions (i.e., the utility function is an increasing function
of returns). The probability functions are taken over the interval
I =100,1] or I=[0,=]; also these dominance rules apply to either dis-
crete or continuous functions. The FSD rule is that probability dis-
tribution F dominates probability distribution G if and only if F never
Ties above and somewhere lies below G; more specifically,

F>1G if and only if G(X) > F(X) for all X ¢ I.110 (39)

109Quirk, J. P. and Saposnik, R. (1962) "Admissibility and Mea-
surable Utility Functions," Review of Economic Studies. Vol. 29: pp.
140-146.

110The stochastically larger random variable has the smaller
distribution function. Whitmore, G. A. and Findlay, M. C. (1978)
Stochastic Dominance. Lexington, Mass.: Lexington Books, p. 66.




56

Graphically, FSD is depected in Figure 7 below; in this case (F(X) =
G(X) in all cases except for the 3, 4 interval where G(X)>F(X). Any
decision maker observing these two alternatives will select alterna-
tive F as F(X) clearly dominates G(X) by FSD. Unfortunately, among
the class of all distribution functions, the subclass that can be

ordered by the FSD rule is quite small.
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Figure 7: First Order Stochastic Dominance, F>1G
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Recognizing the limitations of the FSD decision rule, Hadar and
Russel1!ll developed a weaker dominance criteria called Second Order
Stochastic Dominance, (SSD). SSD considers the restricted class of in-
creasing utility functions that depict risk aversion (i.e., the utility
functions are increasin§ with decreasing marginal utility everywhere).
The SSD rule is that probability distribution F dominates a probability
distribution G if and only if the integral of F never lies above and

somewhere 1ies below the integral of G; more specifically,

F>,G if and only if G2(X) > F2(X) for all Xe 1. (40)

2
Graphically, SSD is depicted in Figure 8 below; in this case neither

F(X)>,G(X) nor G(X)>1F(X), however F2 clearly dominates GZ.

P(x)

G(x) ' - 65(x)

2
F
Fx) (x)

X

Figure 8: Second Order Stochastic Dominance

F2>zG2

111Hadar, J. and Russel, W. R. (1969) "Rules for Ordering Un-
certain Prospects," american Economic Review. Vol. 49: pp. 25-34.
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Whitmorell2 further restricted the class of utility functions
to develop Third Order Stochastic Dominance, (TSD). TSD considers the
class of increasing and risk averse utility functions with the addition-
al restriction that the third derivative of the utility be positive.

The economic rational for considering positive third derivatives is
that this condition implies decreasing absolute risk aversion,!!3

The TSD rule is that probability distribution F dominates a probability
distribution G if and only if the mean of F is greater than the mean of
G and the integral of the integral of F never lies above and somewhere

lies below the integral of the integral of G; more specifically,
F>56 1f and only if: a) ug>ug, and b) G3(X)>F3(X) for all Xel. (41)

Graphically, TSD is depicted in Figure 9 below; in this case neither
F(X)>XG(X) nor G(X)>2F(X), however, with e = ugs F3 dominates G3.

The Stochastic Dominance Rules (FSD, SSD, and TSD) have tre-
mendous potential due to their generality. However, significant short-
comings of the procedure are the need for complete knowledge of the
entire distribution and the requirement to make pairwise comparisons to
identify dominating choices. Much empirical work has been done to

develop algorithms that allow for the efficient computations of the

112Whitmore, G. A. (1970) "Third Order Stochastic Dominance,"
American Economic Review. Vol. 59: 457-459,

113pratt, J. W. (1964) "Risk Aversion in the Small and in the
Large," Econometrica. Jan-Apr: pp. 122-136. Pratt, in this classic
paper differentiates between local and global measures of risk aversion.
In addition, he discussed the questions of constant risk aversion versus
increasing and decreasing risk aversion and constant proportional risk
aversion versus increasing and decreasing proportional risk aversion.
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a3(x)
&(x)

F(x)

F3(x)

Figure 9: Third Order Stochastic Dominance F3>363

Stochastic Dominance Rules. Whitmore and Findlay!!* in a recent mono-
graph have brought together the theory and empirical work on SD. In
addition, their extensive bibliography will direct the student to the
pertinent original work. As a summary to this section, Levy and
Sarnat!l5 have constructed a table comparing SD requirements with
other selected decision rules. Table 1 below is a modified version

of the Levy and Sarnat work.

114%hitmore, G. A. and Findley, M. C. (1978).

115| ayy, H. and Sarnat, M. (1972) Investment and Portfolio
analysis. Mew York: John Wiley and Sons.
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Time-State Preference Models

The Time-State Preference Model (TSP) presents the most general
formulation and solution to the problem of decision making under un-
certainty. Arrow!lé, Luce and Raffia,!!7 Debreu,!18 and Borchl!? made
early contributions to the TSP approach to decision making. The work
of Arrow resulted in the original formulation of the state-preference
approach in an atemporal context. Debreu extended Arrow's work to in-
clude choices over time, while Borch addressed the problem of incom-
plete markets for the time-state claims.

In two companion articles, Hirshleifer!29 showed that the
state-preference formulation was the logical extension of Fisher'sl2l
model of certain intertemporal choice. Uncertainty in the TSP model
takes the form of uncertainty as to what state of the world will occur
in what time period. Once a state is observed, the outcome is known

and can be evaluated as in the case of certainty.

116Arrow, K. J. (1951) "Alternative Approaches to the Theory

2§7Choice in Risk-Taking Situations," Econometrica. Vol. 19: pp. 404-

117 fyce, R. D. and Raffia, H. (1957) Games and Decisionms.
New York: John Wiley and Sons.

118 Debreu, G. (1959) Theory of value. New York: John
Wiley and Sons.

119Borch, K. H. (1968) The Economics of Uncertainty.
Princeton, New Jersey: Princeton University Press.

120 Hirshleifer, J. (1965) "Investment Decision under Uncer-
tainty: Choice-Theoretic Approaches," Quarterly Journal of Economics.
Vol. 79: pp. 509-536 and (1966) “Investment Decision under Uncertainty:
Application of the State-Preference Approach," Quarterly Journal of Eco-
nomics. Vol. 80: pp. 252-277.

121 Fisher, I. (1930) The Theory of Interest. New York:
MacMillan.
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Myers applied the TSP approach to the analysis of security
valuation!?2 and to capital-budgeting.23 Myers' formulation will be
reviewed in greater detail since he explicitly addresses the subject
matter of this paper.

While addressing the problem of security valuation, Myers!?2%
developed the basic time-state preference valuation model that relates
the present value of a security to the present value of the contingent
returns the security may pay to its owner. Essential to the develop-
ment of the model is the concept of states or states of nature. Defin-
ing a set of states is a way of describing the risk of the security,
since the security can be thought of as a contract to pay an amount de-
pending on which state actually occurs. The basic assumptions of Myers'
TSP model are:

1. States - A state of nature which may occur at time t is defined
as a particular sequence of events during the time span from
t=1 to t=t. State s is the set of all possible outcomes from
the present to time t.

2. Investor expectations - Investors agree on the definition of the
relevant states {(s,t)}. Conditions at t=0 are known with
certainty.

3. Outcomes - The set {(s,t)} is sufficiently detailed that, if
state s occurs at time t, then returns on every security are
uniquely specified for period t and all previous periods. There-
fore, a security's contingent returns {R(s,t)} are not random

122Myers, S. C. (1968) "A Time-State Preference Model of Secur-
ity Valuation," Journal of Financial and Quantitative analysis. Vol. 3:
pp. 1-33.

123Myers, S. C. (1968) "Procedures for Capital Budgeting Under
Uncertainty," Industrial Management Review. Vol. 9: pp. 1-19.

124Myers, S. C. (1968) pp. 1-33.
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variables; the return R(s,t) is certain to be paid in period t if
state s occurs.
Markets - assume perfect markets.

5. Utility functions - Investors act to maximize the expected util-
ity of future returns of their portfolios. The total expected
utility associated with any portfolio is a Tinear function of the
utility functions defined for each state. Specifically, if =(s,t)
represents the probability of the contingency (s,t)and U(s,t) is
the associated utility, then theoverall utility canbe represented as

¥y = SZ’I

¢ (s:t)U(s,t) (42)

where szt is the summation over all states in the set {(s,t)}.

The utility of returns in state (s,t) is independent of the
utility of returns in all other states.!25

In addition to the above stated assumptions, Myers goes into considerable
detail about the nature of the economy, the available securities, and

the reinvestment assumptions. The portfolio selection problem in a TSP
framework is to selectavectorof investments, (ho’hl""hn)’ where hk is
the number of shares of the kth security to maximize expected utility v,

where

y = Sztn(s,t)U(s,t)+U(o)

with : [N ﬂ )
U(s,t) = f | & hR,(s,t d 3
s,t) LB=1 K k(s an

U(o) = f(ho).

The investor is constrained by his wealth endowment, W, which is

N
¢ = I hP-W=0, (44)
k=0 k' k

If no short selling or borrowing is allowed, then hkzp for all k. With

125Myers, S. C. (1968) pp. 2-5.
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these restrictions, maximizing Eq. (43) subject to the wealth constraint
is a non-linear programming problem.
The basic valuation formula in a TSP framework is detailed in

Eq. (45) below.

P2 L a(s,t)R (s,t) (45)
s,t

where P, = price of security k and q(s,t) = n(s,t)UU Sst)

In words, Eq. (45) states

. when an investor maximizes the expected utility of his portfolio,
the price of each security is at least equal to the expectation of
the marginal utility associated with a small increment in his hold-
ings of that security, when the utility of money in future contin-
gencies is measured in terms of the utility of money used for pres-
ent consumption.... The terms q(s,t) thus indicate the present
value to this investor of an incremental dollar of portfolio return
to be received at time t is state (s,t) occurs.126

Relaxing the assumption prohibiting short selling in a perfect
market, a necessary condition for market equilibrium is thatEq. (45) holds
as an equality for each investor and for each security. Given the mar-
ket equilibrium conditions, Myers relates TSP valuation to conventional
risk-adjusted rate and certainty equivalent valuation formulas. Recall,

T R (t) T C(t)

P, = ¢ = 3z
K =1 (14t =1 (1)t

(46)

where

Ry (t)
r = required rate of return;
Ck(t) = certainty equivalent of'ﬁk(t); and

expected return in t;

i = risk-free rate.

Ina TSP framework the size of r or Ck(t) will depend on 1) the pattern

across states of stock k's contingent dividends, 2) investor's

126Myers, S. C. (1968) p. 8.
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valuation of those dividends, and (3) the investor's probability assess-

ments. More specifically,

C(t) = Z, ()0 (£)D, (t) (47)

where

() = g Try R 8- Ry (m(2),2))

Q(t) = 75(%7- (q(1,t)...q(m(t),t)] and

1q(s,t)
s=1

m(t)
Dk(t) = 551 R (s,st)

Then the relationship between an investor's expected return, ﬁk(t) and

its certainty equivalent, Ck(t) is

_ Zk(t)Q'(t)__
Ck(t) = a(t)Rk(t) = 7;({7;7(57 Rk(t) (48)

Relating the TSP model to risk averse investors, Myers attacks
the perception that the market as a whole is risk averse. Market risk
aversion implies that the certainty equivalent of an uncertain return
should always be less than or equal to expected return, i.e., a(t)<l or
r>i. The generality of the TSP approach is shown by the reasonable
explanation of cases where a(t)>1 or r<i. Referring to Eq. (48), the
numerator and denominator are simply weighted averages of relative
prices and probabilities. The relative price in a particular state and
time can be more or less than the probability assessment which Teads to

the conclusion that "a bundle of contingent returns will be relatively
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more valuable if it pays higher returns in states in which contingent
returns have a high value."127

In a companion article, Myers!2® adresses the application of
the TSP model to capital budgeting. The central theme of the paper is
that portfolio selection models are entirely inappropriate for making
investment decisions. The basis for this disagrement 1ies with the
basic assumption of the portfolio approaches that projects are risk-
interdependent, which results in the value of a capital budgeting
project being dependent on the covariance of the returns of the project
and the firm. Myers demonstrates that risk-independence is a necessary
condition for equilibrium in the security markets. Independence then
allows for the use of asset-by-asset selection techniques.!2%

Risk-independence requires that the increase in share price as
a result of the acceptance of project A is not affected if some other
project B is also accepted. A necessary condition for independence is
that the projects are physically independent. Here we are concerned
with economic dependencies such as complementary or prerequisite proj-
ects. These projects can and should be combined and evaluated as if
they were one project, Assuming physically independent projects, the
proof of risk-independence is related to a theory of security valuation.

The TSP security valuation model, Eq. (45) is the basis for the

127Myers, S. C. (1968) p. 25.
128Myers, S. C. (1968) pp. 1-19.

129Myers' result that asset-by-asset capital budgeting selec-
tion techniques are consistent with capital market equilibrium relates
to the central theme of this paper. In Chapter 3 scalar multivariate
risk measures will be presented to evaluate individual capital budget-
ing projects.
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analysis. Referring to Myers' statement of market equilibrium, the
value of any security depends on both the scale and risk of its stream
of returns. To adjust for scale, divide both sides of Eq. (45) by

Sk = sztRk(s,t). Equation (45) can now be rewritten as

ZRk(S,t)

To simplify notation define row vectors Qi and Xk to represent sets

{qi(s,t)} and {Rk(s,t)/sk} which results in

Pk > QX (50)

u
kK Sy

Let Po imply acceptance of neither project A nor B; Pa and Py imply
acdeptance of projects A or B; and Pab imply acceptance of both A and

B. Then the requirement for risk-independence can be shown as
¥aSpTHoSy = HapSag¥e’s (51)

Using Eqs. (49, 50, and 51), Myers proves risk-independence from the
point of view of the individual investor and from a more general condi-
tion of market equilibrium.130

Myers addresses the question of when this partial equilibrium
approach would not be appropriate for evaluation of capital budgets.
He agrees that the TSP approach may break down when

1) Projects are large compared to the value of the firm's existing
assets,

13Refering to Myers pp. 6-11 for detailed proof of risk-inde-
pendence, the implication of mergers on firm value, and an additional
proof of Modigliani and Miller's Proposition I.
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2) the scale and/or risk characteristics of the projects' increment-
al cash flows are unanticipated,

3) the firm's shareholders do not hold diversified portfolios, and
4) the shareholders are "locked in" to their holding.!3!

The conclusions of Myers' paper are quite relevant to the study
of intertemporal, imperfectly correlated cash flows. For a firm at-
tempting to maximize market value to the shareholders, risk-indepeq-
dence implies that each investment project can be evaluated independent-
1y of the firm's other activities; diversification per se is not an ap-
propriate objective for the firm. Finally, the concept of risk-inde-
pendence is consistent with the idea that value of a project depends on
the covariance of the returns of the project with other opportunities.
But here the relevant relationships are those facing the investor, not
the firm. Risk-independence will break down only when the risk charac-
teristics of the firm's opportunities are not equivalent to those pro-
vided by securities in the market.

As with any general model, applying the TSP approach to de-
cision making poses very real practical problems. The requirement to
specify the state-contingent claims presents formidable problems. As
with all the models previously discussed, the models that provide simple
decision criteria tend to be based on highly restrictive assumptions;
while the more general approaches are difficult to implement. The pri-
mary contribution of the TSP approach is that the model is a useful way

of viewing the array of possible outcomes in the future. In addition,
the TSP model directly attacks the concept of risk-interdependence for
capital budgeting.

131Myers, S. C. (1968) p. 12.
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Comparison of Market Models

Early attempts to incorporate risk in capital budgeting
utilized simulation models to evaluate uncertain cash flows. Hertz132
and Hespos and Strassmann!33 propose that the computer can be used to
enhance traditional "sensitivity analysis." This approach centers on
" the specification of the probability distributions of the components of
the cash flows, i.e., sales, investment, useful 1ife, costs, etc. Once
these distributions are developed, then computer simulation routines
are used to develop either the probability distribution of present
values or rate of return. The most significant advantage of simulation
according to Hertz is that

the program allows management to ascertain the sensitivity of the
results to each or all of the input factors. Simply by running

the program with changes in the distribution of an input factor,
1?0;?1ggssib1e to determine the effect of added or changed informa-

Lewellen and Long!33 challenged the use of simulation tech-
niques by comparing simulation results with the results from traditional
single-point estimates. For example, they show that when the future

cash flows are symmetrically distributed, the mean of the distribution

of the IRR obtained by simulating over the cash flows is lower than the

1324ertz, D. B. (1964) "Risk Analysis in Capital Investment,"
Harvard Business Review. Vol. 42: pp. 95-106.

133Hespos, R. F. and Strassman, P. A. (1965) "Stochastic De-
cision Trees for the Analysis of Investment Decisions," Management Science.
Vol. 11: pp. 244-259.

134Hertz, D. B. (1964) n. 103.
135  ewellen, W. G. and Long, M. S. (1972) "Simulation Versus

Single-Value Estimates in Capital Expenditure Analysis," Decision Sci-
ences. Vol. 3: pp. 19-33.
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IRR produced by discounting the means of the respective cash flow dis-
tributions. This bias occurs because upward variations in the cash
flows result in smaller proportionate changes in IRR than do identical
downward variations. This assymetry occurs because the cash flow, IRR
plot is concave to the origin. A simulation in terms of NPV, however,
would eliminate this bias since the present value of any future cash
flow is a linear function of the size of the flow.13® In addition to
the comparability problem of IRR vs. NPV, Lewellen and Long noted sig-
nificant biases when simulations consider variable project 1ife, asymet-
rical outcomes, and interdependencies among flows. This last problem
is of particular interest to this paper.

Interdependent projects where the cash flows depend on multi-
plicative combination of stochastic variables are particularly vulner-
able to simulation induced bias. The significance of the bias can be

easily observed by viewing the formula for the covariance:

cov(x,y) = o, = E(x-y)-E(x)-Ey), (52)
therefore, E(x-y) = E(x)-E(y)+cxy, (53)
and %y = P9Iy (54)

where p is the coefficient of correlation between x and y. Simulations
disassemble these multiplicative relationships creating biases depend-
ing on the direction of the relationship. When the variables are direct-
ly related, ¢>0; a disassembled single point estimate will understate

expected returns, i.e.,

E(xey) > E(x)-E(y). (55)

136Lewellen, W. G. and Long, M. S. (1972) p. 21,
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While the bias for cases where inverse relationships exist, p<0; a dis-
assembled estimate will overstate the actual mean; i.e.,

E(x-y) < E(x)-E(y). (56)
If the cash flow represents quotients of stochastic variables, the bi-
ases would be reversed. Additive combinations createno difficul ties
since E(x+y) = E(x)+E(y) regardless of the natureof thex,yrelationship.!37

In addition to the bias problems noted above, effective simu-
lation studies require the specification of the entire probability dis-
tribution of the cash flow elements and may be quite costly. If a de-
cision maker can specify the underlying distribution, more powerful de-
cision making tools such as Stochastic Dominance should be used to evalu-
ate capital budgeting projects.

This paper has addressed many alternative ways to evaluate
capital budgeting problems. The degree of sophistication has widely
varied from simple estimates of expected present value with sensitivity
analysis to highly technical mathematical models that require strong
assumptions and relate the capital budgeting problem to the study of
equilibrium in security markets. The last two sections of this review
chapter will review tests of many of these models in simulated environ-
ments and will look at surveys of what capital budgeting techniques are ]
actually being used.

Sundem!38 reports the results of a simulation study that com-

pared the performance of various capital budgeting models. Sundem

137, ewellen, . G. and Long, M. S. (1972) p. 28.

138Syndem, G. L. (1975) "Evaluting Capital Budgeting Models in
Simulated Environments," Journal of Finance. Vol. 30: pp. 977-992.
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hypothesized that the Time-State Preference model (TSP) provided the
correct market values for each project. Given a large set of projects
(Weingartner's data set!3%) and various decision environments (states
of nature) he compared the performance of simple capital budgeting models
to the TSP metric. The capital budgeting models evaluated were: 1)mean
variance portfolio model, 2) mean-variance diagonal model, 3) variabil-
ity of returns model, 4) chance-constrained programming model, 5) net
present value model, and 6) payback model. In a companion paper, two
additional simple models are evaluated: 1) net present value with a
payback constraint, and 2) net present value based on risk classes.l%0

The simulation study was structured to allow each model to per-
form as well as possible in each environment. Project parameters were
assumed to be predicted perfectly and the environmental parameters were
chosen ex post to maximize the value of each model. Each model selected
a set of projects in each decision environment. The value of a model is
the increase in the value of the firm associated with acceptance of the
projects. The metric value is the sum of the values of all projects with
positive TSP values; then the amount by which the value of a given
model falls short of the TSP value can be viewed as the amount paid for
the simplification of the model.

The results of the study are summarized in the table "Model

Value as Percent of TSP Model Value."!*! To summarize briefly: The

139%eingartner, H. M. (1963) Mathematical Prograrming and the
Analysis of Capital Budgeting Problems. Englewood C1iffs, New Jersey:
Prentice Hall.

140Sundem, G. L. (1974) "Evaluating Simplified Capital Budget-
ing Models Using a Time-State Preference Metric," Accounting Review.
pp. 306-320.

141Syndem, G. L. (1974) p. 988.
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mean-variance (MV) and the mean-variance diagonal (MVD) models yielded
resul ts quite similar to the TSP model. In highly uncertain environ-
ments the MVD outperformed the MV model, however, the difference is
slight and may be due to chance. 2) The variability of returns model
(VR) despite theoretical shortcomings performed very well. VR model
achieved over 90% of the maximum possible value in all environments ex-
cept one. The VR may be a very cost effective model because it can
evaluate projects singly rather than depend on portfolio of projects.
The VRmodel clearly outperforms the chance-constrained programming and
net present value models, especially in highly uncertain environments.
3) There is a large drop in performance with the chance-constrained pro-
gramming model, CCP. As the CCP model is very complicated and with
such poor performance, the CCP model seems to offer little potential
when compared with the VR model. 4) The net present value model (NPV)
performance deteriorated very rapid]} with increases in uncertainty.
In risky environments the NPV approach rejected many alternatives that
were found acceptable using the metric. 5) Finally the payback model
was outperformed by all other models in relatively certain environments.
However, under conditions of greater uncertainty, payback performance
increased. This behavior may suggest that the payback may be used ef-
ficiently in highly uncertain environments or as an initial screening
device or as a constraint to eliminate very risky projects.

In a companion paper, Sundem!“2 ysed the payback as a con-

straint to the net present value model and compared the results of this

142S5yndem, G. L. (1974) pp. 306-320.
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model (NPV-PB) and of a risk class net present value model (NPV-RC) to
the same TSP metric. Using the same methodology as was previously
reported (Sundem, 1975), the results of these two additional models
are: 1) The NPV-PB outperforms both the NPV and the PB models alone.
However, there does not appear to be any synergistic effects from com-
bining the two models. The NPV-PB simply selects thé highest values of
the NPV or PB applied separately. 2) The NPV-RC uses the capital as-
set pricing model to identify a cost of capital that is the discount
rate that equates a project's net present value to its TSP metric value.
Therefore, ranking projects by this cost of capital is a ranking in
terms of riskiness. The effectiveness of the NPV-RC model depends on
the number of risk classes identified. At one extreme, assign N proj-
ects to N risk classes which results in a set of projects identical to
the TSP set; while at the other extreme, one risk class, the set is
identical to the NPV set. Sundem found a significant increase in
proficiency when he used two or three risk classes while there was only
a slight increase for five or six classes. He concluded that a two or
three risk class model is 1ikely to be cost/benefit efficient while
additional refinements may not be worth their cost.

Bey and Porter!*3 also used a simulation study to evaluate
portfolio approaches to capital budgeting. This study differs from
the Sundem work in that Bey and Porter used a Second Degree Stochastic

Dominance model (SSD) as their metric as opposed to Sundem's TSP

143gey, R. P. and Porter, R. B. (1977) "An Evaluation of
Capital Budgeting Portfolio Models Using Simulated Data," Engineering
Economist. Vol. 23: pp. 41-65.
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framework. In addition, Bey and Porter varied the probability distribu-
tion of the cash flows to allow for skewness while Sundem 1imited his
study to normal distributions.

Taking a subset of the projects found in Weingartner's
(1963) study, Bey and Porter use the annual cash flows from this study
to represent the annual expected cash flows in an uncertain environment.
The standard deviation of the cash flows for each project i in period t

was projected by the formula

L= 6.t
o(CFy4) = Z,CF, ™ (57)

where Z. = degree of uncertainty associated with project 1,
CF., = expected cash flow of project i in period t,
G. = an annual growth factor for project i representing the

situation where risk increases over time.!%%

Zi was assumed to be constant over time for a project, but varied among
projects. Low values of Zi represent low degrees of uncertainty such
as replacement or scale expansion of the firm while high values of Zi
represent highly uncertain new projects. The study addressed the prob-
lem of non-normal distributions by analyzing five general groups:

1. The cash flow distributions are all normal with positive inter-

period correlations;
2. The underlying distribution is not normal, but the general shape

is the same for all projects and is constant over time. In

l44Bey, R. P. and Porter, R. B. (1977) p. 46.
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addition to positive correlation, this environment created both
positive and negative skewness;

3. The shape of the distribution varied among projects but was con-

stant over time;

4, The distribution varied among projects and over time;

5. Variable distributions with negative correlations over time.l%5
Using these inputs, the joint probability functions of the net present
values was simulated for ten economic states. The result of the simu-
lation was the development of cash flows associated with each state,
environment and project. Then these cash flows were used to evaluate
the following capital budgeting models:

1. MPV: Risk adjusted discount rate model, where a single adjust-

ment value was used for all cases.!"®

2. EV-I: A mean-variance portfolio model adapted to the capital

budgeting problem.

3. EV-II: A multiperiod mean-variance certainty equivalent model
which is an extension of Lintner's single period port-
folio model.

4, ESh: A mean-semivariance portfolio model.

5. CCP: A chance-constrained-programming model with a NPV con-

straint.

145Bay, R, P. and Porter, R. B. (1977) p. 46-47.

146The use of a single risk-adjusted rate across environments
of widely varying risk severely handicaps this model in the Bey and
Porter study.
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The basis of comparison, or metric, was the Second Degree
Stochastic Dominance Model (SSD). As stated, the SSD model was assumed
to evaluate all projects and combinations of projects correctly and was
used as the basis for comparison. The results of the study are stated
in terms of the consistency between the efficient sets selected by the
decision models tested and the SSD efficient set. The SSD efficient
set contained more combinations than the efficient set associated with
any other mode]._ This performance results from the Tess restrictive
utility function associated with the SSD model. As greater restric-
tions are placed on the utility function the efficient set becomes
smaller, resulting in a more effeﬁtive decision rule to order or rank
alternatives.

Ranking the models on the basis of mis-classifications, the
Mean-Semi-Variance model clearly outperformed all other models. This
performance can be explained since the ESh efficient set is a proper
subset of the SSD efficient set. Therefore, using an ES, model assures
the decision maker a SSD efficient set - a choice which is consistent
with both risk aversion and nondecreasing utility of wealth. The next
best performance was accomplished by the chance-constrained model.

Both of the mean-variance models did not select as well as the ES, or
CCP models; since the project means and variances were not affected
by changes in the decision environments, the efficient sets selected
by the EV models were stable as environments changed. The NPV model's
performance was viewed to be quite poor in comparison to the portfolio
models. Since the NPV model selects individual projects on an accept/

reject basis while the portfolio models select efficient sets, a
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direct comparison of the NPV and the portfolio models is not
possible.

In analyzing the effects of correlated cash flows, Bey and
Porter found the mean-variance models to be insensitive to ¢hanges
in ithe characteristics of projéct cash flow distributions. This short-
coming can be particularly severe if the distributions are significantly
skewed. On the other hand, the SSD, ESp, and CCP capital budgeting
models selected different efficient sets as the distributions changed
shape. If the actual underlying distribution of the cash flows is
assymetric, use of the variance alone becomes suspect as an appropriate
measure of risk.

This study is significant in that it addresses both the prob-
lems of skewness and of correlated cash flows. Bey and Porter show
that when the cash flow distributions depart from standard assumptions
of independent normal distributions, capital budgeting models need to

incorporate these departures to adequately measure risk.

Practice versus Theory

The previous portion of Chapter II systematically reviewed the
capital budgeting literature to identify the various ways in which risk
has been incorporated into the decision making process. A wide range
of techniques are available to the practitioner, from relatively simple
risk-adjusted rate analysis to highly sophisticated market models such
as time state preference theory. In this section of the paper, a com-
parison of capital budgeting theory and actual techniques used in the

field will be reviewed.
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There has been continual interest in the past decade to evalu-
ate the actual capital budgeting techngiues used in the field. Maol“47?
interviewed the management of eight medium to large companies to com-
pare current theory with actual practice. Mao found that there was a
wide difference between the sophisticated theoretical capital budget-
ing models found in the literature and actual practice. His findings
are briefly summarized as: 1. Management either explicitly or implicit-
1y stated that maximizing the value of the firm was a primary goal; 2.
top executives view the value of the fim independently of the effects
of diversification by investors; 3. executives tend to view risk in
terms of downside variation which indicates that the semi-variance may
be a better description of risk than the variance of the cash flows;

4. the primary method of incorporating risk is through the use of risk-
adjusted discount rates rather than the probabilistic approaches ad-
vocated in the literature; 5. finally, most firms use the less-sophis-
ticated payback period as the primary risk measure rather than the
theoretically superior net present value or internal rate of return
analysis. Mao's findings show that there is a considerable lag between
finance theory in the Titerature and practice in the field.

Klammer!“® in a large survey confirmed Mao's small sample ob-
servations. Klammer found that nearly all firms have some method of
dealing with risk but less than 40% of the respondents admitted to using

a specific formal method of risk analysis. Comparing capital budgeting

147Mao, J. C. T. (1970) "Survey of Capital Budgeting: Theory
and Practice," Journal of Finance. Vol. 25: pp. 349-360.

148K Tammer, T. (1972) pp. 387-397.
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techniques over a ten-year period, Klammer found an increase in the use
of discounted cash flow methods while reliance on the sole use of pay-
back methods declined.

In a recent article, Schall, Sundem, and Geijsbeek!*° reported
the results of a sample survey of a large firm's capital budgeting
methods. Their main conclusion was that practitioners are becoming in-
creasingly more sophisticated in the analysis of risk in capital budget-
inQ. Although payback is still the most popular capital budgeting
technique used in the field, only two percent of the respondents use
payback as the only capital budgeting tool. Most companies use payback
along with a discounted cash flow technique (either net present value or
internal rate of return). Looking at procedures for assessing risk,
more than thirty-six percent of the firms use some quantitative method-
ology, only four percent do not assess risk, while the remaining sixty
percent assess risk subjectively. More firms look at risk in terms of a
measure of total risk than use portfolio covariance analysis.

The trend to greater sophistication in capital budgeting has
been documented by the studies reported in this section. There still
exists the need to develop techniques of risk analysis that are theo-
retically acceptabie and yet simple enough to understand and use by
practitioners. Current the&ry seems to be going the way of greater
sophistication rather than increased simplicity. In Chapter III a

theoretically sound, yet simple, approach to risk analysis in capital

149S¢chall, L. D., Sundem, G. L., and Geijsbeek, W. R. (1978)
"Survey and Analysis of Capital Budgeting Methods," Journal of Finance.
Vol. 33: pp. 281-287.
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budgeting will be presented. This approach will develop simple scalar
measures of return and risk that can be easily used in the field.
As with any new approach, this initial work requires some simplifying

assumptions that can be relaxed as the approach gains acceptance.




CHAPTER III

MULTIVARIATE CAPITAL BUDGETING MODEL

Introduction

The capital budgeting problem is to develop decision rules to
select, evaluate or rank real asset opportunities on the basis of ex-
pected returns, the timing of those returns and the risk associated with
the returns. The use of return and risk as decision criteria is well-
documented in the finance literature. While general agreement exists
as to the measurement of returns, controversy attends to an appropriate
measure of risk. The after-tax cash flows related to the project, ei-
ther measured absolutely or relatively, have been accepted as an ade-
quate measure of return. Consideration of the timing of the cash flows
requires explicit consideration of the multiperiod nature of the prob-
lem. Risk has been described in the literature in many ways: as the
total variation of returns, as the sum of systematic and residual vari-
ation in a market context, or as the downside variation from some stan-
dard goal. In addition to the risk measures described above, total risk
can be viewed as a function of two components; the variation of the
periodic cash flows, and the intertemporal correlations among cash flows.
This partition of total risk allows the analyst the opportunity to study

explicitly the impact of correlated cash flows on the total risk.
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Recognition of the random nature of the capital-budgeting prob-
lem leads the decision maker to the study of various possible probabil-
ity distributions of the cash flows. The univariate normal distribution
has been used extensively in the finance literature with assumed inter-
temporal independence or with single-period market models. When the
cash flows are assumed independent and symmetric, the location and scale
parameters of the univariate normal distribution provide simple measures
of return and risk.

Dissatisfaction with the strict assumptions of the mean-variance
decision rule has resulted in more general capital budgeting models.
Models based on semivariance incorporate skewness into the decision pro-
cess. Stochastic dominance decision rules relate to the entire proba-
bility distribution as opposed to the first two moments. Time-state
preference models specify outcomes in the form of state variables with
risk measured as the likelihood of state occurrence. The intertemporal
nature of the capital-budgeting problem has either been assumed away or
treated quite selectively.

An approach to the solution of the capital budgeting problem
that explicitly considers the intertemporal nature of the risk assess-
ment problem is the use of multivariate statistical techniques. More
specifically, the periodic cash flows are assumed to be a realization
from an underlying multivariate distribution. With the added assumption
of multivariate normality, the analysis of risk is equivalent to the
analysis of the variance-covariance matrix. The remainder of this
chapter will address the need for a multivariate approach and the appro-

priateness of the multivariate normal distribution as an underlying
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structure. Given the rationale for the multivariate approach, the vari-
ance-covariance matrix is offered as a multivariate analogue to the uni-
variate variance. Two scalar risk measures are presented and analyzed:
the variance of the net present value and the generalized variance

(generalized variance - determinant of variance-covariance matrix).

Asset-by-Asset Analysis versus Portfolio Approach

Many of the capital-budgeting models found in the Titerature
are extensions of stock market valuation models. Arguments for invest-
or diversification leading to stock portfolio models have been discussed
in detail in Chapter II. However, when these models are extended to the
evaluation of real assets the need for complicated portfolio models has
been questioned.

Rubinstein! states that, in a setting of perfect capital mar-
kets and in the absence of synergy, diversification effects within the
firm can be ignored in capital-budgeting decisions. The primary argu-
ment against firm diversification is that an investor can more effi-
ciently diversify his portfolio of assets than can the firm diversify
its portfolio of assets. Also, since the 1ife of real assets normally
is long, portfolio revision techniques which can be readily applied to
stock ﬁortfo]ios may be uneconomical in the case of real assets.

Myers2 also argues for asset-by-asset selection using the

equilibrium conditions of the security markets. Myers states that a

1
Rubinstein, M. (1973) "A Mean-Variance Synthesis of Corporate
Financial Theory," Journal of Fimance. Vol. 28: pp. 167-180.

2
Myers, S. C. (1968) "Procedures for Capital Budgeting Under
Uncertainty," Industrial Management Review. Vol. 9: pp. 1-19.
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necessary condition for equilibrium in the capital market is that proj-
ects are risk-independent of the firm. There are cases however, when
portfolio effects must be considered. These effects are cited indetail
in Chapter II, pp. 67-86. Assuming projects that do not significantly
change the scale and/or risk characteristics of the firm and diversified
investors, Myers proves that asset-by-asset capital budgeting approaches
are on sound theoretical footing.

Using the above arguments as a basis, the capital budgeting
model developed in this paper will concentrate on the selectijon and
ranking of single projects. The implications of the model for portfo-

Tios will be addressed in Chapter V.

Independence versus Correlated Cash Flows

Ideally, a normative capital budgeting model would have suffi-
cient flexibility to incorporate all the dimensions of a project's re-
turn and risk. An underlying hypothesis of this study is that the as-
sumption of intertemporal independence, while simplifying the capital-
budgeting analysis, may lead to incorrect decisions that adversely af-
fect the value of the firm.

Very little research has been reported as to the impact of the
effects of correlation on capital-budgeting decisions. Initial work in
this area was reported in Bey and Singleton's3 paper on the effects of
autocorrelation in a portfolio context. Using a simulated environment

based on a Markov process, Bey and Singleton compared the efficient sets

3Bey, R. P. and Singleton, J. C. (1978) "Autocorrelated Cash
Flows and the Selection of a Portfolio of Capital Assets," Decision
Sciences. Vol. 9: pp. 640-657.
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generated while incorrectly assuming independence with the efficient
sets that incorporated the known autocorrelations. Using mean-variance
(E-V), second degree stochastic dominance (SSD), and mean-semivariance
(E-S) market models, the size of the efficient sets varied positively
with the degree of correlation. Certain models were found to be more
sensitive to changes in correlation, but Bey and Singleton were unable
to identify the exact level at which autocorrelation becomes critical.
In this portfolio context, ignoring the effects of autocorrelation could
lead to the selection of a nonoptimal portfolio.

Although Bey and Singleton's work is the first attempt at
identification of the effects of correlated cash flows, a number of
prominant researchers have incorporated autocorrelation into their
capital-budgeting models. Hillier" developed the probability distribu-
tion of net present values for three cases: independent cash flows,
perfect positive correlation, and the case where some cash flows were
independent and others perfectly correlated. Wagle® followed Hillier's
work closely and considered the case of imperfect correlation. Levy
and Sarnat® extended this work to include both autocorrelated and cross-

correlated cash flows.

“Hillier, F. S. (1963) "The Derivation of Probabilistic In-
formation for the Evaluation of Risky Investments," Management Sciences.
Vol. 9: pp. 443-457.

SWagle, B. (1967) "A Statistical Analysis of Risk in Capital
Investment Projects," Operational Research Quarterly. Vol. 18:
pp. 13-33.

6L evy, H. and Sarnat, M. (1970) "The Portfolio Analysis of
Multiperiod Capital Investment Under Conditions of Risk," Engineering
Economist. Vol. 16: pp. 1-19.




87

In all these cases, the risk measure developed is the variance
of the net present value distribution. The appropriateness of this dis-
counted risk measure will be discussed in detail in a later part of this
chapter.

In addition to incorporating autocorrelated cash flows into
capital-budgeting models, significant work has been reported on estima-
tion of correlation parameters. Hillier? used regression analysis to
estimate correlation coefficients. Initially, W, and W, are assumed to
be random variables with variances, o;2 and 0,2 and with a correlation
coefficient p. An additional assumption is that W, and W, follow a bi-
variate normal distribution. The expected value of W,, given the value

of Wy, is merely p times the value of W,. Symbolically,
E(Ha|H, = w) = E(Hy) + o(op/oy) (w-E(H))) (1)
which can be rewritten as

E(WalWy =w) - E(My) o(w-E(W;))
= (2)

02 g1

The above regression procedure is general in that even if the assumption
of normality does not hold, the expression still provides the best
linear estimate of E(W,|W,=w) according to the principle of least

squares.

7Hillier, F. S. (1963) pp. 443-457.
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Bussey and Stevens® used simulated cash flow patterns and Box
and Jenkins® time series analysis to estimate autocorrelation patterns.

Hypothesizing a first-order stationary autoregressive model of the form

where Yt = the t-th realization of the cash flow time series at time

t=0,1,...;
¢ = the one-period lag coefficient, |¢1]| < 13
e, = random error term with n = 0 and o2 = oz .

Inputs to the model (Y,) are simulated cash flow streams using the esti-

t
mator's values of optimistic, pessimistic, and most Tikely values as

parameters of the simulation model to generate pseudo random cash flows.
Using these inputs in a least squares regression results in the estimate
of one period lag coefficient, ¢;. This estimate then is used to compute

the autocorrelation matrix using

- |e-r|
pre - ¢1 (4)

where 1,8 = 1,2,3,...n are the periods of interest.

8Bussey, L. E. and Stevens, G. T. (1972) "Formulating Corre-
lated Cash Flow Streams," Engineering Economist. Vol. 18: pp. 1-30;
and (1975) "Reply to 'Comment on Formulating Correlated Cash Flow
Streams'," Engineering Economist. Vol. 20: pp. 215-221.

%Box, G. E. P., and Jenkins, G. M. (1970) Time Series analysis,
Forecasting and Control. San Francisco: Holden-Day, Inc.
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Gnanadesikan!® reviewed in detail the development of robust
estimates of location and dispersion parameters in a multivariate set-
ting. Estimates of covariance and correlation were emphasized, using
an elemental concept for estimating the covariance between two vari-

ables Y; and Y,:
COV(YI,Yz) = %{V&Y’(Yl'*'Yz) - var(Yl-Yz)}. (5)

Given the covariance estimate in Eq. 5, a corresponding robust

estimator of the correlation coefficient between Y; and Y, is

S12
rip = ———— (6)
(§11522)°

where Sjj is a robust estimator of the jth response.

The estimate of the correlation coefficient in Eq. 6 may not
necessarily lie in the admissable range [-1, +1]. A modification to en-
sure the estimate is in the valid range is to standardize the Yj's. Let

= (%)

COV(Z,,Z,) = 4{var(Z;+Z,) - var(Z;-Z,)} . (7)

Using the transformed variances and covariances, an estimate of the
correlation coefficient in the valid range can be obtained.
The works referenced above have shown the need for accommodat-

ing intertemporal correlation in capital-budgeting analysis. In

10Gnanadesikan, R. (1977) Methods for Statistical Data Analysis
of Multi-Variate Observations. New York: John Wiley and Sons.
Chapter 5.
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addition, relatively simple statistical techniques have been presented

to estimate the correlation matrix which along with estimates of the
periodic variances allows the decision maker to develop a variance-
covariance matrix to evaluate the risk of a project in an intertemporal,

multivariate perspective.

Multivariate Normal Distribution as an Underlying Structure

Capital-budgeting decisions refer to the commitment of current
resources in the hope of realizing future benefits over time. Signifi-
cant characteristics of this problem are the uncertainty associated with
the expenditure of current resources and the uncertainty associated with
the future benefits. The need to explicitly estimate and evaluate the
future benefits and their associated uncertainty has lead to the devel-
opment of many capital-budgeting models. Chapter II of this paper has
systematically reviewed the capital-budgeting literature.

Existing capital budgeting models fall into two broad cate-
gories: 1. Simple models with highly restrictive assumptions; 2. Gener-
al models that are difficult to implement. The model presented here
will attempt to reconcile and adapt these models to the end that the
model developed here is general while still resulting in simple decision
criteria. Because of the random nature of the future benefits, most
capital budgeting models are probabilistic in nature; i.e., the decision
maker hypothesizes a probability distributuion of future cash flows and
then develops analytical techniques to evaluate the probability distri-
bution.

The objective of this study is to report on a general probabi-

listic approach to real-asset selection that results in relatively
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simple measures to evaluate uncertain future benefits. A significant
difference between the model to be developed and the existing models is
a multi-dimensional perspective. This multi-dimensional view leads to
the study of Multivariate Statistical methods for an appropriate
solution.

Multivariate Statistical techniques are characterized by the
analysis of data that consist of sets of measurements, or multiple di-
mensions of a particular problem. The capital budgeting problem can be
viewed in this perspective with each period's cash flow as a dimension.
For example, let the firm be faced with a current outlay of Y dollars
for a project that will provide X dollars for p periods in the future.
The cash flow in each of p periods is a random variable to be estimated
and evaluated. A natural way to view this problem is that the cash flow
of each period can be represented by a‘probability distribution that
can be evaluated using weli-developed statistical techniques. Because
of dependencies or autocorrelation among the periodic cash flow esti-
mates, muitivariate statistical models provide an effective framework
for return-risk analysis. Consideration of these dependence structures
requires an analysis of all the dimensions of the problem simul taneously
as opposed to a period-by-period analysis. The effect of ignoring possi-
ble dependencies is that the decision maker may understate the risk of
the project.

The need for the analysis of dependent structures had lead to
the development of multivariate statistics. Initial developments in
the field were to study problems in genetics, biology, and anthropology.

The desire to develop hybrid plants, to classify populations into
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groups, and to evaluate test scores has lead to well-developed multi-
variate statistical tools. The problem of capital-budgeting is quite
simitar to the traditional multivariate applications with one signifi-
cant difference: the element of time. The problem of selecting assets
whose outcomes will not be known until some time in future requires the
multivariate measures to accommodate this additional dimension. For-
tunately, multivariate distributions can be easily transformed to in-

corporate this time element.

Assumption of Multivariate Normality
A crucial assumption to the development of this multivariate
capital-budgeting model is the assumption of normality. T
The univariate normal distribution arises frequently because the
effect studied is the sum of many independent random effects.
Similarly, the multivariate normal distribution often occurs be-
cause the multiple measurements are sums of small independent
effects. Just as the central limit theorem leads to the univariate
normal distribution for single variables, so does the general
central 1imit theorem for several variables lead to the multivar-
jate normal distribution.!!
Consider the capital budgeting problem in which an investment
Y results in cash flows during the next p years. Let Xi be a random
variable which takes on the value of the net cash flow during the ith
year, where i = 1,2,3,...p. The realized or observed cash flow in any
particular period will depend on many factors internal and external to
the firm. Some of these factors such as production and marketing de-
cisions are controlled or influenced by the firm. However, many other

factors relating to government policies or the state of the economy will

11Anderson, T..W. (1958) An Introduction to Multivariate
Statistical Analysis. New York: John Wiley and Sons. p. 2.
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force the firm to react rather than act. Since there are many possible
combinations of factors that influence the cash flow stream, the assump-
tion of a normal distribution of the cash flows via the central limit
theorem appears reasonable. In addition, the consideration of the time
element results in measures of merit (net present value and risk) that
are linear combinations of the cash flow variables, more specifically,
sums of random variables.

Thus, the central 1imit theorem for means, the Lindeberg-Levy
Theorem, is a major justification for the use of both the univariate and
multivariate normal distribution assumptions. If the estimated cash
flows come from any population with a finite variance, o2, then the

Timiting distribution of the statistic

X - q

7 =X}
/n(’z)

g
is standard normal. Consequently, the sample mean is asymptotically
normally distributed with mean, u, and variance 02/n. The multivariate
extension of the theorem is
Let Xxi,... be an independent random sample from a k dimensional
popu]at1on w1¥h f1n1te mean vector u and finite covariance matrix A;
then the vector n™7ig; (X- ) has a multinormal limiting d1str1but1on
with zero mean vector and covar1ance matrix A. Equivalently, the
vector X = (1/n)2X is asymptotically normally distributed with mean
vector u and covariance matrix (1/n)A.12
Further arguments for assuming multivariate normality can be
found in the finance literature. The assumption of multivariate normal

returns is important to the development of the two-parameter portfolio

12Theil, H. (1971) principles of Econometrics. New York: John
Wiley and Sons. pp. 367-370.
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model. Famal3 summarized the development of the "market model" focusing
on the joint probability distribution of security returns. Assuming
that the returns on individual securities are distributed normally, then
the return on a portfolio, which is simply a Tinear combination of
securities, is also normal.
This result implies that the joint distribution of the returns on
any two different portfolios is bivariate normal... the result also
implies that the return on any security i and the return on any
portfolio p is bivariate normal.... Bivariate normality of security
and portfolio returns is the foundation of our theoretical and
empirical work on the so-called 'market model' relationships be-
tween the returns on securities and the return on a ?ortfolio of
securities taken to be representative of the market.!"
Looking to empirical work on security prices, Fama states "our conclu-
sions that the distributions of monthly portfolio returns and security
returns are approximately normal is consisteht with the assumption that
the joint distribution of returns is multivariate normal."l5
The mean-variance security model has been adapted to the
capital-budgeting problem. This extension was reported in detail in
Chapter II. The purpose of this brief review here is to support the

multivariate approach by reporting previous multivariate applications

in the finance literature.

13Fama, E. F. (1976) Foundations of Finance. New York:
Basic Books.

1%1bid., pp. 65-66.
15Ibid., p. 65.
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Multivariate Mormal Distributionl®
The identification of multivariate measures of return and risk
follow quite logically from the multivariate normal distribution func-
tion, the properties of the distribution, and the moments of the dis-
tribution. The multivariate normal distribution is a generalization of
the univariate normal distribution to p dimensions.

The univariate normal density function can be written

f(x) = 1 e'l/zUZ(X-u)2 ) ke-%(X'u)'l/Oz(X-u). (8)
(2r) %

In matrix notation, the similarity between the univariate and multivar-
jate normal distributions is clear. The scalar variable x is replaced
by a vector x = [xl...xp]'; the scalar constant p is replaced by a vec-
tor of constants p = [ul...up]‘; and the positive constant 1/0? is re-
placed by the inverse of the positive definite variance-covariance
matrix

011 O12-+-01p

E- g21 0'22...0'2p (9)

fpl 0’p2. ..GpE)—

The squared term in the exponent (x-u)'l/0c2(x-u) is replaced by the

quadratic form

1o - 1
(x-u)'2” (x-w) " ) g (10)

18This presentation of the multivariate normal distribution
function, its properties and its moments follows closely that of Ander-
son (1958), Chapter 2.
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Therefore, the density of a p-variate normal distribution is

1

f(xl,...,xp) = Ke'%(éfg)lg- (x-2) (11)
where K > 0 is chosen so that the integral over the entire p-dimensional
Euclidean space of xl,...,xp = 1.0. To determine K, evaluate the multi-
ple integral of (Eq. 11) such that the integral over the p-dimensicnal

space is one. Evaluating

K‘j/ﬁn ..;//’& e'%(éfg)'zfl(éfﬂ)dxl...dxn s (12)

the result of the integration is that K = JL;I/(Zn)"/z , which results

in the multivariate normal density

-1 17

(x-u) . (13)

f seees =
(x1 Xp)

As a special case of the multivariate normal distribution, the
bivariate normal distribution is often studied because of the capability
to geometrically evaluate the two-variable space. The bivariate normal

density can be written explicitly as

(x1=u1)2  (X=np)?

-1
f(x1,xp) = 1 ijeg(l_DZ){ 012 + oy

210105 (1-p2)*

2p(x1-“1)(x2_“2)

5197 (14)

17For a detailed derivation of the multivariate normal density
see Anderson (1958) pp. 11-19. Also to differentiate between scalars
and vectors, the vector will be underlined.
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where My andcf are the mean and variance of Xi i=1,2, and p is the
correlation coefficient. The surface depicted by this equation is a
bell shaped mound; the shape of the mound is dependent on the value of

o and the ratio oy/0,. The customary way to depict the bivariate normal
surface is through the use of isodensity contours which are a cross sec-
tion of the surface made by a plane parallel to the (x;,x») plane. The
portion of the exponent of the bivariate density (Eq. 14) in braces,

Eq. 15 below,

(Xl'u1)2 (Xz'uz)z 20(X1'u1)(xz'U2)

af ¥ c% - 0107 (15)

when set equal to some positive constant, c identifies the isodensity
contour. Equation 15 represents an ellipse with the center at the point
(u1,up) which is called the centroid of the bivariate population. The
major and minor axes of the ellipse pass through the centroid and make

the following angle with the positive x;-axis:

45° when o1 = 09
8 = . (16)
290102
1/2Arctan-7;———§ whenao > oy
0’l - 0’2

If o > 0 the Tine contains the major axis, if o < 0 the minor axis, and
if p = 0 and oy = o, the ellipse reduces to a circle with all axes equal.

Angle 6 is a function of 0y, 0y, and p; therefore, by varying c one can
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generate a family of concentric ellipses, all with the same orienta-

tion.18
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Figure 10: Isodensity Contours as : varies.

The above bivariate description is readily generalized to
three or more dimensions (although only the three dimension ellipsoid

can be depicted geometrically.) Refer to the multivariate density,

(Eq. 13), the exponent

(x-u)'z"t(x-n) = ¢ (17)

is constant on ellipsoids for every positive value of ¢ in a p-dimension-

al Euclidean space. The centroid is determined by the mean vector, pn.

The shape and orientation of the ellipsoid are determined by £, and the

size (given £) is determined by c.

18Refer to FigurelO which depicts various isodensity contours
as p varies.

(.
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The isovariance ellipse in the bivariate case and the isovar-
iance ellipsoid for the multivariate case are a way in which one can
evaluate and compare variance-covariance matrices. For a given c level,
where the ¢ level corresponds to a chi-square variate with p degrees of
freedom, one can directly compare two or more populations using the
area/volume of a particular isovariance ellipse/ellipsoid as a surro-
gate measure of the variance-covariance structure. This technique will
be evaluated in a later part of this paper under the heading of evalua-
tion of risk in capital budgeting.

The importance of the multivariate normality assumption to the
capital budgeting problem relates to the need to include the time ele-
ment in the decision. The process of discounting transforms the multi-
variate cash flow stream to present time. Discounting is necessary to
make the various alternative projects comparable. A particularly at-
tractive property of the multivariate normal distribution is that linear
combinations of normal variates are also normally distributed. Anderson
states and proves the following theorem: "Let X (with p components) be
distributed according to N (u,Z), then

Y=ox (18)
is distributed according to N (Cu,CzC') for C nonsingular.“lg
This theorem is particularly relevant if theCmatrix represents a diag-
onal matrix of discount factors which results in the probability dis-

tribution of present values behaving according to the above cited theo-

rem. In addition, Anderson proves that "it is only the multivariate

'Anderson (1958) pp. 19-22.
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normal distribution that has the property that every linear combination
of variates is normally distributed."20
The moments of multivariate normal distributions are also a

generalization of the univariate normal. Just as the distribution law
of the univariate normal is N(u,02), the multivariate distribution law
is N(u,Z), where u is a p dimensional vector and £ is a p x p symmetric
positive semi-definite variance-covariance matrix. The mean vector and
variance-covariance matrix fully specifies the multivariate normal dis-
tribution. The multivariate capital budgeting model to be offered will
use the sum of the discounted mean cash flows as the measure of return;
while alternative representations of the variance-covariance structure

will be interpreted as surrogate risk measures.

Measurement/Evaluation of Return

The capital-budgeting problem is to select real assets such
that the value of the firm is maintained or increased. Any proposed
capital-budgeting criterion then must consider the impact of the deci-
sion on the value of the firm. The relationship between the value of
the firm and the capital-budgeting decision has been reviewed and docu-
mented in Chapter II. To identify appropriate measures of return, the
capital-budgeting decision will be studied first from the standpoint of

perfect certainty and perfect capital markets.2! Once reasonable

20Anderson (1958) pp. 19-22.

2lHaley, C. W. and Schall, L. D. (1973) The Theory of Financial
Decisions. New York: McGraw-Hill, Inc. Chapters 2 and 3 for a detailed
discussion of the implications of perfect certainty and perfect capital
markets on the capital-budgeting decisions.
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decision rules have been reported for the certain case, the assumption
of perfect certainty will be relaxed by considering the impact of ran-

dom cash flows.

Certain Cash Flows

Under conditions of perfect certainty and perfect capital mar-
kets, discounted-cash-flow models have been accepted as the appropridte
method to evaluate capital budgeting alternatives. The need to consider
the timing as well as the magnitude of the cash flows affords a clear
advantage to discounted-cash-flow models as opposed to ad hoc methods
such as the payback period and the accounting rate of return.

The discounted-cash-flow methods most often cited are the Net
Present Value (NPV) and the Internal Rate of Return (IRR). Although
both models result in consistent decisions for conventional cash flow
patterns,22 the NPV model is often preferred to the IRR model for capi-
tal budgeting.

reasons for the preference of NPV over IRR are: 1. As a ratio
measure, IRR does not reflect the scale of the project; 2. In the case
of unconventional cash flow patterns there can be more than one IRR or
cases where there is no unique real rate of return.23

Given the very real problem of computing meaningful rates of

return for many capital-budgeting projects, the remainder of this study

22Conventional cash flow patterns can be described as an out-
flow/inflow or a series of outflows/inflows followed by a series of in-
flows/outflows. The significant feature of a conventional pattern is
that there is at most one sign change.

23Bierman, H., Jr. and Smidt, S. (1975) The Capital Budgeting
Decision. New York: Macmillan. p. 51.
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will use extensions of the NPV model only.

The net present value of an investment project is

PV = X + X + ..
NPV = Xty Y aEasy o
X X
B B S S
(141;)(I+i5) ... (141 ) +=0 t
P T (1+5) (19)
j=0
where NPV = the net present value;
Xt = the cash flow at the end of period t;

-
i

the interest rate in period t;

the useful 1ife of the project.

o
1}

This general form allows for dif%erent interest rates in each period,
but in this certain environment the appropriate rate for each future
period is known at the time of the decision, t=o. Conventional capital-
budgeting practices often use a single discount rate rather than the
product in the denominator of Eq. 19. The rationale for the use of a
single rate is either that the periodic rates are equal or that the
single rate represents an equivalent formulation of the varying rates.
In a certain world, little controversy attends the choice of
the discount rate or with the following present value decision rules.
PV Rule 1: Accept projects where the net present value, NPV > 0;
Indifferent where NPV = 0; and reject if NPV < 0.
PV Rule 2: If projects or combinations of projects are mutually
exclusive, accept the project with the largest net

present value.
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Use of these decision rules in the case of perfect certainty and perfect
capital markets ensures that the capital budgeting decision criteria are

consistent with the goal of the firm to maximize shareholder wealth.

Uncertain Cash Flows
Relaxing the assumption of perfect certainty requires the ex-

plicit consideration of the nature of the uncertainty. The uncertain
elements associated with the capital budgeting decision are the uncer-
tainty as to:

1.) the future outcomes or periodic cash flows;

2.) the appropriate discount rate; and

3.) the useful 1ife of the project.
As the main thrust of this study is the development of scalar multi-
variate risk measures that explicitly consider autocorrelated cash
flows, the appropriate discount rates and the project 1ives are assumed
to be known. This idealized uncertainty is structured to direct at-
tention toward the primary objective of this paper. The issues of the
choice of discount rates, the uncertainty as to future rates, and the
uncertainty as to project 1ife are best 1eft for future research.

Uncertainty as to the future cash flow streams leads to a prob-

abilistic approach to capital budgeting, where the future cash flows are
viewed as random variables following some known or assumed probability
distribution. The idea of parametric decision criteria based on return
and risk leads to the analysis of the parameters/moments of the proba-
bility distribution. The arguments leading to the assumption of multi-

variate normally distributed cash flows have been discussed in detail in
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an earlier part of this study. Therefore, the remainder of this chapter
will relate to the presentation of measures of return and risk when the
cash flow stream is modeled using the multivariate normal distribution.

Critical to the application of a1l capital budgeting models is
the assumption that the analyst can estimate the future cash flows, or
the probability distribution of future cash flows, or the relevant
moments of the probability distribution. The difficulties of providing
inputs to capital budgeting models are significant. The lack of his-
torical data to use as the basis for forecasts of future cash flows has
been recognized and discussed in the literature. Remedies suggested
have included the use of check 1ists and flow charts, simulation studies,
and the development of trained subjective estimators. In the case where
the multivariate normal distribution is assumed, the analyst must be
able to estimate the expected value of estimated mean cash flow for
each period, the estimated variance of the net cash flow for each period,
and the estimated autocorrelation among the periodic cash flows. Ob-
viously, the performance of any model is dependent upon the quality of
the estimates. In Chapter IV, the performance of alternative risk mea-
sures is evaluated using simple examples. Even with this testing, the
practical use of any model can only be evaluated on real capital budget-
ing problems using real data. This shortcoming is not unique to this
study.

As the purpose of this study is the theoretical analysis of
scalar multivariate risk measures, an important assumption is that the
analyst can make realistic estimates of the parameters of the multivar-

iate normally distributed cash flows. In Chapter V, under "Suggestions
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for Further Research", the problems of data estimation and sampling
issues are addressed.

In the multivariate normal approach to capital-budgeting, the
necessary parameter estimates are the estimated mean vector, g and the
estimated variance-covariance matrix, é, To account for the timing of
the cash flows, the distribution characterized by N(ﬁgi) is transformed
to present time using a diagonal matrix of present value factors, C
which results in the time transformed cash flow distribution, N(Cu,CEC).
This time-adjusted distribution is then evaluated in terms of return and
risk.

The proposed measure of return is simply the expected net pres-

ent value, E(NPV). The E(NPV) is a linear combination of the present

value factors and the estimated cash flow mean vector. More specifical-

1y,
E(PV) = Cy, (20)
where C is a p x p diagonal matrix of discount rates and
u is a p x 1 vector of estimated expected cash flows,
explicitly
B - - -
/(1) i
Q'—' 1/(1+1)2 and _]._]_= ]32 s (21)

L 1/(1+1')p_‘ _up_
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with
- 1 -

/(1+7)
E(P ) = uz/(l+1-)2 . (22)

L.up/(1+1')p

Then the expected net present value, E(NPV) is equal to the sum of the
elements in the E(PV) vector plus or minus the expected cash flow at

time zero. That is,
N . i
E(NPV) = 1 + “1/(1+j) + u2/(1+i)2 + ..t P/(1+1)p . (23)

The most controversial aspect of the above measure of return
(Eq. 23) is the selection of the appropriate C matrix, i.e., the ap-
propriate present value factors to be used. The discounting mechanism
above is designed to account only for the difference in the timing of
the cash flows. The literature relating to capital budgeting under un-
certainty offers three alternative choices for the discount rate:

1.) cost of capital, 2.) required rate of return, and 3.) risk-free
rate measuring the time value of money.

The weighted average cost of capital (WACC) is often used as
the discount rate. The WACC approach has been criticized due to the re-
quired assumptions that the.risk of the project is exactly equal to that
of the firm acquiring the project and that the capital structure and
dividend policy remain constant. In addition, the components of the

WACC, the cost of debt and the cost of equity, include risk premiums
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for the risk assessed by lenders and stockholders, The use of a risk-
adjusted rate to adjust for timing results in a double-counting of
risk.2%

The required rate of return, as defined by the "market model",
'is defined as that rate of return a project must earn to maintain share-
holder wealth. Once again, this required rate inc1ude§ both the time
value of money and a market determined risk premium. Due to the strict
assumptions of the Capital Asset Pricing model and the single-period
nature of the model, the required rate of return has questionable
validity because of market imperfections associated with real asset
selection.

The use of the risk-free rate as the time value of money dis-
count rate has wide support in the finance literature.2> The choice of
the risk-free rate is supported by capital market theory. If the as-
sumption of perfect or nearly perfect capital markets is valid, then
the risk-free rate identifies the reasonable opportunity cost of funds
expended in the capital budget. Formulation of Eqs. 20-23 does not re-
quire that the risk-free rate be constant over the 1ife of the project.

In fact, the analyst often must estimate relevant risk-free rates for

24See the discussion in Chapter II for a detailed anlaysis of
the pitfalls of using risk-adjusted discount rates. Also, see Rubin-
stein, M. (1973), pp. 167-180 for additional discussion of the biases
associated with the cost of.capital approach to.¢apital: budgeting.

25For example, Lintner, J. (1965) "The Valuation of Risk As-
sets and the Selection of Risky Investments in Stock Portfolios and
Capital Budgets," Review of Economics and Statistics. Vol. 49: pp. 13-
37. Robichek, A. A. and Myers, S. C. (1965) optimal Financing Decisions.
Englewood C1iffs, New Jersey: Prentice-Hall. Van Horne, J. (1966)
"Capital-Budgeting Decisions Involving Combinations of Risky Invest-
ments," Management Science. Vol. 13: pp. 84-92.
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future time periods. The uncertainty as to the future risk-free rates,
of course, adds an additional dimension to the problem of capital bud-
geting under uncertainty. Given the previous discussion, the elements
of the C matrix used in Eq. 23 can be viewed as the expected time value

of money discount rates for period t.

Measurement/Evaluation of Risk

The use of the Expected Net Present Value, E(NPV) has been
readily accepted as an adequate measure of the return on an investment
or capital-budgeting project. The appropriate measure of risk finds
little agreement in the literature. In fact, considerable controversy
exists in terms of both the definition of risk and to the subsequent
measurement of risk consistent with a definition. Chapter II of this
study systematically reviewed the significant alternate approaches to
the evaluation of risky assets. Although many different risk-evaluation
models have been presented in the literature, most if not ail current
techniques follow either the portfolio approach or assume intertemporal
independent cash flows. Those models that do not follow either of the
above patterns have been found to be too general to be useful in prac-
tical capital-budgeting situations.26

To 1imit the scope of a complex problem, two assumptions have

~been made: 1.) That asset-by-asset selection techniques are appropriate

26The Time-State-Prefence (TSP) model of Myers, S. C. (1968)
pp. 1-19, is an example of a general model that does not use either the
portfolio approach or assume independent intertemporal cash flows. The
TSP approach is general in that the model will accommodate any possible
distribution of cash flows; unfortunately, the requirement to specify
the state-contingent claims for all possible future states of nature
presents application problems to the analyst.




109

for the analysis of real assets, and 2.) That the future cash flow
stream can be modeled using the multivariate normal distribution. These
assumptions, then, define risk as the uncertainty of the future cash
flows. Risk is viewed as the variability of future outcomes. In this
sense, the total variability of the returns is .the measure to be
studied. In a probabilistic sense, risk can then be expressed as the
probability of not achieving the expected return. Using this probabi-
listic approach, the appropriate risk measure depends on the probability
distribution of the cash flows. For example, if the univariate normal
distribution is assumed, the variability of return can be measured by
either the variance (o2) or the standard deviation (o). Moreover, the
coefficient of variation (CV = 9/E(v)) can be used to measure the rela-
tive risk/return properties of a project. The CV measures the risk per
dollar return and is often used to compare two or more investment
projects.

For the assumption of multivariate normality, similar test and
ranking procedures can be used. The multivariate extension of the uni-
variate variance is the p x p variance-covariance matrix, where p x p
refers to the number of parameters or dimensions. In this capital
budgeting application, p refers to the number of periodic cash flows.
The remainder of this paper studies the variance-covariance matrix and
related statistical measures to incorporate multivariate risk analysis

into the capital-budgeting decision.
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Variance-Covariance Matrix

The variance-covariance matrix is a multivariate analogue to
the univariate variance. As such, the variance-covariance matrix mea-
sures the dispersion about the centroid of the multivariate normal dis-
tribution. The amount of dispersion depends on two factors: 1.) the
variance of each dimension, and 2.) the correlation between dimensions.
These factors become more obvious when the variance-covariance matrix
(£) is decomposed into the matrix product of the standard deviation
diagonal matrix and the symmetric correlation matrix. Let B represent
the diagonal standard deviation matrix, and let R represent the posi-

tive definite correlation matrix. Then

z = BRB . (24)
More specifically,
_0 ag (¢ g N _0' 2 g10 010 010 T
11 912 013..-01p 1 192P12 0103P13-.-010pP1p
021 022 023 . 0201021 02° 0203023
L= |o3] 032 033 . |Or | 0301p31 O302p3p 032 - (25)
Ogle « + « « @ 00101 " op?
P PR PP P ]
and the decomposition is
(o1 111 e12013..001p] [01 ]
92 pa1 1 P23 . 92
2=BRB= o3 P31 P32 1 . o3 - (26)
. . -
o] 0 . 1 P
_ p_ L D1 - L =
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The above decomposition permits the decision maker the opportunity to
analyze the components of the project's variability in terms of the
standard deviations and correlation.

The total variation is affected by the timing and the magnitude
of the periodic standard deviations. The effect of timing is discussed
in detail in Chapter IV. The total variation or dispersion increase as
tﬁe o elements increase. A risk-averse decision maker prefers,
ceteris paribus, smaller standard deviations.

The total variation is also dependent upon the correlation
structure. The interperiod correlations range from -1 to +1. The major
Timitation on the individual correlation coefficients is that the
variance-covariance matrix must be positive semi-definite; i.e., the
determinant of the variance-covariance matrix must be greater than or
equal to zero. Computing the determinant quickly shows whether the
estimated correlation structure results in a feasible variance-covari-
ance matrix.2? When analyzing a time series such as a cash flow stream,
a positive definite variance-covariance also insures that if the underly-
ing distribution is multivariate normal then the stochastic process is
stationary. Stationarity provides a simple stochastic structure in
that a stationary time series can be located in the neighborhood of its
mean value. Although the series may vary significantly, it will return
repeatedly to the mean value. Many economic time series display no af-

finity for a mean value; but fortunately, the differences in many

27Fprom the definition of the non-degenerate multivariate nor-
mal distribution, the variance-covariance matrix must be positive defi-
nite for the existence of the multivariate normal density. See Anderson,
T. W. (1958) p. 17. By including the semi-definite case where det z=0,
the degenerate case of a singular g matrixwill be addressed in this study.
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nonstationary time series are stationary. The property of stationarity
is important to the development of simple models in that a stationary
time series can be meaningfully modeled using means, variances, and
the autocorrelation function.28

For capital-budgeting decisions, a reasonable assumption is
that the interperiod correlations will vary from independence (p=0)2%
to perfect positive correlation (p = +1). The rationale for the as-
sumption of this non-symmetric correlation of the periodic cash flows in
the capital budgeting problem relates to the sources of the interperiod
correlations. Most project cash flows will be related to general move-
ments in the economy. While many project returns vary positively with
the economy, some firms and projects move contra-cyclically. The
assumption of positive interperiod correlations does not preclude con-
tra-cyclical behavior. What this assumption does reject is the viclent
plus to minus, minus to plus swings in the cash flow stream that are
implied by negative autocorrelations.3® Negative interperiod correla-
tions mean that high/low cash flows in a particular period would be
followed by low/high cash flows in subsequent periods. Though cash

flows for many projects vary significantly, the case of negative

280x, G. E. P. and Jenkins, G. M. (1976) pp. 23-30.

29For normal distributions, zero correlation implies inde-
pendence.

30Box, G. E. P. and Jenkins, G. M. (1976) p. 57 and p. 62 for
an example of the oscillating effect with negative autocorrelations.
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interperiod correlations will not be discussed further in this
chapter.3! In the independent case, total variation is reflected by
the variance diagonal matrix alone, since the correlation matrix is the
identity matrix. Using Eq. 27, the matrix £ is the product of the
standard deviation diagonal matrices which results in a diagonal matrix.
of variances. With independence between periodic cash flows, the mul-
tivariate normal distribution collapses into the sum of independent
univariate normal distributions which can be evaluated using well-
known univariate statistical methods. In the other boundary case to

be considered, perfect positive correlation, the total variation is
represented by the sum of squares and cross-products matrix, SSCP.
Perfect positive correlation results in a degenerate multivariate dis-
tribution such that the correlation matrix is a matrix of all ones and
is singular. Degenerate cases also exist if any rows or columns of

the correlation matrix are identical or are linear combinations. These
degeneracy conditions may very well be found in capital-budgeting
problems. The degenerate cases require additional special analysis

and are discussed in detail in a later part of this study.

31

When analyzing groups of assets or portfolios, the case of
negative correlation between assets becomes more important. The op-
timal choice in portfolio selection problems is to find and acquire
negatively correlated projects to maximize the effects of diversifica-
tion. Since the purpose of this paper is to study individual project
selection techniques, portfolio effects among projects will not be
addressed. In the case of asset-by-asset selection the intertemporal
or interperiod correlation is of primary interest. Chapter V will
address the extension of the model to consider the standard single-
period portfolio problem. In this application, both positive and
negative correlations between projects will be discussed.
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Recapping, the total variation is a function of both the stan-
dard deviations and the intertemporal correlation: with total variation
increasing as the periodic variance increases and also increasing as the

correlation increases positively from independence to perfect positive

correlation.

Estimates of the population variance-covariance matrix

In capital-budgeting problems, the population variance-covari-
ance matrix‘may not be known. In fact, since only a single realization
from the distribution will be observed, the ex-post distribution of the
cash flows will be difficult to evaluate. This shortage of data is a
common problem with economic time series applications. To evaluate risk
using a multivariate perspective, an estimated variance-covariance ma-
trix must be determined.

The estimated variance-covariance matrix, £, can be obtained
either by using conditional probability distributions of the cash flow
stream or by developing a computer simulation model. The estimate £ dif-
fers from the classical sample variance-covariance matrix S, in that £
is not a summary measure of random sample data, but represents a sample
of size one. The importance of this distinction between £ and S is that
classical significance tests and confidence intervals using £ are not ap-
propriate. The dependencies of the cash flow estimates used in either the
conditional probability or the simulation approach result in the analysis
"of such data by classical multivariate procedures will lead to spurious-

1y short confidence intervals and overly significant tests of hypothesis."32

32Morrison, D. F. (1967) Multivariate Statistical Methods, 2nd
ed. New York: McGraw-Hill Book Co. p. 98.
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Some geometric relationships of concentration ellipsoids and the vari-

ance-covariance matrix

The bivariate normal distribution is often studied to gain in-
sight into the higher dimensional multivariate normal distributions. In
the bivariate case, the behavior of the variance-covariance structure
can be depicted geometrically. Although graphical representation is not
possible, the results can be extended to tHe more general p-variate
cases. '

The bivariate normal distribution was discussed in detail in an
earlier part of this study (see pp. 97 - 99); the bivariate density func-

tion (Eq. 14) was reported to be constant on ellipsoids. Or,
(X-u) = ¢C (27)

for every positive value of C in a p-dimensional Euclidean space. The
shape and orientation of the ellipsoids are determined by the variance-
covariance structure and the size of the ellipsoids (for a given z) are
detérmined by C.

The variance-covariance matrix may be evaluated in terms of
volumes of the isovariance ellipsoid. Given a cash flow stream
X1:X05 oun Xp, the probability that this vector observation will fall
inside the ellipsoid X};;lzfxzp is 1-a, where o is the probability level
of interest. For example, in the bivariate case, let « = 0.10, then
the 90 percent ellipse (that ellipse inside or on which 90 percent of
the population lies) is specified by evaluating

X'z7!X = 4.605 (28)
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where 4.605 is the value of a chi-square variate with 2 degrees of
freedom. 33

Since the shape and orientation of the isovariance ellipse is
determined by the £ matrix, different variance-covariance structures
may be compared to the volumes of the ellipses or ellipsoids. Suppose
the analyst has two, two-period projects to evaluate in terms of return
and risk. Let the NPV be a proper measure of return and let the two

projects' variance-covariance matrices be

25 15 25 0
21 = and I, (29)
15 25 0 25
8
i 2 1 I ‘1
3 :
2 g -
AN, o 15,000 ?E‘:l:ﬁ%
;(l:\l. o sicw; - 3,00
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Flgore [1a:  Kinety Percent (131918 for oyooy ond pyye.6

33Tatsuoka, M. M. (1971) pp. 65-73.
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Project 1 has o, = 05 = 5 and p;,= 0.6, while project 2 has ¢; =0, = 5
~with independence between periods. The 90 percent isovariance ellipses
for each structure are shown above in Figure 11. Note that the major
axis for I; lies along the 45° angle with the horizontal axis while &,
plots as a circle sincep;2= 0. One way to directly compare these two
structures is to compute and evaluate the area of the ellipse/circle.
(In three or more dimensions rather thantwo, volumes or hypervolumes are
compared). From Anderson3* the volume of the isovariance ellipsoid

generated from the exponent of the multivariate normal distribution is

P
Volume = C(p)]z|x2, (o) '2/p (30)
p
where C(p) = Zzp;2)= the surface area of a sphere of unit radius in p di-
("2
mensions.

In the above example with p = 2, the area is easily computed as

Area/Volume = ?%%7121%[x§(u)]/2 (31)

Evaluating Eq. 31 for the 90 percent isovariance ellipse and noting that

r{1) is equal to one,35 then

Area/Volume = 2r|3|2.605/2 = =|z|%.60L. (32)

Then for the example projects, V, = 289.0894 and V, = 361.3617. Relat-

ing area/volume to risk measurement, project 2 would be viewed

34Anderson, T. W. (1958) p. 170.

35|idder, D. V. (1961) advanced Calculus, Englewood Cliffs,
New Jersey: Prentice Hall. p. 36.
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intuitively as less risky than project 1 because variances are equal for
both and project 2 exhibits the smaller intertemporal correlation. Then
for a given probability level, the interpretation of the volume of the
isovariance ellipse is that the larger the area/volume, the smaller the
risk. To consistently apply this concept, differences in timing and
scale must be accommodated. In the example given, timing is not a sig-
nificant factor nor is the scale, however, in most capital budgeting
problems, differences in the timing and scale of the project cash flows
will affect the use of the volume of the isovariance ellipsoid as an
effective multivariate risk measure. The differences in the timing
of the cash flows are accommodated by transforming the probability dis-
tribution to present time. To account for differences in scale, multi-
variate analogues to the coefficient of variation (coefficient of vari-
ation = d/,) are developed. The transformation to present time and mul-
tivariate coefficients of variation are discussed in detail in Chapter
Iv.

The volume of the isovariance ellipsoid has been shown to give
a geometric interpretation to the variance-covariance matrix. Volume
of the ellipsoid is directly related to another multivariate risk
measure, the Generalized Variance, which is offered as a scalar multi-
variate analogue to the univariate variance. The Generalized Variance
is also a measure of distance or volume and is discussed in detail in
a later part of this chapter.

Analysis of eigenvalues and eigenvectors provide additional in-
sights to the relationships between the concentration ellipsoids and the

variance-covariance matrix. The eigenvalues of a p x p matrix 3 are the
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solution to the determinantal equation
|z-al] = 0. (33)

The determinant is a pth-degree polynomial in A, and thus £ has just

p eigenva]ue;. Associated with every eigenvélue A of the matrix £ is
an eigenvector X5 whose elements satisfy the homogeneous system of
equations

(Z-A,10x; = 0.

By the definition of the eigenvalue, the determinant of the system
vanishes, and a nontrivial solution x. always exists.3®

Eigenvalues and eigenvectors are used in many multivariate
statistical procedures. The purpose of this brief introduction is to
gain additional insights to the relationships between the concentration
ellipsoids of the multivariate normal distribution and the variance-
cavariance matrix.

If the eigenvalues of I are all different, then the correspond-
ing eigenvectors are all orthogonal. In this case, the positions of the
axes of the isodensity ellipsoid are uniquely specified by p mutually
perpendicular axes. The largest eigenvalue identifies the first princi-
pal axis of a particular ellipsoid. The coordinates specifying the
principal axis are proportional to the elements of the eigenvector of I
that correspond to the largest eigenvalue. The squared length of the
principal axis for a given C is equal to 4A1C, where A1 is the largest
eigenvalue of Z. The next longest axis of the ellipsoid has an orienta-

tion given by the elements of the vector of the second largest

36Morrison, D. F. (1967) pp. 64-65.
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eigenvalue. This process continues until the equations of the p new
axes have been determined. If two successive eigenvalues are equal,
the ellipsoid is circular through the plane generated by the correspond-
ing eigenvectors and the position of the axes in the circle are not
unique. 37
The singular - or degenerate - multivariate normal distribu-

tion may be interprefed geometrically. The degenerate multivariate nor-
mal distribution is identified when one or more of the eigenvalues of %
are equal to zero. In addition, if any eigenvalues are negative, the
variance-covariance matrix is not positive semi-definite and the matrix
£ is not a feasible variance-covariance matrix. Anderson38 describes
the degenerate multivariate normal distribution as

A singular distribution is a distribution in p-space which is con-

centrated on a lower dimensional set; that is, the probability as-

sociated with any set not intersecting the given set is zero. In

the case of the singular normal distribution the mass is concen-

trated on a given linear set that is, the intersection as a number

of (p-1)-dimensional hyperplanes.
Viewing the isovariance ellipsoid for the trivariate case, the variance-
covariance structure is depicted by the bivariate ellipse or by the uni-
variate density depending on the degree of singularity. Degenerate
multivariate normal distributions occur in capital-budgeting problems
when the future cash flows are perfectly correlated. Identification of

these degenerate cases are important because of their effect on scalar

multivariate risk measures.

37Morrison, D. F. (1967) pp. 87-88, Giri, N. C. (1977) pp.
59-61.

38Anderson, T. W. (1958) p. 25.
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Need for scalar risk measures

Financial decision-makers are often faced with alternative in-
vestment opportunities that must be evaluated. In many situations, the
analyst will have to choose between mutually exclusive alternatives. In
situations where capital is rationed, the analyst is faced with compet-
ing uses for the capital investment dollars. In either case, project
selection requires the ranking of alternmative investment choices in
terms of some measure of "attractiveness." Traditional finance theory,
which assumes risk-aversion, equates "more attractive" with more return
and less risk. The objective of this study is to present and evaluate
alternative risk measures that can be used in the ranking process.
Ideally, there is a need to develop ranking and selection criteria that
are in some sense "optimal". Optimality implies that the criterion
chosen:

1. Is reasonable and has intuitive appeal to the analyst;
2. Uses all available information;

3. Can be applied across a wide range of problems; and,
4. Is theoretically supportabile.

Basic assumptions in this study were: 1) Return and risk are
appropriate decision criteria; 2) Capital-budgeting cash flow streams
can be modeled with the multivariate normal distribution; and, 3) Timing
of cash flows is an improtant consideration in the decision. Given
these assumptions, appropriate ordering and selection techniques use
the estimated mean vector (1) of the cash flows, the estimated variance-
covariance matrix (£), and the diagonal matrix of discount factors (C) as

the bases for ordering the unknown populations in terms of returnand risk.




122

Because of the difficulty in directly comparing vectors and
matrices, the mean vector and variance-covariance matrix are represented
by scalar variables that maintain the information content of the re-
spective vector and matrix. In the case of the mean vector, the sum

of the discounted means

[ =

(

C.i:)s

1
the Net Present Value, has been previously discussed in detail and is
readily accepted in the finance literature as an appropriate measure

of project return. The remaining part of this chapter presents alter-
native ways of representing the variance-covariance matrix (risk) as a
scalar. In a previous section of this study, the isovariance ellipse/
ellipsoid has been shown to be the geometric representation of the var-
iance-covariance matrix of a multivariate normal distribution. The
area/volume of this ellipse/ellipsoid for a particular probability Tevel
has been shown to be a scalar measure of the dispersion structure.

Two additional scalar risk measures are presented and evaluated: the
familiar variance of the net present value and the determinant of the
variance-covariance matrix (Wilk's Generalized Variance). The General-
ized Variance (GV) is shown to be a natural multivariate generalization
of the univariate variance. Also GV is shown to be a measure that is
consistent with and proportional to the volume of the isovariance el-
1ipse that portrays the variance-covariance structure while being a

more simple measure to compute, interpret, and evaluate.
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Discounted Variance-Covariance Matrix

Throughout this study, probabilistic approaches to project
evaluation have been emphasized. The revfew of finance literature in
Chapter II identifies many alternative methods of accommodating risk
analysis in the capital-budgeting decision. One such technique, the
probability distribution of net present values, is discussed in detail
because this method explicitly considers the timing and the risk of
the cash flow stream.

Assuming normally distributed cash flows, Hillier3? developed
discounted risk measures, the variance and the standard deviation of the
net present value. His initial work concentrated on three special
cases: 1) the cash flows are intertemporally independent; 2) the cash
flows are perfectly correlated; and 3) an intermediate case where some
flows are independent while other flows are perfectly correlated. Ex-
tending this initial work, Wagle“® and Hillier*!, 1in a later mono-
graph, developed the more general case where the cash flow streams
are less than perfectly correlated. Here, the variance of the net pres-
ent value V(NPV) is

N o2 N

_ t %, t'
V(NPV) = ¢ - T3 +21z %I (34)
t=0(1+1) t#t (1+)

3%4i1lier, F. S. (1963) pp. 443-457.
“OWagle, B. (1967) pp. 13-33.

414i1lier, F. S. (1969) The Evaluation of Risky Interrelated
Investments. Amsterdam: North-Holland Pub. Co.
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where

)
n

variance of the cash flow in period t,

covariance between the cash flows in periods t and t',

risk-free rate of interest.

—l o
n

The variance of the net present value may be presented more
compactly and is easier to interpret when matrix notation is used.
Given a p x p estimated variance-covariance matrix (g) and a p x 1 vec-
tor of present value factors (C) then the variance of the net present

value may be expressed compactly as
V(NPV) = C'EC. (35)

Using vector/matrix multiplication, the p x p variance-covariance matrix
is pre-multiplied by a 1 x p row vector and post-multiplied by a p x 1
column vector to arrive at the scalar variance of the net present value.

For example, a project of p cash flows

vvey) = [Yaei)asinz. Y @] onr orge.. orp| | (1)
021 922 , 1/(}'”')2 . (36)

PP E/(}H)i
Discounting the variance-covariance matrix results in a scalar risk mea-
sure that reflects the variability, the interperiod correlation, and the
timing of the cash flows. An alternate matrix formulation of the vari-
ance of the net present value lends considerable insight into the inter-
pretation and evaluation of the V(NPV) as an appropriate scalar multi-

variate risk measure.
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The alternate formulation relates to the vector of discount
rates used in Eqs. 35 and 36. Rather than presenting the discount rates
as a p x 1 vector, discount factors may be organized into a p x p diag-

onal matrix,

1/ (1+1)

1/(1+_i)2

1/(1+4)P

Then, the transformation of the variance-covariance matrix to present

time becomes the discounted variance-covariance matrix (DVC) where

ove =cfc (38)
More specifically,
Y (1+4) o1 912 I1pl |1/ (144) . (39)
ove | ()2 °21 f22 (i)
Y{+i)P| |1 -+ Topp Y ()P
i 1L 1 L i

After the matrix multipiication,

) _
iy ey L TP )P
c5.9.1/(14_1.)3 022/(1+i)” .
DVC = . o : . (40)
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Referring to Eq. 40, the V(NPV) is determined by summing all elements
of the discounted variance-covariance matrix. Algebraically, let aij
represent the element of the ith row and jth column, then

p
V(NPY) = ¢ a5
i,j=1 M

(41)
Using the DVC formulation, Eq. 40, all variance elements are discounted
at the power of 2t while the exponent of the discount rate for covar-
jance elements is raised to the t+t' power; where t and t' represent
the subscripts of a particular covariance element of the variance-co-
variance matrix. For example, the discount factor for the covariance
between the cash flows in periods 3 and 5 is 1/(1+1')8.

With independent cash flows, the V(NPV) is the sum of the diag-
onal elements of the discounted variance-covariance matrix. In this
special case, the V(NPV) is equal to the trace of the DVC matrix. Ap-
pealing properties of the trace are that: 1.) the trace is a scalar

representation of a matrix; and 2.) the trace is invariant when the

axes of the distribution are transformed.

Geometric interpretation of the discounted variance-covariance matrix

The discounted variance-covariance matrix results from the
1inear combination of the original variance-covariance structure and
the matrix of discount factors. Assuming multivariate normality and
recognizing the invariance property of linear combinations of normal
variates, this transformation of the cash flow stream to present time
preserves the relative return and risk structure to allow comparisons

between alternative capital budgeting projects. The impact of this
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transformation to present time can be readily interpreted geometrically
using the isovariance ellipse in the bivariate case. UWhen the original
cash flows are distributed N(ﬁ3§) then the present time transformed
flows are distributed N{Cu, CIC). The effect of this transformation is
to adjust the centroid of the isovariance ellipse to present values and
to compress the size of the ellipse while rotating the axes. Figure 12a
below shows the 90 percent ellipse for a sample project with p,=15,
1,=20, 31=6,=5, andp;,=6. Figure 12bshows the effects of transforming
the bivariate normal cash flows to present time using a 10 percent risk-
free rate.

Discounting reduces the size of the isovariance ellipse and
also rotates the angle that the major axis makes with the X -axis. This
axis rotation cccurs because the slope of the major-axis is determined
by the variance-covariance structufe. Viewing the original pre-trans-
formed standard deviations G,=6,=5, the major-axis makes a 45° angle
with the X;-axis. After discounting, the transformed variance-covari-

ance matrix is
20.66 11.27
DVC = (42)
11.27 17.08

Transforming the cash flow stream to present time results in g, # g, .

With o; > oo, the angle between the major axis of the ellipse and the

X{= axis is
2p6‘16’2 (43)
Ang]e 8 =% Arctan m‘f
1 .92
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Figure 12a: Ninety Percant Ellipse Before Discounting
Figure 12b: Minety Percent Ellipse After Discounting
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For the example problem, discounting at a 10 percent risk-free
rate causes the major-axis of the isovariance ellipse to rotate clock-
wise to the point where angle o is approximately equal to 40.5°. When
the variances are not equal, the slope of the major axis of the iso-
variance ellipse is determined by three factors: 1) the difference be-
tween the variances, 2) the size of the discount rates, and 3) the de-
gree of autocorrelation. To better understand the geometric implica-
tions of discounting the variance-covariance matrix and the impact of
autocorrelated cash flows, the effects of each factor may best be
identified by allowing one factor to vary and holding the other factors
constant. Holding the degree of autocorrelation constant at p;,=.6 and
keeping G,=5,=5, then the effect of increasing the discount rate is to
cause the major-axis of the isovariance ellipse to rotate clockwise
from 45° when the discount rate is zero to approximately 34.7° when
the discount rate is 25 percent. Higher discount rates will result in
greater rotation. In terms of the bivariate normal hill mass, trans-
forming the cash flows to present time twists the hill mass. Higher
discount rates result in a Targer twist.

The slope of the major axis of the isovariance ellipse is also
affected by different autocorrelation patterns. Holding the discount
rate constant at 10 percent and varying the correlation from zero to
plus one, the slope increases; i.e., angle 8 increases as the slope ro-
tates counter-clockwise in response to higher correlation. For inde-
pendent cash flows, the major-axis is not unique (independent cash
flows result in an isovariance circle in the bivariate case), therefore,

angle 8 for p;,=0 is not defined. However, increasing the
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autocorrelation from +.1 to +1.0 results in angle g increasing from ap-
proximately 23.2° for p=.1 to approximately 42.8° for ,=1.0.

In addition to the axis rotation in response to discounting,
the impact of the time transformation may be observed by comparing the
area of the isovariance ellipses. Equation 31, p. 118, computes the
area/volume of the isovariance ellipse/ellipsoid. Using the same ex-
ample cash flow structure, the area of the 90 percent non-discounted
isovariance ellipse is 289.09; Whi]e the area of the time transformed
ellipse for a 10 percent discount rate is 217.23. Comparing the area
of the ellipses shows that discounting the variance-covariance matrix
compresses the isovariance ellipse. The higher the discount rate, the
smaller is the area of the ellipse. In terms of the bivariate normal
density surface, discounting has been shown to twist and compress the
bivariate surface. The higher the discount rate the greater is the

distortion.

Variance of the net present value

The variance of the net present value, V(NPV), has wide ac-
ceptance in the finance literature as a scalar risk measure that in-
corporates both the time value of money and autocorrelated cash flows.
Traditional development of this risk measure emphasized the application
of the mathematical expectation operator as the primary justification
for its use. Effects of the discounting process when the cash flows ex-
hibit interperiod correlations was 1ittle discussed.*? 1In a previous

section of this study, discounting the variance-covariance matrix has

“2Hatley, C. W. and Schall, L. D. (1973) The Theory of Financial
Decisions. New York: McGraw-Hill, Inc. pp. 81-87.
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been given a geometrical meaning. Viewing the future cash flows from
a multivariate normal perspective, discounting transforms the iso-

density ellipse/ellipsoid by compressing the area/volume and by rotat-
ing the axes. This geometric view allows for the explicit analysis of

the effects of different discount rates on the probability distribution

of the future cash flows. The purpose of this section of the study is
to evaluate an extension of the discounting process, i.e., the scalar
risk measure derived from the discounted variance-covariance matrix,
the variance of the net present value, V(NPV).

Using the discounted variance-covariance matrix (DVC), Eq. 40,
p.126, as a point of departure; V(NPV) has been shown to be the sum of
all the elements of the DVC matrix (Eq. 41, p.127). Continuing the
geometric approach to capital budgeting decision making, two critical
questions need to be answered: What is the rationale for the use of
the V(NPV) as a scalar multivariate risk measure? What is the geometric
interpretation of the addition of the variance-covariance elements
that result in the V(NPV)?

Boundary cases-independence and perfect correlation. As a

starting point for further analysis, the boundary cases of intertemporal
independent cash flows and cash flows with correlation +1 have been of-
ten studied. Due to their mathematical tractability, these two cases
have been widely reviewed in the Titerature.

Bussey*3 defines these boundary cases as

Cash flow increments from a project are said to be completely inde-
pendent if there is no causative or consequential relationship

“3Bussey, L. E. (1978) The Economic Analysis of Industrial
Projects. Englewood Cl1iffs, MNew Jersey: Prentice Hall. p. 382.
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between any two cash flow increments in the cash flow stream.

That is, if any given cash flow increment can be determined solely

from causative events occurring within that period and if these

events bear no relationship to or dependency on events in prior

or succeeding periods, then the cash flow increments are said to

be independent among periods. . . . Complete dependence between

cash flow increments exists if there is a one-to-one relationship

among events in succeeding periods.
A close Took at these definitions of the boundary capital-budgeting
cases leads to the realization that analysis based on these.cases is
really an oversimplification of the capital-budgeting problem. Real
world problems do not fit neatly into either case. Project returns
are related, but not on a strict one-to-one basis. If imperfect cor-
relation is the norm, then asubstantial part of the rationale for study-
ing these boundary cases is to develop analytical techniques that may
be applied to the more interesting intermediate imperfectly correlated
cases.

The basis for the use of the variance of the net present value,

V(NPV), as a measure of risk relates to the behavior of this scalar
risk measure when the cash flow stream is intertemporally independent.

Cash flows are statistically independent if and only if the joint dis-

tribution function of the cash flows X;,X5, . . . Xp is capable of being
factored into the product of the individual densities. More specif-
ically,

Flxpsxa,e « X)) = Fi(xi)-Falxa)e Folxg) (44)

For independent normal cash flows, the estimated dispersion matrix, £,
is a diagonal matrix of variances with all off diagonal elements equal

to zero,
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For the two-parameter case, when the variables are independent normal,
the quadratic form in the exponent of the bivariate normal density,
x'E-1X = C, identifies isovariance circles rather than elipses that

are found when the variables are correlated. The area/volume of the
ellipse/ellipsoid are scalar measures of the dispersion matrix. The
area is at a maximum when the variables are independent. The area then
gets smaller as the degree of correlation increases to the point where
the area is undefined."“*

Transforming the independent variances to present time results

in a discounted variance matrix,

- ]
911

/(14i)2

022/(1+i)“

opp/ (1+1)°P]

Summing the diagonal elements above results in the trace of the dis-
counted variance matrix which is the scalar risk measure, the variance

of the net present value. The rationale for summing variances for the

““Area is no longer a meaningful measurement for the perfectly
correlated case because the isovariance ellipse collapses into a straight
line for this degenerate bivariate distribution.
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independent case comes from elementary statistical theory. HMorrisont3
shows that the variance of the sum of independent random variables is

merely the sum of the individual variances,

VAR(X1+x2+...+Xp) = VAR(X; )+VAR(X, )+...+VAR(X ). (47)

P

This additivity principle of independent normal moments provides the
theoretical basis for the scalar risk measure, the variance of the net
present values.

The other boundary case, where the cash flow stream is perfect-
1y positively correlated, has also received wide attention in finance
Titerature. Hillier*®, Wagle“’, Bussey et al.“8 have shown that the
variance of the net present value, V(NPV) is at a maximum when the
interperiod correlations are equal to plus one. Because the correla-

tion matrix is a matrix of all ones, the variance-covariance matrix is

.1 g1

[ ]

g1

— =
- .

G2

o b 1

|t
i

92, (48)

“SMorrison, D. F. (1967) p. 7.
46Hillier, F. S. (1963) pp. 443-457.
%7Wagle, B. (1967) pp. 13-33.
“8Byssey, L. E. (1978)
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g1 g102 Ulcp
2
G201 O2
HE : (49)
2
%L L. %p

Discounting this matrix results in the discounted variance-covariance

matrix

Comparing the DVC matrix when cash flows are perfectly positively cor-
related, (Eq. 50) with the DVC matrix when the cash flows are indepen-
dent, (Eq. 46) shows that the variance of the net present value is at
a minimum for the independent case while the V(NPV) is at a maximum
when cash flows are perfectly positively correlated.

The V(NPV) may easily be computed with perfect positive corre-
lation, however, considerable difficulty attends interpretation of this
boundary case. Perfect positive correlation results in a degenerate
multivariate distribution because of the singular corrélation matrix.
Since the multivariate density does not exist, then the geometric analy-

sis of the isodensity ellipse and its associated area/volume is not
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meaningful. The fact that the volume of the isovariance ellipse is not
defined for this boundary case does not defeat use of volume as a scalar
risk measure. In real capital-budgeting problems neither boundary case
is reasonable. The likely situation observed in practice is’that the
cash flows will be intertemporally correlated but not perfectly so.

The reason for the emphasis of the boundary cases in the literature

has been their simplicity and their mathematical tractability.

Imperfect correlation. The central hypothesis of this study

is that capital-budgeting cash flows exhibit positive correlation among
time periods. Acceptance of this hypothesis then requires the develop-
ment of appropriate multivariate scalar risk measures that: 1) are on
sound theoretical footing; and 2) discriminate between alternative in-
vestment choices to allow the decision maker to rank and select proj-
ects based on risk and return criteria.

The expected net present value, E(NPV) and the variance of the
net present value, V(NPV) identify the probability distribution of net
present values when the capital-budgeting cash flows are normally dis-
tributed. In essence, the multivariate capital-budgeting problem has
been transformed via the diagonal matrix of present value factors to
the analysis of the univariate distribution of present values.

The assumption of normality allows the analyst to evaluate the
riskiness of capital-budgeting projects either by comparison of the
cumulative probability distributions for dominance or by making proba-
bility statements about specific outcomes. For example, suppose a
project's distribution of net present values is characterized by E(NPV)

= §100 and V(NPV) = $250. Using readily available tables for the normal
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distribution, the probability that the NPV<$50 is 15.87 percent while
the probability that the NPV<$0 is 2.28 percent. Using a series of
probability statements, the analyst is able to evaluate the potential
variability or risk of the capital-budgeting project. When the choice
must be made from two or more projects, the coefficient of variation
can be used to evaluate the relative risk per dollar return.

| The ability of the analyst to describe the outcomes from a
papital-budgeting project using simple probability statements is an
attractive feature of the variance of the distribution of the net pres-
ent values. Unfortunately, the validity of these probability statements
is questionable. The suitability of this probabilistic analysis is
dependent upon the availability of independent random samples from the
underlying probability distribution. The estimated periodic cash flows
from which the estimated expected net present values, E(Nﬁv) and the
estimated variance of the net present value V(Nﬁv) are computed are not
independent random samples. In fact, the various estimated cash flow
streams form a sample of size one which results in overly significant
probability statements.

In addition to the problem of making valid probability state-
ments, the variance of the net present value is difficult to interpret
in terms of the isodensity ellipse/ellipsoids of the multivariate nor-
mal distribution. The isodensity ellipse/ellipsoid has been shown to
be an easily understood means of depicting varijous variance-covariance
structures when the cash flow stream is modeled with the multivariate
normal distribution. The area/volume of the ellipse/ellipsoid has also

been shown to be a scalar measure of variability or spread in a
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multivariate setting analogous to the univariate variance. In addition,
area/volume is sensitive to differences in correlation structure and

is amenable to the discounting mechanism. If the fact that the iso-
variance ellipse/ellipsoid properly depicts the variance-covariance
structure can be accepted, then the evaluation of any simpler risk
measure should be based on the consistency between the rankings of that
measure and the rankings in terms of area/volume.

The remainder of this chapter introduces the generalized
variance and shows that the generalized variance is a scalar multivari-
ate risk measure that captures the structure of the variance-covariance
matrix. Chapter IV then compares the ranking and selection capabilities
of both the variance of the net present value and the generalized vari-
ance using the area/volume of the isovariance ellipse/ellipsoid as a

standard.

Generalized Variance
The requirement that intertemporally correlated cash flows in

capital-budgeting decisions be evaluated leads in turn to evaluation of
mul tivariate probability distributions. In a previous part of this
study, the multivariate normal distribution has been offered as a reason-
able model of the return and risks associated with capital-budgeting
problems. Particular attention has been directed to the similarity be-
tween the univariate normal and multivariate normal distributions.“?

The variance-covariance matrix, £, is a multivariate analogue of the

variance, ¢2, of the univariate normal distribution. The need to rank

“SRefer to the previous discussion of the multivariate normal
distribution. pp. 96-101.
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and to select alternative capital budgeting projects requires the
analyst to inquire beyond the variance-covariance matrix for a suitable
scalar risk measure. The area/volume of the isodensity ellipse/ellip-
soid has been shown to have attractive properties. Particularly ap-
pealing is the fact that the area/volume is a scalar measure that allows
ranking in terms of variability. Unfortunately, when the number of
periodic cash flows are large, the volume of the ellipsoid is difficult
to compute.

The search for a scalar representation of the variance-covari-
ance matrix led S. S. Wilks>? to propose that the determinant of the
variance-covariance matrix could also be viewed as a multivariate ana-
logue of the univariate variance. Wilks called the determinant of the
variance-covariance matrix (det r) the Generalized Variance of the mul-
tivariate normal distribution. In the following sections, det L is of-
fered as the preferred alternative scalar multivariate risk measure when

the cash flow stream is modeled by the multivariate normal distribution.

Geometric interpretation of det »

The determinant of the variance-covariance matrix is a measure
of spread or distance in a multivariate setting. The geometric inter-
pretation of det £ will be developed from two perspectives: 1) in gen-
eral, the determinant of any matrix will be shown to measure the area/
volume of a parallelogram/parallelotope formed by p vectors in Euclidean

space; 2) More specifically, the determinant of £, the variance-

50Wilks, S. S. (1932) "Certain Generalizations in the Analysis
of Variance," Biometrika. Vol. 24: pp. 471-4%.
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covariance matrix, will be shown to be proportional to the volume
squared of the isovariance ellipsoid of concentration of the random
vector of expected cash flows.

Determinant as volume. The rationale for the interpretation

of the determinant as a measure of volume comes from elementary linear
algebra.3! The evaluation of the area of a parallelogram is fundamental
to the computation of areas in the plane. If a;, a, are two 1inearly
independent vectors in a 2-dimensional Euclidean space, (R,), the total-
ity of all points into which some fixed point is carried by all vectors
of the form Aja; + Ayap where O<)Aj,xp<1, forms a parallelogram. The
generalization to the p-dimensional parallelotopne follows analogously.
If a;, az,...a

are edge vectors of R_, then the totality of all points

P P
into which some fixed point of Rn is carried by any vector of the form

Martadat. s Andy where 0<x.<1(i=1,2,...p) is called a p-dimensional

parallelotope.

To show that the determinant measures volumes, the essential
properties of any measure of volume are identified. -The measure of vol-
ume must be independent of its origin. Area and volume are a function
of the edge vectors alone regardless of the location of the parallelo-
tope in space. Therefore, the volume of a parallelotope having edge

vectors a , a2...ap is defined by V(a,, az,...ap). The unit vectors

are defined in Euclidean space as e, e,,...e Unit vectors of length

2 p’
1 are recognized. Unit volume is then V(el, ez,...ep)=l. Areas and

SlScheier, 9. and Sperner, E. (1959) Modern-algebra and Matrix
Theory. Hew York: Chelsea Publishing Co. pp. 63-86.
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volumes are non-negative; therefore, V(al, ays...2 )>0, From elementary

P
geometry, parallelograms with equal bases and altitudes have the same
area. Therefore, the volume of a p-dimensional parallelotope with edge
vectors a,, aa,...ap must be equal to the volume of the parallelotope
obtained by the replacement of an a;, 1<i<p, by a vector of the form
1....ap) =
V(ay, az,...ai+ak...ap). Finally, for a parallelogram with edge veé-

a;+a, where i # k, lckep. More specifically, V(a;, 2z,...a

tors aj;, as,...3_, if a; is replaced by Aaj then the area is multiplied

%
by abs[x]. Once again, for a p-dimensional parallelotope V(ai, a2,...,
Aai,...ap) = lA[-V(al,az,...ai,...ap). Given the desired properties of
volume, Shreier shows that the only function that satisfies these proper-
ties is the absolute value of the determinant! The first property is
satisfied in that the determinant is a function of the vectors of the
matrix, the second property is satisfied because the determinant of a
matrix of ones is one, the third property is satisfied in that the ab-
solute value is non-negative, the fourth property is satisfied by the
invariance property of determinants, i.e., D(ap, az,...ap) remains un-
changed if some a; is replaced by a; + 2, (i # k), the final property
is satisfied by the homogeneity property of determinants, i.e.,
D(ai, az,...ap) becomes AD+(a;, az,...ap) if any a; is replaced by }a;.

From the above analysis, a formal definition of the determinant
can be made:

A p-dimensional parallelotope in Euclidian R

P

with edge vectors a1, az,...ap has the

Volume = [D(a1, az,...ap)l (51)




142

The volume computation for the 2-dimensional parallelogram and
the 3-dimensional parallelotope can be easily illustrated both algebra-
ically and geometrically.>2 In two dimensions let a; = (a;;, a;2) and

a,=(asy, a29), then the area of the parallelogram shown in Fig.13 below

Figure 13: Two-dimensional Parallelogram

may be written as the absolute value of the determinant of the matrix

with a, and a, as rows or columns. Area equals |det A|- where

A= . (52)

To show that the area equals the determinant using the fact that det A =

det AT, (det A)2 is computed.

52This presentation of the geometric interpretation of the de-
terminant follows closely that of Williamson, R. E. and Trotter, H. F.
(1979) Multivariate Mathematics, Englewood Cliffs, New Jersey, Prentice-
Hall, pp. 144-152.
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(det A)2 = det A-det A! = det AAT
a1l a2 ail azi aj*ay di1-*az
= det = det
a21 a22 ai12 a22 az*ay az°az

|31|2|62|2'.(al'a2)2

lap[2laz|? - |a1]%]az|?Cos?s, (53)

where 8 is the angle between the vectors a; and a;. From basic trigo-
nometry, 1-Cos26 = SinZ%e,
therefore

(det A)z = |a1l2|a2125in29. (54)

Taking the square roots of both sides, the absolute value of the deter-

minant of the matrix A is
|det A| = |ai|]az|]|Sing] (55)

Relating Equation 55 to Figurel3, Eq. 55 is the desired area: base
length, |aj| times the height, |ap||Sin8| .

The computations illustrated above can be generalized to any
number of dimensions. Any k independent vectors in the Euclidean space

Rp, with k<p, may be considered to form all linear combinations

where 05315}, the resulting set of points is an p-dimensional parallelo-
tope. A 3-dimensional parallelotope is shown in Figurel4; the faces are

determined by the vector pairs (a;, a,), (a,, a3) and the vectors
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(a;» 3,) determine 2-dimensional parallelograms in Rj.53

Figure 14: Three-dimensional Parallelgtape

The volume of higher dimensional parallelotopes may be easily computed
using a recursive relationship. The vector hj is determined by dropping
a perpendicular from vector éd to the (j-1)-dimensional subspace spanned
by a;, a,, ... a5_1- Then the length [hj[ is the height of the paral-
Telotope determined by a;, a5, ... a5 relative to the base determined
by a;, a5, ... aj-l' Using the following notation, the volume of k-

dimensional parallelotope may be easily defined:

Vy = |a;|, one-dimensional volume, or length of a;.

53Choosing two vectors in R, leads to the special case illus-
trated in Figure 4.
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V, = V;|Hy|, two-dimensional volume, or area, of the
parallelogram determined by a, and a,.

V3 = V,|hs|, three-dimensional volume of the parallelo-
tope determined by a;, a,, and aj.

V, =

K -"Vk_llhkl, k-dimensional volume of the parallelotope

determined by a;, az... a.
Linking the above formulae, the volume is
Vi = lagl[hgflhg] oo fhy | . (57)

More explicitly, the following definition of Volume is presented.
If aj, a5, ... 3 are vectors in Rp, K<p, thenV,,
the volume of the k-dimensional parailelotope

determined by them, satisfies

2 _ cos
Vk = det (ai-aj), i, jo =1 ...k . (58)
For k = p, then,
1.
Vp = |det (ai-aj)l2 = |det a| , (59)

where A is the p x p matrix with a,, a,, ... a, as columns.

Generalized variance and the isovariance ellipsoid. The vari-

ance-covariance matrix may be evaluated in terms of the volume of the
isovariance ellipsoid. The generalized variance, det ¢ is also a
measure of volume. In a previous section of this study, the volume

of the isovariance ellipsoid has been shown to be a sensitive scalar




146

multivariate risk measure. One shortcoming that has been noted is that
the volume of the ellipsoid becomes tedious to compute when the number
of cash flow parameters is large. In this section, det £ will be shown
to be proportional to the volume of the ellipsoid and easy to compute.

Given multivariate normally distributed cash flows, the volume
of the isovariance ellipsoid is

P/2 54

Volume = P?‘g/z) (detz)’z[xg(anp/ 25 . (60)

Once the size of the problem js determined (number of parameters or p in
the above equation) and the level of significance is identified (a,
above) all terms other than det © are constants. For example, with p=2

and «=.1, then the volume of the resulting isovariance ellipse is

Volume = (det 1)%.61r (61)

where 4.61 = chi square table value with 2 degrees of freedom and a
probability level of ten percent.

The determinant of the variance-covariance matrix measures the
area of a parallelotope formed by the edge vectors of the variance-co-
variance matrix. For the two parameter case, det y measures the area
of the parallelogram formed by using either the row or column vectors
of £. Projecting these vectors in Euclidean space, the area of the par-
allelogram formed by vectors a; = (a;;, a;,) and a; = (a,;5 a,,) is

simply the determinant of the resulting matrix,

S%See p. 118 for development of the volume of isovariance
ellipsoids.
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The relationship between the volume of the parallelotope as

measured by det  and the volume of the isovariance ellipsoid, is

Ratio of _ det z (62)
Volumes Volume of Isovariance Ellipsoid
= det : (63)

P/2 L
%%57;7(det 2)x3 ()1P72/,,

A form of det I occurs in both the numerator and the denominator of the
above ratio. After factoring det I into the product of the square root

of det . i.e.,

det 1 = (det )% (det 1)% (64)

then the ratio of volumes can be expressed generally as

(det 1)
21?21 (py2) - [xE ()

Ratio of volumes =

65
) (65)
p

Given the number of parameters and the significance level, the
ratio of volumes is simply the ratio of square root of the determinant
and a constant.

For p = 2 and o = .10, the ratio of volumes is (det 2)%/

14.48274. As the number of parameters in the problem increases, the
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ratio of the generalized variance to the volume of the isovariance

ellipsoid is

1 1 1,
_ Ratio of _ (det 1)? (det £)?, (det £)? ....
For p =(2, 3, 4...) yolumes - 14.48273° 5 44964 29€.69570

As the size of the problem increases (number of periodic cash flows),
the ratio of the two volumes tends to move toward zero. Thus, an in-
verse relationship between the ratio of volumes and the number of param-
eters results.

-Ho1ding the number of parameters constant, one can view the
effect of the probability level on the ratio of volumes. As « decreases
from 0.1 to .001, the chi-square table value increases from 4.61 to
13.82 for p=2. The effect of raising the level of significance is to
increase the value of the denominator of the ratio of volumes, resuiting
in a lTower ratio for a given p parameter. The ratio of volume as the
significance level changes is also an inverse relationship. As o in-
creases, the ratio of volumes decreases.

Thus, the volume of the isovariance ellipsoid ha; been advanced
as an appropriate scalar multivariate risk measure and det £ is propor-
tional to the volume of the ellipsoids of concentration of the random
vector of cash flows. This functional relationship may be used to sup-
port the use of det £ as a measure of total risk when the capital-budget-
ing cash flows are modeled using the multivariate normal distribution.
Det £ is an easy to compute and understand scalar multivariate analogue
to the univariate variarce. Furthermore, Chapter IV shows that det :
consistently ranks alternative capital budgeting projects in terms of

total risk when compared to the volume of the isovariance ellipsoid.
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Statistical Properties of det I

The determinant of the variance-covariance matrix plays an im-
portant part in multivariate statistical theory. In this section, some
of the uses of det I will be outlined to show the importance of det I
as a multivariate analogue to the univariate variance. Wilks,35 in
his initial paper which suggested det I, was interested in developing
a multivariate generalization of the univariate variance. Following
the work of Wishart who developed the distribution of the variance-
covariance matrix,38 Wilks showed that the distribution of the general-
ized variance for n=1 results in the well-known distribution of the
variance in samples of a single variate.37 In the same paper, Wilks
also recognized that if the nth root of the generalized variance is
taken then the resulting measure would be the geometric mean of the
variances of the n variates multiplied by the nth root of the correla-
tions among the n variables.S8

The det £ plays an important role in the mul tivariate extension
of the F-test used in many multivariate significance tests. Wilks' A

uses the ratio of the determinants of the within-groups sum of squares

53ilks, S. S. (1932) pp. 471-494.

SéAnderson, T. W. (1958) pp. 154-163 for a detailed discussion
of the Wishart distribution.

>7Wilks, S. S. (1932) p. 477.

587 preference for the geometric mean versus the arithmetic
mean has received considerable attention in the finance 1iterature. The
reason for this preference is illustrated in Francis, J. C. and Archer,
S. H. (1979) portfolio Analysis. 2nd Ed. Englewood Cliffs, New
Jersey: Prentice-Hall; pp. 12-13, where they show cases where the
simpler arithmetic mean can result in misleading and often nonsensical
results.
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and cross-products matrix and the total sample SSCP matrix. In the
univariate case, Wilks' A is inversely proportional to the F-ratio.
The effect of this inverse relationship is that F increases as the
variation increases; whereas, A decreases with greater variation. This
relationship holds as well for the multivariate case.

Considerable work on the properties of det I and on its use
in practical classification problems has been reported in the statistics
literature. Anderson>? derived the distribution of the sample general-
ized variance of a multivariate normal distribution to be the same as
the distribution of the population generalized variance times the
product of p independent factors, the distribution of the ith factor
being the x2 distribution with (N-i) degrees of freedom. Bagai,®?
Mathai and Rathie,®! and Mathai®2 developed exact distributions of the
sample generalized variance and the ratio of two independent sample
generalized variances. Goodman®3 extended the distribution-theory work
to include the case where the multivariate random variables are complex,

i.e., with real and imaginary parts to the random variables.

59Anderson, T. W. (1958) pp. 170-173.

60Bagai, 0. P. (1965) "The Distribution of the Generalized Vari-
Annals of Mathematical Statistics. Vol. 36: pp. 120-130.

dance,

61Mathai, A. M. and Rathie, P. M. (1967) "The Exact Distribution
of Wilks' Generalized Variance in the Non-Central Linear Case," Sankhya.
Vol. 29: pp. 45-60.

62Mathai, A. M. (1972) "The Exact Distribution of Three Multi-
variate Statistics Associated with Wilks' Concept of Generalized Vari-
ance," sankhya. Vol. 34: pp. 161-170.

63Goodman, N. R. (1963) "The Distribution of the Determinant of
a Complex Wishart Distributed Matrix," annals of Mathematical Statistics.
Vol. 34: pp. 178-180.
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Sokal6* advocates the generalized variance for use in systemat-
ic work to answer questions such as "is population A more variable than
population B" or "what are the overall variabilities of a series of sam-
ples?". Goodman®3 used the generalized variance to compare overall var-
jability of different populations of maize and cotton. The reported
ability to discriminate successfully between populations while using det
Z as the measure of variability shows the usefulness of the generalized
variance as a multivariate scalar measure of overall variability. Addi-
tional uses of det ¢ to rank populations have been reported in the sta-

tistics literature. These works will be addressed in Chapters IV and V.

Eigenvalues and det £

The generalized variance has been shown to be a multivariate
analogue of the univariate variance. Analysis of the relationships be-
tween the variance-covariance matrix, the corresponding eigenvalues and
eigenvectors, and the generalized variance provides additional insights
and/or justification for the use of det I as a multivariate scalar risk
measure.

Analysis of the eigenvalues readily identifies cases where the
multivariate normal distribution is degenerate, i.e., the variance-co-
variance matrix is singular. When one or more eigenvalues of £ is equal

to zero, the variance-covariance matrix is singular. Tatsuoka®® states

64Sokal, R. R. (1965) "Statistical Methods in Systematics,"
Biological Review. Vol. 40: pp. 337-391.

65Goodman, M. M. (1968) "A Measure of Overall Variability in
Populations," Biometrics.Vol. 24: pp. 189-192,

66Tatsuoka, M. M. (1971) p. 127.
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that "Even though the presence of just one eigenvalue equal to zero is
sufficient to assure that (Matrix) A is singular, we somehow feel that
it is 'more singular' with a greater number of zero eigenvalues," Eval-
uating the eigenvalues shows that in the case of a degenerate multi-
variate normal distribution the aggregate variance of the original p
variables can be accounted for by a smaller number of transformed
variables.

Analysis of the eigenvalues of a variance-covariance matrix
also provides insight into the behavior of the generalized variance
or det £. The generalized variance, det I, has been shown to be a sca-
lar multivariate risk measure. The eigenvalues of the variance-covari-
ance matrix provide insights into the analysis of singular or near-
singular risk structures. This analysis is derived from the fact that
det ¢ is equal to the product of the eigenvalues. Therefore, if one
or more eigenvalues is equal to zero, then det I must be equal to zero.
Tatsuoka®’ outlines the proof that

Ai = det :.
1

([ = v

5
The essentials of the proof are based on the theory of equations. By
definition, the eigenvalues Ai are the roots of the characteristic
equation

1 =0, (66)

|z -

which is a polynomial equation of degree p in A. If Xj, Ay, ...Ap are

the roots of the polynomial

67Tatsuoka, M. M. (1971) p. 126.
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<1 -
CaP+ Pk CpP 2 e v =0, (67)
then

= o

a = (DPE/C,),s (68)

j=1 !

where Cp is the constant term and CO is the coefficient of AP in the
characteristic equation. By expansion of the characteristic determinant,
C0 = (-1)p and Cp can be found by setting the A vector equal to zero,
i.e. Cp = |z - 0I| = det £. Therefore, the assertion that the product
of the eigenvalues equals det £ follows immediately.
The generalized variance may be easily shown to be invariant
to an orthoginal transformation of the original cash-flow vector. From
Anderson,®8 Tet V = CX represent an orthogonal transformation of a ran-
dom vector X. Let E(X) = 0 and E(XX') = £. Then E(V) = 0 and E(VV') =
CzC'. Then the generalized variance of V is
det (CgC') = det C.det z-det C'
= det g-det CC' = det g, (69)
which is the generalized variance of X. The ability of the analyst to
decompose a complicated matrix into the product of matrices is particu-
larly important for the analysis of risk in capital-budgeting problems.
In the context of the problem at hand, the determinant of the discounted
variance-covariance matrix may be easily decomposed into the product
of the determinants of the discount factor diagonal matrix, the variance

diagonal matrix, and the symmetric correlation matrix. This decomposi-

tion is discussed in detail in Chapter IV.

68Anderson, T. W. (1958) p. 277.
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Eigenvalues and the corresponding eigenvectors also provide
insight into the relationship between the generalized variance, det I,
and the isovariance ellipsoid, X'z'IX = C, of the multivariate normal
density. Det I measures the volume of the parallelotope formed by the
vectors of £. Det ¢ is invariant to an orthogonal transformation of
the original variables. In addition, det £ is equal to the product of
the eigenvalues of £. The above relations may be used to evaluate the
principal axes of the isovariance ellipsoid. From elementary geometry,
the principal axes of ellipsoids are mutually orthogonal.®?

From Franklin70 the geometric interpretation of the eigen-
values and eigenvectors is that the principal axes of the isovariance
ellipsoid, ngfll = C are the eigenvectors of the real symmetric matrix
£ and the squared length of the principal axis associated with the
eigenvalue Ai is 4A1C.

The relationship between det ¢ and the isovariance ellipse in
terms of the eigenvalues of £ may be easily developed for the bivariate
case. For ease of computation and explanation, let C = 1.0, i.e., the
unit ellipse. The unit ellipse for a sample.project with ﬁl = 15, ;2 =
g, = 0, = 5, and pyp = .6 can be constructed. For equal standard divia-
tions, the major-axis makes a 45° angle with the X;-axis, while the
minor-axis is perpendicular to the major-axis. To determine the length

of the axes, the eigenvalues of the variance-covariance matrix are

63For independent cash flow streams the isovariance ellipse/
ellipsoid is a circle/sphere and the mutually orthogonal principal axes
are not unique.

70Franklin, J. N. (1968) Matrix Theory. Englewood Cliffs, New
Jersey: Prentice-Hall. pp. 94-98.

20,
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computed, then axis Tengths equal to /4xic are computed. For the
example project, the sample variance-covariance matrix is

25 15

™~
n

(70)
15 25

After expansion of the characteristic determinant, the eigenvalues are

the roots of the characteristic equation

» v
A - 50n + 400 = 0. (71)

Using the quadratic formula, the roots are A; =40, x» = 10. Then the
squared length of the major-axis is 4(40)(1.0)-160 and the squared length
minor-axis is 4(10)(1.0) = 40. The value of det £ is 400 which may
easily be verified by either computing the determinant of the 2x2 vari-
ance-covariance matrix, (Eq. 70 above) or by computing the product of

the eigenvalues.

The relationship between the unitary isovariance ellipse and the
inscribed parallelogram formed by the principal axes of the ellipse is
easily developed. Due to the orthogonal nature of the principal axes, the
- area of the parallelogram is four times the area of any one of the four
similar right triangles. Using one half the major axis as the base and
one half the minor axis as the height, the area of the resulting right

triangle is:

I
§

= 35(201+215)
(72)

The area of each of the right triangles that form the inscribed
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parallelogram is equal to two times the generalized variance or the
determinant of the variance-covariance matrix. Then, the area of the
inscribed parallelogram is equal to eight times det £. Summarizing,
det T is directly proportional to the area of the isovariance ellipse.
Chapter III of this study has laid the groundwork for a
multivariate approach to the analysis of risky capital-budgeting proj-
ects. The multivariate approach was shown to be necessary to account
for the intertemporal relationships among the future cash flows. The
variance-covariance matrix is a natural generalization of the univari-
ate variance; as such, the analysis of project variability requires the
analysis of the variance-covariance structure. When the cash flow
stream is modeled by the multivariate normal distribution, the ellipse/
ellipsoids of concentration (isovariance ellipse/ellipsoid) geometrical-
1y depicts the variance-covariance structure. The need to compare al-
ternative capital-budgeting projects or to rank projects requires scalar
measures of return and risk. The expected net present value is a well-
accepted measure of project return. This study has identified and de-
veloped in detail three scalar multivariate risk measures: 1. area/
volume of the isovariance ellipse/ellipsoid; 2. variance of the net
present value; and, 3. generalized variance. In Chapter IV, these risk
measures are evaluated using simple cash flow patterns. In addition,
to account for differences in project size, multivariate analogues of

the univariate coefficient of variation are presented.




CHAPTER IV

EVALUATION OF SCALAR MULTIVARIATE RISK MEASURES

Introduction

Chapter III of this study has presented a multivariate approach
to the analysis of risky intertemporally correlated capital-budgeting
projects. Given the assumption of multivariate normally distributed
cash flow streams, risk analysis requires the interpretation and com-
parison of variance-covariance matrices. These matrices, however, are
not directly comparable and are not amenable to the ranking and selec-
tion problems associated with capital-budgeting decisions. The need to
rank alternative projects requires the development of scalar measures
that are in some sense "optimal". As previously stated, optimaiity im-
plies that the scalar measures:

1. are reasonable, and have intuitive appeal;

2. use all available information;

3. can be applied across a wide range of problems; and,

4. are theoretically supportable.
Given these criteria, three scalar multivariate measures of total vari-
ability have been presented: 1. area/volume of the isovariance ellipse/
ellipsoid; 2. variance of the net present value distribution; and 3. gen-

eralized variance.
157




158

In this chapter, capabilities of the scalar risk measures to
measure project variability are evaluated and compared. Principal areas
of interest are: 1. interpretation of each risk measure in terms of a
simple idea of risk; 2. treatment of differences in timing and scale of
the capital budgeting cash flow streams; 3. decomposition of the risk
measure to enhance sensitivity analysis; and 4. analysis of limitations

associated with each scalar multivariate risk measure.

Interpretation of Scalar Risk Measures

Risk has been defined as the variability of the future cash
flow stream. With such a general definition, there exists considerable
controversy as to the most appropriate risk measure. In the case of
the univariate normal distribution, the variance or the standard devia-
tion can be shown to have desirable statistical properties. Depending
on the nature of the data and the analysis problem at hand, other mea-
sures of variability such as the range or the mean absolute deviation
may be appropriate.

When the data are multivariate normal, the variance-covariance
matrix I has been shown to be the natural extension of the univariate
variance. The need for scalar multivariate measures of variability has
resulted in the development of three risk measures (area/volume, vari-
ance of net present value, and generalized variance) that depict differ-
ent aspects of multivariate variability. In this section of the study,
these measures are reconciled to reflect different aspects of variability

or risk.
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In the single-period (univariate) case, the area/volume of the
isovariance ellipse/ellipsoid reduces to a measure of Euclidean length
or distance. The variance of the net present value and the generalized
variance both reduce to the univariate variance. As such, all three
scalars are a measure of distance or spread.

The bivariate normal distribution is often studied because
this two-dimensional cése can be easily described geometrically. In
addition, the bivariate results may be immediately generalized to any
p-dimensional multivariate normal distribution.

The quadratic form in the exponent of multivariate normal dis-
tributions,

(X-u)'z=1(X-p) = C (1)

identifies isovariance ellipses in the bivariate case and isovariance
ellipsoids for multivariate cases. The area/volume! of these ellipses/
ellipsoids has been shown to be a scalar multivariate measure that de-
picts the variance-covariance structure. In the bivariate case the
ellipses are cross-sections of the bivariate hill mass formed by planes
parallel to the axes. Area is dependent upon the magnitude of the vari-

ances, the degree of correlation,? and the Tocation on the bivariate hill

9/2
1Area/volume =

]P/z/

2Holding the variances and C constant, area is at a maximum
when P12 = 0. Area declines as P;, increases to the po1nt where P 2-—+1;
at this point, area is no longer meaningful because the isovariance
ellipse has collapsed into a straight line.
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mass where the slice is made.3 Holding C constant, and transforming

the distribution such that the centroid of the ellipse is at the origin,
area is a function of the variance-covariance matrix. Viewing the
special case where Py, = 0, the area of the resulting isovariance cir-
cle is a function of the diagonal matrix of variances. Relating area

to total risk, projects with the larger area are interpreted to have
the smaller variability or total risk.

The variance of the net present value (VNPV) is a weighted sum
of the discounted variance-covariance elements.* In the special case
where Py, = 0, VNPV is equal to the trace of matrix DVC. The trace of
a matrix is also equal to the sum of the eigenvalues of a matrix. Re-
lating the VNPV to the isovariance ellipse, the lengths of the axes of
the isovariance ellipse are equal to 4x1C, where Ay identify the eigen-
values of matrix DVC and C is a positive constant. In the bivariate
case, VNPV = xy+x,. Therefore, VNPV is interpreted as being proportion-
al to the sum of the lengths of the axes of the isovariance ellipse.
With this interpretation, project rankings based on VNPV and area/vol-
ume of the ellipse/ellipsoid may differ. Although the two risk measures
are related (length and direction of the axes determine the size and
shape of the ellipse), the sum of the axes and area/volume measure dif-

ferent aspects of the variance-covariance structure. Therefore, they

3The positive constant, C, in equation 1 identifies the chi-
square probability level associated with a particular slice. If C = 1.0
and P;, = 0.0, then the resulting isovariance circle is the unit circle.

“YNPV = C'IC, where C is a vector of discount rates. VNPV is
also equal to the sum of the elements of the discounted variance-covari-
ance matrix DVC.
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measure different aspects of project variability. A second interpreta-
tion of VNPV is in terms of an arithmetic mean of the variance covari-
ance elements. VNPV is computed by adding the weighted variance-covari-
ance elements (the weights being the appropriate discount rates). Argu-
ments of preference for the VNPV must implicitly accept the fact that
the individual components of total risk are additive.

The generalized variance (det £) is the determinant of the
variance-covariance matrix. Det £ measures the area/volume of the
parallelogram/paralielotope formed by either the row or column vectors
of the variance-covariance matrix. As such, det £ is the scalar repre-
sentation of the matrix £. Det I is also equal to the product of the
eigenvalues of a matrix. As a measure of area/volume, det ¢ is directly
related to the area/volume of the isovariance ellipse/ellipsoid.S
Therefore, the area/volume of the parallelogram/parailelotope repre-
sented by det ¢ is directly proportional to the area/volume of the iso-
variance ellipse/ellipsoid. With this direct relationship, det £ and
area/volume measure the same aspects of project variability and will
give consistent rankings. A second interpretation of det £ is in terms
of a geometric mean of the variance-covariance elements. Det I can be

computed by taking the product of the eigenvalues; taking the pth root

SThe relationship between det £ and the isovariance ellipse is
that of a ratio. The ratio of volumes is

(det)* ,
2P/ 2 r(p/z)-[xg(a)]p/Z/p

For fixed p and o the denominator is a constant and the ratio is the
square-root of det I to a constant.
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of det & results in the geometric mean of the variance-covariance
structure.

Comparing the generalized variance and the variance of the net
present value, a central fact emerges: that each measure identifies a
different dimension of project variability. A significant aspect of
this study is that the exclusive use of either the variance of the net
present value or the generalized variance to describe multivariate
vafiabi]ity may cause the analyst to overlook an important dimension
of project risk. If multivariate variability is additive, i.e., the
addition of discounted variance and covariance elements, then VNPV cap-
tures the essence of risk. If, however, multivariate variability inter-
acts in a multiplicative fashion, then the generalized variance may be
a more informative measure of risk.

An obvious area for additional research is further study of what
is meant by project variability. With a clearer understanding of risk
or a more specific definition of multivariate variability, a more in-
formed choice between variance of the net present value and the general-
ized variance may be made. The remaining sections of this chapter will
evaluate the merits of these scalar multivariate risk measures with

respect to difficulties associated with capital-budgeting applications.

Time Adjustment

The need to adjust for the timing of capital-budgeting cash
flows has been documented in the finance 1iterature. The time dimension
associated with capital-budgeting analysis must be explicitly included

to develop meaningful scalar multivariate risk measures.
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To accomodate the effects of time, the probability distribution
of project cash flows is transformed to a present-time equivalent. The
geometric interpretation of the effects of discounting for the bivariate
normal assumption was discussed in detail in Chapter III of this study.®
Transforming the cash flow stream to present-time creates a linear com-
bination of the original cash flow structure. The resulting discounted
variance-covariance matrix, DVC may be depicted as the matrix product

Dve = cic (2)

where C is a p x p diagonal matrix ef discount factors and
g_is a p x p positive definite estimated variance-covari-

ance matrix.

The effects of this transformation to present-time on the vari-
ance of the net present value and the isovariance ellipse/ellipsoid
were discussed in Chapter III.6 The generalized variance is easily
shown to be invariant to a linear transformation. The determinant of
DVC matrix may be evaluated in terms of the product of individual
matrices. From elementary matrix algebra, the determinant of a matrix
product is simply the product of the determinants of the individual

matrices. The discounted generalized variance is

det DVC = det C-det f-det C

= (det C)2-det I. (3)

SChapter I1I, pp. 124 to 138. Discounting is shown to reduce
the size of the isovariance ellipse and rotate the axes. In terms of
the bivariate normal density surface, discounting twists and compresses
the bivariate surface.




164

The determinant of discount factors, det C is less than one; therefore,
the determinant of the discounted variance-covariance matrix is less
than the determinant of the undiscounted variance-covariance matrix. In
Chapter III, pp 131, discounting was shown to reduce the volume of the
isovariance eilipéoid. Discounting also reduces the generalized vari-
ance which has been interpreted as the volume of the parallelotope
formed by the row or column vectors of the variance-covariance matrix.
The invariance property of linear transformations of determinants may
lead to criticism of the generalized variance as a scalar multivariate
risk measure. What the invariance property confirms is the fact that
there are different dimensions to the analysis of variability. The
generalized variance captures the impact of the interaction between
variance and covariance elements and depicts a risk relationship that
is invariant to linear transformations, i.e., discounting.

The multidimensional nature of the risk assessment problem may
to illustrated using simple examples. The examples presented here are
designed to show that no single scalar multivariate risk measure pro-
vides optimal rankings for all cases.

Suppose the analyst is faced with three, two-period mutually
exclusive projects. Let the expected net-present values be identical;
therefore, the objective is to select the project with the Towest risk.
To further simplify the problem, assume that the periodic cash flows
are intertemporally independent, i.e., P15 =0. The estimated variance-

covariance matrices are given as
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12.1 0 6.05 0 18,15 0
T, = s Iy = s I = . (4)
0 14.641 0 21.961 0 7.321

Assuming a 10 percent time-value of money, then the discounted variance-

covariance matrices, DVC are

10 0 5 0 15 0
pve, = > DVCy = E ove, = . (5)
0 10 0 15 0 5

Before computing and evaluating the scalar measures,’ an interesting
exercise is to intuitively determine which project is preferred. Proj-
ect a has equal variability in each period, project b has low variabil-
ity in period 1 with high variability in period 2; while project c's
variability is just the reverse of project b's. Does the decision maker
have a preference as to the point in time when the risk occurs? The
answer is yes, maybe! One might argue, using some form of a minimax
criterion, that project a with equal periodic variances is preferred
because the largest periodic variance of project a is less than the
largest periodic variance of either projects b or ¢, Other plausible
arguments relating to Tower variability in period 1 may favor selection
of project b. The contrived example illustrates the problem of identi-

fying the best measure of risk - the ambiguity associated with the idea

Ak
7For a = .10, Area of Isovariance Ellipse = n(det £)?4.601,
Generalized Variance = det £ = a;j-ay;-a;5°8,7, and Variance of Net
Present Value = a11+a12+a21+a22.
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of risk. The difficulties associated with intuitive project selection
are not entirely resolved by the analysis of the scalar risk measures
or by discounting alone.

Computing the Variance of the Net-Present Value results in
VNPV, = VNPV, = VNPVC.8 In this example, shifting the variance between
periods while keeping a constant trace results in a scalar risk measure
that does not discriminate among the three projects, If the decision
maker believes that risk is additive, then the three projects are equal-
1y risky.

Computing the Area of the Isovariance Ellipse and the General-
ized Variance results in a preference for project a with indifference
among projects b and c.® Project a is selected because of its larger
area and larger generalized variance. Both measures are sensitive to
shifts in variance. This sensitivity is easily explained geometrically.
With equal variances, the variance matrix identifies the isovariance
circle. Matrices with unequal variances identify isovariance ellipses.
When the corresponding traces are equal, the area of the circle is
greater than the area of an ellipse. If the decision maker believes
that risk is interactive, i.e., multiplicative, then project a would
be selected.

The illustrated example also shows cases where the generalized
variance fails to discriminate among projects. Comparing projects b

and ¢, both the area and the generalized variance for each project are

8YNPV = The sum of the discounted variance elements; VNPV = 20.

GVe = 75. Area

Generalized Variance = det £; GV, = 100, GV}, =
= 125.18.

(for o = .10) = n(det 1)%.601; A, = 144.5%, Ap = A
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equal. Due to the multiplicative nature of both scalar risk measures,
reversing the timing does not affect either measure.

This section of the study has confirmed the previous observa-
tions that variability or risk in a multivariate setting is multi-
faceted. Obviously, additional examples can be created to reflect the
superiority of one scalar multivariate risk measure or another. An ob-
vious extension of this study is to empirically test these scalar multi-

variate risk measures using real or simulated data.

Scale Adjustment

When evaluating competing capital-budgeting alternatives, the
analyst is often confronted by projects of differing size or scale. 0b-
viously, the magnitude of the cash flows is an important determinant of
the total risk of a capital-budgeting project. However, differences in
scale often distort the risk analysis. For example, using the variance
of the net present value, a project with less variability may very well
exhibit a larger variance of the net present value because of scale dif-
ferences alone. A similar problem exists when area/voiume of the iso-
variance ellipse/ellipsoid or the generalized variance is used as a
scalar risk measure. Both measures are sensitive to the size of the
cash flow stream.

Transformation of Cash Flows

One way to adjust for differences in scale is to transform the
probability distribution of cash flows to a zero-one scale. The trans-
formation is analagous to the univariate transformation of N(u,o) to

the standard normal distribution N(0,1). When the cash flow stream is
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characterized by the density

o=l

f(xl,...,xé) = (20) P25 e X 2 (xe) , (6)

the distribution characterized by N(u,Z) may be standardized, i.e.,

transformed to N(0,I) using the transformation

¥ = 27 (xop). 10 (7)

Then the density of the multivariate unit normal distribution is

9(Yg-eaty) = (2n) /27D 0 (8)

This transformation to the multivariate standard normal distribution al-
Tows simple probabilistic comparisons among alternative capital-budget-
ing projects. The transformation does not, however, solve the scale

problem. The transformed vector Y in Equation 8 loses all information

about the variance-covariance structure.

Multivariate Analogues of the
Coefficient of Variation
A simple ratio measure can be computed to accommodate problems

of differences in scale. The univariate coefficient of variation,

10The transformation shown by Equation 7 is the multivariate
analogue of the univariate standard normal transformation,

7 =Xk
3

llanderson, T. W. (1958) an Introduction to Multivariate Statis-
tical Analysis. New York: John Wiley andSons. pp. 11-16.
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the ratio of the standard deviation of the net-present value, g, to the
expected net present value, E(NPV), o/E(NPV) has been widely accepted
as a statistic that brings together both risk and return into a single
measure. The coefficient of variation is interpreted as the risk per
dollar return and is useful as a measure of relative risk.

The univariate coefficient of variation may be logically ex-
tended to evaluate multivariate cash flow streams. Each scalar multi-
variate risk measure may be combined with the expected net present val-
ue to form multivariate coefficients of variation. For example, the
multivariate VNPV combined with the E(NPV) results in the ratio
VNPV/E(NPV) which provides a direct extension of the univariate coeffi-
cient of variation. Comparing alternative projects using this ratio
measure, the analyst would select the project with the smallest ratio;
which results in the selection of the project with the smallest risk
per dollar return.

The area/volume of the isovariance ellipse/ellipsoid and the
generalized variance must be modified before they may be meaningfully
combined with the expected net present value to form multivariate coef-
ficients of variation. Both area and generalized variance measure
risk inversely, i.e., larger area and generalized variances identify
Tower risk. Therefore, the reciprocal of the area or the generalized
variance is the more appropriate numerator for these multivariate ex-

tensions of the coefficient of variation. The ratios would be

1/Area or }{detz
E{NPV) E(NPV
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Once again comparing projects, the analyst would select the project

with the smallest ratio.

Decomposition Analysis

Sensitivity analysis is widely used by practitioners to assist
in risk evaluation. Recognizing the difficulties in estimating future
cash flow streams, simulation studies may be used to assess the sensi-
tivity of measures of risk and return.

The generalized variance is a scalar risk measure that is
amenable to sensitivity analysis through decomposition. With the as-
sumption of multivariate normally distributed cash flows, total varia-
tion is described by the variance-covariance matrix. In turn, the
variance-covariance matrix structure depends on the periodic variances
and the interperiod correlation. The variance-covariance matrix may be
decomposed into standard deviation diagonal matrices and the correlation

matrix. More specifically,

§ = BRB (9)

where B is a diagonal matrix of periodic estimated standard deviations

and R is a symmetric positive definite estimated correlation matrix.

When sensitivity analysis is of interest, the generalized variance may

be evaluated in terms of products of determinants, i.e.,

det I = det B-det R-det B

(det B)2-det R (10)
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Using this decomposition, the sensitivity of the total vari-
ability of the capital-budgeting cash flows may be easily analyzed.
One may study the effects of changes in the estimated variances or
changes in the correlation structure independently or together. Sensi-
tivity analysis may be extended to include changes in discount rates.
This extension provides no additional {nformation if the same discouﬁt
rates are applied to all projects, because the relative rankings of
capital-budgeting projects are not affected by linear transformations.

The decision maker's ability to decompose the generalized
variance to allow further analysis is an appealing feature of this
scalar multivariate risk measure. Sensitivity analysis may be applied
to the other scalar risk measures considered in this study, variance of
the net present value and volume of the isovariance ellipsoid. However,
these risk measures cannot be decomposed to evaluate the variance and

correlation effects independently.

Limitations of Scalar Multivariate

Risk Measures

Three scalar risk measures have been offerred as multivariate
analogues to the univariate variance. An important 1imiting condition
to their use relates to model specification. Critical to the accept-
ance of any of the measures is the assumption of multivariate normally
distributed cash f1ows; Because each of the risk measures are directly
derived from the variance-covariance matrix, if the variance-covariance

matrix does notaccurately represent the risk of the asset, then theserisk

measures will be inadequate measures of total risk. Arguments for the
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validity of the multivariate normal distribution were presented in
Chapter III. If the multivariate normal assumption is clearly inappro-
priate, then these scalar measures should not be used to measure total
risk.

A second problem area relates to the appropriate definition
of risk associated with capital-budgeting analysis. Each scalar risk
measure captures some aspect of total risk. As such, they are only
appropriate for asset-by-asset selection. If the portfolio models cor-
rectly identify risk, then, in addition to intertemporal correlation,
cross correlation between projects must be considered. The variance of
the net present value has been extended to accommodate both autocorre-
lated and cross correlated cash flows.!2 However, neither the volume of
the ellipse nor the generalized variance are currently capable of being
extended to include the second set of correlations. Tensor analysis is
a mathematical area that extends vector and matrix concepts. Possibly
an application of tensor analysis will allow for the analysis of both
autocorrelated and cross correlated cash flows. Another consideration
relating to the definition of risk is the nature of the interaction be-
tween variance and covariance elements. If total risk is an appropriate
concept for capital-budgeting cash flows and if the multivariate normal
distribution is reasonable, the question whether variances and covariance
should be combined additively or multiplicatively must be answered. If
risk is additive, then the variance of the net present value is preferred

to the generalized variance. Conversely, if risk is multiplicative, then

12| evy, H. and Sarnat, M. (1970) "The Portfolio Analysis of
Multiperiod Capital Investment Under Conditions of Risk," Engineering
Economist. Vol. 16: pp. 1-19.
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the generalized variance is the preferred scalar multivariate risk
measure.

Capital-budgeting analysis differs considerably from the analy-
sis of financial assets. The unavailability of historical data creates
problems of data estimation. Application of the multivariate approach
requires, at a minimum, estimates of the mean vector and the variance-
covariance matrix. The nature of the data precludes the use of classi-
cal hypothesis tests and confidence intervals. Classical statistical
methods are not appropriate because the expected net present value and
variance-covariance matrix estimates are not summary measures of random
sample data, but represent a sample of size one. Using traditional
capital-budgeting estimation methods results in dependent rather than
independent cash flow estimates.

The lack of random sample data constrains the use of scalar
risk measures. Hillier!3 initially developed the variance of the net
present value to allow the decision maker to make probabilistic state-
ments about the worth of an investment opportunity. Unfortunately, the
dependencies in the cash flow estimates result in an overstatement of
the particular probabilities. The data problems also affect the use of
the generalized variance. Considerable work using the generalized
variance has been reported in the statistical literature. The most com-

mon use is as. an extension to the univariate F-test.l* As with the

134j119er, F. S. (1963) "The Derivation of Probabilistic Infor-
mation for the Evaluation of Risky Investments," Management Sciences.
Vol. 9: pp. 443-457,

1%Chapter III, pp. 150-152 reports on many uses of the general-
ized variance in classical hypotheses testing situations.
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variance of the net present value, the lack of random sample data con-
strains the use of the generalized variance.

KowallS criticized the use of the generalized variance as a
measure of multivariate variability. MNoting that det I may be de-
composed as

det = opP (10)

where p is the determinant of the correlation matrix and u is the geo-

metric mean of the p variances.

An obvious comparison of two projects' variability is to compute and

evaluate the ratio of the variability measures. Using generalized

variance D
K = det p - 2A%A (11)
det 15 P +
PgHB
If the projects have the same correlation structure, Pp = Ppe then
p
u
K = -% (12)
:

Equation 12 shows that the ratio of the generalized variances is equiva-
lent to the ratio of the geometric mean of the variances. A1l informa-
tion concerning correlation disappears from the comparison.

Kowal's analysis highlights the most severe 1imitation associ-
ated with the use of the generalized variance. When cash flows are

perfectly correlated, the multivariate normal distribution is degenerate,

15Kkowal, R. R, (1971) "Disadvantages of the Generalized Vari-
ance as a Measure of Variability," Biometrics. pp. 213-216.
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the variance-covariance matrix is singular, and det £ is equal to zero.
Considering the case where project A exhibits imperfect correlation
while project B's cash flows are perfectly correlated; Ratio K in
Equation 11 shows that Project A is infinitely more variable than
Project B regardless of the relative sizes of the respective variances.
This result is obviously nonsensical. Analysis of the implications of
perfect correlationl® and the economic events that would attend perfect-
ly correlated cash flows, suggests that if the multivariate normal dis-
tribution is an appropriate model for real capital-budgeting problems,
then perfectly correlated cash flows and singular variance-covariance
matrices are extremely unlikely occurrences.

In addition to the problem with singular variance-covariance
matrices, projects with different variances and correlation structures
may have the same generalized variance. For example, one project may
have large periodic variances with low interperiod correlation while
another project has smaller variances with larger correlation resulting
in the same generalized variance. Given the acceptance of the multipli-
cative interpretation of total risk, the analyst would accept the fact
that the two project reflect the same degree of total risk as represented
by equal generalized variances. If the analyst if uncomfortable with
the above approach, then the generalized variance may be decomposed into
the product of the determinants of the variance diagonal matrix and the
correlation matrix. This decomposition allows for additional analysis

based on the decision maker's relative preference for variance and

16Chapter III, pp.135-137.
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correlation. This approach accommodates the fact that individual risk
preferences may reflect a trade-off between variation and correlation.
This chapter has extended the development of the multivariate
approach to capital-budgeting. Primary emphasis was in comparative
analysis of three alternative scalar multivariate risk measures:
1. variance of the net present value; 2. area/volume of the isovariance
ellipse; and 3. generalized variance. Each measure was given an in-
tuitive interpretation. The effects of time and scale were accomodated.

And, finally, limitations associated with each measure were addressed.




CHAPTER V

SUMMARY AND SUGGESTIONS FOR ADDITIONAL RESEARCH

Summary

The primary objective of this study is the development of a
capital-budgeting model that explicitly considers the impact of inter-
temporally correlated cash flows. The need for such a model was docu-
mented in Chapter II, Review of Related Literature.

The Review of Related Literature systematically surveyed ex-
isting methodology for risk analysis in capital-budgeting. The "state
of art" was classified into two broad groups: variations of simple
present value techniques and market or portfolio theory adaptations.
Present value approaches resulted in the development of the probability
distribution of the net present value. Risk analysis then relates to
the analysis of variance of the net present value. While this risk mea-
sure has been widely reported in the finance literature, there has been
significant disagreement as to its merit. Other popular risk adjust-
ment techniques such as risk adjusted rates and certainty equivalents
have been offered as simple alternatives. Both of these simple methods
of risk analysis have serious shortcomings that have led to more sophis-

ticated capital budgeting models.

177
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The development of portfolio theory, capital asset pricing
mode] and capital market theory resulted in the mean-variance approach
to the analysis of financial assets within the context of efficient
capital markets. These "market" models were then extended/adapted to
the analysis of real assets or capital-budgeting problems. Unfortu-
nately, the strong set of assumptions required for the development of
equilibrium conditions in the capital markets do not appear to be
satisfied when the portfolio models are adapted to capital-budgeting
problems. The violation of assumptions and dissatisfaction with the
mean-variance decision criterion led to the development of alternative
market models. Mean-semivariance models incorporate skewness into the
decision process. Stochastic dominance models moved the analysis away
from the study of the moments of the distribution of cash flows to the
distribution itself. Finally, time-state preference models, while con-
ceptually elegant and the most general approach reviewed, are generally
found to be extremely difficult to implement.

Chapter II closed with comparisons of market models and a re-
port of actual capital-budgeting techniques used in the field. Three
surveys were reviewed that show that simple, ad-hoc risk adjustment
techniques still dominate in the field. This dominance, however, is
declining. Later surveys show a trend of increasing sophistication in
capital-budgeting risk analysis. With the increased use of statistical
models to analyze risk, there exists the need for the development of
capital-budgeting models that are theoretically acceptable, yet simple

enough to be used by practitioners. Chapters III and IV of this study
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presented a simple, yet theoretically sound, approach to capital-bud-
geting risk analysis.

Chapters III and IV developed and evaluated a multivariate
approach to the solution of capital-budgeting problems. Prior to the
development of the multivariate model, arguments in favor of single
asset analysis as opposed to portfolio approaches were presented. In
addition, the need to explicitly consider the intertemporal correla-
tion in capital-budgeting cash flows was documented. Simple techniques
for estimation of the correlation structure were presented.

A mul tivariate approach to capital-budgeting was selected to
accommodate autocorrelation among the periodic cash flows. Considera-
tion of these dependence structures requires the simultaneous analysis
of all the dimensions of the capital-budgeting problem. Multivariate
statistical methods have been designed to explicitly consider these
dependence structures. Capital-budgeting analysis requires a modifica-
tion to traditional multivariate analysis procedures to accommodate the
element of time. Timing differences inthe cash flow stream are accom-
modated by transforming the cash flow distribution to present time;
i.e., discounting.

A crucial assumption of the study was that the cash flow stream
may be modeled with the multivariate normal distribution. The multi-
variate normal assumption was justified using arguments from both the
statistics and the finance literature. The multivariate normal distrib-
ution was shown to be a generalization of the univariate normal distrib-
ution. Therefore, the evaluation of return and risk is equivalent to

the evaluation of the mean vector and the variance-covariance matrix.
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The expected net present value was accepted as an appropriate
measure of return. The expected mean cash flows are discounted at the
risk-free rate to account for differences in timing and to preclude
double counting for risk.

While 1ittle controversy attends the use of expected net pres-
ent value to measure return, there is little agreement to the appropri-
ate measure of risk. With normally distributed cash flows, the vari-
ance-covariance matrix is a multivariate analogue of the univariate
variance. Therefore, risk analysis is equivalent to the analysis of
the variance-covariance structure. This structure may be evaluated
geometrically using the ellipsoids of concentration of the multivariate
normal distribution. Changes in matrix structure are readily identi-
fied through the changes in the size and slope of the ellipsoids.

Analysis of the riskiness of capital-budgeting cash flows
often requires comparison of alternative cash flow streams. Project
selection requires the ranking of alternative investment choices in
terms of some measure of attractiveness. In general, attractiveness
relates to more return and less risk. The need to rank and compare
alternatives directed this study toward the development of scalar
risk measures that capture the information found in the variance-
covariance matrix.

Three scalar multivariate risk measures were presented and
eVa]uated. The variance of the net present value, volume of the iso-
variance ellipsoid, and the generalized variance were shown to be
scalar representations of the variance-covariance matrix. Each mea-

sure was described algebraically and geometrically. Statistical
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properties and the capabilities of each scalar to measure risk were
evaluated. Finally, the measures were compared and contrasted to de-
termine if there exists a preferred scalar multivariate measure of

total risk.

Conclusions

The need to explicitly consider intertemporal, imperfectly
correlated cash flows in capital-budgeting analysis provided the movi-
vation for this study. Dissatisfaction with existing methods of risk
analysis, directed this research to identify risk measures that:

1. are reasonable, and have intuitive appeal;

2. use all available information;

3. can be applied across a wide range of problems; and,

4. are theoretically supportable.
Given these criteria, a multivariate approach to the evaluation of re-
turn and risk was developed.

Traditional capital-budgeting studies have been dominated by
time series and portfolio models. Therefore, a significant contribu-
tion of this study is the mul tivariate approach to capital-budgeting.
Multivariate statistical methods were developed to analyze dependent
structures. The interperiod dependencies of the capital-budgeting cash
flows are easily evaluated using multivariate statistical methods.

A second contribution of this study is the application of the
scalar multivariate risk measures (Volume of the Isovariance Ellipsoid
and Generalized Variance) to capital-budgeting problems. These measures
of total risk have not been previously used to evaluate capital-budget-

ing or any other economic problems. While both measures of variability
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have been used in other areas of study (anthropology, horticulture and
biology), this application in finance is unique.

Finally, this study has contributed to the study of risk.
Risk has been defined as the variability of future outcomes. With such
a general definition, there exists considerable controversy as to the
most appropriate risk measure. This study has not resolved the con-
troversy, but in fact may have expanded it. Comparing the volume of
the isovariance ellipsoid and the generalized variance with the well-
established variance of the net present value alerts the analyst that
definitions such as "variability of future outcomes" are ambiguous.
Each scalar risk measure identifies a different aspect of project vari-
ability. If multivariate variability is additive, then variance of
the net present value captures the essence of risk. If, however, multi-
variate variability is multiplicative, then volume of the ellipsoid
or the generalized variance may be a more informative measure of risk.
The significant conclusion is that exclusive use of either the variance
of the net present value or the volume measures to describe multivari-
ate variability may cause the financial decision maker to overlook an

important dimension of project risk.

Limitations of the Study

The significant 1imitation of this study is the absence of
empirical testing of the multivariate capital budgeting model. The
primary emphasis of this study was the expository, theoretical develop-
ment of the multivariate approach and related scalar risk measures.

In addition to this theoretical development, the model needs empirical
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testing. This testing may be performed using simulated cash flow
streams or better yet, testing by practitioners using real data in the
field.

Other limitations relate to simplifying assumptions that were
made to develop the model. Assumptions that disregarded negative in-
terperiod correlations, variable and unequal useful lives of competing
projects, and uncertainty as to the discount rate need to be relaxed

and accommodated in the model.

Suggestions for Additional Research

This introductory study of a multivariate approach to capital
budgeting suggests many areas for additional research. An obvious
starting pcint is empirical testing of the model and relaxation of the
simplifying assumptions. Empirical testing of the model may provide
insights to the study of risk not apparent from this introductory study.
Additional research is needed to refine the definition of risk when
the cash flows are modeled by a multivariate distribution. This study
has presented scalar risk measures that identify different aspects of
project variability. With a more specific definition of project risk,
a clear preference for one risk measure or another may be determined.
Relating to the definition of risk and risk preferences, the utility
theory implications of the multivariate model need to be considered.
The properties and characteristics of utility functions in terms of ex-
pected return and generalized variance may provide considerable insight
to the study of risk. Finally, the complementary nature of the single-

period portfolio problem is recognized. The multiple asset, single
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period nature of portfolio analysis results in a multivariate structure
that is similar to the single asset, multiple period capital-budgeting
problem. Therefore, the model developed in this study for capital-

budgeting may easily be extended for portfolio analysis.
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