INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the
most advanced technological means to photograph and reproduce this document

have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

1.

The sign or “target” for pagesapparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

. When an image on the film is obliterated with a round black mark it is an

indication that the film inspector noticed either blurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been filmed, you will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo-

graphed the photographer has followed a definite method in “sectioning”
the material. It is customary to begin filming at the upper left hand corner
of a large sheet and to continue from left to right in equal sections with
small overlaps. If necessary, sectioning is continued again—beginning
below the first row and continuing on until complete.

.For any illustrations that cannot be reproduced satisfactorily by

xerography, photographic prints can be purchased at additional cost and
tipped into your xerographic copy. Requests can be made to our
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases we

have filmed the best available copy.

vy
lnternation?S

300 N. ZEEB ROAD, ANN ARBOR. Ml 48106
18 BEDFORD ROW, LONDON WCI1R 4EJ, ENGLAND



8018926

LEE, MOON KEY

MULTILAYERED PERIODIC REFLECTOR AND BRAGG WAVEGUIDE FOR
INTEGRATED OPTICS

The University of Oklahoma PH.D. 1980

University
Microfilms

International son. zee Road, Ann Arbor, MI 48106 18 Bedford Row, London WCLR 4EJ, England



PLEASE NOTE:

In all cases this material has been filmed in the best possible
way from the available copy. Problems encountered with this
document have been identified hers with a check mark +»~ .

1. Glossy photographs

. Colored illustrations

Photographs with dark background
ITlustrations are poor copy

®rint shows through as there is text on both sides of page

(o SN ¥ ) RN S IUR N
[ )

Indistinct, broken or small print on several pages ¢+~ throughout

7. Tigntly bound copy with print lost in spine
8. Computer printout pages with indistinct print v

9. Page(s) lacking when material received, and not available
from schoo! or author

10. Page(s) seem to be missing in numbering only as text
follows

i1. Poor carbon copy

12. Not original copy, several pages with blurred type
13. Appendix pages are poor covy

14. Original copy with light type

15. Curling and wrinkled pages

16. Other

niversity
Micrcfiims
ternatonal



THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

MULTILAYERED PERIODIC REFLECTOR AND
BRAGG WAVEGUIDE FOR INTEGRATED OPTICS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfiliment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

BY
MOON KEY LEE
Norman, OkTahoma

1980



MULTILAYERED PERIODIC REFLECTOR AND
BRAGG WAVEGUIDE FOR INTEGRATED OPTICS

APPROVED BY

. K Kl
%&m%j VoA
7%//

YA 7/4//
Mot

D}SéERTATION COMMITTEE




.ACKNOWLEDGMENT

I would 1ike to thank Professor M.Y. El-Ibiary, W.L. Kuriger,
R.M. St. John and G. Tuma who reviewed my manuscript and provided
many constructive suggestions. Particularly, it is my privilege
to express my deep appreciation to Dr. Seun K. Kahng, Director of
the School of Electrical Engineering and Computing Science, the Uni-
versity of Oklahoma, for his support and encouragement without which
this research could have never been accomplished. Thanks are also
due to Ms. Pat Ybarra for her beautiful typing.

I dedicate this manuscript to my parents Dr. and Mrs. Chan S.
Lee for their love and encouragement.

I am also deeply grateful to my wife Sungsik and my children

Sukkyoung and Jean who have lost their evenings and weekends.



TABLE OF CONTENTS

LISTOF TABLES. . . . & o o i s e e et e e et e e e e e e e o v
LISTOF FIGURES . . . . . . .. e e e e e e e e e e e e e e e vi
Chapter

I. INTRODUCTION. . . . . o v v vttt ettt it e e e e e e e s 1
II. THEORY OF DIELECTRIC WAVEGUIDE. . . . . . . . . . . . . . . .. 7
III. A CHARACTERIZATION OF A MULTILAYERED REFLECTOR. . . . . . . .. 25
IV. THE NUMERICAL RESULTS IN MULTILAYERED PERIODIC REFLECTOR. . . . 49

V. TRIPLE LAYERED PERIODIC BRAGG WAVEGUIDE . . . . . . . . . ... 76
VI. CONCLUSIONS . . . . . . ¢ o v it i i i e e et e e e e e e 106
REFERENCES. . . . . o v o i i e e e e e e e e e e e e e e e e e 108
APPENDIX . & & v ot e e e e e e e e e e e e e e e e e e e e e e 113

iv



LIST OF TABLES

Selectivity of Various Reflectors Consisted of

Basic Period of More than 4 Layers. . . . . . . . ...
n, n,n
Reflectivity and Selectivity of the CéL-j;-éL)
Symmetric Structure . . . . . . . L L. 0o 0 e e 0.
Bragg Waveguide Parameters. . . . . . . . . .. . ...

Attenuation Constant and Selectivity for TEI

Mode of the Bragg Waveguide I and II. . . . . .. ...



Figure

2.1.

2.2.
2.3.

2.4.

LIST OF FIGURES

Reflection and Refraction of a Plane Wave at a Dielectric ‘
Interface. . & & & & i it e e e e e e e e e e e e e e e e 9

Phase Shift of TE Mode as a Function of Incidence Angle. . . . 12

Sketch of an Asymmetric Slah Waveguide (a) and the
Zig-Zag Ray Path in Slab Waveguide (b) . . . . . . .. . . .. 13

Sketch of Propagation Constants, Electric Field Pro-
files and Zig-Zag Wave Picture of the Different Types
of Wave Modes. . . . & & & i i i i it e e e e e e e e e e e 14
Typical w-8 Diagram for Dielectric Slab Waveguide . . . . . . 18

Dispersion Curves for the Confined Modes of Ga1_xAzxAs
on GaAs Waveguide. . . . . . . . . . 4t e e e e e e e .. 21

Amplitude of the Electric Field as a Function of Position

for Ga;_ Az As - GaAs - GaT_yAzyAs Waveguide with d/a, = 0.2

and A, = 115 UM v v v e e e e e e e e e e e e e e e e e e e 22

The Confinement Factor T for the Fundamental Mode of

Asymmetric Waveguide . . . . . . . . . .. 0 v v o0 e e 24

Schematic Representation of a Multilayer . . . . . .. . . .. 28

Chebyschev Polynomial Cn(x) .................. 38

Chebyschev Polynomial S (x). . . . . « v ¢ v v v v v v v v .. 39
n n, n, n

Equivalent Optical Admittance for the Structure Q?}'7%'?%)

with ny = 3.45 and n, = 3.24 at 8a° Incidence Angle. . . . . . 46

Equivalent Optical Thickness of the Structure Described
in Figure 5.4, . . . L L e e e e e e e e e e e e e 47

TE Waves (a) and T™ Waves (b) Reflectivity vs. Relative Wave-

length at Various Angles of Incidence of a Typical 28 Periods
Bragg Reflector. . . . . . . . . . o o v oo ool oL 51

vi



Figure

4.2,

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.13.

4.14.

Page

Reflectivity for Double 10/4 Layer Periodic Bragg Reflec-
tor as a Function of AO/A. n, = 3.62, n, = 3.44, ng = 3.62,

ng = 3.3, 6 = 800 . 52

Reflectivity for Tuned 4y/4 Triple (a), Quadruple {b), ando
Quintunle (c) with ny = 3.45, n, = 3.24, N =10 and 8 = 60°., 54

Reflective Spectral for Triple Layered Bragg Ref%;ctor
w;thnN = 30, ny = 3.45, R? = 3.42 and 8 = 80".
2

2°1°2 2172 Ty
(_a) (_-8——4—-?), (_b) (_8 4 8) --------------- 55
Reflectivity vs. Relative Wavelength for SeveraL Value of
Guiding Layer's Refractive Index ng withsg=80"...... 57
Reflectivity as a Function of Period N for a Quarter Wave
Double Structure . . . . . . ¢ ¢ ¢« ¢ ¢ i 4 4t t e e e e e 58

Reflectivity as a Function of Period N for Reflector with
Bﬁsiﬁ Pﬁriod of

n, n,n
121 121
grglad (rFgle - oo v v e 59
Reflectivity at the Center of Stopzone vs. Periods N
for Quadruple and Quintuple Basic Period Reflector . . . . . 60
The Effect of Index Ratio n,/n, on Reflectivity for
n, n
GﬁL-ﬁ;} Double Structure at Several Different Incident
Y T e 61

. The Effect of Index Ratio n,/n,.on Rsflecgivity for Triple
80

Structure at Incident Angle; 480, 607, 80" . . .. ... .. 62

. The Effect of Incidence Angle on Reflectivity of TE

Waves (a) and TM Waves (b) . . . . . v v v v v o v v v v .. 63

. Stopband Width of Double Layer Bragg Reflector Against

Refractive Index Ratio at Several Incidence Angles.
Dotted Curves; Exact Calculation, Solid Curves; Using
Equation (3.47). . . . . . . . . . . . e e e e e e . 66

Selectivity of Double Layer Bragg Reflector as a Function
of N. Reflector Parameters; n]/n2 = 1.065, 1.052, 1.030Q,

- = = ﬂ7
A 1.15 (um), ng 3.24, ng 345 . . .. L0000 e
Selectiyity of UﬁtugednTriple Structure Bragg Reflector.

- . (k23 68
Solid Curves: (3 3 1;) ..................

vii



Figure

4.15.

4.16.

)
Center Wavelength Shift'(xo/xe) of a Double 7f-Layer

Periodic Bragg Reflector. . . . . . . . . . . . .. . ...

Center Wavelength Shift of a Typical Bragg Reflector
with 20 Number of Triple, Quadruple, Quintuplie Basic

Period. & & vt e e e e e e e e e e e e e e e e e e e e e

. Se]ect1v1ty Variation Against Incident Angle

3.45°3. 35) 3. 45 3. 40 3. 24)

(a] = (B) L
e] & as 3. 45 3.45 3.4

4 4 4 ) .................

Triple Layered Dielectric Periodic Bragg Waveguide

Structure with Semi-infinite Outer Media. . . . . . . . . .

Dispersion Relation for Bragg Waveguide II of Table 5.1.
Solid Curves: d/x  vs. n,, Broken Curves: exp(-KA)

VSe M e v 6 6 o o ¢ o o o o o o o o o o o o o o o s o s o
sne

Dispersion Relation for Bragg Waveguide I for Table 5.1.
Solid Curves: d/x  vs. n_, Broken Curves: exp(-KiA)

Bloch Wave Constant vs. Normalized Propagation Constant . . .

Electric Field Distribution of Bragg Waveguide I.
a) TEO Mode for d = 0.73 um

b) TE], c) TEZ’
Confinement Factor for the Fundamental, first, second,
and third-order TE mode as a Function of Guiding Layer

TRICKNESS &« & v i v e e e e e e e e e e e e e e e e e e ..

The Attenuation Constant vs. Number of Period for TE Mode
in Bragg Waveguide with ny = 3.45 and n, = 3.24. Solid

Graph: A = 0.42 ym, Broken Graph: A

n
o
~J
w
=
3

The Attenuation Constant « as a Function of Guiding

Layer Thickness d for three different number of Period N. . .

viii

d) TE3 withd=235wm. . .. ... ..



MULTI-LAYERED PERIODIC REFLECTUR AND BRAGG
WAVEGUIDE FOR INTEGRATED OPTICS

CHAPTER 1

INTRODUCTION

The advent of integrated optics has given an enormous stimulus to the
entire field of optical communication. Integrated optics is a diverse
field which can be characterized in the broad sense by considering a de-
vice which combines optical components, such as light sources, modulators,
switches, lenses, detectors, filters, couplers, and other components into
a common substrate. Traditional optical apparatuses must be aligned with
extreme accuracy and are thus susceptible to a minute amount of vibration .
and temperature change. Integrated ontical devices allow concentrated
light beam in thin film waveguides that are constructed on the surface or
inside of a substrate. Because of the short wavelength of light, a dielec-
tric optical light guide can be made extremely small in physical dimen-
sions. Primary advantages of the small size and rugged construction of
integrated optical devices are their insensitivity to vibration and temper-
ature change in their environment. And also it is nossible to package a
higher density of components compared to conventional optical devices.

Of many optical devices that are being studied, one of key elements
of integrated optical devices is a waveguide which can transport infor-

mation onto the other optical device. The integrated optical waveguides



are a dielectric type, usually.in a form of a nlanar film or strip with a
refractive index higher than that of substrate.

in a recent review paper, Kogelnik (1) offered a good bibliography
and also discussed the current development 1n integrated optics.

An optical dielectric waveguide with a slab configuration is capable
of supporting lossless confined modes when the index of refraction of
the guide layer exceeds the indices of the two bounding media. This con-
dition is ﬁecessary to obtain an imaginary transverse propagation con-
stant which corresponds to an evanescent decay of the mode field in the
bounding media. However, for some application, it may be desirable
to guide optical power in a laver with a lower index than those of two
bounding media. A typical example is the hollow core waveguide laser
where power is flowing in the air (2-4),

It was suggested that confined guiding with arbitrary low loss is

(5)

possible using Bragg reflection in waveguide In a Bragg waveguide
the conventionally used substrate is replaced by a periodic layered med-
ium. The propagation may be considered formally as that of a plane wave
zigzagging inside the guiding layer and undergoing total internal reflec-
tion at the interface between the guide and guide cover and Bragg reflec-
tion at the interface between the guide layer and the periodic layer.
Total Bragg reflection happens only when the incidence angle satisfies
the Bragg condition, that is, the propagation condition inside the per-
iodic layered medium fall within one of the optical forbidden gaps (6).
The introduction of the Bragg waveguide onens a new dimension for

1ight nropagcation in intearated optics.

Uptical wavequides based on the Bragg reflection principle are free



from some of the fundamental constraints imposed on conventional wave-
guides and are expected to play an important role in applications where
a high degree of selectivity is important or in case where use of con-
ventional waveguides provide inadequate performance. For instance in
case of an x-ray laser, the oscillation wavelength is so small, 1002,
that the use of an external resonator structure is highly unlikely. A
great deal of work was done on the theory of anti-reflectivity -and high
reflecting multi-layer systems as well as for interference filter in
the first half of the century (7~9). However, the first general treat-
ment of stratified media in terms of electromagnetic theory of light
was not available until Abe]es(Jo) introduced the matrix method to
treat the propagation of light in layered media. Electromagnetic prop-
agation in a periodically layered dielectric media was considered in
detail with the direction of propagation normal to the layers by many
workers (]]). Dispersion equations and mode functions for a periodic

(12), and Allen(]s) in

structure were previously discussed by Brillouin
connection with crystal band structure for a square well potential and
more recently for electromagnetic case (]4). Kossel (15) showed that
the analogies between the thin film optics and electron band theory.
The propagation characteristics of periodic array of dielectric slab
was also studied by Lewis and Hessel (16).

The historical interest in optical properties of multi-layer thin
film was largely confined to the use of high reflectance coatings in
high resolution interferometry or anti-reflection coatings. Little
attention, however, was given to the guided wave in the parallel direc-

tion to the layer until 1974 when Arnaud (7) derived approximate



dispersion expression of a semi-infinite sequence of periodic layers on
the basis of transmission line representation for special case of loosely
bound waves.

The use of Bragg reflection in waveguide was first suggested by
Ash (18) and Fox (5) in 1970 and 1974, respectively. In recent research
of electromagnetic wave propagation in the periodic dielectric layer is
- facilitated with the help of the Floquet's theorem which reduces the
considerations to a single unit period (6).

First confined propagation at 1.15 um has been observed by Cho and

(19)

Yariv in Ga1_xA£xAs - GaAs Bragg waveguide grown by molecular beam
expitaxy. This asymetric Bragg waveguide has eight period of double lay-
er GaO.SAzo.ZAs - GaAs reflector'with each Tayer thickness of 0.26 um and
an excessively high attenuation coefficient of o = 14.49 cm'], neglecting
the Toss due to the bulk absorption in this structure. It would be
necessary to have 32 layers to provide alowattenuation coefficient such
as o =0.355 cm .

The application of such Bragg reflectors has also been reported in

(20). Recently Dupuis and Parkus (20,21)

the operation of injection laser
reported a symmetric Bragg waveguide grown by metal organic chemical

vapor deposition technique and it consists of 56 layers of alternating
A

Ga A_ - GaAs.

0.73™0.27"%

A11 the Bragg waveguides reported to date have double layered struc-
tures ,symmetric and asymmetric, and require a large number of periodic lay
ers to process, and thus have inherent disadvantages in cost effective
osroduction and limitations in devjce performance.

Although the most basic principle of operation remains the same for



the waveguide, certain aspects of a multi-layered periodic Bragg wave-
guide device have not been discussed in any literature up to this date.
For instance, various layer parameter, such as refractive index and
thickness of each layer, play an important role in reflectivity ofa Bragg
reflector. But in most of the previously published papers, no detailed
explanation about the relationship between refractive index and thickness
of each layer was given.

During the designofa periodic layered Bragg waveguide for integrated
optics, the dependence of the reflectivity of the various layer parameters
can guide the scientist toanoptimal configuration. It would be useful
to include them in a discussion of the Bragg waveguide.

The main purpose of this paper is to deal directly with the closed
form expression for reflectivity, disperion relation and related wave
functions with improved confinement of the wave in the guide with the least
number of periodic layers. Also intended is to seek the complete char-
acterization of triple layered periodic Bragg waveguide.

Three chapters will be presented that characterize the properties
of the multi-Tlayered periodic Bragg waveguide. These chapters are
arranged in a modular format that will allow eaf]y chapters to be used as
a reference to support some points in the later chapters. New and old
information is interwoven throughout the discussion to create continuity
in the total picture of the Bragg waveguide and to supply useful compar-
ison between double, triple, quadruple, and quintuple layered periodic
structure.

A brief statement of the content and purpose of each chapter will

now be made.



Chapter 2 is basically a review of the conventional slab waveguide
to characterize the propagation of optical waves in this dielectric layer.

The chapter also establishes a basic picture for optical waveguide
theory. While the information is not totally new, the intention is to bring
certain points into focus for a clearer understanding of optical wave-
guide model discussed in Tater chapters.

Chapter 3 contains a closed form expression of reflectivity which is
valid to any polarization, layer thickness, wavelength and incident angle
for a Bragg reflector composedofamulti-layered periodic dielectric medium.
This has not been discussed previously in connection with Bragg waveguide
including the effect of guiding layer and substrate.

Chapter 4 is primarily a numerical comparison and discussion ma-
terial related to double, triple, quadruple, and quintuple layered per-
jodic structure.

Specific interest is directed toward the magnitude of reflectivity
and selectivity. More importantly, the comparison between the various
structures and the condition for optimum layer thickness are essentially
new and necessary for estimating the number of periods of a Bragg reflec-
tor.

Chapter 5 is a discussion of the triple layered periodic structure
with regard to dispersion relation, field profile and optical power con-
finement. The information in this chapter is new and important for the
final estimation of a triple layered periodic Bragg waveguide. In Chap-
ter 6, conclusions and recommendations are described. Finally, it is
felt that, the specific insight and numerical data presented in this
study will provide a useful reference for further application of Bragg

waveguide in varjous area of integrated optics.



CHAPTER II

THEORY OF DIELECTRIC WAVEGUIDE
2.1. Introduction

Dielectric waveguides are the structures that are used to confine
and guide the 1ight in the guided-wave devices and circuits of integra-
ted optics.

The purpose of this chapter is to review the important theory of
these waveguides and to give both an introduction to the subject as
well as a collection of important results sufficiently detailed to be
of use to later chapters.

I also aim to provide a compact theoretical framework of suf-
ficient aenerality to be used as the basis for later chapters, which
deal with the Bragg waveguide. The properties of dielectric waveguides
are discussed in great detail in references (22'25).

Dielectric slabs are the simplest optical waveguides. Because of
their simple geometry, guided and radiation modes of slab waveguides
can be described by simple mathematical expressions. The study of slab
waveguides and their properties is thus often useful in gaining an
understanding of the waveguiding properties of more complicated die-
lectric waveguides. However, slab waveguides are not only useful as
models for more general types of optical waveguides, but they are

actually employed for 1ight guidance in integrated optics (28:27)



In integrated optical applications, slab waveguides are formed by
various means, the simplest of which use the deposition of glass or
plastic films on glass or crystal substrates. These films can be
deposited by evaporations, sputtering, or by epitaxial growth tech-
niques. The latest method is such as molecular beam epitaxial restrict-
ed to the deposition of thin single crystalline films on crystal
substrates. Another method of forming dielectric optical waveguides
for integrated optics applications employs ion imp]anta;ion techniques.
By bombarding the substrate material with suitable ions it is possible
to alter the refractive index of the substrate so that a dielectric
slab waveguide results. More detailed fabrication can be found else-

(28)

where The general treatise in this chapter is based on the for-

(29). In section 2.1 we discuss the ray

mulation presented by Marcuse
optics picture of 1ight propagation in slab waveguides. This is meant
to provide both a first physical understanding as well as an introduc-
tion to the concepts and the terminology of dielectric waveguides in
general. Section 2.2 is a discussion of the general fundamental of
the electromagnetic theory of dielectric waveguides and their modes

of propagation. Section 2.3 gives details of the guided modes and

the fields of the slab waveguides, both for TE and TM modes.

2.2 Geometrical Optics of the Slab Wavequide

Consider an interface separating two lossless, isotropic, homo-
geneous dielectric media of refractive index " and n, as shown in Fig-
ure 2.1, and a coherent 1ight wave incident at an angle 8 between the

wave norma]l and the normal to the interface. With the definition of



Figure 2.1. Reflection and Refraction of a Plane
Wave at a Dielectric Interface.



the angles shown in Figure 2.1 Snell's Taw can be expressed in the form
n~(s1'ne.l = nzsine2 (2.1)

The reflection coefficient of a plane wave at a dielectric interface,
which is polarized so that its electric vector is parallel to the inter-

face (i.e. TE polarization), follows from the Fresnel formula,

R = (n, cose, - // 1n & )/(n cose, * VG - s1n e])

(2.2)
The critical angle for to 31 internal reflection is defined by
sing, = nz/n]

For 8y < 9. the reflection coefficent R, given by tquation (2.2), is
real and positive, and the incident wave is partially reflected. As

the critical angle is exceeded (87 > ecr, total internal reflection
occurs at the dielectric interface. In this case, R is complex because
the inside of square rcot in numerator and denominator of Equation (2.2)
is negative value. The negative sign is necessary since a decaying
instead of a growing wave must result in medium 2. Under conditions

of total internal reflection, a phase shift is imposed on the reflected
Tight. The phase shifts g and ST™ corresponding to the TE polariza-
tion and TM polarization (i.e. a wave polarized so that its magnetic

vector is parallel to the interface) are respectively,

-2 arctan (v/n]s1n 8, - né/n cosq]) for TE . (2.3)

-2 arctan [(n /n )v/n sin’ & - §/n1cosalj for TM (2.4)

10



Figure 2.2 shows the dependence of phase shift of TE on the angle of
incidence 9 for a selection of index ratio nz/n1 where the values
0.29, 0.47, 0.68, 0.90 and 0.99 correspond to interfaces between air -
GaAs, air - LiNb03, air - Sioz, GaAs - Ga0.57A20.43As and GaAs -
Gao.gAzO.]As, respectively. It is noted that the phase shift increases
from 0° at the critical angle to 180° at 8y = 90°. It increases with
infinite slope at 81 = 8, and a slope of (1 - ng/ni)'15 at grazing
incidence.

Having collected these few facts from ray optics and the theory
of plane wave reflection at interfaces, mode guidance in the slab
waveguide shown schematically in Figure 2.3 will be presented. The
core region of the waveguide is assumed to have refractive index Ny
and is deposited on a substrate with index ny- The refractive index
of the medium above the core is indicated as ns. Lf n, = N3, slab

waveguide is symmetric and in case of ny # n3s the slab wavequide is

asymmetric. In general, we assume that

Ny > nfy > Mg, (2.5)

and there are two critical angles, 62C and B3¢ for total internal re-
flection from the(n]-nz)and OH - n3)interfaces, respectively. For
small angles 8 < 850> 83¢ light incident from the substrate side
escapes through the structure, this situation is depicted in Figure
2.4(a) and called as a radiation mode.

The case of 8,5, < 8 < 8,,, is shown in Fiqure 2-4(c). The light

3c 2
incident from the substrate is refracted at the (n,-n,) interface and then

totally reflected at the (n] - n3) interface, refracted back into the

11
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substrate through which the 1ight escapes from structure. Again, there
is no light confinement and it is called a substrate mode. In Figure
2-4(b) the angle is large enough, total internal reflection at both
interfaces are occurred. The light is trapped and confined in n, and
propagates in a zig zag path which corresponds to a guided mode. For

a guided mode of the slab guide, the zig zag model is represented by

plane wave with propagation constant 8.
8 = m/vp = knysine, (2.6)

where k = Zn/xo = %3 A, is the free space wavelength, w the angular

frequency of the light, and ¢ the velocity of light. Foranrﬁ layer
of thickness t,there is a phase shift for transverse passage throughann]
layer and for reflection on interface, thus the sum of all these phase
shifts must be é mhltip]e of 2r. Thus the transverse resonance condition

of TE modes yields

—l
/ﬁz - ng /e - ng |
an]tCOSG - 2arctan W - 2arctan W_r 2mm (2.7)

where m is an integer (0,1,2,...) which identifies the mode number and
Ne is knowing as an effective guide index or normalized propagation

constant defined by

ng = g/k = n]sine- (2.8)

Equation (2.7) is essentially the dispersion equation of a wave-
guide yielding the propagation constant as a function of wavelength

and guiding layer thickness for TE case. Equation (2.7) is developed



in the section 2.4 by starting from Maxwell's equations and using the

boundary conditions at the dielectric interfaces.

2.3 General Discussion of the Electromagnetic Theory of Dielectric
Waveguide )

In order to obtain a complete description of the modes of adielec-
tric waveguide, Maxwell's equations must be solved. A mode of a die-
Tectric waveguide at a radian frequency w is a solution of Maxwell's

propagation equation

vxE -jamoH (2.9)

jweonzg, (2-]0)

7 X H

subject to the continuity of the tangential components of E and H at the
dielectric interface. Here €4 and u, are the dielectric permittivity
and magnetic permeability of vacuum. It is assumed that the media in
consideration are dielectric material so that the use of the vacuum
constant Ho is sufficient. The index of refraction of the medium isdes-
ignated by n and the time dependence term has been suppressed. A simple
description of the dielectric waveguide by 1imiting discussions to the
slab waveguide is shown in Figure 2.3, in which no variation of field in

y direction is assumed. And assuming that wave front is normal to the

waveguide axis z, the wave equation is

2
2 Ey) + KkEn? - 8%) Exy) = 0 (2.11)

9X
Before embarking on a formal solution of Equation (2.11) in each

layer we may learn a great deal about the physical nature of the
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solutions as a function of the propagation constant 8 at some fixed
frequency w. The simple physical conceptual treatments in conjunction
with a slab waveguide have been expiored and used by Taylor and Yarivﬁgx
Assuming the index of refraction in each layer satisfies Equation

(2.5), for 8 > kn], it follows directly from Equation (2.11) that

%313%-> 0 everywhere. The field increases without bound away from the
w;zéguide so that the solution is not physically realizable.

For kn2 <B < kn], as in Figure 2.4(b) it follows that the sol-
ution is sinusoidal in n layer, but is exponential in ng and Ny layers.
The energy carried by these modes is confined to n layer and its vicin-
ity. From the ray optics and above discussion, it follows that a nec-
essary condition for confined modes is that Ny > Nys n3l

Solutions of Equation (2.11) for kn3 <B < kn2 correspond to expo-
nential behavior in N, layer and to sinusoidal behavior in Ny and Ny
Tayers. We refer to these modes as substrate radiation modes. For
0 <p < kn3, as in Figure 2.4(a), the solution for E(x) becomes sinus-
oidal in all three layers. These are so called radiation modes of
waveguide. Figure 2.5 shows a sketch of an w-8 diagram which are typ-
ical for a dielectric slab waveguide. At the cut off frequency, the
propagation constants assume the value of lower bound knz, and as u
(or the thickness t) increases, 8 approaches its upper bound kn1 and
more and more guided modes exist. In addition to the discrete values

of allowed 8 of the guided modes, the diagram also shows the con-

tinuous value of 8 of the radiation modes.

17
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2.4 Guided Modes and Confinement Factor of an Asymmetric Waveguide

The modal field can be derived from the wave equation in section

2.3 and the corresponding solutions have been discussed by Marcuse (29),

(30), and McKenna (31). In this section, the relationships for

Nelson
the fields of the mode of a planar waveguide shown in Figure 2.3 and
the confinement factor are presented. We limit the derivation to the
guided modes which according to Figure 2.4 have propagation constants
Bs

kny < 8 < kn (2.12)
where
2 > N3
The field component Ey of the TE modes satisfies the wave equation

(2.11). For guided propagation wave along z direction,

{ EocosC%§-- slexpla(G - X1, x> % (2.13)
E, = | Ecosthx - 4), -texcd (2.14)
L EocosQ%§-+ ¢)exp[p(§-+ X)1, X 5;%- (2.15)

where h, p, q and ¢ are given by
A (2.16)
p=/e? -k’ , q-= YA nk? (2.17)
2% = arctan[LE—:—gl%J (2.18)

pq + h

19



By imposing the continuity condition, the dispersion relation for TE

modes can be written as

ht - arctan (E) - arctan Q%Q = mr (2.19)
where
the modal label m is aninteger. This is an agreement with the disversion

relation obtained previously. The dispersion equation for TM mode is
same as Equation (2.19) with (2%02 P and (géoq for p and g, respectively.

The constant, Eo’ appearing in Equetions (2.12)~(2.14) is arbi-
trary. Yet for many application especially those in which propagation
and exchange of power involve more than one mode, it is advantageous
to define E0 in such a way that the constant Eo is related to total
power in the mode.

The general properties of TE and TM mode solutions are illustrated
in Figure 2.6. In general a mode becomes confined above a certain val-
ue of t/ko- At thecut off value of p = 0, the mode extends to x = -=.
For an increasing value of t/A0 with p > 0, the mode becomes increas-
ingly confined to Tayer 1. This is reflected in the effective guide
index ng (or normalized propagation constant) which, at cut off,
equals to Nye And for a large value of t/xo, Ne approaches to nq- In
a symmetric waveguide the lowest order modes TM0 and TE0 have no cut
off and are confined for all value of t/ko.

Figure 2.7 shows that Ey can have considerable magnitude outside
the guiding layer of the three layer slab waveguide. For some appli-
cation of waveguide such as double heterojunction lasers, the stimu-
lated emission and gain coefficient are related to the photon flux.

It is important to consider the field distribution in order to determine

20
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the fraction of the optical mode within the guiding layer. The optical
flux is given by the Poynting vector and is proportional to |Ey|2.
The confinement factor is defined as the ratio of the iight in-
tensity within the guiding layer to the sum of Iight intensity within
and outside the guiding layer.
The confinement factor T for the symmetric three layer slab wave-

guide is given by

t/2
cos“(hx - ¢)dx
t/2
I’ = v
t‘. t/2 )
}j cosz(ﬂz-+ ¢)exp[2p(%-+ x)ldx + j cos“(hx - ¢)dx
1 o -t/2
)

+ cosz(% - qb)exp[Zq(% - x)1dx! (2.20)

t/2

which gives

cosz(%t- +o) + %

2/ht | -
g c0s" (5 $)—-1

(2.21)

1
P
r= |1+
t+

%-cos 26 sin ht
for the TE modes. The confinement factor is frequently used because it
represents the energy of the propagatina mode within the guiding layer.

Figure 2.8 shows the confinement factor as a function of the guiding

Tayer thickness t for various TE modes.
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CHAPTER III

A CHARACTERIZATION OF A MULTILAYERED REFLECTOR

3.1. 'Introduction

‘Multilayered media play an important role in a number of applica-
tions. These include narrow band optical filter, anti-reflective coat-
ing, highly reflective mirror, and polarizers. The design and the
characteristic of these devices are strongly dependent upon the under-
standing of electromagnetic propagation in multilayered media. Propa-
gation of waves in stratified media is of great interest in areas other
than thin film optics, also. And much work has been done in seismic
waves, elastic waves, acoustic waves and also electromagnetic waves,
especially in connection with reflection of radio waves in earth's at-
mosphere. Reviews of these works have been made by Brillouin (32),
wait 3] and Brekhouskikh (341,

The propagation of 1ight through stratified medium has been con-

(35-37)  ainly with the thin film optical

sidered by various authors
filter. Historically the earliest approach of dealing with the inter-
ference effect in thin film, and still perhaps the simplest and most in-

(38)

tuitive is the classical approach of Airy on summing multiple
reflections. It becomes readily apparent, of course, that any
numerical work will be a time consuming affair especially in an ab-

sorbing film. Moreover, the complete recursion process has to be
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repeated for each change of parameter in a layer and the result is of
1ittle use for numerical work when there are more than four layers.
Some of the other approaches, such as the one based on Stoke's rela-

(39), are interesting in gen-

tions and the principle of superposition
eral, but again they are insufficient for numerical computation.
Another approach to thin film computation is the form of graphical

method (40)

, certain of which nave considerable value either in offer-
ing a degree of visualization or as a spot check calculation where only
a few layersare involved.

In this chapter, the closed form expression for the reflectivity

of periodic multilayer reflector making use of the so called Abele’s
method is derived. Yeh, et. al., (6) recently published reflectivity
of a Bragg reflector. However this result is for the special Bragg
reflector whose two outer most media have thesame indices as one of
the refractive indices of periodic layers.

In application of a Bragg reflector in waveguiding structure, var-
ious layer parameter, such as refractive index and thickness of each
layer play an important role in reflectivity and selectivity of a
Bragg waveguide. But in most of the previously published papers, no
detailed explanation about the relationship between various layer par-
ameterscan be found.

It is the purpose of this chapter to provide the necessary rela-
tionship together with the description of some important characteris-

tics of multilayered reflectors.
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3.2 Recurrence Relations in Multilayer

A multilayer shown schematically in Figure 3-1, consists of 2
number of layers surrounded on the two sides by semifinite media. The
cartesian coordinate system is chosen such that the x axis is normal to
the interfaces. The layers are numbered in order from the left to
right. The interface between the layers are numbered from 0 to 2.

Ny will stand for the refractive.index of guiding layer and N4 for
that of substrate. But ng and ng will be used instead of o and Net+1?
respectively. The refraction angles will be denoted by ao, Bys---s8,-

It is assumed that the incident 1ightlis monochromatic plane
polarized and the individual layers are homogeneous, isotropic,

non-magnetic and lossless.

The index of refraction of each layer is given by

n X < X
n, Xo < X < X

n(x) = {n; Xs 1 <X <X (3.1)
R )
ng X, <X

The electric and magnetic fields can be obtained as solutions of Max-
well's equationssubject to the certain boundary conditions at inter-
faces. Interference effects within the multilayer give rise, in gen-

eral. to a reflected as well as transmitted wave in each layer except
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Figure 3.1. Schematic Representation of a Multilayer.
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1n the emergent semifinite medium where only a transmitted wave exists.
Within the ith layer the general form of the solution for the electric
field distribution can be expressed as a sum of a transmitted and re-
flected waves. The complex amplitude of these two waves constitute
the components of a column vector. The electric and magnetic field is

described in matrix form,

= i

E(x,z,t) exp{jki(x-xi)} exp{-jki(x—xi»- a
exp{j(Bz-wt)}

H(x,z,t) LﬁiexP{jkikX'xi)} -n;exp{-Jk. (x-x ) b (3.2)
where

8 : propagation constant

a,: incident complex amplitude at jth interface

bi: reflected complex amplitude at ith interface

Ny optical admittance of ith layer

3 =<§§ nicose., 1= 0,1,2,...2 (3.3)

Ayt wavelength in vacuum

The amplitude column vector in equation (3.2) is related to that of
the adjunct layers. They are related through the continuity condition
at the interfaces. Imposing the continuity condition at ith interface

(i.e. x = xi) leads to

2551
|

exp(-3ki1dipy)  exPUIKyydiyg)
LPRECHI SR D BEREL WHIC 16| SO PR (D541
(3.4)

. . ..7.,th . -
Here di+1 is thickness of the (i+1)~ layer and given as d1+] = X1 = X5
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Equation (3.4) can be put into a more useful form as shown.

. 1 1/“1 1 1 ai+]exp(-jki+]di+]) G.5)
1 -1/niJ Nisl M4 bi+]exp\jk1+1di+])

The above equation (3.5) may be written as the following simple matrix

equation.
_ ] ! Fiet| |21418%P (=3 4q954q) ' (3.6)
t. . *
i+1 riel 1 bi+1exp(3ki+1di+])
where ti+1’ L are Fresnel transmission and reflection coefficient,

respectively and defined as

2 n;
ti'l"] = ci,i"'.l ni + n.i+‘l ’ (3.7)
N, =~ M.
_ i i+
And in Equation (3.7) Ci i1 denotes

cos 6./cos CIR for TM

Cisgrr =} 1 ™ (3.9)
1, for TE

here i is integer 0,1,2,...2. Equation (3.6) describesthe transforma-
tion of column vector from right side of interface to the Teft side.
There can be several alternate notations that can be used in mul-
tilayer calculations, which are related to one another but modify the
computational format substantially. Matrix notation has considerable

practical importance in one or another aspect of numerical or design
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work and will be discussed in detail.

3.3 Matrix Method to Calculate Reflectivity

We are now ready to introduce the matrix method for analyzing
the propagation of plane waves in multilayer media. The recursion re-
Tation (3.5) has the form of a linear transformation of variables,

and they can conveniently be written as a matrix equation,

a. a.
IS | i+]
. = Vi vi+IUi+1 5 _}, (3.10)
i i+l
where
1 1
Vi = (3.11)
L
L
i
'I.
and
exp(-jkidi) ) B
Ui = (3.]3)
0 exp(3k;d;)

The matrix Vi is called the optical admittance matrix, and depends
only on the direction of polarization of waves. The matrix Ui is called
phase matrice and depend only ocn the phase excursion of two onnositely
traveling partial waves.

Equation (3.10) forms a basic defining relation of the reflected
and incident complex amplitude between the adjunct layers.

The introduction of matrix notation is to be an important
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development in multilayer media, especially in its use with an alter-
nate set of variables, namely the resultant field complex amplitude.
One of the conveniencesof using the matrix method can be seen in the ease
and compactness of the expression invoived in combining this equation
for a multilayer.

By successive repetition of the Equation (3.10), it is clear that
the reflected and transmitted amplitude on the side of incidence wave

can be written in the following form

. |
) 341 : )

=S 3.14a
b By |

here S will be called the system transfer matrix and is given as

1 -1 -
V1U1V] VZUZ"'Vi

. 1 -1 -1
S =7 VoqUiae VeV UnVe Vo (3.15)

Let the transfer matrix Equation (3.15) be rewritten in following form,

2

S = v;’( x MV

. 3.16
q=1 9 7 (3-18)

where Mq is called interference or characteristic matrix of qth Tayer

and denoted as

Moo=y yy!

A7
q 94949 (3.17)

Some of the more significant advantages of using the characteristic
matrix become apparent at this point. For example, a change in the

optical thickness or effective index of the qth layer affects only

th

g~ matrix, while the partial products of the matrices except the qth

., Wwith 1,J = 1,2, denotes the elements

layer are not affected. Let STJ
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of matrix S

w
1
X

5[S: ] (3.18)

Now we can compute the amplitude reflection coefficient and transmis-
sion coefficient using Equation (3.14). When light is incident from
the left side only, the transmission coefficient t and reflection co-
efficient r are described by

by _ Sy

0
p=-0-_2l (3.19)
&% S1
a ¢ ' B
t = az-i-l - o;zﬂ (3.20)
) 11

The characteristic matrix assumes an even more important role if
electric and magnetic field are introduced as the explicit variables.

Let the Equation (3.2) be written in the following form,

Ei(x,z,t) Ei(x)exp{j(sz - wt)}
(3.21)

Hi(x,z,t) = Hi(x)exp{jksz - wt)}

thus the electric and magnetic field in ith Tayer is described as

s . - _3 - .—
hi(xf' _ {éxp{aki(x X:1} exp{-Jk; (X xi)} a; 3.22)
Hi(X} h?iexp{jki(x—xi)}-niexp{-aki(x-xi)} b,
Equation 3.10 at ith interface can be rewritten as
E. (x;
S ANEN (3.23)
Hi(xi)
Again evaluating Equation (3.10) at (i-])th interface and combining

with Equation (3.10) and Equation (3.23), the recursion relation for
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H(x) and E(x) in matrix form is obtained as follows,

Es_1(x5.9]] Es(xy)

= M. (3.24)

Hi_q(%59) Hy (x;)
Obviously the characteristic matrix transforms the electric and mag-
netic field at interface x; into those at x;_;. Thus E (x)) and H (x,)
are related to Elgxl) and Hz(xz) by an equation similar to Equation
(3.14).

By inserting Equatiors (3.11)~(3.13) into the Equation (3.17), Mq

is given as,

cosé -j/n_sin s
q q q (3.25)

q . .
- siné cos
INg31M% °q

where for TE
nq coseq, or .

Gq (ZW/AO)nqCOSGQ’ nq = nq/cosaq’ for TM

And q denotes integer 1,2,...,2. It is important to note that the de-
terminent of Equation (3.25) is equal to unity.
The characteristic matrices, Equation (3.25) completely describes

the characteristics of individual layers in multilayer media. Writing

k My M
™M = » the system transfer matrix element s.. is given
g=1 ¢ Jm m 1
21 22 ‘
by
. M1 . g
sn‘mn+3¥g+JWﬂs+§”n
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m

- .21 _Ds
S;2 =Myt 3 g Im; ong ng 22
m n
= - 21 s __S
So1 T Myp - J g T M ong g Y] (3.26)
m n
- A R s
- L T P N

The reflection and transmission coefficient are obtained, by inserting
Equation (3.26) into Equation (3.19) and (3.20),

_ Ingmyy = mypnd + lmygneny - myy)

r= _ - (3.27)
(hgmll ¥ Myong) + J{myongng ¥ My )
2C n
0,% ‘g
t = -2 - (3.28)
(ngMyq * Mg} * 3(mpngng + Myq)
where
fcosec/cose, for ™
Cy . = “ (3.29)
>* 1 for TE

Equation (3.24) is similar in form to the recursion relation equation
(3.14) for the reflected and transmitted electric field amplitude,

h

but the important difference is that the it matrix depends excliu-

th layer. Accordingly, the advantages

sively on the elements of the i
mentioned before for the use of matrix notation become even greater
when E(x) and H(x) are used as the explicit variables, since a change
in optical parameter such as thickness or index affects only one

matrix.
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3.4 Multilayer with Periodic Structure

The properties of a multilayer with periodic sfructure can be
computed by the methods described in section 3.2. In particular, if
the matrix method is used, the matrix for the fundamental period can
be compufed and raised to the appropriate power numerically. A
closed expression for the nth power of a matrix is known and this
enables a number of useful general properties of periodic structure
to be predicted: it was first applied by Abeles and extended in

detail By Mielenz (4]).

This section deals with some properties of
multilayer reflector built up from a multilayer fundamental period
repeated N times. The fundamental period of each layer is presented
by a matrix which is a product of the characteristic matrix of its

individual layer

M= =M (3.30)

where matrices Mq are given by Eq. 3.25. Then the reflector which

consists of N member of fundamental period is represented by the ma-

trix whose element are obtained by N th power of matrix m.

| jmlﬂ
M=M= (3.31)
My Mzz_!
where
m -m
_ 11~ M2
Mg = Cyx) + (=308 (%)
Mg = mygSy.q )
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Maq = MyySyaq(x) (3.32)

m - m,
My = Cylx) - =228 (x)

The Cn(x) and Sn(x) used in Equation (3.32) are called Chebyschev poly-
nomial of the first and second kind, respectively. In Equation (3.32),

X denotes

m,, +m
X =_1_]_2__2§ k3.33)

and discriminates the stop zone. This will be examined in detail in

later part of this chapter.

C,(x) and S_(x) are given by (%2)
cos(ncos ) [x] <1

Cn(x) = (3.34a)
cosh(ncosh ¢}, [x| > |
sin{n +1)e/sine , [x] <1

$a(x) = 4 (3.34p)
sinh{n + 1)¢/sinho, [x] > 1

with & = cos”'x and b = cosh'lx, and shown in Figure 3.2 and 3.3.
The reflection and transmission coefficients of multilayer periodic
are immediately obtained by replacing {mij] with zMij]'in Equation
(3.27).

_ngMyy = agMps) + Snn My, - M)

ry = - (3.35)
(“gMIl *nghyp) * JingngMy, + My )
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Figure 3.2. Chebyschev Polynomial C n(x).
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2C

. N
ty = R (3.36)
N (nghy * ngMapl + JngngMyp * My

The reflectivity and transmittivity can be written as, by substituting
Equation (3.32) into Equation (3.35) and (3.36) and then taking ab-
solute square,

M1 M2
{(ng-ns)CNLX)+(ng+ns)( >

- m - M Z. ¢ -
{(ng+ns)CN(X)+(ng'ns)VJJ‘ir‘ngSN_1(x)}z+1(”g”sm12+m2ﬂbN-l(x)5

2 2
)SN-] (X) } +{ (ngnsm-l 2‘m2] )SN_‘I (X) }

2

(3.37)

4 Cg 2n§

m11-M22 2 2
{(ng+nSICNCX)+(ng-nS)t——jg-g—QSN_](X)} +{(ngnsm12+m21)iN_1(;)}
3.38

TN =

If the index of the medium in both sides of the multilayer is

n_, the reflectivity can be written as

g
D "
_ N
Ry = By + 7 (3.39)
where
2 2 My \2
DN = SN_](X){(m”‘mzz) +Un] zng' w) } (3-40)
And also DN is related to D1 by
D, = S2 .D (3.41)
N N-171 :
For the single fundamental period, we have
D] '
Ry = D, + 8 (3.42)
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The R] for a typical multilayer Bragg reflector is much less than
one. Substituting Equation (3.41) into Equation (3.39), we have,

0

- Y]
D] ¥ (SN_]?x))

R (3.43)

N
According to Equation (3.43), unit reflectivity can be obtained when
SN_](x) approaches to infinity. It is shown in Figure 3.3 that SN_l(x)
increase rapidly if the absolute value of x is greater than one.

In Equation (3.33)] we mentioned the stop zone briefly. At a wave-
length such that |x| > 1 the reflectivity increases steadily with the
number of periods and tends to unity as M approaches to infinity.

Such a zone, if it exists, is called a stoo zone or stop band. (7-9)
Yeh, et. al., (6) called it as forbidden gap which is widely used term-
inology of solid state physics. We will use the former terminology
because of its familiarity.

For commonest case of fundamental period composed of two A°/4
Tayer of refractive index n and Nos the discriminant is written as

Myp *m
7

n n
22 _ cosze - %Q;l +-—§)sin25 (3.44)
2 n

1
Equation (3.44) is obtained using Equation (3.25). 1n Equation (3.44),

5§ denotes

§ = Ao n.ldlcose.l ko nzdzcose2

(3.45)

The right hand side of Equation (3.44) can not be greater than 1, and

so to find the edge of stop zone we must set
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2. N 2

-1 = cos 8g = L{— + -n-—)sin 8y (3.46)
2 1
Then the width of zones defined as AO/AA is given by
= _4. s =1 __._.n] - nz 2
Ag = —sin (“2 T n1) (3.47)

This shows that the width of the zone is a function of the indices of
the two media used in the construction of multilayer. The greater
the width of the zone is obtained for the higher ratio of refractive

indices.

3.5 Symmetrical Multilayer

Any dielectric layer combination is known as symmetric if each
half is a mirror image of the other. The simplest example of this is
a triple layer combination in which a central layer is sandwiched be-
tween two identical outer layers. According to Herpin's theorem ‘43),
any multilayer is equivalent, to a two layer combination at a given wave-
Tength. In the particular case where the given multilayer combination
is symmetrical, the Herpin equivalent is a single layer regardless of
wavelength (44). This property of a symmetrical multilayer was pointed

(45)

out by Epstein who used it in designing filter. Consider the

symmetric triple layered basic period such as Ny Ny N structure, made

1
up of dielectric layers of refractive indices Nis Nos and phase angle
§¢s 52, respectively. The element of the characteristic matrix is
given by

n n
p— ' ~ 2 —]. - - .
myy = cos 28, cos 8, - % C;;—+ n2)s1n 28y sin ¢, (3.48a)
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! o N

m, = ﬁ;' sin 28, cos 5, + ¥( ] + ;E-cos 26] sin 5,
b T
+ % - S)sin g, (3.48b)
T M
. N9, .
My = = nqyfsin 26] cos 62 + g-—;) cos 26] sin 62
T M
- !w(—- - —-) sin 62 (3.48¢c)
T M
and m22 = mn

This relationship, together with the unimodularity of the characteris-

tic matrix, permits the following definition of an equivalent layer

to be made, .
cos Geq = Myp = My
sin &
-—td. m, (3.49)
eq

T‘eqS“'I Oeq = mZ]

These quantities have exactly the same form as a single layer of

phase thickness Geq and admittance "eq‘

5§ = cos 'm (3.50)

eg 11

21
Teq / Mo (3.51)

The equivalence is purely mathematical rather than a case of true

physical equivalence, but the result is of considerable in giving an
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insight into the physical properties, particularly for a periodic
structure.

If a Bragg reflector is made up of N identical symmetrical per-

iods, each of which has an equivalent phase thickness Geq and equiv-
alent admittance Neq? then physical considerations show that Bragg
layer will be equivalent to single layer to thickness N aeq and admit-
tance Neq This result also follows,
cos Geq -j sin Géq/"eq N jcos N aeq -j sin Nseq/neq
-1 "eq sin Géq cos éeq -J “eq sin Nseq cos Nseq |
(3.52)
In the present symmetrical case, the stop zone is given as
[MHI = IMZZI = |cos Ndeq[ > 1. (3.53)

Inside the stop zone, the equivalent phase thickness and the equivalent
admittance are both imaginary. Outside the stop zone the phase thick-

ness and admittance are real and these zones are known as pass zones or

n, n,n
pass bands. For the symmetric basic period such as QT%-7§-3%J, where
n n
jg-and 7§-represent eighth wavelength layer of refractive index n

and quarter wavelength layer of refractive index Nys stop zone width

is expressed exactly same as Equation (3.47) which was obtained for
n

nn
the double quarter wave layer. This equation also valid for Gééjf-3§)
structure, |

Figure 3.4 and 3.5 represent the equivalent optical admittance

and optical thickness for a symmetric triple layer at 80° incidence

44



with typical value of ratio of refractive index. In passhand, the

symmetric multilayer can be replaced by a single layer of Neq and

seq' Thus the reflectivity will oscillate between two values, the

reflectivity of bare substrate

+ n

2
n,=n
{—L———S] (3.54)
("g T s

and that given by
NgNg - M2 2
— n‘ (3.55)
g's eq

The actual position of maximum and minimum of ripple in pass band is

given by
Sy\/w )
QQ)Qg) for maximum
Geq = . (3.56)
{ = for minimum
here
S=1,3,5,7,...

r=1,2,3,4,...

N : number of period

It was shown in Equation (3.33) and (3.43) that the reflectivity
of a reflector depends on the stop zone x. And also optical confinement
and loss of a Bragg waveguide, which will be discussed in Chapter V
are related to the value of the stop zone. In order to get maximum
reflectivity, 7t is desirable to find a reflector with layer thickness
such that x has its maximum possible value. In other words, the

optimum thickness of the reflector is such that

45



EQUIVALENT OPTILICAL AWMITTANCE

D OO0 OOV
A ~Jd 00 \WwWO

(%]

0.3

0.2

0.1
0.09
0.08
0.07

0.96
0.95

0.04

n.03

0.02

.01

LN § B

1 ! 1 { 1 ! {

2.5 1.0 1.5 2.0 2.5 3.0 3.5
RELATIVE WAVELENGTH

Figure 3.4. Equivalent Optical Admittance for the
. ng n, Ny '

Structure t@}'TI'T?Q with h] = 3,45 and n, = 3.24 at 80°

Incidence Angle.

46

4.0
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3 .
357-= 0, 1=1,2,...9 (3.57)

1

Applying Equation (3.57) to Equation (3.33), the optimum thicknessesof

each Tayer for symmetric triple structure are obtained by

_T

kKidy = 7
_ T

kpdp = 3 (3.58)
.

kyds = 7

n,on,n
Equation (3.58) represent that G§L-£i-éL) triple symmetric structure

has its maximum value of a stop zone for a given incidence condition.
At this optimum condition the stop zone is given by
M

n2
x = (=5 + =) (3.59)
L L)
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CHAPTER IV

THE NUMERICAL RESULTS IN MULTILAYERED PERIODIC REFLECTOR
4.1. Introduction

The introduction of Bragg reflection principle opens a new dimension
for 1ight propagation in Integrated Optics.(46"48) The application of
such Bragg reflection has been recently reported in optical guiding
structure and injection lasers. In both cases, various layer parameter
such as refractive index and thickness of each layer, play an important
role in reflectivity and selectivity of a Bragg waveguide. But in most
of the previously published papers, no detail explanation about the re-
lationship between refractive index and thickness to each layer can be
found. A1l the Bragg reflector reported up to date have a double layered
structure and have a large number of periodic layers. It is the purpose
of this chapter to provide the necessary data together with the descrip-
tion of some important characteristic of reflectivity and selectivity.

In this chapter, we deal with a double, triple, quadruple and
quintuple layered periodic reflector, and compare the characteristics of
each structure.

Throughout this chapter, all numerically calculated data for multi-
layered reflectors is for Ga]_xAnxAs and GaAs layers. It isextremely dif-
ficult to et asystematic method, in general, to_the design of a periodic

Bragg reflector which satisfy the given specifications such as reflectivity,
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stop band width, and others. This is due to the fact that the closed
form equation for reflectivity given by Equation (3.38) is a transceden-
tal function. Even though we try the analytical solution in design
problem, it hasapractical 1imit to meet naturally available range of re-

fractive index, for GaAs case, 3.20 < index < 3.45 at 1.15 um, (49-51)

4.2. Reflectivity Spectrum

To investigate the reflectivity for a typical reflector, it is
necessary to evaluate Equation (3.37). The reflectivities for a
double Tayered Bragg reflector as a function of relative wavelength which
is defined as AO/A, and angle of incidence are displayed in Figure 4.1.

The TM waves incident at Brewster angle has zero reflectivity. The Brew-

5
ster angle for the double layered structure is (52)
n.n
= sin”! |— 12 ‘l (a.1)

s P —
2 2
ng/ ny + nZJ’

and can be observed in Figure 4.1(b). It is observed that change in
incidence angle remarkably affects the reflective spectrum. The behavior
of a typical quarter wave period is shown in Figure 4.2. The high reflec-
tion zone became smaller with an increasing N. On either side of a pla-
teau, the reflectance falls abruptly to a low osciliatory value. The
oscillation of reflectivity outside the stopband are called secondary or
subsidiary maximum. The additional period not only affect the width of
zone of high reflectance but also increase the reflectance within the
zone and the number of subsidiary maxima. The values of subsidiary
maxima also increase with the number of periods and have a tendency to be

smaller towards the outsides. Their envelope, as well as the value of
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the minima depend on the outermost bounding media. In particular for

n_ = nS the minima are all zero.

I n. n,n
Consider a triple structure, which has a basic period (7%-15-759,
n n :
where 7%-and 7§-represent quarter wavelength layers with refractive irdex

n and ny. The computed reflectivity for ny = 3.45, n2==3.24? o = 3.24,
and n, = 3.45 is shown in Figure 4.3(a). The first and second high re-
flectance zones occur at relative wavelength 2/3 and 4/3, respectively.
Reflectivities for quadruple and quintuple structure which have a basic
period of various combination of (;}) and (2%0 are plotted in Figure
4.3(b),(c). The number and maxima of the subsidiary are proportional
to the number of periods. So far we have considered the reflective spec-
trum for which all the layers in basic period are tuned at one quarter
wavelength. It is obvious that with an increased number of layers in
basic period, the reflectivity within the stop zone converges slowly to
unity. And also with increasing layers in the basic period, the stop-
band width for a given ratio of index decreases.

Reflectivity spectra shown in Figure 4.4 are for a symmetric
triple layered periodic Bragg reflector made up of eighth-wave, quarter-

wave and eighth-wave layer combination with ny = 3.45, n, = 3.24. For

2
the C%}-;%-;%Q structure, the subsidiary maxima in longer wave side are
smaller than those on the shorter wave side. The symmetric structure
(2%-2%-%%0 case the situation is reversed. In most application of Bragg
reflector in Integrated Optics, the ratio of indices of refraction in
various layers is close to unity (typically n]/n2 = 1.05), thus ra2flective
spectrum near grazing angle of incident is affected much by the re-

fractive index of guiding layer. To be able to compare the effect of ng
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on the reflectivities, the reflectivities are calculated as ng is varied
from 3.20 to 3.44. Figure 4.5 shows the effect of ng on reflectivities
for the quarter wave double Tayered periodic Bragg refiector at incident
angle & = 80° with n = 3.24, n, = 3.45 and n_ = 3.45. A broader band-

width is obtained as ng and ng approach to n,.

4.3, Reflectivity at the Center of Stopband

In practice, the problem of designing aBragg reflector with given
substrate, the incident media and reflectivity require to calculate the
number of layers which are needed. For normal incidence in quarter wave
tuned layered structure, the characteristics equation (3.25) turn out to
be simple. But at non-normal incident in non-quarter wave multilayered
structure calculation is of complicated. The primary purpose of this
section is to present the reflectivity characteristics of double, trinle
quadruple and quintuple layered periodic reflector structure. Three use-
ful parameters for reflectivity are: (1) number of periods, (2) re-
fractive index ratio in basic period, (3) incident angles.

Throughout this discussion reference wavelength and the outermost
indices used are Ao = 1.15 um, ng = 3.45, ng = 3.24. These values rep-
resent Ga,_

n, n
For (7}-7%) basic¢ period, reflectivity was calculated as a function of

xA]xAs that could be used for making an optical waveguide.
number of periods N; the results are plotted in Figure 4.6 in which the
upper and lower set of curves were obtained by choosing Bragg angle = 80°
and 60°, respectively.

The curves in Figure 4.7 show the reflectivity as a function of

n, n,n
periods N for the Bragg reflector made up of basic period of (?}-?g-él
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n, n,n
and (3%-7§-7%Q triple layers. The reflectivity vs. periods N for qua-

druple and quintuple structure are shown in Figure 4.8.

The effect of index ratio in periodic layer was examined by calcu-
lating the reflectivity vs. n]/nz. Figure 4.9 represents the results of
a series of calculation for a double structure. Figure 4.10 is shown

the reflectivity vs. n]/n2 for a triple structure. As noted before, at

) n, n, n
a given ratio of refractive index, a (3%-7§-7%0 basic period symmetric

triple structure exhibits a large reflectivity compared to other symmetric
structure.

The effect of different incident angle was investigated by plotting
reflectivities of triple structures, period up to 28. The graphs of Fig-
ure 4.11 indicate that TE and TM waves show different characteristics in
reflectivity. Reflectivity of TE waves increases with increasing angle
of incident and member of periods. The most interesting features of T™M
waves are the zeros of ref]ectiyity. This zero of reflectivity for TM
waves indicates the Brewster angle given by Equation (4.1). This con-
dition are applicable and useful to design of reflecting polarized wave-
guide. On the other hand, polarization insensitive beam splitting wave-
guide structure may be obtained at the intersection points of ™M and TE

branches.

4.4, Selectivity of Multilayer Bragg Reflector

The width of stop zone is of importance in application of a Bragg
Reflector to a wavelength selective waveguide structure. The Abeles's
approachL7'9), mentioned in section 3.3, the approximate representation

of stop zone width, is expected to be valid for the structure with the
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infinite number of periods. In Figure 4.12 we have plotted the stop zone
width of a typical double layered Bragg reflector against the refractive
indices ratio in a basic period. The results of both the exact numerical
calculation and the Equation (3.47) are shown. The solid curves are
obtained by using Equation (3.47), and the dotted curves by the exact
numerical calculation. There are large differences between results ob-
tained by the two methods. It is observed that the differences in the
values of stop zone width calculated by two methods are getting large as
long as the refractive index ratio is small. For a small number of
periods with a small refractive indices ratio (smaller than 1.07), Equa-
tion (3.47) could not yield a sufficiently accurate value for the stop
zone of the Bragg waveguide. It is therefore necessary to use the exact
numerical approach to calculate the stop zone width when the number of
periods is not large. In Figure 4.13 we have plotted the selectivity of
a typical double layer Bragg reflectorasa function of the number of per-
iods for three different ratio of refractive indices. Figure 4.13 in-
dicates that as the number of period increases, the selectivity decreases
hyperbolically, and selectivity increases with the ratio of refractive
index. But it is also important to note that an increase in the number
of period not only increases reflectivity but also increases the values
of subsidiary maxima and brings the subsidiary maxima on both sides of
stop zone closer to the center. Figure 4.14 is a plotting of the
selectivity of triple structure Bragg reflector against number of per-
jods. The solid curves are for Bragg reflector having basic period of

n, n,n
(3%-7§-1§Q and dotted curves for Bragg reflector which have a basic

n, n,n
period of Q—l 2 3).

788 The value of refractive indices L and ny are
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fixed .at 3.45 and 3.24, respectively in both case. In Figure 4.14 it is

n.n,n

apparent that a lower selectivity can be obtained by (—l--ii-—i) structure
n,n,n

rather than t—l-éi-Ji . Whereas the latter structure has a higher reflec-

tivity, the former structure offers a significant advantage over all
ny Ny N, n,n,n

other structure. As mentioned in section 4.2, (8 42 8) and (—4-—]-—81)
basic period structure where Ny > Nys have tendency to suppress the sub-
sidiary maximum in long wavelength side and in short wavelength side,
respectively. (see also Figure 4.4). This unique characteristics of
those basic structure can be utilized to realize a short wavelength or
Tong wavelength passing waveguide system.

In Table 4.1, the comparison of the selectivity of various different
basic period reflector composed of more than four layers are given.

Table 4 2 shows a relation between the reflectivity and selectivity

MM

of the b——-7r-@;) structure for several values of the number of period.

This data will be referred to later when the Bragg waveguide is evaluated.

4.5. Effect of Incidence Angle Variation

In considering the application of a periodic Bragg reflector in
wavelength reflective guiding structure, one of the most important charac-
teristics, yet generally overlooked, is the center wavelenath shift and
stopzone width change due to variation of an angle of incidence. Figure
4.15 shows the effects of incidence angle on the center wavelength of a
typical double layered periodic Bragg reflector. In the figure vertical
axis represent;AO/Ae where Ao and le denote the center wavelength at nor-
mal incident and at incident angle 6, respectively. A remarkable shift
in center wavelength is seen to occur at large ang}e of incidence. And

also the shift in center wavelength of reflector with small refractive
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Basic Period Selectivity | Stopband Center Parameter
n, Ny ny n
(At .08 M = 3.24, 0 = 60°
n, n, n, n 3.40, 0_ = 80°
v2 34 g
(g8 3 8 -258 X 3.28
P
(f'.lfiiifi_"i . X 3.38, 0 = 80
10 10 10 10 10 ‘ 0 3.38, ng = 3.28
* _ 0
(21.22.23.25.250 124 \ 3.38, Gg = 80
8 8 2 8 8 : 0 3.38, n5 = 3,28
Ny Ny Ny Ny N
L .06 2% 3.24, 6 = 60°
A11 Structure have ng 3.45, n_ = 3.24 at Wavelength 1.15 (um)

Table 4.1.

and 10 Periods.

Selectivity of Various Reflector Consisted of Basic
Period of More than 4 Layers.




L

Number of Period 5 . 10 15 20 25 30
Paramete N
" _ 3.45
—= 2t R 0.1985 0.5396 0.7841 0.9081 0.9624 0.9841
n, 3.35
Ap N
A= 0.30 m 5 0.189 0.116 0.095 0.088 0.081 0.074
0
M. 345 R 0.9994 | 1.0 1.0 1.0 1.0 1.0
m, 398 . . . . . .
A - N
A =0.73 i X 0.606 0.553 0.550 0.549 0.546 0.539
0
A1l structures have ng = 3.45, ng = 3.24 at wavelength }‘o = 1.15 pm,
Table 4.2. Reflectivity and Selectivity of the

I’I-I n2n

(‘g“ T —él—) Symmetric Structure.
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index ratio is less than that of large refractive index ratio. An investi-
gation is made on the center wavelength shift owing to incident angle
variation in triple, quadruple and quintuple basic period. The results
are shown in Figure 4.16 with reflector parameters. From the various
plots of center wavelength shift in Figure 4.15 and 4.16 we note follow-
ing features: the slope of center wavelength shift is very steep at
large incident angle; the magnitude of the shift is dependent, generally,
on the type of basic period structure, refractive index ratio. The pos-
sible reason for these features is that the optical thicknesses of each
layer decrease with an increase of angle of incidence, éonsequently a
multilayer's center wavelength shifts toward shorter wavelength as an
angle of incidence is increased.

Figure 4.17 shows theoretical effects of incidence angle variation
on the bandwidth of double, triple and quadruple basic period which
have same reflector parameter as that of Figure 4.16. We see that re-
markable change in selectivity as any of the three structure is seen to
occur over a wide range of angles. This is a quite different results
compare to bandwidth variation of narrow bandpass interference filter

reported by M.L. Baker and V.C. Yen (53).

These changes can be under-
stood by considering small refractive index ratio and increased mis-

match in the optical thickness of layers.
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CHAPTER Vv

TRIPLE LAYERED PERIODIC BRAGG WAVEGUIDE
5.1 Introduction
Since the advent of the solid, gas and semiconductor laser two
decades ago, there has been immense advances in Integrated Optics. Op-

tical modulation °% (55)

(56)

, frequency mixing , and parametric oscilla-

tion has been extensively studied. Recently, however, the intro-

(57) (58)

duction of low loss fiber and heterojunction laser and develop-

ment of optical signal processing have raised the important questions
concerning the future needs of totally integrated optical system (59).

As far as optical systems are concerned certain features of the thin

film devices appear to have definite advantage. First, all the elements
of a thin film devices are exposed on the surface and are easily acces-
sible for probing, measurement, or modifications. Secondly, the thin
film optical devices can be made small énough to place one next to the
other on a single substrate, forming an optical system which is naturally
more compact, less vulnerable to the environmental changes, and more
economical. Thirdly, since the thin film has a thickness comparable

to the optical wavelength and since most of the light energy is confined
within the film, the 1ight intensity inside the film can be very large
even at moderate power level. This large power density is important in

nonlinear interactions. Finally, the phase velocity of a light wave in

a thin film waveguide depends on the thickness of the film and the mode
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~ of propagation. This provides important design possibilities.

Many optical devices that have Been reported show two basic die-
lectric waveguide structures which are in form of a planar film or strip
with a refractive index higher than that of sulistrate. The optical con-
finement in waveguide is provided By two or three dielectric layers,
having a higher refractive index layer surrounded by cladding layers of
lower refractive index material. This condition is necessary to obtain
an imaginary transverse propagation constant which corresponds to an
evanescent decay of the mode field in the bounding media.

Recently another type of dielectric optical guiding structure with
periodic layered Bragg reflector has Been introduced (5). Such a Bragg
waveguide which consists of a alternating layers of material with high
and low of refractive indices has Been demonstrated (]9). The applica-
tion of such Bragg reflector Ras also been recently reported in the oper-
ation of injection laser (20,21).

A1l the Bragg waveguides reported to date have double layered struc-
ture which require a large number of periodic layers to process, and
thus have inherent disadvantages in cost effective production.

The recent work of electromagnetic wave propagation in double
layered periodic dielectric structure by Yeh, et. al., (6) described
Bloch waves in Bragg waveguide with help of Floquet's thegrem. In
their studies, two bounding media of Bragg reflector were assumed to
have same refractive index as one of periodic layers. This assumption
inherently impose limitation to more general application.

The main purpose of this chapter is to derive generalized wave

propagation characteristic of a triple layered periodic Bragg waveguide.
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This proposed method can be applied to any combination of layer with
different refractive indices Bounding medium. Also presented are the

closed form expression for dispersion relation and the complete charac-

terization of the triple layered periodic Bragg waveguide.

5.2 Transform Matrix of a Triple Layered Periodic Bragg Reflector

Consider a triple layered periodic Bragg waveguide structure shown
in Figure 5.1. Guiding layer and Bragg reflector are sandwiched between
a semi-infinite substrate (ns) and a semi-infinite super-strate (na).

The Bragg reflector are composed of N number of basic period with

triple layeres of refractive indices nys Ny and ns. The cartesian coor-
dinate system is chosen that x axis is normal to the interfaces. The po-
sition of each layer of reflector is specified by coordinate Xis the
upper boundary of each material. The thicknesses of each layer in basic

period are given by
i=1,2,...,3N (5-1)
and note that

d d

3p+q Y
where
p= 192933---9N and q-= ],2,3

and period is,

A= d] +d, +d

2t 43 (5-2]

The index profile in basic period is given by
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Figure 5.1. Triple Layered Dielectric Periodic Bragg Waveguide
Structure with Semi-infinite Outer Media.
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with
n{x + A) = n(x).
1t is assumed that the incident light is monochromatic plane polarized
and the individual layers are homogeneous, isotropic, nonmagnetic,
and lTossless. Also assume that layers are infinitely long in v and z

directions.

The electric field distribution in each layer of Bragg reflector

may be written by

o ) TR ) <)L .
E(x) ap’q exp{qu(x xT)} bp’qexp{akq(x x1) (5.4)
where
_ 2 2 _
kq =K Jﬁq - ng » g =1,2,3

a' : incident complex amplitude at g th interface of pth period

P.q°

qg=1,2,3 and p = 1,2,...,N,

th th

bé q: reflected complex amplitude at g interface of p

period,

n_: refractive index in q'th layer of each period,

q
BA,
ng = 57 normalized propagation constant (or effective refractive
index),
B: propagation constant in z direction,
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A :  optical wavelength,
1: 3(p-1) + q.

In Equation (5.4) a factor exp(jsz - jut] has been suppressed.
We are now ready to use the matrix method derived in Chapter III for
analyzing the propagation of plane waves in triple periodic Bragg reflec-
tor. In case of TE modes, applying Equation (3.10) to Equation (5.4),

amplitude constants in each interface within the same period are related

to
ap,1 S ap’z
=V Vol '
_bp,l E’p,a
(5.6)
ap,?j -1 pPs3
J =V, Vils
5p,2 5p, 3]

The incident and reflected complex amplitudes in the layer of refractive
index N of a period to the corresponding layer of the same refractive
index in the next period are obtained, using the Equation (3.10).
{éé,{T ap+1,l
-1 1

=y~ -
o Vq VoUpVp V3UaVa VU, o (5.7)
P, 1 p+l,1

here Vi’ Ui are admittance and phase matrix of i th

layer, respectively,
and given by Equation (3.11) and (3.13) in Chapter III with appropriate

paremters.
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The electric field distribution equation can be rewritten as the

following form

E(x) = ap’qexp{akq(x - pYH+ bp’qexp{- qu(x'- p) } (5.8)

where we define,

a

p,1 35’1EXP(jk]do), b ]-bp ]-XP(‘Jk]d )s
a2 * ap’zexp(jk2d3), by,2 = by, 28xP(-jkyds),
ap’3 E ap,3s bp,3 = bp,3.

And X; is substituted by

X3(p-1) + 1= PHA +dis X5 q) 4 p = (p-1IA *

x3(p_” +3° (p-1)A.

here

A=t]+t2+t3andd°=d +d

2 3
The incident and reflected comnlex amplitudes at each interface within
basic period are related to the following expression,

™

Pp’zexp(-jkzd )] . "(1 + -E) a - HE
[?P,ZQXP(jkz —} \(1 - ——) a+ —-z}

"ap’lexp(-jk1d0)—]

(5.9) |

L p ]exp(\]k]d ) -

82



. 12 2
}Ep’3exp(-ak3d3ﬂ [+ 3) (- n
= 4

n
lfp,3e"p(jk3d3) [ - —) (a+ -ﬂ__f,‘)‘}

rap’zexpk-jkzds,)—
. (5.10)
bp,zexp (,jk2d3)

The matrix Equation (5.7) represents the linear transformation of the
complex ampiitude in layer 1 of a basic period to the corresponding layer
1 in next period. Manipulating the admittance and phase matrix in Equation

(5.7) and introducing new notation, we obtained the following matrix.

fp,l—i* ]'Tn Tﬂ rpﬂ,]—{

= l . (5.]1}
b1l T T2 I_bp+1,L|
The elements of transform matrix are
k k
'l'ﬂ = {cos k]d1 cos kzdz 1«(—] + —;)sm k1d] sin k2d2
j_—kz k3
- zlv(?s-i- ?z-)cos k1d] sin kzdz {5.12a)

k k
+ (k? K )sm kyd; cos kzdz_l}exp(-jk3d3)

Ky K

T = (L& o Llev 1

. {2(k] k2)51n k]d] sin kzd2
k3 k

323 . ek
+ 2[('(1 k3)sm k]dl cos k2d2

k, kK
3.2
+ (E- - k3)cos kyd; sin k d:}}exp\akst) (5.12b)
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ky K
L= - qusin kydy sin k,d,

.
Ky

21 = 1
ST
K. Kk

*2 . S
+ Lkz - k3)cos kqdy sin kzdé]}exp( Jk3d3) (5.12¢c)

.k k
o33 - yein v
2{} m }sin k]dl cos k2d2

(98]

‘ k k
= - (2 4 Lyes ;
T22 = {cos k]d] cos k2d2 5(k] + k2)sm k1d1 sin kzd2
Tk k
iz, 5 in &
+ 2{fk3 + k2)cos k]d] sin kzd2

k. K
+ (ff +-E§)sin ,dy cos kzdg}}exp(jk3d3) (5.12d)

It can be easily proved that the determinant of transform matrix is unity,

that is unimodular.

- Ty T = 1 (5.13)

Tl =Tl =
Note that there are some symmetric relations among those 4 matrix ele-

ments of the transform matrix.

T = T3
(5.14)
T2 = T

These symmetric relations are very useful in simplifying the matrix manip-
ulation as well as in numerical calculations. This advantage vanishes
for dielectric layers having a complex refractive index.

The inverse of transform matrix is obtained by simple transposing

the matrix itself,
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M T2] [T Ty

. (5.15)
21 T2o) [Tz Ty

This is due to the fact that the transform matrix is unimodular (Equa-
tion 5.13).
By successive application of Equation (5.11) to the Bragg reflector

which is composed of N numbers of basic period, we have
—_ N-1
P] ,1—1' ’Tn sz_] F‘Nl_l
k’uﬂ [T1 TzzJ Ew

The square matrix in Equation (5.16) is the system transform matrix

(5.16)

which relates the complex amplitudes of incident plane waves and the re-
flected plane waves in the first layer of the first period to those of
the first layer in the last period. The relations between the amplitude
of each layers within period aregiven by Equation (5.9) and (5.10).

By using Equation (5.15), the Equation (5.16) can be rewritten as

the following form.

— —N-] ™
a1 Too =Ty ’ 3,1

! (5.17)
;_bN,L{ T2 ngj °1,1

Thus we can specify the field distribution in the Bragg reflector uniquely

by determine a1 4 and b] 1°
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5.3 Flogquet's Theorem and Bloch Wave Function

The field distribution in periodic layers can be expressed in more

simple form using the Floquet's Theorem (60).

The complex amplitude
related by the matrix equation (5.18) in fore section may also be written

as

N, 1 4.1

=T (N"'])

_ (5.18)
", 1] 1.1

here T' denotes inverse of square matrix in Equation (5.16). Imposing
the requirements that wave function must remain finite as N approaches
infinity. This is most conveniently discussed in terms of the eigen-
value problem of the matrix T'. The eigenvaluesof T' are given by roots

of characteristic equation,
t2 _ t(trace of T') + det T' = 0. (5.19)

The roots are

t= %iftrace of T') i_/ktrace of T’)2 - fJ (5.20)

If (trace of T') < 2 the eigenvalue t has real and imaginary part,and

may be written as
¢ = of JK(N=-1)1A
Ihis condition denote the propagation waves. When (trace of T') > 2,

K= 23-+ jKi and t has only a real part so that the wave is evanescent.

s

These are so called stop band of periodic medium. The band edge are

(trace T') _ 4
= 1

the regions where The parameter K is given by
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o Tt T, z"
S Al 2, ./( 1] 22) (5.21)

We also note that (trace of T') = (trace of T).
By substituting Equation (5.12a) and (5.12d} to above equation we
have,

T, +T

11 22 _

—= cos k]d'l cos kzk2 cos k3d3
k k

1 - .
-l'( + —)cos k,d, sin k.,d. sin k.d
1 k2 373 171 272

k k
2 . .
—%(k3 5 )cos kd 1 sin kzd‘2 sin k3d3
K3 k1)
5= + )cos kod, sin kydy sin kod (5.22)
k1 k3 272 171 373

Note that Equation (5.22) is same as the Equation (3.33), which is re-
lated to stop zone width in Section 3 of Chapter III with appropriate
values of ™ and Moo for triple layered period.

Using the property of Floquet's theorem, wave in N layer of the

p th period can be written,

E(x) = exp(JKx)E (x), (5.23)
where

Eglx) = {ay jexp[iky(x - pa]]
* by qexp[-dkq(x - pa)]lexp -3K[x - (p-1)a] 4 (5.24)

here Kknown as Bloch wave number is given by Equation (5.22). ap 1 and

bp 1 are obtained by Equation (5.19) with eigenvalue as the following

form,
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ap’-‘ a

= oJK(p-TA (5.25)

by .1 b,

5.4 Electric Field and Dispersion Equation

Multilayered periodic media present high reflectivity to incident
monochromatic radiation.

Fox (5) has éuggested that such reflection can be used in a new type
of dielectric waveguide in which conventionally used substrate is replaced
by a structure of periodic layers. Yeh,et.al.,(s) used a Bloch wave for-
mulation of propagation in double layered media to obtain a dispersion re-
lation of Bragg waveguide and showed the property of confined mode
in the guiding layer which has a lower index of refraction than that
of the periodic layers.

The Bragg waveguide considered here consists of a guiding layer of
refractive index ng surrounded by a index of refraction n,
and triple layered periodic reflector. Figure 5.1 shows the coordinate
system and guide dimension.

In case of TE modes the field component are ;y’ Hx and Hz. Fach of

these components, satisfies the wave equation, for Ey(x),

325y(x)

2

2.2 2 -
+(kgn®(x) - 8 )Ey(x) = 0,
ax

here we assume
E(x;y,2) exp(-jut) = EyLX)exp j(8z - wt)

Finally, the solution in all the regions are given by
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r -
a,exp g (x + d) ‘ X < -d,
aoexp(jkgx) + boexp(-gkgx) -d< x<0,
E(X) = {_ (5.26)
Ek(x)exp(in), 0 < x < NA,
\asexp(jksx) x> N,
where
B =Kk ng sin eg
2m
k T —
Ao
.2 2 2%
q, = (8° - kn))%, | (5.27)
_ .22 2.3% _
kz = (k n, - 8 )2, 1= g,s
N = number of periods,
A= d] + d2 + d3

Here we assume that ny < ng < Nys Ny, Na. The assumed solution in super-
strate and guiding layer is similar to the conventional slab dielectric
waveguide as in section 4 of Chapter II. The wave expression in triple
layered reflector, EK(x)exp(in), is given by Equation (5.24) and the
electric field in substrate are assumed only transmitted waves.

In order to obtain the complete solution of the plane wave for the
mode of waveguide shown in Figure 5.1, we must apply the appropriate con-
tinuity conditions at the interfaces of the structure. Using Equation

(3.10), a, and b0 are related to
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T n n
ay e (-k;h) R H

. . | (5.28)

The continuity condition at x = -d turn out to be the following simple

form,
. b/a -1
tan(k d - ¢) = j 22— (5.29)
g bola0 1

here

g = tan-]an/kg).

We note that bo/ao in Equation (5.29) is the reflection coefficent of
Bragg reflector given by Equation(3.35)1in Chapter III. Equation 5.29
is called the dispersion relation of Bragg waveguide. The left hand side
contains only the parameter of the guiding layer refractive index (ng)
and superstrate refractive index (na) while the right hand side depends
only on the reflection coefficient of the periodic reflector. For guided
propagation 8, a, and kg are real so that the Teft hand side of Equation
(5.29) is a real number. The right hand side is real if and only if the
propagation conditions in the reflector fall within one of the forbidden
gaps and 2, is equal to the complex conjugate of bo.

The solutions of dispersion equation can be used to determine the
value of the propagation constant 3 that correspond to a confined wave-

aguiding. These values of B can then be used to calculate the mode

dispersion curves for a particular Bragg waveguide.
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5.5 Confinement Factor and Loss

A1l Bragg waveguide reported up to this date have large number
of periods. In practical process, they have inherent disadvantages in
cost effective production. Although the current molecular beam tech-
nology can fabricate as many layers as needed. In practice, the time
invested in the growth is proportional to the number of periods.
Typical growth rate is about 1 um/hr FG]).

Also the confinement factor play an important role in injection
laser. For instance the threshold current density depends on the
confinement factor (62).

We will calculate the confinement factor of the triple layer
periodic Bragg waveguide. The confinement factor is defined as the
ratio of the 1ight intensity within guiding layer to the sum of light
intensity both within and outside the guiding layer.

The confinement factor T for the triple layer periodic Bragg

waveguide is expressed by

s} . . . . *
. f_d{aoexp(Jkgx) + boexp(-Jkax)}{aoexp(Jng) + boexp(-Jkgx)} dx

= =L -
Cf_w{aaexp g (x + d)Haexp g, (x + d)} dx

*
+ f_g{aoexp(jkgx) + boexp(-jkgx)}{aoexp(jkax) + boexp(-jkgx)} dx

+ fﬁf{Ek(x)exp(iKx)}{Ek(x)exp(iKx)}*dx (5.30)

s ik x) (3k %)Y ax]
{asexp(J X }{asexp Jkgx)3 dfj

*

here we assumed substrate has thickness dS and considered TE mode only.

After some manipulation of above equation, confinement factor T is
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given by

-ZNK A
) it S 4S5+, 45, +Sd
1-e g
here
aa +bb. 25k d 2k d
e * ¢
s, = °°20 °°+2; {:aobe g + (ab.e g):[ (5.32a)
‘a ‘2
x * sin k d jk d jk d
Sg = (aoao +bb )d + Tg" !: be 9 + (a*b e 9 ):I (5.32p)
g
* sin Kldl . jk](d] + 2d°)
Sy = a2y g * by 10y )¢, i el L WLIRL

jkitdy +2d ) L
[ ° )J (5.32¢)

*+ (ay 1by qe

* * sin k2d2 * jkzxd2 + 2d3)
S12. 7 (@1, 98,2 * By Py o)y ¥ T 13y by o8

2
N ik, (cl2 + 2d3) *l
+ (a],zb],ze )_l (5.324)
- sin k3d3 * jk3d3
Si3= (3 g3y 3% by 31 3)d3 * G %8
* jk
+ (a]_gbq g8 3 3)} (5.32)
2n, ] -2(N-“I)K1.A
= *
SS T 1.33%.3 (5.32f)

Al .Bragg waveguides have loss due to the finite number of periods
in the periodic layers. In practice, it is impossible to fasricate an
infinite number of periods, thus the minimum number of periods should
be calculated for an acceptable loss.

The following calculation is to find out the attenuation constant
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for each mode. The time averaged flux of energy is given by the real

part of the complex Poynting vector

S = HRe(E x H ) (5.33)
The total power flow P is given by integration of the z component of
S over the cross sectional area A.

P=/pS-dA _ ' (5.34)

The power loss due to the energy flow into the substrate is given by

P J S -« dw, {5.35)

loss ~ ‘w
where w is the wall area. The power flow along the guide can be
p(z) = Poexp(-Zaz). (2.36)

Therefore the attenuation constant is written by
= .1 5
20, ) (dZ) (3'37)

where -(%g) can be interpreted as the power loss per unit length of
the guide. By combining Equations (5.32), (5.34), (5.35), and (5.36),

the attenuation constant can be described by

(5.38)

here SX and Sz represent the x and z component of the Poynting vector
S. Using Equation (5.32) and Equation (5.38), the attenuation constant

is given hy

2
2"3 * ~2(N-1)K.A
k & g 21sh13 © ‘
_ S S

@ =5 VKR (5.39)

. 1-e

Sa ¥ Sg* (S + 5yt 313)(—_—_-2K].A )
1 -e
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5.6 Numerical Results

In this section some numerical results about dispersion relation,
electric field profile, confinement factor and loss due to finite
number of period are presented.

Operétibnally the eigenmode is calculated by substituting suit-
able range of values for un (i.3., g < My < ng) into Equation (5.29).
And since the left hand side of Equation (5.29) is a real number, if
the resulting values of T]] and T22 correspond to stop zone and the
number of period N is sufficient to obtain unit reflectivity, then
right hand side of the dispersion Equation (5.29) is a real number.
The number of period N to achieve unity reflectivity is estimated from
the results of Chapter IV. The calculated dispersion relations and
envelope decay factor of two different Bragg waveguides are shown in
Figure 5.2 and 5.3. In each case, the substrate index ng = 3.45,
guiding layer index ng = 3.24, reference wavelength Ay = 1.15 um are
used. And the reflector parameters are given in Table 5.1. These
are representative values that could be used in Bragg waveguide with
Ga, Az,  As - GaAs combination.

In Figure 5.2 and 5.3, the solid curves represent the normalized
thickness of guiding layer d/AO versus the normalized propagation con-
stant Ne (or effective index of refraction) and the broken curve
represents the envelope decay factor exp(-KiA) versus n. In addition,
each mode is represented by a separate curve with mode label m = 0,1,2,
3,. In a conventional slab wavequide the N for confined mode vary

continuously from maximum of refractive indices of two cladding

medium to refractive index of core material (See Figure 2.5). It is
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L6

Number Indices of Refraction Thickness [um] Thig%ness
Type of .
Periods " n2 3 d; dy dg Bas}c{ﬁ$?1od
I 5 3.45 3.24 3.45 0.11 0.51 0.11 0.73
11 30 3.45 3.35 3.45 0.07 0.16 0.07 0.30

1) Bragg waveguide I and II satisfy the Bragg condition at 60 = 800, 600, respectively.

2) ng = 3.24 ng = 3.45.

n, n, n
3) Both waveguide have a reflector of triple layered basic (7%-7%-7}) structure.

Table 5.1, Bragg Waveguide Parameters



noted in Figure 5.2 and 5.3 that the LR for confined mode in Bragg
waveguide can only vary within the stop zone, (T11 + T22)/2 > 1. For
the outside of stopzone, the waveguide modes change to substrate
modes.

An interesting feature of Figure 5.2 is the single transverse
mode operation for waveguide thickness that would support many trans-
verse mode in a conventional slab waveguide such as one shown in Fig-
ure 2.5 in Chapter II. This is possible only when the thickness of
each layer in reflector is adjusted to satisfy Bragg condition at small
angie.

The result in Figure 5.3 which represents the dispersion relation
for 80° matching angle show the possibilities of allowing several high
modes in a certain guide thickness. However, if thickness is selected
so that the loss for higher order mode is higher than that of a lower
order mode, then the higher mode will eventually leak into the sub- .
strate. This mode selective capability could be applied to various
fields of Integrated Optics. It is observed in Figure 5.3 that the
envelope decay factor exp(—KiA) is minimum at the center of the
stopzone. The value of KixXgoverns the amplitude of 1ight wave in
reflector. The Bloch wave constant vs. N for a typical triple
layered Bragg waveguide is shown in Figure 5.4. It is clearly seen
that Ki is maximum at center of stop zone.

Figure 5.5 shows the electric field profiles of fundamental TE
mode with d = 0.23 um and the higher order mode with d = 2.35 um. The
waveguide parameters are the same as those used for obtaining Fig-

ure 5.3. Those figures show the effect of envelope decay factor on
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amplitude of electric field in periodic reflector for different order
of mode.

It is readily seen that field confinement in guiding layer for
fundamental mode is small compared to that of higher order mode. For
a case of larger d, where higher order modes are permitted, Figure 5.5
(b), (c), (d) show that, as the mode order increases, more of light
intensity is outside of guiding layer. Therefore the lower the mode
order, the greater the confinement.

The variation of confinement factor I for fundamentai, first -,
second - , and third - order TE mode against guiding layer thickness
is plotted in Figure 5.6. T decreaseswhen d is less than or greater
than do " and becomes maximum at d = d

£ where do £ denotes the op-

p op p
timum thickness of guiding layer at a given incident condition. This
Bragg waveguide mode confinement characteristics differs from the con-
ventional heterostructure in which I for higher order mode is small
near cutoff and approach the value for the fundamental mode as d

is increased.

The attenuation constants as a function of the number of period

N for TE modes are plotted in Figure 5.7. The Bragg waveguide have

n, n, n
(g 7%-7%) basic period with same refractive indice as that of Table
5.1. In the figure, solid graph and broken graph represent for

A =0.42 and 0.73 um, respectively. The attention constant of the
Bragg waveguide decreases rapidly as the number of periods of reflec-
tor increases. And this figure also shows the larger A has less loss
due to higher reflectivity of Bragg reflector as discussed in Chap-

ter IV. The results for the tripie structure shown in Figure 5.7
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exhibit Tower loss than that of the double structure reported by
A.Y. Cho, et.al (]9). Figure 5.8 describes the effect of guiding
Tayer thickness on loss as a parameter of number of period for the
TE mode in waveguide I given in Table 5.1. Regardless to number of
period, the attenuation constant becomes minimum at the optimum
thickness corresponding to the center of the allowed range of guiding
‘layer thickness. It is clear from Figure 5.7 and 5.8 that the max-
imum confinement and minimum loss is accomplished with the optimum
guiding layer thickness.

In Table 5.2, the attenuation constant and selectivity for
the TE] mode for two different configurations of the Bragg waveguide
are listed. The waveguide parameters are same as those of Table 5.1.
For higher selectivity, it is necessary not only to choose the layer
thicknesses to satisfy the Bragg condition at small angle but also

to adjust the refractive index differences between layer as small

as possible.

Number Attenuation Constant Selectivity
Waveguide Type* of -1 Ay = A
’ 7 Period o [om] 2 1
A
0
11 30 0.57 x 107 0.074
I 5 0.18 x 107 0.539

*Waveguide parameters are given in Table 5.1

Table 5.2. Attenuation Constant and Selectivity for the
TE] Mode of the Bragg Waveguide I and II.
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CHAPTER VI

CONCLUSIONS

A generalized closed form expression for reflectivity of multi-
Tayered Bragg reflector is presented with expression of dispersion re-
lationship, electric field distribution, optical confinement factor,
and loss of triple layered Bragg waveguide. These expressions are
valid for any orientation of a nolarization and any values of a layer
thickness, wavelength, refractive indices of outermost bounding medium
and an angle of incidence.

With the numerical data, comparison and discussion of some im-
portant characteristics such as reflectivity and selectivity of a
double, triple, quadruple and quintuple layered periodic reflector are
extensively analyzed.

Addition of a number of layer in basic period has no significant
effect on the magnitude of reflectance, while adjusting and controlling
refractive index and thickness in each layer build up complexities in
practical fabrication process. 3ut with regard to bandwidth, the sel-
ectivity is drastically improved as the number of A0/4 tayer in basic
period increases.

Among several structure investigated, a symmetric triple basic
period exhibits unique property such as long wavelength or short wave-

length pass characteristics. In addition *o above aspects, the
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calculated reflectivity would place this triple structure in a range that

would make it more superior to the double structure Bragg waveguide,

n, n, n
(19) It was observed that (7§-1%-7%1 basic

structure has largest stopband among other symmetric structures for a

which have been reported.

given indices of refraction.

Finally, Bragy wavéguides composed of a triple layered periodic
reflector have been studied thoroughly with regard to mode characteris-
tics, field profiles in each layer, optical confinement and loss due to
wave leaking into substrate. Arbitrary low loss waveguide is achieved
with 5 periods of a triple layer.

The attenuation constant becomes minimum at the optimum thickness
corresponding to the center of the allowed range of guiding layer thick-
ness and decreases exponentially with number of period. A possible single
mode Bragg waveguide at a thickness which is a few times larger than the
wavelength could be used as a coupling device to optical fiber.

The Brewster condition on the TM mode is applicable to reflecting
polarized waveguide. On the other hand, the characteristiés of ™™ and
TE reflectivity against the angle of incidence may be utilized in beam
splitting waveguide structure.

Moreover, one of the important and useful application of a triple
layered Bragg waveguide is wavelength division multiplexing for a future

(63)

optical transmission system .
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1, COMPUTEF PRCGRAM T2 CALCULATC RSFLECTIVITY
A RELATIVZE WAVELENGTH FCOR THE MULTI-LAYERED
CHARPTZIR 1V

A FUNCTICN OF
STFLECTCR IN

AS
F

(ddddddddd dddd dd Sl ddddt ol df Sl d ] et S dd d o S Al A A o F e Ao S A ok A ol f S ol of of f st e e ot
cC
REFLZCTIVITY VS RELATIVE WAVILENGTH C

. ) c

Muduoddd df Ll ddd A A A S A A H S A L S A A Al L A SN A A A A S A L A S S ot A f o o of of of L ok s o] o] of o4

adoonon

o
IMPLICIT CCMPLEX*15(2=F)+REAL*®E(Q~S)
DIMENSIOMN wJD(200)+aN({1G) »T(10)+wWNR(10Q2,wNI(10)
21AK{10)sCH(10+2¢2)9sCC(2+2)+C(2+2) CF(202)
3sGND(10+200),EP(L10),ES(20),EM(10?

LOWER LIMLT CF RZILATIVE wAVELENGTH SCALE
UPPER LIMIT CF RELATIVE FAVZELENGTH SCALZ
NUNMBER CF POINT IN RALATIVE WAVELSENGTH

MODE s MO=1 TE MODE, MD=2, TM MOCE

w3
WE |
JT
MD

40 @0 40 wr

[a s Na NN aNa)

DATA W3 snS eJT sMD /060920y 2009 t /
PI=3¢1231592856
NP=Q

READ DATA

N § NUMEEZF QF PERICD

LM 3 NJUMEZR OF LAYERS IN TACH PZIRIODWESS THAN 7

ZANG : INCIDENT ANGLE IN DEGREES

w0 : REZFERENCES WAVELENGTH IN VACUUM  +( uM)

WNG : INDEX OF REFRATICON OF SJUPZRSTRATE

WNS 2 [INDEX CF FESFPATICON CF SU3STRATE

T(LX) ¢ CIMENSIONED OPTICAL THICKNESS CF L AYER (NORMALIZED
BY REFZRENCC WAVSLENGTH WG 1}

WN(LX) ¢ DIMINSICONZID INEX OF REFRACTION CGF LAYER

4 FEAD(Se SS+TNC=S6 )N My ZANGIWU s WNG sWNS o (TLLX) s WNI(LX) yLX=1+6)
S FCRMAT (129 1Xel20 1 XoFR o009 lXsFGeJoline 2(F3e2s1X)+C(F2s0¢1%eF3a2
141X3) '
NP=NP+1
SITA=SPI%ZANG/180.
DO 2222 La=1eLM

NAanNnONOOOOONONOAN

113



WRITE{O6+266) LWsuCTL(LW)
666 FUFRMAT( /+40Xe *TPTICAL THICKNESS UF LAYZER P e I1eS5XeFS 3
2" /7 "sFS .2t UMY
WED=WN{LW}
wEG=WNL*OSINISITA)
IFINED-WEG) 77€e7735,775
775 WNEF=FNK(WwZDy %=G)
GO TO 778
776 WNEF=FNK(WEG, xED)
778 T(L®)=WO/7{T(LW)E WNEF)
2222 CCNTINUE
LO=LM+1

PX ¢ LENGTH OF X AXIS » INCH
PY T LENGTH QF Y AXIS , INCH
F $ PLOTTER SCALE FACTCF

HL ¢ CHARACTER HETIGHT IN INGit

anonoOANn

DATA PY sPXsFshlL/4e92091¢0406107/
CALL PLTOT (WO eNoLMsFoWN T s WNGWNSsHLs ZANG, YD)
PN=N
RHI=ZANG*2 %P1/ 360,
[od WL DCFINED AS RILATIVE WAVELZINGTH A0/W%
D0 20 M=1,J4T
WLEWS+MR (WE-WS) /7JT
wJD(M)=wL
RKZ=(PI*2./W3) =wl
WNE=WNG®=OSINMN{RHI)
WN(LD)=WNS
00 79 I=1,L0
IF(WN{I1)=9WNE) G0,91,651
91 WNT=wN({ I}
WNR(I)=FNK{®WNT +WNE)
WNI(I)=0,
GC TO 7S¢
SO WANT=WN(T
WNI(I)ISFNK{ANEsWNT)
WANR(I)=0.,.
759 AK(I)= CHPLX(WNR(I) HWNI(I))
76 CONTIMNUE
AI=CMPLA(Des 1)
DO 12 L=1.,LM
BRP(LI=RKZI®T(L)*AK(L)
EEl{L)= AK{(L)
EMILI=uN(L ) =WN{L ) 7aK (L)
12 CCNTINUE
ZWRN=WNG¥OCCS(RHI)
BK=AK(LD)
IF(MD +EQ. 2) GO TO 202
DO 22 L=1,L4
ACL2=CDSIN{(EP(LII/ZE(L)
AC21=SE(LIXCOSIN(EP L))
CH{L 41, 1 )=COCC3(3P(L))
CH(L,1,2)=~A1%AC12
CH({Ls2s1)==A1TAC2]
CH(L+2,2)=CDCOS(=P(L))
22 CONTINUE -
GC TC 203
202 ZWN=RNG/OCC3(RHIL)
BRE=aN(LD)* wNtLD) 7AKILD)

114



0OC 23 L=1leLLM
ACL2=CD SIN(ES (L)) 7EM(L)
AC21=EM(L I 2CDSIN{Z2(L))
CH(Ls1e1)=CDCOS(BFR(L))
CH{Le.s1e2)==A1%AC12
CH{L+2,1)=-AT %2021
CrH(L o2, 2)=CDCCS(2F(L))
23 CONTINUE
204 LC=LM=1
DO €&€1 IC=1,2
OC 8381 JG=1,.2
6€1 CC(IT+30) =CH(1,I1C,JuC)
D0 301 1M=1,.L0
IP=IM+]
DO 71 [=1.2
08 71 J=1.2
ClI+vJI=CMPLX(O e204)
DO 71 n=1+2
CCIsJISCUTIoJ)HCOLIWKI*CHIIPWKsJ)
71 CONTINUE
DO 72 I4a=1.2
DT T2 Ja=1.2
CCCIAL,JA)=C(1IAJA)
72 CONTINUTZ
301 CONTINUE .
ARG=(CC(1ls 1)+C0O(2,2))/72.
RG=DREAL (AFG)

o=y A - LY
QR=CABS{RGS

IF(RE=0,1D 1 ) 4C1,402,303
401 SHI=CARCCS(FG)
SHM=SHI = (N~1)
SHN=3HI *N
RDN=DSIN(SHI)
FESN=DSIN(SHN) /RDN
RSM=DSIN(3HM) /FODN
GG TO 305
402 RDM=N=1
KDN=N
GC TO 305
303 SCAS(RG%RGI~1.
SQR= DSQFT(SQA)
IF(RG +LE+ 0.) GC TO 82
PQA=RKG+SQOR
GG TC 1100

82 PRQA=RG=SQR

1100 3XN=le.
SXP=t .
N1=N=-1

RQA=(0 .10 1 )/PQA
RDD=PQA-RCA
IF(N1l Qe 0) GO TO G54
HC S6 IS=1,N1
SXP=5XPx PQA
SXN=SXN/PQA

99 CONTINUE

9G4 RSM=(SXP=SXN) /RDD
FSN=((SXP*PQA)=(3XN/PQA) ) /FDL

305 CFF=CC(1 +1 }*RSA=KSM
CrS=Co(1+2)®FSN
CSF=C2( 21 )*%RSN

115



20

€14

109

613
11i¢
668

6£9
103

667

g2

S6
1007

1006
1008

CS3=CCL{Ne2)2 P SHh~REM

EM=CFF+CF 3 #8K

CM=CSF+CSS2EK

CY=CHa/sLM

CREF= (ZuN=CY}/ (Z¥N+CY)

KF =CDABRS{CFEF)

REF=RF&SF

GND{ NP, 1) =REF

CONTINUZ

IF{(MD «ZQe2) GC TC 10S
WRITZ(6,614)

FCRYATI/7/7+50Xe*'TE MODE ¢ ,//?

GC TG 119

WRITZE(E 4€13)

FOFRMAT(//7+SCX o' T MCDE* 9/ /)
WRITZ(E.668) NoLMy ZANG

FORMAT(//+ SOX,'NULMBER CF PEFIQI'+53Xsily /
2 9 50Xy "MUMBER OF LAYZER®* ,1SX,[2./
S+S50Xe*DESIGN ANGLE ' 3S5XesFRels ' ( DEGREES 1,7
DD 103 K2=1,.,LM

HRITE(S5:,65G) K29 TIK2) K2+ WN(K2)

FORMAT(I0OX 9T T145KoFT7e5e10XstN®*,I143X+F7.4 ]
CEONTINUE .

WRITZ (€ +£67) WmAGsWNS -

FORMATI 40X ¢ NG YeFT7e4sSXe* NS P aFTede /)
XDT=1 «/PX

YOT=LE/PY

CALL PLOT(Oes 04932

CALL PLCY (240l e0s=3)

CALL FACTOR( F)

X=0.15

CALL pLDT(XvOO'-3)

CALL PLOT(0L,PY,22

CALL PLCT (PXePY,2)

CALL PLOT(PXsNes2?

CALL PLOT(0e0Des2)

CALL PLOT(PX+049=3)

AST=GHO(NP 4 1) *PX

CALL PLOT (=X3T+0e+3)

D0 52 IP=1.4T

PRY=IP%DIY/JT

PPX=GND (NP » 1P ) %PX

CALL PLCT(-PPX PPY S 2)

CONTINUE

CALL AXIS(=PX1+0es* REFLECTIVITY? ¢=135ePXe00s1le9y=XDT)
CALL AXIS(Oer04s'FELATIVE WAVELINGTH® 4s=1SsPY 15004, WS.YDT)
XSH=HL%3./F

CALL PLOT{XSHes=1e~3)

GG TQ 54

WRITS(£,1007)

FORMAT(2X + *FELATIVEYy, SX» SUaXy*REFLECTIVITY * 48X}/

22X 9 'Y AVELENGTF Ye2/)

00 1003 [P=1.J7T

WRITE(C100€6) wJUD(IP) e (GND(VP,IR) yMP=1,NP)
FORMAT(2XsFEeS 15X+l 0(FT7e442X) )

CONTINUE

CALL PLOT (0440049592

STCP

END

FUNCT ICN FAK{FN+3N)
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S NK=FNe FN=SN¥ SN

FNK=SQRT(FNK)

FETURN
cccccccccccceccecceccecegceeccececcecceccecceccceccccceccceccec

<
c
C NUMBZRs AX1S,SY4AC0L, PLIT ANMTC FACTCR ART IXTERNAL
C SUSF QUT INUS SUPPLIED BY THE CUMPUTING SZFVICES OF
C THE UNIVERSITY CF CKLAHCHMA

(o

<

cccccCccCccCccCcLccecceceCccececeecceccececceccecgececceccecececceccecceccec

END
SUBROGUT ING PLTDT(WCNsIDeF sWNs T o¥NG «WNS sHI « ZANGMD)
DIMENSION wWN(L0)»T(10)
HX2=HI» 2.
HXU=(HX2 )*1D
HY=HI%E o
HYS=HI%3,
CALL PLCT( FeO049=3)
PL=1D
=N
IF(MD «SQ. 2) GO TO 709
CALL SYMEBIL (0es0e sHI+*TE MODE® 45044 7}
CALL PLOT(HAZ, Je»=3)
GC 70 71¢

7C¢% CALL SYMBOL (QesQssttl a7 MQODE! v?OOo?)
CALL pLCT(HXZvC-.“J)

719 CALL FACTCF (F)
CALL SYM3OL(0esQe oMl » "NUMEZR OF LAYER 49069l 7)
CALL NJMBER (G e+95G eermisPly S0ae=1)
CALL PLOT(FX2+0ee=3)
C_ALL SYMEOL (U esOeosHIs YWAVELENGTIH( AICKRCNS) ' 3CCes21)
CALL NUMEBEZFR(0e+99F eI etCe90ess)
CALL PLOT(HX2sDs9~3)

CALL SYM3AL (D esQasHly ‘NS ' 2305 &)
CALL NUMBER(0e 199G eI siNSEe30e43)
CALL SYH420L {0++95G e sHT ! NG " +90.510)

CALL NUMBER (0 e s99G 0o HI s ¥NGe90e93)
CALL PLCT(HX2¢049s=3)
CALL 3SYMBOL (Je90asHIs "DES IGN ANGLE *3S0.s1&)
CALL NUMBEF(Ne +599a9HI1ZANG ¢590693)
CALL PLOT(HXZe0es=3)
D0 100 I1=1t,1D
Pl1=11
CALL SYMASL (0 esDeoHIs*N'9C0es 1 )
CALL NUMETR(Des $99s9HI P11 330 ¢9~1)
CALL P_OT(HX250e¢=3)

100 CCANTINUE
CALL PLAT(=HXUsHY 9=3)
DO 101! I2=14+1D
CALL NUMSER(Des0esHI WN(LIZ) 904+, 2)
CALL P_CTIHARZ+0e9=3)

101 CCATINUE
CALL PLLT(=HXUsHYS+=~3)
DO 102 I3=1,1D
P3=13
CALL SYMWUCL(Oes0eoMHI*'T', G060 1)
CALL NIMBER(04496Ges1eP3390 ey ~11)
CALL PLCT(MX290e4~3)

102 CONTIUE
CALL PLOT (~HXUsHY s=3)
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DO 103 14=1.12
CTALL NJMSSR (0 e 0ds oI+ T(IR)eG0 e 3)
CALL SYMBCL (D4 959 e sHI«'{ MICRENS) 149504+ 3)
CALL PLET(HX2+Dee~3)
103 CONTINVE
CRGN=HY %24 +tHYS
CALL FPLCT (O s =CRGN,=32
RETURN
END

2¢ COMPUTZR PFOGRAM TO CALCULATE ZLECTRIC FIRLES DISTRISUTICN FLCR
A TRIPLZ LAYERED PEXICDIC BRAGG WAVEGUIDE IN CHAPTZR Vv

(e ddddadddddddd dadddddaiddaddd aiddddd ddddddddad ddddddd d S dof dd Rt d ol ot S ol of
C

c ELECTRIC FISLD DISTRISUTICN
< TFIPLE LAYZRED PERICDIC BRAGG WAVEGUIDS
<

(g ddddaddadddaddddddiddaddddd dddddddd ddd dddddddddddd dddaqud ddd S ool daf dnd o o
C

ITNVPLICIT COVPLEX®LE (A=C) » REAL®3(P~S)

OIMENSION T(3),wWN(4)

DATA LM sMX9NY oF/3429200.5/

C

C N ¢ NUMBESR CF BZRIOD

C ZANG : DESIGN ANGLE +DEGRCES

C WO : WAVILENGTH IN VACUUM, UM

[of WNA ¢ INDSIX OF REFRATION OF SUPZIRSTRATE

[ WNG ! INDEX GF REFRACTION COF GUIoc

C WNS I INPEX CF RZFFACTIAON UF 3SUBSTRATE

[ WNZ : SFFECTIVE INEX OF REFRACTICN

C T I QPTICAL THICKNESS OF SACH LAYERS IN BASIC PERIQOD

C WN I INDEX CF REFRACTICN DF SACH LAYZRS IN BASIC PERIDD

c NMD T MODAL NUVBERs Os 19 29 3¢ cevse

C
P1=3,1415928%¢

54 REAC{ Se55¢ENI=S6) NeZANG s WO s WNASWNG +#NS s WNE
ToT(LIoNLLYSTLIYIoWNL{2YeT{3)sWN(3)+NMD

S5 FORMAT(IZ241XeFae241 X34 {F3a3,1X)sFEeS5e1lXe3(F8e291XeF8301X3,12)
Z1TA= PI*ZANG/180.

DO €2£ LO=1,LM
WRITS(6,666) LD aCr T(LD)
666 FORMAT( Q0X.'CPTICAL THICKNESS OF LAYER *hl24t = 1 4F5.300 /0
l1eFSe3ety UM *)
WEG=WNG*SIN(ZITA)
WEL=wN(LD)
IF(WED=4EG) 77€«77S:775
775 WNEF=FNK(WED«WEG)
GO TV 778
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776
778
626

9%2

£¢e8

669
103

€67

S6

o1

VNEF=FNX(wEGsAED)

TILD)=wl/(T{(LD)>» WNFEF)

CONTINJUE

WrITZ(6+522) NMD

FORMAT( 1! o////7/7 439X TFIPLE LAYERID PIRIUVDIC bRAGG WAVIGUIDE?
1 s /777 STXe T 412 777)

WRITZ(5+£A8) LMeN s ZANG WO

FORMATI//7/7 sSO0X e " NUMBUIER NF LAYER® y19X912¢//7,50X

1 v 'NJMIER QF PTRICOS'+SX1I2477
S9sS0Xe*DESIGN ANGLE " eSXofFb el e ( DEGR
6+D0Xy *CZSIGN RAVELEMGTH® o5XesFo0e34* (MI
D0 103 xXa2=1,,LHM

WRITE(O+665) K2:TIK2) +K2,4N(K2)

2SS dre//
CrRCHS)Y /7 )

FORMAT (40X o ' T ' o 1195XeF7e8510Xe '"N's I 1lsSXeFT7e% )
CCNTINUE

WE ITZE(6+607) wiNGs WNS o ANA 3 WNE

FORMAT(+3X s *NG TiF7e295Xe NS 'eF 7630 /o

1 &3 X 'NA *4F7e89 SXe 'NIZ CoFTele/)

CALL ANGPT (X oMY e Fe WNGosWNS e ZANGe WU TTye JT eNReL Me TodNsvMA
1o NMD ¢ WNE yCAZ+sCEZW7.G)

WN3=4wN{3)

WNZ=WN(2)

WN1I=aN(1)

T3=T(3)

T2=T(2)

Ti=T(1)

CALL WNFLD (N, WO TT o WNEsWiNA s WNG o WN1L s NS SWN3
le T19T2eTES 4 CAZsCBZoRGr MX o MY oF s NMD)

GC 7O Sa

CALL PLCT(0es0e9599)

STOP

END

FUNCTION FAK(FN.SN}

DOUSLE PRECISION ANK

ANK=({ FN%FN )= (SN*SN)

FNK=DSQST{ ANK)

KRETURN

END

SUBROUTINE ANGPT (KX sKY s F s WNGeWNS s ZANGoW Ce TTe JT e N
1y LMo ToWN WHAJHNAD o WNT +CALsCBZvRG)

IMPLICIT CCOCMPLEXHLIE (A—~E) sREAL%XB(P=3)
REAL MX e MY

ODIMENSION WN(4)T(3),uNR(&),WNI(4)
2sAK(3IyCH(34202)9oC0U(2+2)sC{242)9CF(2+2)e8BP(3)SE(I)
PN=N

MY=KY

LD=1 +LM

MX=KX%2,

PI=3.141552856

w»S=vQ

WL=WS

LMX=LM

POWG=WNE/WNG

RHI=DARSIN(PDWG)

CRANG=RKRI*130./91

RKZ=2e*PI /ML

WN(LD)=wN3

DO 79 [=1,LD

IF(ANL L )=wNE) S0+GleG1

WNT=wN(I1)



WNRCII=FNCL wNT , wNE )
WNI(I)=0.
GC TO 7%S
S0 WNT=WN( 1)
WNI(I)=FNK(wMEeaNT)
7SS AK(I)= CMPLX(wWMNF L) +wMI(I))
79 CONTINJS
AI=SCMPLA[Oesle)
DO 12 L=1.0LM
EP(LYI=RKZET(L)*xAK (L)

EE(L)= AK{L)
12 CONTINJ =

ZWN=6aNG=ICOSIRAL)

EK=AK (L D)

DC 22 L=1.LM
AC12=COSINIEBHL)I/EE(L)
AC21=ZE(L)*COSIN(EP{L))
CH(Le1e13}=CDCLS(3F(L))
CHlL+102)=AL1RACTI2%(~=1,)
CH(L#2+s1)=A124C21 %x(=1,)
CH(L»2+2)=COCTS(HP(L))
22 CONTINUE
LO=LM=-1
D0 661 10=1,2
DO 661 JC=1.+2
6é&1 CO(IQW«wWC) =CH(LlICsJ0Q}
DT 301 IM=1.L0
IP=IM+}
D3 71 I=1,2
DO 71 JU=1.2
ClIoJ)=CMPLX{0se0e)
D3 71 K=1.2
ClIed)=ClIsJ)+CO(IsKIXCH(IP KsJ)
71 CUONTINUE
DQ 72 1a=1.2
DO 72 JA=1,2
CO(IA,JA)=Cl1A,3A)
72 CCNTINUVE
301 CONTINUE
ARG={CD(1,1)+CQ(2,2))/2,
RG=DREAL {ARG)
ER=DABS(RS)
IF(FR=0,1D 1 ) 4C1,402,303
401 SHI=DARCOS(RG)
SHN=SHI &N
SHM=SHIX(N=~1)
FON=DSIN(SHI)
RSM=DSIN(3HM) /RDN
ROSN=OSIN(SHN) /RODON
GQ TO 33%
402 FOM=N=-1
RON=N
IF (Nl +Z0. O0) GO TO 994
303 SQA=(RG%.FG)=1.
S0R= DSQRT{SQA)
IF(RG LS. 04} GC TQ 82
PQA=RG+S AR
GJd T2 1100
82 PQA=SRG~SQR
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1100 SXN=1.

SXP=1.

ROA=(0.1D 1 JI/PGA

ROD=PUL=F0A

M1=N=-1

IF(NL +20e C) GO TO 99%

DC $9 [ S=1.N1

SXP=3XP ®=PQA

SXN=SXN/PQA
-1 CONTINUE
[-1-7 FSY=(SXP=3XNI/FDD

FSN=((SXP*PCA)={SXM/PCA) )/ DD
305 CFF=CC( ts1 )R SN=R 4

CFS=CC(142)3RSN

CSF=CO( 2+1)%QSN

CSS=C0( 242 )%F SN=F SY4

BM=CFF+CF3 #&K

CM=CSF+CSS*3K

CY=CM/3M

CREF=(ZWN=CY) /(ZUN+CY)

FF=CDABS(CRIF)

REF=RF%RF

CAZ=ZwWN+CY

CBZ=ZaN-CY

ZWASWHNE R WNE=WNARWNA

GG=RKZ*&NG*CCCS(RHI )

QASAKZXSQRT (ZWAY

CALL THCK(GGsCAsCAZsCBZ,TTH»PI,NMD,TABTCD)

PG=GS

SZR=°.

CKG=DCURLXL PG 4 SZRIXTT

CRHU=GG*( (1 o+=C3EF 1%COCOS(CKGI~AI% (1 «+CAIFIXCDSIN(CKE) )

CRHO=(] «+CREFI®COCOS(CKG)=AL* (1 +=CREFI®CDSIMN(CKG)

CRH=(CEHU/CRHO ) #A 1

WRITS(6+1303) UNERGITAB-TCDy TT v QA CRHIRANG»FEF 4 CAZ+CRZ
1303 FORMAT{ 1XsFSe3+12X23{F7e3¢2X) ¢e2(F3e3+2X) s1X1F5e2+2X+F643

1o 2X42({FT7e3e2XF7e302X)) '

RETURN

END

SUBRCUT INE THCK{(GGy QAsCAZeCRZ, THIP I NMD»TAB.TCD)}

IMPLICIT COMPLEX=®15 (A=E) ,REAL=3(P=3)

MDE=NMD +1

AI=CMPLX (0 esl o)

CUP=CAZ-CBZ

COW=CAZ+C3Z

CAG=(CUP/COW) *AT

YAG=DREAL(CAG)

TH1=aTAN(WAG)

wQK=QA/ GG

TH2=ATAMN(YOK)

TH={TH2-TH1+{MCE=1)%P1)/GG

ZAB=CREAL(CURY /D IMAG(COW)

ZCO=DIMAGICUP ) /DFEAL (CDOW)

TAS=(ATAN(WCKI=ATAN(ZAB) )/ CG

TCOS(ATANI WQK I +ATAN(2CD) ) /G

FETURN

LNO

SUBRUGUTINE WuFLDINeWLeToNEoNAINGeNI s N2 o N1
le T3eT2eT s CAZsTHTIFGs MXs MY oF 411D )

IMPLICIT COVMPLEX? 16 (A=C) 4REAL»3(P=R)
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$6
g1

97
S3

1<)
85

67
6S

‘N
2

g&

68

9SS

CCMPLEX S23%16+S12%16+512%109s33%16051%16452%156+521%15+5211%16

REAL NEsNASNL sN2 9 NGe NKRAsNKAT 9 NK 1

U NKL1 oM3.NK3.NK3I
PI=3.14815928
AI=CMPLX{Oevls)
KD=50

CALL PLOT(SevrDes=3)
RK=T1+T2+7T3
IF{NE-NA) £3,89.,86
MKASF NK (NE o NA)
MKAL=0.

IF(NG-NE) 90+,¢1491
NKG=F NK { NG s NE }
NKGI=0,

IF(NL=NE) 92.:93,53
NK1=FNK{NL o NZ)
NKL1I=0.

IF(NZ=NE) 94+95.95
NK2=FRK { N2+ NS)
NK2I=0.

IF(NS=NZ) &34+55+66
MK 3=FNK (N3 .NE)
NK3i=0.

GO TO %o

NKAI=FNK (NAWNE)

G0 TG <e

GO TC &7

NKI I=FNK{(NSoNL1)
NK1=G.

GO T2 <3
NK2I=FNK{MNEsN2)
NK2=0.,

GC TO 67

NK3 I=FNK(NT NS

MK 3=0,

6C TC @99

KRZ=2ewPI /WL
BA=CMPLX(NKA,NKAT)
BG=CMPLX (NKGsNKGI)
BI=CHMPLX{NKL,NKLI)
A2=CHMPLX {NK 24 NK21)
B3=CMPLX(NK3,NK31}
BKA=SBA®KZ
3K1=2 ] %KZ
BK2=62* K2

8K 3= 3% 2Z
BKG=3G%KZ
812=31/732
B21=32/31
813=31/63
331=537a1
323=82/ 33
832=82s32
A21={321+812)/2.
AL3I={ 203 +332)1/2 .
AL3=(312+:331)/72.
S21=(d21=312)/2
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75
935

77

S93

1€1S

82
100

S23=(3823-332)72.
S13=(313-331)/2.
S$12=(212~321)/2.
A2li=A217a]
S21[=321=%A]
BTI=0K1*sT1
BT2=3KexT2
BT3=2KR3xT3
S1=COSIN(3TY)
S2=COSIN(3T2)
S3=CDSIN(3T3)
CLl=COCIS(3T1)
C2=C2L05(372)
C3=CDCAS(BT3)
AD1=C1+L2=%C3
AD2=A23+C1 553 %52
ADI=A2IxS51rC3482
ADG=AL3Z S 1«C2%33
CAD=ANL1=AD=AC3~ACS

RD=RG

GO TQO 77
WRITE(S»599) NZLRG

FORMATC *1% 2/ ///eSXkesF1De70 1O0Xs2{(0124493X) s10X» tMC NO

G2 TO 15815
RDE=0ABS(RD)

IF(ROS

oLTe Le) GO TO 7S

RR=RTTMN(RD )
RKI=QAK(RR)

QK=QAK

(RF)/EK

BT1I=RT1%Al
CXPK:=COCXP(2TID)
WRITE(5,C93) ERsQRe WK IWT »CAD

FORMATI( /704 U0X"EXP(=JKD)= v, ClZeZ9y3X4?KI= *3,Z12.5
A o/ /330Xy *KIXFK= *,D12.5

1 3/ /220X THICKAESS OF GUIDE = ¢ ,F7 et

2 877+ 40X {M11+222)72=2 42(C12eS+3X) /7))

CALL PLTOT( WLoNsNGs NAosNIo N2e NIaNZ 2o Ts T3 9T2eT1sRKIF o NUD)
CALL FLODUK (T1,T2, T oBKA+SKG e 3R1 +3K2 » ER QXK o 5y
U N +3L2.4T3+.8K3:4823, KCoCAZyTBZyMXe4Y 7))

RETURN

END

FUNCT ICN FTTN(FD b]

IMPLICIT PEAL#3(P=5)
SAO=(RDxRD )~1,
RDR=D3QRT(354D)

IF(RD

eLZe 0O4) GO TC 82

RTTN=RD+RC&

GO TO

130

RTTN=RD-EDPR

RTTURN
END

FUNCTION QAK(RR)

IMPLICIT RIAL*3B(P=R)
RRS=DABS(RR)
QAK=DLOS(R~S?
RETURN
ENO
SUBRCUT INZ OLTOT( WoeNsDGeDAID31D24O01eDEWTGoT3eT2sTL 3GKI oF
1 +N¥D)
DIMENSION T(&)yD(4)+A(Q) 25(2)
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200

300

100

P=T1+T2+T3
MLP=4
TSEXS(TG+1l o0 ) xvLP
TX={(PE_PENI+]1 o5 +TGHFMLP
8(13)=44D
B8(2)=N
A(1)=GKI
A(2)=P

A(3)=D:s

A(g)=w

T(1)=T1
T(2)=T2
T(3)=73
T(3)=TG6
D(1)=D1
D(2)=02
0(3:=23
D{4)=0G

FaA=2.

F=F/FA

CALL FACTOFR(F)

CALL SYMBOLI{0s 106 ¢0e28»'THICKNZISS'990es 3)

CALL 3SYWEBOL(0s+55Ge 40239 *(MICRTNS) ! 150 e

@)

CALL SYM3OL(Des Se390e2380 *REFRACTIVE INDEX*+G0ev1c)

CALL PLOT(0e4+0:85,=3)

CALL SYASZL(0es0640.2840TGS

CALL pLGT(D.:,O-o-3)

CALL SYMBOL(0e90c90e284¢T3

CALL pLOT(°-4u00v-3’

CALL SYUBIL(Ve 106 +06234.'T2

CAL L PLOTI Qeé&eJss=3)

CALL SYMROL(Der0¢90.28+°T12

CALL PLOT(04341450,=-2)

CALL SYMINL (CoaeesVe22s '"NUMBERP GF PERIOD
CALL PLST(0e3+064=3)

CALL SYVMBOL(0e0046920e22+*'TE  *350094)
CALL PLOT(0e3+0e¢9~=3)

NG'+504923)
N3¢4304¢23)
NZ'3S0 s 23)
N11450.923)

*5506017)

CALL SYMABOL(De+0ee23e23+*WO(MICRONS) *+904912)

CALL pLCT(Qo“IOOQ-.S)

CALL SYM33L (0630640284 *'SFFSCTIVE INDEX?,
CALL PLOT(0e4+0,+4=3)

CALL SYYBOL (0 ev0600 4239 *PERICD"+150e38)
CALL SYMBOLU(0e+0e+D¢2839*PERIQOD! »90e+5)
CALL P_0T{0ed+0e+s=3)

CALL SYMUSIL (0 e90es0e2Be'KT"y904s2)
CALL PLOT(0es5.04=3)

DO 200 J=1s4

CALL NUMBER(De 400660628+ A(J)050e93)
CALL PLOT(=0e430s9 =3)

CONTINUE

DO 300 K=1.2

CALL NUMECR(0e0009062393(K) +900e=1)
CALL PLOT{(=0+s34049~3)

CONTINUEZ

CALL PLOT(=0:8s =4¢5 » =3 )

D0 120 I=1+a

CALL NUM3ZR{(0s02:90423e¢T{I)+G0e+3)
CALL NUMEZIR(0es0 09062390 ([)eG0e03)
CALL PLOT{=Ces 40, +-3)

CONTINUE
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CALL PLOT(TSHA»=2+:5,~3)

FeFxcA

RITURN
ccccccccceccgcccceccececccecccceccecceccececccecceccceccec

NUMSZE, AXISeSYM3CLe PLECT AND FACTOR ARE EXTIRNAL
SUSFGUTINTS SUPPLIED BY THE COMPUTING 3EFVICIS OF
THE UNIVEFSITY GF COKLAHOMA

a0 n

cccccceccececcCccecececcececececececcecececececgececececcecceccecc

END

SUSBKRIUTINE FLOMK (T1+7T2s T +3KAIEKGH2K 1,83K2» RS sUKsMeN,B12

1 ¢ T32e8K341323 KD s CAZ sCAZ 44X o MY o F)

IMOLICIT LOVPLEX*15(A~F )y <EALEY(P~R)

DIMINSICN XNO(3C)sXGTUS0) 4 XID(S30 9301025 (30+502eX3D(SC430)

LaRZA(TOI v FEGISOIWFELI(39+30)9RET2(20+50),FE3(30,580)

CCMPLEX EFA(30)EFG(SOI+IF1(30+50)+3F2(3%+50) +EF3(35+5C)

PMAX=C,

AI=SCMPLX LD a9l )

PI=3.121592¢33

RK=T14T2+T3

wh=KD

CXD=3./8K4

XC=CREAL(CXD)

XDE=XDrs «N
X0==XD=T
XN=XT

BKGT=3K5*T
AKGT=BKET*AI
AQ =CAZxCCEXP (=AKGT ) +C3IZeCOEXP (AKGT)
00 200 I=1,KD
CARA=SEKAX( XN+T)
ZFA(I)=AQ%CCEXP{CARA)
XND( 1 )=XN
XN=XN+X2D
PFA=DREAL(EFALL))
FFA=DA3S(PFA)
PUFA=DMAX 1 (RF A PMAK)
BPMAX=PMFA

200 CONTINUT
WWSS=DOREZ AL (ZFA(I))
IF{WwASS) S165:6255+5299

91635 4SIGN=-=1,
GO T3 <Qa¢9

G263 WSIGN=+1l.

9499 WI=T/wN
DO 201 J5=1+KD
CARG=OK GeXN=AT
EFG(J1=CAZsCIOEXF(CARGI+CBZ*CDEXP(~CARG)
XGO(JI=xXN
XN=XN+WT
OFG=DRIAL(ZEFG(N)
RFG=DA3S5(2FG)
PMFG=0OMAXTI (RFGPMAX )
PMAX=OMFG

201 CONTINUT
CS1e={1.-812) /2.
CAl2=(1.+4312)72.
CA23=(1.+3233)/2.
CS23={1,~323)/2,
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43

104

33FK=8KI%xRK

SRI=H3ITAFAIL

CAG3S=t 1 ++({8XG/2K3)) /2.

CSG3=(L +=(EXS/BK3INI/2,
ZZ=(CAG3I»CAZ+CSG3I2CHLIFCDEXP(BR3)
FZ=(CSGI*TLZ+CAGI*CAZ ) =COEXP(~3R3?
BT2=3Re*xTaxrl

TZ2=TL+T2

3T3Z=EK3*TZ*A1

BT2Z=BK2»TZ*A1l

CA32=(l+(1./823) /2.

CS32=(1+={1.7223) )Y/2.

EZE=CDIXP{ =BT 3Z)

FZE=CIOIXP({ BT 22)

CZ=((CA32VvEZXZZE)+( CS32¥FIxFZR)INCOIXP(BT22Z)
DZ=((CSI2%xTZxTIEV+( CAZ2%FZ%FLZZ) ) #CDEXP(=BT22)
8T1=3K1%Tl=xa]

BT2i=3K2=T1*al

CA1=(1+(les/212))72.
CS21=(le=(lerB12))72,

CZE=CDRX2P(=-83T721)

DZE=CoEXP( BT21)

AZ=(( CA21xTZ=CZE)+( CS21*DL*DZE) IXCOEXP( 3T1)
BZ=({ CS21*CZxCLZ )+ {CA21*%DZ*DZ2Z)I=CDEXP(-ET1)
PTC=QK* K

wT3=T3/uN

WT2=T2/ wN

¥TI=T1/aN

CALL PRARGU(IXNC s XGDsSFAEFGHKD)

X= Q.

EYF=1.

DN 103 X=1sN

PLYMX=0.

DD 43 LL=1,KD

EF3(KHOLL)ISFLOSI(Xs KeRKeBK3IsEZZeFZsRTF»QAK)
X3D(KoLLYI=X

X=X+¥T3

PE3=ORIAL( EF3(K+LL)2

RF3=VAES(PF3)

PMF3=DMAX1 (RF 3+.PMAX)

PMAX=PMF 3

PLX=DMAX1(PLMX,FF3I)

PL¥X=PLX

CONTINUE

20 104 L=1+KD

EF2( KoL ISFLDRZE(X e KoRKeBK2+¢CZsCZsRTF4 QK )
X20( Kol }=X

X=X+uwT2

PF2=DREAL(EZF2(K+L))

FF2=DAR3(PF2)

PMFZ=0MAXL (RF2,PMAX)

PMAX=PUF2

PLX=OMAX | (PLMX+RF2)

PLMX=PLX

CONTINUE

DC 105 KK=1sK2

Efl(KaKK)’FLDRE(X- KosRK BK1,AZ+BZyRTF,QAK)
X10(KeKKI=X

X=X+uT)

PFL=DREZAL(ZIF1({(KKK))
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105

103

301

302

303

308
701

908

909
100

RF1=DA35(PF1)

PMF1=DMAX1(SF 1,244X)

PMAX=PMF T

PLX=UMAXI(PLMX 4 RF1)

PLMX=PL X

CONTINUZ

CALL PRLYD(X1DeX2D+sX3DEF L yEF 24 iF3,sKs KD
IF(K o%Qe N) GN TC 103

RIF=RTF/KR

CONTINUZ .

PMX=PMAX *wWSIGN

D8 301 I=1,KD

BA=EFA(])

REA(L)I=ZNRMAZ(PMX 3 EA)

CONTINUZE

O 392 J4=1+KD

BG=EFG(J)

REG(JI=INRUZ(PYUX,4B3G)

CONTINUZ

DO 701 K=1+N

D0 303 JJU=1,KD.

A3=cEF3(K,JJ)

RE3(KyJIV=ZNIMZ(PMX,A3)

CCNTINJZ

DG 204 L=1,.,KD

A2=EF2(K.L)

REZ (KWL IS INRMZ(PMX, A2)

COUNTINUZ

DC 305 KK=1.KD

AL=EF1 (K.XKK)

REI(KIKKISZINRMZ(PAX,A1)

CONTINUE

CONTINUSE
ASXNE(L)

CALL GFPH{REAIREGIRES +RE2+REL e NeKOeTA T T3,T2,T!

1 e XND + XGD s X3+ XZD o X1D oMX oMY sF)

RETURN

END

SUBROUT INE PRARGUIX1I+X2sY1sY2,KD)
ILMPLICIT CUMPLEX®1E6(Y=2)

DIMENSION X1(50),X2(350)

COMPLEX Y1{(507,Y2(350)

WRITZ(5,903)

FORMAT(SX+*'T FIELD IN AIZ *,30X

1 v 'S FIELD IN GUICE?s//777)

DC 100 I=1,+KD

WEITZE(6+90G) XLLID)eYL(I)eX2(I)W¥2(1I)
FORMAT( 2(SXe F10e3s 5%y 2({ Cl243, 3X) ) )
CONTINUSE

RETURN

END

FUNCTION FLORE(Xe KeRK¢BKsUZ s WZsF TNF,QK)
IVPLICIT COMOLEX%1& (A~F)yRTALXB{P=R)
COAPLEX UZx16ydZ%16E
AT=CHAPLX{D oyl )

XRk=X=K& K

ARG=3K* XF *AT

FLORS= (UZ=xCOEXP(ARGI+(WZ/CDEXP(ARG)) IR TNF
RETURN

ENQ
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SUBROUTINIE PRLYC{AL s X2+ X34Y1+Y2,Y3s KaKD)

IMPLICIT COMPLIX®IS(Y=-2Z)

DIMINSTI SN X1{334T0) o X2( 30 ¢50) +X3{(30,30)

COMPLEX YL (30930)eY2(30+50)5Y3(30,50)

WRITE(LZ 49383 K
503 FORMAT{ Y10 415Xs12e* TH PEFICD' e //7+5X9s* N1l LAYER?

1 935X P N2 LAYER ?4 33Xs '™N3 LAYER 'y //7/7)

DC 100 I=1,KD

WARITE(S+909) X3{KeIdeYI(KoT) e X2(Ksl) o Y2(Kpol) s XTLKol)el{(<s1I)
309 FURMAT( 3( 3K FlOe3s 3X» 2(Dlles, J3X)) }
100 CONTINUE

~ETURN

END

FUNCTIOWN ZNRVMZ(AMX,EE)

REAL AMX%3

COMPLEX EZx=16

ZNREMI=DREAL (EE)7AMX

RETURN

END

SUBROUT INE GRPH{ENAIENGs NI EN2+EN 1 Me KD
1 2TAsTeTS, T2eTI o XNTeXGZeX3ZeX2D4X1D +MLAS MLPWF)

IMPLICIT RIAL%E(E=G) .

DIYENSICGN ENA(SO)Y s ING(S0)+EN2(30+50)eSN1(30+350)ZN3(30439)
1o XP(S50) + XGD(350) s XADISVI 4 X30{30+30) +X2D(30+5011 +X1D(30,50)
TSH=T %4MLP +3.0

TM=MLA

TXS=S( T1L+T2+T3)ENEVLP+TSH

CALL PLCT( TSHs0D =3

CALL PLTFRM(TL T2 oTI3 s TAINSMLP ¢ MLAWF,,T)

CALL PLOT(CeeTH,=3)

CALL PLOT(XND(1)+0¢93)

CALL P_TEAG{INA, KL XNO o MLAWMLP,F)
CALL PLTZAG(ENGS KD XGD o MLASMLP »F)

DG 100 K=1l.NM

CALL P_TE12(EN3, KsKDy 3D s MLA +i4LOWF)
CALL PLTZI2{(EN2, KoKDy X209 LA JHLP o F)
CALL PLTEL2(EN1, KsKDo X1D +MLALMLPF)

100 CONTINUS
CALL PLOT(Qe¢es0es=3)
CALL PLOT(TXSe=TM =3)
RETURN ’
END
SUBFOUT INE PLTFRM(T1+T2+T3sTAsNsMLP sidLAF4TG)
DIMENSI ON TR(3)
CALL FACTOR(F)
TK=0.13
TRPIL)=T U 4LFP
To(2)=T2%4L 2
TP(3)=T1*MLP
TXS(TP(1)+TP(2)I+TP(3))*N
TXP=TA®YLP
TYP=MLAY 2,
TGM=TG=YLO
CALL PLOT(TXP+0es2)
CALL PLOT(TXP,TYP,,2)
CALL PLOT(U«eTYPL2)
CALL PLOT(DeeCer2)
CALL PLOT(=TG41924¢ ¢=3)
CALL PLOT (O eeTKe=2)
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400

300

S0

-1}

CALL PLOT (06 s~TKs=2)
CALL PLLT(TGMe064-3)
DO JV0 I=1eN

DO 400 J=1,3

CALL PLCT(TP(J) 90 ee—2)
CALL PLUT( Qe TKe=2}
CALL PLCT (O es=TKy=2)
CONTINUS

CALL PLGT{(0esTYP4=3)
CALL PLOT (0 es=TYPR+=2)
CONTINUE

CALL P_ST{(Qes TYP,=3)
50 500 K=1,N

0O SO0 L=1.,3

J=4=L

CALL PLOT(=TP(J) 40.5s=2)
CALL PLOT(Qes=TK +=2)
CALL PLCT(O-.TK-—Z)
CONTINUE

TM=MLA

CAL PLCT(Qes=TM,=3)
CALL PLOT{TAP +10e+2)
CALL PLCT{TXe0ee2)
CALL PLOT(0e+0e9=3)
CALL PLCT (0 e+=TM,=3)
CALL PLOT(0+s0es "3)
RETURN

END

SUBROUTINS PLTEAG(EF.
IMPLICIT FEAM *#8( E-G)

XD o MLAWIALPF)

ODINVENSIONXP(SQO)2FP(SCIWXD(S0),EF(50)

CALL FACTOR(F)
DQ GC 1=1,KD
AP(1}=XD(I)sMLP
PFP(I)=ZF(I)FVLA

CALL PLCT(XP(I}) »FPFP({I)+22

CONTINUE

RETURN

IND

SUBROUTINT PLTI12(EF.
IMPLICIT FZAL*3(E~G)

KeKDy

XLDeMLASHMLP 4 F)

OIMENSION EF{30+S0)eXP(30+50)4XLD(30:s50)sPFP{3Cs50)

CALL FACTGORI(F)

DC 8C I=1+KD
XP{KsI)=XLD(Kol) kNP
PFP(KeI)=EF(KsI) %N A

CALL PLCT(XP(K:I ) +PFP(Kel)y2)

CONTINUE
REZTURN
END
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