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Abstract 

This study addresses the impact of climate change on the Nile River Basin (NRB) and 

its downstream delta, the Nile Delta of Egypt. The NRB region undergoes a huge 

fluctuation in precipitation and temperatures from year-to-year. Via a combination of 

multi-scale satellite remote sensing, model reanalysis, and land surface model 

information, this study evaluates: 1- how this variation in precipitation and temperature 

affects Nile River flow, 2- to what extent future sea level rise (SLR) could impact the 

Nile Delta of Egypt, and 3- how historical variations in the El Niño Southern Oscillation 

(ENSO) signal are responsible for fluctuations in water storage in the basin.  

To answer these questions, a comprehensive water budget equation valid under 

different climate scenarios was formulated. Next, the variation in precipitation and 

temperatures was used to calculate the elasticity (reliance) of the Nile River flow to 

climate change. Third, a merger between remotely-sensed digital elevation models and in 

situ elevation measurements was used to estimate the future SLR impact in the Nile Delta.  

The study results indicate regular surface flows are maintained when basin-integrated 

storage changes (expressed as a depth) increase by less than 60 mm. Meanwhile, 

decreases in storage change of more than 40 mm subject the basin to severe drought 

conditions. The Nile River flow is highly sensitive to variations in precipitation and 

temperature. A 10 percent increase in precipitation results in a 20 percent increase in 

surface runoff. A -0.5°C change in temperatures results in a 5 percent increase in surface 

runoff. SLR is an imminent threat to the Nile Delta’s communities and land; potential 

impacts are intense but confined to coastal areas. For instance, a 1-m SLR will inundate 

about 580 km2 (6 percent) of the total land area, and would necessitate the relocation of 



 xviii 

approximately 887,000 people. The reconstruction of historical basin storage changes 

indicates that there is a connection between the ENSO and the long-term variation in 

NRB water storage. Specifically, strong El Nino events are associated with droughts in 

the NRB and strong La Nina events are associated with floods.      
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Chapter 1: Introduction and research outline  

 

The Nile River Basin (NRB) is one of the most important international basins, 

which traverses through 11 African nations with more than 300 million people (NBI, 

2010). The Nile Basin is a complex hydrological system with varied distribution of 

climate zones (Hugh Turral et al., 2011; Melesse, 2011; Melesse et al., 2014). The basin 

possesses uneven distribution of terrains, land covers, cultures and ecosystems (NIS, 

2012a; Oestigaard, 2009). However, the basin suffers severe climatic conditions and 

undergoes larger changes in population, water allocations, land covers than in the past. It 

remains to be determined how these changes would affect the water resources across the 

basin. Meanwhile, the basin’s flourishing is attributed to the best practices of the available 

water supply. Most of riparian’s water conflict is related to how the Nile waters are being 

allocated (Barrett, 1994; El-Fadel et al., 2003; Hugh Turral et al., 2011). For instance, 

Ethiopia as the main upstream nation contributes most of the Nile waters, however, due 

to the topography, most of their waters being delivered to the downstream area. Although, 

the upstream  countries are more abundant in the water resources, their water shares goes 

to the downstream sections where basin display more drier conditions (Hassenforder and 

Noury, 2015).  

Meanwhile, climate is the foremost uncertain threat to the NRB. The basin 

communities are challenged by their infirm relationships with limited to no corporation. 

Thus, the plans to mitigate the future climate intimidations are still insignificant. The 

insufficiency of the operational stations hurdles the water resources management over the 

basin and makes the prediction to a possible climate scenario to be difficult (Conway, 
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2005). The inconsistent ground observations imped the expansion of a basin-wide 

adaptive policy that could be effective for climate mitigations. The climate displays two 

major threats to the Nile Basin; first, the fluctuations in the Nile River flow, and second, 

the Sea Level Rise (SLR) impact on the Nile Delta shoreline (Hasan et al., 2015a). 

Without systematic observation, addressing such problems is very hard. 

 The advances in the satellite technologies, to capture unprecedented hydrologic 

information, help to understand the hydrological setting over data-poor regions. The 

gridded geospatial information from satellites, reanalysis data, and land surface models 

(LSMs) could substitute the lack of the ground observations especially over NRB. The 

accuracy of the geospatial data increased substantially due to the advances in the 

microwave-based satellite estimates and the development of gauge-corrected grids. 
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1.1 Problem statement  

Climate projection over the Nile Basin has a huge sway due to; 1- the limitation 

in in-situ data accessibility, 2- insufficient monitoring and gauging station, and 3- the lack 

of information sharing culture between the riparians. Therefore, the validation of the 

future projections still questionable, and to portray a possible climate scenario is being 

impossible. In addition, without accurate hydrological information, planning for 

mitigation policies is impossible and in most of the cases ineffective. However, in the 

past, the Nile Basin was thrived by extensive number of nilometers (old hydrometer 

stations) that periodically monitor the river flow and level the water in the river channels. 

Since 1950, the total number of the hydrometer stations were declined dramatically with 

less interest to operate, maintain, or update such stations. 

Monitoring the changes in the Nile water flow across the NRB is critical to 

understanding the disparity of the basin water cycle. Historical variations in precipitation 

and temperature records are also essential to understand the influence of climate change 

on the Nile waters. Moreover, the Basin population estimated at 280 million people in 

2005 that is expected to reach about 591 million people by 2025 (UNEP, 2000; UNEP, 

2013). The rapid population growth will increase the land use pressure and will cause 

further deterioration to the basin resources. Similarly, irrigation in the Upper Nile 

countries, severely underutilized relative to its potential, is expected to grow by several 

orders of magnitude, putting further stress on water resources (NBI, 2010; NBI, 2012). 
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1.2. Research objectives  

This study seeks to evaluate to what extent the hydrological observations from the 

satellite, model reanalysis and LSMs could substitute the lack of the operational 

observations over the NRB. In fact, the evidence of discernible storage changes in the 

NRB caused by global climate change has not been fully studied. Therefore, to assess, 

understand, and mitigate the future effects of climate variability on terrestrial water 

systems, reliable record of the storage changes is needed. The satellite-based hydrological 

data can be representing each term listed in the water balance Equation (1.1).  

$%
$&
	= 𝑃 − 𝐸𝑇 − 𝑄 ± 𝜀     (1.1) 

Where  
$%
$&

  is the storage changes could  provide by the NASA's Gravity Recovery and 

Climate Experiment (GRACE) satellites. The recent gauge corrected precipitation grids 

and the evapotranspiration could be valuable sources to estimate precipitation	(𝑃), the 

evapotranspiration	(𝐸𝑇). The surface runoff	(𝑄), can be simulated as a residual of 

precipitation, evapotranspiration and the storage change. The error term 𝜀 is so critical to 

assess the uncertainty levels in the water balance estimates. 

This study implementing the basic gridded hydrological information to:  

1- Provide a comprehensive water balance equation over the NRB,  

2-  Address the response of the surface runoff to the climate change,  

3- Validate the hydrological utility of the multisensory satellites, reanalysis, and 

LSMs data sets to better simulate the storage changes over the basin, and  

4- Determine the hydroclimatic impacts and assess the water resources risks due 

to climate El Niño–Southern Oscillation (ENSO) variations. 
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1.3 Research questions 

The key research questions of this study are:  

1- How can satellite based storage change, precipitation, evaporation estimate be 

used to provide a representative water-balance equation over the Nile Basin? 

2- How could the variation in precipitation and temperature affect the Nile River 

flow, and how the Nile Basin is resilient to climate change? 

3- What is the potential impact of the SLR on the Nile Delta’s land cover and 

population? 

4- How could the variation in ENSO conditions influence the TWS over the basin? 

1.2 Dissertation outline  

The dissertation is outlined in four core chapters that are written as individual 

journal articles. Each chapter introduces vital topic to the water resources over the Nile 

basin. The main topics include the challenges to the water resources management over 

the basin, the response of the Nile river flow to the climate change, the potential Seal 

Level Rise (SLR) over the Nile Delta Egypt, the utilization of multi-satellite, reanalysis 

observations, and LSMs data to estimate the TWS over the basin. Following to that an 

overall summary and conclusion of our research findings. However, each article/chapter 

discusses a unique topic some unavoidable repetition may occur in the introduction and 

the data section. The following section displays a brief summary of each chapter.  

Chapter 2: Challenges and opportunities of hydrologic remote sensing for the Nile 

River Basin: A Review 

This chapter discusses the main challenges to the water resources management 

over the Basin. Climate change, water-allocations, population growth, and data 
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inaccessibility are the major hitches to water management. Meanwhile, satellite-based 

hydrological observations could help to understand the overall storage changes, the 

fluctuation in the precipitation, evaporation and surface water flow. Another objective is 

to construct a representative water-balance equation for the basin. The main contribution 

of this chapter is using gridded observations to best understand the state of the water 

resources under the changing climate.  

Chapter 3: Response of Nile river flow to the climate change 

This chapter addresses how fluctuations in precipitation and temperature could 

influence the Nile river flow over different climate regions of the Nile Basin. The basin 

was divided into three main climate zones: the tropical-subtropical, semiarid and arid 

zone, each characterized by a unique precipitation, evaporation and runoff rates. Based 

on the functional formulas introduced by Arora (2002) and Pike (1964), the surface runoff 

elasticity was estimated to understand the basin resilience to the climate change in each 

climate zone. Another approach adopted was the use of Budyko curve to determine how 

the basin might transit from energy-limited to a water-limited state. 

Chapter 4: Investigation of potential sea level rise impact on the Nile 

Delta, Egypt using digital elevation models 

Addresses how the future SLR could affect the Nile Delta, considered the gift of 

the Nile to Egypt. The potential SLR estimated based on the two digital elevation models 

(DEM), the shuttle radar topographic session (STRM) and the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) along with ground elevations 

based on the Global Position System (GPS). A linear regression model was developed to 

assess the DEM accuracy. Land cover information from the Moderate Resolution 
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Imaging Spectroradiometer (MODIS) and the gridded population datasets were deployed 

to understand the SLR impact on land cover types and the population. 

Chapter 5: Estimating the Terrestrial Water Storage with Multiscale Remote 

Sensing and Model Reanalysis in the Nile River Basin 

Understanding the historical fluctuation of the TWS is prerequisite for 

hydroclimatic risk assessment. The main approach of this chapter is to use multi 

regressive parameters from the water/energy balance components in combination with 

land cover information to investigate the relationship between the TWS anomaly and 

different hydrologic variables.  Then identify the most explanatory variables to the TWS. 

This chapter aims to reconstruct historical records of 30+ years of TWS along NRB using 

the MRA approach. Second is to investigate the historical frequencies of water 

deficit/stress periods, to assess the influence of climate variability on the TWS, and to 

potentially predict the water availability across NRB hydrologic systems.  
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Chapter 2: Challenges and opportunities of hydrologic remote sensing for the 

Nile River Basin: A review 

 

Abstract 

The Nile River Basin (NRB) is one of the longest transboundary watercourses. 

The basin challenged by the infirm relationship between the riparian countries, lack of 

information sharing and insufficient monitoring stations. Under the changing climate, 

reliable and sufficient information are needed to understand the climate effect on the 

basin’s water flow. Due to the lack of the operational observations, the climate prediction 

is very uncertain and fluctuate whether will be heavy rainfalls that will induced more 

flooding events, or drought conditions with diminished surface runoff will be dominant. 

This chapter evaluates to what extent the available hydrological information from remote 

sensing and model reanalysis and land surface model (LSM) dataset could substitute the 

lack of the ground information. Additionally, provide a comprehensive water balance 

formula for the basin. In the current study, the basic hydrologic information includes 

storage changes, precipitation, evaporation and surface runoff based on gridded-satellite, 

reanalysis, LSMs observations vegetation land cover information. The storage changes 

expressed using NASA’s Gravity and Recovery Climate Experiment (GRACE) satellite 

as overall changes in the total water storage (TWS), the precipitation from Global 

Precipitation Climatological Center (GPCC), The Tropical Rainfall Measuring Mission 

(TRMM), Climate Research Unit (CRU), and Global Land Data Assimilation System 

(GLDAS) products, datasets. The evapotranspiration information were extracted from 

grid-corrected ET product and the GLDAS data. The surface runoff were estimated as a 
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residual of the precipitation, ET and storage change. The resulting runoff estimates were 

compared with the runoff information from the Global Runoff Data Centre (GRDC) 

datasets. The main objective of our research is to evaluate the hydrological changes and 

the variation in water balance along the NRB. This study: 1- Developed gridded-

distributed storage changes, and runoff based estimates, 2- Compared the inter-annual 

variability of the storage changes with the precipitation, ET, runoff, evaporative index 

and dryness index, and 3- Defined the water stress and water deficit periods along the 

Nile Basins. The results indicated that the basin area was influenced by huge storage 

fluctuations, creating several water stress and water deficit periods. 

Keywords: Nile River, remote sensing, reanalysis, water balance, data-poor regions. 
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2.1 Introduction 

The Nile River Basin (NRB) is one of the major continuous transboundary rivers 

in the world. The word Nile, Nil, or Neilos, means the blue or the dark river, it describes 

the majestic river that was mentioned frequently in the old scriptures and testimonies. i.e., 

The Old Testament has mentioned the word “Sihor” to describe the black river in Egypt 

(Isaiah 23:3; Jeremiah 2:18). Meanwhile, the New Testimony and the Holy Quran 

commonly described the dark flowing stream in Egypt by the “River” (Genesis 41:1; 

Exodus 1:22), and (Taha 20:39; El-Qasas 28:7). The Nile River is the source of life and 

the start of great civilizations that hosts diverse communities and cultures.   

Geologically, the Nile originated about 6 million years ago throughout five main 

stages summarized by (Salama, 1987 ): Stage one, the Eonile, which was a small stream 

developed due to the dryness of the Mediterranean Sea during the Messinian salinity crisis 

of the late Miocene. Second, the Paleonile stage, which is considered a seasonal river that 

formed across Egypt. Third, the Protonile stage, this also was restricted to Egypt and 

resulted from occasional precipitations during the arid conditions. Forth, the Prenile stage 

is described as the true beginning of the current Nile River. The Prenile formed due to 

the East-African uplift that created the Ethiopian’s highlands and formed the large 

equatorial lakes of Victoria, Kyoga, George, Albert and Edward. The heavy rainfalls over 

East Ethiopia created the Blue Nile system, and the flow of the water from the equatorial 

lakes to Sudd marshes created the White Nile system (Said, 1981; Salama, 1987 ; Salama, 

1997). Last, the Neonile, where the entire Nile basin developed and the two River systems 

were well-established to form the longest permanent river system, the Nile. 
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Starting from Eastern-Central Africa at Lake Victoria and from the Eastern 

African rift system at Lake Tana in Ethiopia, the Nile River travels a distance of about 

6,650 km in length to form one of the longest rivers in the world.  The Nile ends its 

journey in the Mediterranean Sea forming one of the largest inhabited Deltas worldwide, 

the Nile Delta of Egypt (figure 2.1). The NRB possesses variety of cultures, terrains, and 

climates. It is the main source of life for more than 300 million people belonging to 11 

African nations include; Burundi, Democratic Republic of Congo, Egypt, Eritrea, 

Ethiopia, Kenya, Rwanda, South Sudan, Sudan, Tanzania, and Uganda. Geographically, 

the Nile Basin is divided into two main regions: The Eastern Nile region includes three 

countries: Egypt, Sudan, and Ethiopia, and the Equatorial Lakes region includes Burundi, 

Democratic Republic of Congo, Kenya, Rwanda, Tanzania and Uganda (NBI, 2010). 

The NRB receives the majority of its water from East Ethiopian hills where the 

heavy rainfalls feed Lake Tana (Kebede et al., 2006; Vijverberg et al., 2009). Other water 

shares come from the equatorial Lakes, Lake Victoria and Albert. Although the NRB 

possess number of the biggest freshwater lakes, artificial reservoirs, and open water areas, 

these lakes represent less than three percent of the basin’s total area. The basin’s lakes 

provide a natural protecting buffer against the variations in the seasonal rainfall, also 

proved a permanent storage to the floodwaters during flood periods. The basin’s wetlands 

and lake areas maintained a regular flow of the Nile water especially during the dry spells. 
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Figure 2.1 Nile River Basin, location map and study area. 
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Although the White and Blue Nile systems are providing the Nile River with 

essential water supply, the Blue Nile has a greater importance over the White Nile. Since, 

about 80 percent of the Nile water flow directly from the Blue River Nile. Additionally, 

the heavy sediments load carried by the Blue Nile considered the main source of the fertile 

lands over Sudan and Egypt (Vijverberg et al., 2009). At the conjunction of the Blue and 

the White Nile near Al-Khartum city North Sudan, a single pursuing stream is formed, 

the Nile. The Nile traverses about 800 miles through the Egyptian desert to end its journey 

in the Mediterranean Sea. 

Yet, the impact of climate change on the Nile Basin remains less understood due 

to the lack of the systematic field data that captured enough hydrologic information. 

Indeed, the Nile Basin has an uneven rainfall patterns, temperature anomalies, and erratic 

river flow. The Basin challenges are numerous ranging from hydrological to historical 

ones. The following section presents an overview about the main challenges that hinder 

the water resources management over the Nile Basin. Understanding such issues can help 

the riparian nations to better plan for future agreement and develop adaptive measures for 

climate mitigations. In fact, as the basin nations sharing the water, they are challenged by 

the same future. Absolutely, there is no buffer or limit that the climate effect can stop at 

and to develop potential adaptive policies by the upstream and the downstream countries 

is certainly crucial for better resources managements under the changing climate. 
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2.2 Challenges to the Nile River Basin 

Hydrological challenges 

The Nile Basin is a complex hydrologic system with varied climate zones, terrains 

and discrete patterns of precipitation, water flow, and evaporation. The equatorial lake 

areas and Lake Tana receive more than 1000 mm of precipitation a year. Northward, the 

basin experiences an extensive decline in the precipitation rates. Where, at the 

conjunction between the Blue Nile and the White Nile River systems, the annual 

precipitation rates dwindle to be around 200mm/y. Furthermore north, Sudan and of 

Egypt depict a transit toward more drier and arid climate conditions, the precipitation 

rates decreases to almost zero mm/y. The fluctuation in precipitation influences the water 

shares from each riparian and the rate of water flow to the downstream areas (figure 2.2).  

 

Figure 2.2 Comparison of the temporal variation in the Nile Basin precipitation over 

different climate zones, GPCC data for the period 1981-2013. 
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The Nile River receives major water flow from the Blue Nile Basin (BNB), about 

76 to 80 percent of the water flows from Lake Tana. During the summer monsoon (June 

to September), Ethiopian highlands receives heavy rainfalls and the water rises in the 

channels to the maximum levels between August and September. The Nile flows 

northward to Sudan, in May, the  water reaches to the maximum levels which grasps in 

June at Aswan, Egypt (Collins, 2002). The flow rates of the Nile water considers very 

slow when it compared to other river systems worldwide. The water flow requires about 

three months to traverse over the low lands of the Sudd marshes south-west Sudan. The 

water flow average is about 0.98 L/s/Km2, which depicts a very slow rates of surface 

discharge and high rates of water loss due to evaporations (Moges and Gebremichael, 

2014). The Nile flow is highly dependent on the rainy seasons; the water flow is highly 

sensitive to any changes in temperatures that depicts high potentials of the 

evapotranspiration rates. 

Evapotranspiration is responsible for significant water loss over the Nile Basin. 

The total annual evapotranspiration diminishes about 310 to 260 BCM of water over the 

equatorial lakes, Lake Tana and Sudd marshes annually (NIS, 2012b). The man-made 

reservoirs, e.g. the Lake Nasser southern of Aswan High Dam (AHD), conveyance losses 

of about 19 BCM of water annually. The reported evapotranspiration rates at the 

conjunction of the two river systems is about 7 BCM per year. Owing to the extensive 

temperatures and varied precipitation influx, the Nile undergoes high evapotranspiration 

and extensive loss of the surface runoff (figure 2.3) (NIS, 2012b).  



 19 

 

Figure 2.3 Gauge corrected ET estimates over different climate zones, data for the 

period 1982-2013. 

  
Meanwhile, the potential evaporation is controlled by the topography, where at 

mountains areas and equatorial lakes the potential evaporation is relative low when 

compared to those over semiarid and arid zone. The potential evapotranspiration shows a 

pattern of gradual increase northwards as the humidity level decreases and temperature 

relatively higher (figure 2.4) (Alemu et al., 2014). 
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Figure 2.4 Mean annual potential ET over the Nile River Basin, CRU data from 1982-

2013. 
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Extreme events 

The Nile Basin is subject to frequent droughts and flooding events. Generally, the 

semiarid and arid climate zones struck by severe droughts due to the fluctuated 

precipitation rates (Erian et al., 2012). Currently, the downstream nations are under the 

state of water scarcity, where the annual amount of available water per person is less 

1,000 m3/person/year as reported by the (UNEP, 2013). However, the upstream riparian 

flourished with ample of precipitations; during El Nino events, the rainfall impeded to 

reach Ethiopian hills to cause severe droughts. In response, the water level in Lake Nasser 

northward can be lowered to unprecedented levels (Collins, 2002; Erlich, 2000). Drought 

is connected to precipitation absence and excess of temperature plumes. Flooding is 

another serious dilemma that stalks the upstream riparians due to the rigid topography 

and high precipitation rates. During La Nina events, dramatic rainfall is prevailed resulted 

in severe flooding (figure 2.5) (NIS, 2012a; UNEP, 2013). The unequal allocations of 

precipitation along the basin can either trigger drought or flood extremes (Beyene et al., 

2009). Consequently, provoking threats transferred to the basin’s resources, ecosystems, 

agricultural productivity and water management (El-Quosy, 2009; UNISDR, 2011). 

Meanwhile, the gap between the countries’ demands for water and the available water 

resources substantially influence stability and national security.  
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Figure 2.5 Total flooded days over riparian states, data for the period from 1989-2008. 

Source: (DFO, 2012) 

Climate change  

The Nile Basin endures significant temperature increase as result of the climatic 

conditions. As the Intergovernmental Panel on Climate Change (IPCC) reported that the 

northern and eastern African nations are influenced by an increase of the average 

temperature of about 1°C above the normal of 1961–1990 in year 2013 (Niang et al., 

2014). Meanwhile, temperature controls the regional climate pattern and generally 

responsible for major drastic events (Lynas, 2008). The Basin witnesses high temperature 

rates along the arid and semiarid regions rather than the tropical and subtropical zones 

(Camberlin, 2009). The increase of land surface temperature rises the potential 

evaporation and reduces the surface runoff. As the potential evaporation increased the 

basin moves towards more moisture-constrained conditions (NIS, 2012a). In year 2011, 

the Blue Nile Basin (BNB) swayed by precipitation deficit and the region experienced 
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severe drought conditions due to the surges in temperature and the failure in rainy seasons 

(Lott et al., 2013).  

 Population growth 

The Nile Bain inhabiting more than 300 million people who are projected to 

increase by the year 2030 to 600 million (figure 2.6) (Oestigaard, 2010). Currently 54% 

of the total population lives within the main Nile riverbanks and around the lake areas. 

The population density displays higher percentage over East African Plateau, Ethiopian 

highlands, Khartoum city, Nile valley, and Nile Delta. Rapid population exerted more 

pressures on the water resources, the land, and the agriculture productivity of the basin. 

Mostly, people are stretching around and over the agricultural areas with a great tendency 

toward more urbanizations (figure 2.7). Moreover, people intervention to ecosystem and 

the local environment through deforestation, sweeping the agricultural land, and taming 

waters causing ecosystem stability and increase the land degradations. 
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Figure 2.6 Total population growth of the Nile Basin’s state. Source: (WB, 2016) 
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Figure 2.7 Population density over the Nile Basin, most of the population are 

concentrated around the main River course and over the Nile Delta, Egypt.  
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 Historical challenge 

The water flow is the Nile’s greatest wealth. The debate who owns the Nile and 

control the river flow is a historical challenge between the upstream and downstream 

nations especially Ethiopia and Egypt. Meanwhile, the sole downstream users considered 

the Nile as their source of life. Likely wanted to see their own water shares unchanged. 

Historically, Pharaonic kingdom had reached and controlled to the Nile main sources. 

Preventing any trial of sealing the water from flowing to Egypt. This custom persisted 

during the Roman Empire and the Arab conquest. In fact, the continuous of the ruling 

regime in Egypt was contingent to the Nile flow. Moreover, the British colonialization 

prevented the upstream countries to build or construct any means for water sealing within 

their borders. Where, in 1929, Egypt and Britain signed a treaty on behalf of the riparians 

stated that “no irrigation or power works or measures are to be constructed or taken on 

the Nile River and its branches, or on the lakes from which it flows in such a manner as 

to entail any prejudice to the interests of Egypt” (Kieyah, 2007; Oestigaard, 2010). Since 

1950, Egypt role retreated and become less effective in the region; most of the upstream 

countries revolted such treaties without Egypt consent and started to construct water-

taming projects. Indeed, the upstream countries strive for their wellbeing through 

managing the water resources and increasing the potential use of water. However, Egypt 

historical rights in Nile’s water could not be ignored or neglected, a sort of agreement 

should be nudged by all riparians to develop mutual corporation theme on the Nile water. 

In 1999, the Nile Basin Initiative (NBI) was declared to connect the eleven riparian 

nations for the first time and to address the basin water issues (NBI, 2010; NBI, 2012).  
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 Data inaccessibility 

 Historically, the Nile Basin managed to be as well-studied river with extensive 

network of nilometers and gauging across the Nile course (figure 2.8). 

Figure 2.8 Nilometer near Elephantine Island southern Egypt, (A) the nilometer top 

view. Source:(Flickr, 2009). (B) The bottom view of the nilometer, the black line shows 

the previous water. Source:(Flickr, 2008).  

 

Meanwhile, since 1968, the total numbers of hydrometers and meteorological stations 

were declined dramatically (figure 2.9). To date, the gap of ground information is 

significant making the prediction of possible climate change scenarios over the basin too 

difficult. The lack of data sharing and the institutional bureaucracies among riparian 

nations hurdle the water management policies. Without unlimited data accessibility and 

availability, the Nile Basin is sort of data-poor region. Establishes a comprehensive real-

time network for data acquisition over the basin is essential. The in-situ data is not only 

a key to water resources management but also a priority to develop a mutual adaptive 

capacity between the riparian states. The riparian countries are challenged by their infirm 

relationships, lack of information sharing culture and insufficient monitoring stations. A 

reliable data overtime is essential to understand the temporal and spatial consequences of 
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climate variation. Therefore, in lieu of hydrological observation, the geospatial 

information from satellite, reanalysis and land surface models provide unprecedented 

hydrological observations. Likely, geospatial data enables to address an inclusive water 

balance equation that describes the entire water components and defines the state of water 

resources in the basin. The following section displays the opportunities for hydrological 

remote sensing over the Basin for best water management strategies.  

 

Figure 2.9 Total number of hydrometeorological stations in the Nile Basin at Uganda, 

an example of fluctuated trend (source: (NBI, 2016)).   
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2.3 Opportunities for hydrological remote sensing  

The onboard satellite sensors viewing and monitoring the Earth’s surface at regular 

intervals using physical earth’s characteristics such as electromagnetic radiation and 

gravity. The continuous physical measurements from satellite systems helped to address 

wide range of problems especially when the in-situ and gauging stations are absent. This 

section reviewing the opportunities to understand the Nile Basin’s water balance using 

multisensory remote sensing, reanalysis data and blind-gauge corrected grids. Despite the 

recent advances in the geospatial data gathering and manipulating, our understanding of 

water resources for the emerging regions could be limited. The following section 

addressing what is the best geospatial information that could be best representing each 

component of the water balance listed in Equation 2.1. 

∆1
∆&
= 	𝑃 − 𝐸𝑇 − 𝑄	 ± 	𝜀,      (2.1) 

Where, ∆1
∆&
	 Storage change within time, 𝑃 Precipitation, 𝐸𝑇 Evapotranspiration, 𝑄 runoff, 

and 𝜀 is the error term. 

Storage change 

The storage change is an inclusive measure about the state of water and whether it 

normal, surplus or in deficit state. Since 2002, the mission Gravity Recovery and Climate 

Experiment (GRACE) satellite provides unprecedented measures about the changes in 

the Total Water Storage (TWS). GRACE is a unique precise microwave ranging system 

measures the changes in the TWS as a function of the earth’s mass gravity. GRACE grids 

represent 1° of water column from the surface, soil moisture and groundwater. The 

GRACE data are collected, processed, and made accessible through three main mission 

partners; the Center for Space Research (CSR) at University of Texas, the Geo 
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Forschungs Zentrum (GFZ) Potsdam, and the Jet Propulsion Laboratory (JPL). Figure 

2.10 display the monthly average of the GRACE signals over the Nile Bain from the three 

data centers, along with the new GRACE Mass Concentration Block (Mascon) signal.. 

GRACE observations can track the fresh water availability, the variation in water cycle, 

the groundwater variability, and can be a unique tool to construct the evapotranspiration 

as a residual of the storage changes (Ahmed et al., 2014; Ahmed et al., 2011; Cao et al., 

2015; Houborg et al., 2012; Long et al., 2013; Long et al., 2014).  In this research, the 

monthly GRACE product from (2002-2016) (R05L2) data was implemented. 

 

Figure 2.10 Temporal distribution of the GRACE anomaly from the three partners’ 

mission over the Nile Basin for the period 2002-2015. 

Precipitation  

Precipitation is the most important component of the water cycle. Several 

precipitation products are available at different temporal and spatial scale from satellites, 

model reanalysis, and land surface models. Meanwhile, the precipitation products at high 

temporal resolution (hourly and daily products) are exhibiting high form of uncertainties. 
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Contrary, the monthly temporal precipitation data display high agreement when it 

compared with gauge observations. In this research, number of monthly precipitation 

products are implemented to assemble the precipitation record over the Nile basin. The 

precipitation data include: the monthly research product from the Tropical Rainfall 

Measuring Mission (TRMM), the hydrological monitoring products from the Global 

Precipitation Climate Center (GPCC) research product (Schneider et al., 2011), the 

Climate Research Unite (CRU) precipitation data (CRU, 2015)., and Global Land Data 

Assimilation System (GLDAS) (Rui, 2011) (figure 2.11). The data were covered the time-

period from 2002 to 2016 with varied spatial grids of 0.25°, 0.5° and 1° latitude-longitude 

grids.  

 

Figure 2.11 Temporal distribution of the precipitation over the Nile River Basin, data 

from GPCC, TRMM, CRU, and LSMs for the period 2002-2015.  
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 Evapotranspiration  

Actual evapotranspiration (ET) depicts the water flux from the plant surface and water 

bodies. The ET plays a key role in runoff and water availability and can be used for 

irrigation management, drought detection, water productivity and groundwater 

management. The ET computation can be based on different strategies include: water 

balance approach, energy budget, and penman-month approach. The ET data are 

available through satellite-based estimates such as MOD16 global evapotranspiration 

product, LSM such as GLDAS ET, and gauge corrected ET products. In the current 

research, the monthly ET data from GLDAS and the corrected ET grids deployed to 

understand the spatial and temporal variation of the ET over the basin (figure 2.12). 

 

Figure 2.12 Temporal distribution of the ET over the Nile River Basin, data from 

corrected ET products and LSMs for the period 2002-2015. 
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 Surface runoff 

The Nile water surface flow is generated from the heavy rainfall over the equatorial 

lakes and East Ethiopia. Nile flow is most critical water component to all riparian nations. 

The surface runoff over the Equatorial lake display a unimodal flow over the year, 

meanwhile, the Blue Nile Basin display bimodal flow. The Global Runoff Data Centre 

(GRDC) provide the most accepted surface runoff grids worldwide. The GRDC data is 

an international archive of data up to 200 years old of unique collection of river discharge 

data collected at daily or monthly intervals from more than 9,200 stations in 160 

countries. The GRDC operates under the supervision of the World Meteorological 

Organisation (WMO) and maintained by the German Federal Institute of Hydrology 

(Bundesanstalt für Gewässerkunde or BfG). The GRDC provide about thirteen surface 

runoff stations over the Nile Basin (table 2.1).   



 34 

 

 

 

 

Ta
bl

e 
2.

1 
Su

m
m

ar
y 

of
 th

e 
G

R
D

C
 g

au
gi

ng
 st

at
io

ns
 o

ve
r t

he
 N

ile
 B

as
in

 (S
ou

rc
e:

 (G
R

D
C

, 2
01

5)
  



 35 

Additionally, a gridded runoff product is available at yearly scale from the same 

center for the period 2002-2013. Due to the limitation of the available gauging stations, 

the surface runoff over the basin simulated at relatively finer temporal scale using gridded 

observations from GRACE, GPCC and the corrected ET estimates with high correlation 

with eh GRDC data (figure 2.13). 

 
Figure 2.13 Simulated surface runoff over the Nile Basin. 
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Vegetation Land cover  

The terrestrial vegetation is a sensitive indicator to climatic and anthropogenic 

influences. The Moderate Resolution Imaging Spectroradiometer (MODIS) observational 

data offer the opportunity to monitor and investigate large-scale changes in vegetation in 

response to human actions as well as climate and environmental changes. The spectral 

reflectance properties of plants reveal the importance of the near-infrared (NIR) region 

for vegetation monitoring using remote sensing observation (Ollinger, 2010). The green 

pigments in the leaves absorb a portion of the red and blue spectrum while reflecting the 

green and NIR portion of electromagnetic radiation. Based on these characteristics, 

impressive number remote sensing parameters were developed such as Vegetation 

Indices, leaf area index, the gross primary production, light use efficiency, and plant water 

status to provide a robust monitor tool for annual phenology changes in the plant canopy. 

The surface reflectance from MODIS data are implemented to determine the Normalized 

Difference Vegetation Index (NDVI) as follow: 

𝑁𝐷𝑉𝐼 = (789:9;$)
(789<9;$)

     (2.2) 

The NDVI provides consistent land cover phenology change, spatial and temporal 

information about vegetation. For instances, figure 2.14, represents the green biomass 

distribution along the Nile Basin using the mean annual NDVI data from 2002-2015. This 

figure shows that the green vegetation is extensively distributed along the southern and 

eastern parts of the basin, mainly around the water bodies and in the areas where there is 

a sufficient amount of rainfall. The northern part of the basin has dispersed vegetation 

cover due to the insufficient rainfalls. The NDVI data is highly correlated with the ET as 

shown in figure 2.15. 



 37 

 
Figure 2.14 Spatial distribution of NDVI over Nile River Basin, MODIS data for the 

period 2002-2015.  
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Figure 2.15 Correlation NDVI and ET over Nile River Basin.  

 
2.4 Storage Variability  

The monthly variation in the Nile water storage indicated an alternation between 

two main cycles during the year, the wet and dry cycle (figure 2.14). The top panel shows 

from left to right the relation between the storage change and precipitation, ET, runoff. 

The monthly storage from GRACE anomalies during the period from 2002 to 2015 has a 

peaks starts in August and reach to the maximum in October, while the minimum 

recorded in January. Meanwhile, the storage recovered potentially with precipitation, 

there is almost two months lag between the precipitation peak and the storage recovery. 

The precipitation started during May and declined after October, where the maximum 

precipitation peak is usually during August. The relationship between storage recovery 

and evapotranspiration showed that mostly both have similar pattern, where the ET peak 

and the storage recovery mostly at the same time. The ET is highly connected with 

precipitation, the maximum ET is about 70 mm during September, while the minimum is 

reported in February. The variation in the runoff as indicated by the relation between 

precipitations minus the evaporation indicated a two months lag of the storage recovery 
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with the runoff. The surface runoff reaches to the maximum during the month August and 

declined in January. 

The lower panel of the figure 2.16 compares the monthly variation in the storage 

change with the vegetation index, evaporative and the dryness indices (evaporative and 

dryness indices are representing the relation between the evaporation and potential 

evaporation that are normalized by precipitation respectively). The comparison between 

the storage recovery and vegetating revealed a monthly lag between each other. The 

vegetation replenish is highly connected to precipitation, however a relatively small lag 

in the peak of the vegetation, which usually incident after the precipitation occurred. The 

relation between the storage recovery and evaporative and dryness indices showed 

negative correlation, since both indices are describing limited-water yield conditions. The 

actual ET increased while there is enough rainfall, while the dry periods in the most of 

the time have the maximum peaks of the PET.  
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To determine the relationship between the storage recovery and the water stress period, 

the water stress index calculated as:  

𝑊𝑆	 = ?@A:@A
?@A

      (2.3) 

Where, 𝑊𝑆 is the water stress, 𝑃𝐸𝑇 is the potential ET, 𝐸𝑇 is the actual evaporation. 

Figure 2.17 indicates a high consistence between the peak of the storage recovery and the 

water yield period that has less stress, values greater than zero at the WS scale.  

 

Figure 2.17 Temporal variation of the storage recovery and the water stress period over 

the Nile Basin for the period 2002-2015.	

Based on the relation between the storage changes and different hydrological 

parameters, the overall storage changes (∆1
∆&
) during drought events estimated to be <= − 

40 mm, while during the flooding event the (∆1
∆&
) was almost >= 60 mm. According to the 

correlation coefficient between the gridded hydrological parameters and the available 

observations, the uncertainty in water balance can be expressed by as following: 

∆1
∆&
= 	𝑃 ± 20𝑚𝑚	 − 𝐸𝑇 ± 33𝑚𝑚 − 𝑄 ± 12𝑚𝑚   (2.4) 
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In fact, the storage changes from the GRACE anomaly is valuable indicator that 

measures all changes in the water column in different forms include: surface water, 

ground water, and soil moisture according (Equation 2.5): 

∆𝑇𝑊𝑆 = 	∆𝑆𝑊 + ∆𝐺𝑊 + ∆𝑆𝑀    (2.5) 

Where, ΔTWS is the total water storage anomalies from GRACE, ΔSW is the surface 

water anomalies, ΔGW is the groundwater storage anomalies, and ΔSM is the soil 

moisture anomalies. Figure 2.18 illustrated the spatial distribution of water storage and 

soil moisture estimates from the CPC data set. The source areas show high rates of soil 

moisture and positive TWS anomalies. While, the downstream areas display low soil 

moisture record and negative storage.  
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Figure 2.18 Spatial variation of the water storage and soil moisture over the Nile Basin 

for the period 2002-2015.	
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2.5 Summary and perspectives 

The Nile Basin is one of largest river basin worldwide. Regarding to ground 

observation availability, the basin considered as a data-poor region. The Nile water 

resources is hindered by many factors such as, climate, the lack of information sharing, 

the isolation and the political conflict. The climate variability includes the variation in 

precipitation, temperature patterns that influence the evapotranspiration and surface 

runoff rates. The management of water resources is connected to the access to a reliable 

climate information. Remote sensing, model reanalysis and land surface models could 

potentially provide valuable source for hydrological monitoring data. In this research, the 

storage changes from GRACE satellite, GPCC precipitation data and the gridded-

corrected ET were utilized to understand the water variability in the NRB. The 

comprehensive water balance of the basin can be written with the following uncertainty 

level for each term: 

∆𝑆
∆𝑡 = 	𝑃 ± 20𝑚𝑚	 − 𝐸𝑇 ± 33𝑚𝑚 − 𝑄 ± 12𝑚𝑚 

  The TWS and the gridded-based hydrological variables showed high correlations 

in the seasonal cycles over the basin. The maximum TWS is coinciding with the annual 

peak in cumulative precipitation, while the minimum TWS is connected with less 

precipitation amount. The ET as is highly connected with the precipitation increase and 

display consistent pattern with the TWS anomaly. During the growing seasons, the green 

biomass is relatively abundant, with higher vegetation index values. The result showed 

higher agreement between the vegetation abundant and rainfall timing.  
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Chapter 3: Response of Nile river flow to the climate change 

  

Abstract 

This chapter addresses how the temporal variability in precipitation (𝑃) and 

temperature (𝑇) could affect the surface runoff (𝑄) in the Nile Basin. The monthly gauge-

corrected precipitation, temperature and potential ET (𝐸𝑇K) grids products from the 

Climate Research Unite (CRU) at University of East Anglia (UEA) are utilized to assess 

the surface runoff elasticity to precipitation (𝜀L), potential ET (𝜀@A°), and temperature (𝜀A) 

from 1981-2013. The Nile Basin classified into three main climate zones, the tropical 

subtropical climates, the semiarid and the arid zone. Using Budyko Curve illustration, the 

(𝜀L) calculated for each climate zone and for the basin average. Additionally, the (𝜀@A°), 

and (𝜀A) are calculated based on functional forms introduced by Arora 2002, and Pike 

1964. The results of runoff elasticity to precipitation (𝜀L) for the tropical-subtropical zone 

showed at 10 percent increase in precipitation the runoff expected to increase by 20 

percent. As gradually moved to the arid zone the runoff recovered by 3 percent at 10 

percent increase in precipitation. As the temperature decreases by (-0.5°C) for the 

tropical-subtropical zone, the surface runoff will increase by 5 percent. Accordingly, the 

runoff elasticity to potential ET ranging from (-0.52 to -1.70) for the tropical-subtropical 

to the arid zone. Generally, the runoff elasticity to precipitation that greater than 1 
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describes an elastic system (resilient to climate change). Therefore, the subtropical-

tropical region in the Nile Basin can be considered as resilient under the current climate 

conditions compared with the other climate zone in the basin.   

Keywords: Nile River Basin, Runoff, elasticity, climate change 
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3.1 Introduction 

The shared water resources in the Nile River Basin (NRB) is substantially vulnerable 

to water-stress under climate change. The temporal variability in precipitation (P) and 

temperature (T) likely influence the rate of surface water flow	(𝑄). According to the 

Representative Concentration Pathways (RCPs) scenarios, IPCC 2014, the projected 

increase in the mean surface temperature over the Nile Basin by the end of the 21st 

century (2081–2100) likely to be 2°C as the RCP2.6 scenario designated. Other varied 

projections were suggested by the RCP4.5, RCP6.0, and the RCP8.5 (i.e. temperature will 

increase according to each scenario by 2.6°C, 3.5°C, or by 4.0°C respectively). 

Additionally, each scenario has a unique perspective for the projected precipitation. For 

instance, the RCP2.6 indicated that the Nile Basin will experience an increase in the 

precipitation rates by 14 percent, while, the  RCP8.5, the worst  case scenario, projected 

the precipitation to likely decreases by 15 percent (IPCC, 2014).  

The wide range of uncertainty of these projections gave no clear indications of how 

certainly the river flow would be affected by climate change (i.e. no assurance whether 

the flow will increase or diminish since there is no certain climate scenarios)  (Conway, 

2005). Nevertheless, any fluctuation in precipitation rates (increase or decrease) and the 

future surges of temperature trends will certainly influence the surface water flow of the 

Nile Basin. In addition, the seal level rise, which is another serious concern, could 
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adversely affect the Nile Delta region in Egypt, the main coastal area in basin downstream 

country (Hasan et al., 2015a). However, the riparian nations are incompetent to mitigate 

with such intimidations. Owing to the insufficient joint adaption measures and the lack 

of information sharing culture, the basin communities are threatening by and unable to 

cope with the negative climate variability. Meanwhile, projection change will exacerbate 

the human induce on land cover and will rise the pressure on the basin’s natural resources.  

The Nile River basin exhibits varied climates, spatiotemporal variability in 

precipitation and temperatures. The basin can be generally classified into three main 

climate zones: the tropical-subtropical zone, the semiarid, and the arid zone. Each zone 

is characterized by distinct rates of precipitation and remarkable range of vegetation cover 

as indicated by the Normalized Difference Vegetation Index (NDVI) from Moderate 

Resolution Imaging Spectroradiometer (MODIS) (figure 3.1). The tropical-subtropical 

climates characterized by overwhelming precipitation that contribute substantially to the 

river flow. The semiarid zone however receives significant amount of seasonal 

precipitation, this zone characterized by large inter-annual variability and less 

contribution to the river flow due to the loss of water to the atmosphere by the high 

evaporation rates. The arid zone is mostly described as desert area with little to no 

rainfalls and no to less contribution of water to the basin flow. Examining how the 

seasonal variability in precipitation and temperature governing the water balance in the 
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basin and significantly affecting the water flow is highly linked with sufficient inputs od 

spatial information. To date, the gap in ground observations over the basin is notorious, 

and the corporation between riparian nations is hurdled by institutional bureaucracies and 

ineffective policies. While the basin population is projected to increase significantly that 

emerging increase in water demands. Unless establishes a framework of corporation, the 

basin communities are threatened and are unable to mitigate with the possible changes of 

the Nile flow. 
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Figure 3.1 Nile Basin climate zones indicated by the Normalized Difference Vegetation 

Index (NDVI). 

  



 57 

Water-energy balance and Budyko Curve 

Partitioning of precipitation to evapotranspiration and runoff is controlled by the 

available energy. According to Arora (2002), the energy, which better expressed by the 

potential evapotranspiration, and the precipitation, both are controlling the rates annual 

flow (Arora, 2002). The ratio between potential evapotranspiration and precipitation 

(aridity/dryness index), and the ratio between the actual evapotranspiration and 

precipitation (evaporative index), could be utilized to determine the water yield and 

surface runoff rates according to Budyko Curve (Budyko, 1974). The Budyko Curve 

depicts the relation between actual evapotranspiration (𝐸𝑇) and potential (𝐸𝑇K) both are 

normalized by precipitation to determine the potential water yield, and runoff for any 

catchment (Creed et al., 2014).  

The Budyko curve illustrates three main characteristics: 1- the water limits, 2- the 

energy-limits, and 3- the transition from the energy constrain to water constrain 

conditions (figure 3.2). For instance, when the actual 𝐸𝑇 equals precipitation, this 

represents the water limits, where a site cannot be plotted above this limit unless there is 

an additional input beyond the precipitation. When the potential 𝐸𝑇K equals precipitation 

that means that the basin/watershed ready to move from energy-limit conditions to the 

state where the water/moisture become so limited, the basin at this point falls in the 

energy-limit conditions. When the actual ET equals the potential ET, this mainly 
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represented by the energy-limits, the plot cannot exceed the energy-limits unless the 

precipitation is being lost to groundwater in the system. 

Figure 3.2 Illustration of Budyko curve. 

Budyko curve has been utilized in various studies to provide a reference of the 

water balance condition for any watershed/catchment (Arora, 2002; Creed et al., 2014; 

Di Baldassarre et al., 2011; van der Velde et al., 2014). Thru Budyko curve, the catchment 

responsivity (resistance) can be measured from the deviation in the evaporative index. 

And the catchment water yield elasticity (resilience) to changing climatic conditions can 

be measured as a ratio of deviations in dryness index to evaporative index. The long 

deviation in the evaporative index described lower elasticity that results in less resilient 

and longer recovery times in water yields. 
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Objectives  

This chapter discusses the sensitivity of the Nile River flow to the changes in 

precipitation and temperature. The functional forms introduced by (Arora, 2002; Grijsen 

et al., 2013; Pike, 1964), and the Budyko framework (Budyko, 1974) were utilized to 

assess how the fluctuation in precipitation and temperature could influence the surface 

runoff over different climate zones across the Nile Basin. Meanwhile, the Nile Basin is 

characterized by very uneven distribution of water resources over distinct hydrologic-

climate zones. 

 The main objective of this chapter is to: assess how each climate zone will 

response to climate variability as manifested by precipitation and temperature changes. 

This chapter highlighted the water availability especially for the downstream riparians 

thru an effective robust approach that will allow water managers in the region to 

understand the state of water resources over the basin. This chapter is arranged in four 

main sections: section 3.2 about the data set and methodology, section 3.3 about the 

results and discussion, finally section 3.4 is a conclusion and remarks.  

3.2 Data sets and methodology 

Giving that the amount of operational gauging and monitoring stations (in-situ) 

information is limited, several hydrological monitoring grids and satellite observations 

were utilized. For long-term climate analysis, the gauge corrected precipitation grids, the 
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temperature and the Potential 𝐸𝑇K estimates from the Climate Research Unite (CRU) at 

University of East Anglia (UEA) at 0.5° resolution grids between year 1981-2013 (CRU, 

2015) were utilized. A 0.5° satellite actual ET data cover the period from 1981-2013 were 

implemented. The ET gridded product for the period from (1981-2013) derived according 

to a method introduced by (Zhang et al., 2010). Other gridded data sets at different 

temporal and spatial resolution were also implemented such as: The monthly Gravity 

Recovery Climate Experiment (GRACE) satellite data from (2002-2015) and at 1° grids 

from the Center of Space Research (CSR) at University of Texas Austin, (RL05 Products, 

Release-05 Level-2), the data processed according to (Swenson and Wahr, 2006). The 

annually gauge-corrected surface runoff estimates from 2002-2012 acquired from the 

Global Runoff Data Center (GRDC) at 0.5° resolution (Fekete et al., 2002). By combining 

the records from temperature, precipitation, potential ET and actual ET over the basin, 

mean annual average maps were constructed for each variables with their overall anomaly 

trends as shown in figure 3.3. 
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Figure 3.3 Averages and trends of temperature, precipitation, actual and potential ET, 

across the Nile basin for the period 1981–2013. 
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The changes in the runoff rates to the climate conditions can be defined using the 

runoff elasticity (𝜀). The elasticity evaluates the ability of the system to resilient and 

restore its initial conditions upon certain changes. In this paper, we measured the surface 

runoff elasticity thru illustration of Budyko Curve (Budyko, 1974), and number of 

functional forms  modified after (Arora, 2002; Budyko, 1974; Creed et al., 2014; 

Hargreaves and Samani, 1985; Pike, 1964; van der Velde et al., 2014). Using the ratio 

between actual (𝐸𝑇) and precipitation, evaporative index (𝐸𝐼). (Equation 3.1), and ratio 

between the potential (𝐸𝑇K) and precipitation, dryness index (𝐷𝐼). (Equation 3.2), the 

Budyko Curve can be illustrated demonstrated. The rate changes in the (𝐷𝐼) to the rate of 

changes in the (𝐸𝐼) can indicate the (𝜀) of the system as shown in Equation 3.3.  

𝐸𝐼 = 	 @A
?
	,		     (3.1) 

𝐴𝐼 = 	 𝐸𝑇𝑜
?
	,	     (3.2) 

𝜀 = 	∆	𝐴𝐼∆	𝐸𝐼		,     (3.3) 

According to Arora (2002), the changes in surface runoff can be expressed as a 

function of the changes in the precipitation (∆𝑃) minus the changes in potential ET (∆𝐸𝑇K) 

as follow: 

∆O
O
= 	 ∆?

?
	 1 + 𝛽 −	∆@AQ

@AQ
	𝛽,      (3.4) 
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Where the coefficient 𝛽 is the sensitivity index, this index implies larger changes in the 

runoff based on the changes in the precipitation and potential ET. The value of the 

coefficient 𝛽 is proportionally positive to the aridity index (Arora, 2002). At best practice, 

we calculated the coefficient 𝛽 for each climate zone according to (van der Velde et al., 

2014) as: 

𝛽 = ((∆@A.		?:	∆@A	.		∆?
?S

)T +	(∆@AQ.		?:	∆@AQ	.		∆?
?S

)T),	    (3.5) 

 The surface runoff in the tropical and subtropical zone will be solely controlled by the 

changes in the precipitation therefore Equation (3.1) can be rewritten as: 

∆O
O
= 	 ∆?

?
	 1 + 𝛽 ,     (3.6) 

Therefore the surface runoff elasticity to precipitation (𝜀L) can be calculated as: 

 𝜀L =
∆U
U 	
∆V
V
= 1 + 	𝛽,       (3.7) 

Equation (3.4) is most applicable to calculate the surface runoff elasticity to precipitation 

in tropical-subtropical climate zones where there is a sufficient input of precipitation. 

Next, the surface runoff elasticity to potential ET, (𝜀@A°), can be calculated as  

𝜀@A° = 	
∆U
U 	

∆WXQ
WXQ

= 	−𝛽,      (3.8) 

Finally, the surface run off elasticity to temperature can be calculated as: 
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𝜀@A° = 	
∆U
U 	
∆X
X
= 	−0.60	×	𝛽,     (3.9) 

Equation 3.6 is derived based on (Hargreaves and Samni, 1982 ). Table 3.1 Summaries 

the main functional forms. 

 Table 3.1 Summary of the mathematical forms 

 

Based on the water balance direct approach stated in Equation 3.10, the surface runoff 

over the Nile basin has been simulated for the period from 2002 to 2015. 

 ∆1
∆&
= 	𝑃 − 𝐸𝑇 − 𝑄,      (3.10) 

The changes in storage  ∆1
∆&
	estimated using GRACE total water storage anomalies 

(TWSA) data according to (Syed et al., 2008).   

 

Functional forms Equation name Reference 

𝑨𝑰 = 	𝑬𝑻𝒐 𝑷,	 

𝑬𝑰 = 	𝑬𝑻 𝑷 

Aridity Index (AI),  

evaporative indices, (EI) 

 

(Budyko, 1974) 

𝜺 = 	 ∆𝑨𝑰 ∆𝑬𝑰 		 Elasticity (Creed et al., 2014) 

𝜷 = [𝝋𝑭f(𝝋)] [𝟏 − 𝝋𝑭f(𝝋)] Sensitivity coefficient (Arora, 2002) 

𝑸 𝑷 = 𝟏 −	𝑬𝑻 𝑷 Runoff coefficient (Grijsen et al., 2013) 
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3.3 Nile Basin climates 

The climate zones across the Nile Basin displayed distinct characteristics of 

precipitation, temperature and evapotranspiration, and potentially distinct pattern of 

runoff figure 3.4 The tropical-subtropical zone where the  upstream countries lie, receive 

high amounts of rainfall annually that exceeds the 1000 mm/y (Hassenforder and Noury, 

2015; Karyabwite, 2000 ). The downstream countries, Sudan and Egypt, lie on arid to 

semiarid zone with rainfall rates that less than 150 mm/y. The temperature regionally 

controls the climate pattern and the circulation of drastic changes across the basin (Lynas, 

2008). The Nile Basin witnesses higher temperature rates along the arid and semiarid 

region compared with the tropical and subtropical zones (figure 3.4B) (Camberlin, 2009). 

Increase of surface temperature releases more water to the atmosphere thru 

evapotranspiration. Resulting in in less water flow and moving the basin from energy-

constrained to moisture-constrained region (NIS, 2012a).  

Hence, the evapotranspiration is crucial water cycle component, it accounts for 

the water circulation from plants and soil surfaces to the atmosphere. Meanwhile, 

potential (𝐸𝑇K) measures amount of water evaporated under sufficient water supplies, the 

actual (𝐸𝑇) measures the evaporated water under limited supply (Allen et al., 1998). 

Across the Nile region, the spatial and temporal trends of (𝐸𝑇K) and (𝐸𝑇) vary 

considerably (figure 3.3). For the semiarid and arid zones, the potential (𝐸𝑇K) rates 
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compared to tropical zone (figure 3.4C). The evapotranspiration is responsible for 

significant water loss in the basin and affect the rates of water flow  (Collins, 2002).  

The surface runoff is a function of rainfall, potential evapotranspiration, land-

cover, and the basin topography. Accordingly, the water flow profile varied for different 

places along the course of the Nile Basin. The runoff is highly influenced by the climate 

variability especially the ENSO event (Eltahir, 1996). Meanwhile, the future 

developments of rainfall patterns over the Nile Basin remain uncertain, the consequences 

of climatic change on the surface runoff and the water availability is significant 

(Camberlin, 2009; NIS, 2012a). Depends on the climate regions, the riparian states 

contribute unequally to the Nile water flow. For instance, the Blue Nile Basin in Ethiopia 

provides about 76 percent of the Nile’s water with bimodal flow during the year. The 

White Nile Basin contributes about 24 percent of the Nile water flow with consisting flow 

rate during the year (Collins, 2002). 
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Figure 3.4 Precipitation, temperature, and potential ET estimates over different climate 

zones in the Nile Basin. 
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3.4 Results and discussion 

The monthly precipitation estimates from the CRU data showed high agreement 

when compared with other gauge-corrected grids from the Global Precipitation (GPCC) 

(Schneider et al., 2011). Additionally, the CRU precipitation data displayed similar 

consistent pattern when compared with the research product from Tropical Rainfall 

Measuring Mission (TRMM- 3B42-V7) figure 3.5. 

 

Figure 3.5 Monthly precipitation products from CRU, GPCC and TRMM data over the 

Nile Basin (data from 1998-2013). 
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Over the period from 1981-2013, the precipitation shows slightly positive trends 

with some spikes and other flat periods (figure 3.6).    

 

Figure 3.6 The precipitation trends over the Nile Basin from 1981-2013.  
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Comparing the precipitation trends to the monthly temperature trends over the 

same period, the data showing relatively more steep positive trends with of about 2°C 

increase (figure 3.7).  

 

Figure 3.7 The temperature trends over the Nile Basin from 1981-2013.  
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The potential (𝐸𝑇K) trends is highly proportionally with the temperature trends 

over time, the data shows similar steep trend of the potential (𝐸𝑇K), figure 3.8. 

 

Figure 3.8 The potential (𝐸𝑇K) trends over the Nile Basin from 1981-2013.  

 

Using the simulated surface runoff records that only covers the period from (2002-

2103) based on the introduced in equation 10. However, the simulated runoff record not 

covers the full time period from (1981-2013), the data still displays a consistent result 

with the previous trends of precipitation and temperature. Meanwhile, the temperature 

record showed a steady increase in corresponding time period to the simulated runoff the 

data, the over-all surface runoff trends is slightly plunging down (figure 3.9A).  The 
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correlation between the simulated runoff and the GRDC runoff estimates showed a 

correlation coefficient of 0.89 and P-value of 0.001 (figure 3.9B).  

 

Figure 3.9 Simulated and observed GRDC surface runoff over the Nile Basin. (A) The 

annual surface runoff variation, (B) The correlation between the simulated and the 

observed runoff with R2 = 0.89 and P value = 0.001 
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According to (Gleick, 1991), any increases in temperature will slightly decreases 

the precipitation rate and will substantial decreases the Nile  water flow. Remarkably 

notice that the precipitation, temperature and runoff trends have dramatic trend year 2009. 

Where, temperature records showed high trend that associated with major decline in less 

precipitation and runoff flow (figure 3.10). The main attributed factor to this result is the 

major La Nino event that hit blue Nile Basin and caused a severe drought (Zaroug et al., 

2014).  

 

Figure 3.10 Simulated surface runoff over the Nile Basin.  

 

The gridded product of the mean annual simulated surface runoff showed in figure 3.11 

along with mean annual runoff from the GRDC data set.  
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Figure 3.11 Mean annual surface runoff simulated and GRDC data sets (2002-2013). 

 

The surface runoff elasticity to precipitation based on the Budyko relationship 

were estimated for each climate zone. Based on the Budyko relation between the aridity 

index and the evaporative index each climate zone plotted in a distinct space under 

Budyko curve (figure 3.12). The tropical-subtropical zone located over the energy-limited 

zone, where this zone characterized by potentially high rates of water-yield. The semiarid 

zone however it receives significant rate of surface water, the high rates of 

evapotranspiration causes substantial loss of water to the atmosphere that make this 

climate zone as moisture/water-constrained zone. The arid zone displayed very water-
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limited zone due to the limited supply of water and the high temperature rates that rises 

the rates of potential evapotranspiration. The arid zone displayed very low 

responsivity/resistance, since the deviation in the evaporative index is very high. The 

basin average showed an over-all water-limited state. This mainly attributed to that 

majority of the Nile Basin fall in semiarid-arid zone with limited water yield potentiality. 

 It can be concluded that in the absence of any change in potential evaporation, 

the surface runoff is solely determined by change in precipitation, which is clear for the 

tropical-subtropical zone. Conversely, in the absence of change in precipitation, the 

surface runoff is mainly governed by the changes in the change in potential evaporation. 

Therefore, and due to the high temperature rates over the semiarid and arid zones, the 

surface runoff is mainly controlled by the change in potential evaporation. Additionally, 

the coefficient 𝛽, the sensitivity index that measures the degree of changes under the 

Budyko space is proportionally correlated with the aridity index (i.e. increases in the 

aridity index implies increases in dryness conditions). 
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Figure 3.12 Distribution of different climate zone under the Budyko space 

 

Figure 3.12, shows the relationship between the potential ETο, and ET normalized 

by precipitation and the response of each climate zone to the precipitation and 

temperature changes. For instance, the Tropical-subtropical climate shows high potential 

of water yields, where this zone displayed a consistent water supply, except few years of 

transition to the water limited stage. The semiarid zone, however, it characterized by high 

potential of water yield, most of the water-yield loss due to high evaporation. The arid 

climate zone exposed to high temperature rate and insufficient amount of precipitation. 

The average of the Nile Basin displayed a water-limited state due to the basin uneven 

climate distributions.  
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 Trajectory under Budyko space 

Based on the Budyko curve, the data classified into dry and wet period and five 

years moving average were calculated. Equation 3 used to calculate the surface runoff 

elasticity to precipitation. The degree of changes under Budyko space (coefficient 𝛽), 

calculated using equation 5. For tropical-subtropical zone, the surface runoff elasticity 

can be measured using equation 7, runoff elasticity to potential (𝐸𝑇K) and temperature are 

calculated using equations 8 and 9 respectively. Table 3.2 Summarizes the results of each 

climate region across the Nile Basin: the surface runoff coefficient 𝑸 𝑷 ,	the surface 

runoff elasticity to precipitation	(𝜀L),	the surface runoff elasticity to potential (𝐸𝑇K), 

(𝜺𝑬𝑻°), and the surface runoff elasticity to temperature (𝜺𝑻). The results based on the 

listed methodology in section 2.2.  

Table 3.2 Summary of the runoff elasticity in each climate zone across the Basin  

 

 

 

 

 

Meanwhile, the surface runoff elasticity determines the ability of the system to 

restore its water-yield conditions under changing climates. For instance, the subtropical-

Region 𝑸 𝑷 𝜺𝒑 𝜺𝑬𝑻°= −𝜷 𝜺𝑻 

Tropical-Subtropical 0.65 1.96 -0.52 -0.31 

Semiarid 0.19 0.62 -0.77 -0.46 

Arid 0.0064 0.29 -1.70 -1.02 

Basin average 0.34 0.83 -0.92 -0.55 
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tropical zone showed the surface runoff elasticity to precipitation is 1.96 this means at 10 

percent increase of precipitation, the surface runoff over the tropical-subtropical zone 

expected to increase by about 20 percent. Subsequently, when the temperature decreases 

by -0.3°C, the surface runoff will recovered by about 3 percent. The rate of changes in 

the Budyko space showed less change for the tropical-subtropical zone compared by the 

semiarid and arid zone. For instance, the tropical-subtropical zone is 0.52, the changes in 

the semiarid is 0.77 and the rate for the semiarid zone has a high rate of changes of about 

1.70. The high rate of changes for the semiarid and arid zone are related to the high rates 

of aridity index. 

Mostly, the calculated surface off elasticity to precipitation that greater than 1 

describes an elastic system/basin, in which the water-yield is high and able to resilient to 

climate change, basins with elasticity under 1 describes inelastic system/basin that non-

resilient to climate change. The full details about the expected percentage of recovery and 

deterioration for each climate zone at the current climate condition and according to the 

RCP scenarios represented in table 3.3.  
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Table 3.3 Percentage of changes in surface runoff to precipitation and temperature. 

 

3.5 Summary and conclusion 

Anecdotal evidence showed that the Nile Basin would experience increase in 

temperature and a wide temporal variability in precipitation due to climate change. 

Overall, the Nile river flows are very sensitive to the changes in the precipitation and 

temperature. Understand the fluctuation of the Nile flow is essential to enhance the 

adaptive capacity for future threats. For large part across the basin, the warming trend in 

temperature intensifies the movement toward extreme events such as floods and droughts. 

In spite of such intimidations, the riparian nations are still hurdled by the insufficient 

empirical data and the lack of the mutual corporation for adaptive measures. Climate 

change manifests primarily through changes in average temperature and precipitation, the 

most important drivers of the water cycle.  

This paper discussed the potential impact of the continuing warming trend and 

precipitation variability on the Nile River flow. The Nile Basin is characterized by varied 

 

Region 

Current  Projected 

(𝜺𝒑) at +10% (P)  (𝜺𝑻) -0.5°C (T) RCP 2.6 (+14%) RCP 5.8 (-15%) 

𝜺𝒑 𝜺𝒑 

Tropical-Subtropical 20% 3% 28% -30% 

Semiarid 6% 4% 8% -9% 

Arid 3% 10% 4% -4% 

Basin average 8% 6% 11% -12% 
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terrain and the temporal variability of climate. The basin divided into three major climate 

regimes based on the amount of precipitation and temperature: tropical-subtropical, 

semiarid, and arid zone. Meanwhile, the basin upstream countries lie over tropical-

subtropical condition and receive sufficient and almost consistent amount of 

precipitation. The downstream nations experience drier conditions and suffer insufficient 

water supplies. Based on Budyko curve and the mathematical formulation introduced by 

(Arora, 2002; Pike, 1964), the percentage of changes in surface runoff to the changes in 

precipitation and temperature were illustrated. The tropical-subtropical region displays 

high elasticity, where under the current climate condition this region seems to be resilient 

to changing climates. Meanwhile, the semiarid and arid zones have low elasticity under 

the current climate conditions.  

According to the projected climate scenarios under the RCP2.6, the tropical-

subtropical region displays high runoff flow resistant to the climate under the projection 

increase in precipitation. Conversely, under the worse scenario of RCP 5.8, the 

subtropical and tropical region become highly vulnerable to the precipitation deficit. The 

riparian are encourage working in a mutual adaptive policies to future possible changes.  
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Chapter 4: Investigation of potential sea level rise impact on the Nile 

Delta, Egypt using digital elevation models 

 

Abstract 

In this study, the future impact of Sea Level Rise (SLR) on the Nile Delta region 

in Egypt is assessed by evaluating the elevations of two freely available Digital Elevation 

Models (DEMs): the SRTM and the ASTER-GDEM-V2. The SLR is a significant 

worldwide dilemma that has been triggered by recent climatic changes. In Egypt, the Nile 

Delta is projected to face SLR of 1m by the end of the 21th century. In order to provide a 

more accurate assessment of the future SLR impact on Nile Deltas’ land and population, 

this study corrected the DEM’s elevations by using linear regression model with ground 

elevations from GPS survey. The information for the land cover types and future 

population numbers were derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds 

(GPWv3) datasets respectively. The DEM’s vertical accuracies were assessed using GPS 

measurements and the uncertainty analysis revealed that the SRTM-DEM has positive 

bias of 2.5m, while the ASTER-GDEM-V2 showed a positive bias of 0.8m. The future 

inundated land cover areas and the affected population were illustrated based on two SLR 

scenarios of 0.5m and 1m. The SRTM DEM data indicated that 1m SLR will affect about 

3,900 km2 of cropland, 1,280 km2 of vegetation, 205 km2 of wetland, 146 km2 of urban 

areas and cause more than 6 million people to lose their houses. The overall vulnerability 

assessment using ASTER-GDEM-V2 indicated that the influence of SLR will be intense 

and confined along the coastal areas. For instance, the data indicated that 1m SLR will 
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inundate about 580 Km2 (6 percent) of the total land cover areas and approximately 887 

thousand people will be relocated. Accordingly, the uncertainty analysis of the DEM’s 

elevations revealed that the ASTER-GDEM-V2 dataset product was considered the best 

to determine the future impact of SLR on the Nile Delta region. 

Keywords: SRTM DEM, ASTER-GDEM, Sea Level Rise, Climate Changes, and Nile 

Delta Egypt. 
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4.1 Introduction 

The Nile Delta is one of the world’s largest river deltas, located in North Egypt 

(figure 4.1). Before the High Dam construction in the Aswan area of southern Egypt, the 

Nile River emptied its sediment loads into the Mediterranean Sea. In addition, the Nile 

River provided the Delta soil which contained natural nutrients and mineral supplies that 

enriched the fertile soil and made the Delta an important agricultural region. The Delta’s 

shoreline is occupied by three large brackish lakes: Idku, Burullus, and Manzala, which 

make up about twenty five percent of the wetland area where intensive fishing farms are 

located (El Raey, 1999). Moreover, major economic projects are situated along the coastal 

area, including recreational venues, new cities and housing communities, two major 

trading seaports, and an international highway. In terms of population density, the Nile 

Delta is a densely populated region with averages of 1,000 persons/km², form about 40 

million people of the Egyptian population.  

 

Figure 4.1 Land cover types from MODIS data of Nile Delta, Egypt.  
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The Nile Delta suffers from several problems: particularly high population 

growth, a strong trend towards urbanization, saltwater intrusion, and shoreline erosion 

(El Raey, 2010). The coastal area of the Nile Delta has a long history of sediment erosion 

that has been increased substantially since the building of the High Dam (El Raey, 2010; 

Stanley, 1996). Furthermore, the coastal areas are expected to face SLR in the range of 

0.5m and 1m by the end of the 21st century due to climatic changes (Gornitz, 1991; IPCC, 

2001; Rosetta, 2010). Many parts of the Nile Deltas’ costal area are located in low 

elevation zones (figure 4.2), which in the future will be exposed to the risk of inundation 

caused by SLR (El Raey, 1999). 

Figure 4.2 Heavy rainfalls accumulation in low elevation areas along Nile Delta 

shoreline. Photos taken after heavy rainfalls in year 2010 near New Damietta beach. 

 

Several studies have revealed that more than 40 percent of the Nile Delta will be 

prone to the risk of inundation as a result of SLR by year 2050 (Agrawala et al., 2004; 

Bohannon, 2010; Brown et al., 2011; Dasgupta et al., 2007; El Raey, 1997; El Raey, 2010; 

FitzGerald et al., 2008; Hereher, 2010; Snoussi et al., 2008). These studies have 

concluded that 0.5m of SLR could result in the loss of approximately 1,800 km2 of 

agricultural land and 12,000 km2 of urban areas, with more than 3 million people who 
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will be in need of relocation (Agrawala et al., 2004; El Raey, 2010; FitzGerald et al., 

2008). It is estimated that at 1m of SLR, the expected loss will be approximately 4,500 

km2 of agricultural land, 25,000 km2 of urban area, 24,000 km2 of wetland, and the 

inundation risk will threaten a significant portion of the population (El Raey, 2010; 

FitzGerald et al., 2008).  

In regards to SLR vulnerability assessment, the above estimates are substantially 

high, and some previous work based their estimates on inadequate sources of elevation, 

especially the uncorrected version of SRTM dataset (Blankespoor et al., 2012; Dasgupta 

et al., 2007; Dasgupta et al., 2009; Hereher, 2010; Simonett, 2012). Obviously, 

incorporating inadequate elevations in SLR analysis will add more uncertanities to the 

estimates. Therefore, to provide the Nile Delta’s coastal community with the most 

accurate estimates regarding to SRL impacts, ground-controlled elevations should be 

incorporated with the analyzed digital elevation data.  

Digital Elevation Models (DEMs) are 3D representations of the terrain’s 

elevations that can be generated using GPS measurements, contour elevations, and 

onboard sensors. The Shuttle Radar Topographic Mission (SRTM) based DEM, and 

Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM 

(ASTER-GDEM) datasets are among the most important and freely available DEM 

products that provide valuable information about the Earth’s surface configuration. The 

SRTM data is available in two main resolutions; 1 arc-second (~30m) resolution for the 

United States and the 3 arc-sec (~90m) for global use (SRTM-DEM, 2006). Recently, the 

original SRTM 90m resolution data was downscaled and is being released as enhanced 

elevations data at 30m for the entire globe (JPL, 2014). The SRTM used dual radar 
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antennas to acquire interferometry radar digital topographic data (SRTM-DEM, 2006). 

The ASTER-GDEM data is 1 arc-second (30m) resolution, and has two main versions: 

ASTER-GDEM-V-1 and V-2. The ASTER-GDEM-V-2 data is much improved from the 

previous version, because it removes some of the common DEM errors such as sinks and 

artifacts (ASTER-GDEM, 2011). The ASTER-DEM was generated using stereo-pair 

images of Band 3, the nadir (3N) band and the back-looking (3B) band, both collected by 

the ASTER instrument onboard the Terra mission (ASTER-GDEM, 2011). 

The above mentioned DEM datasets are extensively employed in numerous 

hydrologic and engineering applications, where the DEM is usually used to derive the 

information about the slope aspects, drainage identification, watershed delineation, flow 

accumulation, and flow direction (Jenson, 1991; Maidment, 2002; Martz and Garbrecht, 

1992; Moore et al., 1991; Wise, 2000; Wu et al., 2008). In recent applications, the digital 

elevation data has been an integral part of the downscaling techniques and radiometric 

correction of most satellite observations. In the current research, we are investigating the 

application of the DEMs elevation to study the impact of SLR on the Nile Delta region.  

Indeed, the Nile Delta is an area of the world that lacks the detailed ground truth 

data and monitoring stations. Despite the economic importance of the Nile Delta, it could 

be considered as one of the most data-poor regions regarding to the available information. 

Moreover, if some ground information has been recorded, the institutional bureaucracies 

hinder the acquisition of such datasets. Therefore, the only alternative source for 

qualitative surface data on the Nile Delta is through remote sensing and DEMs. As the 

SLR problem along the Nile Delta through the 21th century is imminent, and in order to 
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have better perspective about its impacts we should employ the most validated elevations 

from DEMs as well as the available ground observations.  

In this research, elevation acts as the main parameter in order to determine the 

SLR impact on the Nile Delta region. Elevation is made the central feature because the 

Nile Delta is located in a fairly stable tectonic region (Meshref, 1990), with a low land 

subsidence rates that ranges between approximately 6mm per year to 8mm per year 

(Becker and Sultan, 2009; Stanley, 2005). Similarly, this region rarely experiences any 

catastrophically large storm surge waves that are generated by frequent Tsunami 

earthquake events (Yalciner et al., 2014). The average size of storm surge heights is only 

0.6m during the winter season (Dasgupta et al., 2009; Radwan and El-Geziry, 2013).  

The current work provides a glimpse of the SLR impacts on the coastal 

communities based on the most adequate DEM datasets with the highest possible ground 

resolution along with GPS survey. The Moderate Resolution Imaging Spectroradiometer 

(MODIS), Land Use Land Cover (LULC) data, and socioeconomic Gridded Population 

of the Worlds (GPWv3) products are utilized to determine the future SRL influences on 

both the coastal land areas and populations. The main objectives of this research are: 

elaborating the importance of the ground validation in order to extract the right 

information from remote sensing data, and to accurately determined the impact of SLR. 

In addition, this research displays how uncorrected elevation can mislead the final SLR 

results and reveals how the spatial resolution of the two different DEM products yields 

different results when the same analysis is applied.  
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The current paper is organized as follows: Section 1.1 defines the study area 

location. Section 2 details the datasets as well as the methodology employed. The results 

are described in sections 3, followed by a conclusion in section 4. 

4.2. Study Area 

The study area is located along the Nile Delta shoreline that extends from west to 

east by approximately about 500 km. The study area is bounded from south to north by 

latitudes 30.08° and 30.20° and from east to west by longitudes 30.8° and 31.10° 

respectively (figure 1). The shoreline is occupied by three major lakes and a number of 

agricultural farms and dispersed vegetation cover. The surface profile along the shoreline 

area from the west to east reveals that the maximum elevation is about 9m along the sand 

dune piles at the entrance of El-Brullus city, while the minimum elevation is of about -

2.5m along the northern lakes (Geocontext, 2010). 

4.3. Data and Methodology 

The datasets that are used in this research are two DEM datasets: the 3 arc-second 

SRTM data with approximately 90m ground resolution and the 1 arc-second ASTER-

GDEM-V2 data with approximately 30m ground resolution. The 90m SRTM data is from 

the latest updated version 4, which was released in August 2008. The data is freely 

available at http://srtm.csi.cgiar.org/. For the ASTER-GDEM-V2, the data was release 

for public use in August 2011 and can be downloaded at: http://gdex.cr.usgs.gov/gdex/.  

The Global Positioning System (GPS) elevation points were collected to evaluate 

the accuracy of the DEM datasets. A portable hand-held GPS unit was used for elevation 

survey. The datasets were collected using a Garmin GPS-72H device. The reported 
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accuracy of such device is up to 10 foot. The designed GPS survey occurred in August 

2014, and it covers a length of about 200 km along the coastal area. The survey consisted 

of about 9 main stops, with a total number of 394 points. The collected points were 

confined to the international coastal road and the nearby barren lands (figure 4.3).  

Figure 4.3 GPS locations along the Nile Delta shoreline. 

 

Additionally, The MODIS Land Cover Type product (short name: MCD12Q1) 

was used to extract the land cover information on the coastal area. MCD12Q1 is a 

standard MODIS Land Cover product which provides five global land cover classification 

systems; the data is available at http://glcf.umd.edu/data/lc/. The selected Land Cover 

classification system is the type-I classification that was developed by the International 

Geosphere Biosphere Programme (IGBP) and contains 17 land cover classes. The spatial 

resolution of this dataset is 500m, and it was chosen because it has the most representative 

classes found on the Nile Delta region.  

The Delta’s population information is derived from two main sources: the Gridded 

Population of the World version3 (GPWv3) datasets and the census data from the 

Egyptian Central Agency for Public Mobilization and Statistics (CAPMAS) (CAPMAS, 

2014). The GPWv3 data include gridded population counts and population densities. The 
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data is available from Socioeconomic Data and Applications Center (SEDAC), Columbia 

University via the http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-

climate-estimates-v3 (SEDAC, 2013).  

DEM’s Elevation Errors  

DEMs are inevitably subjected to errors that can be inherited during either data 

acquisition or interpolation (Reuter et al., 2009). The DEM’s errors are autocorrelated, 

which means that the amount of the error is highly correlated between neighborhood 

pixels due to the spatially dependent nature of the elevation entities (Xuejun and Lu, 

2008). Additionally, if these errors’ effects are not eliminated, it could be propagated to 

further analysis adding more uncertainties to the results (Band, 1986; Ehlschlaeger, 

1998). The accuracy of the DEMs’ derived parameters is primarily dependent on both 

their vertical and horizontal resolutions (Oksanen and Sarjakoski, 2005; Zandbergen, 

2011). Several studies have investigated the vertical and the horizontal accuracies of 

different DEM products (AL-Harbi S. D., 2007; Chirico, 2004; Gerald and Ben, 2012; 

Guth, 2010; Nikolakopoulos et al., 2006; Sefercik, 2007; Suwandana et al., 2012). It can 

be concluded that the errors varied among different DEM products according to the nature 

of the study region and the land covers type (Guth, 2010). In addition, it is very important 

to choose the correct DEM scale for particular applications (Akbari et al., 2015). 

In many instances, the lack of ground truth points makes the systematic evaluation 

of these errors difficult. Several methods can be implemented to determine the DEM’s 

elevation errors. For example, the elevations can be represented using two independent 

DEM datasets, then compared to determine the residual differences in elevation values 

over stable terrain (Burrough et al., 1998; Nuth and Kaab, 2011). Similarly, performing 
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detailed statistics to measure the degree of data correlation can help to investigate how 

the DEMs data are significantly different (Nikolakopoulos et al., 2006).  

In order to evaluate the DEM’s elevations, several evaluation points were sampled 

from the two DEMs in correspondence to the actual GPS locations. The elevations from 

the two DEMs were correlated together and evaluated according to (Equation 4.1) to 

determine whether the DEMs mean difference is significant or not. The Pearson’s 

correlation analysis was performed between the DEMs and GPS points. Additionally, F- 

and t-tests were applied to determine the relationship between the DEMs variances 

(Equations 4.2 and 4.3). The vertical accuracies of the DEMs were estimated using 

reference elevations from the GPS, and being represented by the Mean Error (ME) term 

(Equations 4.4). A linear regression fitting between the DEM datasets and the GPS 

reference elevations is performed to eliminate the DEM errors and to adjust the digital 

elevation data according to the same benchmarks. All of statistical analyses were 

accomplished using the R-statistical package and various Excel functions. 

	ԑ = lmS

no
+ lSS

nT
    (4.1) 

Where ԑ is the elevation mean difference and σ1 and σ2 are the DEM standard deviation, 

𝑛1	𝑎𝑛𝑑	𝑛2 are the size of samples. 

𝐹 = t1u
t1v

     (4.2) 

Where MSB is the mean square between the datasets and the MSW is the mean square 

within the datasets.  
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𝑡 = wo:wT

1L m
xm < m

xS

	    (4.3) 

Where 𝑦1	and	𝑦2 are the datasets’ means, Sp is the datasets’ pooled variance, and n1 and 

n2 are the sample sizes. 

𝑀𝐸 =
(}~ �;�;:�$;�)

7
	   (4.4) 

Where Zele represents the elevation from obseravtions and Zdem represents the elevation 

from the DEM datasets, N sample size. 

 SLR Analysis 

The SLR analysis was performed in three major steps. First, the DEMs were 

brought to uniform ground resolution by scaling  the ASTER-GDEM up and aggregating 

it into the 90m resolution of SRTM. The resampled method which was utilized was the 

Nearest Neighborhood resample technique, which served to preserve the values of the 

newly aggregated ASTER-GDEM (Nikolakopoulos et al., 2006). The second step taken 

was the interpolation of the DEM’s missing values, and execution of data smoothing by 

applying a low pass spatial filter of 3x3 moving cells. The low pass filter smooths the 

data by reducing the local variation between the extreme values, and also removes data 

noise. Finally, the elevation was corrected by applying a linear regression fitting model 

between the DEMs and the reference elevations from the GPS survey. Figure 4.4 shows 

the entire SLR workflow. 
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Figure 4.4 Schematic chart of the workflow. 

 

The SLR analysis can be summarized as follows:   

1- The future SLR vulnerability assessments were performed by utilizing the bathtub 

technique (Leon et al., 2014; Poulter and Halpin, 2008) on both DEM datasets. 

This method uses a deterministic line separating the flooded area from the dry 

land. ArcGIS software provides a Kriging probability function in which the 

bathtub method was applied by using specific SLR thresholds of 0.5m, and 1m 

according to the expected SLR values to identify the inundated pixels. The 

resulting images are binary datasets of (0,1) that differentiates the flooded pixels 

from the dry land pixels.  

2- The MODIS land cover types dataset with 17 classes were reclassified and merged 

into 5 main classes. This was accomplished by combining the 5 forest classes, the 

2 savanna, the 2 shrublands, and the vegetation mosaic and grassland classes into 
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one class called green vegetation. The ice and snow class is considered 

unclassified because they do not existed in the study area due to the climatology 

of the region. The remaining four of the classes are water, cropland, urban, and 

wetland (table 4.1).  

3- The GPWv3 gridded population density data and population count are obtained 

in ASCII format and converted into raster datasets at the same spatial resolution 

as the SRTM data. The population count attributes are built using information 

from the Central Agency for Public Mobilization and Statistics CAPMAS 

(CAPMAS, 2014). The total number of population counted per pixel grid 

according to the available population information from CAPMAS as well as the 

future population for year 2100 were determined using the reported population 

growth factor of 1.9 percent/year by (CAPMAS, 2014).     

4- Spatial analysis was performed to determine the SLR impact on land and 

population using the multiplication function in the Map Algebra extension in the 

ArcGIS software. The binary images representing different SLR scenarios are 

multiplied by the reclassified MODIS LULC data and the future population count. 
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Table 4.1 Reclassification of IGBP MODIS Land Cover Type-1 classes. 

 

  

Value Original Classification Reclassification 

0 Water Water 

1 Evergreen Needleleaf forest  

 

 

 

 

 

Vegetation 

2 Evergreen Broadleaf forest 

3 Deciduous Needleleaf forest 

4 Deciduous Broadleaf forest 

5 Mixed forest 

6 Closed shrublands 

7 Open shrublands 

8 Woody savannas 

9 Savannas 

10 Grasslands 

15 Vegetation mosaic 

16 Barren or sparsely vegetated 

11 Permanent wetlands Wetland 

12 Croplands Croplands 

13 Urban and built-up Urban 

14 Snow and ice Unclassified 

254 Unclassified 

255 Fill Value  
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4.4 Results and Discussion 

Based on the sampled elevation points, several statistical analyses were performed 

to measure the degree of data correlation and the significant difference between the 

elevation means. The samples were restricted to the flat and barren areas on the coastal 

zone, because it would be difficult and beyond the ability of this study to conduct a GPS 

survey that covers the entire Delta region for validation. The statistical results revealed 

that the mean difference between the elevation values from the two DEMs is about 2.2m, 

according to equation (1). Although, the DEMs scatterplot (figure 4.5A) showed a 

positive correlation with a coefficient (R2) of 85 percent, there is a systematic offset 

between the two DEMs elevations of about -4.18m. The P-values resulting from test 

statistics using F- and t-tests (equations 2&3) showed significantly different means 

between the DEMs elevations (table 4.2). The correlations between the GPS values and 

DEM datasets indicated a positive correlation with R2 of 88 percent with SRTM, and 97 

percent with ASTER data. The offset between the SRTM and GPS data is approximately 

2.6m and about 0.8m with regards to the ASTER-GDEM data (figure 4.5B). The ME 

analysis revealed that the SRTM data has ME value of 2.18m, while the ASTER-GDEM-

V2 data has a ME value of -0.69m. The statistics provided in table 2 concluded that the 

two DEM datasets have significant mean differences, which explained the systematic bias 

between the DEM’s elevations. Thus, to adjust the digital elevations, a linear regression 

model was performed based on the GPS elevations. 
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Table 4.2 Statistical results of the two DEMs datasets  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Correlation between the DEMs and GPS elevations points. A) SRTM and 

ASTER-GDEM correlation. B) SRTM/ASTER-DEM and GPS elevations Correlation. 

Total number of sample points (N= 390 points). 

Statistics ASTER SRTM 

Mean 80.60 112.71 

Variance 17248.02 21158.36 

P(F<=f) one-tail 0.0019  

P(T<=t) one-tail 1.66E-6  

ME -0. 69 2.18 
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Figure 4.6 shows the representation of the elevation values from the original DEM 

datasets; figure 4.6A indicates how the original SRTM has uniformly distributed 

elevation values that gradually increase when moving from the shoreline in the north 

toward the land in the south. In contrast, figure 4.6B shows that the ASTER-GDEM-V2 

recorded more elevations that are less uniformly distributed across the study area.   
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Figure 4.6 Contouring of original DEMs using interval 1 meter. A) The SRTM-DEM 

showed more homogenous elevations that increase from the north to south, while 

ASTER-GDEM-V2, B) recorded more elevation points and showing less uniform 

elevation distribution. 

B. ASTER DEM 

A. SRTM DEM 
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In addition, to evaluate the merged/reclassified MODIS classes from the original 

LULC datasets, numbers of training values were provided from the ground survey. To 

assess the classification accuracy, we used the post classification technique for accuracy 

assessment in the ENVI 5.0 digital image processing software package. The classification 

overall accuracy is 96.22 percent and the kappa coefficient (κ) is 0.93. The kappa (κ) 

coefficient measures the agreement between classification and ground truth pixels; a 

kappa value of 1 represents perfect agreement, while a value of 0 represents no agreement 

(ENVI, 2008). 

SRTM-based SLR 

The original SRTM data analysis indicated that at the 0.5m-based SLR scenario 

indicated that potential affected number of population would be about 3 million people. 

Approximately 600 km2 of vegetation, 98 km2 of wetland, 1800 km2 of cropland, and 70 

km2 of urban area will be under threat. The 1m SLR, an estimated 6 million people would 

be at risk of inundation and displacement. The expected LULC loss would be more than 

1,200 km2 of vegetation, 204 km2 of wetland, 4,000 km2 of cropland, and 145 km2 of 

urban area (table 4.3: SRTM section).  
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Table 4.3 The total areas (Km2) of projected land cover types vulnerable to SLR at 

0.5m and 1m SLR scenarios using original DEM datasets 

 

 

 

 

 

The adjusted SRTM data indicated, however, that at 0.5m SLR the affected land 

cover would be 98 km2 of vegetation, 14 km2 wetlands, 804 km2 of cropland, and 22 km2 

of urban area. The 1m SLR threshold, the total number of affected population would be 

about 4 million people. The LULC loss will be approximately 205 km2 of vegetation, 30 

km2 wetlands, 1,600 km2 of cropland, and 47 km2 of urban area (table 4.4: SRTM 

section). For both the original and adjusted DEM datasets, as the threshold’s values 

increased, the projected land cover loss and number of population affected also increased.  

 ASTER-GDEM-based SLR 

The original ASTER-GDEM-V2 data analysis showed significantly different 

results when compared to the original and the adjusted SRTM DEM datasets’ results. At 

0.5m SLR, an estimated 580 thousand people will face the dangers of inundation and be 

displaced, and about 280 km2 of the total LULC will be destroyed (table 4.3: ASTER 

section). The SLR results are significantly different when the same analysis is performed 

using the adjusted ASTER-GDEM-V2 data. At 1m SLR, an estimated 887 thousand 

people will be at risk of inundation and displacement and about 100 km2 of vegetation, 

Affected cover        SRTM ASTER-DEM-V2 

0.5 m 1 m  0.5 m 1 m 

Vegetation 610 1,272  81 169 

Wetland 98 205  17 36 

Cropland 1,885 3,928  157 328 

Urban 70 146  26 55 

2100 Population  3,058,227 6,116,454  580,539  1,209,457 
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16 km2 wetland, 402 km2 cropland, and 47 km2 of urban area land would be destroyed. 

Table 4.4 summarizes the total projected damage and the affected population in the study 

area using the adjusted DEM datasets.  

Table 4.4 The total areas (Km2) of projected land cover types vulnerable to SLR at 

0.5m and 1m SLR scenarios using corrected DEM datasets 

 

 

 

 

 

 

 

 

 

  

Affected cover SRTM ASTER-DEM-V2 

 0.5 m 1 m  0.5 m 1 m 

Vegetation 98 205  57 119 

Wetland 14.4 30  7.8 16 

Cropland 804 1,675  192 402 

Urban 22.5 47  14.5 47 

2100 Population  2,166,987 4,514,558  426,159 887,832 
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The two original DEM datasets showed distinctly different results in terms of the 

areas vulnerable to SLR impact when the same analysis steps are applied. Figure 4.7 

displayed the projected vulnerable areas using the original SRTM-DEM. It can be clearly 

seen that the amount of vulnerable land cover will be potentially high when relying on 

the original SRTM data. On the other hand, the biased corrected ASTER datasets 

displayed completely different SLR results (figure 4.8). Table 4.5 summarized the total 

percentage of vulnerable land cove types at 1m SLR scenario using the corrected DEMs. 

The combined average of the total LULC loss is approximately 13 percent and the inland 

inundation will be approximately 8 km landward. 

Table 4.5 The percentage of vulnerable Land cover (LC) areas to 1m SLR scenarios 

using edited DEM datasets.  

 

 

 

 

 

Classes % Total LC area % LC at the 

coast area 

Vulnerable  LC%  using 

SRTM 

Vulnerable  LC% 

using ASTER 

Vegetation 2856 1,790 11.45% 6.62% 

Wetland 247 237 12.66% 6.64% 

Cropland 21,888 7,206 23.24% 5.58% 

Urban 1,935 393 12.09% 11.99% 

Total  26,928 9,628 20.27% 6.06% 
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The difference in SLR impact results regarding the LULC types can be related 

primarily to the spatial resolution and the vertical accuracy of the DEMs. The SRTM data 

has more aggregated pixel elevations, which displays uniformly along the entire Nile 

Delta as shown in figure 4.6A. Up-scaling of the 30m ASTER data into 90m did not 

produce much difference in the newly aggregated ASTER, which did not resemble the 

original SRTM. This means that the 90m SRTM data contains more aggregated elevation 

values than the 30m ASTER data. In contrast, the ASTER-DEM-V2 data incorporates 

more detailed elevation values that produce much higher quality elevation points without 

voids (artifacts) or anomalies. Additionally, the SRTM elevations data might contain 

numerous voids and other spurious points over large water bodies, due to the low 

accuracy of the SRTM’s backscattered radar beam over these and other irregular surfaces. 

For example, the projected inundated areas around Manzala, Brullus and Idku lakes based 

on the SRTM analysis (figure 4.7) are relatively larger than the corresponding inundated 

areas based on the analysis of ASTER data (figure 4.8). Also, the existence of the sparse 

vegetation, and irregular surfaces in the same areas could influence the quality of the 

SRTM DEM’s data as well. 

The DEM errors substantially affected the data analysis (Oksanen, 2006; Oksanen 

and Sarjakoski, 2005; Zandbergen, 2011). The comparison of the vertical resolution of 

the SRTM data and ASTER-GDEM-V2 data was accomplished by calculating the 

elevations mean difference, and the DEMs’ vertical accuracy was representing by the 

ME. The mean difference analysis and the correlation statistics reveal how much the 

results differ. Additionally, the SLR impact based on the SRTM dataset was 

overestimated, while the ASTER dataset gave more realistic results. Moreover, the 
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adjusted data showed that the SRTM-DEM had less vertical accuracy than the ASTER-

GDEM-V2 data. Performing the correlation statistics and the linear regression fitting 

using the GPS reference elevation values relatively enhanced the DEMs elevations. 

Therefore, according to the uncertainty analysis, the ASTER-GDEM-V2 dataset is 

considered the best product to determine the SLR impact on the Nile Delta, and it 

displayed more realistic expectations (figure 4.8).    

In the meantime, this methodology may still encounter some limitation due to the 

DEMs horizontal and vertical resolutions. Thus far, the available literatures about SLR 

impact on the Nile Delta revealed high SLR impact on that region. The current results 

showed that using higher resolution datasets indicated lesser impact. Even more, this SLR 

impact will be restricted only to portion of the coastal areas behind the shoreline. The 

findings of our study can be supported by (Jelínek et al., 2009) work, which determined 

the  impact of probable Tsunami waves on Alexandria city west of the Nile Delta. The 

researchers in that study indicated two main vulnerability scenarios: a “medium” scenario 

of a 5m run-up and a “worst-case” scenario of a 9m run-up where the vulnerability would 

be high (Jelínek et al., 2009). This study primarily supports our finding that using 

ASTER-GDEM-V2 datasets indicated a less vulnerable area. Our estimate provides more 

details about the coastal communities’ future under SLR conditions.  
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Figure 4.7 Overestimated SLR impact on the Nile Delta’s coastal area using 

uncorrected SRTM-DEM dataset, A) showing the 0.5m SLR and B) the 1m SLR 

scenarios respectively. 

 

 
Figure 4.8 Expected future SLR impact on the Nile Delta’s coastal area using corrected 

ASTER-DEM dataset, A) showing the 0.5m SLR and B) the 1m SLR scenarios 

respectively. 
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We believe that the current results might still possess some uncertainties due the 

lack of detailed DEM data. However, comparing the current study findings with the 

published literatures indicates how the previous works exaggerated the estimates 

regarding the amount of land inundation as a result of the future SLR on Nile Delta. We 

are presenting new conclusions about the SLR impact by using the highest resolution data 

available and providing more reliable information in a data-poor region. Although, the 

SLR problem is considered as one of the biggest issues worldwide, the geologic setting 

of the Nile Delta will contribute to minimize the impact over the coastal areas.  

4.5 Conclusion 

The SRTM and ASTER-GDEM-V2 elevation data are the most commonly used 

DEM datasets in many hydrologic applications. These two DEMs are used to determine 

the SLR impact on Nile Delta region. DEMs are subjected to inherent errors that could 

affect the quality of the data analysis. Several GPS measurements were collected to 

evaluate and adjust the DEMs’ elevations. Two major SLR scenarios with threshold 

values of 0.5m and 1m were applied to the two DEM datasets before and after bias 

removal. The original and the corrected DEMs were integrated with the MODIS land 

cover types and gridded population datasets for SLR impact estimation on Nile Delta land 

and population.  

 Statistical analyses were performed and linear regression used to correct the 

DEMs data. The SRTM and ASTER-GDEM-V2 DEM-based comparison showed 

substantially different SLR impact results on the Nile Delta land and population. Using 

the original SRTM DEM data, the expected SLR impact will be significant, while, the 

original ASTER-GDEM-V2 DEM data revealed that the inundation will affect small 
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portion of the coastal area. The removal of the DEM data sets’ biases helped to determine 

the errors associated with those calculations and to obtain more consistent and reasonable 

SLR impact estimates. The adjusted SRTM datasets indicated that about 21% of the total 

land cover areas would be inundated due to SLR impact. On the other hand, the ASTER-

GDEM based SLR analysis showed that about 6.6 % percent of the total land cover types 

will be affected due to SLR. The difference between the two DEM datasets’ resolutions 

and the nature of the backscattered radar beams are the main factors for revealing quite 

different results about SLR impact in the Nile Delta region.  

This study added more in depth analysis about SLR impact on the low-lying 

coastal areas of the Nile Delta. Future work can consider more detailed datasets using the 

Unmanned Aerial Vehicle (UAV) survey or employing high-resolution LiDAR-based 

DEM, once these become available for the Delta region; such detailed datasets can add 

overall value to the understanding of SLR impacts on such a data-poor region. The current 

research provides practical insight of the future SLR impacts on the coastal communities, 

which can be extrapolated to include the whole Mediterranean coast. These estimates on 

land area and at risk population are valuable and essential for future risk mitigation and 

preparedness for the communities along the Nile delta coastal areas. 
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Chapter 5: Estimating the Terrestrial Water Storage with Multiscale Remote 

Sensing and Model Reanalysis in the Nile River Basin 

 

Abstract  

The hydrologic utility of Remote Sensing and Reanalysis (RSRA) datasets has 

proved problematic in data-poor regions especially the Nile River Basin (NRB). This 

study seeks to provide an alternative approach to circumvent this problem by using Multi-

Regression Analysis (MRA) to: 1- Estimate the uncertainties of the RSRA with the 

NASA’s Gravity Recovery and Climate Experiment (GRACE) data sets. 2- Reconstruct 

the Terrestrial Water Storage (TWS) anomalies from GRACE data and extend the 

estimates to the past +30-years for the water-climate nexus study. While the TWS has 

been simulated for long time using Land Surface Models (LSMs) data, the proposed 

methodology enhances the TWS reconstruction though increasing the R2 from 0.47 of 

the conventional water balance approach to above 80 percent. Multiple RSRA data has 

been blended as a training variables to our MRA model. The results show the combination 

of precipitation information from the TRMM research product, the MODIS Land Surface 

Temperatures (LST) and Vegetation indices can simulate the TWS anomalies with R2 as 

high as 0.93. The hydrologic information from the reanalysis data provided by Climate 

Research Unite (CRU), the National Center for Environmental Predication (NCEP), and 

the Global Land Data Assimilation Systems (GLDAS) predicted the GRACE TWS 

anomalies with R2 above 0.80. The best combination involves the water/energy balance 

components with the LST and vegetation indices and generates where the TWS has been 

simulated with R2 of 0.96. Using the training data set, we extend the TWS over the NRB 
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to the past +30-years; The historic TWS time-series has been compared with the El Niño 

Southern Oscillation (ENSO) records to define he severe historic flooding and drought 

events over the basin.     

 Keywords: GRACE, Multi-regression Analysis, Total Water Storage, Nile River Basin. 
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5.1 Introduction 

The Nile River Basin (NRB) is one of the largest river basins worldwide. It covers 

an area of about 3.4 million Km2, and it is the lifeline for more than 300 million people 

in 11 African nations (Collins, 2002; Erlich, 2000; NBI, 2010). The Nile Basin has 

complex terrains with large latitudinal extent and varied climates and land covers. The 

basin has two main hydrologic systems (figure 5.1): the Blue Nile in the East and the 

White Nile in the Southwest, which are connected together near Khartoum City in Sudan 

to form the Nile River crossing through all the Egyptian territory (Collins, 2002). The 

basin climate is mainly affected by the El-Nino Southern Oscillation (ENSO), which 

makes the Intercontinental Tropical Climate Zone (ITCZ) fluctuate across Africa 

(Camberlin, 2009; Eltahir, 1996). The ENSO impedes rain to reach the Ethiopian hills, 

resulting in a decreased amount of rainfall (Eltahir, 1996). On contrary, the La Nina event 

is linked to dramatic rainfall that causes the Nile floods (NIS, 2012a; UNEP, 2013).  

The climate across the basin varies from South to North and ranges from tropical, 

subtropical, semiarid, arid and Mediterranean. These climates affect the distribution of 

precipitation, and temperature, which affect the rates of actual and potential 

evapotranspiration across the basin (figure 5.2). Each climate regime has a unique 

contribution to the Nile waters; the downstream countries lie in arid to semiarid regions, 

where the annual rainfall rates range between 150-400 mm/y. This mainly limits the 

downstream countries' share of the Nile water. On the other hand, most of the upstream 

countries, except Kenya, receive high amounts of rainfall annually (> 1000 mm/y) 

providing the Nile with large amounts of water (Hassenforder and Noury, 2015; 



 124 

Karyabwite, 2000 ). The NRB is characterized by higher temperature in the arid and 

semiarid region compared to the tropical and subtropical zones (Camberlin, 2009).  

 
Figure 5.1 Nile River Basin elevations, snapshots of the major hydrological systems 

over the basin, data from Landsat ETM+.  
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Figure 5.2 Mean monthly actual and potential evapotranspiration of the Nile Basin. 
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In general, increasing Land Surface Temperature (LST) raises the evaporation rates while 

causing less surface runoff. This results in less water reaching the Nile, moving the basin 

to a more moisture-constrained region (NIS, 2012a).  

To understand the waters future along the NRB under the current changing 

climate, reliable and sufficient ground information are needed. The available gauging 

stations are extremely sparse with poor temporal and spatial coverage (Shahin, 2003) 

leaving most parts along the basin uncovered with in situ data. However, and due to the 

institutional bureaucracies, the access to the observation data is difficult. The riparian 

countries in NRB are challenged by their infirm relationships and lack of information 

sharing policies. Therefore, the satellite technologies and the released model reanalysis 

datasets are the main alternative proxies and global wide sources for valuable physical 

measurements and real-time observations for poor and ungauged basins.  

Meanwhile, the hydrologic based estimates that are derived from remote sensing 

and reanalysis (RSRA) data require rigorous inputs of ground observations for accurate 

evaluation and implementation. Since the satellite based and reanalysis datasets inherit 

uncertainties and errors that can hinder their hydrologic applications, validation is 

practically the most inherent challenge especially when ground parameters are missing 

or insufficient. Therefore, a novel multi-Parameters Regression Approach (MRA) is 

developed to investigate how the derived hydrologic information from RSRA can be used 

for water-climate nexus studies in a context where no significant and sufficient ground 

observations are available.  

NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite mission 

estimates the distribution of water over land surfaces and its temporal variations (Wahr, 
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2004) since its launch in 2002. GRACE helps in tracking the fresh water availability, 

groundwater fluctuation and understanding the water cycle (Ahmed et al., 2011; 

Bastiaanssen et al., 2014; Becker et al., 2010; Cao et al., 2015; Hasan et al., 2015b). 

GRACE records the Total Water Storage (TWS) anomalies as the variation in the 

Equivalent Water Thickness (EWT) which is the sum of all water stored in different forms 

of land’s reservoir (Chambers, 2007).  

The main objective of this study is to reconstruct the historical records of the Total 

Water Storage (TWS) across the NRB by using multi-inputs of RSRA datasets. Another 

objective is to quantify the uncertainties of the hydrologic variables derived from the 

RSRA data. A conventional approach to simulate TWS makes use of Land Surface Model 

(LSM) simulations and the water balance Equation (5.1): 

𝛥𝑇𝑊𝑆	 = 𝑃 − 𝐸𝑇 − 𝑅 + 	𝜀		     (5.1) 
 
Where P (precipitation), ET (evapotranspiration) and R (surface runoff) are outputs of the 

LSM. The ε is an error term which is not usually accounted for, especially in ungauged 

regions. A representative example is provided with the Global Land Data Assimilation 

System (GLDAS) (figure 5.3). While the overall agreement between the simulated and 

the observed TWS is good (R2 = 0.48), the extreme values are not well reproduced as the 

TWS anomalies inferred from the LSM outputs tend to overestimate the lower anomalies 

(< -30 mm/month) and underestimate the anomalies over 60 mm/month. The proposed 

approach focuses on enhancing the TWS estimation to ultimately build more reliable 

TWS estimates. 
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Figure 5.3 Estimation of TWS anomalies using the conventional water balance 

approach, left panel show the time series of the Modeled and TWS from GRACE, the 

right panel display the coloration results. 
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5.2 Materials and Datasets 

Remote sensing systems/onboard satellite platforms monitor the Earth’s dynamics 

at regular temporal intervals using selective absorption and reflectance of light (Jensen, 

2007). Ultimately, remote sensing is becoming the norm to provide tremendous physical 

measurements about Earth’s surface. Model reanalysis provide other inclusive records of 

Earth’s climate over historical decades (Reanalysis Wiki, 2015). Despite the recent 

advances in the onboard satellite data and the climatic models, our understanding of the 

water balance for the data-poor regions remains limited. In this study, we utilized 

multisensory RSRA data at the basin scale to model TWS over the NRB; the following 

sections describe the datasets. 

Remote sensing data 

GRACE 

GRACE data are collected, processed using the spherical harmonic solution, and 

made available through three mission partners; the University of Texas Center for Space 

Research (CSR), the Geo Forschungs Zentrum (GFZ) Potsdam, and the Jet Propulsion 

Laboratory (JPL). Recently, another solution of gravity field of GRACE data was 

released as the mass concentration blocks or GRACE mascons (Watkins et al., 2015). 

The GRACE data are given at the monthly scale and over a 1° grid. The accuracy of the 

recovered water mass variations from GRACE data increases with the increasing size of 

the monitored basin (Wahr et al., 2006). The observation covers the period between 

March 2002 and February 2015. In this research, GRACE Release 05 Level 2 (RL05) 

data processed by the three centers are obtained through the GRACE Tellus at 

http://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/.  
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MODIS datasets 

The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite provides 

a continuous observation of the Earth’s surface. In the current research, several MODIS 

products were implemented: the MODIS temperature grids (short name: MOD11C1) are 

used for the Land Surface Temperature (LST) average in Kelvin for daytime and 

nighttime observations. The vegetation information is extracted from the MODIS 

Vegetation Index (VI) (MOD13), which includes the Normalized Difference Vegetation 

Index (NDVI), the Enhanced Vegetation Index (EVI) and the Leaf Area Index (LAI) from 

the MOD15A2 datasets. These MODIS data are at monthly scale with 1-km resolution, 

and made available by the Goddard Earth Science Data and Information Service Centers 

(GES DISCs). 

TRMM data 

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between US 

and Japan launched in 1997 to provide 3-hourly to daily surface quantitative 

measurements and comprehensive four-dimensional distribution of rainfall and latent 

heating over tropics and sub-tropics regions (GSFC, 2011). The monthly research product 

TRMM-3B43 of 0.25° grids are utilized in this study.  

Model reanalysis data 

A model reanalysis dataset is a comprehensive data record extended over several 

decades or longer to monitor the changes in weather and climate over the entire globe. 

Reanalysis data were developed using observations and numerical modelling to give 

insight into the past climate and enable the comparison with the current conditions 

(Reanalysis Wiki, 2015). In this research, the model reanalysis data focus on several 
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hydrological variables such as air Temperature (Tair), Precipitation (PRE), Actual 

Evapotranspiration (AET), Potential Evapotranspiration (PET), Surface Runoff (SR), 

Soil Moisture (SM), Palmer Severity Drought Index (PSDI), Latent Heat Flux (LHF), 

Sensible Heat Flux (SHF), and Soil Heat (SH). The data are acquired from number of 

data centers such as the Climatic Research Unit (CRU) at the University of East Angelia 

(UEA), the Global Land Data Assimilation System (GLDAS), the Physical Science 

Division (PSD) at National Oceanic and Atmospheric Administration (NOAA). The 

following section provides information about the utilized model reanalysis datasets.  

Climate Research Unit (CRU) 

CRU model reanalysis time series are monthly temporal datasets recording the 

climate variation over the last century. The data are calculated at high-resolution 

(0.5°x0.5°) based on more than 4000 weather stations around the world (CRU, 2015). 

The data provide several climate variables such as precipitation, air temperature, potential 

evapotranspiration, the PSDI Index, and the wet day frequency. We acquired the monthly 

mean CRU time series data version 3.21 datasets for the period 1901-2013. The data are 

available at http://www.cru.uea.ac.uk/data. 

Global land data assimilation system (GLDAS) 

GLDAS provides a wide range of hydrologic and energy flux information (e.g. 

surface runoff, soil moisture, surface temperature, latent heat, and sensible heat) (Rui, 

2011). GLDAS parameters are generated from four land surface models (LSMs): the 

Community Land Model (CLM), Mosaic, Noah, and the Variable Infiltration Capacity 

(VIC). The data are available at global scale with high resolutions ranging from 0.25° to 

1°, through temporal averaging of 3-hourly to monthly products. The datasets cover a 



 132 

time-period from January 1979 to present. The GLDAS data can be accessed via the GES 

DISCs at http://disc.gsfc.nasa.gov/hydrology.  

Physical Science Division (PSD)  

PSD at the National Oceanic and Atmospheric Administration (NOAA) offers a 

collection of model reanalysis datasets, which are collected from different observations 

such as radar, satellite, and ground stations to assimilate the historical climatic conditions. 

The utilized PSD reanalysis data are the NCEP/NCAR reanalysis I (available through 

http://www.esrl.noaa.gov/psd/data/gridded/reanalysis/). The data include the climate 

information of the period from 1948 to present.  

Gauged corrected data 

The NRB is lacking the in-situ observation and is considered as one of the data-

poor regions. The instrumented climate and gauging stations along the basin are quite 

few, and the data sharing and accessing between the riparian countries is too limited. The 

following section describes the implemented gauge corrected datasets.  

The Global Precipitation Climatological Center (GPCC) 

The Global Precipitation Climate Center (GPCC) dataset at the Deutscher 

Wetterdienst, Germany is a global analysis of monthly gauged-corrected precipitation 

products (Schneider et al., 2011). The gridded GPCC products are available at spatial 

resolutions of 0.5° x 0.5°, latitude by longitude, and are freely downloadable via the 

Deutscher Wetterdienst portal at http://gpcc.dwd.de. The GPCC provides long-term 

monthly precipitation datasets from 1901 to 2015. Precipitation analysis addresses the 

need to assess climate change and its impacts over all spatial scales. In the current 

research, we utilized the 0.5° full data product version 6. Figure 5.4 compares the 
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precipitation products from RSRA (sections 2.1 and 2.2) against GPCC. All products 

underestimate precipitation accumulation greater than 50 mm/month relative to GPCC. 

The VIC estimates display a significant conditional bias with overestimation of 

light/moderate precipitation accumulations (below 40 mm/month) and underestimation 

of higher accumulations. Among all products the TRMM precipitation displays the 

highest correlation with the GPCC data (R2=0.99). It is expected since GPCC is used as 

inputs in the TRMM-3B43 product. The simulated precipitation from CRU and NCEP 

data display good correlation with the GPCC data (R2=0.80), the precipitation estimates 

from the three GLDAS models (CLM, Mosaic, and Noah) have similar R2 of 0.83. VIC 

precipitation estimates display the lowest correlation (R2=0.57) in relation to the 

aforementioned conditional bias. 
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The Global Runoff Data Centre (GRDC)   

The Global Runoff Data Centre (GRDC) is an international archive of long-term 

surface runoff data up to 200 years old. It stores and provides river discharge data 

collected at daily/monthly intervals from more than 9,000 stations in 160 countries. The 

GRDC operates under the auspices of the World Meteorological Organization (WMO) 

and is hosted by the German Federal Institute of Hydrology (Bundesanstalt für 

Gewässerkunde or BfG), the data are available through the link at 

http://www.bafg.de/GRDC/EN/Home/homepage_node.html. The GRDC data were 

utilized to evaluate the performance of the simulated surface runoff products from the 

four GLDAS models (figure 5.5). Accordingly, the surface runoff from Noah and Mosaic 

models show better consistency with the observed data compared to CLM (significant 

overestimation) and VIC data (increasing overestimation with time). 

 

Figure 5.5 Time series of annual surface runoff from GRDC observation and surface 

run off from the four GLDAS models. 
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Corrected ET/PET products 

Monthly archive of gauge corrected ET/PET  at 0.25° to 1° global grid resolution 

over the period 1980-current are available at the Hydrometeorology and RemOte Sensing 

(HyDROS) lab archive (Zhang et al., 2010). These monthly ET shows very good 

agreements with the measurements from flux towers. Figure 5.6 shows the performance 

of the GLDAS prediction of evapotranspiration relative to the gauge corrected ET data. 

All models show underestimation relative to the reference. The correlations indicate that 

the Mosaic and Noah models have the best performance with R2 = 0.77 and 0.86, 

respectively. The ET from CLM model has R2 = 0.67, while the VIC model shows a lower 

correlation (R2 = 0.72). 
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Figure 5.6 Correlations of gauged corrected ET dataset and ET estimates from GLDAS 

land surface model data. 
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Global Climate Historical Network-Monthly (GCHN-M) data 

The GCHN-M database is an integrated summary of the temperature records from 

land surface stations across the globe. The temperature data from GCHN-M are compared 

with the reanalysis in figure 5.7. The CRU data is highly correlated (R2 = 0.84), the NCEP 

data have (R2 = 0.77), while among the GLDAS models again, CLM and Mosaic show 

the highest correlation (R2 of about 0.70). Noah and VIC data show less agreement with 

GCHN-M data as shown by their correlation (R2 below 0.61). 
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5.3 Procedure and methodology 

Data preparation   

The GRACE spherical harmonics data obtained from the CSR are scaled and 

factorized according to the methodology of (Landerer and Swenson, 2012). The data are 

destriped and smoothed using Gaussian filter of 300m to remove noisy short-wavelength 

spectral coefficients according to (Swenson and Wahr, 2006; Wahr et al., 2006). MODIS 

products are utilized to derive monthly grids of LST, VI, and LAI (as indictors for 

vegetation land-covers). The selected timeframe of the RSRA data covers the GRACE 

period of record (2002-2015). Zonal statistics were performed at the basin scale to 

summarize the relative monthly estimates of the hydrologic variables from the RSRA 

data in terms of the minimum, maximum, range, mean, standard deviation, and sum.  

Eight variable pools have been created following the water balance basis to study the 

hydrologic utility of RSRA data (Table 5.1), and are designed upon their data sources 

(figure 5.8). A model is derived from each pool to reconstruct the GRACE TWS 

anomalies and identify the most explanatory variables. 

The first model builds upon the remote sensing data: the PRE information from 

TRMM data is combined with MODIS LST, VI, and LAI. This model includes one of the 

best precipitation product (Figure 4), energy, and landcover (LC) information to model 

the TWS. Reanalysis data from CRU, NCEP, and GLDAS datasets are grouped to form 

subsets 2 to 7. They have their own biases and uncertainties as shown in previous sections. 

The CRU data (subset 2) contains information about PRE, PET, Tair, and PDSI. This 

subset tests the combination of water-energy fluxes and drought information to model the 

TWS. The NCEP data (subset 3) include information about PRE, AET, PET, and Tair. 
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The model build on this subset uses water-energy parameters as predictors for the TWS. 

The four LSMs from GLDAS data (subset 4 to 7) involve most of the water balance 

components such as PRE, ET, and SR. These variables are combined with the Tair to 

build four different models to simulate the TWS. As shown earlier, the CLM pool (subset 

4) overestimates runoff and underestimates precipitation, ET, and Tair. The Mosaic pool 

(subset 5) underestimates precipitation while the Noah pool (subset 6) underestimates 

precipitation, ET, and Tair. The VIC pool (subset 7) presents a conditional bias on 

precipitation, overestimates runoff, and underestimate ET, and presents a poor correlation 

with GHCN Tair. These disagreements with observations may limit the ability of models 

derived from these data pools to reproduce the TWS anomalies. Finally, a compiled pool 

(subset 8) gathers the water-energy fluxes and LC information with gauge corrected PRE 

and ET, and SR from Noah plus the LHF estimates. This model will test the potential of 

using the water/energy balance parameters with LC to model the TWS.  
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Table 5.1 Statistical summary and correlations between TWSGRACE and hydrological 

variables from multi-sensory and reanalysis data. 

Model Paras AIC LRT Pr(Chi) 
 
 
(1) TWSRS ~ (NDVI) + (EVI) + (LST) + 

(LAI) + (TRMM) 
 

(NDVI) 1106.6 64.08 4.023e-13 *** 
(EVI) 1081.1 38.58 8.498e-08 *** 
(LST) 1056.2 13.73  0.008213 ** 
(LAI) 1053.2 10.69  0.030230 *  
(TRMM)    1056.4 13.91  0.007593 ** 

 
(2) TWSCRU ~ (PRE) + (PET) + (Tair) + (DI) 

(PRE) 794.36 50.12 3.409e-10 *** 
(PET) 873.46 129.22 < 2.2e-16 *** 
(Tair) 787.84 43.59 7.787e-09 *** 
(DI) 837.69 93.45 < 2.2e-16 *** 

 
(3) TWSNCEP ~  (PRE) + (AET) + (PET) + 

(Tair) 

(AET) 912.63 52.12 1.302e-10 *** 
(PET) 896.77 36.26 2.554e-07 *** 
(Tair) 895.18 34.67 5.430e-07 *** 

 
(4) TWSCLM ~ (ET) + (PRE) + (SR) + (Tair) 

(ET)   1437.8 64.67 3.021e-13 *** 
(PRE)  1396.2 23.08 0.0001219 *** 
(SR)  1384.7 11.58 0.0208042 * 
(Tair) 1413.6 40.41 3.553e-08 *** 

 
(5) TWSMosaic ~ (ET) + (PRE) + (SR) + (Tair) 

(ET)   1487.1 122.47 < 2.2e-16 *** 
(PRE)  1385.5 20.85 0.0003387 *** 
(SR)  1423.0 58.35 6.452e-12 *** 

 
(6) TWSNoah ~ (ET) + (PRE) + (SR) + (Tair) 

(ET)   1486.5 142.60 < 2.2e-16 *** 
(PRE)  1371.5 27.53 1.556e-05 *** 
(SR)  1370.9 26.99 2.000e-05 *** 
(Tair) 1370.6 26.69 2.297e-05 *** 

 
(7) TWSVIC ~ (ET) + (PRE) + (SR) + (Tair) 

(PRE)  1353.0 11.51 0.02137 * 
(SR)  1399.3 57.78 8.490e-12 *** 
(Tair) 1409.3 67.77 6.707e-14 *** 

 
(8) TWSEB ~ (ET) + (PRE) + (SR) + (LC) + 

(LHF)  

(ET)   1271.5 25.53 < 1.2e-16 *** 
(PRE)  1270.9 23.99 <1.556e-05 *** 
(SR)  1270.6 24.69 2.197e-05 *** 
(LC) 1357.7 22.19 0.0001841 *** 
(LHF) 1454.9 119.31 < 2.2e-16 *** 

Significant codes:  0 ‘***’, 0.001 ‘**’ ,0.01 ‘*’ ,0.05 ‘.’, 0.1 ‘ ’ 1. 
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Figure 5.8 Data sources and schematic workflow to derive the Total Water Storage 

(TWS). Each subset is correspondent to one of the inputted models. 
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TWS statistical modeling 

RSRA datasets have uncertainties and potentially limited information content to 

retrieve the GRACE TWS anomalies. Therefore, TWS anomalies conditional 

distributions are fitted using multiple regressive explanatory predictors. The probabilistic 

conditional distribution fitting was performed using the Generalized Additive Models for 

Location, Scale, and Shape approach (GAMLSS) (Rigby and Stasinopoulos, 2005), 

which allows a flexible fitting with multiple parameters. The GAMLSS model can cope 

with nonlinear relationships between the predicted and predictor variables, and considers 

the nonlinearity in the location and the heteroskedasticity in the scale as functions of the 

explanatory variable. The following assumptions are made: (1) TWS is a random variable 

following a known distribution with density f (TWS|µ,σ) conditional on the parameters 

(µ,σ); and (2) the observed TWS values are mutually independent given the parameter 

vector (µ,σ). GAMLSS is best fitted using the (Stasinopoulos and Rigby, 2007) package 

in R Development (R Core Team, 2012).  

To simplify and distinguish between systematic trends and (random) 

uncertainties, conditional densities with the first two moments as parameters are 

considered: the location µ (mean) describing systematic trends and the scale σ (standard 

deviation) representing uncertainties. A number of conditional two-parameter models 

were tested and the goodness of fit was checked with the Akaike Information Criterion 

(AIC) for each of the semi-parametric density fits. The normal distribution was found to 

be the most appropriate according to Equation 5.2:  

𝑓 𝑇𝑊𝑆 𝜇, 𝜎 = o
T�l

	𝑒: (A�1:�)S

TlS
     (5.2). 
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Note that for a given conditional distribution of the response variable, the conditional 

quantiles can be expressed as a function of the location and scale. After selecting the 

distribution family, an iterative procedure trying several combinations of explanatory 

variables is followed to refine the structure of the model. Each distribution parameter is 

modeled as a function of the explanatory variables using link functions (Akantziliotou et 

al., 2002; Stasinopoulos and Rigby, 2007). The model selection is carried out by checking 

the significance of the fitting improvement in terms of information criteria such as the 

Akaike Information Criterion (AIC), the Schwarz Bayesian Criterion (SBC), and the 

generalized AIC. Forward, backward, and step-wise procedures were applied to select the 

meaningful explanatory variables showing strong predictive association with the TWS 

anomaly, supervised by diagnostic plots to check the fitting performance (Stasinopoulos 

and Rigby 2007). Penalized splines are used to fit the trends for each parameter for their 

flexibility to model complex nonlinear relationships.  

Since all of the incorporated parameters should be highly independent from each 

other, some of the input variables can be dropped if they show similar significance and 

are highly correlated with other input variables. The statistical analysis retained from the 

hydrological variables is showed in Table 5.1. 

5.4 Result and discussion 

NRB hydrological variability  

RSRA data record the monthly mean variations of different hydrologic variables 

on the NRB from 2002-2015. Figure 9 shows twelve years of TWS cycles from four 

GRACE averaged anomalies solutions. At the basin scale, the four GRACE data products 

show very similar pattern. We selected the CRS for the analysis in the remaining of the 
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study. The illustration shows considerable year-to-year variability with significant 

anomaly peaks. For instances, the TWS peaks around August at about +80 mm, while a 

minimum around -60 mm is usually reached in January. Generally, the average peak 

occurs in August, peaks for individual year occur between May and October, while the 

minimums occur between November and April. 

  

Figure 5.9 Time series of the normalized monthly regional average TWS from different 

four GRACE products covering the period from 2002-2015.  
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The monthly mean estimates of hydrologic variables on the NRB from the RSRA 

are indicated in figure 5.10. The rainy season starts in May and ends after October, and 

the maximum precipitation peak is usually during August (figure 5.10A). Regarding the 

temperature data (figure 5.10B), the minimum LST and air temperature display the same 

annual variations and trends with different magnitudes; the air temperature has a 

maximum monthly average of 29°C during May, and a minimum of 18°C during January. 

The LST anomalies are used to determine the variations in the Nile water volume and to 

understand the interaction between the climate and surface water in the region. The 

monthly mean ET indicates that the maximum ET is about 70 mm during August, and the 

minimum-recorded ET is about 10 mm in January (figure 5.10C). As shown in Figure 4, 

the various surface runoff products show considerable variability. The surface runoff is 

closely linked to the occurrence of precipitation events; the maximum surface runoff is 

usually reached during August and declines substantially in January (figure 5.10D). 

Generally, the data indicate an alternance of wet and dry phases during the year. The 

temporal and the seasonal variation of the vegetation is linked to the rainy season. In 

terms of spatial distribution the green biomass is concentrated on the southern and eastern 

parts of the NRB where there are sufficient rainfalls. The vegetation in the northern part 

of the basin is located around the main flood plain of the Nile River and along the Delta.  
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Statistical model output  

The TWS analysis with the multivariate GAMLSS statistical approach reveals 

that some explanatory climatic variables have stronger predictive association with the 

TWS anomaly than others. Table 5.1 summarizes the relationship between the TWS and 

the explanatory variables according to the chi-square test. Deterministic prediction of the 

TWS anomaly was performed using the modeled locations, µ, which allows a comparison 

with the TWS that is observed by GRACE. Since the models are conditionally unbiased 

by design, the correlation is a more appropriate criterion than the bias to assess the models 

agreement with the observed TWS. Through the correlation results, we can infer the 

hydrologic performance of the input datasets. The predictions of deterministic TWS 

anomalies display good consistency with the GRACE estimates correlation, R2, ranging 

from 0.79 to 0.96 (see figure 5.11). Table 5.2 summaries the statistical results of the 

modeled TWS anomalies using the MRA and the conventional water balance approach 

with repsect to the GRACE TWS. The MRA bias and Root Mean Square Error (RMSE) 

are generally lower in magnitude than the conventional approach and the correlation is 

systematically higher.  

The model (1) using remote sensing TRMM and MODIS data (LST, VI, and LAI) 

shows the second best performance in terms of correlation (R2 = 0.93). The higher RMSE 

(0.32) relative to the conventional approach (0.19) is linked to the underestimation (bias 

–3.83 mm while -2.33 mm with the conventional approach). The good correlation is 

attributed to the higher accuracy of the monthly TRMM precipitation research product. 

Additionally, the LST, VI, and LAI indices from MODIS provide information content to 

monitor the climatic influences on water and vegetation cover. Note that the vegetation 
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indices (NDVI and EVI) are highly significant explanatory variables to model the TWS. 

The LST is a key parameter to understand the land surface processes, heat budget and 

energy balance, and the terrestrial vegetation that is a very sensitive indicator to climatic 

and anthropogenic influences. Model (2) from the CRU data and model (3) using the 

NCEP datasets show more pronounced underestimation (-6.51 mm and -6.32 mm 

respectively) with very good correlation (R2 is 0.86 and 0.88 respectively). The PRE, ET, 

and PSDI have high significance to model the TWS anomaly. The CRU and NCEP data 

are derived from gauge corrected datasets. The GLDAS-based LSM models (4 to 7) show 

more moderate performances with correlation R2 ranging from 0.79 to 0.86, but lower 

RMSE ranging from 0.4 mm to 0.15 mm/month associated with lower magnitude in the 

bias. Among these models, the Noah LSM displays the highest correlation and the lowest 

absolute bias (-0.43 mm/month). This result is consistent with the performances of the 

Noah runoff and ET relative to the other GLDAS models (see figures 5.5 and 5.6).  

Table 5.2 Statistical summary of the modeled TWS anomalies using multi-sensory 

and reanalysis data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Model Mean 
(mm/month) 

Bias 
(mm/month) 

RMSE 
(mm/month) 

R2 

1. TWSRS 0.03 -3.83 0.32 0.93 
2. TWSCRU -2.65 -6.51 0.54 0.86 
3. TWSNCEP -2.46 -6.32 0.53 0.88 
4. TWSCLM 5.08 1.22 0.10 0.79 
5. TWSMoasic 5.12 1.25 0.10 0.82 
6. TWSNoah 3.43 -0.43 0.04 0.86 
7. TWSVIC 5.70 1.84 0.15 0.83 
8. TWSEB 4.76 0.90 0.07 0.96 
TWSP-ET-R 0.18 -2.33 0.19 0.56 
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It is important to point out that using gauged corrected datasets contributes to the 

improvement of the modeling of TWS, by providing higher information content. For 

instance, the gauge corrected data for precipitation (TRMM/GPCC) and ET, and SR from 

Noah model along with the energy balance components have a higher hydrologic 

performance as forcing variables to predict the TWS. Model (8) combines parameters 

from the water/and energy balance such as PRE, ET, SR, VI, LHF to simulate the TWS 

estimates. This model incorporates gauged corrected variables, especially precipitation 

and evapotranspiration, with surface runoff components from the Noah model. The 

correlation statistics (figure 5.11) indicate that it provides the best modeled TWS with a 

high coefficient of determination (R2 = 0.96) associated with a very good RMSE (0.07 

mm/month) and smallest bias (0.9 mm).  
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Finally, figure 5.12 shows the full time series for the observed GRACE TWS and 

the modeled TWS using the MRA approach. The time series display high consistency 

between the resulted TWS and the data from the GRACE satellites. The selection of the 

input parameters that are linked to the water/energy balance components, or that have 

direct influence to one or more of their parameters, enhance the TWS models. The current 

results explained and validated the hydrologic variables of RSRA to estimate the TWS. 

The predicted TWS from the RSRA data give the promise to conduct a follow up research 

to build historical estimates of TWS across the transboundary river basins, even prior to 

the launch of the GRACE mission. 

Figure 5.12 Time series of the modeled monthly basin-average TWS and observation of 

TWS from GRACE satellite. 
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5.5 Hydroclimate risk assessment 

To understand how El-Nino Southern Oscillation (ENSO) could affect the TWS records. 

Based on the aforementioned methodology the TWS was simulated based on the training 

period from 2002-2015. This approach first aims to reconstruct the historical records of 

TWS from 1950-2009 (figure 5.13).  

 

Figure 5.13 The temporal variation of the TWS (blue line) and the ENSO variation 

(dotted line) over Nile River Basin. 

 

The correlation between TWS and the ENSO records indicated that, the positive ENSO, 

which corresponding to El Nino event is associated with dramatic decline in the TWS. 

Meanwhile, the negative ENSO anomaly, that corresponding to the La Nina event is 

mainly associated with a positive recovery to the TWS (figure 5.14). Meanwhile, during 

the dry periods the El Niño impedes rain to reach the Ethiopian hills, resulting in a 

decreased amount of rainfall (Eltahir, 1996). On contrary, the and the La Niña event 

demonstrated dramatic rainfall that causes the Nile flood (NIS, 2012a; UNEP, 2013). 

According to the current results, the Nile Basin have been affected by drier condition over 
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the period from 1950-2009. The annual changing in precipitation and sea surface 

temperature pattern significantly affects the Nile water. 

 

    Figure 5.14 The relation between TWS variation and ENSO anomaly, (A) shows 

their monthly variations, (B) shows the correlation between TWS and ENSO signals. 
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 5.6 Summary, Conclusion and Future Work  

The NRB is one of the largest river basins in the world that suffers insufficient in-

situ data for climatic information. The human and climate variables are considered as key 

changes for the environmental instabilities in the region. Across the NRB, the seasonal 

cycles show that the maximum precipitation occurs during Summer and the minimum in 

Fall. The TWS variation is consistent with the precipitation and runoff anomalies during 

the wet and dry periods. During the wet season, the green biomass is relatively abundant, 

with higher VI values.  

With sparse climate monitoring stations in the region, RSA data are invaluable 

for water resources trend detection and climate impacts in the NRB region. These datasets 

are, however, inheriting numerous errors and carry uncertainties that require further 

quantification and validation. The current research shows new insights to validate the 

hydrologic utilities of RSRA data in absence or insufficient inputs of ground 

observations. The MRA framework was used to model the TWS anomalies from the 

GRACE mission from 2002 to 2015 and to test the hydrologic information of the RSRA.  

The results indicate that:  

1- The MRA approach outperforms the traditional LSMs based water balance 

approach to estimate the TWS anomalies. 

2- combinations of water/energy balance components with land surface 

temperature and vegetation information simulate better results of the TWS anomalies.  

3- TRMM and MODIS (land-cover, land surface temperatures, and Vegetation 

indices) are the next most important parameters to simulate the TWS anomalies.  
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4- The hydrologic information from the reanalysis data such as CRU, NCEP, and 

the GLDAS are valuable sources to model the GRACE TWS anomalies.  

This work provides a new method to use the RSRA information for reliable 

hydrologic applications that help the society at large in the NRB. This approach is 

transferable to similar basins. In addition, the datasets and the methodology can be 

adapted to extend the TWS estimation to the past 30+ years and provide new records for 

TWS prior to the launch of the GRACE satellites. Ultimately, it will contribute in 

studying the drought frequencies and water deficit periods, as well as understanding the 

state of water in transboundary basins under the changing climate.  
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Chapter 6: Summary and Conclusion 

 

The Nile River Basin is one of major transboundary river basin that hosts variety 

of cultures, terrains and climates. The basin consists of two major hydrological systems 

that provide the Nile with its essential water supply, the White and Blue River Basin. The 

Blue Nile Basin furnish the Nile with more than 76 percent of the water supply and the 

sediments. Yet the impact of the climate changes on the Nile Basin is less understood due 

to the lake of the systematic hydrological observation data. The Nile Basin is challenged 

by complex hydrologic system and uneven climate conditions. The fluctuation of the 

Intertropical Climate Zone (ITCZ) causes either ample of precipitation and severe 

flooding or imped the rainfalls and prevailing of the drought conditions. The basin 

population growing dramatically and causes substantial pressure on the water resource, 

land and the agriculture productivity. The infirm relations between the riparian nations, 

especially the upstream and the downstream nations, hinder the developing of mutual 

adaptive policies to mitigate the climate issues and better use the basin water resources. 

To date, the gap to implement operational ground station to collect hydrological 

observation is huge. However, the wealth of the hydrological observation from satellite, 

reanalysis and land surface model could fill such gap. The gridded observations are the 

main reliable source for the hydrological observation that could help to understand how 

the temporal and spatial variability of the basin climate could influence the basin water 

resources. The Gravity Recovery and Experiment Satellite (GRACE) offer unprecedented 

information about the overall storage changes. The gauge-corrected grids of the 

precipitation and evaporation are the main source to understand the water and energy 
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fluxes. Precipitation minus evapotranspiration reveals an acceptable estimates of the 

surface water runoff. 

The temporal variability in precipitation and temperature could influence the 

amount of the surface runoff. To best express how the basin water flow is resilient to the 

climate changes, the functional forms introduced by Arora (2002) and Pike (1964) were 

implemented to measure the surface runoff elasticity to precipitation, temperature and 

potential evapotranspiration over the tropical-subtropical climate zones. Meanwhile, 

relationship between actual evapotranspiration and potential evapotranspiration that 

normalized by the precipitation as depicted through Budyko Curve illustration. The 

Budyko curve utilized to understand the surface runoff elasticity to precipitation for the 

tropical-subtropical, semiarid and arid zone. The tropical-subtropical zone showed 

overall energy-limited conditions, where the water-yield is potentially at high rates. The 

semiarid zone however it receives significant amount of water, the high rates of 

evapotranspiration causes substantial loss of water to the atmosphere and make the zone 

as moisture-water-constrained zone. The arid zone displayed very limited water-yield 

condition with very high temperature and evapotranspiration rates. In terms of the 

resilient, the tropical-subtropical zones are considered more resilient under the current 

climate conditions compared with the semiarid and arid zones that displayed less 

responsivity to the climate conditions. For example, the runoff elasticity to precipitation 

for the tropical-subtropical zone showed at 10 percent increase in precipitation the runoff 

expected to increase by 20 percent. As gradually moved to the arid zone the runoff only 

will recove by 3 percent when the precipitation increased by 10 percent. The surface 

runoff is higly determined by temperature, so far as the temperature decreases, i.e. by (-



 177 

0.5°C), the tropical-subtropical zone will undergo to an increase in the surface runoff by 

5 percent. Accordingly, the runoff elasticity to potential ET ranging from (-0.52 to -1.70) 

from the tropical-subtropical to the arid zone.  

Meanwhile, according to the projected climate scenarios under the RCP2.6, the 

tropical-subtropical region displays high runoff flow resistant to the climate under the 

projection increase in precipitation. Conversely, under the worst scenario of RCP 5.8 

showed that the subtropical and tropical region will become highly vulnerable to the 

precipitation deficit, where at decrease of precipitation by 15 percent, the surface runoff 

will diminish by 30 percent. The basin riparians are encouraging to mutually develop an 

adaptive policy to face the possible future changes.   

Sea Level Rise (SLR) is another climate challenge to the downstream country, i.e. 

Egypt. The SLR on the Nile Delta region in Egypt is assessed by evaluating the elevations 

of two available Digital Elevation Models (DEMs): the SRTM and the ASTER-GDEM-

V2.  The Nile Delta is one of the world’s largest river deltas, located in North Egypt. The 

Nile Delta is an area of the world that lacks the detailed ground truth data and monitoring 

stations. Despite the economic importance of the Nile Delta, it could be considered as one 

of the most data-poor regions regarding to the available information.  It is believed that 

the Nile Delta is projected to face SLR of 1m by the end of the 21th century. In order to 

provide an accurate assessment of the future SLR impact on Nile Deltas’ land and 

population, the DEM’s elevations were corrected using linear regression model with 

ground elevations from GPS survey. The information for the land cover types and future 

population numbers were derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds 
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(GPWv3) datasets respectively. The future inundations were illustrated based on two SLR 

scenarios of 0.5m and 1m. For instances, at 0.5m SLR, an estimated 580 thousand people 

will face the dangers of inundation and be displaced, and about 280 km2 of the total LULC 

will be destroyed. At 1m SLR, an estimated 887 thousand people will be at risk of 

inundation and displacement and about 100 km2 of vegetation, 16 km2 wetland, 402 km2 

cropland, and 47 km2 of urban area land would be destroyed. The overall vulnerability 

assessments indicated that the influence of SLR would be intensified and confined along 

the coastal areas. The estimates of the land area and risked population are considered very 

valuable and essential for future risk mitigation and preparedness for the communities 

along the Nile delta coastal areas. 

The hydrologic utility of Remote Sensing and Reanalysis (RSRA) datasets has 

proved to be problematic in data-poor regions due to the lack of ground truth 

observations. An alternative approach was developed to circumvent this problem by using 

Multi-Regression Analysis (MRA) to: 1- Estimate the uncertainties of the RSRA with the 

NASA’s Gravity Recovery and Climate Experiment (GRACE) data sets. 2- Reconstruct 

the Terrestrial Water Storage (TWS) anomalies from GRACE data and extend the 

estimates to the past +30-years for the water-climate nexus study. While the TWS has 

been simulated for long time using Land Surface Models (LSMs) data, the proposed 

methodology enhances the TWS reconstruction though increasing the R2 from 0.47 of 

the conventional water balance approach to above 80 percent. The MRA framework was 

used to model the TWS anomalies from the GRACE mission from 2002 to 2015 and to 

test the hydrologic information of the RSRA.  

The results indicate that:  
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1- The MRA approach outperforms the traditional LSMs based water balance 

approach to estimate the TWS anomalies. 

2- Combination of water/energy balance components with land surface 

temperature and vegetation information simulate better results of the TWS anomalies.  

3- TRMM and MODIS (land-cover, land surface temperatures, and Vegetation 

indices) are the next most important parameters to simulate the TWS anomalies.  

4- The hydrologic information from the reanalysis data such as CRU, NCEP, and 

the GLDAS are valuable sources to model the GRACE TWS anomalies.  

This work provides a new method to use the RSRA information for reliable 

hydrologic applications that help the society at large in the NRB. This approach is 

transferable to similar basins. In addition, the datasets and the methodology can be 

adapted to extend the TWS estimation to the past 30+ years and provide new records for 

TWS prior to the launch of the GRACE satellites. Ultimately, it will contribute in 

studying the drought frequencies and water deficit periods, as well as understanding the 

state of water in transboundary basins under the changing climate.  


