
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DISTRIBUTED ESTIMATION OF CENTRALITY MEASURES

IN COMPLEX NETWORKS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

WEI WANG
Norman, Oklahoma

2016

DISTRIBUTED ESTIMATION OF CENTRALITY MEASURES
IN COMPLEX NETWORKS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Choon Yik Tang, Chair

Dr. John Jiang

Dr. S. Lakshmivarahan

Dr. Thordur Runolfsson

Dr. Krishnaiyan Thulasiraman

c© Copyright by WEI WANG 2016
All Rights Reserved.

To my family

Acknowledgements

First and foremost, I wish to express my sincere gratitude to my advisor, Dr. Choon

Yik Tang, for his guidance and unconditional support throughout all the years of my

graduate studies, and for being an excellent mentor. During the past four years, he

provided me a precious opportunity to learn how an idea is created and developed.

He was gracious and generous to offer his knowledge and his experience to me while

working on this research project, and I have acquired many skills that are crucial to

my future career. I am truly grateful for having had the opportunity to work closely

with him.

I am also grateful to Dr. Lipei Huang from Tsinghua University and Dr. John

Jiang, for recommending me to Dr. Tang as a Ph.D. student. I would not have been

able to work with Dr. Tang if it were not for their help.

I am also thankful to Dr. S. Lakshmivarahan, Dr. Thordur Runolfsson, and

Dr. Krishnaiyan Thulasiraman for their time and effort in serving on my gradu-

ate committee. Their invaluable suggestions and recommendations have significantly

improved the quality of my research and dissertation.

I would also like to acknowledge the National Science Foundation for their generous

financial support.

Finally, I wish to thank my parents, Liulin Wang and Ping Wei. Without their

selfless love, support, and encouragement, I would not have a chance of achieving all

this.

iv

Table of Contents

Acknowledgements iv

List of Tables vii

List of Figures viii

Abstract x

1 Introduction 1

1.1 Background and Motivation . 1
1.2 Literature Review . 4
1.3 Original Contributions and Dissertation Outline 8

2 Distributed Computation of Betweenness on Tree Graphs 11

2.1 Introduction . 11
2.2 Preliminaries . 16
2.3 Algebraic Relationships . 18
2.4 Distributed Algorithms . 23

2.4.1 Continuous-Time Algorithm 23
2.4.2 Discrete-Time Algorithm . 25
2.4.3 Alternative Discrete-Time Algorithm 27
2.4.4 Asynchronous Distributed Algorithm 29

2.5 Simulation Results . 37
2.5.1 Simulation of the Continuous-Time Distributed Algorithm . . 37
2.5.2 Simulation of the Discrete-Time Distributed Algorithm 38

2.6 Conclusion . 40

3 Distributed Computation of Closeness on Tree Graphs 42

3.1 Introduction . 42
3.2 Classic Closeness . 48

3.2.1 Preliminaries . 48
3.2.2 Key Algebraic Relationships 50
3.2.3 Continuous-andDiscrete-TimeDistributedAlgorithms 54

3.3 Exponential Closeness . 57
3.3.1 Key Algebraic Relationships 57
3.3.2 Continuous-andDiscrete-TimeDistributedAlgorithms 59

v

3.4 Simulation Results . 61
3.5 Conclusion . 63

4 Distributed Estimation of Betweenness Centrality 65

4.1 Introduction . 65
4.2 Problem Formulation . 68
4.3 Distributed Constraints on Betweenness 68
4.4 Distributed Estimation of Betweenness 82
4.5 Performance Evaluation . 88

4.5.1 First Set of Simulation . 88
4.5.2 Second Set of Simulation: Evaluation Settings 88
4.5.3 Second Set of Simulation: Evaluation Results 91

4.6 Conclusion . 91

5 Distributed Estimation of Closeness Centrality 93

5.1 Introduction . 93
5.2 Problem Formulation . 95
5.3 Solution Approach . 95
5.4 Distributed Characterization of Closeness 97

5.4.1 Proof of Theorem 12 . 100
5.5 Distributed Estimation of Closeness 102
5.6 Performance Evaluation . 107

5.6.1 Evaluation Settings . 107
5.6.2 Evaluation Results . 110

5.7 Conclusion . 110

6 Applications of Betweenness Centrality on Community Detection

and Information Spreading 112

6.1 Detecting Community . 113
6.2 Spreading Information . 124
6.3 Spreading Information with the Help of Community Detection 132
6.4 Conclusion . 143

7 Conclusions 144

7.1 Overall Summary . 144
7.2 Future Work . 145

Bibliography 148

vi

List of Tables

6.1 Comparison of node betweenness and closeness centralities. 126

vii

List of Figures

1.1 A portion of the Internet (adopted from [1]). 2
1.2 The importance of nodes in a network can be quite different even

among neighbors (see (a)–(d), in which the darker a node, the more
important it is). The importance of nodes can also change significantly
when a different centrality measure is used (compare (a) with (c)), and
when an edge or a node is added or deleted elsewhere (compare (a)
with (b), and (c) with (d)). 5

2.1 An illustration of node betweenness. 13
2.2 An illustration of edge betweenness. 14
2.3 A graphical illustration of the sets V(i,j) and V(j,i). 16
2.4 A graphical illustration of the sets V(i,j) ∀i ∈ V ∀j ∈ Ni. 17
2.5 A graphical illustration of expression (2.12). 20
2.6 An example of structuring H matrix on the 5-node tree graph. 23
2.7 A 6-node tree graph and its node and edge betweenness over time

t ∈ [0, 30]. 37
2.8 Performance of the continuous-time algorithm (2.16) in computing

node and edge betweenness on the time-varying 6-node tree graph. . . 39
2.9 A 16-node tree graph and its node indices and node and edge betweenness. 40
2.10 Performance of the discrete-time algorithm (2.18) in computing node

and edge betweenness on the 16-node tree graph. 41

3.1 An illustration of classic closeness. 44
3.2 An illustration of exponential closeness. 45
3.3 A graphical illustration of the sets V(i,j)’s, variables x(i,j)’s, and vari-

ables y(i,j)’s. 49
3.4 An example of how variables maintained in nodes. 54
3.5 A 16-node tree graph and its node indices and classic and exponential

closeness. 61
3.6 Performance of the continuous- and discrete-time algorithms (3.13) and

(3.15) in computing classic closeness on the 16-node tree graph. . . . 62
3.7 Performance of the continuous- and discrete-time algorithms (3.22) and

(3.23) in computing exponential closeness on the 16-node tree graph. 64

4.1 An illustration of the performance of algorithm (4.47)–(4.48) in esti-
mating betweenness on a 15-node graph. 89

viii

4.2 Performance of algorithm (4.47)–(4.48) on random geometric graphs
as measured by the Accuracy of Ordering. 91

5.1 An illustration of the performance of algorithm (5.16)–(5.19) in esti-
mating closeness on a 6-node graph. 108

5.2 Performance of algorithm (5.16)–(5.19) on three common types of ran-
dom graphs as measured by the Accuracy of Closeness Ordering. . . . 111

6.1 An illustration of edge betweenness in community detection 114
6.2 A 37-node graph with its node indices. 117
6.3 Community structures after edges removal on a 37-node network. . . 118
6.4 Modularity values of different clustering on a 37-node graph. 119
6.5 Zachary’s karate club network. 120
6.6 Community structures after edges removal on Zachary’s karate club

network. 122
6.7 Modularity values of different clustering on Zachary’s karate club net-

work. 123
6.8 A dolphin social network (adopted from [2]). 124
6.9 Modularity values of different clustering on the dolphin social network. 125
6.10 An illustration of node betweenness and closeness. 125
6.11 A 37-node graph with its node indices, node betweenness, estimated

node betweenness and closeness centrality. 127
6.12 An information spreading algorithm on a 37-node network. 128
6.13 Zachary’s karate club network with its node indices, node betweenness,

estimated node betweenness and closeness centrality. 128
6.14 An information spreading algorithm on Zachary’s karate club network. 129
6.15 An information spreading algorithm on the dolphin social network. . 131
6.16 A 100-node graph with its node indices and node betweenness 133
6.17 An comparison of the performance of Method 1–3 on a 37-node graph. 135
6.18 Initial nodes selected by Method 1–3 on a 37-node graph. 136
6.19 Number of steps needed to reach everyone on a 37-node graph. 136
6.20 An comparison of the performance of Method 1–3 on Zachary’s karate

club network. 138
6.21 Initial nodes selected by Method 1–3 on Zachary’s karate club network. 139
6.22 Number of steps needed to reach everyone on Zachary’s karate club

network. 139
6.23 An comparison of the performance of Method 1–3 on the dolphin social

network. 141
6.24 Number of steps needed to reach everyone on the dolphin social network.142

ix

Abstract

Knowing how important a node or an edge is, within a network, can be very valuable,

for instance, in identifying those who are susceptible to malicious attacks, those who

are bottlenecks to network performances, and those who are better suited as leaders,

so that preventive measures may be taken, resources may be properly allocated, and

roles may be properly assigned.

In this dissertation, we develop a novel collection of scalable distributed algo-

rithms, which enable nodes in a large-scale network to cooperatively learn how im-

portant they are individually, with only local interaction and without any global

coordination nor knowledge of the network topology. The node importance, or criti-

cality, will be measured using the most fundamental centrality measures from the area

of complex networks, namely, the betweenness centrality, closeness centrality, as well

as a subset of their variations—those regarded by the network science community to

be most fundamental that we believe are distributedly computable using a dynamical

systems approach—so that insights gained in computing them shed light on how to

compute other measures of similar nature.

The algorithms are developed based on tools and ideas from dynamical systems,

graph theory, and network science. For each centrality measure, we first introduce

some variables with graph-theoretic meaning, and expressed each measure as a func-

tion of these variables. Afterwards, we derive a set of equality and inequality con-

straints on these variables that characterize each centrality measure in lieu of its

original definition. Every constraint involves only variables that are associated with

x

neighboring nodes, so that neighboring nodes can check whether they are satisfied.

Therefore, all of these constraints are distributed in nature.

Next, we use these constraints to develop a scalable distributed algorithm, which

enables nodes in a network to cooperatively estimate their individual centrality with

only local interaction and without any centralized coordination, nor high memory

usages. Specifically, for tree graphs, the introduced variables are linearly and non-

singularly related. Thus, by turning these constraints into a state equation, and

the centrality measure function into an output equation, we subsequently obtain a

networked dynamical system describing a distributed algorithm. For general graphs,

the constraints we have discovered are necessary but insufficient, so the problem

cannot be solved exactly. Therefore, we formulate a distributed optimization problem,

a regularized linear program to estimate the centrality measures over the network

by using a gradient method. Taking the gradient of the objective function with

respect to the optimization variables, we obtain a scalable continuous-time distributed

algorithm.

Moreover, for tree graphs, we show that each algorithm is a networked dynamical

system, whose affine state equation has a unique equilibrium point that is always

exponentially or finite-time stable, and whose output equation at the equilibrium

point always yields the unknown centrality measure, thereby solving the problem.

For general graphs, we evaluate the performance of the algorithm via extensive simu-

lation, showing that it yields fairly accurate estimates in terms of ordering, on random

geometric, Erdős-Rényi, and Barabási-Albert graphs.

Finally, we experiment our algorithms for estimating node and edge betweenness

centralities on both computer generated graphs and real networks for community de-

tection and information spreading. We also propose a method for better spreading

with the knowledge of community structures. The method using estimated between-

ness performs very well in almost all scenarios.

xi

Chapter 1

Introduction

1.1 Background and Motivation

In many applications of networks, nodes and edges within the network have different

levels of importance. Due to where they are located in the network, and who they are

connected with, some nodes and edges are inherently more critical to the network’s

well-being than others. For example, in a power grid, failure of certain power gener-

ators and transmission lines are more likely to trigger cascading effects; in a wireless

ad hoc network, certain communication devices and links are more effective to route

data; in a transportation system, certain junctions and roads are more critical to traf-

fic conditions; and in a social network, different people and websites have different

levels of influence and popularity based on who they know, and which websites they

are linked to.

Often, knowing how important individual nodes and edges are within the network

can be very valuable, as they allow for preventive measures to be taken, resources to

be properly allocated, and roles to be properly assigned. When the network is small,

identifying which nodes and edges are important, and understanding why they are

so, by, say, humans who oversee or study the network, is not a difficult task. How-

1

Figure 1.1: A portion of the Internet (adopted from [1]).

ever, when the network has an enormous number of nodes and edges with extremely

complicated connections—such as many real networks that exist today, including the

Internet, the U.S. power grid, and biological networks—the task becomes very chal-

lenging, even for humans with help from powerful computers. Moreover, with the

continued increase in the size and complexity of networks and the rising demand for

their autonomy, it is becoming increasingly desirable that nodes and edges themselves

can carry out such a task, as opposed to relying entirely on humans.

In the area of complex networks [3,4], a growing set of statistical measures known

as centrality measures, which assign to each node or edge a score representing its

importance, have been introduced (see [5] for a survey). In this dissertation, we

consider two of the oldest and most fundamental ones, namely, node betweenness and

classic closeness described below, as well as a subset of their variations.

Node Betweenness: Given an undirected and connected network or graph G =

(V, E), where V = {1, 2, . . . , N} denotes the set of N ≥ 2 nodes and E ⊂

{{i, j} : i, j ∈ V, i 6= j} the set of edges, the node betweenness Bi of a node

2

i ∈ V is defined in Anthonisse [6] and Freeman [7] as

Bi ,
∑

k∈V
k 6=i

∑

ℓ∈V
ℓ 6=i,k

σ(k, ℓ, i)

σ(k, ℓ)
, (1.1)

where σ(k, ℓ) is the number of shortest paths from nodes k to ℓ, and σ(k, ℓ, i)

is the number of those that go through node i. Thus, the larger the number

of shortest paths node i lies on, the higher its Bi. It follows that Bi attempts

to measure how “strategically located” node i is within the network, making it

one of the most fundamental centrality measures [3]. In fact, node betweenness

and its counterpart called edge betweenness (to be defined in Chapter 2) have

found broad applications in such areas as power systems [8], transportation

systems [9], bioinformatics [10], and bibliometrics [11]. Conceivably, it can also

be used in network security, since nodes with high Bi’s are more susceptible to

malicious attacks, and in communication networks, since such nodes are more

likely bottlenecks to data routing. It can further be used to improve network

topology: if node i has a high Bi and its neighbors k and ℓ have low Bk and

Bℓ, then adding an edge between nodes k and ℓ would reduce Bi because all

the shortest paths that go through nodes k, i, ℓ could then bypass node i.

Classic Closeness: Another fundamental centrality measure, defined in Bavelas [12]

and Sabidussi [13], is the classic closeness (often referred to simply as closeness)

Ci of a node i ∈ V, defined as

Ci ,
N − 1∑

j∈V

dij
, (1.2)

where dij is the distance (i.e., length of the shortest paths) from nodes i to j,

and the factor N − 1 is inserted so that Ci ∈ (0, 1]. Hence, the closer node i is,

3

on average, to all other nodes, the higher its Ci. It follows that nodes with high

Ci’s are effective in, for instance, spreading diseases or rumors to, and gathering

information from, everyone else. Indeed, classic closeness has been applied to

numerous areas, including epidemiology [14], social networks [15], and power

systems [16, 17]. It can also be used to, say, find travel directions: if graph

G represents a city and its nodes represent different parts of the city, then a

traveler who has access to local closeness but not the city map might be able

to get to the city center by following a path along which the closeness keeps

increasing (much like a gradient method in optimization). Therefore, both node

betweenness and classic closeness are intriguing centrality measures that have

significant untapped potential. An illustration of these two measures, which

highlights their key attributes, is provided in Figure 1.2.

1.2 Literature Review

Although node betweenness and classic closeness are useful indicators of node impor-

tance in a complex network, their computation may be prohibitively difficult because

both of them require the construction of shortest paths between all pairs of nodes.

While there are several well-established algorithms for constructing shortest paths

(e.g., the Floyd-Warshall algorithm [18] and the Johnson’s algorithm [19]), these al-

gorithms were developed nearly half a century ago and thus were not designed to

handle networks of such a scale. To overcome this limitation, a few algorithms aimed

at computing node betweenness in large networks have been proposed in the litera-

ture (e.g., Freeman [20], Brandes [21], Kolaczyk [22]). These algorithms, however, are

centralized in nature, requiring that all the information about the graph G be available

at one place, at one time, in order to execute. Such a requirement, unfortunately, is

often difficult to meet in a large network for various reasons, including security and

4

(a) Node betweenness. (b) Node betweenness when an edge is added.

(c) Classic closeness. (d) Classic closeness when a node is deleted.

Figure 1.2: The importance of nodes in a network can be quite different even among
neighbors (see (a)–(d), in which the darker a node, the more important it is). The
importance of nodes can also change significantly when a different centrality measure
is used (compare (a) with (c)), and when an edge or a node is added or deleted
elsewhere (compare (a) with (b), and (c) with (d)).

5

privacy concerns and storage and single-point failure issues.

The drawback facing these centralized algorithms raises a question: is it possible

to develop fully distributed algorithms that enable nodes in a complex network to

cooperatively learn about their own importance as measured by node betweenness,

classic closeness, and other notable centrality measures? The availability of such

algorithms would produce fundamental advances in the area of complex networks,

allowing us to better engineer large-scale networked systems and better understand

large-scale networked systems that occur in nature. For the former, several engineer-

ing examples have been given in Section 1.1. For the latter, an example is to run

such distributed algorithms on parallel computers to more rapidly analyze a huge

biological network with millions of nodes and edges. Another example is a social

network that can be decomposed into multiple subgraphs, each of which is owned by

a company. The companies wish to determine the importance of nodes they own,

but are unwilling to share their subgraphs with others due to security and privacy

concerns. If the companies agree to run such distributed algorithms, they would be

able to achieve their goals without having to publicize their subgraphs.

Although the above question is of significant interest, it has not been addressed

other than in a 2003 technical report by Lehmann and Kaufmann [23], which intro-

duced distributed algorithms for computing betweenness and closeness centralities.

The algorithms in [23], however, are not really “distributed” in the sense of the con-

trols community. Specifically, each algorithm in [23] is memory intensive, demanding

that every node stores a list of messages that grows with the network size. Moreover,

each of them is non-homogeneous, requiring that nodes act differently depending on

what they have received, and which phase the algorithm is in. More seriously, each

of the algorithms benefits only one node per execution: only the leader node that

initiates the execution can determine its centrality score; all other nodes cannot de-

termine theirs and are there just to “help.” In contrast, distributed algorithms from

6

the controls community are memory non-intensive, homogeneous (i.e., same update

rules for every node at every time), and benefit all nodes in one execution (e.g., in

distributed averaging, all nodes can gradually compute the average).

At present, the controls community has developed a large (and growing) col-

lection of distributed algorithms for performing distributed consensus/computation/

optimization. In distributed consensus, where the primary objective is for nodes in a

network to achieve a consensus or agreement, many variations of the basic problem

have been studied, including problems in continuous-time [24–35] and in discrete-

time with synchronous [24, 26, 29–33, 36–53] and asynchronous [42, 54–72] time mod-

els. In addition, the basic problem has also been extended to represent a variety

of applications, including motion coordination [73], vehicle formation [74, 75], and

flocking [65, 76, 77], to name a few. In distributed computation, a number of spe-

cific problems have been studied to date, including distributed averaging which is

often addressed in the context of distributed consensus, and problems where the

goal is to compute the solution to a system of linear equations [78–82], the maxi-

mum [56, 59, 83–85], the sum/count [36, 55, 56, 84], and the power mean [56, 83, 86].

Other types of problems have also been addressed, such as the computation of dis-

tributed redistribution [37], design of distributed Kalman filters [34,78,87–89], as well

as computation of linear functions [50,90–92], average-max-min [25], log-sum-exp [85],

and a class of general functions [83, 86, 93], and many more. Finally, in distributed

optimization, research efforts have led to, for instance, the family of incremental

subgradient algorithms [94–102], non-incremental ones [53, 103–110].

Given the successful development of a rich collection of distributed consensus/

computation/optimization algorithms—most of which are based on a dynamical sys-

tems approach—and given the essentially unexplored area of distributed computation

of betweenness and closeness centralities, an intriguing question is: is it possible to

use the same dynamical systems approach to distributedly compute those centralities?

7

This dissertation is devoted to addressing this question.

1.3 Original Contributions and Dissertation Out-

line

In this dissertation, we develop a novel collection of simple and scalable distributed

algorithms, which enable nodes in a large-scale network to cooperatively learn how

important or critical they are individually, with only local interaction and without any

global coordination nor knowledge of the network topology. The node importance, or

criticality, will be measured using the most fundamental centrality measures from the

area of complex networks, namely, the betweenness centrality, closeness centrality,

as well as a subset of their variations, such as edge betweenness and exponential

closeness. An outline of the dissertation, along with its original contributions, is

provided below.

In Chapter 2, we consider the distributed computation of node and edge between-

ness that characterize how often a node or edge lies on the shortest paths between

all pairs of nodes. For each measure, we construct dynamical systems approaches to

develop several synchronous (continuous- and discrete-time) and asynchronous dis-

tributed algorithms, which enable every node in an undirected and unweighted tree

graph to compute its own measure with only local interaction and without any cen-

tralized coordination. We show that the algorithms are simple and scalable, with the

synchronous continuous-time algorithm being unconditionally exponentially conver-

gent, the synchronous discrete-time algorithm unconditionally exhibiting a deadbeat

response, and the asynchronous algorithm being asymptotically stable. Moreover,

we show that these algorithms require minimal node memories to execute, bypass

entirely the need to construct shortest paths. The algorithms are applicable only to

tree graphs.

8

In Chapter 3, we address the distributed computation of classic closeness and

exponential closeness, which differ in how the distances are taken into account. For

each variant, we construct continuous- and discrete-time distributed algorithms, with

which nodes in an undirected and unweighted tree graph can cooperatively determine

their own closeness by talking only to neighbors, executing simple homogeneous up-

date rules, and consuming minimal physical memories. We show that each algorithm

is a networked dynamical system, whose affine state equation has a unique equilibrium

point that is always exponentially or finite-time stable, and whose output equation

at the equilibrium point always yields the unknown closeness, thereby solving the

problem. The algorithms are applicable only to tree graphs.

In Chapter 4, we develop a scalable distributed algorithm, which enables every

node in a network to estimate its own betweenness and the betweenness of edges

incident on it with only local interaction and without any centralized coordination,

nor high memory usages. The development is based on exploiting various local prop-

erties of shortest paths, and on formulating and solving an unconstrained distributed

optimization problem. We also evaluate the performance of the algorithm via simu-

lation on a number of random geometric graphs, showing that it yields betweenness

estimates that are fairly accurate in terms of ordering.

In Chapter 5, we develop a scalable distributed algorithm, which enables every

node in a network to estimate its own closeness. We first derive a set of linear in-

equality and equality constraints, which are distributed in nature, that characterize

closeness centrality in lieu of its original definition. We then use these constraints to

develop a scalable distributed algorithm, which enables nodes in a network to coop-

eratively estimate their individual closeness with only local interaction and without

any centralized coordination, nor high memory usages. Finally, we evaluate the per-

formance of the algorithm via extensive simulation, showing that it yields closeness

estimates that are 91% accurate in terms of ordering, on random geometric, Erdős-

9

Rényi, and Barabási-Albert graphs.

In Chapter 6, we test our algorithms for estimating node and edge betweenness

centralities on both computer generated graphs and real networks for community de-

tection and information spreading, and then propose a method for a better spreading

information with the knowledge of community structures. These real network data

sets are maintained by Dr. Tim Davis of Texas A&M University and Dr. Yifan Hu of

Yahoo Labs. The data sets are available at http://www.cise.ufl.edu/research/sparse/

matrices [111]. Based on the evaluation results, we notice that with the knowledge of

community structures, information could be spread faster in the network by correctly

detecting influential people, and the method using estimated betweenness performs

very well in almost all scenarios.

Finally, in Chapter 7, we conclude the dissertation with several remarks and pro-

vide a number of possible future research directions.

10

Chapter 2

Distributed Computation of

Betweenness on Tree Graphs

2.1 Introduction

In many applications of networks, nodes and edges within a network have different im-

portance. Due to where they are located in the network, and who they are connected

with, some nodes and edges are inherently more critical to the network’s well-being

than others. Thus, knowing how important a node or an edge is, by itself or by its

neighbors, can be very valuable.

In the area of complex networks, a growing set of statistical measures referred to

as centrality measures, which assign to each node or edge a number representing its

importance, have been proposed. In this chapter, we consider the distributed com-

putation of two such measures, namely, node and edge betweenness. To facilitate the

development, we define each of these measures below in the context of an undirected,

unweighted, and connected graph G = (V, E), where V = {1, 2, . . . , N} denotes the

set of N ≥ 2 nodes and E ⊂ {{i, j} : i, j ∈ V, i 6= j} denotes the set of edges:

• The node betweenness Bi of a node i ∈ V is first conceived in Anthonisse [6]

11

and later defined in Freeman [7] in (1.1) as

Bi ,
∑

k∈V
k 6=i

∑

ℓ∈V
ℓ 6=i,k

σ(k, ℓ, i)

σ(k, ℓ)
,

where σ(k, ℓ) is the number of shortest paths from nodes k to ℓ, and σ(k, ℓ, i)

is the number of those that go through node i. Hence, the larger the number of

shortest paths node i lies on, the higher its Bi. It follows that Bi attempts to

measure how “strategically located” node i is within graph G. Figure 2.2(a)–

(c) illustrates the notion of node betweenness, in which the darker a node i,

the higher its Bi. The Bi’s of nodes in a network can be quite different even

among neighbors, and can change significantly when network structure changed

somewhere, such as a bridge is added or deleted.

• Analogous to Bi, the edge betweennessB{i,j} of an edge {i, j} ∈ E is defined in [7]

is obtained by replacing σ(k, ℓ, i) in the definition of Bi in (1.1) by σ(k, ℓ, {i, j}),

the edge betweenness B{i,j} of an edge {i, j} ∈ E as

B{i,j} ,
∑

k∈V

∑

ℓ∈V
ℓ 6=k

σ(k, ℓ, {i, j})

σ(k, ℓ)
, (2.1)

where σ(k, ℓ, {i, j}) is the number of shortest paths from nodes k to ℓ that go

through edge {i, j}. Therefore, B{i,j} is a measure of how strategically located

edge {i, j} is within graph G, which may represent, say, a road in a city, or a

transmission line in a power grid. Figure 2.2(a)–(c) depicts the notion of edge

betweenness, showing that it parallels that of node betweenness, and also can

change significantly when network structure changed somewhere.

Although node and edge betweenness are useful centrality measures, their com-

putation may be difficult because they are defined in terms of all the shortest paths.

12

(a) Original graphs.

(b) Adding a bridge.

(c) Adding another bridge.

Figure 2.1: An illustration of node betweenness.

13

(a) Original graphs.

(b) Adding a bridge.

(c) Adding another bridge.

Figure 2.2: An illustration of edge betweenness.

14

While there are several well-established algorithms [18, 19] for constructing shortest

paths, and a few algorithms [20–22] aimed at computing node betweenness in large

networks, these algorithms, however, are centralized in nature, requiring that all the

information about the graph G be available at one place, at one time, in order to ex-

ecute. Such a requirement, unfortunately, is often difficult to meet in a large network

for various reasons, including security and privacy concerns as well as storage and

single-point failure issues.

Motivated by the aforementioned consideration and by successful development

of a rich collection of distributed consensus/computation/optimization algorithms

(e.g., [24,30,51,53,54,57,72,110], to name just a few), in this chapter we consider the

distributed computation of node and edge betweenness. We show that if the graph G

is a tree, it is possible to construct synchronous (continuous- and discrete-time) and

asynchronous distributed algorithms, which enable each node i ∈ V in the tree G to

compute its own node betweenness Bi and its incident edge betweenness B{i,j} for

every j ∈ Ni = {j ∈ V : {i, j} ∈ E}, with only local interaction and without any cen-

tralized coordination. In systems-theoretic terms, the algorithms are networked dy-

namical systems with affine state equations and nonlinear output equations, in which

each node maintains a small subset of the state and output variables and updates

them homogeneously. We show that each of the algorithms has a unique equilibrium

point in the state space, at which the corresponding outputs are the unknown Bi’s

and B{i,j}’s. Moreover, for synchronous algorithms, the unique equilibrium point for

the continuous-time algorithm is unconditionally exponentially stable, with a con-

vergence rate that is independent of the tree G (as measured by the eigenvalues of

the system matrix). In contrast, the unique equilibrium point for the discrete-time

algorithm is unconditionally finite-time stable, with the finite convergence time coin-

ciding with the diameter of G, denoted as D(G) (i.e., the system exhibits a deadbeat

response), and can be further reduced by half (i.e., ⌈D(G)
2

⌉) when the network size N

15

Figure 2.3: A graphical illustration of the sets V(i,j) and V(j,i).

is known. Furthermore, the unique equilibrium point for asynchronous algorithm is

asymptotically stable. Finally, as can be seen from their development, the algorithms

are simple and scalable, require minimal node memories to execute, bypass entirely

the need to construct shortest paths, and can handle time-varying topologies (as long

as G remains a tree).

The outline of this chapter is as follows: Section 2.2 introduces some preliminar-

ies. Section 2.3 derives a number of algebraic relationships that are key to subsequent

development. Based on them, Section 2.4 develops several synchronous (continuous-

and discrete-time) and asynchronous distributed algorithms for computing node and

edge betweenness. Section 2.5 presents simulation results that demonstrate the ef-

fectiveness of the synchronous (continuous- and discrete-time) algorithms. Finally,

Section 2.6 concludes the chapter.

2.2 Preliminaries

Reconsider the undirected, unweighted, and connected graph G = (V, E) in Section 2.1

and suppose G is a tree, i.e., it has N nodes in V and N −1 edges in E with no cycles.

Although G is undirected, for the purpose of development let us associate with each

edge {i, j} ∈ E a fictitious pair of directed edges denoted as (i, j) and (j, i) (i.e.,

braces are for undirected edges, while parentheses are for directed ones). In addition,

16

V(i,)i

|N |i

V(i, j)

j
i|N |

j2

j1

j2
V(i,)

j1

Figure 2.4: A graphical illustration of the sets V(i,j) ∀i ∈ V ∀j ∈ Ni.

let Ẽ = {(i, j) : i, j ∈ V, {i, j} ∈ E} denote the set of 2(N − 1) directed edges. Since

G is a tree, deleting any edge {i, j} ∈ E results in two connected components, one

containing node j and the other containing node i. For convenience, let V(i,j) ⊂ V

and V(j,i) ⊂ V denote, respectively, the nonempty sets of nodes in these two connected

components, i.e.,

V(i,j) = {k ∈ V : k is in the connected component

containing j if {i, j} ∈ E is deleted}. (2.2)

With (2.2), for each edge {i, j} ∈ E , V can be partitioned into V(i,j) and V(j,i), i.e.,

V(i,j) ∪ V(j,i) = V and V(i,j) ∩ V(j,i) = ∅. (2.3)

Similarly, for each node i ∈ V,

V can be partitioned into {i} and V(i,j) ∀j ∈ Ni, (2.4)

17

where Ni = {j ∈ V : {i, j} ∈ E} denotes the set of neighbors of node i. Moreover, for

each directed edge (i, j) ∈ Ẽ , let x(i,j) denote the number of nodes in V(i,j), i.e.,

x(i,j) , |V(i,j)|, (2.5)

where | · | denotes the cardinality of a set.

2.3 Algebraic Relationships

Observe that since G is a tree, for each pair of distinct nodes k, ℓ ∈ V, there is exactly

one shortest path joining them, i.e.,

σ(k, ℓ) = 1.

Thus, the node betweenness Bi of each node i ∈ V and the edge betweenness B{i,j}

of each edge {i, j} ∈ E , introduced in (1.1) and (2.1) simplify to

Bi =
∑

k∈V
k 6=i

∑

ℓ∈V
ℓ 6=i,k

σ(k, ℓ, i)

and

B{i,j} =
∑

k∈V

∑

ℓ∈V ,ℓ 6=k

σ(k, ℓ, {i, j}).

Partitioning V into i and V(i,j) ∀j ∈ Ni, based on (2.4), we obtain

Bi =
∑

k′∈Ni

∑

k∈V(i,k′)

∑

ℓ′∈Ni

∑

ℓ∈V(i,ℓ′)

ℓ 6=k

σ(k, ℓ, i). (2.6)

18

Partitioning V into V(i,j) and V(j,i), according to (2.3), we get

B{i,j} =
∑

k∈V(i,j)∪V(j,i)

∑

ℓ∈V(i,j)∪V(j,i)

ℓ 6=k

σ(k, ℓ, {i, j}). (2.7)

Again, due to G being a tree, ∀k′ ∈ Ni and ∀ℓ′ ∈ Ni, if k
′ 6= ℓ′, then ∀k ∈ V(i,k′)

and ∀ℓ ∈ V(i,ℓ′), we have σ(k, ℓ, i) = 1. Otherwise, i.e., if k′ = ℓ′, then ∀k ∈ V(i,k′)

and ∀ℓ ∈ V(i,ℓ′) with k 6= ℓ, we have σ(k, ℓ, i) = 0. Furthermore, if k ∈ V(i,j) and

ℓ ∈ V(j,i), or if ℓ ∈ V(i,j) and k ∈ V(j,i), then we have σ(k, ℓ, {i, j}) = 1, since the

shortest path joining nodes k and ℓ must go through edge {i, j}. Otherwise, i.e., if

k, ℓ ∈ V(i,j) or k, ℓ ∈ V(j,i), then we have σ(k, ℓ, {i, j}) = 0, since the shortest path

joining nodes k and ℓ does not go through edge {i, j}. These expressions of σ(k, ℓ, i)

and σ(k, ℓ, {i, j}), along with (2.6) and (2.7), imply that

Bi =
∑

j∈Ni

∑

k∈Ni
k 6=j

x(i,j)x(i,k) (2.8)

and

B{i,j} = 2x(i,j)x(j,i). (2.9)

With (2.8) and (2.9), we have shown that both Bi and B{i,j} originally defined in

terms of the shortest paths between all pairs of nodes, may be expressed as nonlinear

functions of variables x(i,j)’s, which have simple graph-theoretic interpretation.

As it follows from (2.8) and (2.9), if each node i ∈ V knows x(i,j) ∀j ∈ Ni, it

could calculate Bi by itself. If, in addition, node i knows x(j,i) ∀j ∈ Ni, it could also

calculate B{i,j} ∀j ∈ Ni. Therefore, it is desirable to have a method that enables the

nodes to learn about their “local” x(i,j)’s. To develop such a method, observe from

19

Figure 2.5: A graphical illustration of expression (2.12).

(2.3) that

x(i,j) + x(j,i) = N, ∀i ∈ V, ∀j ∈ Ni, (2.10)

and from (2.4) that

∑

k∈Nj

x(j,k) = N − 1, ∀j ∈ V. (2.11)

Combining (2.10) and (2.11), we obtain:

x(i,j) −
∑

k∈Nj

k 6=i

x(j,k) = 1, ∀i ∈ V, ∀j ∈ Ni, (2.12)

Expression (2.12) has a couple of implications. First, as is illustrated in Figure 2.5,

expression (2.12) implies that if edge {i, j} ∈ E is removed from the tree G, the number

of nodes in the connected component containing node j (i.e., x(i,j)) is equal to one (i.e.,

due to node j) plus the remaining number of nodes in that connected component,

which happens to be equal to
∑

k∈Nj ,k 6=i x(j,k). Second, expression (2.12) provides

20

2(N − 1) linear equations relating the 2(N − 1) unknowns x(i,j) ∀(i, j) ∈ Ẽ , i.e., there

are as many equations as there are unknowns. Consequently, by introducing a vector

x ∈ R
2(N−1) obtained by stacking these 2(N − 1) unknowns x(i,j)’s, (2.12) may be

written in matrix form as

Hx = 1, (2.13)

where x ∈ R
2(N−1) is a vector containing the x(i,j)’s, 1 ∈ R

2(N−1) is the all-one column

vector, and H ∈ R
2(N−1)×2(N−1) is a matrix having the following appealing properties:

Lemma 1. The matrix H is a unipotent matrix with all its 2(N − 1) eigenvalues at

1.

Proof. Observe that H in (2.13) depends on the order in which the 2(N−1) variables

x(i,j)’s are stacked into the vector x. Also note that such an order does not affect the

eigenvalues of H because permutation of rows and columns of H may be regarded as a

similarity transformation that leaves all the eigenvalues of H intact. Hence, consider

without loss of generality the following rule for stacking the 2(N−1) variables x(i,j)’s:

• First, arbitrarily pick a node r ∈ V and view it as a root node.

• Second, let L0 denote the set containing only node r. Also, let L1 ⊂ V denote

the set of nodes that are one hop away from node r, L2 ⊂ V the set of nodes that

are two hops away, and so on, until the set Lp is reached, where p = maxj∈V drj

and drj is the distance between nodes r and j. Starting with an empty vector

x, insert into x the set of x(i,j) where i ∈ L0 and j ∈ L1, where the order among

them can be arbitrary. Upon completion, insert into x the set of x(i,j) where

i ∈ L1 and j ∈ L2. Repeat this process until x(i,j) for all i ∈ Lp−1 and j ∈ Lp

are inserted. At this point, the first N − 1 elements of the vector x are defined,

making up half of its length of 2(N − 1).

21

• Third, for each ℓ ∈ {1, 2, . . . , N − 1}, if the ℓth element of x is x(i,j), then let

the (ℓ+N − 1)th element of x be x(j,i).

In this fashion, the order in which the 2(N − 1) variables x(i,j)’s are stacked into the

vector x is completely defined. With this ordering, it is straightforward to see that

H has the form

H =




1 ∗ . . . ∗ 0 0 . . . 0

0 1
. . .

... 0 0 . . . 0

...
. . .

. . . ∗
...

...
. . .

...

0 . . . 0 1 0 0 . . . 0

0 ∗ . . . ∗ 1 0 . . . 0

∗ 0
. . .

... ∗ 1
. . .

...

...
. . .

. . . ∗
...

. . .
. . . 0

∗ . . . ∗ 0 ∗ . . . ∗ 1




. (2.14)

Figure 2.6 shows an example of an network with its original node indices, unstructured

H matrix, and its structured H matrix after ordering the node indices in a breadth-

first manner.

Notice from (2.14) that H has a 2-by-2 block triangular structure, in which the

first block on the diagonal of H is an upper triangular matrix with 1 on its diagonal,

while the second block is a lower triangular matrix also with 1 on its diagonal. Thus,

all the 2(N − 1) eigenvalues of H are at 1, making it unipotent and completing the

proof.

Corollary 1. The matrix I −H, where I ∈ R
2(N−1)×2(N−1) is the identity matrix, is

a nilpotent matrix with all its 2(N − 1) eigenvalues at 0.

Proof. The proof is an immediate consequence of (2.14).

22

(a) Original node indices. (b) Unstructured H matrix.

(c) Node indices after ordering. (d) Structured H matrix.

Figure 2.6: An example of structuring H matrix on the 5-node tree graph.

2.4 Distributed Algorithms

In this section, we leverage the results from Section 2.3 to develop continuous-time

and discrete-time synchronous distributed algorithms in Section 2.4.1–2.4.3 and an

asynchronous distributed algorithm in Section 2.4.4 for computing node and edge

betweenness.

2.4.1 Continuous-Time Algorithm

Recall from Section 2.3 that if each node i ∈ V is able to determine the values of x(i,j)

and x(j,i) ∀j ∈ Ni, then it could use (2.8) and (2.9) to compute Bi and B{i,j} ∀j ∈ Ni

by itself. Also, recall from (2.13) that the 2(N − 1) variables x(i,j) ∀(i, j) ∈ Ẽ are

linearly related through H , which by Lemma 1 is unipotent with all its eigenvalues at

1. This result implies that the 2(N−1) linear equations (2.12) relating the x(i,j)’s are

independent and, thus, have a unique solution. More importantly, the result implies

that −H is always asymptotically stable with all its eigenvalues at −1 regardless of

23

the topology of the tree G. These two implications, together, say that if we form a

differential equation

˙̂x(t) = −Hx̂(t) + 1, (2.15)

where t ∈ [0,∞) denotes continuous time and x̂(t) ∈ R
2(N−1) is an estimate of the

unknown x at time t, then for any initial condition x̂(0), the estimate x̂(t) would expo-

nentially converge to the unique equilibrium point x with a convergence rate charac-

terized by the uniform eigenvalues of −1. Therefore, we may define a continuous-time

distributed algorithm as follows: for each directed edge (i, j) ∈ Ẽ , let x̂(i,j)(t) ∈ R

represent an estimate of x(i,j) at time t and suppose x̂(i,j)(t) is maintained in node

i’s memory. In addition to maintaining x̂(i,j)(t) ∀j ∈ Ni, suppose each node i ∈ V

maintains an estimate B̂i(t) ∈ R of Bi and an estimate B̂{i,j}(t) ∈ R of B{i,j} ∀j ∈ Ni.

Equations (2.8), (2.9) and (2.15) collectively suggest the following synchronous and

homogeneous rule for updating all the estimates:

˙̂x(i,j)(t) = −x̂(i,j)(t) +
∑

k∈Nj

k 6=i

x̂(j,k)(t) + 1, ∀i ∈ V, ∀j ∈ Ni, (2.16a)

B̂i(t) =
∑

j∈Ni

∑

k∈Ni
k 6=j

x̂(i,j)(t)x̂(i,k)(t), ∀i ∈ V, (2.16b)

B̂{i,j}(t) = 2x̂(i,j)(t)x̂(j,i)(t), ∀i ∈ V, ∀j ∈ Ni. (2.16c)

Notice that (2.16a) is equivalent to (2.15), while (2.16b) and (2.16c) are based on (2.8)

and (2.9). Hence, algorithm (2.16) may be viewed as a networked dynamical system

with an affine state equation and a nonlinear output equation. Also note that to

implement algorithm (2.16), every pair of one-hop neighbors i, j ∈ V with {i, j} ∈ E

need to continuously exchange their x̂(i,j)(t) and x̂(j,i)(t). There are, however, no

restrictions on the initial condition, no needs to construct shortest paths, and no

24

algorithm parameters to tune.

The following theorem summarizes the above findings:

Theorem 1. The continuous-time algorithm (2.16) has a unique equilibrium point x

that is exponentially stable, such that for any x̂(i,j)(0)∀(i, j)∈Ẽ , we have limt→∞x̂(i,j)(t)

= x(i,j) ∀(i, j) ∈ Ẽ. In addition, limt→∞ B̂i(t) = Bi ∀i ∈ V and limt→∞ B̂{i,j}(t) =

B{i,j} ∀{i, j} ∈ E .

2.4.2 Discrete-Time Algorithm

The continuous-time algorithm (2.16) is made possible by the unipotent property of

H established in Lemma 1. In what follows, we make use of the nilpotent property

of I −H from Corollary 1 to design its discrete-time counterpart. To this end, notice

that if we form a difference equation

x̂(t+ 1) = (I −H)x̂(t) + 1, (2.17)

where t ∈ {0, 1, 2, . . .} here denotes discrete time and x̂(t) ∈ R
2(N−1) plays the same

role as before, then because of (2.13) and because all the eigenvalues of I −H are 0,

x̂(t) would converge to the unique equilibrium point x in finite time irrespective of the

initial condition x̂(0). Hence, (2.17) suggests the following discrete-time distributed

algorithm for iterating the estimates x̂(i,j)(t)’s:

x̂(i,j)(t+ 1) =
∑

k∈Nj

k 6=i

x̂(j,k)(t)+1, ∀i∈V, ∀j∈Ni. (2.18)

Note that algorithm (2.18) is an affine state equation, and its nonlinear output equa-

tions are identical to (2.16b) and (2.16c), except that t here is integer-valued. To

prove the convergence of the algorithm (2.18), recall the definition of V(i,j) in (2.2).

Let τ(i,j) = maxk∈V(i,j)
dik, where dik is the distance between nodes i and k. We show

25

below that ∀x̂(0), ∀(i, j) ∈ Ẽ , ∀t ∈ {τ(i,j), τ(i,j) + 1, . . .}, x̂(i,j)(t) = x(i,j). In other

words, if we let Ẽℓ = {(i, j) ∈ Ẽ : τ(i,j) = ℓ} for ℓ ∈ {1, 2, . . . , D(G)}, we have:

Claim 1. For any arbitrary x̂(0) ∈ R
2(N−1), ∀ℓ ∈ {1, 2, . . . , D(G)}, we have

x̂(i,j)(t) = x(i,j), ∀(i, j) ∈
ℓ⋃

i=1

Ẽi, ∀t ∈ {ℓ, ℓ+ 1, . . .}. (2.19)

Proof. Let x̂(0) be given. We show by induction that (2.19) is true∀ℓ∈{1, 2,. . .,D(G)}.

First, let ℓ = 1 and let (i, j) ∈ Ẽ1, indicating that node j is a leaf node. Therefore,

according to (2.18) ∀t ∈ {1, 2, . . .}, x̂(i,j)(t) = 1 = x(i,j).

Next, suppose (2.19) is true for ℓ ∈ {1, 2, . . . , D(G) − 1}. Let (i, j) ∈
⋃ℓ+1

i=1 Ẽi,

there are two cases:

• when (i, j) ∈
⋃ℓ

i=1 Ẽi, based on the proposition, ∀t ∈ {ℓ+ 1, ℓ+ 2, . . .}, we have

x̂(i,j)(t) = x(i,j);

• when (i, j) ∈ Ẽℓ+1, ∀k ∈ Nj/{i}, if ∀(j, k) ∈
⋃ℓ

i=1 Ẽi, we have x̂(j,k)(t−1) = x(j,k).

Thus x̂(i,j)(t) = x(i,j) based on (2.18); and if ∃ at least one (j, k) ∈
⋃D(G)

i=ℓ+1 Ẽi,

based on the property of shortest path, τ(i,j) = maxk∈V(i,j)
dik = maxk∈V(i,j)

(dij+

djk) = 1 + maxk∈V(i,j)
djk ≥ ℓ+ 2, which contradicts the fact that (i, j) ∈ Ẽℓ+1.

Corollary 2. For any arbitrary (i, j) ∈ Ẽ, ∀t ∈ {D(G), D(G) + 1, . . .}, x̂(i,j)(t) =

x(i,j).

Proof. By definition, D(G) = maxi∈V ,j∈V dij. Since V is a finite set, let UD =

{{i0, j0} : di0j0 = D(G), ∀i0 ∈ V, ∀j0 ∈ V} be the set of pairs of nodes with

each pair has distance D(G). ∀(i, j) ∈ Ẽ , τ(i,j) = maxk∈V(i,j)
dik ≤ maxk∈V dik ≤

maxi∈V ,k∈V dik = D(G), where the equality holds only when ∃k ∈ V(i,j) s.t., {i, k} ∈

UD. Therefore, Corollary 2 is true based on (2.19).

26

Based on Claim 1 and Corollary 2, as is asserted in the theorem below, algorithm

(2.18) not only achieves a deadbeat response, it does so in t = D(G) time steps:

Theorem 2. The discrete-time algorithm (2.18) has a unique equilibrium point x

that is finite-time stable, such that for any x̂(i,j)(0) ∀(i, j) ∈ Ẽ and for any t ∈

{D(G), D(G) + 1, D(G) + 2, . . .}, we have x̂(i,j)(t) = x(i,j) ∀(i, j) ∈ Ẽ, B̂i(t) = Bi

∀i ∈ V, and B̂{i,j}(t) = B{i,j} ∀{i, j} ∈ E .

Proof. The proof is an immediate consequence of Claim 1 and Corollary 2.

2.4.3 Alternative Discrete-Time Algorithm

This algorithm in (2.18) not only enables nodes in a large-scale network to cooper-

atively learn how important or critical they individually are, but also to learn how

large the network is, in terms of the network size N , with only local interaction and

without any global coordination nor knowledge of the network topology. However, in

some applications, the network size N is already known by each node. Is it possible

to improve the efficiency based on the knowledge of N? This subsection is devoted

to addressing this question by introducing an alternative discrete-time algorithm.

Aimed at this goal, for each edge {i, j} ∈ E , let b{i,j} ∈ {0, 1}, ∀t ∈ {0, 1, 2, . . .}.

Suppose each node i ∈ V initializes b{i,j}(0) ∀j ∈ Ni to zero. Let b{i,j}(t) be defined

as

b{i,j}(t+ 1) =






1, if b{i,h}(t) = 1 ∀h ∈ Ni/{j} or b{j,k}(t) = 1 ∀k ∈ Nj/{i},

0, otherwise.

(2.20)

Note that when Ni = {j} or Nj = {i} at time t, b{i,j}(t + 1) = 1 is true vacuously.

Since when node i or j is a leaf node, which is under this condition, we have x̂(j,i)(t+

1) = 1 = x(j,i) or x̂(i,j)(t + 1) = 1 = x(i,j) respectively, and since if x̂{i,h}(t) = x{i,h}

27

∀h ∈ Ni/{j} or x̂{j,k}(t) = x{j,k} ∀k ∈ Nj/{i}, we get x̂(i,j)(t + 1) = x(i,j) according

to (2.10) and (2.12). Therefore, b{i,j}(t + 1) in (2.20) represents the flag of whether

x̂(i,j)(t + 1) = x(i,j) is achieved.

Recall from Section 2.3 that if each node i ∈ V is able to determine the values of

x(i,j) and x(j,i) ∀j ∈ Ni, then it could use (2.8) and (2.9) to compute Bi and B{i,j}

∀j ∈ Ni by itself. In light of this fact, ∀t ∈ {0, 1, 2, . . .}, for each directed edge

(i, j) ∈ Ẽ , let x̂(i,j)(t) ∈ R and b{i,j}(t) ∈ R are maintained in node i’s memory (i.e.,

each node i ∈ V maintains x̂(i,j)(t) and b{i,j}(t) ∀j ∈ Ni). In addition, for each i ∈ V,

B̂i(t) and B̂{i,j}(t) ∀j ∈ Ni are also maintained in node i’s memory. Suppose each

node i ∈ V initializes x̂(i,j)(0) ∀j ∈ Ni arbitrarily. Based on (2.10) and (2.12), ∀i ∈ V,

∀j ∈ Ni, for each t ∈ {0, 1, 2, . . .}, along with (2.20), we obtain another rule for

updating all the estimates:

x̂(i,j)(t+ 1) =





N − (1 +
∑

h∈Ni
h 6=j

x̂(i,h)(t)), if b{i,h}(t) = 1 ∀h ∈ Ni/{j},

1 +
∑

k∈Nj

k 6=i

x̂(j,k)(t), otherwise.

(2.21)

Similar to algorithm (2.18), algorithm (2.20) and (2.21) consists of two state equa-

tions, and its nonlinear output equations are identical to (2.16b) and (2.16c) with

discrete time t here. Moreover, as is asserted in the theorem below, with the knowl-

edge of N , algorithm (2.20) and (2.21) further reduce the finite convergence time to

t = ⌈D(G)
2

⌉ time steps:

Theorem 3. The discrete-time algorithm (2.20) and (2.21) has a unique equilibrium

point x that is finite-time stable, such that for any x̂(i,j)(0) ∀(i, j) ∈ Ẽ and for any

t ∈ {⌈D(G)
2

⌉, ⌈D(G)
2

⌉+1, ⌈D(G)
2

⌉+2, . . .}, we have x̂(i,j)(t) = x(i,j) ∀(i, j) ∈ Ẽ , B̂i(t) = Bi

∀i ∈ V, and B̂{i,j}(t) = B{i,j} ∀{i, j} ∈ E .

28

2.4.4 Asynchronous Distributed Algorithm

The aforementioned discrete-time distributed algorithms are relatively simple to de-

sign and always provide a known upper bound on the process execution. However,

as the size of network becomes very large, this synchronization may become difficult.

Thus, it is desirable to design an asynchronous distributed algorithm, which allows

variables be updated independently and without the need for synchronization.

To begin, let t denote the index of iterations. Suppose ∀t ∈ {0, 1, 2, . . .}, each

node i ∈ V maintains in its local memory an estimate x̂(i,j)(t) of x(i,j) ∀j ∈ Ni, with

an arbitrary initial conditions, i.e., x̂(i,j)(0) ∈ R ∀j ∈ Ni. Suppose at each iteration

t ∈ {0, 1, 2, . . .}, a node u ∈ V is selected to initiate the iteration with a selected

neighbor v ∈ Nu. During this process, node u updates its variable x̂(u,v)(t), whereas

the rest of the variables remain idle. To determine how these variables are updated,

we introduce below an objective function V , defined as

V (x̂(t)) = ‖Hx̂(t)− 1‖2. (2.22)

Due to (2.13), we have

V (x) = 0

Since H is nonsingular,

V (x̂) > 0 if x̂ 6= x.

Thus, V is quadratic positive definite with respect to x, making it a legitimate Lya-

punov function candidate.

Thus, by having the sequence of all pairs of nodes repeatedly updating their

estimates so that the value of V (x̂(t)) is repeatedly minimized, all the N nodes in the

29

network would gradually drive their estimates toward the true values, thereby driving

their estimates B̂i(t)’s and B̂{i,j}(t)’s toward the true Bi’s and B{i,j}’s.

Note that V in (2.22) can be written using (2.12) as its elementary form:

V (x̂(t)) =
∑

(i,j)∈Ẽ

(
x̂(i,j)(t)−

∑

k∈Nj

k 6=i

x̂(j,k)(t)− 1
)2

. (2.23)

Suppose x̂(u,v)(t + 1) is chosen to minimize V (x̂(t + 1)) − V (x̂(t)), which equals to

minimize V (x̂(t+ 1)) since V (x̂(t)) can be viewed as a constant at t+ 1. let

x̂(t) =

[
x̂(i1,j1)(t), . . . , x̂(u,v)(t), . . . , x̂(i2(N−1) ,j2(N−1))(t)

]T

be the estimate of x at t, i.e.,

x̂(u,v)(t + 1) = argmin
z∈R

‖H

[
x̂(i1,j1)(t), . . . , z, . . . , x̂(i2(N−1) ,j2(N−1))(t)

]T
− 1‖2.

To calculate its value, take the partial derivative of V (x̂(t + 1)) with respect to

x̂(u,v)(t+ 1) and set it to zero, yields

x̂(u,v)(t+ 1) =
1

|Nu|

[∑

k∈Nv
k 6=u

x̂(v,k)(t)+
∑

k∈Nu
k 6=v

x̂(k,u)(t)−(|Nu| − 2)
∑

k∈Nu
k 6=v

x̂(u,k)(t) + 2−|Nu|
]
.

In other words, ∀(i, j) ∈ Ẽ , x̂(i,j)(t+1) = x̂(u,v)(t+1) only when x̂(i,j) is the one being

updated at t + 1, otherwise x̂(i,j) will remain idle, i.e.,

x̂(i,j)(t+1)=





1
|Ni|

[∑
k∈Nj

k 6=i

x̂(j,k)(t)+
∑

k∈Ni
k 6=j

x̂(k,i)(t)−(|Ni|−2)
∑

k∈Ni
k 6=j

x̂(i,k)(t)+2−|Ni|
]
,

if x̂(i,j) is being updated at t + 1,

x̂(i,j)(t), otherwise,

(2.24)

30

along with (2.16b) and (2.16c), providing the asynchronous distributed algorithm.

To analyze its stability and for the sake of convenience, let’s first consider a linear

system of equations

Az = b

where A ∈ R
n×n, z ∈ R

n, b ∈ R
n, A is nonsingular and A = [a1, . . . , an], ai ∈ R

n,

which is an simplified version of our problem in (2.13), where

A = H,

z = x,

b = 1,

and n = 2(N − 1). Let t ∈ {0, 1, 2, . . .} denote the index of iterations, and let

z(t) =

[
z1(t), z2(t), . . . , zn(t)

]T

be the estimate of z∗ at t, ∀t ∈ {0, 1, 2, . . .}. Consider the following update rule:

zi(t + 1) =





argminz∈R ‖A

[
z1(t), . . . , zi−1(t), z, zi+1(t), . . . , zn(t)

]T
− b‖2,

if zi is being updated at t + 1,

zi(t), otherwise,

(2.25)

In this case, we can think of the variable x̂(i,j)(t+1), as zi(t+1) in (2.25). Moreover,

let z∗ be the unique solution to (2.25), i.e., Az∗ = b. We show from lemma below,

the asynchronous algorithm (2.25) is exponentially stable:

Lemma 2. For each t ∈ {0, 1, 2, . . .}, let u(t) ∈ {1, 2, . . . , n} be the variable that gets

31

updated. For each i ∈ {0, 1, 2, . . . , n}, let Ui = {t ∈ {0, 1, 2, . . .} : u(t) = i} be the

index of iterations that i gets updated. Assume that for each i ∈ {0, 1, 2, . . . , n}, the

set Ui has infinitely many elements and that ∃T < ∞ s.t. for each t ∈ {0, 1, 2, . . .},

∃l ∈ Ui s.t. l ∈ {t + 1, t + 2, . . . , t + T}. The asynchronous algorithm (2.25) has a

unique equilibrium point z∗ that is exponentially stable.

Proof. Consider, as in our development, a Lyapunov function candidate V :Rn → R,

defined as

V (z(t)) = ‖Az(t)− b‖2, ∀t ∈ {0, 1, 2, . . .}.

Clearly,

V (z∗) = ‖Az∗ − b‖2 = 0,

and

V (z) > 0 ∀z 6= z∗

due to A being nonsingular. Thus, V is positive definite with respect to z∗. Due to

(2.25), the change in the value of V as we go from t to t+ 1 is

V (z(t + 1))− V (z(t)) = −‖ai‖
2
(
zi(t + 1)− zi(t)

)2

, (2.26)

where zi is being updated at t+ 1. For convenience, let z̃(t) = Az(t)− b, so that

z̃(t + 1) = Piz̃(t), if i updates at t + 1 (2.27)

V (t) = ‖z̃(t)‖2, (2.28)

32

where

Pi = I −
1

‖ai‖2
aia

T
i .

Moreover, (2.26) can be rewritten as

V (t)− V (t + 1) = ‖z̃(t+ 1)− z̃(t)‖2 ≥ 0, (2.29)

implying that the sequence V (0), V (1), V (2), . . . is a non-increasing, nonnegative, and

therefore convergent sequence.

From the assumption and (2.27), for each t0 ∈ {0, 1, 2, . . .}, ∀i ∈ {0, 1, 2, . . . , n},

∃l ∈ {t0 + 1, t0 + 2, . . . , t0 + T} s.t.,

z̃(l) = Piz̃(l − 1).

Thus,

aTi z̃(l) = aTi Piz̃(l − 1)

= aTi [I −
1

‖ai‖2
aia

T
i]z̃(l − 1)

= aTi z̃(l − 1)− aTi z̃(l − 1)

= 0.

33

Then,

|aTi z̃(t0 + T)|2 =|aTi

(
z̃(t0 + T)− z̃(l)

)
|2

≤‖ai‖
2‖z̃(t0 + T)− z̃(l)‖2

=‖ai‖
2‖z̃(t0 + T)− z̃(t0 + T − 1) + z̃(t0 + T − 1)

− z̃(t0 + T − 2) + · · ·+ z̃(l + 1)− z̃(l)‖2.

Applying the Cauchy-Schwarz Inequality to it,

|aTi z̃(t0 + T)|2 ≤‖ai‖
2(t0 + T − l)

(
‖z̃(t0 + T)− z̃(t0 + T − 1)‖2 + ‖z̃(t0 + T − 1)

−z̃(t0 + T − 2)‖2+· · ·+‖z̃(l + 1)− z̃(l)‖2
)

≤‖ai‖
2(t0 + T − l)

(
‖z̃(t0 + T)− z̃(t0 + T − 1)‖2 + ‖z̃(t0 + T − 1)

−z̃(t0+T−2)‖2+...+‖z̃(l + 1)−z̃(l)‖2+...+‖z̃(t0 + 1)−z̃(t0)‖
2
)
.

Due to (2.29), ∀i ∈ {0, 1, 2, . . . , n}, we obtain

|aTi z̃(t0 + T)|2 =‖ai‖
2(t0 + T − l)

(
−V (t0 + T) + V (t0 + T − 1)− V (t0 + T − 1) + ...

− V (t0 + 1) + V (t0)
)

=‖ai‖
2(t0 + T − l)

(
−V (t0 + T) + V (t0)

)

≤‖ai‖
2(T − l)

(
V (t0)− V (t0 + T)

)
. (2.30)

34

Based on (2.28), (2.30), and since l ≥ 1,

V (t0 + T) = ‖z̃(t0 + T)‖2

≤
1

λmin(AAT)
z̃T (t0 + T)AAT z̃(t0 + T)

=
1

λmin(AAT)

n∑

i=1

|aTi z̃(t0 + T)|2

≤

∑n
i=1 ‖ai‖

2(T − 1)(V (t0)− V (t0 + T))

λmin(AAT)
. (2.31)

Note that λmin(AA
T) = σ2

min(A) and
∑n

i=1 ‖ai‖
2 =

∑n
i=1 σ

2
i (A). Thus, from (2.31),

we have

V (t0 + T) ≤ γV (t0), (2.32)

where

γ =
(T − 1)

∑n
i=1 σ

2
i (A)

σ2
n(A) + (T − 1)

∑n
i=1 σ

2
i (A)

.

Next, ∀k ∈ {0, 1, 2, . . .}, ∀α ∈ {0, 1, 2, . . . , T − 1}, let t = kT + α. Based on (2.29)

and (2.32),

V (t) = V (kT + α)

≤ V (kT)

≤ γkV (0)

=
γt/T

γα/T
V (0).

Since 0 < γ < 1 and 0 ≤ α/T < 1, we have

γα/T > γ,

35

so that

V (t) <
V (0)

γ
γt/T , ∀t ∈ {0, 1, 2, . . .}. (2.33)

Next, since V (z(t)) = ‖Az(t)− b‖2 and Az∗ = b,

V (z(t)) = (Az(t)− b)T (Az(t)− b)

= (Az(t)−Az∗)T (Az(t)−Az∗)

= (z(t)− z∗)TATA(z(t)− z∗).

Since A is nonsingular, ATA is positive definite with λmin(A
TA) > 0. Thus,

V (z(t)) ≥ λmin(A
TA)‖z(t)− z∗‖2. (2.34)

Combining (2.33) and (2.34), we have

‖z(t)− z∗‖ ≤

√
V (0)

γ

√
1

λmin(ATA)
γ

t
2T . (2.35)

Next, if we let A = H , z = x, b = 1, and n = 2(N − 1), as an immediate

consequence of Lemma 2, we show in the following theorem that algorithm (2.24) is

exponentially stable.

Theorem 4. The asynchronous distributed algorithm (2.24) has a unique equilibrium

point x that is exponentially stable, such that for any x̂(i,j)(0) ∀(i, j) ∈ Ẽ, we have

limt→∞ x̂(i,j)(t) = x(i,j) ∀(i, j) ∈ Ẽ. In addition, limt→∞ B̂i(t) = Bi ∀i ∈ V and

limt→∞ B̂{i,j}(t) = B{i,j} ∀{i, j} ∈ E .

36

10 10

10 16

10

0 0

18

0 8 0

Node 1

Node 3

Node 6Node 5Node 4

Node 2

(a) Over t ∈ [0, 10].

10

10

10 18

10

0 0

14

0 14 0

Node 1

Node 3

Node 6Node 5Node 4

Node 2

(b) Over t ∈ [10, 20].

16

10 10

18

10

8 0

12

0 14 0

Node 1

Node 3

Node 6Node 5Node 4

Node 2

(c) Over t ∈ [20, 30].

Figure 2.7: A 6-node tree graph and its node and edge betweenness over time t ∈
[0, 30].

2.5 Simulation Results

In this section, we present two sets of simulation results that demonstrate the effec-

tiveness of the continuous- and discrete-time synchronous distributed algorithms.

2.5.1 Simulation of the Continuous-Time Distributed Algo-

rithm

Consider a tree graph with N = 6 nodes, whose topology changes from time to time,

as shown in Figure 2.7. Specifically, Figure 2.7(a) shows the tree topology over time

t ∈ [0, 10] and the resulting node and edge betweenness Bi’s and B{i,j}’s calculated

using (1.1) and (2.1), while Figures 2.7(b) and 2.7(c) do the same for t ∈ [10, 20] and

t ∈ [20, 30], respectively. As indicated by the arrows and dotted lines in Figures 2.7(b)

and 2.7(c), edge {2, 3} is deleted and replaced by edge {2, 5} at time t = 10, while edge

37

{3, 4} is deleted and replaced by edge {1, 4} at time t = 20, but the graph remains

a tree. Suppose the nodes employ the continuous-time algorithm (2.16) to help them

cooperatively compute their estimates B̂i(t)’s and B̂{i,j}(t)’s of the changing Bi’s and

B{i,j}’s.

Figure 2.8 displays the simulation result. Observe that despite the time-varying

topology, algorithm (2.16) allows the nodes’ B̂i(t)’s and B̂{i,j}(t)’s to asymptotically

track the Bi’s and B{i,j}’s without having to “restart” or “refresh”—an action that

would likely be required if the algorithm were based on explicit shortest path con-

struction. Indeed, the nodes may not even be aware, and are not required to notify

or be notified, that the topology has changed. Also note that because of the time-

varying topology, B{2,3} is defined only for t ∈ [0, 10], B{2,5} for t ∈ [10, 30], B{3,4} for

t ∈ [0, 20], and B{1,4} for t ∈ [20, 30]—and so are their estimates B̂{i,j}(t)’s.

2.5.2 Simulation of the Discrete-Time Distributed Algorithm

Consider a tree graph with N = 16 nodes as shown in Figure 2.9, in which Fig-

ure 2.9(a) displays the node indices and Figure 2.9(b) displays the corresponding

node and edge betweenness Bi’s and B{i,j}’s. Notice that the diameter of this tree

graph is 11 (attained by the shortest path between nodes 7 and 16). Suppose the

nodes utilize the discrete-time algorithm (2.18) to jointly compute their estimates

B̂i(t)’s and B̂{i,j}(t)’s of the Bi’s and B{i,j}’s. Figure 2.10 shows the simulation re-

sult, where it can be seen that algorithm (2.18) indeed exhibits a deadbeat response,

allowing all the nodes’ B̂i(t)’s and B̂{i,j}(t)’s to reach the Bi’s and B{i,j}’s in finite

time of no more than t = 11 time steps.

38

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

14

16

18

20

Time t

B̂
i
(t

)’
s

B̂1

B̂2

B̂3

B̂4

B̂5

B̂6

(a) Node betweenness estimates.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

B̂{1,3} , B̂{2,3}

B̂{3,4}

B̂{3,5}

B̂{5,6}

B̂{1,3}

B̂{3,4}

B̂{2,5}

B̂{5,6}

B̂{3,5}

B̂{1,3}

B̂{2,5} B̂{5,6}

B̂{1,4}

B̂{3,5}

Time t

B̂
{
i,

j
}
(t

)’
s

(b) Edge betweenness estimates.

Figure 2.8: Performance of the continuous-time algorithm (2.16) in computing node
and edge betweenness on the time-varying 6-node tree graph.

39

1

2 3

4
5

6

7

8

9

1011

12

13

14

15
16

(a) Node indices.

30

56

110

128

30 78

126

120

30
96

78

56

30

56

30

0

28 132

94
0

112

108

108

0

7252

28

0

52

28
0

(b) Node and edge betweenness.

Figure 2.9: A 16-node tree graph and its node indices and node and edge betweenness.

2.6 Conclusion

In this chapter, we have introduced a set of dynamical systems approaches to develop

several synchronous (continuous- and discrete-time) and asynchronous distributed

algorithms, which enable enable every node in an undirected and unweighted tree

graph to cooperatively compute their individual node betweenness and incident edge

betweenness with only local interaction and without any centralized coordination.

Constructed using dynamical systems approaches, we have shown that the algorithms

are simple and scalable, with the synchronous continuous-time algorithm being un-

conditionally exponentially convergent, the synchronous discrete-time algorithm un-

conditionally exhibiting a deadbeat response, and the asynchronous algorithm being

asymptotically stable. Moreover, we have shown that they require minimal node

memories to execute, bypass entirely the need to construct shortest paths.

Given that trees are a very special type of graphs, Chapter 4 will develop dis-

tributed algorithms for estimating betweenness on general graphs, building on the

ideas of this chapter.

40

0 5 10 15
0

50

100

150

200

250

Time t

B̂
i
(t

)’
s

B̂1

B̂2

B̂3

B̂4

B̂5

B̂6

B̂7

B̂8

B̂9

B̂10

B̂11

B̂12

B̂13

B̂14

B̂15

B̂16

(a) Node betweenness estimates.

0 5 10 15
0

50

100

150

200

250

300

Time t

B̂
{
i,

j
}
(t

)’
s

B̂{1,2}

B̂{2,3}

B̂{3,4}

B̂{3,6}

B̂{4,5}

B̂{4,14}

B̂{6,7}

B̂{7,8}

B̂{8,9}

B̂{8,10}

B̂{10,11}

B̂{11,12}

B̂{12,13}

B̂{14,15}

B̂{15,16}

(b) Edge betweenness estimates.

Figure 2.10: Performance of the discrete-time algorithm (2.18) in computing node
and edge betweenness on the 16-node tree graph.

41

Chapter 3

Distributed Computation of

Closeness on Tree Graphs

3.1 Introduction

When humans analyze a network, it is often useful for them to have measures that

assign a score to each node (or edge) in the network, so that meaningful observations

can be made about, say, the node importance. Recognizing this need, a growing set

of measures known as centrality measures has been introduced in the network science

literature (e.g., [6, 7, 13, 112–116]). For example, betweenness centrality [6, 7], which

assigns higher scores to nodes who lie on higher percentages of the shortest paths

between all pairs of nodes, and closeness centrality [13], which assigns higher scores

to those who have shorter distances to all other nodes, are two of the oldest and most

fundamental measures that have been widely used.

With the continued increase in the size and complexity of networks and the ris-

ing demand for their autonomy, it is becoming increasingly desirable that nodes in a

network can analyze the network themselves, as opposed to relying on humans. In

particular, it would be useful if the nodes could cooperatively determine their own

42

betweenness and closeness centralities, despite knowing only who their neighbors are

and having limited computational powers, limited physical memories, and no central-

ized coordination.

In the previous chapter, we develop a pair of distributed algorithms that enable

nodes in a tree graph to compute two variants of betweenness centrality called node

betweenness and edge betweenness [6, 7], which assigns higher scores to nodes who

lie on higher percentages of the shortest paths between all pairs of nodes, despite

facing the aforementioned constraints. Following the same footprint, in this chapter

we address the distributed computation of two variants of closeness centrality called

classic closeness [12, 13] and exponential closeness [113], which assigns higher scores

to those who have shorter distances to all other nodes, are two of the oldest and most

fundamental measures that have been widely used.

To set the stage, we define these two variants below in the context of an undirected,

unweighted and connected graph G = (V, E), where V = {1, 2, . . . , N} denotes the set

of N ≥ 2 nodes and E ⊂ {{i, j} : i, j ∈ V, i 6= j} denotes the set of edges:

• The classic closeness (often referred to simply as closeness) Ci of a node i ∈ V

is defined in Bavelas [12] and Sabidussi [13] in (1.2) as

Ci ,
N − 1∑

j∈V

dij
,

where dij = dji is the distance between nodes i and j, and the factor N − 1

is inserted so that Ci ∈ (0, 1]. It follows that the larger Ci, the closer node

i is, on average, to all other nodes in the graph G. This makes nodes with

high closeness effective in, for instance, spreading diseases or rumors to, and

gathering information from, everyone else. Figure 3.1 illustrates this concept,

in which the larger Ci, the darker node i is shaded. Notice that classic closeness

changes rather gracefully from one node to its neighbors.

43

(a) Original graph.

(b) Disconnected graph.

(c) Adding a bridge.

Figure 3.1: An illustration of classic closeness.

44

(a) Original graph.

(b) Disconnected graph.

(c) Adding a bridge.

Figure 3.2: An illustration of exponential closeness.

45

• A limitation of classic closeness Ci in (1.2) is that if node i is very far away

from some node j, then even if node i is very close to the rest of the nodes,

its Ci would be practically zero, signifying that node i has poor closeness. In

some applications, it might be desirable to discount the influence of nodes who

are very far away, preventing them from “skewing” the closeness of node i. The

exponential closeness CE
i of a node i ∈ V, defined in [113] as

CE
i ,

∑

j∈V
j 6=i

2−dij ,

is a measure that possesses this desirable property. In this chapter, we slightly

generalize the definition of CE
i to

CE
i ,

∑

j∈V
j 6=i

α−dij , (3.1)

where α > 1, allowing the base of the exponent to be a number other than

2. Figure 3.2 illustrates the idea of exponential closeness and, together with

Figure 3.1, demonstrates the difference between Ci and CE
i :

– First, from Figure 3.1(a) and 3.2(a) we see that the nodes who are impor-

tant respected to Ci, are also important respected to CE
i .

– However, from Figure 3.1(b) and 3.2(b) we can see that Ci is not well

defined for disconnected graph, while CE
i is.

– Finally, if you add another component to the graph and connect these two

components by a bridge, the two measures are quite different, which can

be seen from Figure 3.1(c) and 3.2(c).

The Figure 3.1 and Figure 3.2 show that the classic closeness indeed care about

the average distance, so that the most “central” node is the one that lies in the

46

center of the whole network, i.e., the bridge. In contrast, exponential closeness

doesn’t care about nodes who are very far away, so that the most “central”

nodes are the ones that lies in the center of their own component.

In this chapter, we show that if the graph G is a tree, it is possible to construct

continuous- and discrete-time distributed algorithms, which enable every node i ∈ V

in the tree G to compute its own classic closeness Ci and exponential closeness CE
i by

talking only to neighbors, executing simple homogeneous update rules, and consuming

minimal physical memories. To construct these algorithms, we adopt what we call

an algebraic-relationships-turned-dynamical-systems approach that was also used in

Chapter 2 for computing betweenness. With this approach, we first express the

unknown Ci’s and CE
i ’s as functions of some variables that have graph-theoretic

meaning. We then relate these variables to arrive at a set of algebraic equations.

By turning these algebraic equations into state equations, and those functions into

output equations, we subsequently obtain networked dynamical systems describing

the algorithms. We show that the state equation of each system is affine and has a

unique equilibrium point that is always exponentially stable (for continuous-time) or

finite-time stable (for discrete-time), regardless of the tree topology. Moreover, the

output equation, when evaluated at the equilibrium point, always yields the unknown

Ci’s or C
E
i ’s, thereby solving the problem.

To our understanding, [23] is the only prior work on distributed computation of

betweenness and closeness centralities. The algorithms in [23], however, are notably

different from the ones here and in Chapter 2. Specifically, each algorithm in [23] is

applicable to general graphs but is memory intensive (i.e., every node has to store a

list of messages), non-homogeneous (i.e., nodes act differently depending on what they

have received and which phase the algorithm is in), and benefits only one node per

execution (i.e., only the node that initiates the execution can determine its centrality

score; all other nodes cannot determine theirs and are there just to help). In contrast,

47

our algorithms are applicable only to tree graphs but are memory non-intensive,

homogeneous (i.e., same update rules for every node at every time), and benefit all

nodes in one execution (i.e., all nodes can gradually learn their scores). We also note

that there are some related publications [117–119], whose aim is not to decentralizedly

compute betweenness and closeness centralities. Rather, their aim is to introduce new

centrality measures that, by definition, can be trivially decentralizedly computed and

show that, in some cases, such measures correlate well with betweenness, closeness,

or other meaningful measures.

The outline of this chapter is as follows: Section 3.2 derives the distributed al-

gorithms for computing classic closeness. Section 3.3 does the same for exponential

closeness. Section 3.4 simulates the behavior of the algorithms developed. Finally,

Section 3.5 concludes the chapter.

3.2 Classic Closeness

To derive distributed algorithms for computing classic closeness, we first introduce

some preliminaries.

3.2.1 Preliminaries

Reconsider the undirected, unweighted, and connected graph G = (V, E) in Section 3.1

and suppose G is a tree, i.e., it has N nodes in V and N −1 edges in E with no cycles.

Although G is undirected, for the purpose of development let us associate with each

edge {i, j} ∈ E a pair of directed edges denoted as (i, j) and (j, i) (i.e., braces are for

undirected edges, while parentheses are for directed ones), and let Ẽ denote the set

of 2(N − 1) directed edges.

Observe that since G is a tree, for each edge {i, j} ∈ E , deleting this edge results

in two connected components, one containing node j and the other containing node

48

V

V

V

V

V

Figure 3.3: A graphical illustration of the sets V(i,j)’s, variables x(i,j)’s, and variables
y(i,j)’s.

i. For convenience, let V(i,j) and V(j,i) denote, respectively, the sets of nodes in these

two connected components as illustrated in (2.2)–(2.4) and in Figure 3.3, i.e.,

V(i,j) = {k ∈ V : k is in the connected component

containing j if {i, j} ∈ E is deleted}.

Also, V can be partitioned into V(i,j) and V(j,i), i.e.,

V(i,j) ∪ V(j,i) = V and V(i,j) ∩ V(j,i) = ∅.

Moreover, for each node i ∈ V,

V can be partitioned into {i} and V(i,j) ∀j ∈ Ni,

where Ni = {j ∈ V : {i, j} ∈ E} denotes the set of neighbors of node i.

49

3.2.2 Key Algebraic Relationships

With the preliminaries in hand, we next establish an algebraic relationship that ex-

presses the classic closeness Ci’s in (1.2) as functions of some variables which have

graph-theoretic meaning. To achieve this goal, let us associate with each directed

edge (i, j) ∈ Ẽ a variable x(i,j) representing the number of nodes in V(i,j) as shown in

(2.5) and another variable y(i,j) representing the sum of the distances between node i

and all nodes in V(i,j) (see Figure 3.3), i.e.,

x(i,j) = |V(i,j)|,

y(i,j) =
∑

k∈V(i,j)

dik, (3.2)

where V(i,j) is as defined in (2.2), | · | denotes the cardinality of a set, and dij again

denotes the distance between nodes i and j. Then, rewrite (2.11), we have

∑

j∈Ni

x(i,j) = N − 1, ∀i ∈ V. (3.3)

Moreover, due to (2.4), (3.2), and the fact that dii = 0, we have

∑

j∈V

dij =
∑

j∈Ni

∑

k∈V(i,j)

dik =
∑

j∈Ni

y(i,j), ∀i ∈ V. (3.4)

It follows from (3.3) and (3.4) that the classic closeness Ci of each node i ∈ V in (1.2)

may be expressed as

Ci =

∑

j∈Ni

x(i,j)

∑

j∈Ni

y(i,j)
, (3.5)

50

achieving the above goal. Note from (3.2) that y(i,j) ≥ 1 ∀(i, j) ∈ Ẽ , so that Ci in

(3.5) is always well-defined.

Expression (3.5) suggests that if each node i ∈ V is able to determine the values

of the x(i,j)’s and y(i,j)’s associated with directed edges pointing away from it (i.e.,

x(i,j) and y(i,j) ∀j ∈ Ni), it would be able to calculate Ci by itself. Since the 4(N − 1)

variables x(i,j) and y(i,j) ∀(i, j) ∈ Ẽ have graph-theoretic meaning, those associated

with nearby edges may be explicitly related in some ways. Thus, if enough number

of algebraic equations relating these variables can be derived, and if such equations

can be decentralizedly solved by the nodes, the nodes would be able to calculate their

Ci’s.

Motivated by this idea, we now derive algebraic equations relating the variables.

With equation (2.10)

x(i,j) + x(j,i) = N, ∀(i, j) ∈ Ẽ ,

and equation (2.12)

x(i,j) −
∑

k∈Nj

k 6=i

x(j,k) = 1, ∀(i, j) ∈ Ẽ , (3.6)

in mind, we notice that for each directed edge (i, j) ∈ Ẽ and each node k ∈ V(i,j), the

shortest path between nodes i and k must go through node j, so that dik = dij + djk,

where dij = 1. Hence, y(i,j) in (3.2) may be written using (2.5) as

y(i,j) =
∑

k∈V(i,j)

(1 + djk)

= x(i,j) +
∑

k∈V(i,j)

djk. (3.7)

To cast (3.7) in a useful form, note that for each directed edge (i, j) ∈ Ẽ , V(i,j) can be

51

partitioned into {j} and V(j,k) ∀k ∈ Nj, k 6= i (see Figure 3.3). Therefore, the second

term on the right-hand side of (3.7) may be stated using (3.2) as

∑

k∈V(i,j)

djk = djj +
∑

k∈Nj

k 6=i

∑

ℓ∈V(j,k)

djℓ

=
∑

k∈Nj

k 6=i

y(j,k). (3.8)

Substituting (3.8) back into (3.7) gives

y(i,j) −
∑

k∈Nj

k 6=i

y(j,k) − x(i,j) = 0, ∀(i, j) ∈ Ẽ . (3.9)

Since |Ẽ | = 2(N−1) and since both (2.12) and (3.9) hold for every (i, j) ∈ Ẽ , they

collectively provide 4(N − 1) linear equations relating the 4(N − 1) variables x(i,j)

and y(i,j) ∀(i, j) ∈ Ẽ . Therefore, by introducing a vector x ∈ R
2(N−1) obtained by

stacking the 2(N − 1) variables x(i,j)’s according to some order, (2.12) can be written

in a matrix form as

Hx = 1, (3.10)

where H ∈ R
2(N−1)×2(N−1) is a square matrix and 1 ∈ R

2(N−1) is the all-one column

vector. Likewise, by introducing another vector y ∈ R
2(N−1) obtained by stacking the

2(N − 1) variables y(i,j)’s in the same order as the x(i,j)’s in x, (3.9) can also be put

into a matrix form:

−x +Hy = 0. (3.11)

52

Combining (3.10) and (3.11), we get



H 0

−I H




︸ ︷︷ ︸
H



x

y


 =



1

0


 , (3.12)

where I is the identity matrix of appropriate size andH ∈ R
4(N−1)×4(N−1) is as defined

in (3.12).

In Chapter 2 on betweenness computation, the matrix H also arises and is shown

in (2.14) to have the form

H =




1 ∗ . . . ∗ 0 0 . . . 0

0 1
. . .

... 0 0 . . . 0

...
. . .

. . . ∗
...

...
. . .

...

0 . . . 0 1 0 0 . . . 0

0 ∗ . . . ∗ 1 0 . . . 0

∗ 0
. . .

... ∗ 1
. . .

...

...
. . .

. . . ∗
...

. . .
. . . 0

∗ . . . ∗ 0 ∗ . . . ∗ 1




under some ordering of the elements x(i,j)’s in the vector x. Since H in (2.14) has a 2-

by-2 block triangular structure, and since the first and second blocks on the diagonal

of H are upper and lower triangular matrices with 1 on their diagonal, respectively,

we see that all the 2(N−1) eigenvalues of H are at 1, which also makes it nonsingular.

As a result, we have the following lemma and corollary:

Lemma 3. The matrix H in (3.12) is a unipotent matrix with all its 4(N − 1)

eigenvalues at 1.

Proof. The proof is an immediate consequence of the eigenvalues of H being all at 1

53

Figure 3.4: An example of how variables maintained in nodes.

and the lower block triangular structure of H.

Corollary 3. The matrix I−H is a nilpotent matrix with all its 4(N−1) eigenvalues

at 0.

Proof. The proof follows immediately from the lower block triangular structure of H

and (2.14).

3.2.3 Continuous-andDiscrete-TimeDistributedAlgorithms

Recall from Section 3.2.2 that if each node i ∈ V can determine the values of x(i,j)

and y(i,j) ∀j ∈ Ni, it could calculate Ci by itself using (3.5). In light of this fact, for

each directed edge (i, j) ∈ Ẽ , let x̂(i,j)(t) ∈ R and ŷ(i,j)(t) ∈ R represent, respectively,

estimates of x(i,j) and y(i,j) at time t that are maintained in node i’s memory (i.e.,

each node i ∈ V maintains x̂(i,j)(t) and ŷ(i,j)(t) ∀j ∈ Ni). In addition, for each

i ∈ V, let Ĉi(t) ∈ R represent an estimate of Ci at time t that is also maintained

in node i’s memory. An example of how variables maintained in nodes is illustrated

in Figure 3.4. With these notations, consider now the following continuous-time

distributed algorithm, inspired by (2.12), (3.9), and (3.5):

˙̂x(i,j)(t) = −x̂(i,j)(t)+
∑

k∈Nj

k 6=i

x̂(j,k)(t)+1, ∀i∈V, ∀j∈Ni, (3.13a)

54

˙̂y(i,j)(t) = −ŷ(i,j)(t) +
∑

k∈Nj

k 6=i

ŷ(j,k)(t) + x̂(i,j)(t), ∀i ∈ V, ∀j ∈ Ni, (3.13b)

Ĉi(t) =

∑

j∈Ni

x̂(i,j)(t)

max
{
1,

∑

j∈Ni

ŷ(i,j)(t)
} , ∀i ∈ V, (3.13c)

where t ∈ [0,∞) denotes continuous time and max{1, ·} in (3.13c) is intended to

prevent a division by zero while ensuring algorithm correctness. Observe that algo-

rithm (3.13) is decentralizedly implementable, requiring only that each node i ∈ V

repeatedly sends its x̂(i,j)(t) and ŷ(i,j)(t) to every neighboring node j ∈ Ni. Indeed,

this algorithm may be viewed as a networked dynamical system with an affine state

equation (3.13a) and (3.13b) and a nonlinear output equation (3.13c). Moreover, just

like how (2.12) and (3.9) may be expressed as (3.12), the state equation (3.13a) and

(3.13b) may be expressed in a matrix form as



˙̂x(t)

˙̂y(t)


 =



−H 0

I −H




︸ ︷︷ ︸
−H



x̂(t)

ŷ(t)


+



1

0


 , (3.14)

where H is as in (3.12) and, like x and y earlier, x̂(t) ∈ R
2(N−1) and ŷ(t) ∈ R

2(N−1)

are vectors obtained by stacking the estimates x̂(i,j)(t)’s and ŷ(i,j)(t)’s. The following

theorem shows that the algorithm solves the classic closeness computation problem:

Theorem 5. The continuous-time algorithm (3.13) has a unique equilibrium point

(x,y) that is exponentially stable, such that for any x̂(i,j)(0) and ŷ(i,j)(0) ∀(i, j) ∈ Ẽ,

we have limt→∞ x̂(i,j)(t) = x(i,j) and limt→∞ ŷ(i,j)(t) = y(i,j) ∀(i, j) ∈ Ẽ . In addition,

limt→∞ Ĉi(t) = Ci ∀i ∈ V.

Proof. Since −H is nonsingular due to Lemma 3, the state equation (3.14) has a

unique equilibrium point. In addition, because of (3.12), the equilibrium point is

55

at (x,y). Furthermore, since −H is also Hurwitz, (x,y) is (globally) exponentially

stable, such that for any x̂(0) ∈ R
2(N−1) and ŷ(0) ∈ R

2(N−1), limt→∞ x̂(t) = x and

limt→∞ ŷ(t) = y. Therefore, for each i ∈ V, limt→∞

∑
j∈Ni

x̂(i,j)(t) =
∑

j∈Ni
x(i,j) and

limt→∞

∑
j∈Ni

ŷ(i,j)(t) =
∑

j∈Ni
y(i,j) ≥ 1, where the inequality “≥ 1” is a result of

y(i,j) ≥ 1 ∀(i, j) ∈ Ẽ , which in turn is a result of (3.2). It follows from (3.5) and

(3.13c) that limt→∞ Ĉi(t) = Ci ∀i ∈ V.

Note that the continuous-time algorithm (3.13) is enabled by the unipotent prop-

erty of H from Lemma 3. As it turns out, the nilpotent property of I − H from

Corollary 3 is instrumental for constructing its discrete-time counterpart. Specifi-

cally, consider the following discrete-time distributed algorithm:

x̂(i,j)(t+ 1)=
∑

k∈Nj

k 6=i

x̂(j,k)(t)+1, ∀i ∈ V, ∀j ∈ Ni, (3.15a)

ŷ(i,j)(t+ 1)=
∑

k∈Nj

k 6=i

ŷ(j,k)(t)+x̂(i,j)(t), ∀i ∈ V, ∀j ∈ Ni, (3.15b)

Ĉi(t) =

∑

j∈Ni

x̂(i,j)(t)

max
{
1,

∑

j∈Ni

ŷ(i,j)(t)
} , ∀i ∈ V, (3.15c)

where t ∈ {0, 1, 2, . . .} here denotes discrete time. Notice that algorithm (3.15) is also

a decentralizedly implementable, networked dynamical system, whose affine state

equation (3.15a) and (3.15b) can be written in a matrix form as



x̂(t+ 1)

ŷ(t+ 1)


 =



I −H 0

I I −H




︸ ︷︷ ︸
I−H



x̂(t)

ŷ(t)


+



1

0


 . (3.16)

The following theorem, which makes use of the nilpotence of I −H from Corollary 3,

shows that this algorithm not only solves the classic closeness computation problem,

56

it does so in finite time (i.e., it exhibits a deadbeat response):

Theorem 6. The discrete-time algorithm (3.15) has a unique equilibrium point (x,y)

that is finite-time stable, such that there exists a T < ∞ with which for any x̂(i,j)(0)

and ŷ(i,j)(0) ∀(i, j) ∈ Ẽ, we have x̂(i,j)(t) = x(i,j) and ŷ(i,j)(t) = y(i,j) ∀(i, j) ∈ Ẽ and

Ĉi(t) = Ci ∀i ∈ V, for every t ≥ T .

Proof. The proof follows the same line as the proof of Theorem 5. To show that the

equilibrium point (x,y) is (globally) finite-time stable, note from (3.12) and (3.16)

that



x̂(t+ 1)− x

ŷ(t+ 1)− y


 =



I −H 0

I I −H




︸ ︷︷ ︸
I−H



x̂(t)− x

ŷ(t)− y


 .

Since I − H is nilpotent, there exists a T < ∞ such that (I − H)T = 0, so that

x̂(t) = x and ŷ(t) = y ∀t ≥ T . Hence, from (3.5), (3.15c), and the fact that y(i,j) ≥ 1

∀(i, j) ∈ Ẽ , we get Ĉi(t) = Ci ∀i ∈ V ∀t ≥ T .

3.3 Exponential Closeness

In this section, we shift our focus from classic closeness to exponential closeness. We

show that although their definitions as given in (1.2) and (3.1) are quite different,

the same approach that produces the results for classic closeness in Section 3.2 can

be used here to obtain parallel results for exponential closeness.

3.3.1 Key Algebraic Relationships

As before, we first express the exponential closeness CE
i ’s in (3.1) as functions of some

variables with graph-theoretic meaning. To do so, let us associate with each directed

57

edge (i, j) ∈ Ẽ a variable w(i,j), defined as

w(i,j) =
∑

k∈V(i,j)

α−dik . (3.17)

With (3.17) and (2.4), the exponential closeness CE
i of each node i ∈ V in (3.1)

becomes

CE
i =

∑

j∈Ni

∑

k∈V(i,j)

α−dik =
∑

j∈Ni

w(i,j), (3.18)

which is a linear function of the w(i,j)’s. It follows that if each node i ∈ V knows the

values of the w(i,j)’s associated with its outgoing edges (i.e., w(i,j) ∀j ∈ Ni), it could

calculate its own CE
i .

With this in mind, we next derive algebraic equations relating the 2(N − 1) vari-

ables w(i,j) ∀(i, j) ∈ Ẽ . Note from (3.17) that for each (i, j) ∈ Ẽ , we can write

w(i,j) = α−dij +
∑

k∈V(i,j)

k 6=j

α−dik

=
1

α
+

∑

k∈Nj

k 6=i

∑

l∈V(j,k)

α−dil

=
1

α
+

∑

k∈Nj

k 6=i

∑

l∈V(j,k)

(
α−dij · α−djl

)

=
1

α
+

1

α

∑

k∈Nj

k 6=i

∑

l∈V(j,k)

α−djl, (3.19)

where we have used the fact that dil = dij + djl and dij = 1. Equation (3.19), along

58

with (3.17), implies that

w(i,j) −
1

α

∑

k∈Nj

k 6=i

w(j,k) =
1

α
, ∀(i, j) ∈ Ẽ , (3.20)

which is a set of 2(N − 1) linear equations relating the 2(N − 1) variables w(i,j)

∀(i, j) ∈ Ẽ , i.e., there are as many equations as there are variables.

Next, observe that (3.20) on the w(i,j)’s has the same form as (2.12) on the x(i,j)’s,

except that there are constant coefficients 1
α
appearing in (3.20) but not in (2.12). In

addition, 1
α
appears in every term of (3.20), except for the first term on its left-hand

side. Given that (2.12) can be written in a matrix form (3.10) for some H having the

form of (2.14), the same can be said about (3.20). Therefore, we obtain

HE
α w =

1

α
1, (3.21)

where HE
α ∈ R

2(N−1)×2(N−1) is a square matrix having the same form as H in (2.14),

whose entries depend on α, and w ∈ R
2(N−1) is a vector obtained by stacking the

2(N − 1) variables w(i,j)’s. Because of the similarity between HE
α and H , we obtain

the following mirroring lemma and corollary:

Lemma 4. The matrix HE
α is a unipotent matrix with all its 2(N − 1) eigenvalues at

1.

Corollary 4. The matrix I−HE
α is a nilpotent matrix with all its 2(N−1) eigenvalues

at 0.

3.3.2 Continuous-andDiscrete-TimeDistributedAlgorithms

Leveraging the above results, we obtain the following continuous-time distributed

algorithm, which is a networked dynamical system with an affine state equation and

59

a linear output equation:

˙̂w(t) = −HE
α ŵ(t) +

1

α
1, (3.22a)

ĈE
i (t) =

∑

j∈Ni

ŵ(i,j)(t), ∀i ∈ V, (3.22b)

where here t ∈ [0,∞), and ŵ(t) = [ŵ(i,j)(t)] ∈ R
2(N−1) is a vector representing an

estimate of w = [w(i,j)]. The theorem below, which makes use of the unipotence

of HE
α from Lemma 4, shows that this algorithm solves the exponential closeness

computation problem:

Theorem 7. The continuous-time algorithm (3.22) has a unique equilibrium point w

that is exponentially stable, such that for any ŵ(i,j)(0)∀(i, j)∈Ẽ ,we have limt→∞ŵ(i,j)(t)

= w(i,j) ∀(i, j) ∈ Ẽ . In addition, limt→∞ ĈE
i (t) = CE

i ∀i ∈ V.

In a similar fashion, we can design a discrete-time distributed algorithm for com-

puting exponential closeness:

ŵ(t+ 1) = (I −HE
α)ŵ(t) +

1

α
1, (3.23a)

ĈE
i (t) =

∑

j∈Ni

ŵ(i,j)(t), ∀i ∈ V, (3.23b)

where here t ∈ {0, 1, 2, . . .}. Finally, because I −HE
α is nilpotent due to Corollary 4,

we have the result below which mirrors Theorem 6:

Theorem 8. The discrete-time algorithm (3.23) has a unique equilibrium point w

that is finite-time stable, such that there exists a T < ∞ with which for any ŵ(i,j)(0)

∀(i, j) ∈ Ẽ , we have ŵ(i,j)(t) = w(i,j) ∀(i, j) ∈ Ẽ and ĈE
i (t) = CE

i ∀i ∈ V, for every

t ≥ T .

60

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

(a) Node indices.

0.18
0.22

0.27

0.21

0.31

0.36

0.27

0.27

0.36
0.27

0.33

0.29

0.23

0.24

0.20

0.17

(b) Classic closeness.

1.21
1.91

2.57

1.54

2.77

3.36

1.93

1.93

3.13
1.81

2.70

2.63

1.57

2.13

1.69

1.09

(c) Exponential closeness.

Figure 3.5: A 16-node tree graph and its node indices and classic and exponential
closeness.

3.4 Simulation Results

In this section, we simulate the behavior of the aforementioned algorithms. To per-

form the simulation, consider a tree graph with N = 16 nodes, whose topology is

shown in Figure 3.5. Also displayed in the figure are its node indices, classic closeness

Ci’s, and exponential closeness CE
i ’s, the latter two calculated from (1.2) and (3.1)

and rounded to two decimal places.

For this graph, suppose the nodes utilize the continuous-time algorithm (3.13) to

simultaneously compute their estimates Ĉi(t)’s of the unknown Ci’s. In a separate

61

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Time t

Ĉ
i
(t

)’
s

Ĉ1

Ĉ2

Ĉ3

Ĉ4

Ĉ5

Ĉ6

Ĉ7

Ĉ8

Ĉ9

Ĉ10

Ĉ11

Ĉ12

Ĉ13

Ĉ14

Ĉ15

Ĉ16

(a) Continuous-time.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Time t

Ĉ
i
(t

)’
s

Ĉ1

Ĉ2

Ĉ3

Ĉ4

Ĉ5

Ĉ6

Ĉ7

Ĉ8

Ĉ9

Ĉ10

Ĉ11

Ĉ12

Ĉ13

Ĉ14

Ĉ15

Ĉ16

(b) Discrete-time.

Figure 3.6: Performance of the continuous- and discrete-time algorithms (3.13) and
(3.15) in computing classic closeness on the 16-node tree graph.

62

simulation, suppose they utilize the discrete-time counterpart (3.15) to do so. The

simulation result is depicted in Figure 3.6, from which we see that algorithm (3.13)

drives the Ĉi(t)’s asymptotically toward the Ci’s, while algorithm (3.15) forces the

Ĉi(t)’s to reach the Ci’s in finite time, both agreeing with expectation. Notice that

neither (3.13) nor (3.15) requires any node to build a list of distances between itself

and all other nodes. Having every node build such a list would have been required,

and costly, if the definition of Ci in (1.2) is used as is.

Next, suppose the nodes adopt the continuous-time algorithm (3.22) and its

discrete-time counterpart (3.23) to compute their estimates ĈE
i (t)’s of the unknown

CE
i ’s. Figure 3.7 presents the simulation result, showing that the ĈE

i (t)’s converge

to the CE
i ’s asymptotically with algorithm (3.22) and in finite time with algorithm

(3.23), which again is expected.

3.5 Conclusion

In this chapter, we have designed and analyzed continuous- and discrete-time dis-

tributed algorithms that allow nodes in a tree graph to cooperatively determine their

classic and exponential closeness. To come up with these algorithms, we have adopted

an algebraic-relationships-turned-dynamical-systems approach that was also used in

Chapter 2.

Given that trees are a very special type of graphs, Chapter 5 will develop dis-

tributed algorithms for estimating closeness on general graphs, building on the ideas

of this chapter.

63

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Time t

Ĉ
E i

(t
)’
s

ĈE
1

ĈE
2

ĈE
3

ĈE
4

ĈE
5

ĈE
6

ĈE
7

ĈE
8

ĈE
9

ĈE
10

ĈE
11

ĈE
12

ĈE
13

ĈE
14

ĈE
15

ĈE
16

(a) Continuous-time.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time t

Ĉ
E i

(t
)’
s

ĈE
1

ĈE
2

ĈE
3

ĈE
4

ĈE
5

ĈE
6

ĈE
7

ĈE
8

ĈE
9

ĈE
10

ĈE
11

ĈE
12

ĈE
13

ĈE
14

ĈE
15

ĈE
16

(b) Discrete-time.

Figure 3.7: Performance of the continuous- and discrete-time algorithms (3.22) and
(3.23) in computing exponential closeness on the 16-node tree graph.

64

Chapter 4

Distributed Estimation of

Betweenness Centrality

4.1 Introduction

Betweenness centrality is one of the most fundamental centrality measures [3, 6, 7]

that quantifies how important a node or an edge is, within a network, based on how

often it lies on the shortest paths between all pairs of nodes. Specifically, given a

graph G = (V, E), where V = {1, 2, . . . , N} denotes the set of N nodes and E the set

of L edges, the node betweenness Bi of a node i ∈ V is defined in (1.1) [6, 7] as

Bi ,
∑

r∈V
r 6=i

∑

s∈V
s 6=i,r

σ(r, s, i)

σ(r, s)
,

where σ(r, s) is the number of shortest paths from nodes r to s, and σ(r, s, i) is the

number of those that go through node i. Similarly, the edge betweenness B{i,j} of an

65

edge {i, j} ∈ E is defined in (2.1) [7] as

B{i,j} ,
∑

r∈V

∑

s∈V
s 6=r

σ(r, s, {i, j})

σ(r, s)
,

where σ(r, s, {i, j}) is the number of shortest paths from nodes r to s that go through

edge {i, j}. Observe from (1.1) and (2.1) that the larger the number of shortest paths

node i or edge {i, j} lies on, the higher its Bi or B{i,j}. Thus, Bi and B{i,j} attempt

to measure how important or strategically located node i and edge {i, j} are within

the graph G, making them useful in the analysis of complex networks [3].

Although node and edge betweenness are useful centrality measures, their compu-

tation is non-trivial because they are defined in terms of the shortest paths between all

pairs of nodes. While there are classic algorithms for computing shortest paths (e.g.,

Floyd-Warshall algorithm [18] and Johnson’s algorithm [19]), and a few for comput-

ing betweenness (e.g., [20–22]), these algorithms are centralized in nature, requiring

that all the information about the graph G be available at one place, at one time,

in order to execute. This requirement, unfortunately, is often difficult to meet, espe-

cially in a large network, for a variety of reasons (e.g., security, privacy, and storage).

Hence, a natural question to ask is whether it is possible to compute betweenness in

a distributed manner.

In Chapter 2, we show that when the graph G is a tree, it is possible to construct

continuous- and discrete-time distributed algorithms, which enable every node i ∈ V

to compute its own betweenness Bi and the betweenness B{i,j} of every edge {i, j} ∈ E

incident on it. We also show that the algorithms are simple and scalable, require

minimal node memories to execute, do not require the construction of any shortest

path, and have attractive convergence properties.

In this chapter, we consider the general case where the graph G need not be a tree.

This general case appears to be difficult to handle because there may be multiple

66

partially overlapping shortest paths from any node to any other node, making their

counting in a distributed manner challenging. To alleviate this difficulty, in the

present chapter we consider a variant of the original definition of node and edge

betweenness given in (1.1) and (2.1). That is, we let the node betweenness B′
i of a

node i ∈ V and edge betweenness B′
{i,j} of an edge {i, j} ∈ E be defined as

B′
i ,

∑

r∈V
r 6=i

∑

s∈V
s 6=i,r

1
(σ(r, s, i)

σ(r, s)

)
, (4.1)

B′
{i,j} ,

∑

r∈V

∑

s∈V
s 6=r

1
(σ(r, s, {i, j})

σ(r, s)

)
, (4.2)

where 1 : [0,∞) → {0, 1} is an indicator function defined as 1(0) = 0 and 1(z) = 1

∀z > 0. Observe that unlike Bi in (1.1) or B{i,j} in (2.1) which looks at the fraction of

shortest paths from nodes r to s that go through node i or edge {i, j}, B′
i in (4.1) or

B′
{i,j} in (4.2) looks at whether there exists a shortest path from nodes r to s that goes

through node i or edge {i, j}. Therefore, B′
i and B′

{i,j} also measure how strategically

located node i and edge {i, j} are, albeit in a different way from the original Bi and

B{i,j}.

In this chapter, we develop a scalable continuous-time distributed algorithm, which

enables every node i ∈ V to estimate its own betweenness B′
i and the betweenness

B′
{i,j} of every edge {i, j} ∈ E incident on it. To develop this algorithm, we first

introduce a set of variables with graph-theoretic meaning. We then use various lo-

cal properties of shortest paths to derive a set of distributed constraints on these

variables. We next use these constraints to formulate a strongly convex, distributed

optimization problem. We subsequently use a gradient approach to solve this prob-

lem, leading to the proposed algorithm. Finally, we evaluate the performance of the

algorithm via simulation on a number of random geometric graphs, showing that it

yields betweenness estimates that are fairly accurate in terms of ordering.

67

The outline of this chapter is as follows: Section 4.2 formulates the problem

addressed. Section 4.3 derives the set of distributed constraints on betweenness.

Section 4.4 derives the distributed algorithm for estimating betweenness. Section 4.5

evaluates its performance via simulation. Finally, Section 4.6 concludes the chapter.

4.2 Problem Formulation

Consider a network modeled as an undirected, unweighted and connected graph G =

(V, E), where V = {1, 2, . . . , N} denotes the set of N ≥ 2 nodes and E ⊂ {{i, j} :

i, j ∈ V, i 6= j} denotes the set of L edges. Any two nodes i, j ∈ V are neighbors and

can communicate if and only if {i, j} ∈ E . The set of neighbors of each node i ∈ V

is denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the communications are assumed to be

delay- and error-free, with no quantization.

Suppose each node i ∈ V knows only the value of N and its set Ni of neighbors.

Also suppose each node i ∈ V is willing to share its knowledge of Ni with every

neighbor j ∈ Ni, but not with others due perhaps to security and privacy reasons.

Yet, despite having only such local information about the graph G, suppose every

node i ∈ V wants to determine how important it is and its incident edges are, as

measured by its betweenness B′
i and its incident edge betweenness B′

{i,j} ∀j ∈ Ni

defined in (4.1) and (4.2).

Given the above, the goal of this chapter is to develop a scalable distributed

algorithm that enables every node i ∈ V to estimate B′
i and B′

{i,j} ∀j ∈ Ni with a

good accuracy and without using a significant amount of memory.

4.3 Distributed Constraints on Betweenness

In this section, we lay the groundwork needed to achieve the aforementioned goal.

More specifically, we begin with the introduction of a set of basic variables with graph-

68

theoretic meaning, followed by the derivation of a set of constraints on these basic

variables. We then continue with the introduction of a set of aggregated variables that

add up the basic variables, followed by the derivation of a set of constraints on these

aggregated variables, which will be used in the next section to develop a distributed

algorithm.

Reconsider the undirected, unweighted, and connected graph G = (V, E). Al-

though G is undirected, for the purpose of development let us associate with each

edge {i, j} ∈ E a fictitious pair of directed edges denoted as (i, j) and (j, i) (i.e.,

braces are for undirected edges, while parentheses are for directed ones). In addition,

let Ẽ = {(i, j) : i, j ∈ V, {i, j} ∈ E} denote the set of 2L directed edges. Moreover,

consider the following set of basic variables with graph-theoretic meaning: for each

s ∈ V and (i, j) ∈ Ẽ , let

x
(s)
(i,j) ,






1, if there exists a shortest path from nodes

i to s that goes through edge (i, j),

0, otherwise.

(4.3)

For each s ∈ V and i ∈ V, let d
(s)
i denote the distance between nodes i and s. For

each r ∈ V, s ∈ V, and (i, j) ∈ Ẽ , let

b
(r,s)
(i,j) ,





1, if there exists a shortest path from nodes

r to s that goes through edge (i, j),

0, otherwise.

(4.4)

69

Finally, for each r ∈ V, s ∈ V, and i ∈ V, let

b
(r,s)
i ,






1, if r 6= i, s 6= i, and there exists a shortest path

from nodes r to s that goes through node i,

0, otherwise.

(4.5)

Notice from (4.5) that b
(r,s)
i = 1 implies not only that there is a shortest path from

nodes r to s that goes through node i, but also that the shortest path neither begins

nor ends at node i. Also note that with these basic variables, the node betweenness

B′
i of a node i ∈ V in (4.1) can be rewritten as

B′
i =

∑

r∈V

∑

s∈V

b
(r,s)
i . (4.6)

Likewise, the edge betweenness B′
{i,j} of an edge {i, j} ∈ E in (4.2) can be rewritten

as

B′
{i,j} =

∑

r∈V

∑

s∈V

(b
(r,s)
(i,j) + b

(r,s)
(j,i)). (4.7)

Observe that for each s ∈ V, (4.3) defines 2L binary variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ .

In [120], we show that these variables, together with the N distances d
(s)
i ∀i ∈ V,

form a set of 2L+N variables that satisfy the following constraints:

Lemma 5. For each s ∈ V, the 2L + N variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ and d

(s)
i ∀i ∈ V

satisfy

∑

j∈Ns

x
(s)
(s,j) = 0, (4.8)

∑

j∈Ni

x
(s)
(i,j) ≥ 1, ∀i ∈ V/{s}, (4.9)

70

x
(s)
(i,j) + x

(s)
(j,i) ≤ 1, ∀{i, j} ∈ E , (4.10)

d
(s)
i − d

(s)
j = x

(s)
(i,j) − x

(s)
(j,i), ∀{i, j} ∈ E , (4.11)

d(s)s = 0. (4.12)

Proof. Due to (4.3) and the fact that a shortest path that begins and ends at node

s does not have to go through any edge, equation (4.8) holds. Since G is connected,

for each i ∈ V with i 6= s, there must exist at least one shortest path from node i to

node s, which must go through edge (i, j) for some j ∈ Ni. Thus,
∑

j∈Ni
x
(s)
(i,j) ≥ 1,

proving (4.9). To establish (4.10), observe that for each edge {i, j} ∈ E , if there

exists a shortest path from node i to node s that goes through edge (i, j) ∈ Ẽ , then

all shortest paths from node j to node s must not go through edge (j, i) ∈ Ẽ . Hence,

x
(s)
(i,j) + x

(s)
(j,i) ≤ 1, proving (4.10). To establish (4.11), note from (4.3) and (4.10)

that for each edge {i, j} ∈ E , x(s)
(i,j) and x

(s)
(j,i) are binary but cannot be both 1. If

x
(s)
(i,j) = x

(s)
(j,i) = 0, then nodes i and j are at the same distance from node s, so that

d
(s)
i = d

(s)
j . If, instead, x

(s)
(i,j) = 1 and x

(s)
(j,i) = 0, then d

(s)
i = d

(s)
j + 1. Likewise, if

x
(s)
(i,j) = 0 and x

(s)
(j,i) = 1, then d

(s)
i + 1 = d

(s)
j . Therefore, (4.11) holds. Finally, it is

obvious that (4.12) holds.

Theorem 11 states that the 2L + N variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ and d

(s)
i ∀i ∈ V

must collectively satisfy inequality and equality constraints (4.8)–(4.12). An inter-

esting observation that can be made about these constraints is that all of them are

distributed in nature, in the sense that every constraint involves only variables which

are “nearby.” Specifically, (4.8) and (4.12) involve only x
(s)
(s,j) ∀j ∈ Ns and d

(s)
s , all of

which are associated with node s; (4.9) involves only x
(s)
(i,j) ∀j ∈ Ni, all of which are

associated with node i; and (4.10) and (4.11) involve only x
(s)
(i,j), x

(s)
(j,i), d

(s)
i , and d

(s)
j ,

all of which are associated with neighboring nodes i and j. In other words, none of

the constraints involves variables associated with nodes who are far away from one

another.

71

Next, observe that for each r ∈ V and s ∈ V, (4.4) and (4.5) define 2L + N

binary variables b
(r,s)
(i,j) ∀(i, j) ∈ Ẽ and b

(r,s)
i ∀i ∈ V. The lemma below shows that

these variables, together with the 2L variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ , form a set of 4L+N

variables that satisfy the following constraints:

Lemma 6. For each r ∈ V and s ∈ V, the 4L + N variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ , b(r,s)(i,j)

∀(i, j) ∈ Ẽ, and b
(r,s)
i ∀i ∈ V satisfy

b
(r,s)
(i,j) = b

(s,r)
(j,i) , ∀{i, j} ∈ E , (4.13)

b
(r,s)
(i,j) + b

(r,s)
(j,i) ≤ 1, ∀{i, j} ∈ E , (4.14)

b
(r,s)
i = b

(s,r)
i , ∀i ∈ V, (4.15)

b
(r,s)
(i,j) =





x
(s)
(i,j), i = r,

x
(s)
(i,j)b

(r,s)
i , i 6= r,

∀(i, j) ∈ Ẽ , (4.16)

b
(j,s)
i =





0, i = s,

x
(s)
(j,i), i 6= s,

∀(i, j) ∈ Ẽ . (4.17)

Proof. Let r ∈ V and s ∈ V be given. To prove (4.13), let {i, j} ∈ E be given. Note

from (4.4) that if b
(r,s)
(i,j) = 1, then b

(s,r)
(j,i) = 1, since G is undirected. Conversely, if

b
(r,s)
(i,j) = 0, then b

(s,r)
(j,i) = 0. Thus, (4.13) holds.

To derive (4.14), let {i, j} ∈ E be given. Observe from (4.4) that if b
(r,s)
(i,j) = 1,

then all the shortest paths from nodes r to s must not go through edge (j, i). Hence,

b
(r,s)
(j,i) = 0, implying that (4.14) holds.

To establish (4.15), let i ∈ V be given. Note from (4.5) that if b
(r,s)
i = 1, then

b
(s,r)
i = 1, since G is undirected. Conversely, if b

(r,s)
i = 0, then b

(s,r)
i = 0. Consequently,

(4.15) holds.

To prove (4.16), let (i, j) ∈ Ẽ be given. Notice from (4.4) and (4.3) that if i = r,

the definitions of b
(r,s)
(i,j) and x

(s)
(i,j) coincide, so that b

(r,s)
(i,j) = x

(s)
(i,j). Next, suppose i 6= r.

72

Note from (4.4), (4.3), and (4.5) that if b
(r,s)
(i,j) = 1, then x

(s)
(i,j) = 1 and b

(r,s)
i = 1, where

the former is due to the fact that a segment of a shortest path is itself a shortest path.

Conversely, if x
(s)
(i,j) = 1 and b

(r,s)
i = 1, then b

(r,s)
(i,j) = 1. Therefore, whenever i 6= r, we

have b
(r,s)
(i,j) = x

(s)
(i,j)b

(r,s)
i . This proves (4.16).

Finally, to derive (4.17), let (i, j) ∈ Ẽ be given. Observe from (4.5) that if i = s,

then b
(j,s)
i = 0. Next, suppose i 6= s. Note from (4.5) and (4.3) that if b

(j,s)
i = 1, then

x
(s)
(j,i) = 1. Conversely, if x

(s)
(j,i) = 1, then b

(j,s)
i = 1. Hence, whenever i 6= s, we have

b
(j,s)
i = x

(s)
(j,i). This verifies (4.17).

Having introduced the basic variables and derived the constraints that they must

satisfy, consider next the following set of aggregated variables: for each (i, j) ∈ Ẽ , let

x(i,j) ,
∑

s∈V

x
(s)
(i,j), (4.18)

B(i,j) ,
∑

r∈V

∑

s∈V

b
(r,s)
(i,j) , (4.19)

so that x(i,j) may be regarded as the number of nodes in V to which shortest paths

from node i go through edge (i, j), while B(i,j) may be regarded as the number of

ordered pairs of nodes in V for which there exists a shortest path from the first node

to the second node that goes through edge (i, j). For each i ∈ V, let

Fi ,
∑

s∈V

d
(s)
i , (4.20)

so that Fi represents the total distance between node i and all other nodes. Notice

from (4.7), (4.13), and (4.19) that

B′
{i,j} = 2B(i,j), ∀{i, j} ∈ E . (4.21)

Also note that by adding up the basic variables in the manner shown in (4.6), (4.18),

73

(4.19), and (4.20), we obtain a set of 4L+ 2N aggregated variables x(i,j) ∀(i, j) ∈ Ẽ ,

Fi ∀i ∈ V, B(i,j) ∀(i, j) ∈ Ẽ , as well as B′
i ∀i ∈ V.

Next, we show that the 2L+N aggregated variables x(i,j) ∀(i, j) ∈ Ẽ and Fi ∀i ∈ V

satisfy the following constraints, where | · | denotes the cardinality of a set:

Theorem 9. The 2L+N variables x(i,j) ∀(i, j) ∈ Ẽ and Fi ∀i ∈ V satisfy

∑

j∈Ni

x(i,j) ≥ N − 1, ∀i ∈ V, (4.22)

x(i,j) + x(j,i) ≤ N, ∀{i, j} ∈ E , (4.23)

Fi − Fj = x(i,j) − x(j,i), ∀{i, j} ∈ E , (4.24)

x(i,j) ≥ |Nj/Ni|, ∀(i, j) ∈ Ẽ , (4.25)

x(i,j) ≤ N − |Ni|, ∀(i, j) ∈ Ẽ , (4.26)

x(i,j) ≤ 1 +
∑

k∈Nj/Ni

k 6=i

x(j,k), ∀(i, j) ∈ Ẽ . (4.27)

Proof. Due to (4.9),
∑

j∈Ni
x(i,j) =

∑
j∈Ni

∑
s∈V x

(s)
(i,j) ≥ N − 1, proving (4.22). Based

on (4.10), x(i,j) + x(j,i) =
∑

s∈V x
(s)
(i,j) +

∑
s∈V x

(s)
(j,i) ≤ N , proving (4.23).

Equation (4.24) is an immediate result of (4.11).

For each i ∈ V and j ∈ Ni, due to (4.18) and to the sets {j} and V/{j} forming

a partition of V, we have x(i,j) =
∑

s∈V x
(s)
(i,j) = x

(j)
(i,j) +

∑
s∈V
s 6=j

x
(s)
(i,j). Because x

(j)
(i,j) = 1

according to (4.3) and because Nj/(Ni ∪ {i}) ⊆ V/{j},

x(i,j) ≥ 1 +
∑

s∈Nj/(Ni∪{i})

x
(s)
(i,j). (4.28)

Moreover, because for any s ∈ Nj/(Ni∪{i}), there exists a shortest path from node i

to node s going through edge (i, j), we have x
(s)
(i,j) = 1 ∀s ∈ Nj/(Ni∪{i}). As a result,

∑
s∈Nj/(Ni∪{i})

x
(s)
(i,j) = |Nj/Ni| − 1. Substituting it into (4.28), we obtain (4.25).

For each i ∈ V and j ∈ Ni, let V be partitioned into {i}, Ni/{j}, and Ṽij .

74

According to (4.18), we have x(i,j) =
∑

s∈V x
(s)
(i,j) = x

(i)
(i,j) +

∑
s∈Ni
s 6=j

x
(s)
(i,j) +

∑
s∈Ṽij

x
(s)
(i,j).

Because x
(i)
(i,j) = 0 and because for any s ∈ Ni/{j} the shortest path from node i

to node s must not go through edge (i, j), we have
∑

s∈Ni
s 6=j

x
(s)
(i,j) = 0. Thus, x(i,j) =

∑
s∈Ṽij

x
(s)
(i,j). Since |Ṽij | ≤ N − |Ni| and since x

(s)
(i,j) ≤ 1 ∀s ∈ V, we have x(i,j) ≤

N − |Ni|, proving (4.26).

For each i ∈ V and j ∈ Ni, let Nj be partitioned into Nj/(Ni ∪ {i}), Ni ∩ Nj,

and {i}. According to (4.9), for each s ∈ V with s 6= j, we have
∑

k∈Nj
x
(s)
(j,k) =

∑
k∈Nj/(Ni∪{i})

x
(s)
(j,k) +

∑
k∈Ni∩Nj

x
(s)
(j,k) + x

(s)
(j,i) ≥ 1. This expression can be rewritten

using (4.10) as

x
(s)
(i,j) ≤

∑

k∈Nj/(Ni∪{i})

x
(s)
(j,k) +

∑

k∈Ni∩Nj

x
(s)
(j,k). (4.29)

Now suppose there exists a shortest path from node i to node s that goes through

node j, i.e., x
(s)
(i,j) = 1. We claim that the shortest path must not go through edge

(j, k) ∀k ∈ Ni ∩ Nj. Assume to the contrary that it does, the shortest path must

take the form (i, j, k, . . . , s) for some k ∈ Ni ∩ Nj . Then, because node k is also

a neighbor of node i, the path (i, k, . . . , s) is shorter than (i, j, k, . . . , s), which is a

contradiction. Thus, ∀s ∈ V with s 6= j, when x
(s)
(i,j) = 1, we have

∑
k∈Ni∩Nj

x
(s)
(j,k) = 0.

Hence, due to (4.29), we have x
(s)
(i,j) ≤

∑
k∈Nj/(Ni∪{i})

x
(s)
(j,k) ∀s ∈ V with s 6= j. Finally,

by aggregating s over V, we have x(i,j) =
∑

s∈V x
(s)
(i,j) = x

(j)
(i,j) +

∑
s∈V
s 6=j

x
(s)
(i,j) ≤ 1 +

∑
s∈V

∑
k∈Nj/(Ni∪{i})

x
(s)
(j,k) = 1 +

∑
k∈Nj/(Ni∪{i})

x(j,k), proving (4.27).

Note that constraints (4.22)–(4.27) are distributed in nature, in the sense that

each constraint involves only aggregated variables that are “nearby” in the graph G.

The following theorem presents an additional set of constraints on the aggregated

variables, which are also distributed:

Theorem 10. The 4L+N variables x(i,j) ∀(i, j) ∈ Ẽ , B(i,j) ∀(i, j) ∈ Ẽ , and B′
i ∀i ∈ V

75

satisfy

B(i,j) = B(j,i), ∀{i, j} ∈ E , (4.30)

B(i,j) ≤ x(i,j)x(j,i), ∀(i, j) ∈ Ẽ , (4.31)

B(i,j) ≥ x(i,j) + x(j,i) − 1, ∀(i, j) ∈ Ẽ , (4.32)

B(i,j) − x(i,j) ≤
∑

h∈Ni
h 6=j

(B(i,h) − x(i,h)), ∀(i, j) ∈ Ẽ , (4.33)

B′
i −B(i,j) + x(i,j) ≥

∑

h∈Ni/Nj

h 6=j

(x(h,i) − 1), ∀(i, j) ∈ Ẽ , (4.34)

B′
i ≤

∑

j∈Ni

∑

h∈Ni
h 6=j

x(i,j)x(i,h), ∀i ∈ V, (4.35)

B′
i ≥

∑

j∈Ni

x(j,i) − |Ni|, ∀i ∈ V, (4.36)

B′
i ≤

∑

j∈Ni

(B(i,j) − x(i,j)), ∀i ∈ V, (4.37)

2B(i,j) − B′
i ≤ 2x(i,j), ∀(i, j) ∈ Ẽ , (4.38)

B′
i − 2B(i,j) ≤ (N − x(i,j))

2 − 2x(i,j), ∀(i, j) ∈ Ẽ . (4.39)

Proof. To prove (4.30), let {i, j} ∈ E be given. Then, according to (4.19) and (4.13),

B(i,j) =
∑

r∈V

∑

s∈V

b
(r,s)
(i,j)

=
∑

s∈V

∑

r∈V

b
(s,r)
(j,i)

= B(j,i),

proving (4.30).

To derive (4.31), let (i, j) ∈ Ẽ be given. Notice from (4.16) that b
(r,s)
(i,j) ≤ x

(s)
(i,j)

∀r ∈ V ∀s ∈ V. Also note from (4.13) and (4.16) that b
(r,s)
(i,j) = b

(s,r)
(j,i) ≤ x

(r)
(j,i) ∀r ∈ V

76

∀s ∈ V. Thus, b(r,s)(i,j) ≤ x
(s)
(i,j)x

(r)
(j,i) ∀r ∈ V ∀s ∈ V. It follows from (4.19) and (4.18) that

B(i,j) =
∑

r∈V

∑

s∈V

b
(r,s)
(i,j)

≤
∑

r∈V

∑

s∈V

x
(s)
(i,j)x

(r)
(j,i)

=
∑

s∈V

x
(s)
(i,j)

∑

r∈V

x
(r)
(j,i)

= x(i,j)x(j,i).

Hence, (4.31) holds.

To establish (4.32), let (i, j) ∈ Ẽ be given. Then, because of (4.19), (4.13), (4.16),

and (4.18),

B(i,j) =
∑

r∈V

∑

s∈V

b
(r,s)
(i,j)

≥
∑

s∈V

b
(i,s)
(i,j) +

∑

r∈V

b
(r,j)
(i,j) − b

(i,j)
(i,j)

=
∑

s∈V

b
(i,s)
(i,j) +

∑

r∈V

b
(j,r)
(j,i) − 1

=
∑

s∈V

x
(s)
(i,j) +

∑

r∈V

x
(r)
(j,i) − 1

= x(i,j) + x(j,i) − 1,

establishing (4.32).

To prove (4.33), let (i, j) ∈ Ẽ be given. Then, because of (4.30), (4.19), (4.18),

(4.16), and (4.13),

B(i,j) − x(i,j) = B(j,i) − x(i,j)

=
∑

r∈V

∑

s∈V

b
(r,s)
(j,i) −

∑

r∈V

x
(r)
(i,j)

77

=
∑

r∈V

∑

s∈V

b
(r,s)
(j,i) −

∑

r∈V

b
(i,r)
(i,j)

=
∑

r∈V

∑

s∈V

b
(r,s)
(j,i) −

∑

r∈V

b
(r,i)
(j,i)

=
∑

r∈V

∑

s∈V
s 6=i

b
(r,s)
(j,i) .

Notice that for each s ∈ V with s 6= i, b
(i,s)
(j,i) = 0. Also note that for each r ∈ V and

s ∈ V with s 6= i, if b
(r,s)
(j,i) = 1, then there exists h ∈ Ni with h 6= j such that b

(r,s)
(i,h) = 1.

These, along with (4.19), (4.16), and (4.18), imply that

B(i,j) − x(i,j) =
∑

r∈V
r 6=i

∑

s∈V
s 6=i

b
(r,s)
(j,i)

≤
∑

r∈V
r 6=i

∑

s∈V
s 6=i

∑

h∈Ni
h 6=j

b
(r,s)
(i,h)

=
∑

h∈Ni
h 6=j

∑

r∈V
r 6=i

∑

s∈V
s 6=i

b
(r,s)
(i,h)

=
∑

h∈Ni
h 6=j

∑

r∈V
r 6=i

∑

s∈V

b
(r,s)
(i,h)

=
∑

h∈Ni
h 6=j

(∑

r∈V

∑

s∈V

b
(r,s)
(i,h)−

∑

s∈V

b
(i,s)
(i,h)

)

=
∑

h∈Ni
h 6=j

(B(i,h)−x(i,h)),

proving (4.33).

To derive (4.34), let (i, j) ∈ Ẽ be given. Then, due to (4.19), (4.16), (4.18), and

the fact that b
(i,s)
i = 0,

B(i,j) =
∑

s∈V

∑

r∈V

b
(r,s)
(i,j)

78

=
∑

s∈V

x
(s)
(i,j) +

∑

s∈V

∑

r∈V
r 6=i

x
(s)
(i,j)b

(r,s)
i

= x(i,j) +
∑

r∈V

∑

s∈V

x
(s)
(i,j)b

(r,s)
i . (4.40)

In addition, because of (4.6), (4.10), and (4.40),

B′
i =

∑

r∈V

∑

s∈V

b
(r,s)
i

≥
∑

r∈V

∑

s∈V

(x
(s)
(i,j) + x

(s)
(j,i))b

(r,s)
i

=
∑

r∈V

∑

s∈V

x
(s)
(i,j)b

(r,s)
i +

∑

r∈V

∑

s∈V

x
(s)
(j,i)b

(r,s)
i

= B(i,j) − x(i,j) +
∑

r∈V

∑

s∈V

x
(s)
(j,i)b

(r,s)
i

≥ B(i,j) − x(i,j) +
∑

r∈V

∑

h∈Ni/Nj

h 6=j

x
(h)
(j,i)b

(r,h)
i . (4.41)

Furthermore, notice that for each h ∈ Ni/Nj with h 6= j, we have x
(h)
(j,i) = 1. This,

along with (4.15), (4.17), and (4.18), allows us to write

∑

r∈V

∑

h∈Ni/Nj

h 6=j

x
(h)
(j,i)b

(r,h)
i =

∑

r∈V

∑

h∈Ni/Nj

h 6=j

b
(r,h)
i

=
∑

h∈Ni/Nj

h 6=j

∑

r∈V

b
(h,r)
i

=
∑

h∈Ni/Nj

h 6=j

∑

r∈V
r 6=i

x
(r)
(h,i)

=
∑

h∈Ni/Nj

h 6=j

(x(h,i) − 1). (4.42)

Combining (4.41) and (4.42), we arrive at (4.34).

To establish (4.35), let i ∈ V be given. Observe from (4.5) and (4.3) that if

79

b
(r,s)
i = 1, then there exists j′ ∈ Ni such that x

(s)
(i,j′) = 1, and there exists h′ ∈ Ni with

h′ 6= j′ such that x
(r)
(i,h′) = 1. Hence, b

(r,s)
i ≤

∑
j∈Ni

∑
h∈Ni
h 6=j

x
(s)
(i,j)x

(r)
(i,h). It follows from

(4.6) and (4.18) that

B′
i =

∑

r∈V

∑

s∈V

b
(r,s)
i

≤
∑

r∈V

∑

s∈V

∑

j∈Ni

∑

h∈Ni
h 6=j

x
(s)
(i,j)x

(r)
(i,h)

=
∑

j∈Ni

∑

h∈Ni
h 6=j

∑

s∈V

x
(s)
(i,j)

∑

r∈V

x
(r)
(i,h)

=
∑

j∈Ni

∑

h∈Ni
h 6=j

x(i,j)x(i,h),

which is exactly (4.35).

To prove (4.36), let i ∈ V be given. Then, due to (4.6), (4.17), (4.18), and the

fact that x
(i)
(j,i) = 1,

B′
i =

∑

r∈V

∑

s∈V

b
(r,s)
i

≥
∑

j∈Ni

∑

s∈V

b
(j,s)
i

=
∑

j∈Ni

∑

s∈V
s 6=i

x
(s)
(j,i)

=
∑

j∈Ni

(∑

s∈V

x
(s)
(j,i) − x

(i)
(j,i)

)

=
∑

j∈Ni

x(j,i) − |Ni|,

proving (4.36).

To derive (4.37), let i ∈ V be given. Then, due to (4.6), the fact that b
(r,i)
i = 0,

80

(4.9), and (4.40),

B′
i =

∑

r∈V

∑

s∈V

b
(r,s)
i

≤
∑

r∈V

∑

s∈V

(∑

j∈Ni

x
(s)
(i,j)

)
b
(r,s)
i

=
∑

j∈Ni

∑

r∈V

∑

s∈V

x
(s)
(i,j)b

(r,s)
i

=
∑

j∈Ni

(B(i,j) − x(i,j)),

so that (4.37) holds.

To establish (4.38), let (i, j) ∈ Ẽ be given. Observe from (4.16) that for each r ∈ V

and s ∈ V with r 6= i, we have x
(s)
(i,j)b

(r,s)
i = (x

(s)
(i,j)b

(r,s)
i)b

(r,s)
i = b

(r,s)
(i,j)b

(r,s)
i . Moreover,

b
(i,s)
i = 0. Thus, in view of (4.40),

B(i,j) − x(i,j) =
∑

r∈V

∑

s∈V

b
(r,s)
(i,j)b

(r,s)
i . (4.43)

Applying (4.13) and (4.15) to (4.43) and interchanging r and s, we get

B(i,j) − x(i,j) =
∑

r∈V

∑

s∈V

b
(s,r)
(j,i) b

(s,r)
i

=
∑

r∈V

∑

s∈V

b
(r,s)
(j,i) b

(r,s)
i . (4.44)

Adding up (4.43) and (4.44), and using (4.14) and (4.6), we obtain

2B(i,j) − 2x(i,j) =
∑

r∈V

∑

s∈V

(b
(r,s)
(i,j) + b

(r,s)
(j,i))b

(r,s)
i

≤
∑

r∈V

∑

s∈V

b
(r,s)
i

= B′
i,

81

establishing (4.38).

Finally, due to space limitation, the proof of (4.39) is omitted.

To summarize, we have introduced in this section a set of 4L + 2N aggregated

variables x(i,j) ∀(i, j) ∈ Ẽ , Fi ∀i ∈ V, B(i,j) ∀(i, j) ∈ Ẽ , and B′
i ∀i ∈ V along with a

set of distributed constraints on them.

4.4 Distributed Estimation of Betweenness

In this section, we use the aggregated variables and distributed constraints to develop

a distributed algorithm for estimating the unknown node and edge betweenness.

We begin by describing the idea behind the algorithm. First, observe that the

4L + 2N aggregated variables x(i,j) ∀(i, j) ∈ Ẽ , Fi ∀i ∈ V, B(i,j) ∀(i, j) ∈ Ẽ , and

B′
i ∀i ∈ V must satisfy a set of 16 distributed constraints, of which the first 6 come

from Theorem 9 (i.e., (4.22)–(4.27)), and the next 10 come from Theorem 10 (i.e.,

(4.30)–(4.39)). Next, suppose each node i ∈ V at each time t ∈ [0,∞) maintains in its

local memory an estimate x̂(i,j)(t) ∈ R of x(i,j) for every j ∈ Ni, an estimate F̂i(t) ∈ R

of Fi, an estimate B̂(i,j)(t) ∈ R of B(i,j) for every j ∈ Ni, and an estimate B̂i(t) ∈ R

of B′
i for a low memory complexity of O(|Ni|). Moreover, suppose a distributed

algorithm can be designed, with which the N nodes are able to cooperatively update

their estimates, driving them towards simultaneously satisfying the 16 constraints.

Then, every node i ∈ V would be able to estimate B′
i and B′

{i,j} ∀j ∈ Ni, the latter

using (4.21). Indeed, the tighter the 16 constraints, the more accurate the estimates

would be, which explains why we attempt to derive as many constraints as possible

in Theorems 9 and 10.

To realize the above idea, consider the following notations: let x ∈ R
2L be a vector

formed by the 2L variables x(i,j) ∀(i, j) ∈ Ẽ , F ∈ R
N be a vector formed by the N

variables Fi ∀i ∈ V, and B ∈ R
2L+N be a vector formed by the 2L+N variables B(i,j)

82

∀(i, j) ∈ Ẽ and B′
i ∀i ∈ V. Similarly, let x̂(t) ∈ R

2L, F̂(t) ∈ R
N , and B̂(t) ∈ R

2L+N

be vectors formed by the 4L+2N estimates x̂(i,j)(t) ∀(i, j) ∈ Ẽ , F̂i(t) ∀i ∈ V, B̂(i,j)(t)

∀(i, j) ∈ Ẽ , and B̂i(t) ∀i ∈ V. In addition, let Θ ⊂ R
2L × R

N × R
2L+N denote the

feasible set of points that satisfy the 16 constraints from Theorems 9 and 10. Clearly,

the aggregated variables (x,F,B) are in the set Θ.

With the notations in hand, we now address the question of how to design a dis-

tributed algorithm, which enables the N nodes to cooperatively drive their estimates

(x̂(t), F̂(t), B̂(t)) into the set Θ, in which the aggregated variables (x,F,B) reside. To

this end, observe that the set Θ is a non-convex set in R
2L×R

N ×R
2L+N , which may

complicate the design. The set Θ is non-convex because some of the 16 constraints—

specifically, (4.31), (4.35), and (4.39)—involve products of the x(i,j)’s. Fortunately,

however, the 6 constraints from Theorem 9 involve only (x,F) and not B. In addition,

these constraints define a set Θ1 in R
2L×R

N that is convex in (x,F). In comparison,

the 10 constraints from Theorem 10 involve only (x,B) and not F. Moreover, for

each fixed x, these constraints define a set Θ2(x) in R
2L+N that is convex in B.

The above observations suggest that we may construct a distributed algorithm

consisting of two parts, in which the first part forces (x̂(t), F̂(t)) to converge to a

point (x∗,F∗) in the convex set Θ1, while the second part forces B̂(t) to converge

to a point in the time-varying convex set Θ2(x̂(t)). Since x̂(t) will converge to x∗

as t → ∞, the time-varying convex set Θ2(x̂(t)) will converge to the time-invariant

convex set Θ2(x
∗), so that B̂(t) will converge to a point B∗(x∗) in Θ2(x

∗). It follows

that (x̂(t), F̂(t), B̂(t)) will converge to the point (x∗,F∗,B∗(x∗)) in the set Θ, despite

its non-convexity.

To devise a distributed algorithm that has the aforementioned features, consider

the following two optimization problems:

min
(x̂,F̂)∈R2L×RN

f(x̂, F̂) , 1
T x̂ +

1

2
ρx̂T x̂+

1

2
ρF̂T F̂

83

+ γ1
∑

i∈V

ϕ
(
N − 1−

∑

j∈Ni

x̂(i,j)

)

+ γ2
∑

{i,j}∈E

ϕ
(
x̂(i,j) + x̂(j,i) −N

)

+
1

2
γ3

∑

{i,j}∈E

(
F̂i − F̂j − x̂(i,j) + x̂(j,i)

)2

+ γ4
∑

(i,j)∈Ẽ

ϕ
(
|Nj/Ni| − x̂(i,j)

)

+ γ5
∑

(i,j)∈Ẽ

ϕ
(
x̂(i,j) −N + |Ni|

)

+ γ6
∑

(i,j)∈Ẽ

ϕ
(
x̂(i,j) − 1−

∑

k∈Nj/Ni

k 6=i

x̂(j,k)

)
, (4.45)

and

min
B̂∈R2L+N

g(B̂; x̂) , 1
T B̂+

1

2
ρ′B̂T B̂

+
1

2
γ′
1

∑

{i,j}∈E

(
B̂(i,j) − B̂(j,i)

)2

+ γ′
2

∑

(i,j)∈Ẽ

ϕ
(
B̂(i,j) − x̂(i,j)x̂(j,i)

)

+ γ′
3

∑

(i,j)∈Ẽ

ϕ
(
x̂(i,j) + x̂(j,i) − 1− B̂(i,j)

)

+ γ′
4

∑

(i,j)∈Ẽ

ϕ
(
B̂(i,j) − x̂(i,j) −

∑

h∈Ni
h 6=j

(B̂(i,h) − x̂(i,h))
)

+ γ′
5

∑

(i,j)∈Ẽ

ϕ
(∑

h∈Ni/Nj

h 6=j

(x̂(h,i) − 1)− B̂i + B̂(i,j) − x̂(i,j)

)

+ γ′
6

∑

i∈V

ϕ
(
B̂i −

∑

j∈Ni

∑

h∈Ni
h 6=j

x̂(i,j)x̂(i,h)

)

+ γ′
7

∑

i∈V

ϕ
(∑

j∈Ni

x̂(j,i) − |Ni| − B̂i

)

+ γ′
8

∑

i∈V

ϕ
(
B̂i −

∑

j∈Ni

(B̂(i,j) − x̂(i,j))
)

84

+ γ′
9

∑

(i,j)∈Ẽ

ϕ
(
2B̂(i,j) − B̂i − 2x̂(i,j)

)

+ γ′
10

∑

(i,j)∈Ẽ

ϕ
(
B̂i − 2B̂(i,j) − (N − x̂(i,j))

2 + 2x̂(i,j)

)
, (4.46)

where f : R2L×R
N → R is the objective function of the first optimization problem, 1

is the all-one column vector, ρ > 0, γ1, γ2, . . . , γ6 > 0, g : R2L+N → R is the objective

function of the second optimization problem, the semicolon in g(B̂; x̂) indicates that

x̂ is to be treated as a constant parameter, ρ′ > 0, γ′
1, γ

′
2, . . . , γ

′
10 > 0, and ϕ : R → R

is a barrier-like function defined as

ϕ(z) =





1
2
z2, z ≥ 0,

0, z < 0.

The first and second optimization problems (4.45) and (4.46) are associated with

the first and second parts of the distributed algorithm, respectively. These two prob-

lems have the following interpretation: the first term 1
T x̂ in (4.45) and the first term

1
T B̂ in (4.46) are motivated by our intution that the x(i,j)’s, B(i,j)’s, and B′

i’s in

most graphs are closer to their lower bounds provided in Theorems 9 and 10, than

to their upper bounds provided in the theorems. The second term 1
2
ρx̂T x̂ + 1

2
ρF̂T F̂

in (4.45) and the second term 1
2
ρ′B̂T B̂ in (4.46) are quadratic regularization terms

intended to ensure that the optimization problems are strongly convex and thus have

unique solutions. Hence, both ρ and ρ′ are meant to be small. The rest of the terms

in (4.45) and in (4.46) are inspired by the barrier method of converting constrained

optimization problems into unconstrained ones. In particular, the 6 terms in (4.45)

model the constraint set Θ1, while the 10 terms in (4.46) model the constraint set

Θ2(x̂). Therefore, the γℓ’s and γ′
ℓ’s are meant to be large.

As it follows from the above, f(x̂, F̂) in (4.45) assumes a small value if (x̂, F̂) ∈ Θ1,

assumes a large value if (x̂, F̂) /∈ Θ1, is strongly convex in (x̂, F̂), and has a unique

85

minimizer (x∗,F∗) ∈ Θ1 for sufficiently small ρ and large γℓ’s. Likewise, g(B̂; x̂) in

(4.46) assumes a small value if B̂ ∈ Θ2(x̂), assumes a large value if B̂ /∈ Θ2(x̂), is

strongly convex in B̂ for each fixed x̂, and has a unique minimizer B∗(x̂) ∈ Θ2(x̂) for

sufficiently small ρ′ and large γ′
ℓ’s. Therefore, by having the N nodes cooperatively

execute a continuous-time gradient-descent algorithm



˙̂x(t)

˙̂
F(t)


 = −ε



∇x̂f(x̂(t), F̂(t))

∇
F̂
f(x̂(t), F̂(t))


 , (4.47)

˙̂
B(t) = −ε′∇

B̂
g(B̂(t); x̂(t)), (4.48)

where ε > 0 and ε′ > 0, the estimates (x̂(t), F̂(t), B̂(t)) are guaranteed to asymp-

totically converge to the point (x∗,F∗,B∗(x∗)) in the set Θ. We note that because

the 16 constraints are distributed in nature, algorithm (4.47)–(4.48) is distributedly

implementable, requiring only communications among neighboring nodes. Indeed,

this feature can be seen by rewriting algorithm (4.47)–(4.48) in an element-wise form

as follows: first, for each (i, j) ∈ Ẽ ,

˙̂x(i,j)(t) = −ε
[
1 + ρx̂(i,j)(t)− γ1ϕ

′
(
N − 1−

∑

k∈Ni

x̂(i,k)(t)
)

+ γ2ϕ
′(x̂(i,j)(t) + x̂(j,i)(t)−N)− γ3(F̂i(t)− F̂j(t)− x̂(i,j)(t) + x̂(j,i)(t))

− γ4ϕ
′(|Nj/Ni| − x̂(i,j)(t)) + γ5ϕ

′(x̂(i,j)(t)−N + |Ni|)

+ γ6ϕ
′
(
x̂(i,j)(t)− 1−

∑

k∈Nj/(Ni∪{i})

x̂(j,k)(t)
)

− γ6
∑

h∈Ni/(Nj∪{j})

ϕ′
(
x̂(h,i)(t)− 1−

∑

k∈Ni/(Nh∪{h})

x̂(i,k)(t)
)]

, (4.49)

86

where

ϕ′(z) =






z, z ≥ 0,

0, z < 0.

(4.50)

Second, for each i ∈ V,

˙̂
Fi(t) = −ε

[
ρF̂i(t) + γ3

∑

j∈Ni

(F̂i(t)− F̂j(t)− x̂(i,j)(t) + x̂(j,i)(t))
]
. (4.51)

Third, for each (i, j) ∈ Ẽ ,

˙̂
B(i,j) = −ε′

[
ρ′B̂(i,j) + γ′

1

(
B̂(i,j) − B̂(j,i)

)
+ γ′

2ϕ
′
(
B̂(i,j) − x̂(i,j)x̂(j,i)

)

− γ′
3ϕ

′
(
x̂(i,j) + x̂(j,i) − 1− B̂(i,j)

)

+ γ′
4ϕ

′
(
B̂(i,j) − x̂(i,j) −

∑

h∈Ni
h 6=j

(B̂(i,h) − x̂(i,h))
)

− γ′
4

∑

h∈Ni
h 6=j

ϕ′
(
B̂(i,h) − x̂(i,h) −

∑

k∈Ni
k 6=h

(B̂(i,k) − x̂(i,k))
)

+ γ′
5ϕ

′
(∑

h∈Ni/Nj

h 6=j

(x̂(h,i) − 1)− B̂i + B̂(i,j) − x̂(i,j)

)

− γ′
8ϕ

′
(
B̂i −

∑

k∈Ni

(B̂(i,k) − x̂(i,k))
)
+ 2γ′

9ϕ
′
(
2B̂(i,j) − B̂i − 2x̂(i,j)

)

− 2γ′
10ϕ

′
(
B̂i − 2B̂(i,j) − (N − x̂(i,j))

2 + 2x̂(i,j)

)]
. (4.52)

Finally, for each i ∈ V,

˙̂
Bi = −ε′

[
ρ′B̂i − γ′

5

∑

j∈Ni

ϕ′
(∑

h∈Ni/Nj

h 6=j

(x̂(h,i) − 1)− B̂i + B̂(i,j) − x̂(i,j)

)

+ γ′
6ϕ

′
(
B̂i −

∑

j∈Ni

∑

h∈Ni
h 6=j

x̂(i,j)x̂(i,h)

)
− γ′

7ϕ
′
(∑

j∈Ni

x̂(j,i) − |Ni| − B̂i

)

87

+ γ′
8ϕ

′
(
B̂i −

∑

j∈Ni

(B̂(i,j) − x̂(i,j))
)
− γ′

9

∑

j∈Ni

ϕ′
(
2B̂(i,j) − B̂i − 2x̂(i,j)

)

+ γ′
10

∑

j∈Ni

ϕ′
(
B̂i − 2B̂(i,j) − (N − x̂(i,j))

2 + 2x̂(i,j)

)]
. (4.53)

Examining (4.49)–(4.53), we see that algorithm (4.47)–(4.48) is scalable with memory

and communication complexities of O(|Ni|). We also note that although the point

(x∗,F∗,B∗(x∗)) and aggregated variables (x,F,B) are both in the set Θ, we presently

do not have analytical bounds on the distance between them.

4.5 Performance Evaluation

In this section, we evaluate the performance of algorithm (4.47)–(4.48) via two sets of

simulations. Section 4.5.1 presents the first set, while Sections 4.5.2 and 4.5.3 present

the second.

4.5.1 First Set of Simulation

For the first set of simulation, we illustrate the performance of algorithm (4.47)–

(4.48) on a 15-node graph. Figure 4.1(a) displays the graph including the node indices.

Figures 4.1(b) and 4.1(c) display as functions of time t the node and edge betweenness

B′
i’s and B(i,j)’s using gray lines, and their estimates B̂i(t)’s and B̂(i,j)(t)’s using color

curves. Observe from the figures that, as expected, the B̂i(t)’s and B̂(i,j)(t)’s converge

to some steady-state values as t → ∞. Moreover, these steady-state values coincide

with the B′
i’s and B(i,j)’s for most, but not all, of the nodes and edges.

4.5.2 Second Set of Simulation: Evaluation Settings

For the second set of simulation, we evaluate the performance of algorithm (4.47)–

(4.48) on random geometric graphs. Specifically, we consider four values ofN from the

88

1

2

3

45
6

7

8

9

10

11
12 13

14

15

(a) Node indices.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

110

Time t

E
st
im

at
es

B̂
i(
t)
’s

B̂1

B̂2

B̂3

B̂4

B̂5

B̂6

B̂7

B̂8

B̂9

B̂10

B̂11

B̂12

B̂13

B̂14

B̂15

(b) Estimates B̂i(t)’s.

0 1 2 3 4 5
0

10

20

30

40

50

Time t

E
st
im

at
es

B̂
(i
,j
)(
t)
’s

B̂(1 ,2)

B̂(1 ,3)

B̂(1 ,10)

B̂(2 ,3)

B̂(2 ,9)

B̂(3 ,4)

B̂(3 ,11)

B̂(4 ,5)

B̂(4 ,6)

B̂(4 ,13)

B̂(4 ,14)

B̂(5 ,6)

B̂(5 ,7)

B̂(5 ,14)

B̂(6 ,8)

B̂(6 ,14)

B̂(7 ,12)

B̂(14 ,15)

(c) Estimates B̂(i,j)(t)’s.

Figure 4.1: An illustration of the performance of algorithm (4.47)–(4.48) in estimating
betweenness on a 15-node graph.

89

set {10, 15, 20, 25} and five values of neighborhood radius r from the set {0.1, 0.2, 0.3,

0.4, 0.5}. For each of the 20 combinations of (N, r), we generate 10 different sce-

narios. For each scenario k, we place N nodes randomly and equiprobably on the

unit square [0, 1] × [0, 1], regard any two nodes as neighbors if their distance does

not exceed r, and repeat the process until the resulting graph is connected. We then

simulate algorithm (4.47)–(4.48) with ε = ε′ = 5 × 10−5, ρ = ρ′ = 0.001, γℓ = 106

∀ℓ ∈ {1, 2, . . . , 6}, and γ′
ℓ = 106 ∀ℓ ∈ {1, 2, . . . , 10} and record the resulting x̂(i,j)(T)

∀(i, j) ∈ Ẽ , F̂i(T) ∀i ∈ V, B̂(i,j)(T) ∀(i, j) ∈ Ẽ , and B̂i(T) ∀i ∈ V, where T is the sim-

ulation duration. Upon completion, we compare the N node betweenness estimates

B̂1(T), B̂2(T), . . . , B̂N(T) with their true values B′
1, B

′
2, . . . , B

′
N computed from (4.1).

To facilitate the comparison, we introduce a measure called Accuracy of Ordering,

denoted as AO(N, r, k) (i.e., for scenario k of combination (N, r)) and defined as

AO(N, r, k)=
2

N(N−1)

∑

i∈V

∑

j∈V
j>i

O(B̂i(T), B̂j(T), B
′
i, B

′
j),

where O(a1, a2, b1, b2) is a binary-valued function that returns 1 if a1 ≤ a2 and b1 ≤ b2

or if a1 ≥ a2 and b1 ≥ b2 (i.e., (a1, a2) and (b1, b2) have the same order), and returns

0 otherwise (i.e., different order). Thus, the Accuracy of Ordering measures how

well the node betweenness estimates match up with their true values in terms of

ordering, takes the maximum value of 1 when the order is completely preserved,

and takes the minimum value of 0 when the order is completely reversed. Upon

calculating AO(N, r, k) for each scenario k ∈ {1, 2, . . . , 10}, we record their average

1
10

∑10
k=1AO(N, r, k) as AO(N, r). In a similar fashion, we use the measure AO(N, r, k)

to characterize how well the 2L edge betweenness estimates B̂(i,j)(T) ∀(i, j) ∈ Ẽ match

up with their true values B(i,j) ∀(i, j) ∈ Ẽ computed from (4.2) and (4.21), and record

the average also as AO(N, r).

90

0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

Neighborhood radius r

A
cc
u
ra
cy

o
f
N
o
d
e
B
et
w
ee
n
es
s
O
rd
er
in
g

N = 10
N = 15
N = 20
N = 25

(a) Node betweenness.

0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

Neighborhood radius r
A
cc
u
ra
cy

o
f
E
d
g
e
B
et
w
ee
n
es
s
O
rd
er
in
g

N = 10
N = 15
N = 20
N = 25

(b) Edge betweenness.

Figure 4.2: Performance of algorithm (4.47)–(4.48) on random geometric graphs as
measured by the Accuracy of Ordering.

4.5.3 Second Set of Simulation: Evaluation Results

Figure 4.2 displays the evaluation results. Specifically, Figures 4.2(a) and 4.2(b) repre-

sent, respectively, the Accuracy of Ordering AO(N, r) for node and edge betweenness

as functions of the number of nodesN and the neighborhood radius r. Analyzing these

figures, we see that algorithm (4.47)–(4.48) performs fairly well, achieving Accuracy

of Ordering scores of 0.9000 for node betweenness and 0.8294 for edge betweenness,

in all the scenarios considered.

4.6 Conclusion

In this chapter, we have developed a scalable distributed algorithm that enables nodes

in a general graph to cooperatively estimate their individual betweenness and the be-

tweenness of edges incident on them with only local interaction and without any

centralized coordination, nor high memory usages. To arrive at this algorithm, we

91

have exploited various local properties of shortest paths and considered an uncon-

strained distributed optimization problem. We have also shown via simulation on a

number of random geometric graphs that the algorithm is fairly accurate in terms of

ordering, but has room for improvement. Therefore, possible future research direc-

tions include deriving additional constraints that decrease the size of the feasible set

Θ and incorporating them into the algorithm to increase its estimation accuracy.

92

Chapter 5

Distributed Estimation of

Closeness Centrality

5.1 Introduction

Closeness centrality is one of the most fundamental centrality measures [3, 12, 13]

that quantifies how centrally located a node is, within a network, based on its total

distances to all other nodes. Specifically, given a graph G = (V, E), where V =

{1, 2, . . . , N} denotes the set ofN nodes and E the set of edges, the closeness centrality

or simply closeness Ci of a node i ∈ V is defined in (1.2) [12, 13] as

Ci ,
N − 1∑

j∈V

dij
,

where dij = dji is the distance between nodes i and j. As can be seen from (1.2),

the larger Ci, the closer node i is, on average, to all other nodes in the graph G.

Thus, this concept of closeness is useful and has been applied to a number of areas,

including epidemiology [14], social networks [15], and power systems [16, 17].

Although the concept of closeness is useful, its computation in a decentralized

93

setting has received little attention in the literature. Indeed, majority of existing

work in the area of centrality measures focuses on introducing new measures as well

as applying existing ones to various applications. To our understanding, [23] and [121]

are the only two prior work on distributed computation of closeness. In particular,

[23] proposes a distributed algorithm for computing closeness which is applicable

to general graphs but suffers from very high memory requirement and algorithm

complexity. In contrast, [121] proposes a distributed algorithm for computing both

closeness and one of its variants called exponential closeness, which is simple and

scalable but is applicable only to tree graphs.

Motivated by the above considerations, in this chapter we address the problem

of distributed computation of closeness on general graphs. To do so, we begin with

the derivation of a set of linear inequality and equality constraints, which characterize

closeness in place of its original definition, and which are distributed in nature so that

neighboring nodes can check whether and how well they are satisfied. Using these

constraints, we subsequently develop a scalable distributed algorithm that enables

every node i ∈ V to determine an estimate Ĉi of its own closeness Ci with only local

interaction and without any centralized coordination, nor high memory usages. As

will be shown, this distributed algorithm is actually a gradient algorithm that solves a

regularized linear program whose constraints are augmented to its objective function

as barriers. Finally, we simulate the algorithm on random geometric, Erdős-Rényi,

and Barabási-Albert graphs [3]. The results show that the estimates Ĉ1, Ĉ2, . . . , ĈN

are 91% accurate in terms of ordering, compared to the ordering of their true values

C1, C2, . . . , CN .

The outline of this chapter is as follows: Section 5.2 formulates the problem ad-

dressed. Section 5.3 describes the solution approach, on which Sections 5.4 and 5.5

are based. Section 5.4 derives the set of distributed constraints that characterize

closeness. Section 5.5 derives the distributed algorithm for estimating closeness. Sec-

94

tion 5.6 evaluates its performance via extensive simulation. Finally, Section 5.7 con-

cludes the chapter.

5.2 Problem Formulation

Consider a network modeled as an undirected, unweighted and connected graph G =

(V, E), where V = {1, 2, . . . , N} denotes the set of N ≥ 2 nodes and E ⊂ {{i, j} :

i, j ∈ V, i 6= j} denotes the set of L edges. Any two nodes i, j ∈ V are neighbors and

can communicate if and only if {i, j} ∈ E . The set of neighbors of each node i ∈ V

is denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the communications are assumed to be

delay- and error-free, with no quantization.

Suppose each node i ∈ V knows only the value of N and its set Ni of neighbors.

Also suppose each node i ∈ V is willing to share its knowledge of Ni with every

neighbor j ∈ Ni, but not with others due perhaps to security and privacy reasons.

Yet, despite having only such local information about the graph G, suppose every node

i ∈ V wants to determine how centrally located it is, as measured by its closeness Ci

defined in (1.2).

Given the above, the goal of this chapter is to develop a scalable distributed

algorithm that enables every node i ∈ V to estimate its closeness Ci with a good

accuracy and without using a significant amount of memory.

5.3 Solution Approach

In this and the next two sections, we design a distributed algorithm that achieves

the aforementioned goal. Because the design involves multiple steps, for clarity we

describe in this section the ideas behind the design and provide in the next two

sections the technical details.

Reconsider the graph G and suppose we associate with each node i ∈ V an ni-

95

dimensional vector zi ∈ R
ni. These N vectors z1, z2, . . . , zN are intended to have

meaning that depends on the graph G. For example, for each i ∈ V we could let ni = 2

and let the first entry of zi be the number of shortest paths in G that go through

node i, and the second entry of zi be the number of shortest paths in G that begin

at node i. We note that this is just an example and, for the moment, we will leave

the definition of the N vectors zi’s open. Next, let z = (z1, z2, . . . , zN) ∈ R
n denote

the vector obtained by stacking the N vectors zi’s, where n =
∑

i∈V ni. Suppose the

vector z can be defined in such a way that it has the following four properties:

Property 1. For each i ∈ V, there exists a function φi : R
ni → R known to node i,

such that

Ci = φi(zi), ∀i ∈ V. (5.1)

Property 2. For each i ∈ V, there exists a set Zi ⊂ R
ni known to node i, such that

zi ∈ Zi, ∀i ∈ V. (5.2)

Property 3. For each i ∈ V and j ∈ Ni, there exists a set Z(i,j) ⊂ R
ni+nj known to

nodes i and j, such that

(zi, zj) ∈ Z(i,j), ∀i ∈ V, ∀j ∈ Ni. (5.3)

Property 4. If a vector z̃ = (z̃1, z̃2, . . . , z̃N) ∈ R
n satisfies

z̃i ∈ Zi, ∀i ∈ V, (5.4)

(z̃i, z̃j) ∈ Z(i,j), ∀i ∈ V, ∀j ∈ Ni, (5.5)

then z̃ = z.

96

Property 1 suggests that if each node i ∈ V is able to learn the value of zi, it

could calculate its own closeness Ci using (5.1) because it knows the function φi.

To learn the value of zi, suppose each node i ∈ V maintains in its local memory a

vector ẑi(t) ∈ R
ni, which represents its estimate of the unknown zi at time t ∈ [0,∞)

(assuming continuous-time). As for how does each node i ∈ V update its estimate

ẑi(t) so that ẑi(t) gradually approaches zi, the nodes could make use of constraints

(5.2) and (5.3) in Properties 2 and 3. That is, the nodes could cooperate with their

neighbors to jointly update their estimates so that ẑi(t) gradually approaches the set

Zi for each i ∈ V, and (ẑi(t), ẑj(t)) gradually approaches the set Z(i,j) for each i ∈ V

and j ∈ Ni. Notice that such an update is implementable because the set Zi is known

to node i for each i ∈ V, and the set Z(i,j) is known to nodes i and j for each i ∈ V

and j ∈ Ni. In other words, constraints (5.2) and (5.3) are distributed in nature,

allowing neighboring nodes to check whether and how well they are satisfied. Lastly,

Property 4 suggests that if the nodes are able to drive ẑi(t) into the set Zi for each

i ∈ V, and (ẑi(t), ẑj(t)) into the set Z(i,j) for each i ∈ V and j ∈ Ni, the estimates

ẑi(t)’s would be equal to the unknowns zi’s because the property implies that there

is exactly one point in R
n satisfying (5.4) and (5.5), and that point is z.

As it follows from the above, if we are able to define the vector z so that it has

Properties 1–4, and come up with a distributed algorithm that drives the estimates

ẑi(t)’s into the sets Zi’s and Z(i,j)’s, the closeness estimation problem in Section 5.2

would be solved. This describes the ideas behind our design. In the next two sections,

we provide the details.

5.4 Distributed Characterization of Closeness

In this section, we show that it is possible to define the vector z so that it has

Properties 1–4.

97

To set the stage, consider the following notations. First, although G is undirected,

let us associate with each edge {i, j} ∈ E a pair of directed edges denoted as (i, j) and

(j, i) (i.e., braces are for undirected edges, while parentheses are for directed ones).

Moreover, let Ẽ denote the set of 2L directed edges. Furthermore, since we often need

to refer to the reciprocal of Ci, for convenience we define here the farness Fi of a node

i ∈ V in (4.20) can be rewritten as

Fi ,
∑

j∈V

dij,

so that Fi =
N−1
Ci

. Similarly, we often need to refer to dij with j treated as fixed.

Hence, whenever we wish to emphasize that j is fixed we write dij as d
(j)
i .

Observe that in order for each node i ∈ V to determine its closeness Ci from (1.2)

or, equivalently, its farness Fi from (4.20), it must know the N distances dij ∀j ∈ V.

Unfortunately, such distances are not available to node i, except for dii which is 0,

and dij ∀j ∈ Ni which are 1. However, it might be possible that the N2 distances

dij ∀i, j ∈ V are constrained in some ways, which the nodes could exploit in their

attempt to determine the dij’s they need. Below, we show that this is indeed the case

by deriving a set of constraints involving the dij ’s which turns out to be distributed

in nature (in the sense of Properties 2 and 3).

To begin, consider a node s ∈ V, which is meant to be fixed, and the set of all

shortest paths ending at node s, which make node s act like a “sink” (hence the

symbol s). With this in mind, for each directed edge (i, j) ∈ Ẽ , let

x
(s)
(i,j) ,






1, if there exists a shortest path from node i

to node s that goes through edge (i, j),

0, otherwise.

98

as shown in (4.3), defines 2L binary variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ , each of which has a

graph-theoretic meaning. These variables, together with the N distances d
(s)
i ∀i ∈ V,

form a set of 2L+N variables having the following properties:

Theorem 11. The 2L+N variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ and d

(s)
i ∀i ∈ V satisfy

∑

j∈Ns

x
(s)
(s,j) = 0,

∑

j∈Ni

x
(s)
(i,j) ≥ 1, ∀i 6= s,

x
(s)
(i,j) + x

(s)
(j,i) ≤ 1, ∀{i, j} ∈ E ,

d
(s)
i − d

(s)
j = x

(s)
(i,j) − x

(s)
(j,i), ∀{i, j} ∈ E ,

d(s)s = 0.

Proof. See Lemma 5 in Chapter4.

An immediate implication of the above observation is that although the nodes do

not know the values of the variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ and d

(s)
i ∀i ∈ V, they could

locally maintain estimates of these variables, denoted as x̂
(s)
(i,j) ∈ {0, 1} ∀(i, j) ∈ Ẽ

and d̂
(s)
i ∈ R ∀i ∈ V. By repeatedly exchanging latest values of their estimates with

their neighbors’, and repeatedly checking how well their estimates satisfy constraints

(4.8)–(4.12), the nodes might be able to drive their estimates toward satisfying all

the constraints simultaneously, i.e.,

∑

j∈Ns

x̂
(s)
(s,j) = 0, (5.6)

∑

j∈Ni

x̂
(s)
(i,j) ≥ 1, ∀i 6= s, (5.7)

x̂
(s)
(i,j) + x̂

(s)
(j,i) ≤ 1, ∀{i, j} ∈ E , (5.8)

d̂
(s)
i − d̂

(s)
j = x̂

(s)
(i,j) − x̂

(s)
(j,i), ∀{i, j} ∈ E , (5.9)

99

d̂(s)s = 0. (5.10)

If the nodes are able to force their estimates to satisfy constraints (5.6)–(5.10), and

if constraints (5.6)–(5.10) have a unique feasible point—which must then be x
(s)
(i,j)

∀(i, j) ∈ Ẽ and d
(s)
i ∀i ∈ V since they must satisfy (4.8)–(4.12)—each node i ∈ V

would have determined the dij’s it needs in order to determine its own Ci from (1.2)

or Fi from (4.20) (see Property 1).

The following key theorem shows that constraints (5.6)–(5.10) indeed have a

unique feasible point in the mixed-integer space {0, 1}2L × R
N (see Property 4):

Theorem 12. There exist unique x̂
(s)
(i,j) ∈ {0, 1} ∀(i, j) ∈ Ẽ and d̂

(s)
i ∈ R ∀i ∈ V,

given by x̂
(s)
(i,j) = x

(s)
(i,j) and d̂

(s)
i = d

(s)
i , which satisfy (5.6)–(5.10).

Proof. See Section 5.4.1.

To summarize this section, we have shown that it is possible to define the vector

z = (z1, z2, . . . , zN) so that it has Properties 1–4. Indeed, for each i ∈ V, zi is the

vector formed by x
(s)
(i,j) ∀j ∈ Ni ∀s ∈ V and d

(s)
i ∀s ∈ V. In addition, the set Zi is

defined by (4.8), (4.9), and (4.12), while the set Z(i,j) is defined by (4.10) and (4.11).

5.4.1 Proof of Theorem 12

To prove Theorem 12, first consider the following lemma:

Lemma 7. If x̂
(s)
(i,j) ∈ {0, 1} ∀(i, j) ∈ Ẽ and d̂

(s)
i ∈ R ∀i ∈ V satisfy (5.6)–(5.10), then:

(a. x̂
(s)
(i,j) ∈ {0, 1} and x̂

(s)
(j,i) ∈ {0, 1} cannot be both 1 ∀{i, j} ∈ E ,

(b. d̂
(s)
i − d̂

(s)
j ∈ {−1, 0, 1} ∀{i, j} ∈ E ,

(c. ∀i 6= s, ∃j ∈ Ni such that d̂
(s)
i − d̂

(s)
j = 1.

100

Proof. Statement (a) follows from (4.3) and (5.8), whereas statement (b) follows

from (a) and (5.9). To establish (c), note from (4.3) and (5.7) that ∀i 6= s, ∃j ∈ Ni

such that x̂
(s)
(i,j) = 1. Statement (c) is then a result of (a) and (5.9).

Next, let D = maxj∈V d
(s)
j . Since N ≥ 2, D > 0. Since G is connected, D < ∞.

For each ℓ ∈ {0, 1, . . . , D}, let

Vℓ = {i ∈ V : d
(s)
i = ℓ}, (5.11)

mℓ = min
i∈Vℓ

d̂
(s)
i , (5.12)

Mℓ = max
i∈Vℓ

d̂
(s)
i . (5.13)

Then, it is obvious that V can be partitioned into nonempty subsets V0,V1, . . . ,VD,

and both mℓ and Mℓ are well-defined since Vℓ is nonempty and finite.

Lemma 8. m0 = M0 = 0.

Proof. From (5.11), V0 = {s}. This, along with (5.10), (5.12), and (5.13), implies

that m0 = M0 = 0.

Lemma 9. For each ℓ ∈ {0, 1, . . . , D}, Mℓ ≤ ℓ.

Proof. By induction. From Lemma 8, M0 = 0. Next, we show that ∀ℓ ∈ {1, 2, . . . , D},

Mℓ−1 ≤ ℓ− 1 implies Mℓ ≤ ℓ. Suppose Mℓ−1 ≤ ℓ − 1. Then, due to (5.13), we have

d̂
(s)
i ≤ ℓ − 1 ∀i ∈ Vℓ−1. Now pick any j ∈ Vℓ. Since G is connected, Nj ∩ Vℓ−1 6= ∅.

Let p ∈ Nj ∩ Vℓ−1. Since d̂
(s)
i ≤ ℓ − 1 ∀i ∈ Vℓ−1, d̂

(s)
p ≤ ℓ − 1. By Lemma 7(b),

d̂
(s)
j ≤ d̂

(s)
p + 1 ≤ ℓ. Thus, d̂

(s)
i ≤ ℓ ∀i ∈ Vℓ. From (5.13), Mℓ ≤ ℓ, as desired.

Lemma 10. For each ℓ ∈ {1, 2, . . . , D}, mℓ−1 ≤ mℓ − 1.

Proof. By backward induction. First, we show that the claim is true for ℓ = D, i.e.,

mD−1 ≤ mD−1. Let j ∈ argmini∈VD
d̂
(s)
i , so that j ∈ VD and d̂

(s)
j = mD. Since D 6= 0

and since V0 = {s}, we have j 6= s. By Lemma 7(c), there exists p ∈ Nj such that

101

d̂
(s)
p = d̂

(s)
j −1. Note that p /∈ VD, because if p ∈ VD, then the statement d̂

(s)
p = d̂

(s)
j −1

contradicts the statement j ∈ argmini∈VD
d̂
(s)
i . Thus, we have p ∈ VD−1. Hence, from

(5.12), mD−1 = mini∈VD−1
d̂
(s)
i ≤ d̂

(s)
p = d̂

(s)
j − 1 = mD − 1, as desired.

Next, we show that ∀ℓ ∈ {1, 2, . . . , D− 1}, mℓ ≤ mℓ+1− 1 implies mℓ−1 ≤ mℓ − 1.

Suppose mℓ ≤ mℓ+1 − 1. Let j ∈ argmini∈Vℓ
d̂
(s)
i , so that j ∈ Vℓ and d̂

(s)
j = mℓ.

Since ℓ 6= 0 and V0 = {s}, we have j 6= s. By Lemma 7(c), there exists p ∈ Nj

such that d̂
(s)
p = d̂

(s)
j − 1. Note that p /∈ Vℓ, because if p ∈ Vℓ, then the statement

d̂
(s)
p = d̂

(s)
j − 1 contradicts the statement j ∈ argmini∈Vℓ

d̂
(s)
i . Hence, we have either

p ∈ Vℓ+1 or p ∈ Vℓ−1. Note that p /∈ Vℓ+1, because if p ∈ Vℓ+1, then from (5.12), we

havemℓ+1 = mini∈Vℓ+1
d̂
(s)
i ≤ d̂

(s)
p = d̂

(s)
j −1 = mℓ−1, which contradicts our hypothesis

that mℓ ≤ mℓ+1 − 1. Therefore, we have p ∈ Vℓ−1. Hence, mℓ−1 = mini∈Vℓ−1
d̂
(s)
i ≤

d̂
(s)
p = mℓ − 1, as desired.

Lemma 11. For each ℓ ∈ {0, 1, . . . , D}, mℓ ≥ ℓ.

Proof. By induction. From Lemma 8, m0 = 0. Next, we show that ∀ℓ ∈ {1, 2, . . . , D},

mℓ−1 ≥ ℓ − 1 implies mℓ ≥ ℓ. Suppose mℓ−1 ≥ ℓ − 1. Then, by Lemma 10, mℓ ≥

mℓ−1 + 1 ≥ ℓ, as desired.

Applying (5.12), (5.13), and Lemmas 9 and 11, we have mℓ = Mℓ = ℓ ∀ℓ ∈

{0, 1, . . . , D}. It follows that d̂
(s)
i = d

(s)
i ∀i ∈ V. This, together with (4.8), (4.11),

(5.6), (5.9), and Lemma 7(a), implies that x̂
(s)
(i,j) = x

(s)
(i,j) ∀(i, j) ∈ Ẽ . This completes

the proof of Theorem 12.

5.5 Distributed Estimation of Closeness

In this section, we leverage the results from Section 5.4 to derive a distributed algo-

rithm for estimating closeness.

As is stated in Theorem 12, for any fixed node s ∈ V, constraints (5.6)–(5.10)

admit a unique feasible point in the mixed-integer space {0, 1}2L×R
N , which is exactly

102

the 2L + N variables x
(s)
(i,j) ∀(i, j) ∈ Ẽ and d

(s)
i ∀i ∈ V. Thus, a straightforward way

to develop a distributed algorithm for computing the Ci’s is to make use of (1.2) and

constraints (5.6)–(5.10). This algorithm, however, would have a memory complexity

of O(|Ni|N) (where | · | denotes the cardinality of a set), which is rather high, since

each node i ∈ V would have to compute x
(s)
(i,j) ∀j ∈ Ni ∀s ∈ V and d

(s)
i ∀s ∈ V.

To derive an algorithm that has a lower memory complexity, we aggregate the

(2L + N)N variables x
(s)
(i,j) ∀i ∈ V ∀j ∈ Ni ∀s ∈ V and d

(s)
i ∀i ∈ V ∀s ∈ V in the

following manner: first, for each (i, j) ∈ Ẽ , in (4.18), we let

x(i,j) ,
∑

s∈V

x
(s)
(i,j)

so that x(i,j) may be regarded as the number of nodes in V to which shortest paths

from node i pass through edge (i, j) ∈ Ẽ . Second, for each i ∈ V, recall from (4.20)

that Fi ,
∑

s∈V d
(s)
i . With these two aggregations, we obtain a new set of 2L + N

variables x(i,j) ∀(i, j) ∈ Ẽ and Fi ∀i ∈ V, which has a lower memory complexity of

O(|Ni|).

The following two lemmas show that the new variables x(i,j)’s and Fi’s satisfy a

number of constraints:

Lemma 12. The 2L variables x(i,j) ∀(i, j) ∈ Ẽ satisfy the following N + L linear

inequalities:

∑

j∈Ni

x(i,j) ≥ N − 1, ∀i ∈ V,

x(i,j) + x(j,i) ≤ N, ∀{i, j} ∈ E .

Proof. See Theorem 9 of Chapter 4.

Lemma 13. The 2L+N variables x(i,j) ∀(i, j) ∈ Ẽ and Fi ∀i ∈ V satisfy the following

103

L linear equations:

Fi − Fj = x(i,j) − x(j,i), ∀{i, j} ∈ E .

Proof. See Theorem 9 of Chapter 4.

Although aggregating the variables helps lower the memory complexity, it also

yields a notable drawback, in that the constraints in Lemmas 12 and 13 do not

uniquely determine the new variables x(i,j)’s and Fi’s. In other words, the feasible set

defined by contains in Lemmas 12 and 13 more than one point, so that Property 4 of

Section 5.3 does not hold. To alleviate this drawback, consider the following lemma,

which provides additional constraints that reduce the size of the feasible set:

Lemma 14. The 2L variables x(i,j) ∀(i, j) ∈ Ẽ satisfy the following 6L linear inequal-

ities:

x(i,j) ≥ |Nj/Ni|,

x(i,j) ≤ N − |Ni|,

x(i,j) ≤ 1 +
∑

k∈Nj/(Ni∪{i})

x(j,k).

Proof. See Theorem 9 of Chapter 4.

With the introduction of these additional constraints in Lemma 14, we now have

2L + N variables x(i,j) ∀(i, j) ∈ Ẽ and Fi ∀i ∈ V with 8L + N linear equalities/

inequalities, which are an improvement over Lemmas 12 and 13 alone but are still

insufficient. To alleviate this limitation, we formulate a distributed optimization

problem in the following manner: first, suppose each node i ∈ V maintains estimates

x̂(i,j)(t) ∈ R ∀j ∈ Ni and F̂i(t) ∈ R in its local memory for a memory complexity of

O(|Ni|), where F̂i(t) represents node i’s estimate of its own farness from which it can

104

estimate its own closeness. Next, consider an objective function f(x̂, F̂), defined as

f(x̂, F̂) =
∑

i∈V

∑

j∈Ni

x̂(i,j) +
1

2
ρ
∑

i∈V

∑

j∈Ni

x̂2
(i,j)

+
1

2
ρ
∑

i∈V

F̂ 2
i + γ1

∑

i∈V

ϕ
(
N−1−

∑

j∈Ni

x̂(i,j)

)

+ γ2
∑

{i,j}∈E

ϕ(x̂(i,j) + x̂(j,i) −N)

+
1

2
γ3

∑

{i,j}∈E

(F̂i − F̂j − x̂(i,j) + x̂(j,i))
2

+ γ4
∑

i∈V

∑

j∈Ni

ϕ(|Nj/Ni| − x̂(i,j))

+ γ5
∑

i∈V

∑

j∈Ni

ϕ(x̂(i,j) −N + |Ni|)

+ γ6
∑

i∈V

∑

j∈Ni

ϕ
(
x̂(i,j) − 1−

∑

k∈Nj/(Ni∪{i})

x̂(j,k)

)
, (5.14)

where x̂ ∈ R
2L is a vector obtained by stacking the 2L estimates x̂(i,j)’s, F̂ ∈ R

N is

a vector obtained by stacking the N estimates F̂i’s, ρ > 0 is a small weighting factor

intended for regularization, γ1, γ2, . . . , γ6 > 0 are large weighting factors, and ϕ(z) is

a function defined as

ϕ(z) =





1
2
z2, z ≥ 0,

0, z < 0.

(5.15)

The objective function (5.14) has the following interpretation. The first term in

(5.14) is inspired by the observation that shortest paths in graphs tend to yield small

x(i,j)’s. The second and third terms are quadratic regularization terms intended to

ensure that the optimization problem is strongly convex and thus has a unique solu-

tion. The rest of the terms in (5.14) are inspired by the barrier method of converting

a constrained optimization problem into an unconstrained one (thus, the γi’s should

105

be large). Thus, the problem (5.14) is a regularized linear program that can be

solved over the network by using, say, a gradient method, because all the terms in

the objective function are distributed in nature. Taking the gradient of the objective

function (5.14) with respect to the optimization variables x̂ and F̂, we obtain a scal-

able continuous-time distributed algorithm that operates as follows: For each i ∈ V

and j ∈ Ni,

˙̂x(i,j)(t)=−ε
[
1+ρx̂(i,j)(t)−γ1ϕ

′
(
N−1−

∑

k∈Ni

x̂(i,k)(t)
)

+ γ2ϕ
′(x̂(i,j)(t) + x̂(j,i)(t)−N)

− γ3(F̂i(t)− F̂j(t)− x̂(i,j)(t) + x̂(j,i)(t))

− γ4ϕ
′(|Nj/Ni| − x̂(i,j)(t))

+ γ5ϕ
′(x̂(i,j)(t)−N + |Ni|)

+ γ6ϕ
′
(
x̂(i,j)(t)− 1−

∑

k∈Nj/(Ni∪{i})

x̂(j,k)(t)
)

− γ6
∑

h∈Ni/(Nj∪{j})

ϕ′
(
x̂(h,i)(t)− 1−

∑

k∈Ni/(Nh∪{h})

x̂(i,k)(t)
)]

, (5.16)

where

ϕ′(z) =






z, z ≥ 0,

0, z < 0,

(5.17)

and ε > 0 is a small positive weighting factor. For each i ∈ V, we have

˙̂
Fi(t) = −ε

[
ρF̂i(t) + γ3

∑

j∈Ni

(F̂i(t)− F̂j(t)

− x̂(i,j)(t) + x̂(j,i)(t))
]
, (5.18)

Ĉi(t) = (N − 1)/F̂i(t). (5.19)

106

Because the problem is strongly convex, the algorithm is guaranteed to converge

to the global optimizer. Indeed, Figure 5.1 illustrates the performance of algorithm

(5.16)–(5.19) in estimating closeness on a 6-node graph, where it can be seen that

the estimates x̂(i,j)(t)’s and F̂i(t)’s converge asymptotically to their true values x(i,j)’s

and Fi’s.

5.6 Performance Evaluation

In this section, we evaluate the performance of algorithm (5.16)–(5.19) via simulation.

5.6.1 Evaluation Settings

To evaluate the performance of algorithm (5.16)–(5.19), we consider three common

types of random graphs, namely, random geometric, Erdős-Rényi, and Barabási-

Albert graphs [3]. For random geometric graphs, we consider five values of N from

the set {10, 20, 30, 40, 50} and five values of neighborhood radius r from the set

{0.1, 0.2, 0.3, 0.4, 0.5}. For each of the 25 combinations of (N, r), we generate 10

different scenarios. For each scenario k, we place N nodes randomly and equiprob-

ably on the unit square [0, 1] × [0, 1], regard any two nodes as neighbors if their

distance does not exceed r, and repeat the process until the resulting graph is con-

nected. We then simulate algorithm (5.16)–(5.19) with ε = 5 × 10−5, ρ = 0.001,

and γℓ = 106 ∀ℓ ∈ {1, 2, . . . , 6} and record the resulting x̂(i,j)(T) ∀(i, j) ∈ Ẽ , F̂i(T)

∀i ∈ V, and Ĉi(T) ∀i ∈ V, where T is the simulation duration. Upon completion,

we compare the closeness estimates Ĉ1(T), Ĉ2(T), . . . , ĈN(T) with their true values

C1, C2, . . . , CN computed from (1.2). To facilitate the comparison, we introduce a

measure called Accuracy of Closeness Ordering, denoted as ACO(N, r, k) (i.e., for

107

1

2

3

4

5

6

(a) Node indices.

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

Time t

E
st
im

a
te
s
x̂
(i
,j
)
(t
)’
s x̂(1 ,2)

x̂(1 ,3)
x̂(1 ,4)
x̂(2 ,4)
x̂(2 ,5)
x̂(2 ,6)
x̂(2 ,1)
x̂(3 ,1)
x̂(4 ,1)
x̂(4 ,2)
x̂(5 ,2)
x̂(6 ,2)

(b) Estimates x̂(i,j)(t)’s.

0 0.2 0.4 0.6 0.8
0
1
2
3
4
5
6
7
8
9

10
11
12

Time t

E
st
im

a
te
s
F̂
i
(t
)’
s

F̂1

F̂2

F̂3

F̂4

F̂5

F̂6

(c) Estimates F̂i(t)’s.

Figure 5.1: An illustration of the performance of algorithm (5.16)–(5.19) in estimating
closeness on a 6-node graph.

108

scenario k of combination (N, r)) and defined as

ACO(N, r, k)=
2

N(N−1)

∑

i∈V

∑

j∈V ,j>i

O(Ĉi(T), Ĉj(T), Ci, Cj),

where O(a1, a2, b1, b2) is a binary-valued function that returns 1 if a1 ≤ a2 and b1 ≤

b2 or if a1 ≥ a2 and b1 ≥ b2 (i.e., (a1, a2) and (b1, b2) have the same order), and

returns 0 otherwise (i.e., different order). Thus, the Accuracy of Closeness Ordering

measures how well the closeness estimates match up with their true values in terms

of ordering, takes the maximum value of 1 when the order is completely preserved,

and takes the minimum value of 0 when the order is completely reversed. Upon

calculating ACO(N, r, k) for each scenario k ∈ {1, 2, . . . , 10}, we record their average

1
10

∑10
k=1ACO(N, r, k) as ACO(N, r).

Similar to the aforementioned random geometric graphs, for Erdős-Rényi graphs

we consider the same five values of N and five values of edge probability p from the

set {0.1, 0.2, 0.3, 0.4, 0.5}. For each of the 25 combinations of (N, p), we generate

10 different scenarios, and for each scenario k, we let there be N nodes, let every

pair of them have probability p of being neighbors, and repeat the process until

the resulting graph is connected. Following the same procedure, we then simulate

algorithm (5.16)–(5.19) and record the average of the resulting Accuracy of Closeness

Ordering as ACO(N, p). Finally, for Barabási-Albert graphs, we consider the same

five values of N and five values of m from the set {1, 2, 3, 4, 5}, which represents the

number of edges a new node has when it joins an existing graph. As before, for each

combination of (N,m), we generate 10 different scenarios, and for each scenario k, we

begin with an initial graph of m+1 nodes and carry out the preferential attachment

process [3] by repeatedly attaching a new node to m of the existing nodes until the

graph has N nodes. Again following the same procedure, we record the average of

the resulting Accuracy of Closeness Ordering as ACO(N,m).

109

5.6.2 Evaluation Results

Figure 5.2 displays the evaluation results. Specifically, Figure 5.2(a) represents the

Accuracy of Closeness Ordering ACO(N, r) as a function of the number of nodes N

and the neighborhood radius r for random geometric graphs. Likewise, Figure 5.2(b)

plots ACO(N, p) as a function ofN and the edge probability p for Erdős-Rényi graphs,

while Figure 5.2(c) plots ACO(N,m) as a function of N and the number of new edges

m for Barabási-Albert graphs. Analyzing these figures, we see that the proposed

distributed algorithm performs well, achieving an Accuracy of Closeness Ordering

score of 0.91 on average and 0.76 at worst, in all the scenarios considered. This

means that despite knowing only who their neighbors are, with algorithm (5.16)–

(5.19) the nodes are able to estimate their closeness with a 91% accuracy in terms

of ordering. As another observation, we see that the performance of the algorithm is

best when the graph is either sufficiently dense, or extremely sparse.

5.7 Conclusion

In this chapter, we have developed a scalable distributed algorithm that enables nodes

in a general graph to cooperatively estimate their individual closeness with only local

interaction and without any centralized coordination, nor high memory usages. We

have also shown via extensive simulation on three common random graphs that this

algorithm is fairly accurate, but has room for improvement. Therefore, possible future

research directions include deriving additional constraints that decrease the size of

the feasible set and incorporating them into the algorithm to increase its estimation

accuracy.

110

0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

Neighborhood radius r

A
cc
u
ra
cy

o
f
C
lo
se
n
es
s
O
rd
er
in
g

N = 10
N = 20
N = 30
N = 40
N = 50

(a) Random geometric graphs.

0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

Edge probability p

A
cc
u
ra
cy

o
f
C
lo
se
n
es
s
O
rd
er
in
g

N = 10
N = 20
N = 30
N = 40
N = 50

(b) Erdős-Rényi graphs.

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of new edges m

A
cc
u
ra
cy

o
f
C
lo
se
n
es
s
O
rd
er
in
g

N = 10
N = 20
N = 30
N = 40
N = 50

(c) Barabási-Albert graphs.

Figure 5.2: Performance of algorithm (5.16)–(5.19) on three common types of random
graphs as measured by the Accuracy of Closeness Ordering.

111

Chapter 6

Applications of Betweenness

Centrality on Community

Detection and Information

Spreading

In the previous chapters, we developed a collection of scalable distributed algorithms,

which enable nodes in a large-scale network to cooperatively learn how important they

are individually, with only local interaction and with neither global coordination nor

knowledge of the network topology using the most fundamental centrality measures

from the area of complex networks, namely, the betweenness centrality and closeness

centrality, as well as a subset of their variations.

In this chapter, we experimented our algorithms for estimating node and edge

betweenness centralities on both computer generated graphs and real networks for

community detection and information spreading, and then proposed a method for

spreading information with the knowledge of community structures. These real net-

work data sets are maintained by Prof. Tim Davis of Texas A&M University and

112

Dr. Yifan Hu of Yahoo Labs. The data sets are available at http://www.cise.ufl.edu/

research/sparse/matrices [111].

The outline of this chapter is as follows: Section 6.1 implements a clustering al-

gorithm for community detection using both the edge betweenness and the estimated

edge betweenness which is defined and calculated using algorithm proposed in Chap-

ter 4. We then evaluate the edge betweenness based and estimated edge betweenness

based algorithms’ performance via simulation on both computer generated and real

networks. Section 6.2 implements a simple information spreading algorithm using the

ranking of node betweenness, estimated node betweenness and closeness on several

computer generated and real networks, with a goal of evaluating different central-

ity measures for the identification of influential people to spread information. The

estimated node betweenness is defined and calculated using algorithm proposed in

Chapter 4. Furthermore, based on the algorithms introduced in Sections 6.1 and

6.2, Section 6.3 proposes a combined algorithm to identify a certain number of influ-

ential people for efficient spreading information, and evaluates the performance via

simulation using betweenness centrality and estimated betweenness on both computer

generated and real networks. Finally, Section 6.4 concludes this chapter.

6.1 Detecting Community

A social network is a graph of relationships between individuals, groups, organiza-

tions, or even entire societies. There are a wide variety of such groups or organizations

in our social network, such as families, friends, and collaborators, just to name a few.

To understand the community structures of a social network and determine how peo-

ple interact and form groups, Girvan and Newman proposed an algorithm [122] in a

seminal paper appeared in 2002. Communities are detected in a network after some

iterations of identifying and removing the edges lying between them. The edges be-

113

1

2 3

4

5
6

7

8
9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

28

29

30

31

Figure 6.1: An illustration of edge betweenness in community detection

tween communities are detected according to the values of the edge betweenness. The

key idea of the algorithm is that a few edges that lie between highly clustered com-

munities can be viewed as bottlenecks between the communities. Thus all the com-

munications between members of different communities would very likely go through

these edges, resulting in the few edges with high edge betweenness values. Figure 6.1

shows an illustration of edge betweenness in a network. The number shown in each

node is the node index, and the color of each edge represents how important an edge

is in terms of its edge betweenness, where red represents high value and blue repre-

sents low value, as shown in the color bar. The three different colors indicate nodes

belonging to different communities. Notice that cutting these bottlenecks edges {7,

10}, {3, 24}, and {12, 16}, which have the highest edge betweenness, would result in

three separate communities in this network.

The Girvan-Newman algorithm [122] proceeds as follows:

• Repeat until no edges are left:

– Calculate betweenness for all edges in the network.

– Identify and remove the edge with the highest betweenness value. If all

114

the edges within a group or the entire network have the same betweenness

value, randomly select and remove one of these edges.

• Connected components are communities.

To test the performance of an algorithm and to identify good partitions, we com-

pute the modularity, the most popular quality function defined by Newman and

Girvan in [123], as

Q =

n∑

ci=1

(ecici − a2ci), (6.1)

where n is the number of communities; ecicj represents the fraction of all edges in

the network that connect nodes in community ci to nodes in community cj ; and

aci =
∑n

cj=1 ecicj represents the fraction of edges that connect to nodes in community

ci. Thus,
∑n

ci=1 ecici gives the fraction of edges in the network that connect nodes

in the same community, and clearly a good division into communities should have

a high value of
∑n

ci=1 ecici. This quantity measures the fraction of the edges in the

network that connect nodes in the same community (i.e., internal edges) minus the

expected value of the same quantity in a network with the same community divisions

but random connections between the nodes [123]. If the number of internal edges is

larger than the random value, we will get Q > 0. Values approaching Q = 1, which

is the maximum possible value, indicate a strong community structure.

Having an assumption that a random graph is not expected to have a community

structure, (6.1) indicates that the possible existence of communities could be revealed

by the comparison between the actual density of edges in a subgraph and the density

one would expect to have in the subgraph if the nodes of the graph were attached

regardless of community structure. This expected edge density depends on the origi-

nal graph keeping some of its structural properties but without community structure.

115

Modularity can then be rewritten in [124] as follows

Q =

n∑

c=1

[
lc
m

− (
dc
2m

)2], (6.2)

where m is the number of edges in the original graph; n is the number of communities;

lc is the total number of edges joining nodes of community c; and dc is the sum of

the degrees of the nodes in c. In (6.2), the first term of each summand is the fraction

of internal edges of the community, whereas the second term represents the expected

fraction of edges that would be there if the graph were a random graph with the same

expected degree for each node.

As indicated in [124], a subgraph is a community if the corresponding contribution

to modularity in the sum is positive. The more the number of internal edges of the

community exceeds the expected number, the better the community is defined. So,

large positive values of the modularity indicate good partitions. Notice that the

modularity of the whole graph, taken as a single community, is zero, as the two terms

in (6.2) in this case are equal. Also notice that the modularity is always smaller than

one, and can be negative as well. For instance, the partition in which each node

is a community is always negative: in this case, the sum runs over n terms, which

are all negative as the first term of each summand is zero. This is a nice feature of

the measure, implying that, if there are no partitions with positive modularity, the

graph has no community structure. In contrary, the existence of partitions with large

negative modularity values may indicate the existence of subgroups with very few

internal edges and many edges lying between them [125]. Note that the maximum

modularity of a graph generally grows if the size of the graph or the number of (well-

separated) communities increases [126]. Therefore, modularity should not be used to

compare the quality of the community structure of graphs which are very different in

size.

116

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

Figure 6.2: A 37-node graph with its node indices.

In this section, we first implement the Girvan-Newman algorithm using both the

original definition of edge betweenness defined in (2.1) and the estimated edge be-

tweenness which is defined in (4.2) and calculated using our algorithm proposed in

Chapter 4 to detect communities on computer generated and real world networks.

We then compute the modularity value for each network to evaluate and compare the

performance of edge betweenness based and estimated betweenness based Girvan-

Newman algorithms.

First, we test the algorithms on a computer generated graph, shown in Figure 6.2,

which is constructed with 37 nodes and 92 edges. The number in each node represents

the node index. Notice that in this network there are three communities of densely

connected nodes, with a much lower density of connections between them. The three

different colors indicate nodes in different communities.

We get the same result when applying the Girvan-Newman algorithm on this

network using edge betweenness and estimated edge betweenness. In fact, all the

nodes are classified correctly with either method. Figure 6.3 shows the community

structures obtained from edge betweenness and estimated edge betweenness based

117

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(a) B{i,j} and B̂{i,j} based algorithms with
n = 2.

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(b) B{i,j} and B̂{i,j} based algorithms with
n = 3.

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(c) B{i,j} based algorithm with n = 4.

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(d) B̂{i,j} based algorithm with n = 4.

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(e) B{i,j} based algorithm with n = 5.

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(f) B̂{i,j} based algorithm with n = 5.

Figure 6.3: Community structures after edges removal on a 37-node network.

118

1 5 10 15 20 25 30 37
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n

Q

B{i,j}

B̂{i,j}

Figure 6.4: Modularity values of different clustering on a 37-node graph.

Girvan-Newman algorithms, where the number of communities n is selected from

the set {2, 3, 4, 5}. Note that both algorithms achieve the same clustering result

when n = 2 and n = 3, with Q = 0.4631 and Q = 0.5713, respectively, as shown

in Figure 6.3(a) and (b). Figure 6.3(c) and (d) shows the community structures

when n = 4 where (c) is obtained from the edge betweenness based algorithm with

Q = 0.5656, and (d) is obtained from the estimated edge betweenness based algorithm

with Q = 0.5919. In this case, the estimated edge betweenness based algorithm

achieves a better clustering. Figure 6.3(e) and (f) shows the community structures

when n = 5 where (e) is obtained from the edge betweenness based algorithm with

Q = 0.5848, and (f) is obtained from the estimated edge betweenness based algorithm

with Q = 0.5801. In this case, the edge betweenness based algorithm achieves a

slightly better clustering.

To illustrate and compare the performance of two algorithms, Figure 6.4 shows

the modularity values Q for edge betweenness based and estimated edge betweenness

based Girvan-Newman algorithm, plotted as a function of the number of communities

n. For edge betweenness based algorithm, the modularity Q has two maxima corre-

sponding to splitting into three communities with Q = 0.5713 which agrees with our

intuition, and five communities with Q = 0.5848, but with the fact that one of those

119

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

Figure 6.5: Zachary’s karate club network.

five contains only one node. For the estimated edge betweenness based algorithm,

the modularity has a single peak with Q = 0.5919 at the point where the network

breaks into four communities. Notice that when the network is split into three and

five communities, the modularity values obtained from the estimated edge between-

ness based algorithm are 0.5713 and 0.5801 respectively, which are close to the values

obtained from the edge betweenness based algorithm.

Although computer generated networks are reproducible and well controlled for

testing and comparing the performance of algorithms, it is also desirable to test

the algorithms on data from real world networks. To this end, we have utilized

Zachary’s karate club network [127], which is a well-known network and regularly used

as a benchmark to test community detection. This dataset is recorded by Zachary

about the friendship among 34 members of a karate club at a US university in the

1970s. During Zachary’s three-year observation, there was a conflict between the

administrator of the club and the club’s instructor, which ultimately resulted in the

instructor’s leaving and starting a new club, taking about a half of the original club’s

members with him. Figure 6.5 shows the club network, which contains 34 nodes

and 78 edges. The node 1 represents the instructor and node 34 represents the

administrator, and the two different colors indicate two separate groups, supporting

120

the instructor and the president, respectively.

By applying the Girvan-Newman algorithm on this network based on the edge

betweenness and the estimated edge betweenness, we are able to detect the same two

groups (i.e., when n = 2) from the original network structure, and only node 3 is

classified incorrectly. Figure 6.6(a) and (b) shows the community structures when

n = 3 where (c) is obtained from the edge betweenness based algorithm with Q =

0.3488, and (d) is obtained from the estimated edge betweenness based algorithm with

Q = 0.3915. Figure 6.6(c) and (d) shows the community structures when n = 4 where

(c) is obtained from the edge betweenness based algorithm with Q = 0.3373, and (d)

is obtained from the estimated edge betweenness based algorithm with Q = 0.4060.

In these two cases, the estimated edge betweenness based algorithm achieves a better

clustering. Figure 6.3(e) and (f) shows the community structures when n = 5 where

(e) is obtained from the edge betweenness based algorithm with Q = 0.3706, and (f) is

obtained from the estimated edge betweenness based algorithm with Q = 0.3889. In

this case, the edge betweenness based algorithm achieves a slightly better clustering.

Figure 6.7 shows the modularity values for edge betweenness and the estimated edge

betweenness based algorithms, plotted as a function of the number of communities

n. Note that both algorithms achieve the same clustering result when n = 2 with

Q = 0.3600 and misclassify only node 3. To further study the relationship among the

club members, and to illustrate and compare the differences between two algorithms,

Figure 6.6 shows the community structures obtained from edge betweenness and the

estimated edge betweenness based Girvan-Newman algorithms, when the number of

communities n is selected from the set {3, 4, 5}.

In the previous examples, we tested our algorithm on a number of networks for

which the community structure was known in advance. The results indicate that

both edge betweenness and estimated betweenness based algorithms are sensitive and

accurate methods for extracting community structure from networks. Now, we apply

121

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

(a) B{i,j} based algorithm with n = 3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

(b) B̂{i,j} based algorithm with n = 3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

(c) B{i,j} based algorithm with n = 4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

(d) B̂{i,j} based algorithm with n = 4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

(e) B{i,j} based algorithm with n = 5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

(f) B̂{i,j} based algorithm with n = 5.

Figure 6.6: Community structures after edges removal on Zachary’s karate club net-
work.

122

1 5 10 15 20 25 30 34
−0.1

0

0.1

0.2

0.3

0.4

n

Q

B{i,j}

B̂{i,j}

Figure 6.7: Modularity values of different clustering on Zachary’s karate club network.

both algorithms to a network for which the structure is not known and show that

in this case it can help us learn and understand the complex dataset. The network

we have studied is a dolphin social network, which is an undirected social network of

frequent associations between a community of bottlenose dolphins living off Doubtful

Sound, New Zealand. This network is constructed from observations over a period

of 7 years from 1994 to 2001 and compiled by Lusseau et al. [128]. Figure 6.8 shows

the dolphin social network. The 62 nodes in the network represent the 62 dolphins,

and 159 edges between nodes represent associations between dolphin pairs occurring

more often than expected by chance. Figure 6.9 shows the modularity values for

edge betweenness and the estimated edge betweenness based algorithms, plotted as

a function of the number of communities n. We can see from Figure 6.9 that when

n < 10, the estimated edge betweenness based algorithm achieves a better clustering

than the edge betweenness based algorithm does, and vice versa when n > 10.

Based on our tests on computer generated and real word networks, and from the

modularity values shown in Figures 6.4, 6.7 and 6.9, we find that the estimated edge

betweenness performs very well in correctly detecting community structures in almost

all scenarios, especially when the number of communities is very small compared with

the size of the network.

123

Figure 6.8: A dolphin social network (adopted from [2]).

6.2 Spreading Information

As indicated in the last section, a social network involves many different types of re-

lations, including but not limited to communication networks, information networks,

and collaboration networks. According to sociologists, a limited number of influential

people in these networks are able to spread information more efficiently than other

people.

Early research in this area (Leavitt [129]) indicated that the person occupying the

more central position in a given network is more likely to emerge as the leader. In other

words, people in more central position resulting in higher centrality scores will have

more influence than people in less central positions. As remarked in [130], betweenness

and closeness centrality measures imply different “theories” of how centrality might

affect group processes: centrality as potential for control of communication, and as

independence or efficiency. Despite this fact, both centrality measures have some

features in common, e.g., they agree in assigning the highest centrality score to the

124

1 10 20 30 40 50 62
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n

Q
B{i,j}

B̂{i,j}

Figure 6.9: Modularity values of different clustering on the dolphin social network.

1

2

3

4
5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

highest betweenness

(a) Node betweenness.

1

2

3

4
5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

highest closeness

(b) Classic closeness.

Figure 6.10: An illustration of node betweenness and closeness.

central node in a star network, and the low centrality scores to nodes in a cycle and

in complete networks. They also can be very different, e.g., a leaf node connected

with the center of a network has lowest betweenness, but may have high closeness.

In a given application, one centrality measure might be more appropriate than the

other. An illustration of these two measures, which highlights their key attributes, is

provided in Figure 6.10, where red color represents nodes with high node betweenness

and classic closeness centralities, while blue color represents nodes with low values.

We can see from Figure 6.10 that the importance of nodes is different for these two

centrality measures in the same graph. The most important node is also different for

125

high betweenness high closeness

low betweenness close to many other nodes in
the network, but either lies
in the multiple shortest paths
like many other nodes do, or
lies in the few shortest paths

low closeness locates in a dominant po-
sition of communication be-
tween a large group and a
small one

Table 6.1: Comparison of node betweenness and closeness centralities.

different measures. For example, we can see from Figure 6.10(a) that node 6 has the

highest betweenness, and from Figure 6.10(b) that node 4 has the highest closeness.

Table 6.1 shows a comparison of node betweenness and closeness centrality.

In this section, we compare the performance of several different centrality measures

in terms of their behavior in identifying influential people for information spreading.

They include the original definition of node betweenness in (1.1), estimated node be-

tweenness in (4.1), and classic closeness in (1.2). These measures are tested on several

computer generated and real networks. We assume that centrality is an appropriate

measure for the identification of influential people.

To this end, we developed a simple algorithm for information spreading. The idea

of the experiments is to provide information initially to n most “central” nodes in

a network based on the ranking of node betweenness, estimated node betweenness

and closeness values, and also to n randomly selected nodes. Then we count the

number of nodes reached at a certain step k by applying a Breadth-First-Search

(BFS) algorithm. We designed the experiment to show that by sending information

to “central” people in a network is better than randomly selected people, in terms of

information spreading. We present several experiments on both computer generated

and real world networks.

First, we implement this information spreading algorithm on a 37-node computer

126

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(a) Bi.

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(b) B̂i.

1

23

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37

(c) Ci.

Figure 6.11: A 37-node graph with its node indices, node betweenness, estimated
node betweenness and closeness centrality.

generated graph, as shown in Figure 6.11, where the numbers and colors inside each

node represent their indices and importance. Importance here is represented by dif-

ferent centrality measures for different figures, i.e., it refers to node betweenness in

Figure 6.11(a), estimated node betweenness in Figure 6.11(b), and closeness central-

ity in Figure 6.11(c). Figure 6.12 displays the comparison and evaluation results of

algorithms using these three centrality measures and a random initial nodes selection

algorithm. In this experiment, we consider four numbers of initially selected nodes

from the set {1, 2, 3, 4}. Specifically, Figure 6.12(a) represents the number of nodes

reached as a function of step k when only one node is selected initially to spread in-

formation. Likewise, Figure 6.12(b) plots the number of nodes reached as a function

of step k when two nodes are selected initially, while Figure 6.12(c) plots the num-

ber of nodes reached as a function of step k when three nodes are selected initially.

Figure 6.12(d) shows the number of nodes reached as a function of step k when four

nodes are selected initially. To avoid bias in the evaluation of the random selection

we applied this algorithm 20 times on the network and calculated averages. From

these figures, we see that information spreads faster using centrality measures based

initial nodes selection algorithms in all scenarios and the one using the estimated node

betweenness achieves the best performance in these four scenarios in this network.

We next implement this information spreading algorithm on Zachary’s karate club

127

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

37

Step k

N
u
m
b
er

o
f
n
o
d
es

re
a
ch
ed

Bi

B̂i
Ci

Random

(a) n = 1.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

37

Step k

N
u
m
b
er

o
f
n
o
d
es

re
a
ch
ed

Bi

B̂i
Ci

Random

(b) n = 2.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

37

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(c) n = 3.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

37

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(d) n = 4.

Figure 6.12: An information spreading algorithm on a 37-node network.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

(a) Bi.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

(b) B̂i.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

(c) Ci.

Figure 6.13: Zachary’s karate club network with its node indices, node betweenness,
estimated node betweenness and closeness centrality.

128

1 2 3 4 5
0

5

10

15

20

25

30
34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(a) n = 1.

1 2 3 4 5
0

5

10

15

20

25

30
34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(b) n = 2.

1 2 3 4 5
0

5

10

15

20

25

30
34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(c) n = 3.

1 2 3 4 5
0

5

10

15

20

25

30
34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(d) n = 4.

Figure 6.14: An information spreading algorithm on Zachary’s karate club network.

129

network, as shown in Figure 6.13, where the numbers and colors inside each node rep-

resent their indices and importance. Importance is represented by different centrality

measures for different figures, i.e., it refers to node betweenness in Figure 6.13(a), esti-

mated node betweenness in Figure 6.13(b), and closeness centrality in Figure 6.13(c).

Figure 6.14 displays the comparison and evaluation results of algorithms using these

three centrality measures and a random initial nodes selection algorithm. In this ex-

periment, we consider four numbers of initially selected people from the set {1, 2, 3, 4}.

Specifically, Figure 6.14(a) represents the number of people reached as a function of

step k when only one person is selected initially to spread information. Likewise,

Figure 6.14(b) plots the number of people reached as a function of step k when two

people are selected initially, while Figure 6.14(c) plots the number of people reached

as a function of step k when three people are selected initially. Figure 6.14(d) shows

the number of people reached as a function of step k when four people are selected

initially. To avoid bias in the evaluation of the random selection we applied this

algorithm 20 times on the network and calculated averages. From these figures, we

see that information spreads faster using centrality measures based initial people se-

lection algorithms, and the one using estimated node betweenness achieves the best

performance in these four scenarios in this network.

We then tested our algorithm on the dolphin social network. Figure 6.15 displays

the comparison and evaluation results for different centrality measures based initial

dolphins selection algorithms and a random initial dolphins selection algorithm. In

this experiment, we consider four numbers of initially selected dolphins from the set

{1, 2, 3, 4}. Specifically, Figure 6.15(a) represents the number of dolphins reached as

a function of step k when only one dolphin is selected initially to spread information.

Likewise, Figure 6.15(b) plots the number of dolphins reached as a function of step

k when two dolphins are selected initially, while Figure 6.15(c) plots the number of

dolphins reached as a function of step k when three dolphins are selected initially.

130

1 2 3 4 5 6 7 8
0

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(a) n = 1.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(b) n = 2.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(c) n = 3.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Bi

B̂i
Ci

Random

(d) n = 4.

Figure 6.15: An information spreading algorithm on the dolphin social network.

131

Figure 6.15(d) shows the number of dolphins reached as a function of step k when four

dolphins are selected initially. To avoid bias in the evaluation of the random selection

we applied this algorithm 20 times on the network and calculated averages. Analyzing

these figures, we see that information spreads faster using centrality measures based

initial dolphins selection algorithms, and the one using estimated node betweenness

achieves the best performance in these four scenarios in this network.

We can see from Figures 6.12, 6.14, and 6.15 that selecting the nodes with highest

centrality values as the initial nodes to spread information has a better performance

than selecting initial nodes randomly. Among all these centrality measures, node be-

tweenness and the estimated node betweenness have the best performance for finding

influential nodes and thus have a better performance for information spreading. We

also notice that the more initial nodes we selected, the faster the information will be

spread, which agrees with our intuition.

6.3 Spreading Information with the Help of Com-

munity Detection

With the knowledge introduced in previous two sections, let us now consider a 100-

node graph, as shown in Figure 6.16, which consists of two star subgraphs connected

by a bridge. Figure 6.16 displays the node indices and the corresponding node be-

tweenness Bi’s represented by the color of the nodes, where red represents high node

betweenness value, while blue represents low value. Note that in this network, node

2 and node 1 have the top two node betweenness values. Suppose we want to assign

a pair of nodes initially to spread information, node 1 and node 2 seems to be a very

good pair. Because as was mentioned in Section 6.2, node betweenness is a very good

centrality measure for identifying influential nodes who are able to efficiently spread

information in the network. With these two nodes chosen as the initial step, it would

132

1 2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3334

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49 50

51

52

53 54

55

56

57

58

59

60

61

62

63

64

65
66

67
68

69
70

71

72

73

74

75

76

77
78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Figure 6.16: A 100-node graph with its node indices and node betweenness

take only three steps to reach everyone in this network. However, it turns out not to

be the best way for this graph as we could select node 2 and node 49 instead to start

the spreading, and the whole network would be reached in just one step.

Now consider the 37-node graph, as shown in Figure 6.11(a). Suppose we now

select three nodes with highest node betweenness to start with, i.e., node 2, node 1

and node 10, the number of nodes could be reached within certain steps might be

affected, due to the fact that the three nodes are quite close to each other and have

many shared connections. Notice that there are three communities in this network,

as studied in Section 6.1. If we select the nodes with the highest betweenness value

from each community, would it be able to reach more nodes within certain steps or

reach every node within fewer number of steps? In other words, would the knowledge

of community structure in a network be helpful for finding influential people more

accurately?

To test this idea, we combine the algorithms for detecting community structures

and information spreading in Section 6.1 and 6.2, and present a number of tests on

computer generated and real world networks. We evaluate and compare the number

of nodes reached within certain steps based on the following three methods to select

n initial nodes for information spreading:

133

Method 1 Select n nodes with the highest node betweenness in the network.

Method 2 Cluster nodes in the network into n communities using the edge between-

ness based Girvan-Newman algorithm. In each community, select the node with

the highest node betweenness.

Method 3 Cluster nodes in the network into n communities using the estimated

edge betweenness based Girvan-Newman algorithm. In each community, select

the node with the highest estimated node betweenness.

First, we consider computer generated graphs. To test and compare the perfor-

mance of three methods above, we apply them to a large set of artificial, computer

generated graphs which can be clustered. Take the network in Figure 6.2 as an ex-

ample, which is constructed with 37 nodes. Figure 6.17 displays the comparison and

evaluation results for above three methods. The following is a quick summary:

• Figure 6.17(a) presents the number of nodes reached as a function of step k

when only one node is selected initially to spread information. In this scenario,

all three methods achieve the same performance, since they all selected node 2

to start the spreading.

• Figure 6.17(b) plots the number of nodes reached as a function of step k when

two nodes are selected initially. In this scenario, Method 1 selected node 2 and

node 1 to start the spreading, while Method 2 and Method 3 selected node 2

and node 9 instead and achieve a better performance than Method 1.

• Figure 6.17(c) displays the number of nodes reached as a function of step k when

three nodes are selected initially. In this scenario, Method 1 selected node 2,

node 1, and node 10 to start the spreading, while Method 2 and Method 3

selected node 9, node 3, and node 6 instead and achieve a better performance

than Method 1. Note that node 2 wasn’t selected as previous scenarios did,

134

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

37

Step k

N
u
m
b
er

o
f
n
o
d
es

re
a
ch
ed

Method 1
Method 2
Method 3

(a) n = 1.

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

37

Step k

N
u
m
b
er

o
f
n
o
d
es

re
a
ch
ed

Method 1
Method 2
Method 3

(b) n = 2.

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

37

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(c) n = 3.

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

37

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(d) n = 4.

Figure 6.17: An comparison of the performance of Method 1–3 on a 37-node graph.

135

1

3

4

5 6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37
Method 1

Method 2

Method 3

2

(a) n = 1.

1

3

4

5 6

7

8

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37
Method 1

Method 2

Method 3

2

9

(b) n = 2.

1

4

5

7

8

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627
28

29
30

31

32

33

34

35

36

37
Method 1

Method 2

Method 3

2

9

6

3

(c) n = 3.

1

4

7

8

10

11

12

13

14

15

16 17

18

19

21

22

23

24

25

2627
28

29
30

32

33

34

35

36

37
Method 1

Method 2

Method 3

2

9

3

6

31

20

5

(d) n = 4.

Figure 6.18: Initial nodes selected by Method 1–3 on a 37-node graph.

1 5 10 15 20 25 30 37
1

2

3

4

5

n

N
u
m
b
er

o
f
st
ep
s

Method 1
Method 2
Method 3

Figure 6.19: Number of steps needed to reach everyone on a 37-node graph.

136

since we recalculated the centrality value for all nodes when network community

structure was updated.

• Figure 6.17(d) shows the number of nodes reached as a function of step k when

four nodes are selected initially. In this scenario, Method 1 selected node 2,

node 1, node 10, and node 34 to start the spreading, Method 2 selected node 9,

node 3, node 31 and node 20, while Method 3 selected node 9, node 3, node 31

and node 5 and achieves a better performance than Method 1 and Method 2.

Figure 6.18 illustrates the initial nodes selected by Method 1–3. Figure 6.19 shows

the number of steps needed to reach everyone in this 37-node graph, as a function

of the number of initially selected nodes n. Analyzing these figures, we see that

information spreads faster using community detection based algorithms (i.e., Method

2 and Method 3) when n is very small (i.e., n < 6). We also notice that when n

is very large (i.e.,n ≥ 17), all the nodes can be reached within one step, all three

methods achieving the same performance, which agrees with the intuition.

We next test Method 1–3 on Zachary’s karate club network in Figure 6.5. Note

that we also implemented the community detection and information spreading algo-

rithms on this network in Section 6.1 and 6.2 respectively. We apply the combined

algorithm based on the results obtained in these two sections. Figure 6.20 displays

the comparison and evaluation results for above three methods. The following is a

quick summary:

• Figure 6.20(a) presents the number of people reached as a function of step k

when only one person is selected initially to spread information. In this scenario,

all three methods achieve the same performance, since they all selected node 1

to start the spreading.

• Figure 6.20(b) plots the number of people reached as a function of step k when

two people are selected initially. In this scenario, all three methods selected

137

1 2 3 4 5
15

18

21

24

27

30

34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(a) n = 1.

1 2 3 4 5
15

18

21

24

27

30

34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(b) n = 2.

1 2 3 4 5
15

18

21

24

27

30

34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(c) n = 3.

1 2 3 4 5
15

18

21

24

27

30

34

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(d) n = 4.

Figure 6.20: An comparison of the performance of Method 1–3 on Zachary’s karate
club network.

138

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

Method 1

Method 2

Method 3

1

(a) n = 1.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

Method 1

Method 2

Method 3

1

34

(b) n = 2.

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30 31

32

33

Method 1

Method 2

Method 3

1

34

27

3

(c) n = 3.

2

4

5

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30 31

32

33

Method 1

Method 2

Method 3

1

34

27

3

6

10

(d) n = 4.

Figure 6.21: Initial nodes selected by Method 1–3 on Zachary’s karate club network.

1 5 10 15 20 25 30 34

1

2

3

n

N
u
m
b
er

o
f
st
ep
s

Method 1
Method 2
Method 3

Figure 6.22: Number of steps needed to reach everyone on Zachary’s karate club
network.

139

node 1 and node 34 to start the spreading, achieving the same performance.

• Figure 6.20(c) displays the number of people reached as a function of step k

when three people are selected initially. In this scenario, Method 1 selected

node 1, node 34 and node 33 to start the spreading, Method 2 selected node 1,

node 34 and node 27, and Method 3 selected node 1, node 34 and node 3. All

three methods achieve the same performance.

• Figure 6.20(d) shows the number of people reached as a function of step k when

four people are selected initially. In this scenario, Method 1 selected node 1,

node 34, node 33, and node 3 to start the spreading, Method 2 selected node 1,

node 34, node 27 and node 10, and Method 3 selected node 1, node 34, node 3,

and node 6, achieving slightly better performance than other methods.

Figure 6.21 illustrates the initial nodes selected by Method 1–3. Figure 6.22 shows

the number of steps needed to reach everyone in Zachary’s karate club network, as a

function of the number of initially selected nodes n. Analyzing these figures, we see

that information spreads at around the same speed based on three methods when n

is very small (i.e., n ≤ 10) and very large (i.e., n > 15).

We finally test three methods on the dolphin social network. Again, we imple-

mented the community detection and information spreading algorithms on this net-

work in Section 6.1 and 6.2 respectively. We apply the combined algorithms based on

the results obtained in these two sections. Figure 6.23 displays the comparison and

evaluation results for above three methods. Specifically, Figure 6.23(a) presents the

number of dolphins reached as a function of step k when only one dolphin is selected

initially to spread information. In this scenario, all three methods achieve the same

performance, since they all selected the same node to start the spreading. Likewise,

Figure 6.23(b) plots the number of dolphins reached as a function of step k when two

dolphins are selected initially. Figure 6.23(c) displays the number of dolphins reached

140

1 2 3 4 5 6 7 8

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(a) n = 1.

1 2 3 4 5 6 7 8

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(b) n = 2.

1 2 3 4 5 6 7 8

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(c) n = 3.

1 2 3 4 5 6 7 8

10

20

30

40

50

62

Step k

N
u
m
b
er

of
n
o
d
es

re
ac
h
ed

Method 1
Method 2
Method 3

(d) n = 4.

Figure 6.23: An comparison of the performance of Method 1–3 on the dolphin social
network.

141

1 10 20 30 40 50 62
1

2

3

4

5

n

N
u
m
b
er

o
f
st
ep
s

Method 1
Method 2
Method 3

Figure 6.24: Number of steps needed to reach everyone on the dolphin social network.

as a function of step k when three dolphins are selected initially. Figure 6.23(d) shows

the number of dolphins reached as a function of step k when four dolphins are se-

lected initially. In the last three scenarios shown in (b)–(d), Method 3 achieves the

best performance and Method 1 results in the worst performance. Figure 6.24 shows

the number of steps needed to reach everyone in the dolphin social network as a func-

tion of the number of initially selected nodes n. Analyzing these figures, we see that

information spreads faster using community detection based algorithms (i.e., Method

2 and Method 3) when n is small (i.e., n < 18), and Method 3 performs no worse

than the other two methods all the time, and perform the best when n is small (i.e.,

n < 12) and when n is approaching to the half size of the network (i.e., 20 ≤ n < 30).

We also notice that when n is very large (i.e., n ≥ 30), all the nodes can be reached

within one step, all three methods achieving the same performance, which agrees with

the intuition.

Finally, note from Figures 6.17–6.24 that with the knowledge of community struc-

tures, information could spread faster in the network by correctly detecting influential

people, and the estimated betweenness based method (i.e., Method 3) performs very

well in the almost all scenarios, especially when the number of initially selected nodes

142

n is small.

6.4 Conclusion

In this chapter, we have experimented our algorithms proposed in Chapter 4 for es-

timating node and edge betweenness centralities on both computer generated graphs

and real networks for community detection—based on Girvan-Newman algorithm

[122]—and information spreading. We have also proposed a method for spreading

information with the knowledge of community structures. The evaluation results

indicate that the estimated edge betweenness performs very well in correctly detect-

ing community structures especially when the number of communities is very small

compared with the size of the network. Also, the estimated node betweenness has a

pretty good performance for identifying influential nodes. Moreover, the evaluation

results have also shown that with the knowledge of community structures, informa-

tion could spread faster in the network by correctly detecting influential people, and

the method using estimated betweenness performs very well in almost all scenarios.

This is especially true when we have a limited number of initial people to select.

143

Chapter 7

Conclusions

7.1 Overall Summary

In this dissertation, we have developed a novel collection of scalable distributed al-

gorithms, which enable nodes in a large-scale network to cooperatively learn how

important they individually are, with only local interaction and with neither global

coordination nor knowledge of the network topology. These algorithms use the most

fundamental centrality measures from the area of complex networks, namely, the

betweenness centrality, closeness centrality, as well as a subset of their variations.

First, we have introduced a set of continuous- and discrete-time distributed algo-

rithms, which enable nodes in a tree graph to cooperatively compute their individual

node betweenness and incident edge betweenness. Constructed using a dynamical

systems approach, we have shown that the algorithms possess several positive at-

tributes, such as being simple, scalable, and exponentially or finite-time stable with

strong convergence characteristics, and being applicable to time-varying tree graphs.

Then, we have designed and analyzed continuous- and discrete-time distributed

algorithms that allow nodes in a tree graph to cooperatively determine their classic

and exponential closeness using an algebraic-relationships-turned-dynamical-systems

144

approach.

Next, we have developed a scalable distributed algorithm that enables nodes in

a general graph to cooperatively estimate their individual betweenness and the be-

tweenness of edges incident on them with only local interaction and without any

centralized coordination, nor high memory usages. To arrive at this algorithm, we

have exploited various local properties of shortest paths and considered an uncon-

strained distributed optimization problem. We have also shown via simulation on a

number of random geometric graphs that the algorithm is fairly accurate in terms of

ordering, but has room for improvement.

Moreover, we have developed a scalable distributed algorithm that enables nodes

in a general graph to cooperatively estimate their individual closeness with only local

interaction and without any centralized coordination, nor high memory usages. We

have also shown via extensive simulation on three common random graphs that this

algorithm is fairly accurate, but has room for improvement.

Finally, we have experimented our algorithms for estimating node and edge be-

tweenness centralities on both computer generated graphs and real networks for com-

munity detection—based on Girvan-Newman algorithm—and information spreading.

We have also proposed a method for better spreading information with the knowl-

edge of community structures. The method using estimated betweenness performs

very well in almost all scenarios, especially when we have a limited number of initial

people to select.

7.2 Future Work

Although this dissertation has developed a novel collection of simple and scalable

distributed algorithms for computing and estimating betweenness and closeness cen-

trality measures, there are several possible future research directions, which may be

145

of interest:

• extending the resulting algorithms from Chapters 2–5, so that they are applica-

ble to directed and weighted networks with time-varying topologies (to account

for directed and weighted edges, some of the measures will need to be appro-

priately redefined);

• deriving additional constraints using variables x(i,j)’s and Fi’s introduced in

Chapters 4 and 5 that decrease the size of the feasible set, and incorporating

them into the algorithms from Chapters 4 and 5, to increase the accuracy of

the estimation;

• deriving additional constraints using other candidate variables whose values

depend on the shortest paths;

More specifically, for example, we could define the following shortest-path-

dependent variables: for each i ∈ V and j ∈ Ni, let

〈i, j〉] ,
∑

k∈V
k 6=i

∑

ℓ∈V
ℓ 6=i,k

σ(k, ℓ, (i, j))

σ(k, ℓ)
, (7.1)

[i, j〉] ,
∑

ℓ∈V
ℓ 6=i

σ(i, ℓ, (i, j))

σ(i, ℓ)
, (7.2)

[〈i, j〉] ,
∑

k∈V

∑

ℓ∈V
ℓ 6=i,k

σ(k, ℓ, (i, j))

σ(k, ℓ)
, (7.3)

so that, roughly speaking, 〈i, j〉] represents the fraction of shortest paths that

go through edge (i, j) but do not begin at node i; [i, j〉] represents the fraction

of shortest paths that go through edge (i, j) and begin at node i; and [〈i, j〉]

represents the fraction of shortest paths that go through edge (i, j).

Given the above variables, a possible next step is to try to derive enough num-

ber of equations and inequalities relating them and connecting them to node

146

betweenness Bi and edge betweenness B{i,j}. To date, we have obtained the

following results, which are summarized in the lemma below:

Lemma 15. The node betweenness Bi and edge betweenness B{i,j} satisfy

1

2

∑

j∈Ni

B{i,j} = Bi +N − 1, ∀i ∈ V ∀j ∈ Ni.

In addition, they satisfy

2(Bi −Bj) =
∑

h∈Ni

B{i,h} −
∑

k∈Nj

B{j,k}, ∀i ∈ V ∀j ∈ V.

Proof. Based on (1.1), (2.1), and (7.1)–(7.3), ∀i ∈ V we have

1

2

∑

j∈Ni

B{i,j} =
∑

j∈Ni

[〈i, j〉] =
∑

j∈Ni

〈i, j〉] +
∑

j∈Ni

[i, j〉]

= Bi +N − 1.

The second equation is a consequence of the first.

Lemma 15 suggests that, if a distributed algorithm for computing edge between-

ness B{i,j} on general graphs can be developed, the algorithm could readily be

used to compute node betweenness Bi, thereby solving two problems at once.

Thus, possible future research could continue along this line of effort to re-

late 〈i, j〉], [i, j〉], and [〈i, j〉], leading ultimately to a distributed algorithms for

solving the problem.

• developing distributed algorithms for computing other centrality measures on

general graphs, building perhaps on the ideas of this dissertation;

• finding out more applications besides the ones mentioned in Chapter 6, and

testing our algorithms on more real networks.

147

Bibliography

[1] “The Opte Project,” http://www.opte.org.

[2] M. Franceschet, “Bottlenose dolphins,” 2016, https://users.dimi.uniud.it/ mas-
simo.franceschet/bottlenose/bottlenose.html.

[3] M. E. J. Newman, Networks: An Introduction. New York, NY: Oxford Uni-
versity Press, 2010.

[4] R. Cohen and S. Havlin, Complex Networks: Structure, Robustness and Func-
tion. New York, NY: Cambridge University Press, 2010.

[5] S. P. Borgatti, “Centrality and network flow,” Social Networks, vol. 27, no. 1,
pp. 55–71, 2005.

[6] J. M. Anthonisse, “The rush in a directed graph,” Stichting Mathematisch
Centrum, Amsterdam, Netherlands, Technical Report BN 9/71, 1971.

[7] L. C. Freeman, “A set of measures of centrality based on betweenness,” So-
ciometry, vol. 40, no. 1, pp. 35–41, 1977.

[8] S. Jin, Z. Huang, Y. Chen, D. Chavarŕıa-Miranda, J. Feo, and P. C. Wong, “A
novel application of parallel betweenness centrality to power grid contingency
analysis,” in Proc. IEEE International Symposium on Parallel and Distributed
Processing, Atlanta, GA, 2010, pp. 1–7.

[9] S. Lämmer, B. Gehlsen, and D. Helbing, “Scaling laws in the spatial structure
of urban road networks,” Physica A: Statistical Mechanics and Its Applications,
vol. 363, no. 1, pp. 89–95, 2006.

[10] A. del Sol, H. Fujihashi, and P. O’Meara, “Topology of small-world networks of
protein-protein complex structures,” Bioinformatics, vol. 21, no. 8, pp. 1311–
1315, 2005.

[11] L. Leydesdorff, “Betweenness centrality as an indicator of the interdisciplinarity
of scientific journals,” Journal of the American Society for Information Science
and Technology, vol. 58, no. 9, pp. 1303–1319, 2007.

[12] A. Bavelas, “Communication patterns in task-oriented groups,” Journal of the
Acoustical Society of America, vol. 22, no. 6, pp. 725–730, 1950.

148

[13] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31, no. 4,
pp. 581–603, 1966.

[14] S. P. Borgatti, “Centrality and AIDS,” Connections, vol. 18, no. 1, pp. 111–113,
1995.

[15] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of closeness centrality for large-
scale social networks,” in Frontiers in Algorithmics, Lecture Notes in Computer
Science, F. P. Preparata, X. Wu, and J. Yin, Eds. Berlin, Germany: Springer,
2008, pp. 186–195.

[16] Z. Wang, A. Scaglione, and R. J. Thomas, “Electrical centrality measures for
electric power grid vulnerability analysis,” in Proc. IEEE Conference on Deci-
sion and Control, Atlanta, GA, 2010, pp. 5792–5797.

[17] A. B. M. Nasiruzzaman, H. R. Pota, and M. A. Mahmud, “Application of
centrality measures of complex network framework in power grid,” in Proc.
Conference of the IEEE Industrial Electronics Society, Melbourne, Australia,
2011, pp. 4660–4665.

[18] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM,
vol. 5, no. 6, p. 345, 1962.

[19] D. B. Johnson, “A note on Dijkstra’s shortest path algorithm,” Journal of the
ACM, vol. 20, no. 3, pp. 385–388, 1973.

[20] L. C. Freeman, S. P. Borgatti, and D. R. White, “Centrality in valued graphs:
A measure of betweenness based on network flow,” Social Networks, vol. 13,
no. 2, pp. 141–154, 1991.

[21] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Math-
ematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[22] E. D. Kolaczyk, D. B. Chua, and M. Barthélemy, “Group betweenness and
co-betweenness: Inter-related notions of coalition centrality,” Social Networks,
vol. 31, no. 3, pp. 190–203, 2009.

[23] K. A. Lehmann and M. Kaufmann, “Decentralized algorithms for evaluating
centrality in complex networks,” University of Tübingen, Tübingen, Germany,
Technical Report, 2003.

[24] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Transactions on Automatic
Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[25] J. Cortés, “Finite-time convergent gradient flows with applications to network
consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, 2006.

149

[26] A. Tahbaz-Salehi and A. Jadbabaie, “Small world phenomenon, rapidly mixing
Markov chains, and average consensus algorithms,” in Proc. IEEE Conference
on Decision and Control, New Orleans, LA, 2007, pp. 276–281.

[27] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in Proc. Amer-
ican Control Conference, Portland, OR, 2005, pp. 2371–2378.

[28] J. Wang and N. Elia, “Consensus over networks with dynamic channels,” in
Proc. American Control Conference, Seattle, WA, 2008, pp. 2637–2642.

[29] Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE Trans-
actions on Automatic Control, vol. 50, no. 11, pp. 1867–1872, 2005.

[30] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under
dynamically changing interaction topologies,” IEEE Transactions on Automatic
Control, vol. 50, no. 5, pp. 655–661, 2005.

[31] A. Tahbaz-Salehi and A. Jadbabaie, “Necessary and sufficient conditions
for consensus over random independent and identically distributed switching
graphs,” in Proc. IEEE Conference on Decision and Control, New Orleans,
LA, 2007, pp. 4209–4214.

[32] S. Di Cairano, A. Pasini, A. Bemporad, and R. M. Murray, “Convergence prop-
erties of dynamic agents consensus networks with broken links,” in Proc. Amer-
ican Control Conference, Seattle, WA, 2008, pp. 1362–1367.

[33] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp.
215–233, 2007.

[34] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and
distributed sensor fusion,” in Proc. IEEE Conference on Decision and Control,
Seville, Spain, 2005, pp. 6698–6703.

[35] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consensus for
mobile networks,” in Proc. IFAC World Congress, Prague, Czech Republic,
2005.

[36] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate
information,” in Proc. IEEE Symposium on Foundations of Computer Science,
Cambridge, MA, 2003, pp. 482–491.

[37] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems
& Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[38] D. S. Scherber and H. C. Papadopoulos, “Distributed computation of averages
over ad hoc networks,” IEEE Journal on Selected Areas in Communications,
vol. 23, no. 4, pp. 776–787, 2005.

150

[39] D. B. Kingston and R. W. Beard, “Discrete-time average-consensus under
switching network topologies,” in Proc. American Control Conference, Min-
neapolis, MN, 2006, pp. 3551–3556.

[40] A. Olshevsky and J. N. Tsitsiklis, “Convergence rates in distributed consensus
and averaging,” in Proc. IEEE Conference on Decision and Control, San Diego,
CA, 2006, pp. 3387–3392.

[41] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least-
mean-square deviation,” Journal of Parallel and Distributed Computing, vol. 67,
no. 1, pp. 33–46, 2007.

[42] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over large scale
networks,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 4,
pp. 634–649, 2008.

[43] M. Zhu and S. Mart́ınez, “Dynamic average consensus on synchronous commu-
nication networks,” in Proc. American Control Conference, Seattle, WA, 2008,
pp. 4382–4387.

[44] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed consensus
and averaging,” SIAM Journal on Control and Optimization, vol. 48, no. 1, pp.
33–55, 2009.

[45] B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, “Optimization and analysis of
distributed averaging with short node memory,” IEEE Transactions on Signal
Processing, vol. 58, no. 5, pp. 2850–2865, 2010.

[46] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical
Association, vol. 69, no. 345, pp. 118–121, 1974.

[47] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on Auto-
matic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[48] M. Cao, D. A. Spielman, and A. S. Morse, “A lower bound on convergence
of a distributed network consensus algorithm,” in Proc. IEEE Conference on
Decision and Control, Seville, Spain, 2005, pp. 2356–2361.

[49] L. Moreau, “Stability of multiagent systems with time-dependent communi-
cation links,” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp.
169–182, 2005.

[50] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus in
graphs with time-invariant topologies,” in Proc. American Control Conference,
New York, NY, 2007, pp. 711–716.

151

[51] A. Olshevsky and J. N. Tsitsiklis, “On the nonexistence of quadratic Lyapunov
functions for consensus algorithms,” IEEE Transactions on Automatic Control,
vol. 53, no. 11, pp. 2642–2645, 2008.

[52] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic stationary graph
processes,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 225–
230, 2010.

[53] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and opti-
mization in multi-agent networks,” IEEE Transactions on Automatic Control,
vol. 55, no. 4, pp. 922–938, 2010.

[54] J. N. Tsitsiklis, “Problems in decentralized decision making and computation,”
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1984.

[55] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in large
overlay networks,” in Proc. IEEE International Conference on Distributed Com-
puting Systems, Tokyo, Japan, 2004, pp. 102–109.

[56] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation protocols for
large-scale overlay networks,” in Proc. IEEE/IFIP International Conference on
Dependable Systems and Networks, Florence, Italy, 2004, pp. 19–28.

[57] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algo-
rithms,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2508–
2530, 2006.

[58] M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip algorithms for
distributed computation,” in Proc. Allerton Conference on Communication,
Control, and Computing, Monticello, IL, 2006, pp. 952–959.

[59] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of aggregates
in wireless sensor networks: Distributed randomized algorithms and analysis,”
IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 9, pp.
987–1000, 2006.

[60] C. C. Moallemi and B. Van Roy, “Consensus propagation,” IEEE Transactions
on Information Theory, vol. 52, no. 11, pp. 4753–4766, 2006.

[61] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray, “Asyn-
chronous distributed averaging on communication networks,” IEEE/ACM
Transactions on Networking, vol. 15, no. 3, pp. 512–520, 2007.

[62] V. Borkar and P. P. Varaiya, “Asymptotic agreement in distributed estimation,”
IEEE Transactions on Automatic Control, vol. 27, no. 3, pp. 650–655, 1982.

[63] J. N. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement in dis-
tributed decision problems,” IEEE Transactions on Automatic Control, vol. 29,
no. 1, pp. 42–50, 1984.

152

[64] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE Transac-
tions on Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

[65] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Con-
vergence in multiagent coordination, consensus, and flocking,” in Proc. IEEE
Conference on Decision and Control, Seville, Spain, 2005, pp. 2996–3000.

[66] M. Cao, A. S. Morse, and B. D. O. Anderson, “Coordination of an asynchronous
multi-agent system via averaging,” in Proc. IFAC World Congress, Prague,
Czech Republic, 2005.

[67] L. Fang and P. J. Antsaklis, “Information consensus of asynchronous discrete-
time multi-agent systems,” in Proc. American Control Conference, Portland,
OR, 2005, pp. 1883–1888.

[68] L. Fang, P. J. Antsaklis, and A. Tzimas, “Asynchronous consensus protocols:
Preliminary results, simulations and open questions,” in Proc. IEEE Conference
on Decision and Control, Seville, Spain, 2005, pp. 2194–2199.

[69] L. Fang and P. J. Antsaklis, “On communication requirements for multi-agent
consensus seeking,” in Networked Embedded Sensing and Control, ser. Lecture
Notes in Control and Information Sciences, P. J. Antsaklis and P. Tabuada,
Eds. Berlin, Germany: Springer-Verlag, 2006, vol. 331, pp. 53–67.

[70] C. Y. Tang and J. Lu, “Controlled hopwise averaging: Bandwidth/energy-
efficient asynchronous distributed averaging for wireless networks,” in Proc.
American Control Conference, St. Louis, MO, 2009, pp. 1561–1568.

[71] J. Lu and C. Y. Tang, “Convergence rate of controlled hopwise averaging on
various graphs,” in Proc. IEEE Conference on Decision and Control, Orlando,
FL, 2011, pp. 4290–4295.

[72] ——, “Controlled hopwise averaging and its convergence rate,” IEEE Transac-
tions on Automatic Control, vol. 57, no. 4, pp. 1005–1012, 2012.

[73] S. Mart́ınez, J. Cortés, and F. Bullo, “Motion coordination with distributed
information,” IEEE Control Systems Magazine, vol. 27, no. 4, pp. 75–88, 2007.

[74] J. Fax and R. Murray, “Information flow and cooperative control of vehicle
formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–
1476, 2004.

[75] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle
cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82,
2007.

153

[76] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and
theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420,
2006.

[77] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching
networks,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 863–
868, 2007.

[78] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed sensor fusion
using dynamic consensus,” in Proc. IFAC World Congress, Prague, Czech Re-
public, 2005.

[79] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion
based on average consensus,” in Proc. International Symposium on Information
Processing in Sensor Networks, Los Angeles, CA, 2005, pp. 63–70.

[80] ——, “A space-time diffusion scheme for peer-to-peer least-squares estimation,”
in Proc. International Conference on Information Processing in Sensor Net-
works, Nashville, TN, 2006, pp. 168–176.

[81] J. Lu and C. Y. Tang, “Distributed asynchronous algorithms for solving positive
definite linear equations over networks—Part I: Agent networks,” in Proc. IFAC
Workshop on Estimation and Control of Networked Systems, Venice, Italy, 2009,
pp. 252–257.

[82] ——, “Distributed asynchronous algorithms for solving positive definite linear
equations over networks—Part II: Wireless networks,” in Proc. IFAC Workshop
on Estimation and Control of Networked Systems, Venice, Italy, 2009, pp. 258–
263.

[83] J. Cortés, “Distributed algorithms for reaching consensus on general functions,”
Automatica, vol. 44, no. 3, pp. 726–737, 2008.

[84] D. Mosk-Aoyama and D. Shah, “Computing separable functions via gossip,” in
Proc. ACM Symposium on Principles of Distributed Computing, Denver, CO,
2006, pp. 113–122.

[85] A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of distributed
consensus algorithms with boundary: From shortest paths to mean hitting
times,” in Proc. IEEE Conference on Decision and Control, San Diego, CA,
2006, pp. 4664–4669.

[86] D. Bauso, L. Giarré, and R. Pesenti, “Non-linear protocols for optimal dis-
tributed consensus in networks of dynamic agents,” Systems & Control Letters,
vol. 55, no. 11, pp. 918–928, 2006.

[87] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus filters,”
in Proc. IEEE Conference on Decision and Control, Seville, Spain, 2005, pp.
8179–8184.

154

[88] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Approximate distributed
Kalman filtering in sensor networks with quantifiable performance,” in Proc.
International Symposium on Information Processing in Sensor Networks, Los
Angeles, CA, 2005, pp. 133–139.

[89] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in Proc.
IEEE Conference on Decision and Control, New Orleans, LA, 2007, pp. 5492–
5498.

[90] S. Roy, A. Saberi, and K. Herlugson, “A control-theoretic perspective on the
design of distributed agreement protocols,” in Proc. American Control Confer-
ence, Portland, OR, 2005, pp. 1672–1679.

[91] S. Roy, K. Herlugson, and A. Saberi, “A control-theoretic approach to dis-
tributed discrete-valued decision-making in networks of sensing agents,” IEEE
Transactions on Mobile Computing, vol. 5, no. 8, pp. 945–957, 2006.

[92] S. Sundaram and C. N. Hadjicostis, “Distributed consensus and linear func-
tional calculation in networks: An observability perspective,” in Proc. Interna-
tional Conference on Information Processing in Sensor Networks, Cambridge,
MA, 2007, pp. 99–108.

[93] J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Distributed anonymous
discrete function computation,” IEEE Transactions on Automatic Control,
vol. 56, no. 10, pp. 2276–2289, 2011.

[94] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for nondif-
ferentiable optimization,” SIAM Journal on Optimization, vol. 12, no. 1, pp.
109–138, 2001.

[95] A. Nedić, D. P. Bertsekas, and V. S. Borkar, “Distributed asynchronous incre-
mental subgradient methods,” in Inherently Parallel Algorithms in Feasibility
and Optimization and Their Applications, D. Butnariu, Y. Censor, and S. Reich,
Eds. Amsterdam, Holland: Elsevier, 2001, pp. 381–407.

[96] A. Nedić and D. P. Bertsekas, “Convergence rate of incremental subgradient
algorithms,” in Stochastic Optimization: Algorithms and Applications, S. P.
Uryasev and P. M. Pardalos, Eds. Norwell, MA: Kluwer Academic Publishers,
2001, pp. 223–264.

[97] M. G. Rabbat and R. D. Nowak, “Distributed optimization in sensor networks,”
in Proc. International Symposium on Information Processing in Sensor Net-
works, Berkeley, CA, 2004, pp. 20–27.

[98] ——, “Quantized incremental algorithms for distributed optimization,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 798–808, 2005.

155

[99] S.-H. Son, M. Chiang, S. R. Kulkarni, and S. C. Schwartz, “The value of cluster-
ing in distributed estimation for sensor networks,” in Proc. International Con-
ference on Wireless Networks, Communications and Mobile Computing, Maui,
HI, 2005, pp. 969–974.

[100] B. Johansson, M. Rabi, and M. Johansson, “A simple peer-to-peer algorithm
for distributed optimization in sensor networks,” in Proc. IEEE Conference on
Decision and Control, New Orleans, LA, 2007, pp. 4705–4710.

[101] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Stochastic incremental gradient
descent for estimation in sensor networks,” in Proc. Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, 2007, pp. 582–586.

[102] ——, “Incremental stochastic subgradient algorithms for convex optimization,”
SIAM Journal on Optimization, vol. 20, no. 2, pp. 691–717, 2009.

[103] A. Nedić and A. Ozdaglar, “On the rate of convergence of distributed sub-
gradient methods for multi-agent optimization,” in Proc. IEEE Conference on
Decision and Control, New Orleans, LA, 2007, pp. 4711–4716.

[104] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, “Subgradient
methods and consensus algorithms for solving convex optimization problems,”
in Proc. IEEE Conference on Decision and Control, Cancun, Mexico, 2008, pp.
4185–4190.

[105] I. Lobel and A. Ozdaglar, “Convergence analysis of distributed subgradient
methods over random networks,” in Proc. Allerton Conference on Communica-
tion, Control, and Computing, Monticello, IL, 2008, pp. 353–360.

[106] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed subgra-
dient methods and quantization effects,” in Proc. IEEE Conference on Decision
and Control, Cancun, Mexico, 2008, pp. 4177–4184.

[107] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp.
48–61, 2009.

[108] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Asynchronous gossip algorithms for
stochastic optimization,” in Proc. IEEE Conference on Decision and Control,
Shanghai, China, 2009, pp. 3581–3586.

[109] ——, “Distributed stochastic subgradient projection algorithms for convex op-
timization,” Journal of Optimization Theory and Applications, vol. 147, no. 3,
pp. 516–545, 2010.

[110] M. Zhu and S. Mart́ınez, “On distributed convex optimization under inequality
and equality constraints,” IEEE Transactions on Automatic Control, vol. 57,
no. 1, pp. 151–164, 2012.

156

[111] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1,
2011.

[112] M. E. J. Newman, “A measure of betweenness centrality based on random
walks,” Social Networks, vol. 27, no. 1, pp. 39–54, 2005.

[113] C. Dangalchev, “Residual closeness in networks,” Physica A: Statistical Me-
chanics and Its Applications, vol. 365, no. 2, pp. 556–564, 2006.

[114] P. Hage and F. Harary, “Eccentricity and centrality in networks,” Social Net-
works, vol. 17, no. 1, pp. 57–63, 1995.

[115] K. Stephenson and M. Zelen, “Rethinking centrality: Methods and examples,”
Social Networks, vol. 11, no. 1, pp. 1–37, 1989.

[116] P. Bonacich, “Factoring and weighting approaches to status scores and clique
identification,” Journal of Mathematical Sociology, vol. 2, no. 1, pp. 113–120,
1972.

[117] S. Nanda and D. Kotz, “Localized bridging centrality for distributed network
analysis,” in Proc. International Conference on Computer Communications and
Networks, St. Thomas, U.S. Virgin Islands, 2008, pp. 1–6.

[118] A.-M. Kermarrec, E. L. Merrer, B. Sericola, and G. Trédan, “Second order cen-
trality: Distributed assessment of nodes criticity in complex networks,” Com-
puter Communications, vol. 34, no. 5, pp. 619–628, 2011.

[119] K. Wehmuth and A. Ziviani, “DACCER: Distributed assessment of the closeness
centrality ranking in complex networks,” Computer Networks, vol. 57, no. 13,
pp. 2536–2548, 2013.

[120] W. Wang and C. Y. Tang, “Distributed estimation of closeness centrality,”
in Proc. IEEE Conference on Decision and Control, Osaka, Japan, 2015, pp.
4860–4865.

[121] ——, “Distributed computation of classic and exponential closeness on tree
graphs,” in Proc. American Control Conference, Portland, OR, 2014, pp. 2090–
2095.

[122] M. Girvan and M. E. J. Newman, “Community structure in social and biological
networks,” Proceedings of the national academy of sciences, vol. 99, no. 12, pp.
7821–7826, 2002.

[123] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[124] S. Fortunato, “Community detection in graphs,” Physics reports, vol. 486, no. 3,
pp. 75–174, 2010.

157

[125] M. E. J. Newman, “Finding community structure in networks using the eigen-
vectors of matrices,” Physical review E, vol. 74, no. 3, p. 036104, 2006.

[126] B. H. Good, Y. A. de Montjoye, and A. Clauset, “Performance of modularity
maximization in practical contexts,” Physical Review E, vol. 81, no. 4, p. 046106,
2010.

[127] W. W. Zachary, “An information flow model for conflict and fission in small
groups,” Journal of anthropological research, pp. 452–473, 1977.

[128] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.
Dawson, “The bottlenose dolphin community of Doubtful Sound features a large
proportion of long-lasting associations,” Behavioral Ecology and Sociobiology,
vol. 54, no. 4, pp. 396–405, 2003.

[129] H. J. Leavitt, “Some effects of certain communication patterns on group per-
formance,” The Journal of Abnormal and Social Psychology, vol. 46, no. 1, pp.
38–50, 1951.

[130] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social
networks, vol. 1, no. 3, pp. 215–239, 1978.

158

