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Abstract 

Directional drilling has been increased recently due to its multiple benefits when 

compared to conventional drilling.  Among several advantages, the increase in the 

production of oil and gas through the use of multiple wells from a single vertical wellbore 

is the most significant one.  However, there is a tendency of the drill pipe to rest on the 

low-side of the annulus due to gravity.  Moreover, vertical component of annular fluid 

velocity is reduced resulting in accumulation of cuttings on the low side of the wellbore.  

With reduced vertical component, suspended cuttings in the annulus can settle and 

ultimately form a uniform cuttings bed, which partially blocks the flow and creates 

hydraulic resistance.  Consequently, bottom hole pressure is affected by this phenomenon 

and drilling operation performance can be significantly reduced.  

Numerous wellbore hydraulic studies (Haciislamoglu and Langlinais, 1989; Fang 

et al.,1999; and Escudier et al., 2002) have been conducted to predict annular pressure 

loss in eccentric annulus.  However, very limited studies (Hussain and Sharif, 1998; and 

Azouz et al., 1993) have been conducted on fluid flow in partially blocked annular 

geometries.  The aim of this research is to perform numerical simulation-based 

investigation to analyze the effect of cuttings bed formation on annular pressure loss in a 

partially blocked eccentric annulus under laminar flow condition.  A Computational Fluid 

Dynamics (CFD) software (ANSYS FLUENT) is used to conduct numerical simulation 

studies through the use of a finite element algorithm for solving the governing equations 

of motion in such complex annular geometries with blockage.  The simulation studies 

were conducted for power law fluid flowing in highly eccentric annulus (i.e. 90% 

eccentricity).  Effects of fluid rheological properties (fluid behavior index and 
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consistency index) and flow geometry (diameter ratio, and cuttings bed height) on 

velocity profile, frictional pressure loss and bed and wall shear stresses are investigated.  

Due to the presence of tool joints and wellbore irregularities, drillstring is expected to 

have approximately 90% eccentricity. In addition, for eccentricity more than 90%, 

simulation studies become very difficult and computationally intensive due to numerical 

instability. 

 Pressure losses predicted using CFD were evaluated by comparing them with 

results of published studies and experimental measurements obtained from a partially 

blocked eccentric annulus. A good agreement is obtained with CFD predictions and 

results of published studies and experimental measurements.  For Newtonian fluids, CFD 

results for cases without cutting beds were validated using analytical solution.  

After proper validation, simulation results were used to develop approximate 

correlations for friction factor and bed shear stress.  The new friction factor correlation 

provides reasonable prediction with a maximum discrepancy of ± 5%. The new bed shear 

stress correlation exhibits slightly higher discrepancy (± 10%).  As anticipated, the 

annular frictional pressure loss increased with cuttings bed at a constant flowrate.  It was 

also observed that with greater shear thinning behavior, the lower is the impact of cuttings 

bed on the annular pressure loss.  
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Chapter 1. Introduction 

1.1 Overview 

Accurate frictional pressure drop predictions and proper analysis of fluid flow in 

a wellbore are important for optimization of drilling operation.  Moreover, the models 

developed in this study can be applied to other industrial applications such as chemical, 

petrochemical, and food processing industries. 

During drilling operations, the bottomhole pressure of a well is maintained 

slightly above the pore pressure to prevent flow of formation fluid influx into the 

wellbore. Inaccurate predictions of friction pressure loss can cause inappropriate 

engineering decisions, which may produce further drilling problems, such as: loss of 

circulation fluid, kicks, and stuck-pipe. Therefore, a study on the wellbore hydraulic 

becomes crucial to analyze fluid flow in the wellbore and acutely predict bottom hole 

pressure and equivalent circulation density (ECD). 

In addition to rheological properties of drilling fluid (i.e. pseudoplastic, 

thixotropic, and viscoelastic effects), different wellbore parameters such as well geometry 

(diameter ratio and eccentricity), drill pipe rotation speed, axial fluid velocity, and 

concentration of cuttings, influence the flow behavior in the wellbore.  Theoretical, 

numerical, and experimental studies have been extensively conducted on annular fluid 

flow. Early studies assumed Newtonian fluid in concentric annular geometry between 

drill pipe and hole. However, wellbores can exhibit eccentric geometry, especially in 

inclined wells, where there is a strong tendency for the inner pipe to settle down to the 

low-side of the wellbore (Figure 1.1).  It has been observed through experiments and 
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numerical simulation studies that eccentricity can significantly decrease (up to 50%) 

annular pressure loss (Mitsuishi and Aoyagi, 1973; Silva and Shah, 2000; and Zamora et 

al., 2005). 

 
Figure 1.1 Concentric and eccentric annular geometries  

 

The annular eccentricity is of great importance for hydraulic analysis. It is often 

defined in dimensionless form as: 

𝑒 =
𝛿

(𝑅𝑜−𝑅𝑖)
                                                                                                       (1-1)                                                                

 

where 𝑅𝑜 and 𝑅𝑖 correspond to outer and inner radii, respectively (Fig. 1.2), while 𝛿  is 

the center-to-center distance between the two cylinders.  The dimensionless eccentricity 

is zero for a concentric annulus, and it is one for a fully eccentric annulus. Typical 

diameter ratio of wellbores ranges from 0.3 to 0.7. However, for special drilling 

applications, such as slim-hole drilling, casing drilling, and coiled tubing operations, 

diameter ratios can be out of this range.  
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Figure 1.2 Partially eccentric annulus  

 

1.2 Problem Description 

During directional drilling operations, rock cuttings that accumulate on the low 

side of the annulus due to the gravity are always difficult to remove.  Poor hole cleaning 

may cause a number of drilling problems such as increase in drillstring torque and drag, 

fluid loss, lost circulation and stuck pipe. These problems often result in loss of productive 

time and subsequently increase the operational cost. 

Fluid velocity and rheology are controllable parameters to achieve satisfactory 

wellbore cleaning.  The velocity of the fluid has a significant effect on hole cleaning due 

to its positive relationship with cuttings bed shear stress. However, excessive annular 

fluid velocity, results in high ECD and borehole erosion. Since rock cuttings generated at 

the drill bit must be removed from the bottom hole, a proper management of the wellbore 

hydraulic is required in order to guarantee an efficient hole cleaning.  



4 

 

A number of studies (George, 2012; Elgaddafi, 2010; George et al., 2014) showed 

that cuttings bed formation in directional wells is the most common operational problem 

confronting drillers in. When the critical state of clogging of the well is reached, a flow 

restriction within the annulus occurs (Figure 1.3) which affects the friction factor and 

results in increased annular pressure loss. Thus, the study of the annular flow becomes 

very important in a partially obstructed annulus. 

Very limited studies (Aworunse 2012; Tang et al. 2016; and Bicalho et al. 2016) 

have been conducted on the effect of blockage on annular pressure loss.  The formation 

of cuttings bed in the annulus complicates flow geometry; as a result, analytical solution 

cannot be obtained.  Thus, numerical methods are often applied to predict pressure loss 

and bed shear stress in a partially blocked annulus.  Previous studies (Azouz et al., 1993; 

Hussain et al., 1998) developed extensive and time consuming numerical procedures to 

predict pressure loss in a partially blocked annulus. Currently, with the use of 

Computational Fluid Dynamic (CFD) software, it is possible to develop very efficient 

numerical models for complex flow problems. 

 

 

Figure 1.3 Partially blocked eccentric annulus 
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1.3 Objectives 

The main objective of this study is to better understand non-Newtonian fluid flow 

in partially blocked annulus, that take place in horizontal or inclined wellbores.  The study 

is conducted using commercial CFD software (ANSYS FLUENT).  The analysis was 

carried out for laminar flow of power law fluid in a partially blocked highly eccentric 

annulus. Hence, this study is aimed at: 

 Investigating the effect of cuttings bed build up on the annular friction pressure 

loss, and hydraulic parameters such as dimensionless hydraulic resistance (fRe) 

and wall shear stress.   

 Studying effects of rheological fluid properties (power law index), diameter ratio 

and cuttings bed height on annular pressure loss and bed shear stress. 

 Developing simple and approximate models to predict the friction pressure loss 

and bed shear stress. 

1.4 Scope of Work and Methodology 

This research involves CFD-based investigation, theoretical study, and 

correlations development.  In the CFD study, horizontal annular section of a wellbore is 

simulated considering laminar flow conditions. Extensive CFD simulations were carried 

out considering power-law fluids.  Effects of cuttings bed height, diameter ratio, and 

power law exponent (n) on pressure loss and bed shear stress were investigated. 

Moreover, to verify the accuracy of CFD model predictions, simulation results were 

validated using existing experimental measurements. For unblocked annulus, validation 

was conducted using published numerical results and analytical solutions (only for 
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Newtonian fluids). Based on CFD simulation results, simplified dimensionless 

correlations have been developed to predict annular pressure loss and bed shear stress. 

 

1.5 Outline 

This thesis consists of six chapters.  Chapter 1 describes statement of the problem, 

objectives and research methodologies. Chapter 2 presents a comprehensive review of 

theoretical and experimental studies on annular flow of power-law fluids. In addition, it 

presents review of most recent CFD based studies conducted on non-Newtonian flows in 

partially blocked annuli.  Chapter 3 covers basic theory of pipe and annular flows, which 

are necessary for analyzing and interpreting CFD simulation results and developing 

dimensionless correlations.  Chapter 4 describes CFD modeling technique used to 

simulate the flow field for a steady, isothermal, fully developed laminar flow of power 

law fluids.  Detailed description of the CFD procedure and assumptions implemented 

during the simulation are included in this chapter.  CFD simulated results are presented 

in Chapter 5, demonstrating the effect of cuttings bed height on annular pressure loss and 

bed shear stress.  Moreover, it presents a thorough comparison of CFD simulation results 

with published analytical and numerical studies as well as available experimental results. 

Chapter 6 summarizes major outcomes and findings of this investigation and 

recommendations to carry out future studies.   
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Chapter 2. Literature Review 

Annular flow of non-Newtonian fluid encounters in many industrial applications 

such as flow in double pipe heat exchangers and extruders (Escudier et al., 2002).  In the 

oil and gas industry, drilling fluid with complex rheological properties is circulated in the 

wellbore that has annular geometry.  In the oil industry, accurate prediction of pressure 

loss and other hydraulic parameters such as bed shear stress are required in order to design 

an efficient hydraulic program and minimize costly operations. Fluid flow through 

annular space has been investigated for many decades (Lamb, 1945; Frederickson and 

Bird, 1958; Iyoho and Azar, 1981; Haciislamoglu, 1989; Escudier et al., 2002; and 

Bicalho et al., 2016) considering the effects of various parameters such as flow rate, fluid 

properties and wellbore geometry on the bottomhole pressure.  Laminar flow of non-

Newtonian fluid in concentric annulus has been analyzed exhaustively and well 

understood.  Nowadays, deviated wells are becoming more common. There is strong need 

for understanding fluid flow in these wells, which is often represented by partially 

blocked eccentric annular flow.   

This section presents a review of the literature on flow of Newtonian and non-

Newtonian fluids in concentric, eccentric, and partially blocked annuli.  The review 

summarizes previous theoretical, computational and experimental studies. 

2.1 Concentric Annulus 

As mentioned before, a number of studies have been conducted to investigate 

concentric annular fluid flow due to its extensive application in many industrial 

operations.   Generally, the studies can be grouped in two basic categories: analytical and 

numerical methods.  In analytical methods, the governing system of equations (the 
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continuity and equations of motion) are solved to generate the velocity distribution across 

the flow field.  Furthermore, in order to determine the volumetric flowrate, the obtained 

velocity profile is integrated over the flow cross sectional area.  For concentric annular 

flow of Newtonian fluid, the governing equations can be solved analytically.  For non-

Newtonian fluids, analytical solution of the velocity profile cannot be obtained without 

applying some form of numerical procedures.  For non-Newtonian fluids, a number of 

studies (Volarovich and Gutkin, 1946; and Fredrickson and Bird, 1958; Kozicki et al., 

1966) have developed approximate models based on the Haggen-Poiseuille equation 

(1840), which relates pressure loss in cylindrical pipe to the flow rate.  Its applicability 

and simplicity have served to develop approximate fluid flow models for concentric, 

eccentric and partially blocked annuli.  A number of approximate models (Volarovich 

and Gutkin, 1946; and Fredrickson and Bird, 1958) have been developed for concentric 

annulus.  An approximate analytical solution for Bingham plastic fluid was proposed by 

Volarovitch and Gutkin (1946); whereas Fredrickson and Bird (1958) presented 

simplified models for Bingham plastic and power law fluids.  For annuli with small 

clearance (
𝑅𝑖

𝑅𝑜
> 0.3), the narrow slot approximate model (Bourgoyne et al., 1986) is used 

for a concentric annulus defining the width (W) and height (h) of an equivalent slot (Fig. 

2.1a) as: 

𝐴 = 𝜋(𝑅𝑜
2 − 𝑅𝑖

2) = 𝑊ℎ                                                                                   (2-1) 

where  

ℎ = 𝑅𝑜 − 𝑅𝑖                                                                                                     (2-2) 
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Figure 2.1 Slot equivalent of: (a) concentric; and (b) eccentric annuli (Haciislamoglu, 

1989) 

 

2.2 Eccentric Annulus 

In inclined wells, the annular geometry possesses some level of eccentricity.  

Researchers have found that eccentricity substantially affects the predictions of various 

mathematical models that are currently used in drilling hydraulics. Experimental studies 

(Mitsuishi and Aoyagi, 1973; Nouri et al., 1993) confirmed reduction of pressure drop 

with eccentricity.  
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The governing equation of motion for fully developed laminar flow viscous fluid 

is expressed as: 

−
𝜕𝑝

𝜕𝑧
+

𝜕

𝜕𝑥
[𝜇(�̇�)

𝜕𝑢

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝜇(�̇�)

𝜕𝑢

𝜕𝑦
] = 0                                                          (2-3) 

The above equation is valid for isothermal steady state flow of incompressible fluid, 

where z is oriented in the axial direction, u is the local axial velocity, and  
𝜕𝑝

𝜕𝑧
 is the constant 

axial pressure gradient, which can be expressed as 
ΔP𝑓

ΔL
. For Newtonian fluids, 𝜇(�̇�) is the 

constant and molecular viscosity of the fluid. However, for non-Newtonian fluids, 𝜇(�̇�) 

is the apparent viscosity, which is a function of shear rate (�̇�). 

For Newtonian fluids, an early study (Piercy et al., 1933) investigated the fluid 

flow through eccentric annulus (Fig. 2.1b) and derived an analytical solution applying 

bipolar coordinate transformation. The expression developed by Piercy et al. (1933) has 

become an enormous contribution of fluid flow analysis and widely used in industry, due 

to its accuracy in predicting strong influence of eccentricity on pressure loss.  

𝑄 =
𝜋

8𝜇
(−

𝑑𝑝

𝑑𝑧
) [𝑅𝑜

4 − 𝑅𝑖
4 −

4𝛿2𝑀2

𝛽−𝛼
− 8𝛿2𝑀2 ∑

𝑚𝑒−𝑚(𝛽+𝛼)

sinh(𝑚𝛽−𝑚𝛼)
∞
𝑚=1 ]                 (2-4) 

where: 

𝑀 = (𝐹2 − 𝑅𝑜
2)

1/2
                                                                                         (2-5) 

𝐹 =
𝑅𝑜

2−𝑅𝑖
2+𝛿2

2𝛿
                                                                                                 (2-6) 

𝛼 =
1

2
ln

𝐹+𝑀

𝐹−𝑀
                                                                                                     (2-7) 

𝛽 =
1

2
ln

𝐹−𝛿+𝑀

𝐹−𝛿−𝑀
                                                                                                 (2-8) 

where 𝛿 corresponds to the offset distance between the centers of the pipe and the 

borehole ( Eqn. 1.1).  



11 

 

For non-Newtonian fluids, the asymmetric nature of the eccentric annulus (Fig. 

2.1b) makes analytical solution very complicated and difficult to obtain without 

approximation, which reduces accuracy.  As a result, there is no exact analytical solution 

developed to date.  Various approximate models and theoretical solutions encountered in 

the literature are presented in this section. 

2.2.1 Analytical Studies 

A number of studies transformed the eccentric annular geometry using bipolar 

coordinate transformation. Heyda (1959) obtained analytical solution for velocity profile 

of Newtonian fluid in eccentric annulus. The solution is presented in the form of an 

infinite series utilizing bipolar coordinates.  The results demonstrated how the velocity 

profile changes with eccentricity.  Later, Redberger and Charles (1962) used bipolar 

coordinates coupled with a conformal transformation to solve equation of motion for 

Newtonian fluids in eccentric annuli.  Their results showed good agreement with Heyda’s 

solution.  Considering wide ranges of eccentricity (0.1 ≤ 𝑒 ≤ 0.9) and diameter ratio 

(0.5 <  𝐷𝑖/𝐷𝑜  <  0.8), Snyder and Goldstein (1965) extended the work of Heyda (1955) 

and developed analytical expressions for velocity distribution, friction factor and local 

shear stress.  

Applying bipolar coordinate transformation technique, Guckes (1975) predicted 

the relationship between flowrate and frictional pressure for non-Newtonian fluids 

(Bingham plastic and power-law fluids) in eccentric annulus.  The relationship between 

volumetric flowrates and frictional pressure loss was developed numerically integrating 

the velocity profile.  However, the computational model exhibited numerical instability 

at large eccentricities (Haciislamoglu and Langlinais, 1990).  In general, bipolar 
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coordinate transformation consists of two orthogonal families of circles, , 휀 and 𝜂,  which 

represent the walls of an eccentric annulus as it is illustrated in Fig. 2.2. A modified and 

more simplified form of the equation of motion in bipolar coordinates has been developed 

by Sijun (1994) and Haciislamoglu (1989).  In bipolar transformation method, the 

equation of motion is transformed from Cartesian coordinates to bipolar coordinates as 

(Spiegel, 1968): 

𝑥 =
𝑎∗ sinh

cosh −cos 𝜂
                                                                                                 (2-9) 

𝑦 =
𝑎∗ sin

cosh −cos 𝜂
                                                                                               (2-10) 

and 

𝐿 = 𝐿                                                                                                             (2-11) 

where L is the third axis which is perpendicular to 휀 and 𝜂, and a*  is defined as: 𝑎∗ =

𝑅𝑖 sinh 휀𝑖 = 𝑅𝑜 sinh 휀𝑜, for: 0 ≤ 𝜂 ≤ 2𝜋 and −∞ ≤ 휀 ≤ +∞ and −∞ ≤ 𝐿 ≤ +∞. 휀𝑖 and 

휀𝑜are determined from (Guckes, 1974): 

휀𝑖 = cosh−1 [
(1+𝜅)−𝑒2(1−𝜅)

𝑎∗𝑒𝜅
]                                                                           (2-12) 

휀𝑜 = cosh−1 [
(1+𝜅)−𝑒2(1−𝜅)

𝑎∗𝑒
]                                                                          (2-13) 

where e and 𝜅 are the relative eccentricity and diameter ratio, respectively. 
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Figure 2.2 Eccentric annulus in bipolar coordinates (Haciislamoglu, 1989) 

 

Consequently, the transformed equation of motion in the bipolar coordinates 

system is expressed as (Haciislamoglu, 1989): 

(
𝑎

𝜓
)

2 Δ𝑃𝑓

Δ𝐿
+

𝜕

𝜕
(𝜇

𝜕𝑣

𝜕
) +

𝜕

𝜕𝜂
(𝜇

𝜕𝑣

𝜕𝜂
) = 0                                                           (2-14) 

where: 

𝜓 = cosh 휀 − cos 𝜂                                                                                       (2-15) 

for 휀𝑜 ≤ 휀 ≤ 휀𝑖 and 0 ≤ 𝜂 ≤ 2𝜋, where μ is apparent viscosity and it depends upon the 

rheological model selected.  

Theoretically, the bipolar coordinate transformation technique provides exact 

solution.  However, it requires computationally intensive procedures.  Haciislamoglu and 

Langlinais (1990) developed a numerical scheme to solve the equation for power-law 

fluids, for a wide range of eccentricities (0 ≤ 𝑒 ≤ 0.95), where their results agreed 

reasonably well with the experimental data of Mitsuishi and Aoyagi (1973).  
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2.2.2 Numerical Studies 

After applying the bipolar transformation, Redberger and Charles (1962) used a 

finite different technique to obtain the velocity profile for Newtonian fluids in eccentric 

annuli.  As mentioned earlier, the velocity profile is integrated numerically to provide a 

relationship between flowrate and pressure drop for different eccentricities.  Later, 

Guckes (1975) presented procedures for calculating volumetric flowrate for power-law 

and Bingham plastic fluids, using finite difference technique after applying the bipolar 

transformation. Haciislamoglu and Langlinais (1990) also used the bipolar transformation 

to developed a simplified correlation for relating the ratio of frictional pressure losses in 

an eccentric annulus to that of concentric annulus considering wide ranges of eccentricity 

(0 ≤ 𝑒 ≤ 0.95), diameter ratio (0.3 <  𝐷𝑖/𝐷𝑜  <  0.9), and fluid behavior index (0.4 < n 

< 1.0) (Appendix D). A more recent numerical study (Fang et al., 1999) evaluated the 

effects of eccentricity on the product of friction factor and Reynolds number (fRe). For 

eccentric annulus, friction factor and Reynolds number are expressed as: 

𝑓 =
(− 

𝑑𝑝

𝑑𝑧
)𝐷ℎ𝑦𝑑

2𝜌𝑈2                                                                                                 (2-16) 

𝑅𝑒 =
𝜌𝑈2−𝑛𝐷ℎ𝑦𝑑

𝑛

𝐾
                                                                                              (2-17) 

Fanning friction factor is expressed in terms of pressure gradient and hydraulic 

diameter (Dhyd). Furthermore, Reynolds number is defined in terms of hydraulic diameter, 

mean velocity (U), density (ρ), and consistency index (K). Fang et al. (1999) 

demonstrated that the hydraulic parameter, fRe in eccentric annulus is a function of 

dimensionless eccentricity (e), radios ratio (𝜅) and fluid behavior index (n). Other 

numerical studies (Fang and Manglik, 2002; and Escudier et al., 2002) reported similar 
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findings.  Table 2.1 presents the hydraulic parameter as a function of dimensionless 

eccentricity, power law index and diameter ratio obtained by Fang et al. (1999).  

Table 2.1 Hydraulic parameter (fRe) for power-law fluids (Fang et al., 1999) 

𝜅 𝑒 n      

  0.2 0.4 0.5 0.6 0.8 1.0 

 0 3.6458 6.1481 7.7196 9.6670 14.987 23.100 

    7.73a 9.66a 14.99a 23.10a 

 0.05 3.7240 6.1517 7.7171 9.6464 14.953 23.028 (23.023)b 

 0.1 3.7875 6.1319 7.6850 9.5994 14.848 22.837 (22.829) 

 0.2 3.7768 6.0423 7.5423 9.3835 14.436 22.102 (22.093) 

0.2 0.3 3.7355 5.8823 7.3032 9.0484 13.806 20.993 (20.985) 

 0.4 3.6401 5.6620 6.9931 8.6203 13.032 19.648 (19.641) 

 0.5 3.5114 5.4071 6.6431 8.1462 12.192 18.202 (18.197) 

 0.6 3.3687 5.1417 6.2840 7.6622 11.349 16.764 (16.760) 

 0.8 3.1137 4.6463 5.6103 6.7787 9.8195 14.182 (14.181) 

        

 0 3.7684 6.3122 7.9395 9.9497 15.450 23.811 

    7.95a 9.95a 15.45a 23.81 

 0.05 3.8336 6.3086 7.9293 9.9242 15.399 23.728 (23.729)b 

 0.1 3.8168 6.2567 7.8600 9.8307 15.248 23.480 (23.481) 

 0.2 3.7608 6.0610 7.5978 9.4904 14.675 22.542 (22.541) 

0.5 0.3 3.5989 5.7641 7.2066 8.9765 13.822 21.140 (21.139) 

 0.4 3.4039 5.4141 6.7443 8.3734 12.804 19.459 (19.458) 

 0.5 3.2093 5.0507 6.2610 7.7350 11.726 17.671 (17.671) 

 0.6 3.0216 4.6996 5.7909 7.1147 10.667 15.709 (15.909) 

 0.8 2.7034 4.0776 4.9535 6.0022 8.7683 12.755 (12.755) 

        

 0 3.8233 6.3488 7.9966 10.023 15.557 23.978 

    8.00a 10.01a 15.56a 23.98a 

 0.05 3.8345 6.3414 7.9758 9.9838 15.501 23.889 (23.891)b 

 0.1 3.8280 6.2679 7.8880 9.8767 15.336 23.626 (23.627) 

 0.2 3.6554 6.0146 7.5725 9.4819 14.711 22.630 (22.631) 

0.8 0.3 3.4315 5.6541 7.1173 8.9087 13.787 21.145 (21.145) 

 0.4 3.1958 5.2474 6.5933 8.2342 12.691 19.367 (19.367) 

 0.5 2.9723 4.8379 6.0564 7.5387 11.536 17.480 (17.480) 

        

 0.6 2.7684 4.4499 5.5415 6.8624 10.405 15.622 (15.622) 

 0.8 2.4085 3.7733 4.6359 5.6679 8.3879 12.304 (12.304) 
aResults of Capobianchi and Irvine (1992) 
bResults in parenthesis are from Piercy et al. (1933) 

 

2.2.3 Modeling Studies 

The narrow slot approximation model has been widely used to predict pressure 

loss in eccentric annulus.  The model considers a variable slot height.  Tao and Donovan 

(1955) treated eccentric annulus as a slot of variable height as shown in Fig. 2.1b and 
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develop a narrow slot model for Newtonian fluids.  However, the mathematical 

expression for the slot height adopted was inaccurate, and the equation used in their study 

is applicable for narrow-clearance concentric annuli, limiting its use significantly.  Later, 

Vaughn (1965) extended the work of Tao and Donovan (1955) for non-Newtonian fluids, 

but the equation for the slot height was still inaccurate.  Later, accurate slot height models 

(Iyoho and Azar, 1980; Uner et al., 1989; and Luo and Peden, 1987) were developed.  

This has improved accuracy of slot method, even though the use of a model valid for 

narrow-clearance concentric annulus results in inaccuracy (Haciislamoglu, 1989). 

Another approximate solution developed for eccentric annulus is an equivalent 

pipe model based on the method developed by Kozicki et al. (1966), which proposes a 

generalized model for determining pressure loss in ducts with arbitrary cross-sectional 

geometry. The model defines a hydraulic parameter (fRe), which is a function of two 

dimensionless geometric parameters (a and b). Re is the Reynolds number expressed as: 

𝑅𝑒𝑔𝑒𝑛 =
𝜌𝑈2−𝑛𝐷ℎ𝑦𝑑

𝑛

8𝑛−1𝐾(
𝑎+𝑏𝑛

𝑛
)

𝑛                                                                                     (2-18) 

For eccentric annulus, the geometric parameters, a and b are functions of eccentricity and 

diameter ratio. Based on published numerical results (Fang et al., 1999), Ahmed et al. 

(2006) developed correlations for the geometric parameters for PL fluids in eccentric 

annulus. The parameters are expressed in terms of dimensionless eccentricity as: 

𝑎 = 𝑎0𝑒3 + 𝑎1𝑒2 + 𝑎2𝑒 + 𝑎3                                                                     (2-19a) 

𝑏 = 𝛼0𝑒3 + 𝛼1𝑒2 + 𝛼2𝑒 + 𝛼3                                                                     (2-19b) 

where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝛼0, 𝛼1, 𝛼2, 𝑎𝑛𝑑 𝛼3 are coefficients of the correlations, which are 

defined in Table 2.2. 
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Table 2.2 Coefficients used in Eq. (3-16) (Ahmed et al., 2006) 

𝑎0 = −2.8711𝜅2 − 0.1029𝜅 + 2.6581 𝛼0 = 3.0422𝜅2 + 2.4094𝜅 − 3.1931 

𝑎1 = 2.8156𝜅2 + 3.6114𝜅 − 4.9072 𝛼1 = −2.7817𝜅2 − 7.9865𝜅 + 5.8970 

𝑎2 = 0.7444𝜅2 − 4.8048𝜅 + 2.2764 𝛼2 = −0.3406𝜅2 + 6.0164𝜅 − 3.3614 

𝑎3 = −0.3939𝜅2 + 0.7211𝜅 + 0.1503 𝛼3 = 0.2500𝜅2 − 0.5780𝜅 + 1.3591 

 

2.2.4 Experimental Studies 

An earlier experimental study (Mitsuishi and Aoyagi 1973), on fully developed 

laminar flow of non-Newtonian fluid confirmed the reduction of friction pressure due to 

inner pipe eccentricity. Moreover, fluids with a stronger non-Newtonian behavior (i.e. 

fluids with low n values) showed a lower pressure reduction with eccentricity than fluids 

with weak non-Newtonian behavior (fluids with higher n values).  A number of recent 

studies (Hansen et al., 1999; Nouri et al., 1993; Nouri and Whitelaw, 1997; Wang et al., 

2000; Ozbayoglu, 2002; and Silva and Shah, 2000) conducted on Newtonian and non-

Newtonian fluids experimentally evaluated the reduction of frictional pressure loss due 

to eccentricity.  Results confirmed frictional pressure loss reduction of up to 40% due to 

eccentricity.   

 

2.3 Partial Blocked Annulus 

In horizontal and highly inclined wells stationary cuttings beds form on the low 

side of the annulus due to low mud velocity, which is not sufficient to produce a good 

hole cleaning performance.  Thus, blocked eccentric annular geometry (Fig. 2.3) is 

expected in directional wells.  Due to complexity of the flow geometry, solutions to the 

governing equations are only obtained using numerical procedures.  
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2.3.1 Numerical studies 

A study on block annular flow (Chin, 1992) presented velocity and apparent 

viscosity profiles for several annular geometries (including boreholes with cuttings bed).  

The study used boundary conforming natural coordinates to obtain numerical solution 

applying finite different method.  Later, several numerical studies (Azouz et al., 1993; 

Azouz 1994; Hussain and Sharif, 1998; Aworunse, 2012) were conducted using non-

orthogonal, curvilinear, and boundary fitted coordinate systems. These numerical studies 

investigated the relationship between flowrate and pressure gradient. The results were 

compared with results of previous theoretical and experimental studies and exhibited 

good agreement. 

Based on curvilinear coordinate transformation, Aworunse (2012) developed a 

numerical model and generated simulation results to formulate correlations for the 

geometric parameters a and b in partially blocked annuli with 80% eccentricity.  The 

parameters are expressed as a function of the eccentricity, diameter ratio, fluid behavior 

index, and bed height. The correlations help to predict the frictional pressure loss.  

Aworunse’s correlations were developed following a procedure established by Ahmed et 

al. (2006) to present similar correlations for eccentric annulus (See Appendix B). 

Recently, Tang et al. (2016) have developed a hydraulic model based on CFD 

simulation results. The model is applicable for flow of YPL fluids in a partially blocked 

concentric annulus. The model has shown better accuracy than an existing model which 

is proposed by Chen (2005), who formulated a semi-empirical model based on effective 

diameter concepts (Whitaker, 1985).  
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Figure 2.3 Wellbore cross section with cuttings bed 

 

2.3.2 Experimental Studies 

Very few experimental studies have performed to investigate laminar flow in 

partially obstructed annulus. Recently, Bicalho et al. (2016) presented results of 

experimental studies showing pressure drop and fluid velocity profile in partially 

obstructed annular space for yield-power law fluids. CFD simulation validation was also 

considered in this study. Other experiments have simulated equilibrium bed heights to 

evaluate wellbore cleaning performance of the fluid in a fully eccentric annular 

arrangement (Elgaddafi, 2011; and George, 2012).  In these studies, for a given flow rate, 

the stationary cuttings bed height was measured along with the pressure drop.  

2.4 Computational Fluid Dynamics (CFD) 

Computational Fluid Dynamics (CFD) is a method used to solve numerically fluid 

dynamics equations to predict flow field in complicated geometries.  It is often used to 
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model natural phenomena such as fluid flow, heat transfer, mass transfer and chemical 

reactions.  Its applicability is extended to other engineering disciplines for analyzing 

flows in complex geometries.  CFD provides relevant simulation data used in new product 

development and existing system troubleshooting or redesigning.  In addition, CFD 

complements laboratory testing by providing simulation database that reduces required 

laboratory experiments, which can be expensive and time consuming.   

In the oil industry, analysis of fluid flow in the wellbore is one of common fluid 

mechanics problems. CFD is becoming a major tool in solving many of wellbore related 

flow problems. Velocity profile, pressure loss and wall shear stress distribution can be 

determined using CFD.  A number of CFD studies (Escudier et al., 2002; Fang et al., 

1999; Ozbayoglu and Omurlu, 2006; and Pereira et al., 2007) reported hydraulic 

characteristics (pressure loss and velocity profiles) of non-Newtonian fluid flows in 

concentric and eccentric annuli. Some of these studies compared simulation results with 

existing measurements and theoretical results.  Pereira et al. (2007) validated CFD 

simulation results with published measurements (Escudier et al., 2002). 

Several studies were conducted using commercially available CFD software to 

analyze fluid flows in the wellbore.  Ogugbue et al. (2011) studied fully developed 

laminar annular flow of Newtonian and power law fluids using commercial CFD 

software.  Different annular eccentricities (0 ≤ 𝑒 ≤ 0.96) and diameter ratios (0.3 ≤ 𝜅 ≤

0.8) were considered in the investigation.  Results were compared with published 

experimental and CFD database (Mitsuishi and Aoyagi, 1974; Haciislamoglu and 

Langlinais, 1990; and Nouri and Whitelaw, 1994). Predictions obtained from CFD 
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simulation show good agreement with experimental measurements and theoretical 

results. 

Recent studies (Bicalho et al., 2016; Tang et al., 2016) demonstrated the capability 

of commercial CFD software in analyzing flow in complex geometries such as partially 

obstructed annuli.  The simulation results were validated with experimental data obtained 

by testing non-Newtonian fluids in concentric and eccentric annuli.  Other effects such as 

inner pipe rotation and orbital motion have also been studied (Escudier, 2002; Fang et al., 

1999; Pereira et al., 2007; Bicalho et al., 2016) using CFD.  
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Chapter 3. Basic Theory of Laminar Flow 

In this chapter, basic theories and governing equations, which are utilized in 

theoretical analysis and CFD simulation of wellbore flow, are described in detail.  The 

material presented in this chapter helps to better understand and interpret CFD simulation 

results, and develop simplified hydraulic models for annular pressure loss and bed shear 

stress distribution. 

 

3.1 Rheological Models and Relevant Hydraulic Parameters 

The rheological models used to represent fluid behavior are mostly classified as 

Newtonian and non-Newtonian.  Newtonian fluids such as water and mineral oil exhibit 

a linear relationship between shear stress and shear rate under laminar flow conditions. 

Non-Newtonian fluids such as clay muds and polymeric suspensions display a non-linear 

relationship between shear stress and shear rate.  Figure 3.1 presents rheological models, 

which are commonly used to describe time-independent fluids in the industry.  The 

power-law model relates the shear stress with shear rate as: 

𝜏 = 𝐾(�̇�)𝑛                                                                                                       (3-1) 

where �̇� is the shear rate.  K and n are two rheological parameters known as fluid 

consistency index and power law exponent (also known as fluid behavior index), 

respectively.  Equation 3-1 can be re-written using apparent viscosity as (Bird et al., 

1960): 

𝜏 = 𝜇(�̇�)�̇�                                                                                                        (3-2) 

where  𝜇(�̇�) is the apparent viscosity, which is a function of shear rate.  
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Figure 3.1 Time-independent non-Newtonian fluid types (redrawn from Nguyen et al., 

2012) 

 

𝜇(�̇�) = 𝐾�̇�𝑛−1                                                                                                 (3-3) 

In Eqns. 3.2 and 3.3, 𝜇(�̇�)is the ratio of shear stress and shear rate, and it 

represents a measurement of the fluid’s flow behavior. In Equations 3.1 and 3.3, if n is 

less than one, the fluid exhibits shear-thinning properties (or pseudo-plastic behavior); as 

a result, the apparent viscosity decreases with shear rate. For 𝑛 = 1 the fluid shows the 

well-known Newtonian behavior. On the other hand, for n greater than one, the fluid 

shows a shear-thickening behavior (or dilatant fluid behavior), in which the apparent 

viscosity increases with shear rate.  Figure 3.2 exemplifies the behavior of these three 

type of fluids in terms of apparent viscosity.  Polymer melts and some drilling fluids best 

fit the power-law fluid model with shear- thinning behavior (Nguyen et al., 2012).  
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Figure 3.2 Viscosity of Newtonian, shear thinning and shear thickening as a function of 

shear rate. (Willenbacher and Georgieva, 2013) 

 

The shear rate for flow between parallel plates (one stationary and another 

moving) is expressed as: 

�̇� = −
𝑑𝑣

𝑑𝑦
                                                                                                           (3-4) 

In two dimensions, the definition of shear rate in a Cartesian coordinate system (Bird et 

al., 1960) is expressed as: 

�̇� = |[(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

]
1/2

|                                                                                (3-5) 

Volumetric Flow Rate and Annular Velocity 

The volumetric flow rate is the volume of fluid that is passing through a given 

cross sectional area per unit time.  Thus:  

𝑄 =
ΔV

Δ𝑡
                                                                                                             (3-6) 

where ΔV is the volume passing through a control volume and Δ𝑡 is the change in time. 
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The annular velocity is the speed at which the fluid (i.e. drilling fluid or cement) 

travels in the annulus.  Selection of appropriate annular fluid velocity, together with 

proper drilling fluid rheological properties help to keep the wellbore clean and prevent 

formation of cuttings bed.  

Reynolds Number 

Reynolds number (Re) is a dimensionless flow parameter defined as the ratio of 

the inertial force to viscous force under certain flow conditions.  

𝑅𝑒 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
                                                                                          (3-7) 

The Reynolds number governs the transition from laminar to turbulent flow. The 

flow is considered laminar if the fluid flow is streamlined at low velocities and highly 

ordered motion (Fig. 3.2), and the magnitude of the Reynolds number is below the critical 

value, which is 2100 for circular pipe flow.  Turbulent flow develops when laminar flow 

becomes unstable; resulting in velocity fluctuations and highly disordered fluid motion.  

The transition zone, which occurs in the Reynolds number range of 2100 to 4000 is a 

function of pipe roughness, flow velocity and fluid type.  

 

Figure 3.3 Laminar vs. turbulent flow in pipe flow. (Schlichting, 2000) 
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Hydraulic Diameter 

The hydraulic diameter, 𝐷ℎ𝑦𝑑, is a parameter commonly used when handling flow 

in non-circular ducts. The hydraulic diameter transforms non-circular ducts into pipes of 

equivalent diameter such that the flow behavior in annulus is equivalent to that in a 

circular pipe. The hydraulic diameter for any duct/channel with uniform cross section is 

expressed as:  

𝐷ℎ𝑦𝑑 =
4∙𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙−𝑎𝑟𝑒𝑎 𝑜𝑓 𝑑𝑢𝑐𝑡

𝑤𝑒𝑡𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑜𝑓 𝑑𝑢𝑐𝑡
                                                               (3-8) 

Fanning Friction Factor 

The fanning friction factor is the ratio of the average wall shear stress to the 

velocity head. The general form of the fanning friction for pipe flow is also described as:  

𝑓 =
𝜏𝑤

𝜌
𝑈2

2

                                                                                                            (3-9) 

where U refers to the mean annular velocity, 𝜏𝑤 is the average wall shear stress, and 𝜌 

corresponds to fluid density.  The product of the Fanning friction factor-Reynolds 

number, fRe is a very important hydraulic parameter, which describes hydraulic resistance 

of a duct.  

Wall Shear Stress 

Wall shear stress is defined as a parallel (to the wall) force per unit area that is 

exerted by the flowing fluid on the surface of a conduit. For laminar Newtonian duct 

flows, the magnitude of wall shear stress is proportional to the velocity gradient near the 

wall.  In partially obstructed annulus, the presence of stationary cuttings bed changes 

shear stress distribution. The shear stress acting on the bed determine lift and drag forces 

acting on flow protruding bed particles (Ahmed et al., 2002; and Elgaddafi, 2011; George 

et al., 2014). Cuttings concentration in the annulus is strongly related to mean bed shear 
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stress. In fact, one way of evaluating the drag force acting on a solid particle during bed 

erosion is to use the pressure gradient across the channel and the average bed shear stress 

(Ahmed et al., 2002). Hence, bed shear stress modeling is an important part of the present 

study. 

3.2 Pipe Flow 

Fully developed laminar flow of Newtonian fluid in a cylindrical tube (i.e. no-slip 

boundary conditions) generates a parabolic velocity profile. Figure 3.4 shows the velocity 

profile in a tube with radius R, where the velocity is highest at the center (𝑟 = 𝑅) and 

zero at the tube walls (𝑟 = 0). The pipe flow is usually referred as the Haggen-Poiseuille 

flow, and the volumetric flow rate can be obtained from the following equation (detail is 

presented in Appendix B): 

𝑄 =
𝑅4

8𝜇

∆𝑃

∆𝐿
                                                                                                       (3-10) 

where Q is the volumetric flow rate, 𝜇 is the dynamic viscosity, and  
∆𝑃

∆𝐿
 is the axial 

pressure gradient. 

 

 

Figure 3.4 Laminar velocity profile in a circular pipe flow 
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It should be pointed out from Fig. 3.4 that the velocity profile for a power law 

fluid flatters as the flow behavior index of the fluid decreases. For a circular pipe, the 

shear stress distribution is linear and maximizes at the tube wall (𝑟 = 𝑅). It is zero at the 

tube axis (𝑟 = 0).  The wall shear stress is defined as: 

𝜏𝑤 =
∆𝑃

∆𝐿

𝐷

4
                                                                                                       (3-11) 

where D is the diameter of the pipe. The above equation is valid for   incompressible flow 

under steady state condition. 

Theoretical analysis of pipe flow resulted in the development of the 

Rabinowitsch-Mooney equation, which expresses the relationship between flow rate and 

wall shear rate. A simplified form of the equation is expressed as: 

�̇�𝑤 = (
8𝑈

𝐷
) [

3

4
+

1

4

𝑑 ln(8𝑈/𝐷)

𝑑 ln 𝜏𝑤
]                                                                          (3-12) 

where �̇�𝑤 is the wall shear rate for generalized fluid. The term  
8𝑈

𝐷
  in Eqn. 3.12 represents 

the flow characteristic and it is a unique function of the wall shear stress, 𝜏𝑤. For 

Newtonian fluid, the wall shear rate is  
8𝑈

𝐷
. Hence, the wall shear stress is expressed as: 

𝜏𝑤 = 𝜇
8𝑈

𝐷
                                                                                                       (3 13) 

Equation 3.12 demonstrates the relationship between wall shear rates of 

Newtonian and non-Newtonian fluids having the same flow rate in the same pipe. The 

quantity in the square brackets is often considered as a correction factor. For power-law 

fluids, 𝑛 =
𝑑 ln 𝜏𝑤

𝑑 ln(8𝑈/𝐷)
.  Applying Eqn. 3.1, wall shear stress for a power-law fluid can be 

expressed as: 

𝜏𝑤 = 𝐾 ((
3𝑛+1

4𝑛
)

8𝑈

𝐷
)

𝑛

                                                                                    (3 14) 
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For Newtonian pipe flows, the Reynolds number is defined as: 

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
                                                                                                       (3-15) 

where 𝜌 is the density of the fluid.  

Combining Eqns. 3.15 and 3.9, the Fanning friction factor can be expressed in 

terms of the Reynolds number as: 

𝑓 = 16/𝑅𝑒                                                                                                     (3-16) 

The above equation is valid for laminar flow (i.e. when the Reynolds number is less than 

2100). For power law fluids, the generalized Reynolds number is defined as: 

𝑅𝑒𝑔𝑒𝑛 =
𝐷𝑛𝑈2−𝑛𝜌

8𝑛−1𝐾(
3𝑛+1

4𝑛
)
                                                                                       (3-17) 

3.3 Concentric Annular Flow 

The velocity profile and shear stress distribution for a narrow slot flow are 

presented in Fig. 3.4.  The simplified Rabinowitsch-Mooney (Eqn. 3.12) can be adopted 

for non-Newtonian fluid flowing in a thin slit of height h. For this, the definition of 

hydraulic diameter  𝐷ℎ𝑦𝑑 for a slit is substituted in Eqn. 3.12. For a circular pipe  

𝐷 = 𝐷ℎ𝑦𝑑and for the slit the hydraulic diameter 𝐷ℎ𝑦𝑑 = 2ℎ. Due to close similarity in 

wall shear stress expressions of both geometries, Kozicki et al. (1966) proposed a 

generalized wall shear stress formula, which is applicable for any arbitrarily shaped duct 

(generalized duct) that has a constant cross-section. Thus, for a power law fluid, the 

average wall shear stress is expressed in a general form as: 

𝜏�̅� = 𝐾 {
8𝑈

𝐷ℎ𝑦𝑑
(𝑏 +

𝑎

𝑛
)}

𝑛

                                                                                (3-18) 
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where a and b are two geometric parameters characterizing the cross-section of the duct. 

For pipe flow: 𝑎 = 1/4 and 𝑏 = 3/4, whereas for slit flow: 𝑎 = 1/2 and 𝑏 = 1. 

 

Figure 3.5 Velocity and wall shear stress profile for laminar flow- narrow slot-power -law 

fluids (Bourgoyne et al., 1986) 

 

The wall shear stresses acting at the inner and outer pipe walls are not identical 

for concentric annulus because the velocity profile is not symmetric. Figure 3.6 shows 

Newtonian velocity distribution in a concentric annulus.  For power law fluids, the 

velocity profile becomes flatter as the shear thinning behavior of the fluid increases. 

 

Figure 3.6 Velocity profile of Newtonian laminar flow in concentric annulus (Bourgoyne et 

al., 1986) 



31 

 

Applying momentum balance for slot approximated annular flow, the average 

wall shear stress τ ̅_w can be written as a function of pressure gradient: 

𝜏�̅� =
𝑑𝑝

𝑑𝑧

𝐷ℎ𝑦𝑑

4
                                                                                                  (3-19) 

 

Considering analogy to pipe flow, the Fanning friction factor for annular flow is 

expressed using hydraulic diameter as expressed in Eqn. 2.16 (Section 2.2.2). 

In Eqn. 3.17, the generalized Reynolds number should be used for non-Newtonian fluids. 

Thus,  𝑓 = 16/𝑅𝑒𝑔𝑒𝑛, where the generalized Reynolds number is expressed as a function 

of geometric parameters (a and b). Thus: 

𝑅𝑒𝑔𝑒𝑛 =
𝜌𝑈2−𝑛𝐷ℎ𝑦𝑑

𝑛

8𝑛−1𝐾(
𝑎+𝑏𝑛

𝑛
)

𝑛                                                                                     (3-20) 

For concentric annuli, the generalized duct geometric parameters are expressed as 

functions of diameter ratio, 𝜅, (Kozicki et al., 1966):  

𝑎 + 𝑏 =
(1−𝜅)2

1+𝜅2−
1−𝜅2

ln 1/𝜅

                                                                                         (3-21) 

and 

𝑎 =
(1−𝜅)2

4{1−
1−𝜅2

2 ln 1/𝜅
[1−ln

1−𝜅2

2 ln 1/𝜅
]}

                                                                              (3-22) 

3.4 Eccentric Annular Flow 

For Newtonian fluids, Piercy et al. (1933) analytically determined the relationship 

between flowrate and pressure loss in eccentric annuli (Eqn. 2.4). As annular geometry 

becomes complex, approximate and simplified models are considered for drilling 

applications. Most common models used to predict pressure loss in eccentric annulus are: 

the narrow-slot model, numerical result based correlations (Haciislamoglu and 
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Langlinais, 1990), and generalized duct model (Kozicki et al. 1966).  In this study, the 

last approach is applied to model partially blocked eccentric annulus. 

 

Figure 3.7 Velocity profile for laminar flow in eccentric annulus flow (Ebrahim et al., 

2013) 

 

The relationship between Fanning friction factor and the generalized Reynolds 

number (𝑓 = 16/𝑅𝑒𝑔𝑒𝑛)  can be combined with Eqn. 3.20 to yield the following 

expression: 

𝑓𝑅𝑒

8𝑛−1 (
𝑛

𝑎+𝑏𝑛
)

𝑛

= 16                                                                                        (3-23) 

The above expression is rearranged to determine the friction factor in terms of the 

geometric parameters: 

𝑓 =
23𝑛+1

𝑅𝑒
(

𝑎

𝑛
+ 𝑏)

𝑛

                                                                                        (3-24) 

where 𝑅𝑒 a modified Reynolds number, which  is defined in Eqn. 2.17 (Section 2.2): 
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Ahmed et al. (2006) developed a shape factor, s (n, e, κ), by rearranging Eqn. 

3.24: 

𝑠(𝑛, 𝑒, 𝜅) = (
𝑎

𝑛
+ 𝑏) = (

𝑓𝑅𝑒

23𝑛+1)
1/𝑛

                                                                (3-25) 

where the geometric parameters a and b are determined by plotting the shape factor (right 

side) as a function of 1/n. Thus, the left side of Eqn. 3.25 represents the equation of a 

straight line. Adjusting the points to a linear trend line, a is obtained by the slope, and b 

is the intercept of the straight line as it can be observed in Fig. 3.8. This equation confirms 

that the shape factor is a function of geometric parameters and fluid behavior index. 

 

 

Figure 3.8 Shape factor vs. 1/n for eccentric annulus with diameter ratio of 0.2 (Ahmed et 

al., 2006) 
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3.5 Flow in Partially Blocked Annulus  

Previous numerical models (Azouz et al., 1993; Azouz, 1994; Hussain and Sharif, 

1998) described laminar velocity profile of Newtonian and non-Newtonian fluids in 

partially obstructed annulus.  However, no correlation or approximated model was 

developed to estimate the pressure loss in partially blocked annulus until 2012. As 

mentioned earlier, Aworunse (2012) adapted the method developed by Ahmed et al. 

(2006) to estimate the geometric parameters a and b of partially blocked annuli. 

  

 

Figure 3.9 Eccentric annulus with cuttings bed geometry 

 

According to Azouz et al. (1993), the distribution of the axial shear stress on 

cuttings bed surface is non-linear, which becomes flattened as n decreases from 1 to 0.6.  

Since there is no available model to estimate bed shear stress in partially blocked eccentric 

annulus, dimensionless bed shear stress (Π𝑏𝑒𝑑), which compares average bed shear stress 

with the average wall shear stress is defined as: 

Π𝑏𝑒𝑑 = (
�̅�𝑏𝑒𝑑

�̅�𝑤
)

𝑛

                                                                                             (3-26) 
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In this study, more focus is given to investigate dependency of dimensionless bed 

shear stress with other hydraulic parameters such as diameter ratio, bed height and power 

law index.  Based on the method developed by Ahmed et al. (2006), Aworunse (2012) 

related the shape factor of partially blocked eccentric annulus to diameter ratio, bed height 

and power law index. Thus: 

𝑠(𝑛, 𝜅, 𝐻𝑏𝑒𝑑) = (
𝑎

𝑛
+ 𝑏) = (

𝑓𝑅𝑒

23𝑛+1)
1/𝑛

                                                          (3-27) 

Appendix B shows correlations developed by Aworunse (2012) to predict 

geometric parameters.  This technique is considered in the present study to develop new 

hydraulic model for partially blocked highly eccentric annuli. Performance of the new 

model has been compared with a modified existing model (Chen, 2005), which is 

developed based on effective diameter concepts (Whittaker, 1985) and adopted to predict 

pressure loss of power-law fluid in a partially blocked eccentric annulus (Appendix D). 
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Chapter 4. Computational Fluid Dynamics (CFD) 

In this study, Computational Fluid Dynamics (CFD) analysis is used to investigate 

laminar flow of power law fluids in partially blocked eccentric annulus.  Extensive CFD 

simulations have been performed using FLUENT version 17.1 software developed by 

ANSYS. Nowadays, FLUENT is widely used software packages for CFD modeling of 

fluid flow and heat transfer in complex geometries occurring in many industrial 

applications. 

There are two solver options available in FLUENT: pressure-based and density-

based. Due to its wide applicability, the pressure-based method, which is suitable for 

incompressible flow is used in this study. The pressure based-algorithm uses a 

combination of continuity and momentum equations to derive an equation for pressure 

(or pressure correction equation). Four types of algorithms are available in FLUENT 

when choosing pressure-based method: i) SIMPLE (Semi-Implicit Method for Pressure-

Linked Equations) method developed by Patankar and Spalding (1972), ii) SIMPLEC 

(SIMPLE-Consistent) method, iii) PISO (Pressure-Implicit with Splitting of Operators) 

method, and iv) coupled method.  For steady-state calculations, SIMPLE and SIMPLEC 

are generally used.  

This chapter presents the governing equations and the methodology used to obtain 

numeral solutions. The mesh generation technique is also included. Moreover, the 

simulation cases are described and organized as matrices. 
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4.1 Governing Equations 

Assumptions and Boundary Conditions 

In this study, the following boundary conditions and assumptions are made to perform 

the CFD simulations: 

 The inner pipe is stationary and non-rotating. 

 The fluid is homogeneous and flowing under laminar and isothermal conditions. 

 The fluid is incompressible and time-independent. 

 The annulus is considered horizontal to eliminate the gravitation term in the 

governing equations. 

 No-slip boundary conditions are assumed on solid surfaces within the annulus, 

i.e. velocities at the inner and outer pipe walls and cuttings bed are zero. 

 A constant velocity is applied at the flow inlet (i.e. velocity inlet) and it is 

calculated from the flowrate and cross sectional area of the physical model. 

 Cuttings beds are stationary cuttings and uniformly distributed along the plane. 

 End effects are negligible. 

Governing Equations 

Computational fluid dynamics programs are developed based on the governing 

laws: i) The law of conservation of mass (continuity equation); ii) Newton’s second law 

of motion (linear and angular momentum equations); and iii) the first law of 

thermodynamics (energy equation). 

For an isothermal, incompressible and laminar flow of a non-Newtonian fluid in 

an annular space, the governing transport equations are simplified, and the mathematical 

modeling are performed based on the equations of mass conservation and the balance of 
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momentum, presented in Cartesian coordinates (without the gravitational effect). First, 

the simplified equation of the conservation of mass is expressed as: 

𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
= 0                                                                                         (4-1) 

Secondly, the momentum equation for each axis is simplified as (Eqns. 4.2 -4.4):  

In x-axis: 

𝜌 (
𝜕𝑣𝑥

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
− [

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
] + 𝜌𝑔𝑥       (4-2) 

In y-axis: 

𝜌 (
𝜕𝑣𝑦

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑦

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑦
− [

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
] + 𝜌𝑔𝑦      (4-3) 

In z-axis: 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑧

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑧

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
− [

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
] + 𝜌𝑔𝑧        (4-4) 

 

An additional relationship between the stress field and fluid velocity gradient is 

required, when the fluid is non-Newtonian fluids.  Thus, the shear stress of non-

Newtonian fluids is related to the shear rate using the power law model (Eqn. 3-2) 

presented in Section 3. Non-Newtonian fluids viscosity (𝜇(�̇�)) is a function of the shear 

rate �̇�. Generalized formula for shear rate is expressed as: 

|�̇�|2 = 2 [(
𝜕𝑣𝑥

𝜕𝑥
)

2

+ (
𝜕𝑣𝑦

𝜕𝑦
)

2
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                                                                                                     (4-5) 

Equations from 4-1 through 4-5 are solved by the application of finite volume 

technique using FLUENT 17.1, which includes a mesh-generating module.  Appropriate 

boundary conditions are applied to obtain numerical solutions to the governing equations.  
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4.2 Grid System and Sensitivity 

Grid generation is the primary step in the CFD simulation process. Formation of 

cuttings bed in the wellbore makes the annular flow area complex, which complicates 

grid generation. Considering highly eccentric annulus (90%), computational grids have 

been generated for different diameter ratios (0.25, 0.5, and 0.75) and dimensionless 

cuttings bed heights (0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1).  Dimensionless bed height is a ratio 

of actual bed height to the maximum distance between the bottom of outer pipe and the 

top of the inner pipe, 𝐻𝑏𝑒𝑑 = 𝐻/𝐻𝑚𝑎𝑥. Hence, Hmax is bottom annular clearance plus 

inner pipe diameter (Fig. 3.9). In each case, the appropriate length (0.0 to 0.45 m.) has 

been chosen in order to achieve a fully developed laminar flow.  

Researchers agree that the accuracy of a CFD simulation results is governed by 

the number of grids used in the computational model. Too many grids may result in very 

long computational run time and numerical instability, and very few grids may lead to 

inaccurate results.  In CFD, two approaches are commonly used to effectively discretize 

complex geometries to solve the governing flow equations numerically. The first 

approach discretizes the flow domain to a structured mesh (in 3D corresponds to 

hexahedral or rectangular in 2D), where simple equally spaced Cartesian grids are used. 

In the second method, unstructured grid system is utilized to subdivide the flow domain 

(e.g. in 3D: tetrahedral, pyramid, wedge and hybrid cells).  

Both structured and unstructured meshes (Figs. 4.1 and 4.2) were generated in this 

study. Simulation with hexahedral meshes is usually preferred (Fig. 4.1) because it aligns 

the flow with grids and makes the grids parallel to wall surfaces.  However, for more 

complex geometries (i.e., buried pipe), hexahedral mesh becomes difficult to generate.  
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Therefore, unstructured grid method is often preferred. Among different types of 

unstructured meshing techniques, tetrahedral (with and without inflation layers) and 

hybrid (i.e., cutcell) meshing methods are used in ANSYS FLUENT.  Different types of 

unstructured grid systems are shown in Fig. 4.2. Cutcell Cartesian meshing is a general 

meshing method used in ANSYS FLUENT.  Cutcell meshing is suitable for a large range 

of applications. Due to the large fraction of hexahedral elements (about 90%) present in 

the mesh, the cutcell meshing often produces better and very quick results when compared 

to tetrahedral meshing.  It is important to mention that due to the symmetrical nature of 

annular flows, each flow simulation has been carried out using only a half section of the 

model. 

 

Figure 4.1 Hexahedral mesh: (a) κ=0.75; (b) κ=0.5; and (c) κ=0.25 (e=0.9, Hbed=10%) 

 

Figure 4.2 Unstructured meshes: (a) tetrahedral with boundary layers; and (b) cutcells 

(κ=0.5, e=0.9) 
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Grid Independency Study  

In this study, grid sensitivity analysis has been conducted for partially blocked 

eccentric annuli.  To illustrate the adequacy of mesh refinement in the grids, mesh 

dependency studies have been performed for two different meshing techniques 

(hexahedral and cutcell meshing methods). The 3D hexahedral meshes have been used to 

represent a partially blocked eccentric annulus with 30% bed height (Table 4.2). 

Table 4.1. Input parameters for grid size sensitivity analysis 

 

 

For grid independence test, different mesh sizes (21 x 13; 30 x 20; 40 x 20; 45 x 

23; 61 x 31; and 79 x 31) have been considered. An element size of 0.002 m for the z- 

axis length is also adjusted in the meshes.  Figures 4.3, 4.4, and 4.5 illustrate the pressure 

drop, hydraulic parameter fRe and dimensionless bed shear stress obtained from CFD as 

functions of number of grids used in computational procedure.  Analyzing the results of 

the different cases, meshes with more than 1000 grids in the x-y plane provide reasonably 

accurate results with optimum computational time.  As a result, in this study, grid size of 

61 x 31 has been used to create grid structure in the annulus. Grid element length of 0.002 

Parameter Value

Drillpipe Diameter  , Di (m) 0.025

Casing Diameter, Do (m) 0.05

Relative Eccentricity, e 0.9

Dimensionless Bed Height, (% Hbed) 30

Fluid Density (kg/m
3
) 1000

Consistency Index, (Pa.s
n
) 1

Fluid Behavior Index, n 1

Boundary Condition, Q  (m
3
/s) 5 x10

-5
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meter has been used in the z-axis, which result in generation of 425,476 grids to simulate 

the flow in the annulus.  For this analysis, length of the annulus has been fixed to 0.45 m. 

 

Figure 4.3 Grid size independency of pressure drop. Structured mesh 

 

Figure 4.4 Grid size independency of fRe. Structured mesh 
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Figure 4.5 Grid size independency of bed. Structured mesh 

Before proceeding with the second sensitivity test, a comparison between the 

tetrahedral and cutcell unstructured meshes was made in terms of the mesh metrics. The 

results of the comparison have helped to select the most suitable option to perform the 

sensitivity test. The mesh metric values obtained from the mesh generation can be 

observed in Table 4.3. The cutcell mesh metrics values are closer to the recommended 

values (e.g. skewness = 0.02 for cutcell, whereas skewness = 0.23 for tetrahedral) when 

compared with tetrahedral meshing, providing a better mesh quality. Therefore, this 

indicates that cutcells with unstructured meshes are suitable to model irregular 

geometries, when hexahedral meshes are difficult to generate (i.e., when the pipe is fully 

buried). 
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Table 4.2 Mesh metrics for unstructured meshes (100% Hbed and  =0.5) 

Mesh Metric (average) 
Tetrahedral mesh 

(+inflation layers) 

Cutcell 

Assembly Mesh 
Recommended 

Skewness 0.233 0.02 ~0 

Aspect Ratio 9.900 1.08 1-20 

Element Quality 0.513 0.99 ~1 

Orthogonal Quality 0.870 0.99 ~1 

 

The second mesh sensitivity analysis has been performed with 3D cutcell meshing 

for the case the inner pipe is fully buried. The input parameters are similar to those 

summarized in Table 4.2, except the dimensionless bed height, which is set 100% in this 

case. For this analysis, three uniform grid sizes (0.0005, 0.001, and 0.002 m) have been 

adopted.  Therefore, Table 4.4 presents the results for the hybrid mesh, where a size of 

0.001 m provides reasonable results with optimum computational time. 

  

Table 4.3 Results obtained using unstructured cutcell meshing 

Mesh size (m) Cells 
Pressure Drop 

(pa/m) 

Iterations for 

Convergence 

0.0020 42,884 1,985.0 188 

0.0010 304,612 2,006.1 516 

0.0005 2,336,688 2,011.5 1557 

 

4.3 CFD Simulation 

4.3.1 Set up and Post-Processing 

Following the grid sensitivity analysis, the physical model has been defined and 

boundary conditions have been specified to perform the simulations. Fixed fluid density 

(1000 kg/m3) has been used for the simulation.  Base case simulations have been 
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performed for power-law fluid with consistency index of 1.0 pa.sn. To avoid singularity 

problem in apparent viscosity function, critical shear rate  (�̇�𝑐) has been determined.  The 

program uses a hybrid apparent viscosity function in which a low shear rate zone is 

defined as a region with shear rate value of less than a critical shear rate (�̇�𝑐). The hybrid 

apparent viscosity function is expressed as (ANSYS FLUENT, 2015): 

𝜇 =
𝜏0

�̇�
+ 𝐾 (

�̇�

�̇�𝑐
)

𝑛−1

                                              for  �̇� > �̇�𝑐                          (4-6) 

 

𝜇 = 𝜏0
(2−�̇� 𝛾�̇�⁄ )

𝛾�̇�
+ 𝐾 ((2 − 𝑛) + (𝑛 + 1)

�̇�

𝛾�̇�
)        for �̇� ≤ �̇�𝑐                          (4-7) 

In this study, the critical shear rate has been selected based on the nominal 

Newtonian shear rate ((8𝑈/𝐷ℎ𝑦𝑑) in order to obtain accurate results. Therefore, 

sensitivity analysis has been conducted to obtain reasonable value of critical shear rate. 

According to the results, critical shear rate value of 1% of the nominal Newtonian shear 

rate is used.  Simulation were performed at constant flow rate of 5 x10-5 m3/s. 

In this investigation, the simulations have been performed for laminar flow using 

Semi-Implicit Pressure Linked Equations (SIMPLE) scheme for pressure-velocity 

coupling. However, the second order scheme is employed for pressure discretization. 

SIMPLE algorithm is preferred because of its simplicity in resolving incompressible flow 

problems. For the discretization of the momentum equation components, second order 

discretization schemes would result in good accuracy.  The convergence criteria for the 

z-velocity residuals was 1x10-7 and 10-3 for the continuity residual. Additionally, in order 

to reduce computational error (i.e. difference between successive solution), maximum 

iteration step value of 9000 has been used to ensure numerical convergence. 
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In the post-processing step, the converged solutions are examined visually and 

numerically to obtain information on key flow features, such as velocity, wall shear stress, 

and pressure drop profiles are smooth and consistent. For each case, the flow path was 

divided into two cross-sectional views (x-y planes), one view in the middle along the 

length, and another one close to the outlet in order to visualize velocity contours.  

Moreover, plots of axial velocity and pressure gradient on a streamline (along the z-axis) 

are generated to observe the length of the computational domain required to ensure full 

development of the velocity profile and establishment of the steady state flow condition. 

Thus, Fig. 4.6 illustrates establishment of constant velocity profile and pressure gradient 

along the axial direction, which indicates establishment of a fully developed steady state 

flow condition.  

 

Figure 4.6 Pressure gradient and axial velocity along a partially blocked eccentric annulus 

(e=0.9, =0.5, n=1, Hbed=10%, Q = 5 x10-5 m3/s) 
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4.3.2 Matrix 

Matrices of simulation cases were developed to achieve the objectives described 

in Chapter 1. Table 4.5 shows that for a diameter ratio of 0.75, seven cases of 

dimensionless bed heights have been considered for each power law index. Due to the 

limitations of the program, 10% bed height is the minimum bed height adopted in this 

study to generate structured meshes with a dimensionless eccentricity of 90%. Since the 

power law index varies from 0.2 to 1, for one diameter ratio, 35 simulations have been 

performed.  Similarly, other matrices have been created for diameter ratios of 0.5 and 

0.25 (presented in Appendix C).  Accordingly, 105 cases have been simulated in this 

study. 

Table 4.4 Matrix simulation. Diameter ratio 0.75 

Di/Do = 0.75 

                 n 

H/Hmax 
0.2 0.4 0.6 0.8 1 

0 Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 

0.1 Sim 6 Sim 7 Sim 8 Sim 9 Sim 10 

0.3 Sim 11 Sim 12 Sim 13 Sim 14 Sim 15 

0.5 Sim 16 Sim 17 Sim 18 Sim 19 Sim 20 

0.7 Sim 21 Sim 22 Sim 23 Sim 24 Sim 25 

0.9 Sim 26 Sim 27 Sim 28 Sim 29 Sim 30 

1.0 Sim 31 Sim 32 Sim 33 Sim 34 Sim 35 

 

The numerical simulations were carried out on a super computer equipped with 2 

GHz intel® Xeon ® CPU PC with 2 processors, 16 GB of RAM memory and 64-bit 

operating system executed on 16 computational cores. Each simulation case generates 

about 500,000 cells, equivalent to one GB of total memory (IBM, 2012).  The run time, 

for an example, to reach 1500 iteration is about 30 min. However, the run time depends 
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on the size of the geometry and the type of fluid (shear thinning fluids take more time to 

converge).  

 

Figure 4.7 X and Y dimensionless coordinates 

 

Velocity profile and bed shear stress distribution on x-y plots are represented 

through the use of the following dimensionless coordinates (X and Y): 

𝑋 =
𝑥

0.5𝐵𝑒𝑑𝑊
                                                                                                     (4-8) 

𝑌 =
𝑦

𝑅𝑜
                                                                                                              (4-9) 

x and y are x and y axis, respectively. BedW corresponds to bed width as it can be observed 

in Fig. 4.7. 

4.3.3 CFD Verification  

In order to verify the accuracy of CFD simulation, pressure drop and other 

hydraulic parameters are compared with available experimental data, and analytical and 

numerical solutions reported in the literature.  
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CFD simulation predictions were compared with measurements (George, 2012) 

obtained from large-scale flow loop experiments conducted to study hole cleaning 

performance of synthetic-based (SBM). The experiments provided equilibrium bed 

height and frictional pressure loss measurements in the annulus at different flow rates 

(Table 4.5). George (2012) performed experimental investigations in a fully eccentric 

annulus. The experimental setup has a horizontal 4”x 2” (101.6 mm x 50.8 mm) annular 

test section, which simulates cuttings transport in horizontal wellbore with 8/16 mesh 

sand particles. For different flowrates, equilibrium bed height and pressure loss 

measurements were obtained (Table 4.5). Power law parameters of test fluid are presented 

in Table 4.6.  

 

Table 4.5 Volumetric flow rate and stationary bed height 

Fluid: SBM 

Q (m3/s) H(m) H/Do (%) 

0.0006 0.069 67 

0.0013 0.065 64 

0.0019 0.062 61 

0.0032 0.047 46 

0.0038 0.039 39 

0.0044 0.028 28 

 

Table 4.6 Modified non-Newtonian power law density and rheological parameters 

Fluid Type 
Density 

(kg/m3) 

K, 
n 

(Pa.sn) 

SBM PL 1240 2.38 0.34 
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In addition to the validation with experimental results, simulation results are 

compared with analytical (Piercy et al., 1933) and numerical (Fang et al., 1999) results 

for eccentric annuli reported in the literature. The results are presented in Section 5.  

 

4.3.4 Hydraulic and Geometric Parameters Sensitivity Analysis 

For power-law fluids, the product of Fanning friction factor Reynolds number 

(fRe) is a function of flow geometry (eccentricity and diameter ratio) and power law index 

(Fang et al., 1999).  Moreover, dimensionless bed shear stress is found to be a function 

of flow geometry and power law index. To revalidate these observations, sensitivity 

analysis is performed in order to better understand the effect of rheological properties 

(consistency index and power law index) on the fRe, and the dimensionless bed shear 

stress in a partially blocked annulus. Furthermore, sensitivity tests are performed to 

evaluate the influence of fluid velocity and Reynolds number on these parameters.  

Table 4.7 presents a summary of the input parameters used to perform the first 

batch of CFD simulations, at a constant flowrate varying consistency index from 0.001 

to 20 pa.sn, and power law index from 0.2 to 1. 

Table 4.7 Input parameters used in sensitivity analysis 

Parameter Value 

Diameter ratio, 𝜅 0.5 

Relative Eccentricity, e 0.9 

Dimensionless Bed Height, % Hbed 10 

Fluid density (kg/m3) 1000 

Consistency Index, K (Pa.sn) 0.001 to 20 

Fluid Behavior Index, n 0.2 to 1 

Boundary Condition, Q (m3/s) 1x10-4 
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Figure 4.8 presents the parameter fRe as a function of the consistency index for 

different power law indices.  As previously mentioned in the literature, the friction factor 

Reynolds number product remains constant as the consistency index increases. However, 

as the consistency index decreases below 0.1 Pa·sn, the fRe substantially increases. This 

is due to the inherent instability of the program at low consistency index values. 

Moreover, as the fluid becomes highly shear thinning, the parameter fRe decreases 

significantly.  

 

 

 

Figure 4.8 fRe vs. fluid consistency index (Hbed =10%, Q=1x10-4 m3/s) 

 

Sensitivity results obtained in terms of the dimensionless bed shear stress 

parameter (Fig. 4.9) show similar trends when compared with Fig. 4.8. The parameter  

Π𝑏𝑒𝑑 remains constant when the consistency index increases from 0.1 to 20 Pa·sn. 
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However, when the consistency index decreases below 0.1 Pa·sn, the dimensionless 

parameter increases due to numerical instability which causes inaccuracy. The effect of 

fluid shear thinning behavior on the parameter Π𝑏𝑒𝑑 is substantial. With increase in shear 

thinning, the parameter increases due to reduction in wall shear stress, which occurs 

because of shear thinning. 

 

 

Figure 4.9 Πbed vs. fluid consistency index (Hbed=10%, Q=1x10-4 m3/s) 

 

Furthermore, the effects of mean fluid velocity and Reynolds number on 

dimensionless parameters fRe and Π𝑏𝑒𝑑 are investigated considering the same flow rate 

in a partially obstructed annular section.  Figure 4.10 presents results of CFD simulations 

conducted varying these two variables.  According to Fig. 4.10 (a), Newtonian fluids 

reflect a wide range of velocity values (between 7x10-5 m/s and 1.5 m/s), where the 

parameter fRe remains constant; however, for shear thinning fluids (𝑛 = 0.2), the fRe is 
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constant for a narrow range of velocities due to numerical instability. The same pattern 

can be observed when Reynolds Number is varied, Fig. 4.10 (b), where for Newtonian 

fluids the Re range is between 0.002- 40, while for shear thinning fluids (n=0.2) the range 

is reduced (0.066-30.55).  

For Newtonian fluids, results (Fig. 4.10c) show constant Π𝑏𝑒𝑑  value for wide 

range of velocities and Reynolds numbers. However, as the shear thinning characteristic 

of the fluid increases (i.e. the value of n decreasing from 0.6 and 0.2), the dimensionless 

bed shear stress becomes constant for small average velocity ranges.  For Reynolds 

numbers less than 100 (Fig. 4.10d), the dimensionless bed shear stress remains constant. 

It can be concluded that the simulation should be performed to small velocities (or small 

Reynolds numbers) in order to maintain numerical stability. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.10 Hydraulic parameters: (a) fRe vs. avg. velocity; (b) fRe vs. Re; (c) Πbed vs. avg. 

velocity; and (d) Πbed vs. Re 
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Chapter 5. Results and Discussion 

This section presents results of validation studies and CFD simulations, 

Moreover, it shows analysis and interpretation of CFD simulation results demonstrating 

the effect of different hydraulic parameters on pressure loss, fRe, and wall shear stress in 

partially blocked annulus.  

5.1 Numerical Verification 

5.1.1 Comparison of CFD Simulation with Experimental Data 

Figure 5.1 compares measured and CFD predicted pressure losses, for a SBM 

fluid, considering different bed heights and a fully developed laminar flow. As illustrated 

in Fig. 5.1, predictions show good agreement with experimental values for high flowrates 

(above 0.032 m3/s), where the majority of the predictions are within ± 17%. On the other 

hand, a slightly higher discrepancy (within 28%) is observed at low flowrates. This is 

because the inner pipe is completely buried at low flowrates (less than 0.032 m3/s), 

generating fine grids, and making the simulation more difficult to converge.  
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Figure 5.1 Measured and CFD predicted pressure gradients vs. flowrate (SBM Fluid, data 

from George 2012) 

 

5.1.2 Comparison of CFD Model with Analytical and Numerical Solutions 

In addition to experimental data, CFD simulation results are compared with the 

analytical solution (Eqn. 3.29) developed for Newtonian fluids (Piercy et al. 1933).  

Figure 5.2 compares analytical solution with CFD simulation results for different 

diameter ratios (0.25, 0.5 and 0.75). The simulation results demonstrate excellent 

agreement with the analytical solution. The maximum discrepancy is 1.2 %. 
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Figure 5.2 Comparison of predictions of CFD simulation and analytical model for 

dimensionless eccentricity of 0.9 (Q = 5x10-5 m3/s) 

 

The fRe values reported by Fang et al. (1999) for eccentric annulus are for 

diameter ratios of 0.2, 0.5 and 0.8, eccentricities from 0 to 0.8, and power-law fluids from 

𝑛 =  0.2 to 1  (Fig. 3.2). Since the present work modeled eccentric annulus with a 

dimensionless eccentricity of 0.9, and no exact analytical solution exists for non-

Newtonian flow, hydraulic parameter fRe reported by Fang et al. (1999) is interpolated 

and used to validated CFD simulation results at different diameter ratios (0.25, 0.50 and 

0.75) and power law indices (1, 0.8, 0.6, 0.4 and 0.2).  Figures from 5.3 to 5.5 compare 

interpolated values with CFD simulation data. Results show good agreement between the 

simulated results and interpolated values. A maximum discrepancy of 7% is observed 

when 𝜅 = 0.75 and 𝑛 = 0.2. It is important to mention that for Newtonian fluids (𝑛 =
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1), better agreement is obtained with analytical solutions (Piercy et al., 1933) than the 

interpolated fRe values from Fang et al. (1999). 

 

Figure 5.3 Hydraulic parameter fRe vs. n for =0.75, e=0.9, and Q = 5x10-5m3/s  

 

Figure 5.4 Hydraulic parameter fRe vs. n for =0.50, e=0.9, and Q = 5x10-5m3/s  
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Figure 5.5 Hydraulic parameter fRe vs. n for =0.25, e=0.9, and Q = 5x10-5m3/s  

 

5.2 Effect of Cutting Build Up within the Annulus 

In order to predict the effect of cuttings bed build on pressure loss, simulations 

have been carried out varying the dimensionless bed thickness from zero to 100% (i.e. 

bed height that can completely bury the drill pipe) for 90% eccentric annuli. The 

simulations have been performed for diameter ratios ranging from 0.25 to 0.75.  A 0.05-

m diameter hole is considered for this analysis. Rheological parameters and boundary 

conditions adopted are described in Section 4.3.1. The drillpipe radius is adjusted based 

on the annular diameter ratio. The effects of bed buildup on pressure drop and hydraulic 

parameters are presented as follows. 



60 

 

5.2.1 Annular Frictional Pressure Loss 

The effect of cuttings bed builds up on annular pressure loss is examined 

maintaining a constant flow rate (Figs. 5.6 through 5.8).  As expected, the pressure loss 

has increased with cuttings bed thickness.  However, at low bed height (below 40% of 

bed height), the increase in pressure loss is minimal.  Moreover, the effect of flow 

behavior index on pressure loss is more evident. As the shear thinning behavior of the 

fluid increases, the pressure loss substantially decreases. Furthermore, the Figs. illustrate 

that as the diameter ratio decreases, the pressure loss decreases substantially. The reason 

of this reduction is the increase in annular clearance, which increases flow area and makes 

the pressure loss to decrease considerably. 

 

Figure 5.6 Pressure loss vs. % dimensionless bed height (=0.75, e=0.9 and Q = 5x10-5 

m3/s) 
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Figure 5.7 Pressure loss vs. % dimensionless bed height (=0.50, e=0.9 and Q = 5x10-5 

m3/s) 

 

Figure 5.8 Pressure loss vs. % dimensionless bed height (=0.25, e=0.9 and Q = 5x10-5 

m3/s) 
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Increase in frictional pressure loss is expected as cuttings bed thickness increases.  

This is due to flow restriction caused by the bed, reducing the flow cross-sectional area. 

In drilling operations, if the friction pressure continuously increases due to bed 

development, the bottom hole pressure can increase excessively, resulting in drilling 

problems such as fluid loss, lost circulation and well control. Therefore, accurately 

predicting friction pressure loss can considerably avoid these problems. 

5.2.2 Axial Velocity Profiles 

Velocity contours in partially blocked 90%-eccentric annuli are presented in Fig. 

5.9.  Stagnant fluid zones are observed in the narrow parts of the annuli. With increasing 

the cuttings bed height, the velocities in the wide parts of the annuli increase, whereas the 

velocities in the narrow parts decrease significantly. Evidently, this behavior is expected 

since the flow resistance decreases in the wide part, resulting in high fluid velocity.  In 

directional drilling operations, this situation favors formation of cuttings bed due to low 

fluid velocity in stagnant zones. The velocity contours for diameter ratios 0.25 and 0.75 

are presented in Appendix E.  
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Figure 5.9 Velocity distributions in partially blocked annuli (n=1, =0.50, e=0.9 and Q = 

5x10-5 m3/s): (a) Hbed=0%; (b) Hbed=30%; (c) Hbed=70%; and (d) Hbed=100% 

 

Figure 5.10 shows effect of shear thinning on axial fluid velocity. for a partially 

blocked annulus ((30% Hbed, 𝜅 = 0.75).  Y is the dimensionless vertical distance from the 

center, which is defined in Eqn. 4.7.  As power-law index varies from 1 to 0.2 at a constant 

flowrate, the velocity profile gets flatter. Similar velocity profile patterns (Appendix E) 

have been observed with other diameter ratios (0.5 and 0.25).  
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Figure 5.10 Velocity profile vs. Y (Hbed=30%, κ=0.75, e=0.9 and Q = 5x10-5 m3/s) 

 

5.2.3 Hydraulic Parameter fRe 

Figures 5.11 and 5.12 illustrate the fRe values obtained from CFD simulation of 

partially blocked annuli. Trends of the parameter fRe are very similar for diameter ratios 

of 50% and 75%.  At low bed heights (approximately less than 60%), the parameter fRe 

increases with bed thickness. The increase in the parameter is more pronounced when the 

annular diameter ratio is high (i.e. 75%).  At high bed heights (approximately greater than 

40%), the fRe values show moderate reduction with bed height. The fRe trend with bed 

height is slightly different for low diameter ratio annulus (Fig. 5.13). At low bed heights 

(less than 10%), fRe displays slight reduction with bed height.  This trend revers when 

the bed height is approximately more than 10%. The parameter slightly increases with 

bed height up to 50% and then it stabilizes.  One possible explanation for the trend 

reversal at 10% bed height could be the location of the bed height in relation to the inner 
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pipe. The fRe reaches its minimum when the bed approaches the bottom of the inner pipe. 

The velocity profiles in the y-direction for partially blocked eccentric annulus (𝜅 = 0.25) 

is illustrated in Fig. 5.16, in order to demonstrate the fRe reduction for Newtonian and 

shearing fluids (i.e. 𝑛 =  1 and 𝑛 =  0.2). In addition, the figure compares the velocity 

profiles of two cases with different bed heights Hbed = 0% and Hbed = 10%).  Even though 

the axial velocity profiles in the wide part of both cases are similar, the velocity profile 

in the narrow section is different.  In the narrow gap, local velocities in blocked annulus 

are smaller than local velocities in unblocked annulus.  The blocking effect enhances the 

flow velocity in the wide gap resulting in increased flow rate.  As a result, the presence 

of the cuttings bed surface below the drill pipe makes the hydraulic parameter fRe to 

decrease.  

The trend reversal is not observed with diameter ratios of 0.75 and 0.5 because 

the 10% bed height is not below the bottom of the inner pipe (Fig. 4.1). Furthermore, as 

the shear thinning behavior of the fluid improves, the parameter consistently decreases.   
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Figure 5.11 fRe vs. % bed height (e=0.9, κ =0.75 and Q = 5x10-5 m3/s) 

 

Figure 5.12 fRe vs. % bed height (e=0.9, κ =0.5 and Q = 5x10-5 m3/s) 
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Figure 5.13 fRe vs. % bed height (e=0.9, κ = 0.25 and Q = 5x10-5 m3/s) 
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(a) 

 

(b) 

Figure 5.14 Axial velocity profiles vs. Y (κ = 0.25, e=0.9 and Q = 5x10-5 m3/s): (a) 0% Hbed; 

and (b) 10 %Hbed  
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Volume Flow Rate Variation Effect on fRe Parameter 

The volume flowrate is increased to 1x10-4 m3/s, in order to evaluate its effect on 

the parameter fRe.  Simulation results (Figs. 5.11 and 5.15) show that fRe is independent 

of the flow rate.  It can be concluded that, at constant eccentricity, the hydraulic parameter 

fRe is a function of annular diameter ratio, power law index of the fluid and thickness of 

cuttings bed. 

 

 

Figure 5.15 fRe vs. % Hbed: Q1= 1x10-5 m3/s; Q2= 1x10-4 m3/s (e=0.9, and =0.5) 

5.2.4 Wall Shear Stress 

As mentioned before, in eccentric annuli, the shear stresses acting on the inner 

and outer walls vary significantly; thus, non-uniform shear stress distribution is expected. 

In addition, formation of cuttings bed has influenced the wall shear stress distribution. 

Therefore, for simplicity, average wall shear stress (𝜏�̅�) is often used in hydraulic 

analysis.  Figures 5.16, 5.17 and 5.18 show 𝜏�̅� values obtained from CFD simulation. It 
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can be noted that the 𝜏�̅� increases with accumulation of cuttings in the wellbore.  

Evidently, low 𝜏�̅� values are associated with low axial velocities, thus low pressure loss. 

 

Figure 5.16   �̅�w vs. % Hbed (e=0.9, κ =0.75, Q= 1x10-5 m3/s) 

 

Figure 5.17   �̅�w vs. % Hbed (e=0.9, κ =0.5, Q= 1x10-5 m3/s) 
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Figure 5.18   �̅�w  vs. % Hbed (e=0.9, κ =0.25, Q= 1x10-5 m3/s) 

 

The average wall shear stress is directly proportional to the pressure loss (Eqn. 

3.21).  Indeed, the average wall shear stress profiles (Figs. 5.16, 5.17 and 5.18) can be 

compared with the frictional pressure loss profiles obtained in Figs. 5.6, 5.7 and 5.8; as 

the cuttings bed height increases, the pressure drop increases; as a result, the mean wall 

shear stress increases as well.  Moreover, as described in Section 5.2.3, the average wall 

shear stress slightly decreases due to the location of the bed (10% bed height) for a 

diameter ratio of  𝜅 = 0.25.  Figure 5.18 shows similar trends of average wall shear stress 

profiles, which are observed in the pressure loss trend. 

5.2.5 Bed Shear Stress 

As stated before, low velocity profiles are associated with low wall shear stress 

profiles. This tendency can also be observed in the evaluation of the wall shear stress over 
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the surface of stationary cuttings bed presented in partially blocked annulus. It has been 

found that the bed shear stress increases as the cuttings bed height increases (Fig. 5.21). 

 

(a) 

 

(b) 

Figure 5.19 bed vs. X (e=0.9, κ=0.5 and Q= 5x10-5 m3/s): (a) Hbed =10%; and (b) 

Hbed=100% 

Furthermore, Fig. 5.19 presents the behavior of the bed shear stress along the 

dimensionless X- axis, as the cuttings bed builds up, for Newtonian and shear thinning 

fluids (n = 1 and n = 0.2). X corresponds to the dimensionless x-coordinate expressed in 

Eqn. 4.6.   The positions 𝑋 = 0 and 𝑋 = 1 are located at the inner pipe and outer pipe 

walls, respectively.   At low bed heights (10-30 %), the bed shear stress is higher close to 

the outer wall than close to the inner wall; however, as the cuttings bed thickness 

increases, higher bed shear stress is observed in the inner pipe side than the outer pipe 

side (Appendix E includes additional bed shear stress profiles for 𝜅 = 0.25 and 𝜅 =

0.75).  Similar bed shear stress behavior is observed with highly shear thinning fluid, (i.e. 

n = 0.2).  

Figure 5.19 demonstrates the effect of shear thinning on bed shear stress.  As 

power law index increases, bed shear stress increases. Figure 5.20 illustrates bed shear 



73 

 

stress profile in annulus with 50% bed height and diameter ratio of 0.5. The maximum 

bed shear stress distribution corresponds to Newtonian fluid. Very low bed shear stress 

values are observed near the inner and outer walls due to flow stagnation.  

 

Figure 5.20 Shear stress distribution on cuttings bed surface, Hbed= 50% (e =0.9, κ =0.5, 

and Q = 5x10-5 m3/s) 

The average bed shear stress is often used in cuttings transport modeling, in 

determination of drag force on solid particles (Ahmed et al., 2002; Elgaddafi, 2011). 

Figures 5.21, 5.22 and 5.23 illustrate increase in average bed shear stress with cuttings 

bed height for a given flowrate.  Effect of fluid behavior index on average bed shear stress 

is consistent with the trend observed with the overall wall shear stress.  Average bed shear 

stress significantly increases with n.  
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Figure 5.21  �̅�bed vs. % Hbed (e=0.9, κ =0.75 and Q = 5x10-5 m3/s) 

 

Figure 5.22  �̅�bed  vs. % Hbed (e=0.9, κ =0.50 and Q = 5x10-5 m3/s) 
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Figure 5.23  �̅�bed  vs. % Hbed (e=0.9, κ =0.25 and Q = 5x10-5 m3/s) 

 

Effects of bed height on average bed shear stress is noticeable in Figs. 5.21 to 

5.23. As the diameter ratio increases, bed shear stress increases at a constant flowrate. 

Moreover, axial fluid velocity influences the average bed shear stress.   

Furthermore, one can observe that, as the dimensionless bed thickness varies from 

zero to 100%, magnitude of the average wall shear stress increases and approaches that 

of the overall wall shear stress. To compare these two shear stresses, dimensionless bed 

shear stress (the ratio of average bed shear stress to the overall wall shear stress is 

introduced).  Figures 5.24, 5.25 and 5.26 show dimensionless bed shear stress as a 

function of bed height at different diameter ratios. Results demonstrate that the 

dimensionless bed shear stress increases with flow behavior index of the fluid (i.e. shear 

thinning behavior of the fluid).  As the bed height approaches zero or 100%, the effect of 

n on dimensionless bed shear stress diminishes 
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Figure 5.24 Πbed vs. % Hbed (e=0.9, κ =0.75 and Q = 5x10-5 m3/s) 

 

 

Figure 5.25 Πbed vs. % Hbed (e=0.9, κ =0.5 and Q = 5x10-5 m3/s) 
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Figure 5.26 Πbed vs. % Hbed (e=0.9, κ =0.25 and Q = 5x10-5 m3/s) 

 

Volume Flow Rate Variation Effect on Πbed Parameter 

As elaborated in Section 5.2.1, for the parameter fRe, the effect of the volume 

flowrate was also considered on the dimensionless bed shear stress profile (Fig. 5.27). 

The new profile of dimensionless bed shear stress is observed in Fig. 5.29, when the 

volume flow rate increases to 1x10-4 m3/s for a diameter ratio of 0.5. Therefore, the 

dimensionless bed shear stress is a function of the geometry (diameter ratio, bed height) 

and the rheology of the fluid (i.e. power law index). 
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Figure 5.27 Πbed vs. % Hbed: a) Q1= 1x10-5 m3/s; b) Q2= 1x10-4 m3/s (e=0.9, κ =0.5) 

 

5.3 Development of New Correlations 

The simulation data obtained in the previous section are used to developed 

correlations of dimensionless parameters, as function of diameter ratio (0.75, 0.5 and 

0.25), eccentricity of 0.9, flow behavior index (from 0.2 to 1) and cuttings bed height 

(from 0 to 100%). First, correlation coefficients involved in the calculation of hydraulic 

parameter fRe data are used to determine the geometric constants a and b described in 

Section 3.5.2. Secondly, dimensionless bed shear stress data is used to develop an 

empirical correlation, for dimensionless bed shear stress in terms of independent variables 

(diameter ratio, fluid behavior index and dimensionless cuttings bed height). 
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5.3.1 Hydraulic Parameter fRe 

As shown in Section 5.2.3, the hydraulic parameter fRe is a function of geometric 

constants (a and b).  For partially blocked annulus, the geometric constants are evaluated 

adapting the procedure presented by Aworunse (2012).  During the evaluation, 

eccentricity is kept fixed (90%) and effect of cuttings bed height on a shape factor (S) is 

investigated.   Plots of the shape factor are generated for each geometry (i.e. each diameter 

ratio) and presented as a function of dimensionless parameter, 1/𝑛. The tendency of each 

cuttings bed height to form straight lines in S versus 1/𝑛 plot can be observed in Fig. 

5.28. Thus, the slope and intercept for each straight line are determined and resulted in 

unique geometric constants for each wellbore geometry, regardless of fluid consistency 

index and flow parameters.  Figure 5.28 shows straight lines used to obtain the geometric 

parameters, “a” from the slope, and “b” from the intercept for different cuttings bed 

heights.  

 

Figure 5.28 Shape Factor vs. 1/n (e=0.9). Trendline for different bed heights (κ =0.5) 
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Figure 5.28 corresponds to a diameter ratio of 0.5, where the R-squared is above 

93%. The same procedure is repeated to obtain geometric constants for other diameter 

ratios (0.25 and 0.75), and they are presented in Appendix E.  Figure 5.29 displays 

parameter constant “a” as a function of the dimensionless bed height for different 

diameter ratios. As shown, the value of constant “a” increases with bed height at low bed 

heights (less than 70%); however, the trend changes at approximately 70% of Hbed and 

the constant decreases with bed thickness. Despite strong dependency of geometric 

constant “a” with bed height, the geometry constant “b” is slightly affected with bed 

height (Fig. 5.32).  

 

Figure 5.29 Parameter “a” vs. dimensionless bed height (e=0.9) for different κ values 
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Figure 5.30 Parameter “b” vs. dimensionless bed height (e=0.9) for different κ values 

After obtaining the geometric constants “a” and “b” from the shape factor (Fig. 

5.28), correlations for the constants are developed using regression analysis. The 

constants are correlated with bed height as:  

𝑎 = 𝜆0 ∙ 𝐻𝑏𝑒𝑑
3 + 𝜆1 ∙ 𝐻𝑏𝑒𝑑

2 + 𝜆2 ∙ 𝐻𝑏𝑒𝑑 + 𝜆3                                                  (5-1a) 

𝑏 = 𝑏0 ∙ 𝐻𝑏𝑒𝑑
3 + 𝑏1 ∙ 𝐻𝑏𝑒𝑑

2 + 𝑏2 ∙ 𝐻𝑏𝑒𝑑 + 𝑏3                                                  (5-1b) 

The coefficients (𝜆0, 𝜆1, 𝜆2, 𝜆3, b0, b1, b2 and b3) are functions of diameter ratio. As it can 

be seen, the geometric constants “a” and “b” best fit a 3rd degree polynomial, with R- 

squared values of more than 0.96. The Table 5.1 summarizes equations used to determine 

these coefficients.  
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Table 5.1 Regression coefficient parameters developed (e=0.9) 

𝜆0 = −6.2328𝜅2 + 4.1994𝜅 − 0.8453 𝑏0 = −0.964𝜅2 + 5.425𝜅 − 1.3217 

𝜆1 = 9.152𝜅2 − 6.7796𝜅 + 1.1096 𝑏1 = −0.1792𝜅2 − 8.1756𝜅 + 2.0884 

𝜆2 = −3.236𝜅2 + 2.7778𝜅 − 0.0881 𝑏2 = 0.836. 𝜅2 + 3.4122𝜅 − 0.9325 

𝜆3 = 0.284𝜅2 − 0.4266𝜅 + 0.06684 𝑏3 = 0.2456𝜅2 − 0.2934𝜅 + 0.8761 

 

If the inner and outer annular diameters, and the cuttings bed height are known, 

one can determine the parameters “a” and “b” using Eqns. 5.1a and 5.1b, respectively. 

The predictions of the correlation are shown in Fig. 5.31 predicted values are within ±5% 

of discrepancy. 

 

 

Figure 5.31 fRe Correlation vs. fRe CFD (e=0.9)  
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Furthermore, to validate the correlations, available experimental data is used. 

Table 5.2 compares measured pressure losses with simulation results and model 

predictions.   

 

Table 5.2 Numerical validation based on pressure drop values (e=0.9) 

Fluid Hbed (%) 
Flowrate 

(m3/s) 
Regen 

dP/dL 

(Pa/m)   

Exp 

dP/dL 

(Pa/m) 

Fluent 

dP/dL 

(Pa/m) 

Model 

SBM 87 0.0032 433.0 840 696 770 

SBM 74 0.0038 498.2 826 768 774 

SBM 53 0.0044 548.0 730 855 786 

 

For SBM fluid, it can be noted that model predictions are in good agreement with 

experimental results, where the predictions are within ±8.37% discrepancy range.  This 

shows a better prediction when compared with simulation results, where the discrepancy 

can reach a value of ±17%.   

 

Comparison between New and Existing Models 

Figures 5.32, 5.33 and 5.34 display the comparison between existing models with 

CFD simulation results. The model proposed by Chen (2005) for predicting pressure loss 

in a partially blocked concentric annulus with power-law fluid (Appendix D) is used to 

compare with the new CFD model in Fig. 5.32. It is evident the high discrepancy between 

the model and CFD data, which can reach up to ± 80%. The reason for this significant 

difference is that the existing model does not account for pipe eccentricity, which reduces 

considerably the pressure drop. In this study, a modified model (Exlog Mod. 1) has been 

developed by introducing a correction factor based the model developed by 
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Haciislamoglu and Langlinais (1990) to relate pressure loss in an eccentric annulus to 

that of a concentric one (Appendix D). Figure 5.33 compares predictions of Exlog Mod 

1 with CFD simulation results.  Mostly discrepancies are with ± 25%; however, as the 

diameter ratio increases (𝜅 = 0.75), they reach up to 40%. 

 

Figure 5.32 fRe Exlog Solution (Chen, 2005) vs. fRe CFD  
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Figure 5.33 fRe Exlog solution modified 1 (Chen 2005; correction factor by Haciislamoglu 

and Langlinais, 1990) vs. fRe CFD  

 

The correction factor proposed by Haciislamoglu and Langlinais (1990) is not 

valid for highly shear thinning fluids (𝑛 ≤ 0.4). Since the new model is developed for 

power law index varying from 0.2 to 1.0 and, the correlations (Section 2.2.3, Eqns. 2.19 

a and b) developed by Ahmed et al. (2006) is used to account for eccentricity in improved 

Exlog model (Exlog Mod 2) formulation.  Figure 5.34 compares predictions of Exlog 

Mod 2 with CFD simulation results. Like Exlog Mod 1, predictions of Exlog Mod 2 

predominately display discrepancies of ± 25%.  Nevertheless, for annulus with narrow 

clearance (high diameter ratio), discrepancy can reach up to 40%. 
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Figure 5.34 fRe Exlog Solution modified 2 (Chen, 2005; correction factor by Ahmed at al., 

2006) vs. fRe CFD 

 

Furthermore, the model developed by Aworunse (2012) for partially blocked 

eccentric annulus is compared with CFD simulation results.  Figure 3.37 compares 

predictions of Aworunse’s model (Appendix B) with CFD results.  Model predictions are 

within ± 17% error bands (the lowest discrepancy obtained with existing models). 

However, it should be pointed out that the model presented by Aworunse (2012) is 

developed for a fixed eccentricity of 80%.  
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Figure 5.35 fRe Aworunse’s model (Aworunse, 2012) vs. fRe CFD 

 

5.3.2 Bed Shear Stress 

In addition to the parameter fRe, an empirical correlation is developed to 

determine dimensionless bed shear stress. The correlation is expressed as: 

Π𝑏𝑒𝑑 = 0.4668𝐻𝑏𝑒𝑑
4.511 − 0.747𝐻𝑏𝑒𝑑

2.51 + 0.8957𝐻𝑏𝑒𝑑
0.51 − 0.5166𝑛𝜅0.51 +

0.6366(𝑛𝐻𝑏𝑒𝑑)1.431 − 0.4077𝑛 + 0.525                                                       (5-2) 

Equation 5.2 is valid for laminar flow power law fluid in partially blocked 90% eccentric 

annulus with different diameter ratios  (0.25 ≤ 𝜅 ≤ 0.75), power law index (0.2 ≤ 𝑛 ≤

1) and dimensionless bed heights (0.15 < 𝐻𝑏𝑒𝑑 ≤ 1). 

A cross plot of model predicted dimensionless bed shear stress and CFD data is 

presented in Fig. 5.36. Model predictions are predominately within discrepancy level of 
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±10%.  In general, the new model predictions show good agreement with the simulated 

data. 

 

Figure 5.36 Πbed computed from correlation and CFD data 
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Chapter 6. Conclusions and Recommendations 

6.1 Conclusions 

CFD simulation has been conducted to evaluate effect of partially obstruction on 

pressure loss of 90% eccentric annuli.  Dimensionless bed height, diameter ratio and 

power law index are varied. Results show significant increase in pressure loss with 

cuttings bed growth. Based on the numerical results and theoretical analysis, the 

following conclusions can be made: 

 The suitability of the CFD code has been verified using analytical solution, 

published numerical solutions and available experimental results.  

 Annular pressure loss and bed shear stress significantly change with cuttings bed 

growth and reduce as the fluid becomes strongly shear thinning (when n value 

decreases). As a result, lower average wall shear stress is expected for highly shear 

thinning fluids as compared to fluids that do not exhibit strong shear thinning.  

 For power law fluids, the hydraulic parameters fRe and dimensionless bed shear 

stress are dependent on the annular geometry (cuttings bed height and diameter 

ratio for a fixed eccentricity) and fluid behavior index. They are independent of 

fluid consistency index and volumetric flowrate. 

 Dimensionless bed shear stress is significantly affected by cuttings bed height and 

power law index. It increases with shear thinning behavior of fluid (i.e. when n 

decreases). 

 Empirical model developed for geometric parameters and dimensionless bed 

shear stress make reasonable predictions that show good agreement with CFD 
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simulation results and experimental measurements.  The new model provides 

better predictions than existing models. 

6.2 Recommendations 

CFD is a powerful tool to conduct flow studies involving non-Newtonian fluids 

in complex geometry; hence, it is recommended to extend this study considering the 

following additional parameters: 

 Considering the effect of yield stress on pressure loss of yield power law fluid.  

 Further work is encouraged to analyze turbulent fluid flow in partially blocked 

eccentric annulus. CFD programs provide turbulent flow models (k-𝜔 and k-

epsilon) to analyze fluid flow under turbulent flow conduction.  

 Since the present study is conducted without inner tubing rotation, it is more 

interesting to study effects of inner pipe rotation on the pressure loss. 
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Appendix A: Nomenclature 

Symbols 

A pipe area, m2 

𝐴𝑎𝑛𝑛 annular area, m2 

a* variable 

a geometric parameter 

a0  constant 

a1   constant 

 a2  constant 

 a3  constant 

𝐵0 constant 

𝐵1 constant 

𝐵2 constant 

b geometric parameter 

b0  constant 

b1  constant 

 b2  constant 

b3 constant 

𝐶0 constant 

𝐶1 constant 

𝐶2 constant 

𝐶3 constant 
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D diameter, m 

𝐷𝑒𝑓𝑓 effective Diameter, m 

𝐷ℎ parameter, m 

𝐷ℎ𝑦𝑑 hydraulic diameter, m 

𝐷𝑖 inner diameter, m 

𝐷𝑜 outer diameter, m 

e relative eccentricity 

F parameter (Eq. 2.6) 

f fanning friction factor 

fRe friction factor- Reynolds number 

𝑔𝑥 gravity in x-direction 

𝑔𝑦 gravity in y-direction 

𝑔𝑧 gravity in z-direction 

G Geometric factor 

H bed height, m 

𝐻𝑏𝑒𝑑 dimensionless bed height 

𝐻𝑚𝑎𝑥 max. height 

h height, m 

ℎ∗ clearance between inner and outer pipes (bottom part), m 

K consistency index, pa sn 

L third axis, m 

∆L length, m 
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M parameter 

m series variable 

n power-law index 

N flow behavior index 

P pressure, Pa 

𝑑𝑝

𝑑𝑧
 

pressure gradient, pa/m 

Q flowrate, m3/s 

R radius, m 

r radial position, m 

𝑅𝑖 drill pipe outer radius, m 

𝑅𝑜 wellbore radius, m 

Re Reynolds number 

𝑅𝑒𝑔𝑒𝑛 generalized Reynolds number, PL fluid 

S Shape factor 

𝑆𝑖 bed perimeter, m 

𝑆1 inner pipe perimeter, m 

𝑆2 outer pipe perimeter, m 

u local axial velocity, m/s 

U mean flow velocity, m/s 

v local velocity (1 direction) 

𝑣𝑥 local fluid velocity on the z-axis, m/s 

𝑣𝑦 local fluid velocity on the y-axis, m/s 
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𝑣𝑧 local fluid velocity on the x-axis, m/s 

X dimensionless x- axis 

Y dimensionless y- axis 

Y* parameter 

x x-axis 

y y-axis 

z z-axis 

Z dummy variable 

o outer 

i inner 

w wall 

W width 

 

Greek Symbols 

  

α parameter 

𝛼0  constant 

𝛼1   constant 

𝛼2 constant 

𝛼3 constant 

𝛽 parameter 

휀 constant 
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휀𝑖 constant 

휀0 constant 

Δ𝑉 volume passing through a control volume, m3 

Δ𝑃 pressure drop, Pa 

Δ𝑡 variation in time, s 

�̇� shear rate, 1/s 

𝛾�̇� critical shear rate, 1/s 

𝛾�̇� wall shear rate, 1/s 

𝜇 viscosity of Newtonian fluid, Pa.s 

𝜇(�̇�) apparent viscosity, Pa.s 

𝜂 constant 

𝜃 𝜃 axis 

𝜆0  constant 

𝜆1   constant 

𝜆2 constant 

𝜆3 constant 

𝜿 diameter ratio 𝜅 =
𝑅𝑖

𝑅𝑜
 

𝜌 density, kg/m3 

𝜏 shear stress, Pa 

𝜏𝑤𝑎𝑙𝑙 wall shear stress, Pa 

𝜏�̅� average wall shear stress, Pa 

𝜏�̅�𝑒𝑑 average bed shear stress, Pa 
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𝜏𝑏𝑒𝑑 bed shear stress, Pa 

Π𝑏𝑒𝑑 dimensionless bed shear stress 

𝜓 constant 

 

Acronyms 

ECD Equivalent Circulating Density 

PL Power Law 

SBM Synthetic Base Mud 

YPL Yield-Power Law 

  

Note: S.I. units were utilized throughout this study. 
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Appendix B: Additional Derivations 

Fully Developed Laminar Flow in a Straight Tube 

The simplified momentum balance equation in z direction (cylindrical 

coordinates) for a circular pipe expresses the relationship between radius r, shear stress 

𝜏𝑟𝑧,  and friction pressure gradient 
𝜕𝑝

𝜕𝑧
 in the form: 

𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) = 0                                                                                        (B-1) 

The axial velocity in a pipe (Fig. 3.3) 𝑣𝑧(𝑟) of cross sectional area is determined 

by integrating Eqn. B.1 for a Newtonian fluid, with non- slip boundary conditions (i.e. 

velocity at the walls  𝑣𝑧(𝑅) = 0, Bourgoyne et al., 1986). This yields: 

𝑣𝑧(𝑟) =
(∆𝑃)𝑅2

4𝜇𝐿
[1 − (

𝑟

𝑅
)

2

]                                                                              (B-2) 

where R is the radius of the pipe, 𝜇 de dynamic viscosity, and 
(∆𝑃)

𝐿
the pressure gradient, r 

is the local radius. 

The volumetric flowrate through a pipe of area perpendicular to the flow of width 

𝑑𝑟 is expressed in the integral form as: 

𝑄 = 2𝜋 ∫ 𝑟𝑣𝑧(𝑟)𝑑𝑟
𝑅

0
                                                                                       (B-3) 

After substituting Eqn. B.2 into Eqn. B.3, the integration yields the volumetric flow rate 

of a pipe for an incompressible Newtonian fluid, known as the Haggen-Poiseuille 

Equation, with the form: 

𝑄 =
(∆𝑃)𝑅4

8𝜇𝐿
                                                                                                      (3-10) 

where Q is the volumetric flow rate.  
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A flow behavior index N, is used to simplify the Rabinowitsch-Mooney equation 3.12. N 

is substituted by the inverse of the gradient term: (
𝑑 ln 𝜏𝑤

𝑑 ln(8𝑈/𝐷)
). Thus, the simplification 

yields: 

�̇�𝑤 = (
8𝑈

𝐷
) [

3𝑁+1

4𝑁
]                                                                                            (B-4) 

The equation above is adopted by various researchers to develop further correlations of 

fluid flow for power-law fluids. Based on Metzner and Reed’s work (1955), Reed and 

Pilehvari (1993) adapted the shear stress definition in Eqn. 3.1 for power-law fluids at the 

walls, with 𝑁 = 𝑛 =constant 

 

Wall Shear Stress in Terms of Flowrate 

Assuming Newtonian fluid, the Haggen-Poiseuille Eqn. 3.10 is combined with 

B.6 developed from the momentum Equation (B.1) to express the wall shear stress in 

terms of the volumetric flowrate in fully developed laminar pipe flow as in B.7. 

𝜏 =
(𝑃1−𝑃2)𝑟

2𝐿
                                                                                                     (B-5) 

For 𝑟 = 𝑅, then 

𝜏𝑤 =
(𝑝1−𝑝2)𝑅

2𝐿
                                                                                                  (B-6) 

As a result: 

𝜏𝑤 =
4𝜇𝑄

𝜋𝑅3                                                                                                         (B-7) 

The simplified form of flowrate formula is expressed as: 

𝑄 = 𝜋𝑅2𝑈                                                                                                      (B-8) 

Combining Eqns. B.7 and B.8, the wall shear stress for Newtonian fluids is expressed as: 

𝜏𝑤 = 𝜇
8𝑈

𝐷
                                                                                                        (B-9) 
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Regression Model (Aworunse, 2012) 

The geometric parameters are a function of the cuttings bed height, for a constant 

dimensionless eccentricity, in the forms: 

𝑎 = 𝐶0𝐻𝑏𝑒𝑑
3 + 𝐶1𝐻𝑏𝑒𝑑

2 + 𝐶2𝐻𝑏𝑒𝑑 + 𝐶3                                                       (B-10a) 

𝑏 = 𝐵0𝐻𝑏𝑒𝑑
2 + 𝐵1𝐻𝑏𝑒𝑑 + 𝐵2                                                                       (B-10b) 

where the coefficients parameters of the correlations can be observed in Table B.1, for an 

eccentricity of 0.8 as a function of the diameter ratio. 

Table B.1 Regression coefficient parameters (Aworunse, 2012) 

𝐶0 = −1.6575𝜅2 + 1.3195𝜅 − 0.505 𝐵0 = −0.795𝜅2 − 0.1645𝜅 + 0.069 

𝐶1 = 2.675𝜅2 − 3.534𝜅 + 1.0934 𝐵1 = 0.91𝜅2 + 0.266𝜅 − 0.1831 

𝐶2 = −0.6187𝜅2 + 1.6882𝜅 − 0.2102 𝐵2 = −0.0537𝜅2 + 0.0437𝜅 + 0.841 

𝐶3 = −0.0637𝜅 − 0.0069  
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Appendix C: Additional Simulation Matrices 

Table C.1 Matrix simulation. Diameter ratio 0.75 

Di/Do = 0.50 

               n  

H/Hmax 
0.2 0.4 0.6 0.8 1 

0 Sim 36 Sim 37 Sim 38 Sim 39 Sim 40 

0.1 Sim 41 Sim 42 Sim 43 Sim 44 Sim 45 

0.3 Sim 46 Sim 47 Sim 48 Sim 49 Sim 50 

0.5 Sim 51 Sim 52 Sim 53 Sim 54 Sim 55 

0.7 Sim 56 Sim 57 Sim 58 Sim 59 Sim 60 

0.9 Sim 61 Sim 62 Sim 63 Sim 64 Sim 65 

1.0 Sim 66 Sim 67 Sim 68 Sim 69 Sim 70 

 

Table C.2 Matrix simulation. Diameter ratio 0.25 

Di/Do = 0.25 

               n  

H/Hmax 
0.2 0.4 0.6 0.8 1 

0 Sim 71 Sim 72 Sim 73 Sim 74 Sim 75 

0.1 Sim 76 Sim 77 Sim 78 Sim 79 Sim 80 

0.3 Sim 81 Sim 82 Sim 83 Sim 84 Sim 85 

0.5 Sim 86 Sim 87 Sim 88 Sim 89 Sim 90 

0.7 Sim 91 Sim 92 Sim 93 Sim 94 Sim 95 

0.9 Sim 96 Sim 97 Sim 98 Sim 99 Sim 100 

1.0 Sim 101 Sim 102 Sim 103 Sim 104 Sim 105 

 

 

 

 

  



110 

 

Appendix D: Hydraulic Diameter Calculation and Existing 

Correlation Model for PL Fluid in Concentric Annulus with Cuttings 

Bed 

Hydraulic diameter of partially blocked eccentric annulus is calculated as: 

𝐷ℎ𝑦𝑑 =
4∙𝐴𝑎𝑛𝑛

𝑆1+𝑆2+𝑆𝑖
                                                                                              (D-1) 

The annular area (𝐴𝑎𝑛𝑛) and wetted perimeters (𝑆1 + 𝑆2 + 𝑆𝑖) in Eqn. D.1 is displayed in 

Fig. D.1. Further details regarding the algorithm for calculating the hydraulic diameter is 

presented elsewhere (Chen, 2005). 

 

 

Figure D.1 Geometrical analysis (Chen, 2005) 
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𝐷ℎ = (𝐷𝑜 − 𝐷𝑖)(1 − 𝑒)                                                                                  (D-2) 

𝐷ℎ = ℎ∗                                                                                                           (D-3) 

𝑆1 = 𝐷𝑖 ∙ 𝜋  , if      𝐻 ≤ 0.5 ∙ 𝐷ℎ                                                                     (D-4) 

𝑆1 = 0  ,    if      H≥ 𝐷𝑖 + 0.5 ∙ 𝐷ℎ                                                                  (D-5) 

𝑆1 = 𝐷𝑖 (𝜋 − cos−1 [1 −
2(𝐻−0.5𝐷ℎ)

𝑑𝑖
]) if 0.5 ≤ 𝐻 ≤ 𝐷𝑖 + 0.5 ∙ 𝐷ℎ                (D-6) 

 

𝑆2 = 𝐷𝑜 (𝜋 − cos−1 (1 −
2𝐻

𝐷𝑜
))                                                                      (D-7) 

 

𝑆𝑖 = 2√𝐻(𝐷𝑜 − 𝐻) if 0 ≤ 𝐻 ≤ 0.5 ∙ 𝐷ℎ                                                        (D-8) 

𝑆𝑖 = 2√𝐻(𝐷𝑜 − 𝐻) − 2√(𝐻 − 0.5𝐷ℎ)(𝐷𝑖 − 𝐻 + 0.5𝐷ℎ)     if 

   0.5𝐷ℎ ≤ 𝐻 ≤ 0.5 ∙ 𝐷ℎ + 𝐷𝑖                                                                         (D-9) 

𝑆𝑖 = 2√𝐻(𝐷𝑜 − 𝐻)      if       0.5 ∙ 𝐷ℎ + 𝐷𝑖 ≤ 𝐻 ≤ 𝐷𝑜                                (D-10) 

 

𝐿 = 𝑆1 + 𝑆2 + 𝑆𝑖                                                                                           (D-11) 

 

𝑓(𝑑, ℎ) =
𝑑2

4
[cos−1 (1 −

2ℎ

𝑑
) − 2 (1 −

2ℎ

𝑑
) √

ℎ

𝑑
(1 −

ℎ

𝑑
)]                             (D-12) 

 

𝐴𝑏 = 𝑓(𝐷𝑜 , 𝐻)    if 0 ≤ 𝐻 ≤ 0.5𝐷ℎ                                                             (D-13) 

𝐴𝑏 = 𝑓(𝐷𝑜 , 𝐻) − 𝑓(𝐷𝑖, 𝐻 − 0.5𝐷ℎ)   if 0.5𝐷ℎ ≤ 𝐻 ≤ 𝐷𝑖 + 0.5𝐷ℎ             (D-14) 

𝐴𝑏 = 𝑓(𝐷𝑜 , 𝐻) −
𝜋

4
𝐷𝑖

2    if 𝐷𝑖 + 0.5𝐷ℎ ≤ 𝐻 ≤ 𝐷𝑜                                      (D-15) 

The Annular area is defined as:            

𝐴𝑎𝑛𝑛 =
𝜋

4
(𝐷𝑜

2 − 𝐷𝑖
2) − 𝐴𝑏                                                                            (D-16) 
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Existing correlation model for PL fluid in concentric annulus with cuttings bed 

(Exlog Solution) 

The existing correlation is based on the widely accepted model known as Exlog 

solution (Whitaker, 1985). The model predicts pressure loss in a partially blocked 

concentric annulus for PL fluids. Hence, the pressure loss is determined from Eqn. D-17 

(Chen, 2005): 

𝐷ℎ𝑦𝑑

4

𝑑𝑃

𝑑𝐿
= 𝐾(𝐺(𝑍, 𝑛))𝑛𝜏𝑤                                                                             (D-17) 

Where the wall shear stress for PL fluid is calculated from the constitutive equation: 

𝜏𝑤 = 𝐾 (
8𝑈

𝐷ℎ𝑦𝑑
)

𝑛

                                                                                            (D-18) 

 G  is a Geometric factor, which is a function of parameters Z and n:  

𝐺 =
(3−𝑍)𝑛+1

(4−𝑍)𝑛
(1 +

𝑍

2
)                                                                                    (D-19) 

Z is a dummy variable defined as: 

𝑍 = 1 − (1 − 𝜅𝑌∗
)

1 𝑌∗⁄
                                                                                 (D-20) 

where 𝑌∗ is expressed as: 

𝑌∗ = 0.37𝑛−0.14                                                                                            (D-21) 

Chen (2005) introduced an effective diameter, which is related to the hydraulic 

diameter and the geometric factor G as: 

𝐷𝑒𝑓𝑓 =
𝐷ℎ𝑦𝑑

𝐺
                                                                                                   (D-22) 

In this study, in order to account for eccentricity, the Exlog model pressure-loss 

predictions are corrected using a model developed by Haciislamoglu and Langlinais 

(1990), which related pressure loss in concentric annulus to that of eccentric annulus. 

Thus: 
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(
𝑑𝑃

𝑑𝐿
)

𝑒
= (1 − 0.072𝜅0.8454 𝑒

𝑛
− 1.5𝑒2𝜅0.1852√𝑛 + 0.96𝑒3√𝑛) (

𝑑𝑃

𝑑𝐿
)

𝑐
        (D-23) 

Equation (D-23) is valid for wide ranges of power law indexes (0.4 and 1.0), 

eccentricities (0 to 0.95) and diameter ratios (0.3 to 0.9). 
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Appendix E: Bed Shear Stress and Velocity Profiles  

 

Figure E.1 bed vs. X. a) Hbed=10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 70%; e) Hbed= 

90%; f) Hbed =100% (e=0.9, =0.25) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
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Figure E.2 bed vs. X. a) Hbed=10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 70%; e) Hbed= 

90%; f) Hbed =100% (e=0.9, =0.50) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
 

 

 



116 

 

 
Figure E.3 bed vs. X. a) Hbed=10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 70%; e) Hbed= 

90%; f) Hbed =100% (e=0.9, =0.75) 

 
(a) 

 
b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
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Figure E.4 Axial velocity vs. Y. a) Hbed= 0% (e=0.90, =0.25) 

 
Figure E.5 Axial velocity vs. Y. a) Hbed = 10% (e=0.9, =0.25) 
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Figure E.6 Axial velocity vs. Y. a) Hbed = 30%; b) Hbed = 50%; c) Hbed = 70%; d) Hbed = 

90%; e) Hbed = 100% (e=0.9, =0.25) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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Figure E.7 Axial velocity vs. Y. a) Hbed =0 (e=0.9, =0.50) 
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Figure E.8 Axial velocity vs. Y. a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed = 90%; f) Hbed =100% (e=0.9, =0.50) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

  
(f) 
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Figure E.9 Axial velocity vs. Y. a) Hbed =0% (e=0.9, =0.75) 
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Figure E.10 Axial velocity vs. Y. a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed = 90%; f) Hbed =100% (e=0.9, =0.75) 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

 
(e) 

 

 
(f) 
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Figure E.11 Velocity Contour: a) n=1; b) n =0.8; c) n =0.6; d) n=0.4; e) n=0.2 (e=0.9, Hbed= 

0%  , κ =0.25) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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Figure E.12 Velocity contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 70%; 

e) Hbed = 90%; f) Hbed =100% (e=0.9, n=1, =0.25) 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
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Figure E.13 Velocity contour: a) Hbed=10%; b) Hbed= 30%; c) Hbed = 50%; d) Hbed = 70%; 

e) Hbed = 90%; f) Hbed =100%   (e=0.9, n=0.8, =0.25) 

   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
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Figure E.14 Velocity contour: a) Hbed=10%; b) Hbed= 30%; c) Hbed = 50%; d) Hbed= 70%; 

e) Hbed = 90%; f) Hbed=100% (e=0.9, n=0.6, =0.25) 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
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Figure E.15 Velocity contour:  a) Hbed =10%; b) Hbed= 30%; c) Hbed = 50%; d) Hbed = 70%; 

e) Hbed= 90%; f) Hbed =100% (e=0.9, n=0.4, =0.25) 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
 

 



128 

 

 

Figure E.16  Velocity contour: a) Hbed =10%; b) Hbed= 30%; c) Hbed = 50%; d) Hbed = 70%; 

e) Hbed = 90%; f) Hbed =100% (e=0.9, n=0.2, =0.25) 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 
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Figure E.17 Velocity Contour: a) n=1; b) n=0.8; c) n=0.6; d) n=0.4; e) n=0.2 (e=0.9, Hbed = 

0% , κ =0.5) 
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Figure E.18 Velocity Contour:  a) Hbed=10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed= 90%; f) Hbed =100% (e=0.9, n=1, =0.5) 
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Figure E.19 Velocity Contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed= 90%; f) Hbed =100% (e=0.9, n=0.8, =0.5) 
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Figure E.20 Velocity Contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed = 90%; f) Hbed =100% (e=0.9, n=0.6, =0.5) 
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Figure E.21 Velocity Contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed= 50%; d) Hbed = 70%; 

e) Hbed = 90%; f) Hbed =100% (e=0.9, n=0.4, =0.5) 
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Figure E.22 Velocity Contour: a) Hbed=10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 70%; 

e) Hbed = 90%; f) Hbed =100% (e=0.9, n=0.2, =0.5) 
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Figure E.23 Velocity Contour: a) n=1; b) n =0.8; c) n =0.6; d) n=0.4 ; e) n=0.2 (e=0.9, Hbed  

= 0% , κ =0.75) 
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Figure E.24 Velocity Contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed = 90%; f) Hbed =100% (e=0.9, n=1, κ =0.75) 
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Figure E.25 Velocity Contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed= 90%; f) Hbed =100% (e=0.9, n=0.8, κ =0.75) 
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Figure E.26 Velocity Contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed = 90%; f) Hbed =100% (e=0.9, n=0.6, κ =0.75) 
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Figure E.27 Velocity Contour: a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed = 

70%; e) Hbed = 90%; f) Hbed =100% (e=0.9, n=0.4, κ =0.75) 
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Figure E.28 Velocity Contour:  a) Hbed =10%; b) Hbed = 30%; c) Hbed = 50%; d) Hbed= 

70%; e) Hbed= 90%; f) Hbed =100% (e=0.9, n=0.2, κ =0.75) 
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Shape Factor Figures 

The shape factor function was developed for the three different diameter ratios 

used during this present study. Figures E-29 and E-30 illustrate the behavior of the shape 

factor for the remaining diameter ratios 0.75 and 0.25. 

 

Figure E.29 Shape Factor vs. 1/n (e=0.9) for different bed heights (=0.75) 
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Figure E.30 Shape Factor vs. 1/n (e=0.9) for different bed heights (=0.25) 


