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Abstract

HIGH-FIDELITY AND PERFECT RECONSTRUCTION

TECHNIQUES FOR SYNTHESIZING MODULATION DOMAIN

FILTERED IMAGES

Patrick Adrian Campbell, Ph.D.
The University of Oklahoma, 2016

Supervisor: Joseph P. Havlicek

Biomimetic processing inspired by biological vision systems has long

been a goal of the image processing research community, both to further un-

derstanding of what it means to perceive and interpret image content and to

facilitate advancements in applications ranging from processing large volumes

of image data to engineering artificial intelligence systems. In recent years, the

AM-FM transform has emerged as a useful tool that enables processing that

is intuitive to human observers but would be difficult or impossible to achieve

using traditional linear processing methods.

The transform makes use of the multicomponent AM-FM image model,

which represents imagery in terms of amplitude modulations, representative of

local image contrast, and frequency modulations, representative of local spac-

ing and orientation of lines and patterns. The model defines image components

using an array of narrowband filterbank channels that is designed to be sim-

ilar to the spatial frequency channel decomposition that occurs in the human

xiii



visual system. The AM-FM transform entails the computation of modulation

functions for all components of an image and the subsequent exact recovery

of the image from those modulation functions. The process of modifying the

modulation functions to alter visual information in a predictable way and then

recovering the modified image through the AM-FM transform is known as

modulation domain filtering. Past work in modulation domain filtering has

produced dramatic results, but has faced challenges due to phase wrapping

inherent in the transform computations and due to unknown integration con-

stants associated with modified frequency content. The approaches developed

to overcome these challenges have led to a loss of both stability and intuitive

simplicity within the AM-FM model.

In this dissertation, I have made significant advancements in the un-

derlying processes that comprise the AM-FM transform. I have developed

a new phase unwrapping method that increases the stability of the AM-FM

transform, allowing higher quality modulation domain filtering results. I have

designed new reconstruction techniques that allow for successful recovery from

modified frequency modulations. These developments have allowed the design

of modulation domain filters that, for the first time, do not require any depar-

ture from the simple and intuitive nature of the basic AM-FM model. Using the

new modulation domain filters, I have produced new and striking results that

achieve a variety of image processing tasks which are motivated by biological

visual perception. These results represent a significant advancement relative

to the state of the art and are a foundation from which future advancements

in the field may be attained.

xiv



Chapter 1

Introduction

A recurrent theme in image processing and computer vision has been, to the

extent possible, to analyze and process images in ways that are similar to and

consistent with what is known about the processing of visual information in

biological vision systems. It has been a long standing goal of researchers and

scientists to create machines and automated processes that can act according to

the visually meaningful content within an image, i.e. like a human being can.

This has been partly out of a desire to further understanding of fundamental

theory and satisfy scientific inquiry, but has been perhaps more driven by the

potential of such technology to unlock an array of advancements around us

with potential to improve our quality of life, from image processing within our

smartphones to web-driven computer algorithms that process volumes of image

data that humans simply can not.

Critical to meaningful image analysis was the development of Fourier

analysis and its application as an image representation to describe frequency

content in images. However, the Fourier transform is only descriptive of fre-

quency content at a global scale within an image. Biological vision systems are

able to clearly observe and understand underlying image descriptive content

such as frequency that is local in space. The development of methods by which

to mathematically model local image content has, in the last half century or
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so, driven image analysis and processing technologies ever further in their ca-

pability to work with image information in a way that is intuitive to human

beings.

One important image representation model that incorporates local im-

age content has been the AM-FM image model. This simple model represents

a real-valued image s as [8]

s(x) = a(x) cos(ϕ(x)), (1.1)

where a(x) is the local amplitude modulation function, which can be thought

of as descriptive of changes in local image contrast, and ∇ϕ(x) is the local

frequency modulation function, which describes local spacing and orientation

of lines and patterns within the image. Combined with a decomposition of

the image into narrowband component channels that allow for smoothly vary-

ing amplitude and frequency content, these two modulation functions together

provide a meaningful description of the texture within an image as formulated

by the multicomponent AM-FM image model [34]

z(x) =
K∑
i=1

ai(x)ejϕi(x), (1.2)

where the complex-valued image z is represented as a sum of K locally co-

herent AM-FM components. This has led the model to successful application

within a wide variety of fields and pursuits. These have included speech anal-

ysis [28, 61, 65, 66], image segmentation [9, 30, 42, 108, 122], fingerprint recogni-

tion [58], content-based image retrieval [47], infrared target tracking [49,75,94],

and nonlinear image processing [74,84,85] to name a few.

Application of the AM-FM model to the last item mentioned above is

a relatively new field of study, which was only made possible once the AM-

2



FM model had been developed to the point where perfect reconstruction of

the original image from its AM and FM functions could be practically carried

out. This development was made difficult due to the discrete nature of any

practical image processing, which at first necessitated that the AM and FM

functions associated with images be approximated, from which close, but not

exact reconstructions could be achieved. However, careful advances in filter-

bank selection for decomposition [84, 111, 113], fitting of the model to spline

based computational methods [97, 98], and addressing the inherent problem

of phase wrapping [97–99] pushed the model to a point where the original

image could be exactly reconstructed from its amplitude and frequency con-

tent to within machine error. At this point, representation of an image by its

modulation domain functions and the corresponding ability to obtain either

modulation domain functions from the image or the image from its modula-

tion domain functions became known as the AM-FM transform [84]. This then

opened up the possibility of modifying the amplitude and frequency content

to achieve image processing goals that are motivated by visual perception and

then reconstructing a new image from the modified content, a process known

as modulation domain filtering .

Previous results have been obtained in the field of modulation domain

filtering. These results have shown dramatic image processing tasks that would

be difficult or impossible to obtain through traditional filtering methods, how-

ever they suffer from two major problems. The results are achieved through

the usage of constructs and methods that prevent the development of intuitive

modulation domain filters that are driven by visual perception, and the results

exhibit low-fidelity reconstruction for filters that modify frequency modulations

3



due to large estimation errors. The objectives of this dissertation are to address

these problems, design new and intuitive modulation domain filtering methods

and applications, and develop the AM-FM transform into a tool that corre-

sponds very strongly with human visual perception and is capable of driving

future research in the field.

My original contributions are in the field of modulation domain filtering

and include the following:

• I have completed advancements in the processes underlying perfect re-

construction from the AM-FM model that have enabled the realization

of remarkable, new modulation domain filtering results. These results

achieve visually meaningful image processing goals that would be diffi-

cult or impossible to obtain using traditional linear or nonlinear filtering

methods.

• I have developed a new phase unwrapping algorithm which has eliminated

nonintuitive phase scaling factors present within earlier algorithms. The

algorithm uses new queue-based phase growing techniques to create a

non-scaled, unwrapped phase that provides greater computational accu-

racy than previous methods.

• I have developed representations and methods for the AM-FM transform

that identify well with the simple and intuitive nature of the basic AM-FM

model. As the intuition of the model corresponds well to biological visual

perception, this allows the design of effective and meaningful modulation

domain analysis and filtering methods.
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• I have explored new reconstruction techniques that are designed for the

general reconstruction of images from modified frequency modulation

functions. These techniques employ a novel interpolation scheme that

eliminates reconstruction artifacts that arise from discontinuities in phase.

• I have created new classes of modulation domain filters that more effec-

tively modify target image texture by employing new filtering techniques.

As a field with many open questions, modulation domain filtering presents

many opportunities for future research. The original contributions detailed in

this dissertation constitute a basis for the further development of the AM-FM

transform and of modulation domain filters capable of realizing new genres of

intuitive, visually motivated image processing tasks.

1.1 Dissertation Organization

Chapter 2 of the dissertation gives a discussion of historical work building up

to modulation domain filtering, including development of the AM-FM image

model and development of perfect reconstruction from the model. Previous

results in modulation domain filtering are discussed.

In Chapter 3, I detail the new phase unwrapping algorithm I have de-

veloped that produces stable phase images from which meaningful frequency

information can be computed. The phase images are conducive to modulation

domain filtering.

In Chapter 4, I detail new reconstruction techniques for the recovery of

imagery from modified modulation domain functions, and I present a series of

new modulation domain filtering results. These results include demonstrations

5



of scaling, rotation, and translation using the AM-FM transform and the real-

ization of several image processing tasks that are inspired by biological visual

perception.

Conclusions about the content of this dissertation and potential future

progress are given in Chapter 5.

1.2 Notation and Nomenclature

I will use boldface lettering such as x for n-dimensional vectors and blackboard

bold lettering for vector spaces. Thus, I will denote the n-dimensional spaces

of real-, complex-, and integer-valued vectors as Rn, Cn, and Zn, respectively.

Since demodulation of both real- and complex-valued AM-FM models is pre-

sented, I have attempted to consistently represent the continuous real-valued

model by s(t) or s(x) for the real-valued signal s : Rn → R, and the continuous

complex-valued model by z(t) or z(x) for the complex-valued signal z : Rn → C.

The samples of these functions and other discrete signals will be denoted with

the vector-valued integer argument k ∈ Zn. Additionally, although a func-

tion is a strict mathematical construct and a signal is a manifestation of some

physical quantity, I will often use the terms signal, function, and model inter-

changeably. I will also use the terms instantaneous and modulations to refer

to the amplitude, phase, and frequency functions of the AM-FM model, as in

instantaneous frequency and phase modulations .

I will consistently express Fourier frequency in units of radians and will

denote it by Ω or Ω. Where possible, I will also use the common conven-

tion of denoting signals by lower-case letters and their Fourier transforms by

the corresponding upper-case letters. Since both Fourier and instantaneous
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frequency quantities are pertinent to AM-FM modeling, I will use the term

stationary to refer to Fourier frequencies and the term nonstationary to refer

to instantaneous frequencies.
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Chapter 2

Background

2.1 Inspiration for AM-FM Analysis

AM-FM image analysis has its roots in more classical signal analysis techniques.

This section presents a discussion of the theoretical developments upon which

the AM-FM model was built.

2.1.1 Image Composition and Representation

One of the most important developments in signal analysis has been the ap-

plication of the Fourier expansion concept to signals. The Fourier transform

is used to represent signals as a weighted sum of sinusoidal functions. When

applied to images, it provides a measure of the orientation and magnitude of

frequency content within an image. Critical to human perception of an image,

frequency content refers to the periodicity and direction of repeated lines and

image patterns as they vary over space. This can be seen in the Fourier trans-

form of a natural image, such as the famous Lena image shown in Fig. 2.1.

In this image, the transform indicates strong diagonal content that arises from

the mirror borders, hat bands, and feathers in the image.

Though instrumental in the development of modern signal processing

techniques, the Fourier transform is limited in its ability to describe signal con-

tent in a way that matches human perception. Specifically, the transform only
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(a) (b)

Figure 2.1: Fourier transform example. (a) Original Lena image. (b) Fourier
transform of (a).

gives stationary information about the signal. Fourier frequency components

must exist with a fixed amplitude over all time for one-dimensional sound sig-

nals or over all space for two-dimensional images. Humans, on the other hand,

readily perceive nonstationary information from sound or image signals. That

is, localized frequency content that is also localized in time or in space.

From the latter half of the 20th century onwards, a great deal of research

has been carried out to better match signal analysis to human perception. One

of the most important developments in this research was a new representa-

tion of signals presented by Gabor in 1946 [27]. Rather than representation

by a weighted sum of sinusoidal functions, the Gabor representation consists

of a weighted sum of what Gabor referred to as elementary signals. In this

new representation, time and frequency are orthogonal coordinates and are

furthermore completely symmetrical for all elementary signals. As such, this

representation allows for an optimal method of describing signal information

that is jointly localized in time and in frequency.
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Figure 2.2: From [27], the envelope of the elementary signal in both the time
and frequency domains.

The form of the elementary signal is given as [27]

ψ(t) = e−α
2(t−t0)2+j(2πf0t+ϕ) (2.1)

and its spectrum is [27]

φ(f) = e−(
π
α
)2(f−f0)2+j(−2πt0(f−f0)+ϕ), (2.2)

where α, t0, f0, and ϕ are constants that define the shape of the elementary

signal. This shape is illustrated in Fig. 2.2, where ∆t and ∆f are related to α

by

∆t =

√(
π

2

)
1

α
(2.3)

and

∆f =
1√
2π
α. (2.4)

The principle of localized signal expansion was used in 1977 by Moorer [71]

to analyze music. In 1981, Oppenheim discussed the role of phase in signals [86],

finding that important signal features tend to only be preserved if phase is

maintained, and even that phase information is sufficient to reconstruct signals
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to within a scale factor. In 1986, Furukawa [48] presented a Heisenberg-like

uncertainty principle applicable to discrete signals.

In [17], Cohen and Lee considered what characteristics would be ex-

pected of a ‘multicomponent signal’, concluding that signals could be locally

multicomponent in areas where local bandwidths are well separated. They were

motivated by the fact that multicomponent interpretation of signals had often

been used for meaningful signal analysis.

Instantaneous Frequency

By 1990, the movement towards measurement of localized frequency informa-

tion had led to the concept of instantaneous frequency as a description of con-

tent. An idealized concept, instantaneous frequency is the frequency content

of a signal at a single point in time or space. Cohen and Lee derived expres-

sions for standard deviation of instantaneous frequency in [17] and discussed

instantaneous bandwidth as an indication of frequency spread at a point in

time. In [18], they furthermore stated that global bandwidth has an amplitude

modulation and frequency modulation contribution, where the amplitude mod-

ulation contribution is the average of instantaneous bandwidth. Boashash then

discussed definitions of and mathematical models for instantaneous frequency

in [6]. He noted methods of estimating instantaneous frequency, including dif-

ferentiation of phase followed by application of smoothing filters.

2.1.2 Analysis Informed by Study of Biological Vision

Use of Gabor filters for image analysis purposes gained support in the 1980’s

as research found the Gabor representation to be similar to biological vision
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systems.

In [53,54] it was proposed that texture could be considered to be made

of fundamental features called “textons”, and it was found that only the first-

order statistics of these textons have perceptual significance. These textons are

consistent with feature detection found in early biological visual processing [8].

Gabor filters have been found to efficiently extract these textons and compute

their statistics.

It was observed in [59,69] that the organization of cortical simple cells in

the primary visual cortex resembles the profile of Gabor Elementary Functions.

A model for simple cells using 2-D extensions of Gabor Elementary Functions

was developed in [19]. Quantitative data from recordings from many cells was

presented in [50–52], supporting the theory that the behavior of cortical simple

cells can be well modeled using Gabor filters.

An image representation using decomposition into two-dimensional Ga-

bor Elementary Functions was developed in [88,89]. Citing the wavelet form of

cortical simple cells that is similar to Gabor Elementary Functions, a Gaborian

pyramid filterbank was derived for image analysis. A single channel decomposi-

tion from this filterbank can be seen in Fig. 2.3, illustrating the type of texture

information isolated by a Gabor Elementary Function. The reconstruction of

an image from the filterbank can also be seen in [88].

The discovery of a model that closely approximates biological vision sys-

tems allowed for new advances in the analysis of image content. New analysis

algorithms inspired by the model were presented in [93], and texture discrim-

ination and segmentation methods were developed in [16] and [89]. New work
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(a) (b)

Figure 2.3: From [89] (a) Input Lena image. (b) A Gabor decomposition
channel at 30 degrees.

on detecting textons and texture boundaries was presented in [120]. The model

also profoundly influenced the development of the AM-FM model described in

upcoming sections.

2.1.3 Signal Reconstruction

In addition to the analysis of image content using the signal representations

discussed above, efforts were made to reconstruct speech signals from the repre-

sentations. Quatieri performed reconstruction of speech using only magnitudes

of component sine waves in [70]. In [86], Oppenheim illustrated the intelligibil-

ity of phase reconstruction for images and speech. In [88], Porat and Zeevi gave

a comparison of reconstructed signals from Gabor decompositions, an example

of which can be seen in Fig. 2.4.

2.2 AM-FM Demodulation and Analysis

An important advancement in the ability to mathematically describe and an-

alyze signal content that relates to human perception was the development of
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(a)

(b) (c)

Figure 2.4: From [88] (a) Input Lena image. (b) Reconstruction from 12626
5x5 Gabor elementary functions. (c) Reconstruction from 4062 GEF’s.
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the AM-FM model as a signal representation.

The AM-FM representation, first described in 1990 in [8], is given for a

real-valued signal s : Rn → R, x ∈ Rn as

s(x) = a(x) cos(ϕ(x)), (2.5)

where a : Rn → [0,∞) is the amplitude modulation of the signal and ϕ : Rn →

R is the phase modulation of the signal. Within this model, the values of the

amplitude modulation can be thought of as local contrast, and the gradient of

the phase∇ϕ(x) gives the instantaneous frequency of the signal which describes

the local magnitude and orientation of repeated lines and patterns in the image.

For a complex-valued signal z : Rn → C, the AM-FM signal model is

given by

z(x) = a(x)ejϕ(x). (2.6)

In [8], Bovik et al. used the model to differentiate image texture regions,

which were first decomposed into frequency and orientation channels using two-

dimensional Gabor functions. While application of the AM-FM model to a

general image can result in highly variable modulation functions, the prelimi-

nary Gabor decomposition allowed slowly varying amplitude and phase channel

envelopes for analysis. Examples were given of texture segmentation via com-

parison of AM functions and via comparison of FM functions to detect textures

of differing phase.

Justification for the use of Gabor filter decomposition in AM-FM models

was given in [7], which stated that the trade-off between spectral selectivity

and accuracy in boundary localization is optimized by Gabor filters. The first
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discussion of a multicomponent version of the AM-FM model based upon a

Gabor filterbank was presented in [34]. This led to the formalization of the

complex-valued multicomponent AM-FM image model

z(x) =
K∑
i=1

ai(x)ejϕi(x). (2.7)

In this model, the image is represented as a sum of K locally coherent AM-FM

components, where ai and ϕi are the amplitude and frequency modulations of

the ith component.

An approach measuring emergent image frequencies was then given

in [9], where the emergent frequencies are taken across channels at all points

in an image. It was analytically shown that Gabor channel filters maximally

localize the potential emergent frequency solutions in space and frequency, and

an iterative algorithm was given to compute frequencies and amplitudes. Local

spatio-frequency moments were used in [105] to compute the shape of curved

surfaces from texture.

Lu and Doerschuk presented in [61] a Model-Based Demodulation Al-

gorithm (MBDA) which considers sums of AM-FM models in the presence of

noise to statistically determine amplitude and frequency modulations. They

stated that the parameters of the algorithm correspond to decomposition by

Gabor filters and they applied the MBDA to speech processing examples.

These first approaches to the AM-FM model presented results that

highly correspond to human visual perception, as demonstrated in Fig. 2.5.
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(a) (b)

(c)

Figure 2.5: From [9] (a) Input image of juxtaposed textures. (b) Needle dia-
gram showing computed emergent image frequencies. (c) Computed amplitude
modulation.
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2.2.1 Gabor Filterbank Decomposition

The filterbanks used for decomposition of images into narrowband channels

of smoothly varying local amplitude and frequency modulation functions are

composed of a designed array of Gabor filters. In the space domain, the Gabor

filter impulse response is given by [40]

gm(x) =
1

σm
√

2π
exp[− 1

4σ2
m

xTx] exp[j2πΩT
mx], (2.8)

where the radial center frequency is |Ωm| and the orientation is arg[Ωm].

In the frequency domain, the Gabor filter is given by [35]

Gm(Ω) = 4
√

8πσ2
m exp[−4π2σ2

m(Ω−Ωm)2]. (2.9)

The shape of each filter is determined by the parameter η, which is

the desired fraction of the filter peak at which the filters in the filterbank will

intersect, and by the parameter

σm =

√
− ln η

2πγΩm

(2.10)

where

γ =
(2B − 1)2

(2B + 1)2
(2.11)

and B is the bandwidth of the filter in octaves.

The positioning of the filters in the Gabor filterbank is determined by

the ratio R between filter center frequencies along each ray of the filterbank

and by the angular spacing A between adjacent rays. For a chosen ratio R, the

angular spacing is given by [40]

A = 2 arcsin [(4R)−
1
2{(R2 + 1)(γ − 1) + 2R(γ + 1)}

1
2 ], (2.12)
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Figure 2.6: From [30], 40 channel Gabor filterbank used for decomposition.

where γ is computed from (2.11) for a chosen bandwith B.

In much of the work discussed here, parameters to the Gabor filterbank

were taken as or similar to η = 1
2

and B = 1 [40], so that each octave filter would

intersect with its neighbors at half-peak amplitude. Choosing then R = 1.8

would produce a filterbank such as the 40 channel filterbank shown in Fig. 2.6.

2.2.2 Demodulation Via Energy Separation

Several approaches to computing or estimating the amplitude modulation a(x)

and the frequency modulation ∇ϕ(x) from (2.5), a process known as demod-

ulation, have been proposed. Among the most researched approaches are de-

modulation using the Teager-Kaiser energy separation and demodulation based

upon the complex analytic image.

Kaiser presented an algorithm that can compute the ‘energy’ required to

generate a signal f in [55], and he discussed its application to speech processing.
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Called the Teager-Kaiser Energy Operator, its 1-D discrete equation is [55,63]

Ψd[f(k)] = f 2(k)− f(k − 1)f(k + 1) (2.13)

and its 1-D continuous form is [56, 63]

Ψ[f(t)] = [f ′(t)]2 − f(t)f ′′(t). (2.14)

The energy operator was applied to the estimation of amplitude and

frequency modulation functions in [56,68]. It was shown that the operator gives

approximate equality to the product of the squared AM and FM functions, as

in

Ψ{a(t) cos[φ(t)]} ≈ a2(t)ω2(t) (2.15)

where ω(t) = dφ(t)
dt

, and the operator was used to track the AM envelope of a

signal, the instantaneous frequency, and product of the two. Then, in [65–67],

the energy operator was used to separate the energy product into AM and FM

components using combinations of instantaneous outputs from the operator

applied to the signal and its one-step shifts. This resulted in an approximation

called the Energy Separation Algorithm (ESA). The continuous 1-D Energy

Separation Algorithm (CESA) [65] is given by

|a| ≈ Ψ[f(t)]

[Ψ(df
dt

)]
1
2

, (2.16)

|ω| ≈

[
Ψ(df

dt
)

Ψ[f(t)]

] 1
2

(2.17)

and the discrete 1-D Energy Separation Algorithm (DESA) [65] is given by
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∣∣a(k)
∣∣ ≈ 2Ψd[f(k)]

{Ψd[f(k + 1)− f(k − 1)]} 1
2

, (2.18)

Ω(k) ≈ arcsin

{Ψd[f(k + 1)− f(k − 1)]

4Ψd[f(k)]

} 1
2

 . (2.19)

Bounds for the approximation error were derived in [67].

In [12], the performance of the ESA was shown to improve when the

signal is first separated into channels and a multidimensional energy operator

and multidimensional energy separation algorithm to estimate the AM and

FM functions of images was presented in [63, 64]. The continuous 2-D energy

operator given was

Φ(f) =

(
∂f

∂x

)2

+

(
∂f

∂y

)2

− f

(
∂2f

∂x
+
∂2f

∂y

)
. (2.20)

This operator was used to produce the continuous 2-D Energy Separation Al-

gorithm

|a| ≈ Φ(f)

[Φ(∂f
∂x

) + Φ(∂f
∂y

)]
1
2

, (2.21)

|ωx| ≈

[
Φ(∂f

∂x
)

Φ(f)

] 1
2

, (2.22)

∣∣ωy∣∣ ≈
Φ(∂f

∂y
)

Φ(f)

 1
2

. (2.23)

The discrete version of the 2-D energy operator was also presented in [63]

as

Φd[f(m,n)] = 2f 2(m,n)−f(m−1, n)f(m+1, n)−f(m,n−1)f(m,n+1) (2.24)
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along with the resulting discrete 2D Energy Separation Algorithm

∣∣a(m,n)
∣∣ ≈ 2Φd[f(m,n)]

{Φd[f(m+ 1, n)− f(m− 1, n)] + Φd[f(m,n+ 1)− f(m,n− 1)]} 1
2

,

(2.25)

∣∣Ω1(m,n)
∣∣ ≈ arcsin

{Φd[f(m+ 1, n)− f(m− 1, n)]

4Φd[f(m,n)]

} 1
2

 , (2.26)

∣∣Ω2(m,n)
∣∣ ≈ arcsin

{Φd[f(m,n+ 1)− f(m,n− 1)]

4Φd[f(m,n)]

} 1
2

 . (2.27)

In [63], the multidimensional DESA algorithms were applied to image

channels obtained via Gabor decomposition.

Application To Speech and Image Analysis

The Energy Separation Algorithm was applied to speech modeling in [12, 65,

66], with bandpass filtered speech shown to give corresponding AM and FM

functions in [66], and with the modeling of noisy signals considered in [12]. An

example of ESA demodulation of a speech signal can be seen in Fig. 2.7. The

multidimensional DESA was applied to image texures in [63], with an example

of ESA demodulation of a texture image shown in Fig. 2.8.

2.2.3 Analytic Image Based Demodulation

Another set of highly researched demodulation techniques is based on compu-

tation of a complex analytic image that is associated with a real image. These
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(a)

(b) (c)

Figure 2.7: From [66], DESA applied to speech. (a) Signal s(n) from speech
vowel /E/. (b) Estimated amplitude envelope using DESA, from (a) filtered by
Gabor filter centered around 1580 Hz. (c) Estimated instantaneous frequency,
smoothed by an 11-point median filter. Dotted line is Gabor filter center.
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(a)

(b) (c)

Figure 2.8: From [63], DESA applied to a texture image. (a) Original wood
texture image. (b) Estimated amplitude envelope using DESA, from (a) fil-
tered by Gabor filter centered around horizontal and vertical frequencies of
35.5 and 14.7 cycles per image. (c) Estimated instantaneous frequency vectors,
superimposed upon the bandpass image of (a).
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techniques have found wide usage in analysis and applications involving the

AM-FM model.

Demodulation based upon the concept of the analytic image was pre-

sented in [8]. Given a complex image z(x), computation of the amplitude and

of the phase in (2.6) is given by [8, 29,34,40]

a(x) = |z(x)| (2.28)

for the amplitude modulation, and by [8,97]

ϕ(x) = arctan

(
Im
[
z(x)

]
Re
[
z(x)

]) (2.29)

for the phase modulation.

The frequency modulation ∇ϕ(x) can then be taken as the gradient

of the phase modulation in (2.29), however since the arctangent function in

that equation has a range of (−π, π], phase discontinuities are introduced that

have no relation to visual image content. As such, alternative methods for the

estimating frequency content have been developed, such as the frequency de-

modulation developed in [34] using a quasi-eigenfunction approximation, given

as

∇ϕ(x) = Re

[
∇z(x)

jz(x)

]
. (2.30)

The Analytic Image

Introduced by Gabor in [27], the analytic representation of a real signal, called

the analytic signal removes redundant frequency information from the real-

valued signal and facilitates the demodulation of the signal. Gabor gave the

analytic signal z(t) corresponding to a one dimensional continuous real signal
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s(t) as

z(t) = s(t) + jq(t), (2.31)

where q(t) is the signal in quadrature to s(t). He then noted that the analytic

signal could be computed effectively in the frequency domain, as the Fourier

transform of z(t), Z(Ω) = F[z(t)], can be found directly from the Fourier

transform of s(t), S(Ω) = F[s(t)], according to

Z(Ω) =

{
2S(Ω), Ω > 0

0, otherwise.
(2.32)

The quadrature signal q(t) is related to s(t) in that it is the Hilbert

transform of s(t), defined by

H
[
s(t)
]

= s(t) ∗ 1

πt
=

1

π

∫
R

s(τ)

t− τ
dτ, (2.33)

which was noted in [29] to also be readily computed in the frequency domain

from

F
{
H
[
s(t)
]}

= −j sgn(Ω)S(Ω), (2.34)

where S(Ω) = F
{
s(t)
}

. This leads to a direct computation of the analytic

signal in the frequency domain similar to that given by Gabor:

Z(Ω) =


2S(Ω), Ω > 0
S(Ω), Ω = 0

0, Ω < 0,
(2.35)

The definition of the analytic signal was used in [8] to accomplish de-

modulation by first decomposing the image using Gabor filters, and then noting

that the real and imaginary parts of the filters closely approximate a Hilbert

transform pair. This allowed the Gabor filter to be interpreted as the analytic

signal z of the Gabor channel, from which the amplitude modulation function
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could be taken as that from (2.28), and the frequency modulation functions

could be computed from

fx(x, y) =
Re
[
z(x, y)

]
·DxIm

[
z(x, y)

]
− Im

[
z(x, y)

]
·DxRe

[
z(x, y)

]
a2(x, y)

(2.36)

and

fy(x, y) =
Re
[
z(x, y)

]
·DyIm

[
z(x, y)

]
− Im

[
z(x, y)

]
·DyRe

[
z(x, y)

]
a2(x, y)

, (2.37)

where Dx = ∂
∂x

and Dy = ∂
∂y

.

A more direct computation was described in [32] by presenting the two

dimensional analytic image associated with a real image. The analytic im-

age is based on a multidimensional directional Hilbert transform, an adjusted,

continuous version of which is given in [29,44] as

F
{
Hi[s(x)]

}
= −j sgnadj(Ω

Tei)S(Ω), (2.38)

where ei is the unit vector in the xi direction, Ω = [Ω1 Ω2 . . . Ωn]T is the

argument of the n-dimensional Fourier transform, and

sgnadj Ω =
n∑
i=1

sgn∗Ωi

i−1∏
k=1

(
1− |sgn∗Ωk|

)
, (2.39)

where

sgn∗ x =


1, x > 0
0, x = 0
−1, x < 0,

(2.40)

or, as noted in [97], where

sgnadj Ω =

{
sgn∗Ων , Ω 6= 0

0, Ω = 0,
(2.41)

where ν = min
{
i ∈ [1, n] : Ωi 6= 0

}
.
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The discrete version of the multidimensional, adjusted, directional Hilbert

transform is given in [29,97] as

F
{
Hi[s(k)]

}
= −j sgnper(Ω

T ei)S(Ω), (2.42)

where k ∈ Z2, and sgnper(Ω) is a periodic sign function

sgnper Ω =
n∑
i=1

sgnF Ωi

i−1∏
k=1

(
1−

∣∣∣sgnF Ωk

∣∣∣), (2.43)

where

sgnF x =


1, 0 < W{x} < π
0, W{x} ∈ {0, π}
−1, −π < W{x} < 0,

(2.44)

and where W{·} is a wrapping operator given by

W{ω} =

{
π, ω ∈ {x ∈ R : x = π(2m+ 1), ∀m ∈ Z}

ω mod π, otherwise.
(2.45)

The discrete adjusted Hilbert transform is then used to obtain a discrete

analytic image z : Z2 → C according to

z(k) = s(k) + jq(k), (2.46)

where q(k) is obtained by applying the discrete partial Hilbert transform to

s(k). For an for N×L image, direct calculation of the spectrum of the analytic

image from the spectrum of the input image is then given by [29,97]

Z(u, v) =



2S(u, v), u = 1, 2, . . . , N
2
− 1,

0, u = N
2

+ 1, N
2

+ 2, . . . , N − 1,
2S(u, v), u = 0, v = 1, 2, . . . , L

2
− 1,

2S(u, v), u = N
2
, v = 1, 2, . . . , L

2
− 1,

0, u = 0, v = L
2

+ 1, L
2

+ 2, . . . , L− 1,
0, u = N

2
, v = L

2
+ 1, L

2
+ 2, . . . , L− 1,

S(u, v), otherwise.

(2.47)
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The analytic image was used in [32] to derive corresponding demodula-

tion algorithms that operate on the complex image. Once a frequency modu-

lation function had been computed, the new AM equation was given as

a(x) ≈
∣∣∣∣ zi(x)

Gi[∇ϕ(x)]

∣∣∣∣ , (2.48)

where Gi is the Gabor function for the ith component in (2.7).

Further consideration of the directional Hilbert transform was also pre-

sented in [45]. There, it was stated that the directional Hilbert transform acting

in horizontal and vertical directions gives different AM-FM models. Relation-

ships between the models were investigated and it was shown that they are

‘essentially equivalent’.

The Quasi-EigenFunction Approximation

Analytic image based demodulation algorithms were developed through the use

of a quasi-eigenfunction approximation, or QEA, that was introduced in [34].

The approximation, which is a ‘quasi-extension of the eigenfunction concept of

linear system theory’, posits that the response of a linear system g with Fourier

transform G given input signals of the form Aejϕ can be approximated as

g{Aejϕ} = G(∇ϕ)Aejϕ. (2.49)

This is similar to the concept of the eigenfunction/eigenvalue pair in lin-

ear system theory, whereG(∇ϕ) is the eigenvalue associated with the eigenfunc-

tionAejϕ for the system g, and this similarity was shown in [29,33,34] to be close

to equality for signals Aejϕ with smoothly varying amplitude and frequency

modulations. The quasi-eigenfunction approximation was then used [11, 29,

29



33, 34] to develop the frequency demodulation estimate in (2.30) and to give

bounds for the estimation error. The QEA was also applied to the discrete

Teager-Kaiser operator in [10, 11] to derive bounds for ESA demodulation ap-

proximations.

Bounds on approximation errors for a multidimensional QEA were de-

rived in [29, 32, 42], and the variation of approximation error bounds was dis-

cussed in [33]. The multi-dimensional, discrete QEA was used to derive new

discrete frequency demodulation algorithms [29,38,42]

eTi ∇ϕ(k) ≈ eTi ∇ϕ̂(k) = arcsin

[
z(k + ei) + z(k− ei)

2z(x)

]
, (2.50)

known as the multidimensional sine algorithm, where ei is the unit vector in

the ki direction, and

eTi ∇ϕ(k) ≈ eTi ∇ϕ̂(k) = arccos

[
z(k + ei) + z(k− ei)

2z(x)

]
, (2.51)

known as the multidimensional cosine algorithm. It was noted that either

of these algorithms could be used independently to estimate the frequency

modulation function to within π radians, or that they could be used together

to estimate the frequency modulation function to within 2π radians.

Comparison Against ESA Based Analysis

Potamiamos and Maragos performed a comparison between Energy Separation

Algorithm and Analytic Signal based demodulation in [90], and found the re-

sults of the two approaches to be similar, with those from the ESA to be more

suitable in some cases.

Vakman performed a separate comparison in [118], and concluded that

only the analytic signal based approach meets the following physical conditions:
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(A) Amplitude continuity and differentiability: for a small, additive change

in the real signal s(t), the quadrature signal q(t) and, thus, the complex

signal amplitude ϑ(t) should also only change by a small amount.

(B) Phase independence of scaling and homogeneity: the phase ψ(t) associ-

ated with the real signal s(t) should be the same as that associated with

the scaled real signal αs(t), α ∈ R+.

(C) Harmonic correspondence: when the real signal s(t) has a constant ampli-

tude and a linear phase, the complex signal should preserve these quan-

tities as seen in the Euler identity

z(t) = Aej(ωt+ω0) = A cos(ωt+ω0)+jA sin(ωt+ω0) = s(t)+jq(t). (2.52)

He argued that the analytic signal based approach also has an advantage in

accuracy and simplicity. While research has continued using extensions to the

Teager-Kaiser energy operator [22, 60], the remainder of this dissertation will

consider work done using analytic signal based demodulation as a foundation.

2.2.4 Component Analysis Paradigms

The analytic signal based demodulation techniques described above have been

used to formulate several different approaches to texture analysis, which are

briefly summarized in this section.

Tracked Components Analysis

Tracked Multicomponent Analysis was presented and described in [31, 37, 40].

This approach to analysis considers an image texture to be composed of distinct

components which are tracked across channels using a Bayesian estimation
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scheme. The components tracking is carried out with one-dimensional Kalman

filters and the components are then isolated for analysis.

A demonstration of Tracked Components Analysis was given in [41]. 1-D

signal reconstructions from computed components were shown for the first time

in [35]. The first image reconstruction results were given in [36, 37]. Notable

reconstruction results were also given in [38, 40]. Reconstructions including

postfilter smoothing processes were introduced in [39]. Tracked Components

Analysis provided reconstructions from relatively few isolated AM-FM compo-

nents, as seen in Fig. 2.9. Tracked Components Analysis is significant because

is was the first approach to successfully reconstruct a 2D image from computed

modulations, albeit with low fidelity.

Dominant Component Analysis

Introduced in [46] and described in [42], Dominant Component Analysis (DCA)

computes a single representative component for an image texture which is then

analyzed. This more compact representation still leads to effective analysis and

reconstruction results, such as those given in [38, 42]. As seen in Fig. 2.10, a

single computed dominant component is capable of retaining significant image

structure.

Channelized Components Analysis

Channelized Components Analysis (CCA) computes and analyzes one AM-FM

image component per filterbank channel. As described in [39, 42, 43], this ap-

proach leads to many more components than the other analysis approaches.

However, these components may be used for higher-quality analysis and recon-
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(a) (b)

(c) (d)

Figure 2.9: From [39], reconstruction from Tracked Components Analysis. (a)
Original Reptile image. (b) Reconstruction of (a) from six tracked AM-FM
components. (c) Original Raffia image. (d) Reconstruction of (c) from nine
tracked AM-FM components.
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(a) (b)

Figure 2.10: From [42], reconstruction from Dominant Component Analysis.
(a) Original Tree image. (b) Reconstruction of (a) from a single dominant
AM-FM component.

struction results, such as those seen in [39, 42]. Examples of reconstructions

from Channelized Components Analysis are shown in Fig. 2.11, where it can

be seen that the reconstructions capture a large amount of image structure,

though they are not exact. While CCA represented a significant leap forward

in terms of achieving high fidelity AM-FM image reconstructions, it cannot pro-

vide perfect reconstruction due to the inherently non-orthogonal Gabor filters

used for the CCA analysis filterbank.

2.2.5 Practical Analysis Applications

The work described above to develop the AM-FM model has found many uses

in varied applications. The model was applied to the computation of flow lines

in [46]. In [92], Dominant Component Analysis was used to inform the com-

putation of snakes, which are 1D structures that can track visually meaningful

image structures by encircling them. These snakes, or active contours, were

used to perform image segmentation.
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(a) (b)

(c) (d)

Figure 2.11: From [42], reconstruction from Channelized Components Analysis.
(a) Original Mandrill image. (b) Reconstruction of (a) from a 43 channelized
AM-FM components. (c) Original Peppers image. (d) Channelized Compo-
nents Analysis Reconstruction of (c).
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Developmental work on the AM-FM model also helped to expand the

range of the practical application of the model. General n-dimensional analysis

for the model was presented in [42]. A definition for multidimensional instanta-

neous bandwidth was given in [41], and histograms were employed to test the

validity of the multicomponent interpretation. In [43], discontinuities in the

empirically computed image phase were shown to lead to ‘wideband frequency

excursions’ that degrade model quality. Postfilters were presented in [43] to

ameliorate the excursions.

A new reconstruction algorithm for analysis-only AM-FM models was

presented in [106] that eliminated blocking artifacts found in earlier reconstruc-

tion work, particularly along borders between the spatial support of compo-

nents extracted by Tracked Components Analysis and between phase recon-

struction blocks in the CCA approach (where non-perfect phase reconstruction

is typically carried out independently in fixed size image blocks using indepen-

dent phase initial values for each block). The new algorithm proposed in [106]

operated by making use of phase reconstruction boundary conditions in a mul-

tipath interpolative scheme.

Image Segmentation

A major area of application of the AM-FM model has been image segmen-

tation. Promising texture segmentation results using dominant modulations

were shown in [30] and results for both Dominant Component Analysis based

segmentation and Channelized Components Analysis based segmentation were

given in [42].

A statistical clustering algorithm based on a similarity measure was
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combined with Dominant Component Analysis in [108], with results refined by

morphological filtering and connected components labeling for postprocessing.

This algorithm was expanded to be partially unsupervised in [109], requiring

only that the number of regions be specified a priori . In [123], the maximum

number of textured regions was estimated via modulation domain density clus-

tering to achieve fully unsupervised modulation domain image segmentation.

Furthermore, horizontal and vertical spatial information was also considered as

a part of the segmentation algorithm.

Fully unsupervised image Bayesian segmentation based on Dominant

Component Analysis was presented in [122], employing a feature space modeled

as mixture of Gaussians. An expectation-maximization algorithm was used to

estimate the parameters of the mixture and estimates of pixel class labels were

then obtained.

Other Applications

The AM-FM model was used to synthesize missing texture in occluded regions

in [1], where texture inpainting was achieved by a reaction-diffusion process. In

this approach, diffusion is analogous to a smoothing of the image and reaction

then synthesizes the missing texture. The AM-FM model allows localization

of the reaction filters and the new method was shown to result in seamless

transitions with the original texture boundaries as seen in Fig. 2.12.

AM-FM analysis was used to create an effective content-based image

retrieval system from libraries of images in [47]. The performance of this sys-

tem was shown to have an advantage against other Gabor magnitude response

methods.
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(a) (b)

(c)

Figure 2.12: From [1], texture inpainting applied to a texture image. (a) Orig-
inal Bark texture image. (b) Occluded image from (a). (c) Image from (b)
after texture inpainting by AM-FM reaction-diffusion.
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Fingerprint analysis also saw promising work resulting from the em-

ployment of the AM-FM model. In [58], an algorithm was presented to detect

reference points in fingerprint images that had been analyzed using the AM-FM

model. Performance advantages of this approach were demonstrated against

competing methods.

2.3 Orthogonal Filterbank Decomposition

Although the AM-FM models described above found many uses in analysis ap-

plications and resulted in high quality reconstruction of images, perfect recon-

struction efforts were hampered due to the inherently non-orthogonal nature

of the Gabor filterbank. Gabor filters are very desirable for AM-FM analy-

sis because they provide optimal joint spatiospectral localization which leads

to locally coherent (i.e. locally smooth) image components. However, Gabor

filters cannot be made orthogonal, which precludes the possibility of perfect re-

construction from filterbank decomposition unless an undesirable non-smooth

family of biorthogonal functions is introduced for reconstruction (as is done in

the Gabor transform [4]). Accordingly, several efforts were made to address

the trade-off between using Gabor filters that provide smooth image compo-

nents which correspond well to human visual perception but cannot provide

perfect reconstruction and seeking for some alternative family of orthogonal

filters that might provide perfect reconstruction while still retaining the many

desirable properties of Gabor filters.
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2.3.1 Orthogonal Filterbanks for Reconstruction

An orthogonal multiresolution representation was presented by Mallat in 1989 [62],

where he defined the wavelet representation. In that work, he used the rep-

resentation to study applications of image data compression and texture dis-

crimination. Herley and Vetterli then used similar wavelets to construct perfect

reconstruction wavelet filterbanks in [119]. Giving a discussion of the wavelet

transform versus the classical short-time Fourier transform, they also described

the conditions needed for perfect reconstruction. Their proposed filterbanks

were biorthogonal with symmetries, with complementary high pass filters used

in conjunction with the given low pass filters to achieve perfect reconstruction.

In 1999, to be able to quantify the joint localization of the analysis

filterbank channels in both time and frequency, Przebinda et al. introduced

a measure related to the discrete uncertainty principle in [20] for the phase

plane compactness of general discrete-time signals. They presented a lower

limit for compactness and showed that Gaussians may not be the most com-

pact basis functions when discretized. In [21], they termed this measure the

‘discrete Hirschman (1957) uncertainty principle’, and showed that the dis-

crete Hirschman measure does not correspond to the continuous Hirschman

uncertainty principle (which generalizes Heisenberg uncertainty) no matter how

densely it is sampled.

A similar discrete uncertainty measure was developed by Tay et al.

in [111] to design a wavelet filter with optimal localization, and the filter was

used to construct a separable 2-D wavelet transform, which was applied to test

images. In [110], the new wavelet transform was used to obtain an estimate of

the number of textured regions in an image. This estimate was obtained from
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Figure 2.13: From [97], the discrete wavelet transform filterbank developed by
Tay. The gray levels in this representation have been scaled to improve display.

the clustering of wavelet coefficients computed over disjoint blocks. In [112],

an uncertainty measure was presented for entire wavelet filterbanks, taken as

the geometric mean of per-filter uncertainty measures. Here, comparative test

results were given for different channel count filter banks. Then, in [113], a new

new non-separable wavelet filter bank was constructed to allow for a wavelet

transform with orientation selection. Starting with the previously developed

separable filterbank, the channels were decomposed in the frequency domain

into two non-separable filters that provide orientation information. A repre-

sentation of the developed separable filterbank can be seen in Fig. 2.13.

2.3.2 The Steerable Pyramid Filterbank

A separately developed orthogonal filterbank was the Steerable Pyramid filter-

bank presented in 1991 by Freeman [26]. The filters in this filterbank are linear
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combinations of basis filters that can be adaptively steered to any orientation.

Freeman showed that the filter output is analytically determined as a function

of orientation. In [3], Daubechies et al. used the wavelet transform to decom-

pose images in a pyramidal structure. Using this structure, they presented

a progressive image transmission scheme that quickly transmits recognizable

image structure. In [96], Simoncelli and Freeman stated that a drawback of or-

thogonal wavelet transforms is that they are not ‘shiftable’, meaning that they

exhibit instability under translation, dilation, or rotation of the input signal.

They proceeded to present one and two-dimensional shiftable transforms.

Then, in 1995, Simoncelli presented a description of Steerable Pyra-

mid decomposition and of the implementation of the Steerable Pyramid trans-

form [95]. While not used for perfect reconstruction results at the time, Steer-

able Pyramid decomposition was effectively used in a variety of analysis ap-

plications. An example of a Steerable Pyramid filterbank used later in this

dissertation is shown in Fig. 2.14 and examples of image components obtained

from decomposition using the filterbank can be seen in Fig. 2.15.

2.4 Spline Representation and Computation

A separate problem preventing perfect reconstruction from the AM-FM model

was the inability to differentiate discrete phase or integrate discrete frequency

modulation functions without error. While these calculations could be carried

out exactly in the continuous domain, discrete versions of the calculations have

always necessitated estimates of some sort. To greatly reduce the error associ-

ated with the discrete calculations, work was put towards fitting splines to the

AM-FM functions.
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Figure 2.14: From [73], frequency domain representation of example Steerable
Pyramid filterbank.

2.4.1 Spline Representation

The space of polynomial splines is given by [2, 114–116]

Sp =

gp(x) =
∑
k∈Z

y(k)βp(x− k), x ∈ R, y ∈ `2(Z)

 , (2.53)

where βp(x) is the B-spline of order p given by

βp(x) =

p+1∑
i=0

(−1)i

p!

(
p+ 1

i

)(
x+

p+ 1

2
− i
)p

µ

(
x+

p+ 1

2
− i
)

(2.54)

and where µ(x) is the unit step function

µ(x) =

{
0, x < 0
1, x ≥ 0.

(2.55)

The set of shifted B-splines {βp(x− k), k ∈ Z} is a basis for the spline

space Sp [116]. This allows a signal gp(x) to be represented in the spline space

as a weighted sum of the basis functions, for which interpolation, differentia-

tion, and integration operations can be accurately carried out. A theoretical
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Figure 2.15: Example image components obtained via Steerable Pyramid de-
composition. (a) Original Lena image. (b-m) Components at orientations: 7.5◦

(column 1), 60◦ (column 2), 120◦ (column 3).
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framework supporting the general use of splines in discrete signal processing

was developed by Unser, Aldroubi, and Eden in [115], where they presented

algorithms for the continuous representation of discrete signals using B-splines

and gave signal reconstruction with interpolation. In [116,117], they described

efficient filtering techniques to represent and process discrete signals with B-

splines, while in [114] they discussed spline image processing and made further

justifications for the usage of splines. They noted that useful examples of im-

age processing operations that could be made theoretically rigorous by spline

representation include edge detection via gradients and rotation and scaling

via interpolation.

The weights y(k) in (2.53) that are assigned to each spline basis func-

tion are the spline coefficients . By noting that all discrete B-splines bp(k) are

symmetric FIR filters, Unser et al. developed methods by which to efficiently

compute the spline coefficients using inverse filters. Spline coefficients may be

computed from signal samples g(k) recursively according to [97,114,117]

c+(k) = g(k) + zic
+(k − 1), (2.56)

c−(k) = zi
(
c−(k + 1)− c+(k)

)
, (2.57)

where zi is the ith root inside the unit circle of the inverse filter for the B-spline.

For B-splines of order p = 3, which is the order of the B-splines used in this

dissertation, zi is given in [114,117] as z1 = 2 +
√

3.

The equations (2.56) and (2.57) require boundary conditions before they

can be applied. For an input signal g of length K the boundary conditions
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developed by Unser et al. [114,117] are given as

c+(0) =
1

1− z2K−2i

2K−3∑
m=0

g(m)zmi , (2.58)

c−(K − 1) =
−zi

1− z2i

(
c+(K − 1) + zic

+(K − 2)
)
, (2.59)

where the signal g in (2.58) is extended with mirror symmetric boundary condi-

tions. Thus, to apply a filter bp(k) to an input signal g(k) and obtain its spline

coefficients y(k) via the recursive implementation of the spline interpolation,

the initial condition of (2.58) must first be calculated, allowing the application

of the causal filter given by (2.56). Then from the resulting intermediate signal,

the final condition of (2.59) must be calculated, allowing the application of the

anticausal filter given by (2.57). The resulting signal then contains the desired

spline coefficients c−(k) = y(k).

The representation of a multidimensional signal gp(x) in the space of

polynomial splines can be accomplished by calculating the spline coefficients

y(k) present in the tensor product spline model [91,114–117]

gp(x) =
∑
k∈Zn

y(k)
n∏
i=1

βpi(xi − ki)

= y(k) ∗ βp1(x1) ∗ βp2(x2) ∗ · · · ∗ βpn(xn),

(2.60)

where x = [x1 x2 . . . xn]T and k = [k1 k2 . . . kn]T . The B-spline basis func-

tions in (2.60) are separable [116], and so the multidimensional spline interpo-

lation is accomplished by applying the recursive filter implementation (2.56)–

(2.59) independently in each dimension.

2.4.2 Spline Differentiation and Integration

The representation of a discrete signal in the space of polynomial splines can

be thought of as the assignment of a weighted B-spline to each point of the
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discrete signal. Once the spline coefficients of the representation are known,

the following very useful properties can be observed [116]:

(A) The sum of the piecewise splines exactly constitutes the original signal.

(B) The piecewise splines are continuous where they join together, making

the entire representation continuous and differentiable up to order n− 1

for splines of order n.

The derivative of the order-p B-spline is given by [114,116,117]

d

dx
βp(x) = βp−1

(
x+

1

2

)
− βp−1

(
x− 1

2

)
, (2.61)

which leads to the derivative of the spline interpolant gp(x) given by

d

dx
gp(x) =

∑
k∈Z

y(k)
d

dx
βp(x− k)

=
∑
k∈Z

y(k)

(
βp−1

(
x− k +

1

2

)
− βp−1

(
x− k − 1

2

))

=
∑
k∈Z

(
y(k)− y(k − 1)

)
βp−1

(
x− k +

1

2

)
,

(2.62)

as well as the second derivative of gp(x) [114,116,117] which is given by

d2

dx2
gp(x) =

∑
k∈Z

(
y(k + 1)− 2y(k) + y(k − 1)

)
βp−2(x− k), (2.63)

where x ∈ R and k ∈ Z.

The derivatives can be efficiently computed by calculating the first- and

second-order differences according to [97]

dy(k) = y(k)− y(k − 1) (2.64)

d2y(k) = y(k + 1)− 2y(k) + y(k − 1) (2.65)
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and then applying the shifted filter cp−1(k) to dy(k) to compute the first deriva-

tive samples ġ(k) and the centered filter bp−2(k) to d2y(k) to compute the second

derivative samples g̈(k). The shifted filter cp−1(k) is the inverse of the discrete

shifted B-spline cp(k) = βp(x+ 1
2
)
∣∣
x=k

developed by Unser et al. [2, 115,116].

Integration of the derivative samples for recovery of the original discrete

signal g(k) can be carried out provided that initial conditions, analogous to the

integration constant, are supplied. These initial conditions can be determined

from the transfer functions of the filters used to compute the derivatives. In

the case where a B-spline of order 3 is used to compute the spline interpolant,

also referred to as a cubic spline interpolant, the z-transforms of the derivative

filters are given by [114–117]

D1(z) =

(
6

z + 4 + z−1

)(
1− z−1

)(z + 1

2

)
, (2.66)

D2(z) =

(
6

z + 4 + z−1

)(
z − 2 + z−1

)
(1), (2.67)

where D1(z) is the z-transform of the first derivative filter and D2(z) is the

z-transform of the second derivative filter. Upon analysis of these transfer

functions, it can be seen that zeros exist at z = 1 and z = −1 for the first

derivative filter, and at only z = 1 for the second derivative filter. This implies

that two initial conditions are needed to recover g(k) from its first derivative,

whereas only one initial condition is needed to recover g(k) from its second

derivative.

Using (2.66), the signal samples g(k) can be computed from the first

derivative samples ġ(k) according to the integration filter [97]

g(k) = ġ(k) ∗
(
cp−1

)−1
(k) ∗ µ(k) ∗ bp(k). (2.68)
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For the case of a cubic spline interpolant, the z-transform of the above integra-

tion filter is given by [97]

I(z) =

(
2

z + 1

)(
1

1− z−1

)(
z + 4 + z−1

6

)
. (2.69)

This transfer function shows that the spline integration filter is equivalent to the

inverse of the spline derivative filter in (2.66) , meaning that I(z) = (D1)
−1 (z).

Similar results can also be obtained for the case of recovering g(k) from its

second derivative samples [97]. Thus, the original discrete signal g(k) can be

recovered from its first derivative samples by using the inverse filter (D1)
−1 (z)

and the samples g(0) and g(1) as initial conditions, and g(k) can be recovered

from its second derivative samples by using the inverse filter (D2)
−1 (z) and the

sample g(0) as the initial condition.

2.5 Phase Unwrapping

By adding the spline representation and computation techniques discussed in

Section 2.4 into the discrete AM-FM model, it becomes possible in theory

to replace the earlier frequency estimation algorithms with a direct and more

accurate calculation of frequency information as the gradient of the phase mod-

ulation from (2.29), but for one remaining obstacle. The arctangent function

in (2.29) is multivalued and its principal branch has a range of (−π, π], which

introduces undesirable non-smooth jumps in the computed phase where the

phase modulation function crosses branch cuts. To make this clear, consider

that (2.29) can also be written as

W{ϕ(k)} = arctan

(
Im
[
z(k)

]
Re
[
z(k)

]) , (2.70)
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where k ∈ Zn, z(k) is the discrete analytic image, and W{·} is the wrap-

ping operator that maps each phase value to its modulo-2π congruent value in

(−π, π]. The phase samples directly calculated from (2.70) are known as the

principal phase values (ppv’s), and the resulting phase function is referred to

as a wrapped phase. Because of the branch cuts in the arctangent function,

the ppv’s computed by (2.70) contain jumps that have no relation to visual

image content, which renders any frequency information computed from them

ineffective for analysis. In fact, the AM-FM frequency estimation algorithms

presented thus far were developed to avoid direct use of the computed phase [8].

The wrapped phase can be made much more useful if the principal phase

values are modified so that they are allowed to fall outside of the range (−π, π],

producing an equivalent phase function that is locally smooth and corresponds

well to human visual perception of the visual information in an image. The

process of modifying the principal phase values in this way is referred to as

phase unwrapping, a problem which has been extensively studied. It is encoun-

tered in, e.g., synthetic aperture radar (SAR) [23,25,121], magnetic resonance

imaging [15, 101], texture discrimination and image segmentation [8], acoustic

imaging, projection and diffraction tomography, and adaptive optics [124].

In one dimension, phase unwrapping is a relatively simple problem to

solve. Because the phase values in the AM-FM model from (2.5) or (2.6) are

arguments of sinusoidal functions, one may add any integer multiple of 2π to

them without changing the signal whatsoever. As such, phase unwrapping is

the process of selecting the best multiple of 2π, or branch of the sinusoidal

function, to maximize local smoothness of the phase function. The unwrapped
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phase can be expressed as [97]

ϕ(k) = W{ϕ(k)}+ 2πb(k), (2.71)

where b : Zn → Z is the branch selection function for each principal phase value.

In one dimension, the most common method of unwrapping phase is to assume

that the difference between any two neighboring phase samples should be no

more than π radians [14,57,97,102,103,107] and to select branches accordingly.

This results in a smooth unwrapped phase in one dimension.

Unfortunately, in two dimensions phase unwrapping becomes more com-

plex as each principal phase value has multiple neighboring phase values from

which to select a branch. Thus, for each principal phase value, one neighbor

must be chosen to conform to, and in general it is impossible to select branches

such that the difference between all neighboring phase values will be less than

π [97].

Many multidimensional phase unwrapping algorithms have been pro-

posed, out of which a few of are noted here. In [103], Spagnolini presented a 2-D

phase unwrapping algorithm given separate instantaneous frequency estimates

that seeks to minimize discontinuity in the unwrapped phase. He noted that

the presence of noise in signals results in the inability to distinguish between

aliasing due to noise or due to steep phase slopes. Jain et al. presented a block

least-squares method for 2-D phase unwrapping in [104]. This method breaks

an image into small blocks of one phase wrap, unwraps the blocks, and then

merges the blocks back together. It was shown to successfully unwrap real and

synthetic images. Valadao gave an energy minimization framework for phase

unwrapping in [5]. The algorithms given for the framework were termed ‘phase
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unwrapping max-flow/min-cut’, and solve optimization problems using graph

cut techniques.

In [97–100], Sivley and Havlicek developed a new multidimensional

phase unwrapping algorithm for the AM-FM model that was based on the

spline representation and computation techniques described in the previous

section. This algorithm made use of a least-squares phase unwrapping method

in which an estimated unwrapped phase with a second derivative closest in

the least-squares sense to the second derivative of the principal phase values is

computed and then made congruent with the principal phase values to arrive

at a ‘consistent’ estimation of amplitude, phase, and frequency information.

The estimated unwrapped phase modulation, denoted by ψ(k), is ar-

rived at using the common least-squares minimization procedure, where the

error function is defined as [99]

ε =
∑
k

∣∣∣∂2ψ(k)− ∂2ϕ̂(k)
∣∣∣2. (2.72)

In (2.72), ∂2ψ(k) is the second derivative of the desired estimated phase mod-

ulation and ∂2ϕ̂(k) is the second derivative of the principal phase values, esti-

mated as [99]

∂2ϕ̂(k) = Re

[
∂2z(k)

jz(k)

]
+ Im

[(
∇z(k)

jz(k)

)2
]
. (2.73)

An efficient method for direct calculation of the estimated phase mod-

ulation ψ(k) using DFT techniques was developed in [97]. Since the spline

derivative operation is separable, the direct calculation makes use of a 1-D

second derivative filter h(k), where k ∈ Z, such that (2.72) is now expressed
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as [97]

ε =
n∑
i=1

∑
k

(
ψ(k) ∗ h(eTi k)− eTi ∇ϕ̂(k)

)2
, (2.74)

where ei is the unit vector in the ki direction. The z−transform of the second

derivative filter h(k) is given as [99]

H(z) =
6z − 12 + 6z−1

z + 4 + z−1
. (2.75)

Differentiation of the estimated unwrapped phase modulation gives a

frequency modulation that corresponds well to visual perception of the image

content. However, the estimated phase is not congruent with the principal

phase values, meaning that each estimated unwrapped phase value ψ(k) is not

a multiple of 2π added to the principal phase value ϕ̂(k) as per (2.71) and

cannot be used to perfectly reconstruct the original image.

An unwrapped phase modulation that retains the structure of the es-

timated unwrapped phase modulation but is congruent with the principal

phase values is obtained by defining the desired unwrapped phase modulation

from (2.71) to be a scaled version of the least-squares phase ψ(k) according

to [97]

ϕ(k) = W{ϕ(k)}+ 2πb(k) ≈ γψ(k), (2.76)

where W{ϕ(k)} is the wrapped phase modulation containing the principal

phase values and the branch function b(k) is defined as [97]

b(k) = round

(
γψ(k)−W{ϕ(k)}

2π

)
, (2.77)

where γ is a large, real-valued scaling factor.

Selection of a large value for γ controls discontinuities in the original

phase structure by making them insignificant compared to the magnitude of
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the scaled phase. For practical computation, a value of γ = 300 was advocated

by [97] to ensure that the computed scaled phase modulation ϕ(k) embodies

the same nonstationary signal structure as the estimated least-squares phase

modulation ψ(k).

The frequency modulation ∇ϕ(k) was then defined as the spline gradi-

ent of the scaled phase modulation ϕ(k). By this definition, ∇ϕ(k) is approx-

imately γ times larger than the frequency modulation that would be obtained

directly from the principal phase values and thus is a scaled representation of

the visually significant image structure [97]. The advantage to this framework

is that the scaled phase modulation ϕ(k) could be exactly recovered from the

scaled frequency modulation ∇ϕ(k), and once divided by the scaling factor

γ, could be used to exactly recover the original image, while still providing

visually meaningful frequency modulations such as those seen in Fig. 2.16.

2.6 Perfect AM-FM Reconstruction

The development of a suitable orthogonal filterbank, spline-based represen-

tation, differentiation, and integration, and successful phase unwrapping al-

gorithms culminated in the long-sought goal of perfect reconstruction from

the multicomponent AM-FM representation of an image. A usable orthogo-

nal filterbank allowed components to be independent of each other and thus

accurately summed back together into the original image. Spline-based compu-

tational methods removed error from the operations involved in demodulation

and reconstruction. Finally, successful phase unwrapping provided a usable

and visually meaningful frequency modulation function from which the original

phase could be recovered, allowing recovery of the original image components
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(a)

(b) (c) (d)

(e) (f) (d)

(h) (i) (j)

Figure 2.16: Example modulation functions for image components. (a) Orig-
inal Lena image. (b-j) Example components (column 1) and corresponding
amplitude modulations (column 2) and frequency modulations (column 3).
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and then the original image.

This perfect reconstruction AM-FM model was presented in [97,99,100]

using a separable wavelet filterbank that is then decomposed into non-separable

orientation selective channels as described in Section 2.3. Each of the image

components were then fit with splines and the phase of each component was

unwrapped. Then the components were demodulated to obtain a perfect re-

construction representation. At this point, reconstructed images from the rep-

resentation were visually indistinguishable from the original image.

Later work with the perfect reconstruction AM-FM image model, now

also referred to as the AM-FM transform, replaced the decomposition filterbank

with the orthogonal Steerable Pyramid filterbank described in Section 2.3.2.

First employed together in [84], the Steerable Pyramid and AM-FM transform

enabled much of the work described in the next section.

2.7 Recent Application of the AM-FM Model

Work was presented on a new multicomponent AM-FM model that allows

asymptotically exact reconstruction of speech signals in [28]. This new model is

informed by both the ESA and Analytic Image based demodulation approaches.

Computation of frequency modulation functions from the monogenic

signal was demonstrated in [73, 79]. In this work, it was shown that AM-

FM functions computed from partial Hilbert transform are similar to those

computed from the monogenic signal although it was argued that the partial

Hilbert approach is a more efficient representation.

Modulation domain filters for removing ‘beat type’ noise in corrupted
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video were presented in [87]. This noise removal technique can be generalized

for other fixed pattern noise types.

An algorithm to fuse infrared images was given in [81]. Infrared images

were fused at both lowpass and highpass frequency ranges, and results were

shown to be superior to other competing methods.

An AM-FM model based color to grayscale conversion algorithm was

presented in [83]. Modulation domain features of color images were used to

inform an algorithm that computed the mixing coefficients of the color channels.

Favorable performance was demonstrated against other methods.

A new algorithm to compute modulation functions was also presented

in [82]. It was shown that previous algorithms had a wrapped orientation

problem in the phase gradient, and the problem was addressed by imposing

local smoothness constraints on the phase. This algorithm is not used for

image reconstruction, but leads to improved analysis capabilities.

2.7.1 Infrared Target Tracking

The AM-FM model has found considerable application for tracking moving tar-

gets in infrared video. The identification of infrared targets and backgrounds

using modulation domain features was presented in [75]. The features con-

sidered included dominant modulations and it was shown that IR imagery

possesses rich texture structure.

A dual-domain infrared target tracker was developed in [72], using fea-

ture information from both the image domain and the modulation domain.

The new tracker made use of an SIR particle filter track processor and cor-

relation based detection processes. The tracker was shown to have superior
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performance on infrared missile closure sequences. The dual-domain target

tracker was updated in [49] to run fully autonomously after the first frame of

video. This allowed new consistency checks that can detect when the target

appearance model needs to be updated, thereby solving a notoriously difficult

problem in general target tracking for the infrared case.

A different modulation-domain-only target tracker was described in [94].

This tracker employed a new target appearance model update method that

used a new measure of target signature evolution. The modulation-domain-

only tracker was noted to have a reduced computational cost compared to the

dual-domain trackers.

2.7.2 Texture Component Decomposition

Decomposition of texture into new texture components was explored in [73,77,

78]. An algorithm was given to iteratively extract texture components based

on a coherency measure. Examples of these texture components were given for

Brodatz textures. Perfect reconstruction of the original image from computed

texture components was also demonstrated.

Further decomposition of images into both textured and non-textured,

or ‘cartoon’, components was demonstrated in [73,80].

2.8 Modulation Domain Filtering

One of the principal aspirations behind the development of the AM-FM trans-

form has been to gain the ability to perform signal processing operations di-

rectly on the computed modulation functions of an image. Because modulation

functions correspond highly with human visual perception, filtering operations
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(a) (b)

Figure 2.17: From [84], example of modulation domain filtering on amplitude
modulation functions. (a) Original Lena texture image. (b) Amplitude mod-
ulation attenuation within the black rectangle of (a) to remove the bands of
Lena’s hat.

performed in the modulation domain are capable of biological vision inspired

processing tasks that are not easily obtainable using traditional linear filtering

methods. The process of applying these operations in the modulation domain

and successfully reconstructing from the filtered modulation functions is re-

ferred to as modulation domain filtering and is the primary topic discussed in

the remainder of this dissertation.

2.8.1 AM Filters

Initial modulation domain filtering results were focused on performing modifi-

cations to the amplitude modulation only. Results of this type of filtering were

first presented in [84], where AM functions were attenuated at locations match-

ing specified FM characteristics. Among other results, this filtering was applied

to the Lena image to remove the bands in Lena’s hat as seen in Fig. 2.17.

AM based modulation domain filtering was also shown in [76]. Filtering

59



(a) (b)

(c)

Figure 2.18: From [76], example of modulation domain filtering on amplitude
modulation functions. (a),(b) Input clock images. (c) AM-FM fusion of (a)
and (b).

was applied to obtain examples of frequency selective filtering, image restora-

tion, and image fusion. The image fusion technique was used to combine two

differently focused images of clocks into a single image that is focused every-

where, as shown in Fig. 2.18.
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2.8.2 FM Filters

Modulation domain filters that modify the frequency modulation functions have

turned out to be an inherently more difficult problem than modification of AM

functions alone. This is primarily because reconstruction of the phase, and in

turn the image, from the frequency modulation functions is achieved by inte-

grating the FM functions. This integration is dependent upon an integration

constant, which in the context of AM-FM image reconstruction considered here

is known as an initial phase condition. For an unmodified frequency modula-

tion, these initial phase conditions can be taken from the principal phase of the

original image. However, once the FM function has been modified the initial

phase conditions are generally unknown and can be very difficult to deduce.

Early approaches for estimating the initial phase conditions needed in

order to reconstruct by integrating the modified frequency modulations were

presented in [13]. A practical algorithm was given and incorporated into an

integration scheme on different subwindows within the image. This algorithm,

as well as another with estimated initial phase conditions based on a least

squares solution of Poisson equations, was presented in [74]. The least squares

based algorithm was used to perform pointwise rotation and isotropic zooming

to a frequency vector field, an example of which is shown in Fig. 2.19. The

subwindow integration based algorithm was also used to perform pointwise

frequency vector field operations, as seen in Fig. 2.19 and Fig. 2.20. The ‘flat-

tening’ filter in Fig. 2.19 (c) is achieved by setting the horizontal components

of all frequency vectors to zero, while setting the vertical components to the

magnitude of the original vectors. In Fig. 2.20, a pointwise rotation of π
2

radi-

ans is only applied to locations matching frequency orientation and magnitude
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(a) (b)

(c) (d)

Figure 2.19: From [74], modulation domain filtering on frequency modulation
functions. (a) Original Chirp image. (b) Rotation of frequency vectors in (a)
using least squares based reconstruction. (c) Flattening of frequency vectors
in (a) using integration based reconstruction. (d) Rotation and inversion of
frequency vectors in (a) using integration based reconstruction.
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(a)

(b) (c)

Figure 2.20: From [74], modulation domain filtering on frequency modulation
functions in a natural image. (a) Original Barbara image. Processing was
performed within the black rectangle. (b) Detail view of original image. (c)
Result of FM processing to rotate the stripes on the pants.
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(a) (b)

Figure 2.21: From [85], modulation domain scaling and rotation. (a) Barbara
image zoomed in by 2.0. (d) Boat image rotated by 45 degrees.

characteristics that describe the lines in Barbara’s pants, effectively rotating

them while leaving untouched other aspects of the image such as the folds in

the pants. While crude in nature, these early results illustrate some of the

types of remarkably powerful and visually meaningful signal processing results

that can be obtained by modulation domain filtering and by FM processing in

particular. Note that results of this type cannot be readily achieved by any

conventional form of linear or nonlinear filtering.

New generalized AM and FM functions for modulation domain filtering

with artifact free reconstruction were presented in [85]. A new version of the

AM-FM model was developed that incorporates a generalized AM function

Ai(k) for each component i according to

si(k) = ai(k) cos[ψi(k)]

= A1i(k) cos[ϕi(k)] + A2i(k) sin[ϕi(k)],
(2.78)

where ϕi(k) is a smoothed least-squares unwrapped phase and where

A1i(k) = ai(k) cos[pi(k)] (2.79)

64



and

A2i(k) = −ai(k) sin[pi(k)], (2.80)

where pi(k) is a phase congruence term chosen to enforce the relation

ψi(k) = ϕi(k) + pi(k). (2.81)

The generalized function was used to achieve high quality modulation domain

scaling, rotation, and translation results, as seen in Fig. 2.21.

2.9 Summary

In this chapter, I presented the historical development and application of the

AM-FM transform and modulation domain filtering. This included a discussion

of work in the 20th century that established that biological vision systems

involve mechanisms that are very similar to expansion by 2D Gabor elementary

functions, which exhibit optimal joint localization in space and frequency. The

development of the AM-FM model was then presented, with the usage of the

Gabor decomposition contributing heavily to the suitability of the model to

image analysis based on biological visual perception. Different methods of

estimating the frequency modulations of the model were reviewed and multiple

methods of AM-FM based analysis were described. Early results from the

model were covered, with a focus on efforts to estimate image reconstructions

from the model.

Perfect reconstruction from the model required the development of so-

lutions to the challenges of orthogonal filterbank design, spline based computa-

tional methods in the model, and phase unwrapping. Each of these topics was

covered in turn and the resulting emergence of the AM-FM transform with
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perfect reconstruction from the model was discussed. The remainder of the

chapter then focused on the usage of the AM-FM transform in relatively recent

work, with a strong focus on the usage of the transform to reconstruct images

from modified modulation functions, i.e. perform modulation domain filter-

ing. Results were presented from past modulation domain filters which modify

both amplitude and frequency modulations and the difficulties inherent in re-

construction from modified frequency modulations were noted. Modifications

made to the AM-FM model that overcome these difficulties were presented.
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Chapter 3

Phase Unwrapping for Modulation Domain

Filtering

The phase unwrapping algorithm described in Section 2.5 was a break-

through that enabled perfect reconstruction from the multicomponent AM-FM

model (2.7). It also made possible modulation domain filters which modify AM

functions. Unfortunately, the algorithm results in difficulty when reconstruct-

ing from modulation domain filters which modify frequency information due to

the frequency and phase scaling factor that is a core part of the algorithm.

In this chapter, I will describe a new phase unwrapping algorithm that

makes it possible to obtain high fidelity image reconstructions from computed

AM-FM models without the usage of a phase scaling factor. When the fre-

quency modulation functions of the AM-FM model are unmodified, the new

phase unwrapping algorithm still allows for perfect reconstruction. The un-

wrapped phase produced by the algorithm also still provides accurate frequency

modulation functions that are in good agreement with visual perception of the

image.

In the new approach, frequency information from an initial least squares

estimate of the unwrapped phase is used to guide selection of refined phase

values that are congruent with the principal phase of the image. The selection

process applies a queue-based region growing strategy to compute the final
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unwrapped phase solution with sparse branch cuts that tend to be placed only

in areas with low visual impact.

3.1 Challenges Presented by Modulation Domain Fil-
tering

As described in Section 2.2.3, computation of ϕi(x) in the multcomponent

AM-FM model

z(x) =
K∑
i=1

zi(x) =
K∑
i=1

ai(x)ejϕi(x) (3.1)

by the inverse trigonometric function in

ϕi(x) = arctan

(
Im
[
zi(x)

]
Re
[
zi(x)

]) (3.2)

results in a wrapped phase, also referred to as the principal phase, that is

mathematically correct in the sense that it provides perfect reconstruction, but

contains sharp discontinuities along branch cuts of the multi-valued inverse

trigonometric function. These phase discontinuities are undesirable because

they arise solely from mathematics and are both unrelated to and inconsistent

with visual perception of the image. In order to obtain a representation that

provides a visually meaningful interpretation of the FM functions as phase

gradient, ϕi(x) must be unwrapped to remove these branch cuts to the extent

possible. However, in order to maintain perfect reconstruction, the unwrapped

phase at every pixel must be be congruent with the principal phase values

in (3.1).

There is an additional constraint for phase information that is un-

wrapped within the context of the AM-FM image model in order to allow for

perfect reconstruction of the original image: each value ϕ̂i(x) of the unwrapped
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phase must be congruent with the principal phase ϕi(x) modulo 2π:

ϕ̂i(x) = ϕi(x) + 2πb, b ∈ Z. (3.3)

In Section 2.5, an LMS technique was described that produces an un-

wrapped phase estimate ψi(x) for the AM-FM model having a second derivative

as close as possible to the second derivative of the principal phase in a least-

squares sense. However, ψi(x) is not itself congruent with the principal phase.

A congruent unwrapped phase is computed from ψi(x) through the use of a

scaling factor. Upon multiplying ψi(x) by a sufficiently large scale factor and

then selecting the closest congruent phase values, a congruent unwrapped phase

is created that retains the structure of the LMS estimate in a scaled form.

The scaling factor, which is typically chosen to be 300, causes the differ-

ence between neighboring values in both the phase and frequency modulation

functions to become very large, but the scaled information remains completely

accurate as long as the scaling factor is included in analysis operations and

reconstruction from unmodified frequency information. However, if the scaled

frequency vector field is modified in any way that requires the reconstructed

phase modulation to be estimated from the modified frequency modulation,

then the resulting reconstructed phase values will differ significantly from their

ideal correct values due to an estimation error that is multiplied by the scaling

factor. Once these reconstructed phase values are applied to the AM-FM image

model (3.1), the output of the model suffers a substantial loss of fidelity.
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3.2 Frequency Guided Phase Unwrapping

Phase unwrapping techniques may be generally classified as either path-following

algorithms or minimum-norm algorithms [98, 124]. The phase unwrapping

method introduced here uses elements of both approaches. It employs the

LMS unwrapped estimates described in Section 2.5, but uses a region growing

technique similar to those found in [24, 25, 121, 124] to obtain a congruent un-

wrapped phase that is also unscaled, has minimal local variation, and closely

agrees with the smooth (but incongruent) LMS phase estimate. As described

in Section 2.5, the LMS unwrapped phase estimates are computed on the pixel

grid using a DCT-based technique. However, unlike in Section 2.5, where phase

scaling is applied to impose congruency, here the LMS solution is directly in-

terpolated with cubic tensor product splines and differentiated analytically to

obtain an initial estimate of the FM field. This initial estimate is used to guide

a queue-based phase growing algorithm that produces a final unwrapped and

non-scaled phase modulation.

The initial FM estimate is in good agreement with visual perception

but cannot provide perfect reconstruction because the LMS phase estimates are

incongruent with the principal phase values. It is instead used to guide a queue-

based region growing algorithm in order to obtain an improved unwrapped

phase solution ϕ̂i that is congruent with the principal phase but has a gradient

that is close to the initial FM estimate in the sense that it is also in good

agreement with visual perception of the image. The region growing algorithm

seeks to unwrap phase values smoothly starting from dominant/salient seed

points characterized by high amplitude. For each component ti in (3.1), the

AM function ai is thresholded at 20% of peak. Connected components labeling
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is performed on the set of pixels where the AM exceeds this threshold. For

each resulting connected component, the pixel with maximum AM is placed in

a queue where it will seed a region in the final unwrapped phase solution. For

each of these seed pixels, the final phase solution is computed by (3.3) with

b = arg min
b∈Z

∣∣(ϕi(x) + 2πb)− ψi(x)
∣∣ , (3.4)

which is the congruent phase value that is closest in absolute value to the LMS

unwrapped phase. The seed pixel is then removed from the head of the queue

and its 4-neighbors are added to the tail of the queue. When all seed pixels

have been processed in this way, the queue is initialized.

Phase unwrapping is then performed for all remaining pixels in ti using

the region growing algorithm given in Table 3.1. In each iteration of the main

Repeat loop, an improved unwrapped phase value is assigned to the pixel ti(n)

at the head of the queue. This is accomplished by looping over the N , S, E,

and W neighbor pixels. For each neighbor ti(m) where an unwrapped phase

has already been assigned, lines 13-14 select a candidate congruent phase value

ϕ̂dir with minimum absolute difference from the sum (for a N or E neighbor)

or difference (for a S or W neighbor) of the appropriate (horizontal or vertical)

component of the LMS frequency estimate at m and the unwrapped phase at

m. These candidates will all be congruent, differing by integer multiples of 2π

as a consequence of lying on different branches of arctan in (3.2). Lines 17 and

25 assign the unwrapped phase at n by selecting the candidate with largest AM,

which tends to suppress branch cuts from occurring in neighborhoods where

the amplitude is large. Any 4-neighbors of pixel ti(n) where an unwrapped

phase has not been assigned are added to the tail of the queue for subsequent

processing (line 11).
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Table 3.1: Queue-based phase region growing algorithm

01 Repeat
02 n← spatial coordinate of pixel at head of queue
03 remove pixel ti(n) from head of queue
04 amax = 0
05 for dir ∈ {N,S,E,W} {
06 m← spatial coordinate of neighbor dir
07 if (dir ∈ {N,E}) op = “ + ”
08 else op = “− ”
09 if (dir ∈ {E,W}) e = [1 0]T

10 else e = [0 1]T

11 if (ϕ̂i(m) not assigned) place pixel ti(m) at tail of queue
12 else {
13 bdir = argminb∈Z

∣∣(ϕi(x) + 2πb)

− (ϕ̂i(m) op eT∇ψi(m))
∣∣

14 ϕ̂dir = ϕi(x) + 2πbdir

15 if (ai(m) > amax){
16 amax = ai(m)
17 ϕ̂s = ϕ̂dir

18 } } }
19 if ((ϕ̂i(n) assigned ) and (ϕ̂i(n) 6= ϕ̂s)){
20 for dir ∈ {N,S,E,W} {
21 m← spatial coordinate of neighbor dir
22 if ((ϕ̂i(m) assigned) and ((ϕ̂s 6= ϕ̂dir)){
23 place pixel ti(m) at head of queue for reprocessing
24 } } }
25 ϕ̂i(n) = ϕ̂s

26 Until queue is empty
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The conditional loop in lines 19-24 identifies 4-neighbors of pixel ti(n)

where a suboptimal unwrapped phase was previously assigned by using the

wrong neighbor ϕ̂i(m) in line 13. This occurs because the unwrapped phase

at the best neighbor was not yet available due to the pixel processing order.

To improve local smoothness and redirect branch cuts towards local amplitude

minima, such 4-neighbors are returned to the head of the queue for immediate

re-processing (line 23). The test in line 19 avoids the possibility of an infinite

recursion by ensuring that the neighbors of any such re-queued pixel will not

themselves be returned to the queue unless a previously assigned phase value

is actually changed.

When the algorithm terminates, the unwrapped phase is congruent with

the principal values and agrees closely with the LMS estimate while avoiding the

use of phase scaling. The real part of component t20 of the Chirp image is given

in Fig. 3.1(a). The unwrapped phase computed by frequency guided phase

unwrapping is given in Fig. 3.1(b), where because of nonconservative residues

in the phase [24], undesirable branch cuts still arise. However, the frequency

guided phase unwrapping algorithm tends to place them in low-amplitude, low-

saliency regions where their contribution to the overall image reconstruction is

small. The FM field ∇ϕ20(x) obtained by differentiating the unwrapped phase

is given in Fig. 3.1(c). For each image component ti in (3.1), the FM function

∇ϕi(x) is then obtained by fitting the unwrapped phase samples with cubic

tensor product splines and differentiating analytically.
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(a)

(b) (c)

Figure 3.1: Phase unwrapping example. (a) Real part of component t20 of
Chirp image. (b) Unwrapped phase from (a) using frequency guided phase
unwrapping. (c) FM function ∇ϕ20 obtained by differentiating (b).
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(a) (b)

(c)

Figure 3.2: Perfect reconstruction examples. (a) Reconstructed Chirp image.
(b) Reconstructed Lines image. (c) Reconstructed Lena image.

3.3 Improved Stability in the AM-FM Transform

The motivation for frequency guided phase unwrapping was to develop a suit-

able means for AM-FM reconstruction of a processed image after modification

of the FM functions by modulation domain filtering. However, in this sec-

tion I present reconstruction from the unfiltered modulation functions of the

three images given in Fig. 3.2, since this provides known ground truth thereby

enabling quantitative evaluation of the reconstruction errors. For each image,
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Table 3.2: Mean squared reconstruction error for Chirp, Lines , and Lena im-
ages using different phase unwrapping algorithms for AM-FM reconstruction.

Algorithm Initial MS Reconstruction Error

Phase Vals Chirp Lines Lena

Phase Scaling [98] stored 10−8 10−8 10−8

Frequency Guided stored 10−11 10−12 10−12

Frequency Guided estimated 10−6 10−6 10−5

I computed an AM-FM model with K = 40 in (3.1). I reconstructed using the

phase scaling method given in [98] and described in Section 2.5, the frequency

guided phase unwrapping method described in Section 3.2 with multiple initial

phase values stored, and the frequency guided phase unwrapping method with

only a single initial phase value stored and the rest computed by a technique

that will be given in Section 4.1.1. Mean squared reconstruction errors for each

case are given in Table 3.2 for floating point pixels in the range [-1,1] (the pixels

were scaled for modeling against (3.1)).

For all nine cases given in Table 3.2, the reconstructed images were vi-

sually indistinguishable from the originals. Fig 3.2(a) shows the reconstruction

of Chirp obtained by adding all 40 components, each reconstructed by applying

the unwrapped phase for the component to equation (3.1). Similar high fidelity

reconstructions for Lines and Lena are given in Fig. 3.2(b) and (c). The main

significance of these results is twofold. Line two of Table 3.2 demonstrates that

the proposed phase unwrapping technique substantially improves the quality

of the computed FM field. Line three shows that the proposed initial phase

value estimation technique is capable of delivering high fidelity image recon-

structions without the need for saving multiple phase initial conditions, which
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is important for reconstructing from filtered AM and FM functions where the

true initial phase values are unknown.

3.4 Summary

The phase unwrapping solution discussed in Section 2.5 made use of a phase

scaling factor to achieve smoothly unwrapped phase that delivers frequency

modulations that correspond well to visually meaningful image content. In

this chapter, I discussed the impact of this phase scaling factor on reconstruc-

tion from modified frequency modulations and described how it can amplify

reconstruction errors. To mitigate this problem, I presented a new phase un-

wrapping algorithm that does not employ a phase scaling factor. The new

algorithm makes use of a smooth unwrapped phase estimate that has a second

derivative as close as possible in a least-squares sense to the second derivative

of the principal phase, which is obtained by direct calculation from the phase

demodulation in (3.1). This smooth unwrapped phase cannot be used for re-

construction, but is used to guide the unwrapping of the principal phase using

a queue-based phase growing methodology. The queue-based phase growing

algorithm is designed to direct phase discontinuities in the unwrapped phase

towards locations of minimal amplitude response where they contribute the

least to potential reconstruction errors. I then demonstrated that the new

phase unwrapping algorithm results in reconstructions that are more accurate

than those obtained from phase unwrapping with phase scaling.
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Chapter 4

Image Reconstruction From Processed

Modulations

The new phase unwrapping technique described in Chapter 3 has allowed the

development of new modulation domain filtering methods that do not rely

upon phase scaling factors and thus exhibit greater stability in filtering com-

putations. Furthermore, these new modulation domain filtering methods have

been developed to operate directly from the unaltered AM-FM model, allowing

the intuitive nature of the model to be a part of modulation domain filtering

operations.

This chapter first describes the techniques investigated to enable re-

construction after modulation domain filtering. These techniques focus on the

problem of reconstructing phase modulations from modified frequency modula-

tion functions. Results are then presented for new modulation domain filtering

methods. Examples are given for standard image rotation, scaling, and trans-

lation operations in the modulation domain and for modulation domain filters

which attenuate amplitude modulation. The rotation and scaling of specific

image texture is then presented, followed by results from new cross-component

modulation domain filters.
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4.1 Reconstruction Techniques

This section describes the investigation of multiple techniques for recovering

phase from frequency modulation information. The techniques are presented

in terms of their ability to successfully reconstruct from unmodified modula-

tion functions and their applicability to reconstruction from modified frequency

information.

4.1.1 Image-Wide Integration

The spline-based integration technique employed in Section 2.4 is one that re-

covers the phase from the frequency modulation function by integrating the

entire frequency modulation image given initial phase values from the top left

of the image. Reconstruction from the AM-FM model is performed by recon-

structing the phase of each component and then applying (2.7) to arrive at a

final reconstructed image.

As noted in Section 2.4, spline based integration from the first derivative

requires two initial phase values. This requirement is observed in the equation

used for spline integration. Once the first derivative samples of the phase have

been found, the recovery of the phase at any one pixel from the derivative

samples is dependent upon the phase values at the two prior pixels on the

same row or column according to

x(k) = x(k − 2) +
x′(k − 2) + 4x′(k − 1) + x′(k)

3
. (4.1)

Starting with two original phase values, this equation can be used to iteratively

integrate an entire row or column.

Since the 2D cubic tensor product splines are separable [116], the inte-
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Figure 4.1: Perfect reconstruction from unmodified modulation functions using
standard image-wide spline integration.

gration can be carried out separably as a 1D operation row by row or column

by column as indicated in (4.1). Thus, the integration method used in Sec-

tion 2.4 uses the original phase values from the first two pixels at the top of

the first column to integrate the entire first column, and then uses the original

phase values from the first two pixels at the top of the second column to inte-

grate the entire second column. With phase values recovered for the first two

columns, integration proceeds row by row, with each row integrated using the

phase values from the first two pixels at the left of the row.

This means that the entire phase image for each component, and thus

the entire original image, is recovered from each component’s AM function,

FM function, and the original values of the 4 pixels at the upper left of each

component’s phase image. These spline computational techniques result in

perfect reconstruction, as seen in Fig. 4.1, which is a reconstructed image that

has a mean squared error of 6.0288× 10−12 against the original pixel values.
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Figure 4.2: Rotated Lena image reconstructed directly from rotated AM and
PM functions.

Integration via Subwindows

The spline integration technique described above works extremely well for re-

construction from modulation functions when the frequency modulation func-

tions have not been modified. However, when the frequency modulation func-

tions have been modified by AM-FM filtering, the requirement of initial phase

values from the top left corner of the image can quickly become untenable.

As an example, when the frequency modulation has been rotated, the original

phase values in the top left corner no longer represent the initial integration

constants needed for recovery of the rotated phase. This can be seen in Fig. 4.2,

in which the amplitude, phase, and frequency modulations have been rotated

using bicubic interpolation and the image was reconstructed directly from the

amplitude and phase modulations.

An approach to overcoming this problem is to start the spline integration

computations from initial phase conditions at a different point in the image.

Starting from four neighboring initial phase values at some central point in
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the image, spline integration can be applied to recover the entire phase by

integrating in different directions within the four quadrants (subwindows) of

the image. In practice, the four initial phase values are chosen to be those near

the coordinates (r1, c1) of the global maximum of the amplitude modulation

function, as ϕ(r1, c1), ϕ(r1, c1 − 1), ϕ(r1 − 1, c1), and ϕ(r1 − 1, c1 − 1). The

region lying above and to the left of the initial phase values is then integrated

by first integrating up the columns c1−1 and c1 and then integrating from right

to left along rows from r1 to the top of the image. To reconstruct the phase in

the region lying below and to the left of the initial phase values, integration is

carried out down the columns c1 − 1 and c1 and then from right to left across

rows from r1 + 1 to the bottom of the image. Analogous procedures are used

to reconstruct the phase in the regions lying above and to the right and below

and to the right of the initial phase values.

Similar to the integration technique that starts from the upper left of

the image, this technique works very well for perfect reconstruction from un-

modified frequency modulations, as it simply starts integration from four initial

phase values at some central location in the image. This can been seen in the re-

constructed image in Fig. 4.3, which has a mean squared error of 5.8676×10−12

relative to the original pixel values.

When the frequency field has been rotated, the four initial phase values

at the central point of integration still do not represent the initial integration

constants needed for recovery of the rotated phase. However, high quality

reconstruction results can be obtained by starting from a single initial phase

value, and estimating the other 3 initial phase values needed for reconstruction.

Starting from the single initial phase value, the neighboring phase values can
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Figure 4.3: Perfect reconstruction from unmodified modulation functions using
spline integration split into four subwindows.

be simply estimated according to

ϕ(r1, c1 − 1) = ϕ(r1, c1) +

min (∇ϕx(r1, c1 − 1),∇ϕx(r1, c1)) +∣∣∇ϕx(r1, c1 − 1)−∇ϕx(r1, c1)
∣∣ /2,

(4.2)

ϕ(r1 − 1, c1) = ϕ(r1, c1) +

min (∇ϕy(r1 − 1, c1),∇ϕy(r1, c1)) +∣∣∇ϕy(r1 − 1, c1)−∇ϕy(r1, c1)
∣∣ /2,

(4.3)

ϕ(r1 − 1, c1 − 1) = ϕ(r1 − 1, c1) +

min (∇ϕx(r1 − 1, c1 − 1),∇ϕx(r1 − 1, c1)) +∣∣∇ϕx(r1 − 1, c1 − 1)−∇ϕx(r1 − 1, c1)
∣∣ /2.

(4.4)

It may be observed that this estimation will give more accurate estimates in

areas where the change in phase is more linear, or in areas that are closer to

constant frequency. The likelihood of this condition being true is assisted by

selecting integration start points at areas of maximum amplitude, where the

response to the channel filter is strong.
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Figure 4.4: Estimated reconstruction from unmodified modulation functions
using spline integration split into four subwindows. Integration is computed
from a single initial phase value, and other required initial phase values are
estimated.

Although the initial phase conditions used for integration are now esti-

mated, this technique is still capable of providing high quality reconstruction.

This can be seen in the reconstruction from unmodified modulation functions

shown in Fig. 4.4. The reconstructed image is obtained from a single initial

phase value from which the other initial phase values are estimated according

to (4.2)– (4.4). The MSE of the reconstruction is 5.7322× 10−5 relative to the

original image pixel values.

Estimation from a single initial phase value, however, is not sufficient for

quality reconstruction from modified frequency content. This is illustrated in

the reconstruction result shown in Fig. 4.5, in which the frequency modulation

function has been rotated and the phase has been recovered from a single

initial phase value. The image could possibly be described as being ‘out of

phase with itself,’ as in the rows and columns of the image don’t quite seem

to match up with each other. This is accurate, and can be better seen in the
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(a) (b)

Figure 4.5: Estimated reconstruction from rotated modulation functions us-
ing spline integration split into four subwindows. (a) Reconstruction of entire
rotated image. (b) Reconstruction of single component of image.

single component reconstruction shown in Fig. 4.5 (b). In each component, the

reconstruction is accurate around the starting point, but quickly degrades as

the integration computation of each row falls out of synchronization with its

neighboring rows.

4.1.2 Subwindow Integration from Multiple Points

Since the above results for reconstruction from modified frequency content only

give quality reconstruction near the point from which the integration is started,

the next approach is to start integration from multiple locations in order to try

to achieve quality reconstruction results for the most significant portions of the

image content. A logical extension of the above approach is to define multiple

windows within the image for integration, and then to start integration for

each from a central point of smooth frequency using the subwindow integration

method described in Section 4.1.1.

85



Figure 4.6: Reconstruction using windowed integration from multiple points
without phase growing step.

For this approach, I have developed an algorithm which assigns windows

for integration by first creating a binary mask from the amplitude modulation

function using a threshold equal to a percentage of the max amplitude response

in the image. Connected components labeling is then applied to the mask to

find separate regions within the image and integration windows are defined as

the spatial extents of these regions. Subwindow integration as described in

Section 4.1.1 is then applied to each of these regional windows, starting from

the point of greatest amplitude response within each window.

This technique is able to achieve quality reconstruction within the inte-

gration windows, but artifacts and distortion generally occur along the bound-

aries between windows. This can be seen in Fig. 4.6, which is a reconstruction

from regional integration windows only, using a binary mask threshold of 40

percent of the maximum amplitude response per channel. The resultant im-

age appears very ‘blocky’, with missing image content between the integration

windows.
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Image content in between the integration windows is filled in using a

queue based phase growing method similar to the queue based method used

for phase unwrapping in Section 3.2. In this application, the seeds for the

phase growing queue are all border pixels around the integration windows.

Phase values are then grown out from each of the windows in turn, with phase

values from different regions meeting at midway points between the integration

windows.

As the locations where phase values grown from different regions will

usually have large differences between neighboring phase values, minimizing the

reconstruction error demands that these locations be restricted to occur only in

areas of low amplitude response where they will not contribute significantly to

visual perception of the final reconstructed image. As the midpoints between

integration windows may not fall at locations of minimum amplitude response,

a requeueing mechanism was also developed for the queue based phase growing

technique. In this mechanism, as the phase for a pixel is computed, if its neigh-

bors are found to have already been processed then those neighboring pixels are

prepended to the queue. In this way, pixels are checked to determine whether

or not they have computed a phase based on a suboptimal neighboring phase

and if so they are immediately recomputed from the optimal neighboring phase.

Any potential suboptimal neighbors of such pixels are also requeued, causing

recomputations to occur until lines of minimum amplitude are encountered.

As the reader may have already conjectured, the potential for many

pixels to be requeued and recomputed many times causes the above algorithm

to run much slower with the requeuing functionality enabled. The requeu-

ing functionality results in optimal placement of locations where phase values
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(a) (b)

Figure 4.7: Estimated reconstruction using windowed integration from multiple
points with phase growing step. (a) Result of phase growing algorithm run with
requeuing. (b) Result of phase growing algorithm run without requeuing.

grown from different integration windows meet and the additional processing

results in a slight improvement in the observed quality of the reconstructions.

This can be seen by comparing the two images in Fig. 4.7. In Fig. 4.7 (a), the

reconstruction algorithm was run with requeing enabled. The resulting MSE

is 0.0030 compared to the original image pixel values. In Fig. 4.7 (b), the re-

construction algorithm was run without requeing enabled; the resulting MSE

is 0.0032 compared to the original image pixel values.

The integration of multiple windows and subsequent phase growing al-

gorithm described above was used for results seen in Section 2.8.2.

4.1.3 Phase Growing from Multiple Points

Although the integration of separate windows followed by phase growing can

produce a reconstructed phase with phase values grown from different regions

meeting at lines of minimum amplitude, it does so very inefficiently. An al-
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ternative approach which bypasses integration windows and grows phase for

all pixels from neighboring pixels of higher amplitude is able to efficiently and

successfully grow the phase such that values grown from different sections meet

at lines of minimum amplitude.

This approach makes use of a dependency image, which is simply an

image in which each pixel contains a value that indicates which of its neigh-

bors has the highest amplitude response that is greater than its own. For the

purposes of phase growing, this acts as a guide for each pixel that specifies

which neighbor to use when computing its own phase (that is, which neighbor

the pixel is dependent on). For the reconstruction of phase from a frequency

modulation image, a phase growing queue is seeded with all pixels in the depen-

dency image which have no dependency, i.e, those which lie at local maxima

of the amplitude function. Pixels are then processed according to the following

rules. If a pixel has no dependency, then the phase value for that pixel is the

value from the original phase image. Otherwise, the phase value for the pixel

is estimated from the neighbor of dependency according to

x(k) = x(k − 1) + x′(k − 0.5), (4.5)

where x(k − 1) is the phase of the neighboring pixel and x′(k − 0.5) is the

gradient at the midpoint between them. The value of x′(k − 0.5) is acquired

as a linear interpolation between the gradients x′(k − 1) and x′(k). I also

completed tests where x′(k − 0.5) was instead obtained by computing cubic

interpolations for midpoints in the frequency modulation image and resulting

reconstructions were not noticeably different, leading to an inference that the

phase estimate is often closely approximated by linear estimation.
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Figure 4.8: Estimated reconstruction from unmodified modulation functions
using phase growing only algorithm.

The relative simplicity of this algorithm leads to much faster processing

than the windowed integration algorithm given in Section 4.1.2. This algorithm

produces high fidelity reconstruction results, as seen in Fig. 4.8 where the

MSE of the reconstruction is MSE 3.0264× 10−4 compared to the pixel values

of the original image. This is somewhat less than the reconstruction error

observed from the windowed integration algorithm and is likely due in large

part to a much higher number of starting phase reconstruction points which

take accurate values from the original phase.

Even so, because the phase growing algorithm described in this section

starts from single points, it is suitable for reconstructing phase from modified

frequency modulations. An example of the algorithm used to compute a re-

construction from a rotated frequency function is shown in Fig. 4.9 (a). This

reconstruction is visually very similar to the image reconstructed directly from

rotated phase without reconstruction from a frequency function in Fig. 4.2.

In both of the reconstructed images shown in Figs. 4.2 and 4.9, slight
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(a) (b)

Figure 4.9: Estimated reconstruction from rotated modulation functions using
phase growing only algorithm. (a) Reconstruction of entire rotated image.
White arrow points to interpolation artifact. (b) Reconstruction of phase from
rotated frequency modulation for a single component. The component displays
a phase discontinuity that is visible as artifacts in (a).

artifacts are visible that are due to discontinuities in the unwrapped phase.

One major example of such a discontinuity can be seen in the upper left part

of the single component phase shown in Fig. 4.9 (b). These discontinuities do

not appear in reconstructions from unmodified frequency content, but do ap-

pear in the reconstruction of rotated content due to the sub-pixel interpolation

necessary when rotating the phase and frequency. A method to resolve this

problem is given in Section 4.2.

4.2 Avoidance of Phase Discontinuities During Interpo-
lation

As noted in Section 4.1.3 and shown in Fig. 4.9, discontinuities in the un-

wrapped phase can cause artifacts when subpixel interpolation is applied dur-

ing filtering operations. These artifacts occur when the subpixel value is in-
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terpolated from two neighboring phase values that are on opposite sides of a

discontinuity, causing the subpixel value to fall somewhere in between the very

different phase values and to be unrelated to image content.

This problem can be addressed by interpolating values for pixels near

phase discontinuities in such a way that the interpolation operation does not

consider values from across the phase discontinuity. The algorithm I developed

to achieve this first identifies all phase discontinuities in the unwrapped phase

as being locations where neighboring phase values differ by more than π. Then,

because bicubic interpolation considers values from three pixels, any requested

subpixel values within three pixels of a phase discontinuity are specially inter-

polated in the following way. If three pixel values are available in the direction

opposite of the phase discontinuity, the new subpixel value is interpolated or

extrapolated from those three pixels using bicubic interpolation. Otherwise, if

two pixel values are available in the direction opposite of the phase discontinu-

ity, the new subpixel value is interpolated or extrapolated from those two pixels

using linear interpolation. If only one pixel value is available in the direction

opposite of the phase discontinuity, the new subpixel value is copied from that

pixel value.

This special handling of subpixel interpolation near phase discontinu-

ities results in interpolated values that match the original image content much

more closely, as demonstrated in Fig. 4.10. Fig. 4.10 (a) shows a zoomed in

section of the original unrotated channel 19 component of the Lena image.

Fig. 4.10 (b) shows the reconstructed rotated version of (a), with rotated phase

subpixel values interpolated using standard bicubic interpolation across phase

discontinuities. Fig. 4.10 (c) shows the reconstructed rotated version of (a),
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(a)

(b) (c)

(d) (e)

Figure 4.10: Comparison of interpolation methods for reconstruction of rotated
mid-frequency channel image. (a) Unrotated region from zoomed in section of
component image. (b) Reconstruction of rotated region from (a) with interpo-
lation across phase discontinuities. (c) Reconstruction of rotated region from
(a) with special interpolation algorithm used near phase discontinuities. (d)
Reconstruction of entire channel image with interpolation across phase discon-
tinuities. White arrow points to interpolation artifacts. (e) Reconstruction of
entire channel image with special interpolation near phase discontinuities.
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(a) (b)

Figure 4.11: Comparison of interpolation methods for reconstruction of rotated
low-frequency channel image. (a) Interpolation across phase discontinuities.
White arrow points to interpolation artifact. (b) Special interpolation near
phase discontinuities.

with rotated phase subpixel values interpolated using the special interpolation

algorithm near phase discontinuities. It can be seen that artifacts visible in

Fig. 4.10 (b) are no longer visible in Fig. 4.10 (c). The same results can be

seen in the reconstructions of the entire channel image in Fig. 4.10 (d) and (e).

Similar results for a complete channel rotation are shown in Fig. 4.11.

Artifacts in reconstruction from standard interpolation across phase disconti-

nuities are no longer visible in reconstruction from special interpolation that

avoids phase discontinuities. The phase for the channel component in Fig. 4.11

was shown in Fig. 4.9 (b).

The result for a complete image rotation is shown in Fig. 4.12. Again,

reconstruction from standard interpolation across phase discontinuities results

in visible artifacts that are unrelated to image content, while such artifacts

are no longer visible in reconstruction using special interpolation near phase

discontinuities.
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(a)

(b) (c)

Figure 4.12: Comparison of interpolation methods for reconstruction of rotated
natural image. (a) Input Lena image. (b) Interpolation across phase disconti-
nuities. White arrow points to interpolation artifact. (c) Special interpolation
near phase discontinuities.
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4.3 Modulation Domain Scaling, Rotation, and Trans-
lation

With the development of special phase interpolation techniques near phase

discontinuities, high quality modulation domain scaling, rotation, and transla-

tion operations became possible for the AM-FM transform without the need for

counterintuitive modifications to the basic AM-FM model as were proposed and

used in [84, 85, 97–100]. While such modifications as described in Section 2.8

were successful in achieving high fidelity AM-FM image reconstructions, they

are undesirable in the sense that they compromise the simplicity, elegance, and

intuitive nature of the basic model (2.5) and they also weaken the link to the

processing that is known to occur in biological vision systems. The results

presented here are the first to achieve modulation domain scaling, rotation,

and translation from the AM-FM transform without the use of phase scaling

factors or modified AM functions.

These scaling, rotation, and translation results were obtained by per-

forming the filtering operations directly on the unwrapped phase, computing a

corresponding frequency modulation from the filtered phase, and then recon-

structing the final modified image. For each of the results shown in this section,

a corresponding operation was performed in the pixel domain using standard

bicubic interpolation for comparison purposes.

The pixel domain versus modulation domain rotation of Lena is shown in

Fig. 4.13, with the pixel domain rotation shown in Fig. 4.13 (a), the modulation

domain rotation shown in Fig. 4.13 (b), and the difference image between the

two shown in Fig. 4.13 (c). The difference image in Fig. 4.13 (c) has been

independently scaled for full contrast to visully amplify the details. The images
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(a) (b)

(c)

Figure 4.13: Example of rotation operation in modulation domain. (a) Rota-
tion in real domain. (b) Rotation in modulation domain. (c) Difference image
between (a) and (b).

have been rotated from the original by π/4 radians. The mean squared error

between the pixel values of the two rotation images is 8.094 × 10−4 and the

maximum single pixel value difference between the two images is 0.21533. The

largest differences occur near the edges of the original image.

Fig. 4.14 shows similar results for the scaling and rotation of Lena. In

this figure, the images have been rotated from the original by π/4 radians and

scaled by a factor of 2. The mean squared error between the pixel domain and
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(a) (b)

(c)

Figure 4.14: Example of scaling operation in modulation domain. (a) Scaling
and Rotation in real domain. (b) Scaling and Rotation in modulation domain.
(c) Difference image between (a) and (b).

modulation domain result images is 5.006×10−4 and the maximum single pixel

difference is 0.20546. In this result, there is no difference at the edge of the

original image, but the MSE and maximum pixel difference are comparable to

the rotation only result.

Translation results are shown in Fig. 4.15. In this figure, the Lena image

has been translated by 42.3 pixels in the horizontal direction, and 57.8 pixels in

the vertical direction. The mean squared error between the pixel domain and
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(a) (b)

(c)

Figure 4.15: Example of translation operation in modulation domain. (a)
Translation in real domain. (b) Translation in modulation domain. (c) Differ-
ence image between (a) and (b).

modulation domain result images is 2.7125×10−4 and the maximum single pixel

difference is 0.18129. Here again, the largest differences occur near the edges

of the original image. But both the MSE and the maximum pixel difference

are slightly less than those of the other results.
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4.4 Filtering via Attenuation of Amplitude Modulation

In this section, the phase unwrapping technique developed in Chapter 3 is

applied to new filters that attenuate the amplitude modulations of images in

order to obtain intuitive and visually meaningful image processing results. This

class of modulation domain filters was discussed in Section 2.8.1, with the first

filter results of this type presented in [84]. The new filters designed here are

the first to achieve amplitude modulation attenuation without the use of phase

scaling factors in the phase and frequency modulations. Here new filters are

designed that dramatically modify images in ways that would be difficult or

impossible using traditional linear or nonlinear filtering methods.

One of the new modulation domain filters presented here was designed

to modify the water ripples present in the Boat image shown in Fig. 4.16 (a).

In this image, the ripples of vertical frequency can be isolated and removed

by applying a filter that sets the amplitude modulation to zero at locations

where the frequency modulation characteristics match the ripples in the water.

Denoting the area of the image to which the filter is applied, or the region of

interest (ROI), as X, the new attenuated amplitude modulations âi are given

as

âi(k) =


0, (

∣∣arg[∇ϕi(k)]
∣∣− π/2) < π/4

and
∣∣∇ϕi(k)

∣∣ ∈ [π/8, 2π]

and k ∈ X,

ai(k), otherwise,

(4.6)

where i denotes the ith component of the image, ai and ∇ϕi are the respective

unfiltered amplitude and frequency modulations, arg[∇ϕi(k)] is the orientation

of the frequency modulation at k in rad, and
∣∣∇ϕi(k)

∣∣ is the magnitude of the

frequency modulation at k given in units of rad/pixel.
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(a)

(b) (c)

Figure 4.16: Amplitude modulation attenuation on Boat image. (a) Original
image. Filter operations were only applied within the bottom half of the image.
(b) Attenuation of amplitude modulation at target frequency characteristics to
remove ripples in the water. (c) Modified attenuation of amplitude modulation
to leave high frequency ripple content.
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The result of applying (4.6) to the Boat image can be seen in Fig. 4.16

(b), where the region of interest is the area of the image beneath the boat.

It can be seen that the water takes on a very smooth appearance within the

ROI, but that the horizontal frequency structure of the reflected boat remains

mostly intact.

A slightly modified version of (4.6) can be applied to the Boat image

to leave some high frequency vertical content on the water surface. This filter

operates with a lower maximum frequency magnitude constraint and is given

by

âi(k) =


0, (

∣∣arg[∇ϕi(k)]
∣∣− π/2) < π/4

and
∣∣∇ϕi(k)

∣∣ ∈ [π/8, π/2]

and k ∈ X,

ai(k), otherwise.

(4.7)

The application of (4.7) to the Boat image can be seen in Fig. 4.16 (c), where

the water surface still appears less turbulent relative to Fig. 4.16 (a). However,

the small amount of surface ripple in Fig. 4.16 (c) causes the filtered region of

interest to blend in more naturally with the area outside of the ROI.

A similar filter was designed to operate on the Wakes image shown in

in Fig. 4.17 (a), which displays an interference pattern created by two crossing

boat wakes in an ocean. This filter is given by

âi(k) =


0, (

∣∣arg[∇ϕi(k)]
∣∣− π/2) < π/8

and
∣∣∇ϕi(k)

∣∣ ∈ [π/8, 2π]

and k ∈ X,

ai(k), otherwise

(4.8)

and when applied to the Wakes image, the filter successfully removes most of

one of the boat wakes as seen in Fig. 4.17 (b).
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(a) (b)

Figure 4.17: Amplitude modulation attenuation on Wakes image. (a) Original
image. Filter operations were only applied within the bottom half of the image.
(b) Attenuation of amplitude modulation at target frequency characteristics to
remove one of the boat wakes.

4.5 Rotation and Scaling of Target Image Texture

While global rotation of the entire amplitude and phase modulation images

works well for whole-image rotations as shown in Section 4.3, different tech-

niques must be applied when rotating a specific region or object. For the task

of rotating the stripes in the pants of the Barbara image, a task which is shown

in Fig. 4.18, the texture is rotated by performing a pointwise rotation of all

frequency modulation vectors that match the target frequency characteristics

and then reconstructing. In this section, a combination of previously discussed

reconstruction methods will be employed to achieve new results that meet this

image processing goal.

Note that rotation is applied only to the region of interest X shown in

Fig. 4.18 (a). Within that region, all frequency vectors are pointwise rotated
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(a) (b)

(c) (d)

Figure 4.18: Rotation of specific texture in image. (a) Original Barbara image.
Image processing is applied to the region within the black rectangle. (b) Region
of interest from (a). (c) Previous result from [74]. (d) Rotated texture, using
phase growing reconstruction.
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according to

arg[∇ϕ̂i(k)] = arg[∇ϕi(k)] +


π/2, arg[∇ϕi(k)] ∈ [−π/2, 3π/16]

and
∣∣∇ϕi(k)

∣∣ ∈ [π/2, 2π]

and k ∈ X,

0, otherwise,

(4.9)

where ∇ϕ̂i is the filtered frequency modulation of the ith component of the

image. Fig. 4.18 (c) shows the previous results for this task as described in

Section 2.8.2. Those results applied the pointwise rotation filter (4.9) and then

reconstructed using an earlier version of the windowed integration algorithm

described in Section 4.1.2.

The results in Fig. 4.18 (d) are obtained by applying the pointwise

rotation filter (4.9) and then reconstructing with the phase growing algorithm

described in Section 4.1.3. While the two results are similar, it can be seen

that the phase growing based reconstruction gives a somewhat cleaner and

more natural looking result, which is likely due to the algorithm’s use of more

starting points for phase reconstruction.

A separate method for rotating a single, specific texture is to combine

the spatial rotation method from Section 4.3 and the phase growing method

from Section 4.1.3. Spatial rotation is not possible for texture in general because

the rotation must be defined around a single point in space. As a texture

region can be arbitrarily shaped, this leaves many points in the texture with

no corresponding point to take a rotated value from. However, by combining

spatial rotation for pixels where it is available and phase growing for other

pixels, one can arrive at a reconstruction that is very clean for spatially rotated

parts of the texture and provides coherent reconstruction from phase growing
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for the other parts.

Ideally, the pixels for which quality spatial rotation is available would

be automatically detected, however in this work windows for spatial rotation

were manually specified. For each spatial rotation window, spatial rotation

was carried out on a per-component basis around the center of the window in

the following way. First, for each component, the pointwise frequency vector

rotation of (4.9) is applied to all pixels in the image that match the target

texture characteristics. Then, in each rotation window, for each pixel that

matches the target texture characteristics, if the corresponding pre-rotation

point from which it would take a new value also matches the target texture

characteristics, then new interpolated phase and frequency values are computed

for the pixel from the pre-rotation point. Once all possible pixels within the

rotation window have been spatially rotated, the target pixels that neighbor

the spatially rotated pixels are added to the queue that will be used for phase

growing as seeds. The queue-based phase growing algorithm is then run to

compute a new phase for all non-spatially rotated pixels, and the final image

reconstruction is computed from the completed phase.

It may be noted that, while the spatial rotation described above is simi-

lar to the image-wide spatial rotation described in Section 4.3, it differs in that

application of the spatial rotation is driven by information from the modulation

domain functions.

For the rotation of Barbara’s pants, the results of the selected spatial

rotation windows only, prior to the phase growing step, can be seen in Fig. 4.19

(b). The completed result after the phase growing step is shown in Fig. 4.19 (c).

The final result exhibits relatively sharp and clear lines compared to previous
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(a) (b)

(c)

Figure 4.19: (a) Region of interest from original Barbara image. (b) Rotation
of (a) with spatially rotated windows only. (c) Rotation of (a) with phase
growing from windows in (b).
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results, with texture reconstruction still showing some distortion as distance

from the spatially rotated windows increases.

Spatial rotation combined with phase growing also gives good results

for scaling of texture, as shown in Figs. 4.20 and 4.21. Each part of the figure

presents a result in which the lines in Barbara’s pants are both rotated and

scaled using the pointwise rotation and scaling filters

arg[∇ϕ̂i(k)] = arg[∇ϕi(k)] +


θf , arg[∇ϕi(k)] ∈ [−π/2, 3π/16]

and
∣∣∇ϕi(k)

∣∣ ∈ [π/2, 2π]

and k ∈ X,

0, otherwise,

(4.10)

∣∣∇ϕ̂i(k)
∣∣ =

∣∣∇ϕi(k)
∣∣×


λs, arg[∇ϕi(k)] ∈ [−π/2, 3π/16]

and
∣∣∇ϕi(k)

∣∣ ∈ [π/2, 2π]

and k ∈ X,

1, otherwise,

(4.11)

where θf is the desired angle of rotation for the filter and λs is the desired

scaling factor. The pointwise filters are followed by spatial rotation and scaling

operations in the same manner as the spatial rotation described for the results

in Fig. 4.19. Scaling results for parts (a), (b), and (d) remain relatively clear,

while it can be seen that for the higher scaling factor in (c), the texture starts

to appear blurry. The reconstructions in Fig. 4.20 (b), (c), and (d) use one

less spatially rotated window than those shown in Fig. 4.19 (b). This was done

in order to avoid a noticeable phase mismatch that occurs in the middle right

pants leg of (a) where phases from different starting points grow into each

other. However, this comes with the trade-off that the area becomes noisy

instead from the phase growing algorithm. The optimal selection of starting

spatial rotation windows remains an open question and, preferably, a method
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(a) (b)

(c) (d)

Figure 4.20: Different scaling factors and orientations for specific texture ro-
tation. (a) Rotation of π/2 and scaling factor of 2. (b) Rotation of π/2 and
scaling factor of 3. (c) Rotation of π/2 and scaling factor of 5. (d) Rotation of
π/4 and scaling factor of 3.
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(a)

(b) (c)

Figure 4.21: Select results from Fig. 4.20 shown in full Barbara image. (a)
Original Barbara image. (b) Rotation of π/2 and scaling factor of 5 within
ROI. (c) Rotation of π/4 and scaling factor of 3 within ROI.
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for automatically selecting the windows should be developed. Reconstruction

results might also be improved by devising a way to make phases from different

regions grow into each other more smoothly.

A new filter using the pointwise and spatial rotation methods described

above was also designed for the Boat image shown in Fig. 4.22 (a). This filter

carries out the pointwise rotation

arg[∇ϕ̂i(k)] = arg[∇ϕi(k)] +


−π/8, (

∣∣arg[∇ϕi(k)]
∣∣− π/2) < π/4

and
∣∣∇ϕi(k)

∣∣ ∈ [π/8, 2π]

and k ∈ X,

0, otherwise

(4.12)

with a region of interest X that is the lower half of the image. The pointwise

rotation filter is followed by analagous spatial rotation in manually selected

windows. The resulting filtered image, shown in Fig. 4.22 (b), displays rotated

ripples on the surface of the water within the ROI, while the reflection of the

boat in the water remains clearly observable.

4.6 Cross-Component Amplitude Attenuation

In this section, a new modulation domain filtering technique is presented that

is an extension of the previous amplitude modulation attenuation technique

discussed in Section 4.4. While previous results applied amplitude modula-

tion attenuation individually for each component, the approach described here

makes use of information from all components when applying amplitude mod-

ulation attenuation. This is done in order to achieve the image processing

goal on targeted texture only while preserving the non-targeted texture in its

original state.
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(a) (b)

Figure 4.22: Rotation of image texture in Boat image. (a) Original image.
Filter operations were only applied within the bottom half of the image. (b)
Modification of target frequency characteristics to rotate ripples in the water.

After first specifying a region of interest within the image, all pixels

within the ROI are analyzed across all components to detect which pixels are

candidates for attenuation. Any pixel which matches the frequency characteris-

tics of the target texture to be attenuated becomes a candidate for attenuation.

However, any pixel which matches the frequency characteristics of other, non-

target textures within the image is set to never be marked as a candidate for

attenuation. If such a non-target texture pixel had already been marked as

a candidate for attenuation, that candidacy is removed. Once candidate pix-

els have been identified, the amplitude modulation functions are attenuated

on a per-component basis for any candidate pixels which match the frequency

characteristics of the target texture to be attenuated.

In this section, the above algorithm will be applied to the visually in-

tuitive task of removing the bands from Lena’s hat that is shown in Fig. 4.23.

Part (a) of Fig. 4.23 is the previously reported result from [84] for this task,
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which was described in Section 2.8.1. Parts (b) and (c) of Fig. 4.23 are repro-

ductions of the task, applying amplitude modulation attenuation without the

consideration of information from multiple components. For this filter, the am-

plitude modulation of each image component was attenuated within a region

of interest X according to [84]

âi(k) =


0, (arg[∇ϕi(k)]− π/4) < π/8

and k ∈ X,

ai(k), otherwise.

(4.13)

The final reconstructed result after attenuation of all components can be seen

in Fig. 4.23 (b), where the lower and right boundaries of the region of interest

are clearly visible. Fig. 4.23 (c) shows the same attenuation filter with an added

frequency magnitude constraint according to

âi(k) =


0, (arg[∇ϕi(k)]− π/4) < π/8

and
∣∣∇ϕi(k)

∣∣ ∈ [π/8, 2π]

and k ∈ X,

ai(k), otherwise.

(4.14)

In parts (a) and (b) of Fig. 4.23, the modulation domain filter also has

the unintended affect of severely washing out some of the feathers in Lena’s hat.

In part (c), most high frequency content has been removed from the feathers

but their shape is still recognizable due to the unaffected low frequency content.

In all parts of Fig. 4.23, the brim of Lena’s hat within the ROI has also been

removed.

Application of the cross-component amplitude attenuation filter de-

scribed above is shown in Fig. 4.24. The cross-component amplitude attenua-

tion filter is implemented by first analyzing all components to isolate non-target
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(a) (b)

(c)

Figure 4.23: Removal of bands in Lena’s hat via amplitude attenuation on in-
dividual components. (a) Previous result from [84]. (b) Reproduced frequency
matching AM attenuation. The boundaries of the ROI are visible. (c) Filter
operation from (b) excluding the lowest frequency channels.
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texture pixels Xnt according to

Xnt(k) =


1, arg[∇ϕi(k)] ∈ [π/2, π]

or k /∈ X

or Xnt(k) = 1,

0, otherwise

(4.15)

for all i ∈ [1, K], where K is the number of image components. Then for each

component, the amplitude modulation is attenuated according to

âi(k) =


0, arg[∇ϕi(k)] ∈ [π/8, π/2]

and ai(k) < 0.1

and Xnt(k) = 0,

ai(k), otherwise.

(4.16)

In Fig. 4.24 (b) it can be seen that the bands of Lena’s hat have been

removed with minimal effect on the feathers within the ROI. In this filter, the

range of the target frequency characteristics was expanded slightly to [π/8, π/2]

in order to successfully remove more of the bands from the hat. The range of

the non-target frequency characteristics was set to [π/2, π] for the filter.

Parts of the brim of Lena’s hat were also found to have a higher ampli-

tude response than the bands of the hat. As a result, parts of the brim of the

hat could remain unaffected by the filter by including an amplitude magnitude

constraint as a part of the target texture characteristics. For this filter, the

target texture was defined as the above noted frequency range and an ampli-

tude magnitude of less than 0.1. The right section of the brim of the hat is

still affected by the filter, but looking at the original image in Fig. 4.24 (a)

reveals that, to a human observer, the right section of the hat brim in fact

looks identical to the bands on the hat. Thus, a higher level of sophistication
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(a) (b)

Figure 4.24: Removal of bands in Lena’s hat via cross-component amplitude
attenuation. (a) Input Lena image. (b) Cross-Component attenuation over all
channels. Filter is also constrained by AM magnitude limits.

and complexity would be required in the filter design to retain the hat brim

while attenuating the hat bands. Developing such more sophisticated filters is

an important topic for future research.

4.7 Cross-Component Scaling of Target Image Texture

The frequency scaling method from Section 4.5 was expanded to include the

cross-component non-target texture identification described in Section 4.6 in

order to design a modulation domain filter that can effectively modify frequency

content without affecting non-target texture. In this section, such an approach

is used to apply frequency scaling to the Steps image shown in Fig. 4.25 (a). In

that image, the people walking up the steps share some frequency character-

istics with the steps. However, cross-component scaling can be used to apply

scaling to the steps without altering the people in the image.

Similar to the cross-component amplitude attenuation filter described in
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Section 4.6, the cross-component texture scaling filter is implemented by first

analyzing all components to isolate non-target texture pixels Xnt according to

Xnt(k) =



1, ((ai(k)/max ai) > 0.3

and
∣∣∇ϕi(k)

∣∣ ∈ [5π/32, 2π])

or k /∈ X

or Xnt(k) = 1,

0, otherwise

(4.17)

for all i ∈ [1, K], where K is the number of image components. In this filter, the

non-target texture signature is specified to be pixels of high amplitude response

within a range of high frequency magnitudes. This signature corresponds to

the sharp edges of the people relative to the steps and provides a method by

which to prevent the people from being scaled by the filter.

Once the non-target texture pixels have been identified, the frequency

modulation is pointwise scaled for each component according to

∣∣∇ϕ̂i(k)
∣∣ =

∣∣∇ϕi(k)
∣∣×


λs, (
∣∣arg[∇ϕi(k)]

∣∣− π/2) < π/4

and
∣∣∇ϕi(k)

∣∣ ∈ [π/8, 2π]

and Xnt(k) = 0,

1, otherwise,

(4.18)

where λs is the desired scaling factor. As described in the scaling method

of Section 4.5, the pointwise scaling operation is followed by a spatial scaling

operation within manually selected windows.

The above procedure was applied to the Steps image with a region of

interest equivalent to the lower half of the image, which contains the darker

colored steps. The results for scaling the steps by factors of 0.5 and 2 are

shown in Fig. 4.25 (b) and Fig. 4.25 (c) respectively, where it can be seen that

by using information from other components the filter is able to modify the
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(a)

(b) (c)

Figure 4.25: Cross-component frequency modulation scaling in Steps image.
(a) Original image. Filter operations were only applied within the bottom half
of the image. (b) Target frequency characteristics scaled by 0.5 to double the
number of steps. (c) Target frequency characteristics scaled by 2 to halve the
number of steps.
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texture of the steps and not the people. The targeted frequency orientation

range of the filter also keeps in place edge structure of horizontal frequency

between the steps that helps human observers to recognize the scaled texture

as steps. While these results do achieve the stated image processing goal to

a large degree, the development of methods to increase the sharpness of the

results and improve the identification of non-target texture areas are important

directions for future work with this class of modulation domain filters.

4.8 Summary

In this chapter, I investigated a variety of phase reconstruction and modulation

domain filtering methods. I first presented multiple techniques for reconstruc-

tion of phase from frequency modulations. These techniques were presented in

terms of their ability to perform perfect or estimated reconstruction in rectan-

gular or arbitrarily shaped regions. I identified a source of reconstruction error

that arises from discontinuities in the unwrapped phase and I presented a novel

interpolation technique which mitigates the reconstruction error.

I then used the new reconstruction techniques to demonstrate several

new modulation domain filters. The ability of the new techniques to provide

high-fidelity whole-image rotation, scaling, and translation was demonstrated.

New results from modulation domain filters which modify amplitude modula-

tion using non-scaled unwrapped phase were presented. A class of modulation

domain filters employing a combination of spatial and pointwise operations

was shown to produce effective rotation and scaling of target texture regions

in images. The results obtained by this class of filters represent both signifi-

cant advancement over past approaches to similar image processing goals and
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results for newly defined image processing tasks.

New cross-component modulation domain filters were presented for the

modification of both amplitude and frequency modulations. These filters iso-

late both target and non-target texture regions in images, with the non-target

texture regions identified by examining modulation information from multiple

image components. This allows these new filters to perform more accurate

implementation of visually meaningful image processing goals. Results were

shown for both cross-component amplitude modulation attenuation and cross-

component frequency modulation scaling filters.
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Chapter 5

Conclusion and Future Work

Recent years have seen the introduction of the AM-FM transform as a tool

to carry out biologically motivated image processing tasks via filtering in the

modulation domain. These tasks would be difficult or impossible to achieve

by traditional liner filtering. Results in modulation domain filtering have been

dramatic, but the development of a general theory for image processing in the

modulation domain has been slowed by the difficulties inherent in reconstruct-

ing an image from modified frequency modulation functions. Early solutions

to the reconstruction problem such those given in [76,82,84,85,97,99] required

mathematical constructs that led to a loss of the intuitive nature of the AM-

FM model. In this dissertation I have developed new techniques for use in the

AM-FM transform that focus on enabling the design of intuitive modulation

domain filters. I have employed these techniques to develop several new modu-

lation domain filters that are inspired by biological visual perception and that

have given new and remarkable results.

5.1 Dissertation Summary

Following the brief introduction in Chapter 1, I presented in Chapter 2 a de-

tailed overview of the theoretical advancements that led to the AM-FM trans-

form and its usage in modulation domain filtering. The development of the
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AM-FM model was presented, and its strong link to biological vision systems

was discussed. The developments that led to perfect reconstruction from the

model and the corresponding AM-FM transform were described in detail. Past

results from the usage of the transform to perform modulation domain filtering

were presented for filters which modify both amplitude and frequency modula-

tions.

In Chapter 3, I discussed the disadvantages of using a scaling factor

during phase unwrapping as related to reconstruction from modified frequency

modulations, and I presented a new phase unwrapping algorithm that avoids

any scaling of phase. The new algorithm makes use of a smoothly unwrapped

phase to guide the unwrapping of non-scaled phase using a queue-based phase

growing methodology. I demonstrated that the new phase unwrapping algo-

rithm results in reconstructions that are more accurate than those obtained

from phase unwrapping with phase scaling.

Then in Chapter 4, I investigated several new modulation domain filter-

ing techniques. I presented multiple techniques for the reconstruction of phase

from frequency modulations, and I presented a novel interpolation technique

to improve the fidelity of reconstruction from modified frequency content. I

then demonstrated a variety of new modulation domain filters that make use

of the new reconstruction techniques and the new phase unwrapping algorithm

from Chapter 3. New results were presented for modulation domain filters

which modify amplitude modulation and for a new class of modulation do-

main filters which employs a combination of spatial and pointwise operations

to rotate and scale target texture regions. Results were also presented for new

cross-component modulation domain filters that operate based on target and
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non-target texture regions to modify both amplitude and frequency modula-

tions. The results shown in Chapter 4 represent both improved filtering results

relative to past modulation domain filtering efforts and dramatic new modula-

tion domain filtered images.

5.2 Contributions to the Field

The original contributions of this dissertation include the following:

• I developed a new phase unwrapping algorithm that improves the stability

of the calculations in the AM-FM transform by eliminating the need for

a phase scaling factor in the algorithm. Unwrapped phases given by

the algorithm still provide meaningful frequency information and perfect

reconstruction in the AM-FM transform.

• I investigated multiple reconstruction techniques that can be used for per-

fect reconstruction from unmodified frequency modulation functions and

estimated reconstruction from modified frequency modulation functions.

• I expanded the functionality of modulation domain filters that modify

both amplitude and frequency modulations to identify target and non-

target texture regions. Non-target texture is isolated from modulation

information of all channel components and improves the ability of the

filter to accurately modify only target texture.

• I demonstrated new results for image processing tasks that are inspired

by biological visual perception and achieved through modulation domain

filtering. The results presented represent both a significant advancement
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over past results in the field and new directions in modulation domain

image processing.

• I designed and demonstrated practical modulation domain filters that are

elegant in that, for the first time, they do not require any departure from

the simple and intuitive nature of the basic AM-FM model.

These advances in the state-of-the-art set the stage for the emergence of

the AM-FM transform as a highly useful tool for performing intuitive, visually

motivated image processing and have laid a foundation for the future develop-

ment of both the transform and new modulation domain filtering techniques.

5.3 Future Work

Modulation domain filtering is a burgeoning but still nascent field of study with

a great deal of potential for future development. Here I will describe a few of

the directions that research in this field might take.

Although several different modulation domain filters have now been de-

fined and demonstrated, strict definitions for classes of modulation domain

filters are still unknown. A categorical investigation into the fundamental

processes that can be achieved through modulation domain filtering and a

description of the ways they can be put together would be beneficial to the

development and understanding of future modulation domain filters.

The development of new types of filters opens up a related field of study

that investigates what visually motivated image processing objectives might be

possible or desired. While we can look to traditional image processing tasks

for examples of filters and modifications that have been beneficial in the past,
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the ability to modify the fundamental structure of an image as a function of

its perceived meaning is a new capability that is not yet fully understood. The

identification of potential ways in which human observers might wish for their

perception of an image to change and what ways of changing that perception

are possible are open questions that will require consideration. Merely as in-

troductory examples, such tasks might include the replacement of textures on

surfaces in images with entirely new complex textures or the enhancement of

very specific complex textures, or parts of textures, within an image. It is likely

that some potential, desired ways of changing the visual meaning of an image

have not yet been imagined.

Several technical challenges remain in modulation domain filtering. The

reconstruction algorithms presented in Section 4.1 provide methods by which

to perfectly reconstruct phase from rectangular regions and reconstruct esti-

mated phase from arbitrary regions. However, a method by which to perfectly

reconstruct phase from an arbitrary region has yet to be developed. The spline

based integration methods which are required for perfect reconstruction are not

immediately amenable to the path following phase growing algorithm described

because the separable nature of the spline representation precludes integration

along arbitrary paths. Instead, a new method would need to be developed

that is capable of performing row and column integration in such a way that

integration is completely carried out over a region of arbitrary shape. Such

a method would potentially allow perfect reconstruction of targeted texture

regions, which are generally arbitrary in shape.

In Section 4.5, the filtering algorithm described made use of both point-

wise and spatial filtering operations. The spatial operations are carried out
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within manually selected windows and greatly contribute to the quality of the

final reconstruction. While manual placement of the windows has been very

useful as a proof of concept, modulation domain filters ideally alter image tex-

ture automatically according to a design without any human in the loop. The

optimal and automatic placement of these spatial windows is an important topic

for future research with several open questions. In the results obtained so far,

it has already been noted that there exists a trade-off between the placement

of windows which can lead to noticeable differences in texture phase as differ-

ent reconstruction regions grow together and the non-placement of windows

in which those same areas suffer from noisy reconstruction. These obstacles

may be ameliorated by careful placement of spatial windows to avoid phase

differences or improved phase growing at regional boundaries.

The further investigation of cross-component filtering techniques may

lead to new functionality in or expanded classes of modulation domain fil-

ters. As demonstrated in Sections 4.6 and 4.7, texture information is often

best described in information from multiple AM-FM image components. The

relationships between these components and ways to use information from mul-

tiple components to better inform modulation domain filters demand further

investigation.

In discovering how the visually perceived elements of imagery are con-

structed well enough to take them apart and put them back together in new

ways, we better understand the fundamental nature of how we visually perceive

image content. I believe that further investigation into this field of study will

yield discoveries which will enhance current image processing technologies used

in everyday life and lead to new technologies and applications not yet imagined.
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