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Abstract

In microwave devices, an aperture is often used as a radiating antenna element or

to direct energy vertically from a feed line on one layer of a circuit to another.

Researchers have employed many methods to describe the power transfer between

a microstrip feed and a finite slot with little agreement between models. Many of

these models are backed with rigorous theory that approach the computational com-

plexity of a full wave solver like the High Frequency Structure Simulator (HFSS)

which relies on the computationally intensive finite element method. This thesis

proposes a novel approach to analytically model the coupling between a microstrip

line feeding a finite slot in a ground plane. It attempts to alleviate the computational

intensity of some previous methods of describing coupling between a microstrip

and a slot while employing a more rigorous analysis than other simple closed-form

analysis approaches. This research analyzes the concept of field reciprocity which

has been a common theoretical backing for many existing theories as well as stored

energy coupling relations. Beyond this, an equivalent circuit model is developed to

describe the coupling at the transition region existing primarily inside the dielectric

between a slot aperture in a ground plane and a microstrip feed line. Ultimately, this

research provides a fundamental theoretical framework for models of vertical cou-

pling between microstrip lines and finite apertures as well as other types of printed

planar feed lines such as strip lines and slot lines.
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Chapter 1

Introduction

Feeding a radiating slot antenna with a microstrip line reduces fabrication com-

plexity with printed circuit board (PCB) fabrication techniques. Figures 1.1 and

1.2 show two variations of radiating slots that are fed with coaxial lines. These

feed structures for the slots employ baluns because a coaxial cable is an unbalanced

line [8]. A dyson balun like the one shown in Figure 1.1 adds a physical size re-

quirement that limits a designer from achieving a miniaturized design when they

choose to use a coaxial cable as the feed line [9]. Beyond this, time must be taken

to curve the center pin of the coaxial line across the slot antenna width where it is

then soldered. The dyson balun is also soldered along the ground plane. Figures

1.1, 1.2, and 1.3 serve to represent some of the benefits of feeding a structure with

a microstrip line. Figure 1.3(a) shows a microstrip line with a fan-like stub. This

microstrip line, a balanced type of transmission line, is printed on the opposite side

of the end-loaded slot shown in Figure 1.3(b). With the use of a microstrip feed line

such as this, the feedline is no longer restricted in size as it is when using a dyson-

type of balun like in Figures 1.1 and 1.2 which may be up to a half wavelength long

to operate correctly [1]. During mass-production using PCB fabrication techniques,

this type of feed is much faster to produce because it takes out a conductor-merging

or soldering step since the feed line is not physically shorted to one side of the slot
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on the ground plane. Instead of a physical short circuit, the microstrip feed line

shown in Figure 1.3(a) extends approximately a quarter wavelength past the edge

of the slot creating a virtual short circuit. A generic microstrip line as described

in [4] can be used for this purpose, but the fan-like shape of the quarter-wave stub

in Figure 1.3(a) aids in improving the bandwidth across which the stub is a virtual

short circuit [10].

Figure 1.1: A slot antenna with a coaxial cable feed line and a “dyson-like” balun
that is soldered to the ground plane [1].

Figure 1.2: A miniaturized slot antenna with a coaxial feed and a balun that is
soldered to the ground plane [2].

Beyond the fabrication and size benefits of using a microstrip feed line, an ar-

gument must be made for the benefit of developing an analytical model to describe

the coupling at the transition region between a microstrip feed line and a finite slot
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Figure 1.3: A (a) microstrip line feeding (b) a loaded slot antenna [3].

in a ground plane because the coupling behavior of this specific structure will be

analyzed in depth in this thesis. The ability to accurately describe a discontinu-

ity or transition in a microwave device using a mathematical model allows radio

frequency engineers and antenna designers to implement a transmission line repre-

sentation basis in the design of their system. With an analytical model, a transition

in a microwave device can be described as a subsystem or block on their transmis-

sion line circuit such that an intuitive understanding of the system behavior based

on circuit analysis techniques can achieved which aids in rapid system optimiza-

tion. An analytical approach such as this allows for faster optimization of a system

prior to simulating in a more time-consuming full wave solver like the High Fre-

quency Structure Simulator (HFSS). A software like HFSS, which is based on Finite

Element Method, is used in microwave system design to simulate a device before

fabricating the device because it solves for pertinent structure parameters by enforc-

ing Maxwell’s equations and boundary conditions on an element-by-element basis

[11]. The real world behavior prediction provided by full wave solver like HFSS,

though it may require some computational time, ultimately saves time and reduces

the cost of development for many microwave systems. These benefits are magni-

fied if a less computationally intensive analytical model can optimize the system

quickly before using a solver such as HFSS.
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For the purpose of developing a model that can be expanded to vertical transi-

tions between finite slots (or slot lines) and other types of transmission lines, the

case of a microstrip-to-slot transition is considered above other transition types

throughout this thesis. The existing models used to describe a microstrip-to-slot

transition are explored where the slot is assumed to be finite. Analytical field mod-

els for common transmission line types such as microstrip line, strip line, and slot

line are readily available [4]. Then by implementing other transmission line field

models, this research can be expanded to apply to transitions between different

types of transmission lines.

In microwave devices, a finite slot or aperture is often used as a radiating an-

tenna element or to direct energy vertically from a feed line on one layer of a circuit

to another. Researchers have employed many methods of describing the power

transfer between a microstrip feed and a finite slot with little agreement between

models. Some of these models are backed with rigorous theory that approach the

computational complexity of a full wave solver like the High Frequency Electro-

magnetic Field Simulation Software (HFSS). The concept of field reciprocity has

been a common theoretical backing for many existing theories. This research will

explore the concept of reciprocity as well as a general coupling expression is laid

out in [12]. Considering this previous work will help to build a basis upon which

an improved model will be developed. This thesis proposes a novel approach to

analytically model the coupling between a microstrip line feeding a finite slot in a

ground plane. It attempts to alleviate the computational intensity of some previous

methods of describing coupling between a microstrip and a slot while employing a

more rigorous analysis than other simple closed-form analysis approaches.

In the end, this research provides a fundamental theoretical framework for mod-

els of vertical coupling between microstrip lines and finite apertures as well as other
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types of printed planar feed lines such as strip lines and slot lines.

This thesis is structured such that some existing coupling models are introduced

in Chapter 1. The equivalent circuit representations of some common models along

with the concepts of Lorentz Reciprocity theory and general coupling theory are

then introduced in Chapter 2. Additionally, it will be shown in Chapter 2 that the

general coupling theory does not easily lend itself to an ideal transformer represen-

tation like the Lorentz Reciprocity Theorem approach claims [6]. Next an approach

for defining the microstrip and slot electric fields is proposed and the concept of

coupling as it is used in transformer theory and microwave filter design is recounted

in Chapter 3. A transmission line equivalent circuit based on parallel mutual induc-

tance and capacitance values in the transition region is proposed to aid in the opti-

mization of these designs is also given in Chapter 3. The transition region in refers

to the volume existing only inside a the dielectric material bounded by a microstrip

conductor and a slot in the ground plane. The transition region has a width equal to

the width of the microstrip line, a height equal to the height of the dielectric, and a

length equal to the width of the slot line. The simulated and measured results for

the developed theory describing the coupling in the transition region are given in

Chapter 4 using input impedance and series coupling impedance metrics. Finally,

concluding remarks and recommendations for future work are given in Chapter 5.

5



Chapter 2

Literature Review

This chapter introduces Lorentz Reciprocity Thoerem, General Coupling Theory,

and three of the existing analytical models that have been developed to describe the

coupling between a microstrip line and a slot line. The model proposed in Chapter 3

is unlike the previous models that will be discussed in this chapter and does not de-

pend on an ideal transformer representation, but these models have been analyzed

and inspected as a part of the initial literature review to inspect any complexities,

oversimplifications, and ambiguities that may serve to show the trade-offs of em-

ploying other methods over the method proposed in this thesis.

2.1 Lorentz Reciprocity Theorem

Lorentz reciprocity is a concept derived from Faraday’s Law and Ampere’s law to

relate the fields produced by independent sources within a region [4]. Consider

the volume, V , depicted in Figure 2.1. Within the volume there exist two sets

of sources that produce two sets of fields. M̄1 and J̄1 are magnetic and electric

currents, respectively, which produce the electric field, Ē1, and the magnetic field,

H̄1. Similarly, sources M̄2 and J̄2 produce the fields Ē2 and H̄2. Lorenz Reciprocity

6



Figure 2.1: An example volume to demonstrate Lorentz Reciprocity Theorem sim-
ilar to a depiction given in [4].

theorem relates these field and source vectors as

O · (Ē1 × H̄2 − Ē2 × H̄1) = J̄1 · Ē2 − J̄2 · Ē1 + M̄2 · H̄1 − M̄1 · H̄2. (2.1)

In a sourceless region, this becomes

O · (Ē1 × H̄2) = O · (Ē2 × H̄1). (2.2)

Furthermore, divergence theorem can be applied to describe the relationship be-

tween the independent fields in a sourceless region as

‹
S

(Ē1 × H̄2) · dS̄ =

‹
S

(Ē2 × H̄1) · dS̄ (2.3)

where S is the closed surface around the volume V .

7



2.2 Previous Work

Existing models for coupling through an aperture have been given in [5], [6], [13],

[14], and [7]. Closed form expressions for the turns ratio of an ideal transformer

to describe the coupling have been given in each of these models for the case of

a microstrip conductor extending a quarter wavelength past an orthogonal finite

slot or slotline in the ground plane. The turns ratio expressions in these papers do

not agree exactly. This disagreement is a major motivation for research into an

improved analytical model to describe the coupling between a microstrip line and

a slot. This section introduces three existing models and mentions limitations of

these models that motivate the research in this thesis.

2.2.1 Knorr Model

Knorr was among the first to compare a theoretical approach to describing the cou-

pling at a transition between a microstrip line and a slot line to measured results

[5]. He also compared theoretical results to measured results for the transition be-

tween a coaxial line and a slot line via a soldered transition such as the coax-to-slot

transitions shown in Chapter 1. Though this model will be referred to as the Knorr

model, the analytical model in [5] actually comes from a paper by Cohn [15]. Fig-

ure 2.2 shows a model of a slot-to-coax transition where the center conductor of the

coax that reaches across the slot on the air side of the slot to be soldered is modelled

as a half-circle conductor for mathematical convenience. This physical representa-

tion, shown in Figure 2.2 (a), allows for a simpler analytical model of L, the self

inductance of the center conducting line, which is included in the equivalent circuit

representation of the structure in Figure 2.2 (b) [5]. The equivalent circuit of the

slot-to-coax transition contains an ideal transformer to represent the coupling be-

8



Figure 2.2: The (a) slotline to coax transition is modelled with a semi-circle repre-
senting the center pin of the coax extending across the slotline. An (b) equivalent
circuit for the slot to coax transition is also given [5].

tween the coax and the slotline, a shunt capacitance that represents fringing effects

at the end of the slot line feed, a slot line impedance, and a coaxial line impedance

[5]. Figure 2.2 (b) shows the equivalent circuit of this transition assuming that a

coaxial line is being fed with a slot line. A modified version of the equivalent cir-

cuit for the situation where a coaxial line is feeding a slot line is shown in Figure 2.3.

Figure 2.4 shows a model of a slot-to-microstrip transition where the microstrip is

Figure 2.3: An interpretation of the Knorr model for a coaxial line feeding a finite
slot.

assumed to be extending a quarter wavelength past the center of the slot line and the

slot line is assumed to be extending a quarter wavelength past the center of the mi-

crostrip line. This is so that a virtual short can be assumed for both the perspective

of the equivalent circuit where the slot line is feeding a microstrip line as in Figure

2.4 or for the perspective where the microstrip is feeding a slot line as in Figure 2.5.
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In both equivalent circuits, the capacitance Coc represents the fringing happening at

the end of the microstrip line [5]. The reason that this capacitance can be included

in the equivalent circuit in series is solely because of the virtual short created by the

quarter-wavelength microstrip section extending past the center of the slot line. Fig-

ure 2.4 also shows a shunt reactance Xsl which represents the equivalent reactance

due to a shorted slot [5]. Unlike Figure 2.4, Figure 2.5 assumes that the shorted end

of the slot is ideal. This is an assumption that will carry through the remainder of

this thesis, but may not be assumed by all of the presented previous work. Knorr’s

Figure 2.4: The (a) slotline to microstrip transition with the slotline extending a
quarter wavelength past the microstrip and the microstrip line extending a quarter
wavelength past the slotline as well as an (b) equivalent circuit to represent the
structure [5].

Figure 2.5: An interpretation of the Knorr model for a microstrip line coupled to a
finite slot where the microstrip line extends a quarter wavelength past the slot.

model is based on the concept of an ideal transformer with a turns ratio that tends
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to decrease linearly with frequency. Because of this, the behavior of the impedance

looking into the ideal transformer from the perspective of the feedline in Figure 2.5

tends to follow the behavior of the slot input impedance except for a small magni-

tude decrease. This model was tested experimentally in [5] with a high permittivity

material (εr = 20). This was likely done because at high permittivities the fringing

fields are tightly bound to the slot and the microstrip, which reduces radiation. This

choice of permittivity aligns with the focus of [5] which is creating a good match

between either a coaxial line and a slot line or a microstrip line and a slot line.

2.2.2 Das Model

This section briefly introduces a model developed in [6]. This model is an example

of a computationally intensive full-wave approach to describe the coupling between

a microstrip line and a slot line. The purpose of this thesis is to develop a simplified

model that may work as a first step in optimizing a system before employing a

method like the one given by Das in [6]. More important to the focus of this thesis

is the transmission line equivalent circuit that is proposed in the top left corner

of Figure 2.6. The equivalent circuit employs an ideal transformer to represent the

power transfer at the region in the dielectric between a microstrip line and a slot line.

In order to develop his model, Das uses current on each transmission line (in the

case of a slot, the equivalent magnetic current is used) expressed as a summation of

a travelling wave current and a standing wave current [6]. Das then uses the concept

of reciprocity to relate the fields on the different coupled lines. The currents are

used to express a relationship between the slot and microstrip fields. As a part of

his work, Das provides a closed form expression to calculate the turns ratio of an

ideal transformer representing the coupling between a slotline and a microstrip line
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Figure 2.6: An example of a microstrip coupled to slot transition and an equivalent
circuit representation using an ideal transformer given by Das (in the top left) [6].

that extends exactly one quarter wavelength past the slotline to create a virtual short-

circuit. Das calculates his turns ratio for this specific case as being proportional to

the square root of the ratio of the microstrip characteristic impedance to the slot

characteristic impedance. He defines an expression for the turns ratio as

n =
J0(kesWm/2)J0(kemWs/2)

k2es + kem2

·[ k2emk2εr
k2εrcos(k1D) + k1sin(k1D)

+
k2esk1

k1cos(k1D) + k2sin(k1D)

] (2.4)

where J0 is the zeroth order Bessel function and k1, k2, kes, and kem are propagation

coefficients defined in [6]. Figure 2.6 shows a depiction of a rotated slot fed with

a microstrip line. The slot is rotated in Figure 2.6 in order to emphasize that his

full model can account for any rotation of the slot with respect to the microstrip. If

the slot is rotated, however, equation 2.4 could not be used because it is a simpli-

fied form of the analysis method presented in [6] for the strict case of a microstrip
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oriented orthogonally to the length of the slot line and extending exactly a quarter

wavelength past the edge of the slot line such that a virtual short is created. Equation

2.4 is not considered computationally intensive, but it is only useful for the strict

orientation described. The full coupling analysis method given in [6] is complex

and approaches the computational intensity of a full-wave solver. Next, we will in-

troduce a more simplified existing model that is less computationally intensive than

the Das model mentioned in this section.

2.2.3 Pozar Model

A method given in [7] employs the concept of reciprocity to model the coupling

between a microstrip line and a finite slot in the ground plane. First, the propagating

microstrip fields are described as a sum of forward and backward travelling waves

according to the quasi-transverse electromagnetic model described in [4]. These

fields, given in [7], are of the form

Ē =

{
Ē+ +RĒ− for y < 0

TĒ+ for y > 0
(2.5)

and

Ē =

{
H̄+ +RH̄− for y < 0

TH̄+ for y > 0.
(2.6)

The transition region is described as having transmitted and reflected components

according to the reflection coefficientR and the transmission coefficient T as shown

in Figure 2.7. R, T , and the peak slot field magnitude V0 are solved for by solv-

ing Lorentz reciprocity theorem in a sourceless region and enforcing the continuity
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of the transverse magnetic field across the aperture. These values are solved for

assuming the difference between the external and internal magnetic fields is ex-

pressed as a Greens function expression [7]. Depending on the slot field definition

applied, multiple modes may be able to be achieved [7]. Using this approach, it

was found that the coupling could be described in terms of a reflection coefficient

which can be translated to a series impedance in the transmission line model of the

system as shown in Figure 4.2. Following with the conclusion in [7], the coupling

model given as a part of this research will assume that the coupling can always be

described as a series impedance, Z, in a transmission line model as shown in Figure

4.2 where Zin,end is the input impedance looking in to the length of line extending

past the center of the finite slot, Vg is the voltage supplied by the generator, Zg

is the generator impedance, Zin,m is the system input impedance at the generator,

Z0,m is the characteristic impedance of the microstrip line feeding the finite slot, and

γm = α + jβ represents the losses and propagation constant along the microstrip

line. This series impedance will be called the coupling impedance.

Figure 2.7: Visualization of the reflected and transmitted waves along a microstrip
line that is coupled to a finite slot in the ground plane as described by Pozar in [7].

As a part of this work, a model for the electric field in the finite slot was given such
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Figure 2.8: Equivalent circuit with a series coupling impedance, Z, to represent the
coupling at the transition region between the microstrip conductor and the finite slot
in the ground plane.

that

Ēy =
sin(ke[

L
2
− |x|])

W sin(ke
L
2
)

(2.7)

where

ke = k0

√
εr + 1

2
. (2.8)

In this field model, k0 is the free space wave number, L is the length of the finite

slot, W is the width of the slot, x is the dimension along which the field changes in

magnitude, and εr is the reletivity of the dielectric material between the microstrip

line and the slot line.

2.3 General Coupling Theory

General coupling theory is a concept that comes from the area of coupled resonator

filter design. It is introduced here to clearly state the difference between the cou-

pling coefficient used for resonant filter design purposes and the turns ratio that

has often been included in equivalent circuits to describe the coupling between two

systems. Beyond this, a relationship will be found between Lorentz Reciprocity

Theorem and General coupling theory. This section serves as motivation for a po-
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tential improved model that requires further research. Neither Lorentz Reciprocity

theory nor General Coupling Theory have been implemented in the model proposed

by this thesis because of ambiguities related to current and voltage definitions for

the transition region. This ambiguity becomes clear in the Electric Coupling and

Magnetic Coupling sections to follow.

The work in [12] gives an equation for the coupling coefficient between two

coupled resonators based on their fields as

k =

˝
V
εE1 · E2 dV√˝

V
ε|E1| dV ×

˝
V
ε|E2|2 dV

+

˝
V
µH1 ·H2 dV√˝

V
µ|H1| dV ×

˝
V
µ|H2|2 dV

.

(2.9)

The coupling coefficient, according to this definition is a summation of the electric

coupling coeffient and the magnetic coupling coeffient where the electric coupling

coeffient is the ratio of the mutual stored electric energy between two structures

normalized by the separate stored electric energies of the two structures prior to

coupling. Similarly, the magnetic coupling coefficient is the ratio of the mutual

stored magnetic energy between two structures normalized by the separate stored

magnetic energies of the two structures prior to coupling. For an asynchronously

tuned case (defined in [12]), the coupling coefficient can be written in terms of

resonant frequencies as

k = ±
(
f02
f01

+
f01
f02

)√(
f 2
p2 − f 2

p2

f 2
p2 + f 2

p1

)2

−
(
f 2
02 − f 2

01

f 2
02 + f 2

01

)2

(2.10)

where f01 and f02 are the separate resonant frequencies of two coupled structures

and fp2 and fp1 are the characteristic frequency peaks of the coupled structure’s

transmission response. The relationship between stored energy and resonant fre-
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quency makes sense because a structure is naturally resonant when the electric

and magnetic stored energies are equal and opposite or at the frequency when the

impedance of a reactive system becomes purely real [4]. The coupling coefficient

given in [12] can not be used in place of a turns ratio for an ideal transformer to

represent coupling between two structures. In the case of pure magnetic coupling,

the turns ratio, n, of an ideal transformer, which is a voltage relationship, can be

described in terms of the self impedance values, or self inductances in the case of

an ideal transformer, of two different structures [16]:

n =
Vin
Vout

=

√
Lm
Ls

(2.11)

where Vin is the voltage at the input terminal of the ideal transformer, Vout is the

voltage at the output terminal of the ideal transformer, Lm is the self inductance

of the first coupled structure, and Ls is the self inductance of the second coupled

structure [16]. According to [12], the coupling coefficient, k, of a magnetically

coupled set of structures is defined as

k =
M

LmLs
(2.12)

where M is the mutual inductance between Lm and Ls. Thus, for the magnetically

coupled case, k 6= n. n and k can be related by

n =
kLm
M

. (2.13)

As noted previously, the concept of Lorentz Reciprocity has been used as a basis for

the theory behind several coupling approaches in previous work. In this section, we

will find a link between a non-conventional form of Lorentz Reciprocity Theorem
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and the General Coupling theory.

2.3.1 Electric Coupling

Recall the following Maxwell’s equations [4] for time harmonic fields:

O× Ē1 = −jωµH̄1 − M̄1

O× H̄1 = jωεĒ1 + J̄1

O× Ē2 = −jωµH̄2 − M̄2

O× H̄2 = jωεĒ2 + J̄2

(2.14)

Taking the complex conjugate of both sides of Maxwell’s equations yields:

O× Ē1
∗

= −jωµH̄1
∗ − M̄1

∗

O× H̄1
∗

= jωεĒ1
∗

+ J̄1
∗

O× Ē2
∗

= −jωµH̄2
∗ − M̄2

∗

O× H̄2
∗

= jωεĒ2
∗

+ J̄2
∗
.

(2.15)

Two forms of Maxwell’s equations have been presented. These expressions will be

used in the derivation of an unconventional form Lorentz Reciprocity theorem that

includes conjugated fields to describe mutual coupling.

Now take the dot product of the Faraday’s Law listed in Equation 2.14 on both

sides with H̄2
∗ which yields

H̄2
∗ · (O× Ē1) = H̄2

∗ · (−jωµH̄1 − M̄1). (2.16)

Equation 2.16 is simplified on the right hand side by the distributive property of the
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dot product referenced in [17] such that

H̄2
∗ · (O× Ē1) = H̄2

∗ · (−jωµH̄1)− H̄2
∗ · M̄1. (2.17)

The cross product of Ē1 is expanded in terms of Cartesian components E1x, E1y,

and E1z as

O× Ē1 =


x̂ ŷ ẑ

d

dx

d

dy

d

dz

E1x E1y E1z


= x̂

(
dE1z

dy

dE1y

dz

)
− ŷ
(
dE1z

dx
− dE1x

dz

)
+ ẑ

(
dE1y

dx
− dE1x

dy

)
.

(2.18)

Taking the dot product of H̄2
∗ with Equation 2.18 results in

H̄2
∗ · (O× Ē1) =

H̄2x
∗
(
dE1z

dy
− dE1y

dz

)
− H̄2y

∗
(
dE1z

dx
− dE1x

dz

)
+ H̄2z

∗
(
dE1y

dx
− dE1x

dy

)
.

(2.19)

This is simplified further as

H̄2
∗ · (O× Ē1)

= H̄2x
∗dE1z

dy
− H̄2x

∗dE1y

dz
− H̄2y

∗dE1z

dx
+ H̄2y

∗dE1x

dz
+ H̄2z

∗dE1y

dx
− H̄2z

∗dE1x

dy
.

(2.20)

Then the right hand side of Equation 2.19 is substituted in to the left hand side of
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equation 2.17 to give the relation

H̄2x
∗dE1z

dy
− H̄2x

∗dE1y

dz
− H̄2y

∗dE1z

dx
+ H̄2y

∗dE1x

dz
+ H̄2z

∗dE1y

dx
− H̄2z

∗dE1x

dy

= H̄2
∗ · (−jωµH̄1)− H̄2

∗ · M̄1.

(2.21)

Now take the dot product of the conjugated Ampere’s law listed in Equation 2.15

with Ē1 to get

Ē1 · (O× H̄2
∗
) = Ē1 · (jωε∗Ē2

∗
+ J̄2

∗
). (2.22)

Applying the same step leading to Equation 2.17, the distributive property is applied

which simplifies Equation 2.22 to

Ē1 · (O× H̄2
∗
) = Ē1 · (jωε∗Ē2

∗
) + Ē1 · J̄2

∗
. (2.23)

The cross product of H̄1
∗ is expanded in terms of Cartesian components H∗2x, H∗2y,

and H∗1z as

O× H̄2
∗

=


x̂ ŷ ẑ

d

dx

d

dy

d

dz

H∗2x H∗2y H∗2z


= x̂

(
dH∗2z
dy

dH∗2y
dz

)
− ŷ
(
dH∗2z
dx
− dH∗2x

dz

)
+ ẑ

(
dH∗2y
dx
− dH∗2x

dy

)
.

(2.24)
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Taking the dot product of Ē1 with Equation 2.24 results in

Ē1 · (O× H̄2
∗
)

= Ē1x

(
dH∗2z
dy
−
dH∗2y
dz

)
− Ē1y

(
dH∗2z
dx
− dH∗2x

dz

)
+ Ē1z

(
dH∗2y
dx
− dH∗2x

dy

)
.

(2.25)

This is simplified further as

Ē1 · (O× H̄2
∗
)

= Ē1x
dH∗2z
dy
− Ē1x

dH∗2y
dz
− Ē1y

dH∗2z
dx

+ Ē1y
dH∗2x
dz

+ Ē1z

dH∗2y
dx
− Ē1z

dH∗2x
dy

.

(2.26)

Then the right hand side of Equation 2.26 is substituted in to the left hand side of

equation 2.23 to give the relation

Ē1x
dH∗2z
dy
− Ē1x

dH∗2y
dz
− Ē1y

dH∗2z
dx

+ Ē1y
dH∗2x
dz

+ Ē1z

dH∗2y
dx
− Ē1z

dH∗2x
dy

= Ē1 · (jωε∗Ē2
∗
) + Ē1 · J̄2

∗
.

(2.27)

Now subtract equation 2.26 from equation 2.20 to get

H̄2
∗ · (O× Ē1)− Ē1 · (O× H̄2

∗
)

= H̄2x
∗dE1z

dy
− H̄2x

∗dE1y

dz
− H̄2y

∗dE1z

dx
+ H̄2y

∗dE1x

dz
+ H̄2z

∗dE1y

dx
− H̄2z

∗dE1x

dy

−
[
Ē1x

dH∗2z
dy
− Ē1x

dH∗2y
dz
− Ē1y

dH∗2z
dx

+ Ē1y
dH∗2x
dz

+ Ē1z

dH∗2y
dx
− Ē1z

dH∗2x
dy

]

(2.28)

Distributing the minus sign in the right hand side of Equation 2.28 changes the
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expression to

H̄2
∗ · (O× Ē1)− Ē1 · (O× H̄2

∗
)

= H̄2x
∗dE1z

dy
− H̄2x

∗dE1y

dz
− H̄2y

∗dE1z

dx
+ H̄2y

∗dE1x

dz
+ H̄2z

∗dE1y

dx
− H̄2z

∗dE1x

dy

− Ē1x
dH∗2z
dy

+ Ē1x

dH∗2y
dz

+ Ē1y
dH∗2z
dx
− Ē1y

dH∗2x
dz
− Ē1z

dH∗2y
dx

+ Ē1z
dH∗2x
dy

.

(2.29)

For comparison purposes that will be used later in this derivation, solve O · (Ē1 ×

H̄2
∗
) to get

O · (Ē1 × H̄2
∗
)

= O ·


x̂ ŷ ẑ

E1x E1y E1z

H∗2x H∗2y H∗2z


= O · [x̂(E1yH

∗
2z − E1zH

∗
2y)− ŷ(E1xH

∗
2z − E1zH

∗
2x) + ẑ(E1xH

∗
2y − E1yH

∗
2x)]

=
d

dx
(E1yH

∗
2z − E1zH

∗
2y)−

d

dy
(E1xH

∗
2z − E1zH

∗
2x) +

d

dz
(E1xH

∗
2y − E1yH

∗
2x)

=
d

dx
E1yH

∗
2z −

d

dx
E1zH

∗
2y −

d

dy
E1xH

∗
2z +

d

dy
E1zH

∗
2x +

d

dz
E1xH

∗
2y −

d

dz
E1yH

∗
2x.

(2.30)

The derivative chain rule is used to expand Equation 2.30 to get

O · (Ē1 × H̄2
∗
)

=
dE1y

dx
H∗2z +

dH∗2z
dx

E1y −
dE1z

dx
H∗2y −

dH∗2y
dx

E1z

− dE1x

dy
H∗2z −

dH∗2z
dy

E1x +
dE1z

dy
H∗2x +

dH∗2x
dy

E1z

+
dE1x

dz
H∗2y +

dH∗2y
dz

E1x −
dE1y

dz
H∗2x −

dH∗2x
dz

E1y.

(2.31)
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Compare the right hand sides of Equation 2.31 and Equation 2.29. These are equal,

so it can be said that

O · (Ē1 × H̄2
∗
) = H̄2

∗ · (O× Ē1)− Ē1 · (O× H̄2
∗
). (2.32)

Then by substituting the right hand sides of Equation 2.17 and Equation 2.23 into

the right hand side of Equation 2.32, the relation

H̄2
∗ · (O× Ē1)− Ē1 · (O× H̄2

∗
)

= H̄2
∗ · (−jωµH̄1)− H̄2

∗ · M̄1 − Ē1 · (jωε∗Ē2
∗
)− Ē1 · J̄2

∗

= −jωµH̄2
∗ · H̄1 − H̄2

∗ · M̄1 − jωε∗Ē1 · Ē2
∗ − Ē1 · J̄2

∗

(2.33)

can be made. The vector triple product rule given in [17] as O · (Ā× B̄ = B̄ · (O×

Ā)− Ā · (O× B̄) allows

O · (Ē1 × H̄∗2 ) = H̄∗2 · (O× Ē1)− Ē1 · (O× H̄∗2 ) (2.34)

and

O · (Ē2 × H̄∗1 ) = H̄∗1 · (O× Ē2)− Ē2 · (O× H̄∗1 ) (2.35)

to be true. Follow the same steps that were followed to arrive at Equation 2.33

by subtracting the simplified result of multiplying both sides of the second listed

Maxwell’s equation in Equation 2.15 with Ē2 from the simplified result of multi-

plying both sides of the third listed Maxwell’s equation in Equation 2.14 with H̄∗1
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to find that

O · (Ē2 × H̄∗1 ) = H̄1
∗ · (O× Ē2)− Ē2 · (O× H̄1

∗
)

= H̄1
∗ · (−jωµH̄2)− H̄1

∗ · M̄2 − Ē2 · (jωε∗Ē1
∗
)− Ē2 · J̄1

∗

= −jωµH̄1
∗ · H̄2 − H̄1

∗ · M̄2 − jωε∗Ē2 · Ē1
∗ − Ē2 · J̄1

∗

(2.36)

is also true.

Let J̄ = J̄s + σĒ and J̄∗ = J̄∗s + σ∗Ē∗ to get

O · (Ē1 × H̄∗2 ) = −jωµ(H̄1 · H̄∗2 )− M̄1 · H̄∗2 + jωε∗(Ē1 · Ē∗2)− Ē1 · J̄∗2 =

−jωµ(H̄1 · H̄∗2 )− M̄1 · H̄∗2 + jωε∗(Ē1 · Ē∗2)− Ē1 · ¯J∗2,s − σ∗(Ē1 · Ē∗2)

(2.37)

and

O · (Ē2 × H̄∗1 ) = −jωµ(H̄∗1 · H̄2)− M̄∗
1 · H̄2 + jωε∗(Ē∗1 · Ē2)− Ē2 · J̄∗1 =

−jωµ(H̄∗1 · H̄2)− M̄∗
1 · H̄2 + jωε∗(Ē∗1 · Ē2)− Ē2 · ¯J∗1,s − σ∗(Ē2 · Ē∗1).

(2.38)

Apply a volume integral to both sides of Equation 2.37 and Equation 2.38 to get

˚
V

O · (Ē1 × H̄∗2 )dV

= −jω
˚

V

(µ(H̄1 · H̄∗2 )− ε∗(Ē1 · Ē∗2))dV

− σ∗
˚

V

(Ē1 · Ē∗2)dV −
˚

V

(M̄1 · H̄∗2 + Ē1 · ¯J∗2,s)dV

(2.39)
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and

˚
V

O · (Ē2 × H̄∗1 )dV

= −jω
˚

V

(µ(H̄∗1 · H̄2)− ε∗(Ē∗1 · Ē2))dV

− σ∗
˚

V

(Ē2 · Ē∗1)dV −
˚

V

(M̄∗
1 · H̄2 + Ē2 · ¯J∗1,s)dV.

(2.40)

Divergence theorem says

˚
V

O · (Ē1 × H̄∗2 )dV =

‹
S

(Ē1 × H̄∗2 ) · dS̄ (2.41)

˚
V

O · (Ē2 × H̄∗1 )dV =

‹
S

(Ē2 × H̄∗1 ) · dS̄ (2.42)

It should be noted from the theory developed previously that a non-standard form

of Lorentz reciprocity theorem can be stated as

O · (Ē1 × H̄∗2 − Ē2 × H̄∗1 )

= H̄2
∗ · (O× Ē1)− Ē1 · (O× H̄2

∗
)

− H̄1
∗ · (O× Ē2) + Ē2 · (O× H̄1

∗
)

= −jωµH̄2
∗ · H̄1 − H̄2

∗ · M̄1 − jωε∗Ē1 · Ē2
∗ − Ē1 · J̄2

∗

+ jωµ∗H̄1
∗ · H̄2 + H̄1

∗ · M̄2 + jωεĒ2 · Ē1
∗

+ Ē2 · J̄1
∗
.

(2.43)

Then if Ē1, Ē2, H̄1, and H̄2 are all assumed to be real, then

O · (Ē1 × H̄∗2 − Ē2 × H̄∗1 ) = J̄1 · Ē∗2 − J̄∗2 · Ē1 + M̄∗
2 · H̄1 − M̄1 · H̄∗2 . (2.44)
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In a sourceless region this becomes

O · (Ē1 × H̄∗2 ) = O · (Ē2 × H̄∗1 ). (2.45)

The form of the expressions
1

2

˜
S
(Ē1×H̄∗2 ) ·dS̄ and

1

2

˜
S
(Ē2×H̄∗1 ) ·dS̄ hints that

these are terms that describe the a complex power flowing out of a surface similar

to the integral of the complex Poynting vector mentioned in [4].

For the following theory, purely real harmonic fields and a purely real permit-

tivity and permeability for the material are assumed. Similar to the derivation of

Poynting’s theorem in page 25-26 of [4], define from Equation 2.39 and the recip-

rocal Equation 2.40 the mutual complex power flowing out of the surface as

Po,m =
1

2

¨
S

(Ē1 × H̄∗2 )dS =
1

2

¨
S

(Ē2 × H̄∗1 ) · dS̄

=
1

2

¨
S

(Ē1 × H̄2)dS =
1

2

¨
S

(Ē2 × H̄1) · dS̄.
(2.46)

Define the mutual power lost to heat as

Pl,m =
1

2
σ∗
˚

V

(Ē1 · Ē∗2)dV =
1

2
σ∗
˚

V

(Ē∗1 · Ē2)dV

=
1

2
σ∗
˚

V

(Ē1 · Ē2)dV = 0

(2.47)

which is equal to zero in the sourceless region if the material in the region has no

conductivity.

Define the mutual electric and mutual magnetic stored energies as

We,m =
1

4
ε∗
˚

V

(Ē1 · Ē∗2)dV =
1

4
ε

˚
V

(Ē∗1 · Ē2)dV

=
1

4
ε

˚
V

(Ē1 · Ē2)dV.

(2.48)
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and

Wm,m =
1

4
µ

˚
V

(H̄1 · H̄∗2 )dV =
1

4
µ∗
˚

V

(H̄∗1 · H̄2)dV

=
1

4
µ

˚
V

(H̄1 · H̄2)dV,

(2.49)

respectively. Define the mutual complex power delivered by the sources as

Ps,m = −1

2

˚
V

(M̄1 · H̄∗2 + Ē1 · ¯J∗2,s)dV = −1

2

˚
V

(M̄∗
1 · H̄2 + Ē2 · ¯J∗1,s)dV

= −1

2

˚
V

(M̄1 · H̄2 + Ē2 · ¯J1,s)dV = 0

(2.50)

which is equal to zero because a sourceless region is being considered. If a source-

less region is not being considered then a definition for Ps,m can be derived from

Equation 2.43. For the purpose of describing coupling between a microstrip line

and a slot, the volume V of the above equations could be considered to be the tran-

sition region volume depicted in Figure 2.9.

Figure 2.9: Depiction of the transition region extending across the width of the slot,
ws, the width of the microstrip conductor, wm, and the hight of the dielectric d for
a microstrip line coupled to a slot (a) along the length of the microstrip line and (b)
from the front cut plane of the microstrip line.
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Thus, it can be said that

Ps,m = Po,m + Pl,m + 2jω(Wm,m −We,m). (2.51)

For the considered sourceless region, this becomes

Po,m = 2jω(We,m −Wm,m). (2.52)

Finally, [4] gives a relation such that the energy stored in a parallel plate capacitor

is

We =
1

2
C|V̄ |2avg =

1

4
C|V̄ |2 (2.53)

where We is stored electric energy, C is the capacitance of the parallel plate capac-

itor, and V is the voltage difference across the plates of the parallel plate capacitor.

The definition for the mutual stored electric energyWe,m was developed in Equation

2.48 so Equation 2.53 can be used to develop a definition for the mutual capacitance

Cm in a sourceless region with two sets of fields as

1

4
Cm|V̄ |2 =

1

4
ε

˚
V

(Ē1 · Ē2)dV. (2.54)

The stored electric energies W1,e and W2,e of electric fields 1 and 2 can be related

separately as

1

4
C1|V̄ |2 =

1

4
ε

˚
V

|Ē1|2dV (2.55)
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and

1

4
C2|V̄ |2 =

1

4
ε

˚
V

|Ē2|2dV. (2.56)

Define the mutual capacitance Cm to be

Cm =
ε
˝

V
(Ē1 · Ē2)dV

|V |2
. (2.57)

The energies stored separately in each independent set of fields is

C1 =
ε
˝

V
|Ē1|2dV
|V |2

(2.58)

C2 =
ε
˝

V
|Ē2|2dV
|V |2

(2.59)

This agrees with the definition of the coupling coefficient ke for electric coupling

case given in [12] as

ke =
Cm
C1C2

=
Wm,e

W1,eW2,e

=

˝
V
εE1 · E2dV√˝

V
ε|E1|2dV ×

˝
V
ε|E2|2dV

. (2.60)

A difficulty with using the derived mutual capacitance, Cm, to describe the coupling

between two structures like a microstrip and a slot appears with the definition of the

voltage, V . Cm is found for a volume without a set voltage difference V across two

points such that it could be implemented with ease in a circuit model.
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2.3.2 Magnetic Coupling

For magnetic coupling,

Wm,m =
1

4
Lm|I|2 =

1

4
µ

˚
V

(H̄1 · H̄∗2 )dV =
1

4
µ

˚
V

(H̄∗1 · H̄2)dV

=
1

4
µ

˚
V

(H̄1 · H̄2)dV

(2.61)

assuming again a sourceless region with purely real fields in a material with a real

permittivity and permeability. Define the mutual inductance Lm to be

Lm = 4
Wm,m

|I|2
= 4

˝
V
µH1 ·H2dV

|I|2
(2.62)

based on the definition of the stored energy in an inductor [4].

Similarly, the stored magnetic energy Wm,1 and Wm,2 of the separate fields can

be defined as

Wm,1 =
1

4
L1|I|2 (2.63)

and

Wm,2 =
1

4
L2|I|2, (2.64)

respectively.

Thus a coupling coefficient that agrees with the coupling coefficient for the

magnetically coupled case in [12] can be defined as

km =
Lm
L1L2

=
Wm,m

Wm,1Wm,2

=

˝
V
µH1 ·H2dV√˝

V
µ|H1|2dV ×

˝
V
µ|H2|2dV

(2.65)
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Similar to the Electric Coupling case, a difficulty with using the derived mutual

inductance, Lm, to describe the coupling between two structures appears with the

definition of the current, I . This is because the mutual energy is found for a volume

without a single set current direction as in an inductor. This ambiguity makes it

difficult to use the mutual inductance definition in a circuit model representation.

2.3.3 Conclusions about Previous Work

It has been shown that elements of the General Coupling theory can be traced back

to the Lorentz Reciprocity theorem, Maxwell’s Equations, and Poynting’s Theorem.

The coupling coefficients for electric coupling and magnetic coupling proposed by

general coupling theory are a ratio of coupled energy to stored energy which can

be linked to the resonant frequencies of two coupled resonators. In [7], Pozar uses

the concept of Lorentz Reciprocity, the boundary condition related continuity of

the tangential component of the magnetic field across a boundary, and a Green’s

Function field model to develop an expression for a reflection coefficient R which

can be used to describe the series coupling impedance Z in a transmission line

model. In [6], Das employs Lorentz reciprocity in a time-time intensive full wave

technique. In [5], the coupling coefficient is provided using a method first proposed

by Cohn in [15]. In general, the models that have been introduced in this chapter

do not agree as will be shown in Chapter 4. This disagreement between existing

models is a leading reason for why more research is required to find an accurate

coupling model for the vertical transition between a microstrip feed line and a finite

slot in a ground plane.

In order to develop a novel analytical coupling model using the concept of reci-

procity, a field model must be developed for two separate structures: the microstrip
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and the slot. Next, an equivalent circuit should be proposed to describe the coupling

such that it can be used in a transmission line model of the system. The field models

that will be used and an improved coupling equivalent circuit will be proposed in

Chapter 3. These field models are different than the field models used by Pozar in

[7]. The model developed in Chapter 3 is less computationally intensive than the

model proposed by Das in [6], employs a simplified circuit analysis technique that

rivals the simplicity of the model proposed by Pozar, and rivals the accuracy of both

the model given by Knorr in [5] and the closed form expression for the case of a

virtual short circuit transition given by Das in [6].
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Chapter 3

Methodology

The previous work of Knorr, Das, and Pozar was introduced in Chapter 2 as they

relate to the coupling between a microstrip and a slot. All of this work depends, in

some form, on a relationship between the fields on a microstrip line and the fields

on a slot line. Thus, in this chapter a model for the fields on the microstrip line will

be introduced in Section 3.1 and a model for the fields that can exist on a finite slot

will be given in Section 3.2. In all of the previous work introduced in Chapter 1,

researchers assumed that the coupling could be described in terms of a turns ratio, n.

In section 3.3 the difference between the turns ratio n and the coupling coefficient

definitions ke and km from General Coupling Theory that were given in Chapter 2

will be shown. In Section 3.4, a modified equivalent circuit based on a definition

of mutual inductance and mutual capacitance that differs from the definitions of

mutual inductance and capacitance based on mutually stored energy as given in

Chapter 2 such that the required parameters can be clearly defined is presented. The

values are calculated such that they depend on aligning field components, which is

a concept borrowed from the definition of mutually stored energy in Sections 2.3.1

and 2.3.2. This modified equivalent circuit and associated value calculations serve

as the the improved model suggested by this thesis. This model will be tested in

Chapter 4.
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3.1 Analytical TEM Microstrip Field Model

The microstrip line and the slot in the ground plane are considered as separate

structures with separate power sources. The coupling at the transition region in the

dielectric material above the microstrip conductor and below the slot in the ground

plane can be described using field representations for the microstrip and for the

slot. Thus, in order to analyze mutual coupling effects between fields produced by

separate sources at the transition region between the slot and the microstrip line,

the independent fields produced by each separate structure must be modelled. In

this section, the analytical field model that will be used to describe the coupling in

the improved coupling model given in Section 3.4 will be introduced. Figure 3.1

shows the front cut plane of a microstrip line. Figure 3.2 shows a representation

of a typical electric field orientation on a microstrip line, including fringing fields.

Figure 3.3 shows the electric and magnetic field orientations under a transverse

electromagnetic (TEM) field assumption where the fringing is taken into account in

the form of an effective permittivity defined in [4] as

εeff =
εr + 1

2
+
εr − 1

2

1√
1 + 12 d

wm

. (3.1)

The microstrip field is modelled using the quasi-transverse electromagnetic ap-

proximation for the microstrip line as given in [4]. However, because the microstrip

conductor consists of a finite substrate with a ground plane on one side and a con-

ducting line on the other, some of the electric field lines generated by the microstrip

reach outside of the substrate into the air such that the phase matching condition

in either material (dielectric or air) is violated [4]. An effective dielectric constant

is required to describe the material during microstrip operation to account for the
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Figure 3.1: Front cut plane of a microstrip line.

Figure 3.2: Depiction of some typical microstrip fringing electric field behavior as
seen from the front cut plane of a microstrip line.

Figure 3.3: Electric and magnetic field orientation for the quasi-TEM microstrip
field model.
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fringing fields that reach into the air. This effective dielectric constant is frequency

dependent. The frequency dependency of the effective dielectric constant is taken

into account by an approximation given in [18]. The TEM model was chosen to

represent the microstrip line because the model is focused on improving practical

microwave structure modelling where the dielectric thickness is much smaller than

the wavelength where the quasi-TEM approximation is valid [4]. The quasi-TEM

approximation for the microstrip line only takes into account one possible mode

that can appear on the line. At high frequencies, higher order modes are likely to

appear on the line [4]. Thus it may be argued that models which take higher order

modes into account are more rigorous than the model proposed in this research for

high frequencies. The frequencies analyzed in this thesis have been chosen so that

they exist below X-band so the quasi-TEM approximation is adequate [19]. The

generator voltage of the system is assumed to be Vg = 1V so the peak voltage

for the quasi-TEM voltage wave travelling down the microstrip is assumed to be

normalized to

V0 = Vg
Zin

Zin + Zg
=

Zin
Zin + Zg

. (3.2)

by applying a voltage divider to the equivalent circuit shown in Figure 3.4 where

Zin = Z0,m
eγmlm + Γ0e

−γmlm

eγmlm − Γ0eγmlm
(3.3)

is the input impedance looking in to the microstrip line that depends on the prop-

agation constant and attenuation, γm = α + jβ, along the length of the line, lm,
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and

Γ0 =
Zl − Z0,m

Zl + Z0,m

(3.4)

is the reflection coefficient at the end of the microstrip line where Zl is the load

impedance [4]. For the case of an open microstrip line, Zl can be determined using

a method given in [18]. The generator impedance, Zg is assumed to be equal to the

characteristic impedance of the microstrip line Z0,m. Then the voltage along the

microstrip line can be found using the quasi-TEM model given in [4] as

V = V0(e
γmy + Γ0e

−γmy) (3.5)

and the current can be found as by employing the relation I0 =
V0
Z0,m

as

I = I0(e
γmy − Γ0e

−γmy). (3.6)

Figure 3.4: Equivalent circuit to aid in the calculation of V0.

An important addition to the TEM approximation of equation 3.9 is that γm =

α + jβ has been assumed to have a lower β in the slot transition region compared

to the rest of the line. β =
2π

λ′
where λ′ can be estimated using an expression from
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[20] in terms of a modified effective wavelength of the microstrip line as

λ′ = λeff [1 +
1

8π
(
ws
wm

)2
λ2eff
wmd

]. (3.7)

This is assuming that the effective wavelength of the microstrip line is

λeff =
c

f
√
εeff

(3.8)

where c is the speed of light, f is the frequency, and εeff is the effective permittivity

of the microstrip line defined in Equation 3.1. It is also assumed from [4] that only

dielectric losses are taken into account and that the conductor losses are negligible

such that

α = αd = k0εr(εeff − 1)
tan(δ)

2
√
εeff (εr − 1)

(3.9)

where k0 is the free space wave number and tan(δ) is the dielectric loss tangent.

Conductor losses are assumed to be negligible because the test scenarios in Chapter

4 are fabricated using copper-plated materials. Because of the high conductivity of

copper, the conductor loss can be assumed to be negligible according to a method

for calculating conductor loss that is given in [4]. Next, the electric field along the

length of the microstrip line can be defined similar to a definition for the slot electric

field in [1] as

Emicrostrip = Ez =
V

d
(3.10)

where d is the thickness of the substrate. This parallel plate assumption can be

made because of the assumed constant field orientation of the quasi-TEM electric
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field model. The field is ẑ directed according to the axis shown in Figure 3.3.

Because of this the magnetic field is assumed to have a single component Hx in

the x̂ direction that varies in the ŷ direction. The magnitude of the magnetic flux

density is calculated using Maxwell’s equations. Recall that

O× Ē = −jωµB̄ (3.11)

where Ē = Ez is the electric field on the microstrip line. Since Ez varies along the

ŷ direction only, the magnetic field can be calculated by evaluating

Bx = − 1

jw

d

dy
Ez (3.12)

such that the magnetic field is Hx =
1

µ
Bx where µ is the permeability of the sub-

strate between the slot and the microstrip. The transition region between the mi-

crostrip line and the slot line is defined as the volume reaching across the width

of the microstrip line (wm), the width of the slot line (ws), and the height of the

dielectric (d) as shown in Figure 3.5.

Figure 3.5: Depiction of the transition region for a microstrip line coupled to a slot
(a) along the length of the microstrip line and (b) from the front cut plane of the
microstrip line.

The fields at the transition region do not behave in the predictable behavior that

has been described for a TEM line in [4]. When an aperture is introduced to the
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system, the electric field lines can no longer be modelled as being only ẑ directed

because the field lines adapt to reach for conducting surfaces. This assumption

is based on underlying physical properties of conductive materials. Thus, the ẑ

directed electric field lines depicted in Figure 3.6 (a) have been perturbed for the

purpose of this research to extend only towards the conductors as shown in Figure

3.6 (b) in the transition region between the microstrip and the slot. For mathematical

simplicity, the electric fields are assumed to make a linear slant as shown in Figure

3.6(b). In reality, the fields are not so simple. A curved field should be expected

for these fringing fields at the slot edges, but further research is required to fully

understand this fringing field behavior. Under the slanted field assumption, the

electric field lines at the transition region can be said to have ẑ and ŷ directed

components. For simplicity, the field direction has been assumed to slope linearly

from the microstrip conductor to either edge of the slot. In reality, the fringing

effects may have curved behaviors that vary with frequency and material properties.

Figure 3.6: Field perturbation to model electric field orientation when a slot exists
in the ground plane.

3.2 Analytical Slot Field Model

The slot fields are derived in [1] and take into account higher order modes of the

slot line. An example of the first order mode of the electric field is shown in Figure
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3.7 and some examples of higher order modes as the slot increases in length are

shown in Figure 3.8. Figure 3.8 compares the Ruyle method given in [1] to the

finite slot field approximation given by Pozar in [7]. It shows that the Ruyle method

is more robust to changes in the length of the finite slot. To derive the slot fields, an

approximate slot characteristic impedance and slot wavelength is calculated using

closed from expressions listed in [19] and [21] based on curve fitting techniques.

This characteristic impedance is used as a first guess in an iterative method given by

Cohn in [15] which finds a more accurate characteristic impedance starting at this

first guess. The slot wavelength is an effective wavelength for the slot that depends

on the permittivity of the materials around the slot. This wavelength tends to be

much smaller than the free-space wavelength which results in fields that are closely

confined to the slot [15]. Since the structure we are looking at is a radiating finite

slot on a finite ground plane, it is useful to note that radiation loss tends to increase

with a lower permittivity and a higher slot wavelength [15]. The characteristic

Figure 3.7: Depiction of typical electric field vectors for first mode of the finite slot.

impedance and slot wavelength values obtained from [19] and [21] are used as ini-

tial approximations for an iterative technique for refining the slot wavelength and

slot characteristic impedance values given in [15]. Thus, even if the permittivity
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Figure 3.8: Example of field magnitudes for multiple modes as slot increases in size
[1].

and dimension restrictions in [19] and [21] are violated, a useable slot characteris-

tic impedance and slot wavelength can still be found. The iterative method given

in [15] assumes some physical design approximations which should not be vio-

lated if a system designer wishes to employ the method:
ws
λ

<< 1,
w

b
<= 0.15,

w <
λ

4
√
εr

, and w <= d [15]. Where b = 1.2λs has been assigned and is the

distance perpendicular to the slot length where either electric or magnetic walls

are placed in parallel to the slot as a part of the method. The slot characteristic

impedance is calculated in [15] is defined as Z0 =
V 2

2P
where V = −

´
Eydy is
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Figure 3.9: Depiction of slot input impedance looking left Zl and right Zr inside
the finite slot [1].

described as being the voltage amplitude across the slot and P is described as be-

ing the average power flow of the wave. According to [15], the slot characteristic

impedance approximation can be inaccurate when a designer tries to match to an-

other type of line. For example, matching a slot to a 50 ohm microstrip line can

require up to a 75 ohm slot line characteristic impecance [15]. This happens per-

haps because of reactive discontinuity effects [15] that may result from an abrupt

transition such as the coupling transition that is analyzed in this thesis.

Once the characteristic impedance and the slot wavelength have been approxi-

mated using the method in [15], the electric field inside the slot can be calculated

using the method given in [1]. As a part of this method, the input impedance of

the slot in the ground plane is described as a parallel combination of the input

impedance looking to the left and to the right of the slot as shown in Figure 3.9

[1]. The impedances looking to the left and the right are calculated using transmis-

sion line theory. In order to do this, the attenuation and propagation constant of the

slot line are found, in part, using the dielectric loss tangent and the slot effective

wavelength [1]. The electric field on the slot is also found using transmission line

theory to find the voltage on the line and the relation Ē =
V

ws
[1]. Thus, multiple

modes are taken into account on the line. If antenna performance was of interest,
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the power radiated can be derived based on the equivalence principle wherein the

electric field can be converted to a magnetic current from which far-field electric

fields can be approximated [1].

The electric field in the slot is ŷ directed with reference to Figure 3.7. Thus,

the x̂ directed magnetic field can be found by employing Maxwell’s equations. The

magnetic field can be found from the electric field according to

O× Ē = −jωµB̄ (3.13)

as was used in the quasi-TEM microstrip field model. The difference in this case is

that the electric field Ē = Ey has a single component in the ŷ direction that varies

along the x̂ direction such that Equation 3.15 can be evaluated to be

H̄x =
−1

jωµ

dEy
dy

. (3.14)

Magnetic fringing fields are taken into account in the substrate according to [22]

such that Hx and Hz vary with ŷ and ẑ. The slot fringing electric fields can be

found using

O× H̄ = jωεD̄ (3.15)

assuming a sourceless region. The fringing electric field components that result

from the above relation are Ez and Ex components that both vary in the ŷ and ẑ

directions. For the purpose of reducing the computational intensity of the model

that will be proposed in Section 3.4 of this chapter, the fringing electric fields may

be assumed to be constant across the ẑ direction in some cases. It will be shown in

Section 4.2.5 that this assumption of a constant fringing field can cause errors such

44



as adding extra resonances to the predicted coupling impedance of a system.

3.3 Ideal Transformer

The concept of coupling is used in ideal transformer theory. An ideal transformer

transfers energy using the changing magnetic field on one conductor to induce a

voltage onto a second conductor [23]. Often times, a number of coils on either con-

ductor allows control over the amount of current induced on the second conductor

and a ferromagnetic core is used to direct the magnetic field to the location of the

second coil due to its extremely high permeability [23]. Based on its shape, it also

changes the direction of the magnetic field from one side to the other such that the

current coming out of the transformer and the voltage coming out of the transformer

has the same polarity as the input voltage and current depending on the direction

the coils are wrapped. Ideally, the power into the system is equal to the power out

and the ratio of voltage or current in to the voltage or current out is equal to the ratio

of the number of turns on the first coil to the number of the turns on the second coil

[23]. This ratio is called the turns ratio or coupling coefficient. Thus for an ideal

transformer, the coupling coefficient is described as n =
Vin
Vout

. Figure 3.10 shows a

transmission line model of a finite slot coupled to a microstrip feed line. This model

for the transition is employed by Knorr in [5] and Das in [6] with different defini-

tions for the turns ratio n. The series coupling impedance, Z, shown in Figure 4.2 is

an equivalent circuit approach that was reinforced by Pozar in [7]. The transmission

line equivalent circuit that uses a series coupling impedance representation for the

coupling that occurs at the transition region between the microstrip and the slot and

inside the dielectric material can be seen in Figure 4.2. The coupling impedance is

equal to the input impedance, Zin, of the ideal transformer shown in Figure 3.12,
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which is a section of the system transmission line representation shown in Figure

3.10. Thus for the Knorr model and the Das model, the coupling impedance can

be set equal to the input impedance looking into the ideal transformer as Z = Zin.

Figure 3.12 can be further simplified as shown in Figure 3.13 where Zin,slot is

Figure 3.10: System equivalent circuit for a microstrip line coupled to a finite slot
where the coupling is represented with ideal transformer.

Figure 3.11: System Equivalent Circuit for a microstrip line coupled to a finite slot
with coupling impedance, Z, to represent the coupling.

defined in [1] to be the parallel combination of the impedance looking to the left of

the slot and the impedance looking to the right of the slot (in this case along the x̂

direction). From Figure 3.13, it can be said that

Z = Zin =
Vin
Iin

=
Vslot/n

−Islotn
=
Zin,slot
n2

. (3.16)

Now that the above study has set a framework for evaluating the models of Knorr

and Das in terms of the coupling impedance Z, it is useful to determine how the

turns ratio relates to General Coupling Theory and by extension to Lorentz Reci-

procity Theorem. To start this discussion, the following bold statement will be

explained: the turns ratio and the coupling coefficient are different quantities. If
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Figure 3.12: Model of the coupled finite slot from Figure 3.10 with input
impedance, Zin.

Figure 3.13: Simplified model of the coupled slot from Figure 3.12 such that the
slot is represented by the slot input impedance, Zin,slot.

two field configurations are considered, Lm is defined as the inductance due to the

microstrip is defined as

Lm =

˜
microstrip

Bmicrostrip

Imicrostrip
(3.17)

in [24] where Imicrostrip is the current produced by the microstrip field configuration

that flows along the direction of the microstrip inductance. Ls is the inductance of
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the slot defined as

Ls =

˜
slot

Bslot

Islot
(3.18)

in [24] where Islot is the current produced by the slot field configuration that flows

along the direction of the slot inductance. Then the coupling coefficient in the case

of pure magnetic coupling is

k =
M

LmLs
(3.19)

where M is the mutual inductance defined in [24] as the ratio of magnetic flux due

to microstrip fields to the microstrip as

M =

˜
slot

Bmicrostrip

Imicrostrip
. (3.20)

The magnetic field integral for the mutual inductance is taken across the width of

the microstrip and over the height of the slot conductor. The magnetic field integral

for the inductance due to the microstrip is taken across the width of the microstrip

and over the thickness of the substrate. The turns ratio is defined in [16] as

n =
Vin
Vout

=

√
Lm
Ls

. (3.21)

Using these definitions, the turns ratio is described in terms of the coupling coeffi-

cient as

n =
kLm
M

. (3.22)
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This means that for the ideal tranformer equivalent circuit shown in Figure 3.10, the

coupling coefficient would be equal to

k =

√
Zin,slot
Z

˜
slot

Bmicrostrip˜
microstrip

Bmicrostrip

. (3.23)

The ideal transformer model does not take into account electric coupling. In the

microstrip-to-slot transition coupling occurs due to both magnetic coupling effects

and electric coupling effects. Thus, the modified equivalent circuit given in the

following section is proposed to replace the ideal transformer model supposed by

the authors of the previous work described in Chapter 2.

3.4 Modified Equivalent Circuit and Circuit Analysis

In this section an improved equivalent circuit will be proposed that takes into ac-

count both electric and magnetic coupling.

The ideal transformer equivalent circuit given in the previous section can be

improved by replacing the ideal transformer with a parallel LC resonant circuit as

in Figure 3.14. The capacitance and the inductances are mutual capacitance and

inductance values that can be calculated directly from the analytical field models

that have been described for the slot in the ground plane and the microstrip feed line.

In chapter 2, a link was found between Lorentz Reciprocity Theory and General

Coupling Theory. It was found that a definition of mutual inductance and mutual

capacitance using coupled energy is not easily achieved because of an ambiguity

in the definition of the voltage difference across the mutual capacitance and in the

current running through the mutual inductance. Similar to general coupling theory,

the description of coupling in this section continues to use the concept of stored
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energy in order to calculate the mutual inductance and mutual capacitance shown

in Figure 3.14 though the concept of coupled energy will not be used directly. In

Figure 3.14: Mutual capacitance and inductance placed in system equivalent circuit
that represents a microstrip coupled through a dielectric material to a finite slot in
the ground plane.

order to generate the equivalent circuit shown in Figure 3.14, the fields of the slot

and the microstrip were considered to have an orientation defined by the models that

were introduced in Section 3.1 and 3.2. Figure 3.15 depicts an electric field wave

travelling in the ŷ direction which has only a ẑ component. Figure 3.15 does not

show the slanted field near the transition region that was described in Section 3.1,

but the ẑ directed electric field behavior near the slot transition region is assumed

to slant towards conductor edges when a slot is present in the ground plane. Figure

3.15 also depicts fringing behavior at the open end of the microstrip line. Figure

3.16 shows the orientation of the electric field from a perpendicular cut with respect

to the perspective of Figure 3.15. Figure 3.17 shows the orientation of the slot

electric field for the first mode. The curved fringing fields that exist in the air and

in the dielectric material due to the slot electric field pattern are not depicted.

Taking note of the field models presented in Section 3.1 and 3.2, the field com-

ponents that exist in transition region below the slot due to the microstrip model are

the Ez and Hx components. The field components that exist due to the slot field

model are the Ey and Hx fields as well as Ez, Ex, Hx, and Hz which are derived

from the fringing field model.

50



Figure 3.15: Depiction of a typical microstrip electric field orientation along length
of the microstrip line, assuming a quasi-TEM field model and a model for the fring-
ing fields at the open end of the microstrip line.

Figure 3.16: Microstrip electric field orientation based on the quasi-TEM field
model as seen from the front cut of the microstrip line.

Figure 3.17: Slot electric field for the first mode.

There is an Ez component due to the microstrip fields and due to the slot fields

in the transition region. Thus, moving towards an equivalent circuit model of the

51



transition, a parallel combination of coupled capacitance values can be defined as

shown in Figure 3.18 where Cm is the capacitance produced as a result of the mi-

crostrip Ez field and Cs is the capacitance produced as a result of the slot Ez field.

Figure 3.18 can be interpreted to be linked by a mutual capacitance as shown in

Figure 3.19 [16]. Similarly, there is an Hx component due to the microstrip fields

Figure 3.18: Coupled microstrip and slot capacitance representation.

Figure 3.19: Equivalent circuit of structure shown in Figure 3.18.

and due to the slot fields. Then a parallel combination of coupled inductance values

can be defined as shown in Figure 3.20. Lm is the inductance produced as a result of

the microstrip Hx field and Ls is the inductance produced as a result of the slot Hx

field. Figure 3.20 can be interpreted to be linked by a mutual inductance as shown

in Figure 3.21 [16].
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Figure 3.20: Coupled microstrip and slot inductance representation.

Figure 3.21: Equivalent circuit corresponding to Figure 3.20.

Figure 3.22: Mutual capacitance and inductance in parallel to be used in the system
equivalent circuit.

Because of the shared field directions in the transition region between the mi-

crostrip conductor and the finite slot, self impedance values have been defined for

the purpose of obtaining coupling impedance values to represent electric coupling

and magnetic coupling behavior at the transition region. Then because the coupled

impedances exist in the same location on the structure, the voltage difference across

them is the same. Thus, the mutual capacitance and mutual inductance values can

be placed in parallel as shown in Figure 3.22. The circuit shown in Figure 3.22

can then be implemented in a transmission line equivalent circuit for the system.

This equivalent circuit is shown in Figure 3.14 where Zslot is the input impedance

looking into the aperture.

In order to calculate the coupling impedance, Z, shown in Figure 3.14, it must
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first be assumed that the permeability in the dielectric is µ = µ0µr, and the permit-

tivity is ε = ε0εr. It is assumed that Zslot which is the input impedance of the slot is

found using Cohn’s method given in [15] and thatEy,slot is the ŷ directed field found

using Ruyle’s method given in [1]. A relationship between mutual impedance and

the coupled impedances that cause the mutual impedance is outlined in [16]. For

the purpose of this research, it allows for the calculation of the mutual impedance

using either the slot inductance and slot capacitance or the microstrip inductance

and microstrip capacitance. In addition to these, some current and voltage relation-

ships are required. Because the slot field model takes into account more modes than

the microstrip field model does, the slot capacitance and slot inductance are chosen

in the calculation of the mutual impedance effects.

The concept of stored energy from Chapter 2 is used to related the stored energy

due to the slot fields to an equivalent slot capacitance by

Cs =
ε
˝

V
|Ey,slot|2 + |Ez,slot|2 + |Ex,slot|2dxdydz

|Vz,m|2
(3.24)

where Vz,m is the microstrip voltage at the first edge of the slot across the dielectric

in the ẑ direction. The microstrip voltage is used here with the thought that the

microstrip carries energy to the slot. Then the impedance of the slot capacitance

defined in Equation 3.24 can be found as

Zc,s =
1

jωCs
. (3.25)

Because no conductor exists in the transition region, the concept of displacement

current is used to determine the ẑ directed current due to the slot fields in the di-

54



electric material as

Iz,s = jωε

¨
S

Ez,slotdxdy (3.26)

where the electric field is integrated over the surface extending along the width of

the microstrip line and the length of the width of the slot line. Then the vector

normal to this surface is ẑ directed.

Using the quasi-TEM Microstrip approximation, the current due to the mi-

crostrip fields can be defined as

Iz,m =
V0
Z0

(e−γmy − Γ0e
γmy) (3.27)

as shown in Section 3.1.

The purely imaginary mutual impedance due to the mutual capacitance term

Cm =
1

jωCm
can be found using the relation

Zc,mutual =
Vz − ZcsIz,s

Iz,m
(3.28)

which is based on a definition in [16].

The voltage found using the slot fields across the width of the mirostrip conduc-

tor within the dielectric is found to be

Vx,s = Es,xwm. (3.29)

Using the concept of displacement current again, the x̂ directed current can be found
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as

Ix,s = jωε

¨
S

Ex,slotdydz. (3.30)

where the surface S extends across the width of the slot and the height of the di-

electric such that the vector normal to the surface is x̂ directed. The slot inductance

is defined in terms of the total stored magnetic energy as

Ls = 4
µ0µr

˝
V
|Hx,slot|2 + |Hz,slot|2dxdydz

|Ix,s|2
(3.31)

where Ix,s is the current flowing though the slot inductance as defined in Equation

3.30.

The impedance due to the slot inductance can then be defined as

Zl,s = jωLs. (3.32)

Ix,m is the current through the microstrip inductance. It is found by taking the

integral along the slot width in a line of Hm,x according to

Ix,m = −
ˆ
l

Jx,mdl (3.33)

where

¯Jx,m = H̄m · n̂ = Hm,z +Hm,y. (3.34)
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Then,

Ix,m = −
ˆ
x

(Hm,z +Hm,y)dx. (3.35)

Since Hm,z and Hm,y do not exist in the quasi-TEM microstrip model, Ix,m is as-

sumed to be proportional to the line integral across the width of the microstrip of

the x̂ directed microstrip magnetic field. Future research will require developing a

field model for the fringing effects along the length of the microstrip which exist

primarily outside of the transition region considered in this thesis.

Finally, the mutual impedance due to the x̂ directed magnetic fields of the slot

and the microstrip can be found using a relation from [16] as

Zl,mutual =
Vx − Zl,sIx,s

Ix,m
. (3.36)

3.5 Conclusions about Methodology

This chapter served to introduce the field models used to develop an improved cou-

pling model as well as discussing the equivalent circuits of previous models that

depend on an ideal transformer representation. The proposed coupling model is

different from the models outlined in Chapter 2 that depend on Lorentz Reciprocity,

but it still accounts for electric and magnetic coupling effects using the concept of

stored energy and depends on the idea that aligning field components contribute to

coupling. This model will be tested in the following chapter and will be compared

to measured and simulated results as well as results generated using the work of

Knorr and Das.
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Chapter 4

Measured Results

This chapter presents simulated and measured results to compare to the proposed

coupling model. The model is tested against HFSS simulated results using the cou-

pling impedance metric, Z. The model is tested against measured results using a

de-embedded system input impedance metric, Zin,d. It will be seen that the pro-

posed model may be more accurate in some cases than the models proposed by Das

in [6] and Knorr in [5]. The model proposed by Pozar in [7] will not be analyzed

due to the complexity of the Green’s function field model he proposes.

4.1 HFSS (FEM) Analysis

In order to verify that the coupling model works, it is useful to compare the analyt-

ical results to simulated results. In order to do this, two simulation files were built

in the High Frequency Electromagnetic Field Simulation Software (HFSS), which

is a software based on Finite Element Method. The first is a microstrip-fed slot

structure as shown in Figure 4.1. Figure 4.1 shows the side of the microstrip-fed

slot structure that includes the microstrip conductor. On the opposite side of the

dielectric is the ground plane that contains the half wavelength slot. This structure

was designed such that the microstrip extends a quarter wavelength past the center
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of the slot along a direction orthogonal to the length of the slot. The second simu-

lation was run on a structure the same as the one shown in Figure 4.1 except with a

filled-in ground plane instead of a slot existing in the ground plane.

Figure 4.1: Microstrip-fed Slot Antenna (bottom view).

The equivalent circuit of the microstrip-fed slot structure is shown in Figure

4.2 where Vg is the generator voltage, Zg is the generator impedance, Z0,m is the

characteristic impedance of the microstrip feed line, Z is the coupling impedance

representing the aperture discontinuity, and Zin,end is the input impedance looking

in to the quarter wavelength of line (adapted for some design frequency) that ex-

tends past the slot. This structure can be separated into two-port network sections

as shown in Figure 4.3. The microstrip-line two-port network and the coupling

impedance two-port network can both be described by ABCD matrices [4]. Be-

cause they are in series, a total ABCD matrix to describe the cascaded sections can

be as
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Figure 4.2: Microstrip-fed slot equivalent circuit.

Figure 4.3: Equivalent Circuit with series coupling impedance depicting two-port
sections.

[
Atotal Btotal

Ctotal Dtotal

]
=

[
cosh(γmlm) Z0,msinh(γmlm)

Y0,msinh(γmlm) cosh(γmlm)

][
1 Z

0 1

]
(4.1)

whereZ is the unknown coupling impedance that will be solved for, γm = αm+jβm

represents the attenuation and propagation constant of the microstrip line, Z0,m is

the characteristic impedance of the microstrip line, Y0,m =
1

Z0,m

, and lm is the

length of the microstrip between the feed and the center of the slot (not including

the length of line extending past the center of the slot). V0,m, I0,m, Vout, and Iout as

shown in Figure 4.3 are related to the total ABCD matrix as

[
V0,m

I0,m

]
=

[
Atotal Btotal

Ctotal Dtotal

][
Vout

Iout

]
. (4.2)
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The input impedance of the system can be related to the total ABCD matrix by

Zin,system =
AtotalZin,end +Btotal

CtotalZin,end +Dtotal

. (4.3)

The system input impedance, Zin,system can be pulled from the microstrip-to-slot

HFSS simulation. Then γm, Z0,m, and Zin,end can be pulled from the microstrip

HFSS simulation. The coupling impedance can be described in terms of these as

Z = −Zin,endcosh(γmlm)− Y0,mZin,systemsinh(γmlm) + Z0,msinh(γmlm)

cosh(γmlm)− Y0,msinh(γmlm)
. (4.4)

The following section will detail results of this analysis compared to the analyt-

ical results.

4.2 Results

This chapter presents simulated and measured results to compare to the proposed

coupling model. The model is tested against HFSS simulated results using the cou-

pling impedance metric, Z. The model is tested against measured results using a

de-embedded system input impedance metric, Zin,d. It will be seen that the pro-

posed model may be more accurate in some cases than the models proposed by Das

in [6] and Knorr in [5]. The model proposed by Pozar in [7] will not be analyzed

due to the complexity of the Green’s function field model he proposes.

4.2.1 Coupling Impedance Simulation Results

This section will analyze two test cases to show the difference between the an-

alytical results generated using the model proposed in Section 3.4 and the results
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Test Case εr wm (mm) ws (mm) d

1 10.2 1.1 1.2 1.2
2 2.2 5 0.7 1.6

Table 4.1: Simulated Antenna Parameters

obtained by extracting the coupled system input impedance, the microstrip propaga-

tion constant, attenuation constant, port impedance, and microstrip load impedance

from HFSS as outlined in Section 4.1. The metric that will be used to compare the

measured results to the simulated results is the coupling impedance Z.

The parameters of the test cases that will be considered in this section are given

in Table 4.1. Some important comparisons to show how the analytical microstrip

field model compares to the fields produced in HFSS are given. To this end, the

microstrip characteristic impedance Z0,m, the propagation constant γm = α + jβ,

and the load impedance, Zl,m, that represents the fringing effects at the open end

of the microstrip line are compared between the analytical model and the values

extracted from HFSS. Beyond this, results are compared for the analytical coupling

impedance that results when the equivalent circuit model of Chapter 3.4 is applied

to the analytical slot field models that were also introduced in Chapter 3.

First Test Case

In order to develop an analytical solution for the first test case, the pertinent ana-

lytical field modal parameters for the microstrip line have been compared to those

extracted from HFSS. For the first test case, γm is shown in Figure 4.4, Z0,m is

shown in Figure 4.5, and Zl,m is shown in Figure 4.6. It can be seen that the HFSS

microstrip parameters of γm, Z0,m, and Zl,m match the analytical microstrip param-

eters fairly well. Because of the alignment between these parameters, confidence

can be placed in the quasi-TEM microstrip field model.
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Figure 4.4: Microstrip γm for εr = 10.2, d = 1.2 mm, ws = 1.2 mm, wm = 1.1
mm, and ls = 19.1 mm.

Figure 4.5: Microstrip characteristic impedance, Z0,m, for εr = 10.2, d = 1.2 mm,
ws = 1.2 mm, wm = 1.1 mm, and ls = 19.1 mm.

Plots comparing the analytical model to the HFSS simulation and to the Das

and Knorr models are shown in Figures 4.7 and 4.8. The analytical model for the

case where the fringing fields due to the slot field model are assumed to be constant

along the width of the microstrip inside the conductor is compared to the case where

multiple fringing fields are taken into account by basing their calculation on the

magnitude of the dominant field in the slot. From these results, it appears that
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Figure 4.6: Microstrip fringing load impedance, Zl,m, for εr = 10.2, d = 1.2 mm,
ws = 1.2 mm, wm = 1.1 mm, and ls = 19.1 mm.

Figure 4.7: Real part of the analytical coupling impedance, Re(Z), assuming con-
stant fringing fields plotted against the analytical coupling impedance result tak-
ing into account multiple modes in the fringing fields, the Knorr model coupling
impedance result, the Das model coupling impedance result, and the HFSS ex-
pected coupling impedance result for εr = 10.2, d = 1.2 mm, ws = 1.2 mm,
wm = 1.1 mm, and ls = 19.1 mm.

for this test case the coupling impedance calculated using the improved model can

predict the actual system coupling behavior more accurately than either the Knorr

model or the Das model. The Knorr model and the Das model align well with each

other, but they are shifted up in frequency from the HFSS expected result. The
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Figure 4.8: Imaginary part of the analytical coupling impedance, Im(Z), assum-
ing constant fringing fields plotted against the analytical coupling impedance result
taking into account multiple modes in the fringing fields, the Knorr model cou-
pling impedance result, the Das model coupling impedance result, and the HFSS
expected coupling impedance result for εr = 10.2, d = 1.2 mm, ws = 1.2 mm,
wm = 1.1 mm, and ls = 19.1 mm.

proposed model has a Z that is shifted down some in frequency from the HFSS

expected Z. Additionally for this test case, taking into account multiple modes in

the slot fringing fields does not appear to have an effect on the predicted coupling

impedance.

4.2.2 Second Test Case

For the second test case, analytical parameters are again compared to those pulled

from HFSS where γm is shown in Figure 4.9, Z0,m is shown in Figure 4.10, and

Zl,m is shown in Figure 4.11.

As in the previous section, the analytical microstrip field model aligns will with

HFSS.

Next, plots comparing the analytical model to the HFSS simulation and to the

Das and Knorr models are shown in Figures 4.7 and 4.8. Again, the analytical
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Figure 4.9: Microstrip γm for εr = 2.2, d = 1.6 mm, ws = 0.7 mm, wm = 5.0 mm,
and ls = 40.2 mm.

Figure 4.10: Microstrip characteristic impedance, Z0,m, for εr = 2.2, d = 1.6 mm,
ws = 0.7 mm, wm = 5.0 mm, and ls = 40.2 mm.

model assuming constant slot fringing fields is plotted against the analytical model

that takes into account multiple modes in the slot fringing fields.

From these results, it appears that for the second test case the coupling impedance

calculated using the improved model can predict the actual system coupling behav-

ior as accurately as either the Knorr model or the Das model if multiple slot fringing

modes are taken into account. If these multiple fringing fields are assumed to be

constant, then extra resonances become pronounced in the coupling impedance.
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Figure 4.11: Microstrip fringing load impedance, Zl,m, for εr = 2.2, d = 1.6 mm,
ws = 0.7 mm, wm = 5.0 mm, and ls = 40.2 mm.

Figure 4.12: Real part of the analytical coupling impedance, Re(Z), assuming con-
stant fringing fields plotted against the analytical coupling impedance result tak-
ing into account multiple modes in the fringing fields, the Knorr model coupling
impedance result, the Das model coupling impedance result, and the HFSS expected
coupling impedance result for εr = 2.2, d = 1.6 mm, ws = 0.7 mm, wm = 5.0 mm,
and ls = 40.2 mm.

Fringing Fields

Fringing fields exist at the slot edges. This may cause some added reactive effects

to the input impedance. The fringing fields could be defined as shunt capacitances,
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Figure 4.13: Imaginary part of the analytical coupling impedance, Im(Z), assum-
ing constant fringing fields plotted against the analytical coupling impedance result
taking into account multiple modes in the fringing fields, the Knorr model cou-
pling impedance result, the Das model coupling impedance result, and the HFSS
expected coupling impedance result for εr = 2.2, d = 1.6 mm, ws = 0.7 mm,
wm = 5.0 mm, ls = 40.2 mm

Cf1 andCf2, as shown in Figure 4.14. In the model proposed by this thesis, fringing

effects at the slot edges have been taken into account, in part, using a modified ef-

fective wavelength and by perturbing the electric field lines to reach towards the slot

edges. Future work may include better modelling the fringing effects at the edges

Figure 4.14: Equivalent circuit with fringing capacitance to take into account fring-
ing effects at the slot edges.

of the slot. To do this, analysis of the electric field behavior inside the dielectric

material would need to be approximated. Capacitance is defined as

Ct1 = Ct2 =
Q

4V
(4.5)
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where Q is

Q =

‹
S

qes · dS̄ (4.6)

and qes = n̂ · (D̄1 − D̄2) = ẑD̄1. D̄1 = εĒ1 is the field in the substrate, D2 =

εE2 = 0 is the field in the conductor, and q̄es is the surface charge density. The

charges of interest are the charge differences in the ẑ direction on either edge of the

slot width on the microstrip. The voltage 4V is might be found by integrating the

electric field along the ẑ direction on either edge of the slot width. This observation

is motivation for future work and is not explored further in this thesis.

4.2.3 Coupling Impedance Measured Results

In order to test the model for coupling that was proposed in Chapter 3 against mea-

sured results, three antennas were fabricated. Table 4.2 gives the design parameters

for each antenna and Figure 4.15 shows the feed line side and the ground plane side

of each antenna where the finite slot is present. All three antennas were fabricated

using material having 0.0175 mm of copper cladding on top and bottom. Addition-

ally, each antenna was built such that the center of the finite slot was placed in the

center of a 100 mm by 100 mm ground plane. It is impractical to measure the

Antenna εr wm (mm) d (mm) ls ws

A 3.00 0.6753 0.25 42.397 0.7
B 6.15 0.3681 0.25 31.711 1.2
C 10.2 0.6004 0.64 25.337 1.2

Table 4.2: Measured antenna parameters

coupling impedance, Z, for these antennas because they are designed to have only

one port. Thus, measured results in this section will be given in the form of the in-
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Figure 4.15: Measured slot antennas corresponding to Table 4.2 such that is shows
the (a) feedline side of antenna A, (b) feedline side of antenna B, (c) feedline side
of antenna C, (d) ground plane side of antenna A, (e) ground plane side of antenna
B, and (f) ground plane side of antenna C.

put impedance at the feed port of the antenna de-embedded to the transition region

(in the center of the slot). To obtain the measured results, the one-port scattering

parameters were pulled from a calibrated Agilent N5225A Network Analyzer. The
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S11 parameter was used to find the de-embedded input impedance, Zin,d using

βm =
2π

λeff,m
=

2πf
√
εeff,m

c

βc =
2π

λeff,c
=

2πf
√
εc

c

S11,d = S11e
2jβl = S11e

2jβmlm+2jβclc

Zin,d = Z0,m
1 + S11,de−embedded

1− S11,d

(4.7)

where βm is the propagation constant of the microstrip line, λeff,m is the effec-

tive wavelength of the wave travelling down the microstrip line, f is the frequency,

εeff,m is the effective permittivity of the dielectric material between the microstrip

conductor and the ground plane calculated using a closed form expression given in

[4], c is the speed of light, λeff,c is the effective wavelength associated with the 50

ohm coaxial connector, εc is the permittivity of the material in the connector, S11 is

the one-port scattering parameter pulled from the network analyzer, S11,d is the de-

embedded S11 to the center of the transition region, lm is the length of line from the

edge of the transition between the microstrip conductor and the coaxial connector

to the center of the slot, lc is the length of the connector, and Z0 is the characteristic

impedance of the microstrip line and the connector which are assumed to 50 ohms.

For all the measured results, lc is 5.46 mm based on a caliper measurement from

the point where the connector connects to the microstrip conductor to the point

where the connector reaches the calibrated network analyzer cable. Additionally,

lm is 50 mm for all of the measured results. The measured results are compared to

de-embedded results pulled from HFSS as well as de-embedded analytical results

for antennas A, B, and C in this section. An example of an HFSS microstrip cou-

pled to slot structure that is de-embedded in HFSS is shown in Figure 4.16. The
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Figure 4.16: HFSS microstrip coupled to slot that is de-embedded to the center of
the finite slot.

built in de-embedding approach is used to de-embed the HFSS simulated system

input impedance to the center of the slot. Finally, the analytical de-embedded input

impedance corresponding to the HFSS simulated and measured de-embedded in-

put impedances is found by cascading an ABCD matrix including the analytically

calculated coupling impedance, Z, found using the method proposed in Section

3.4 (assuming a constant fringing field) with an ABCD matrix representing the

length of microstrip line extending past the transition region. Then the analytical

de-embedded input impedance can be found using

Zin,d =
AZl +B

CZl + d
(4.8)

where A, B, C, and D are defined to be the matrix entries of the cascade of the

ABCD matrix representing the series coupling impedance with the ABCD matrix

representing the length of microstrip line extending past the center of the transition
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region. This can be found according to a method given in [4] as

[
A B

C D

]
=

[
1 Z

0 1

][
cosh(γmlm,end) Z0,msinh(γmlm,end)

Y0,msinh(γmlm,end) cosh(γmlm,end)

]
(4.9)

where Z is the coupling impedance, lm,end represents the length of microstrip line

extending past the center of the transition region, and γm = αd + jβ represents the

attenuation due to dielectric loss and propagation constant on the microstrip line

such that conductor losses are assumed to be negligible due to the high conductivity

of copper [4].

Figure 4.17 compares the real part of the measured Zin,d against the HFSS sim-

ulated Zin,d and the impedance generated using the model proposed in Section 3.4

for Antenna A. Figure 4.18 shows this same comparison for the imaginary part of

Zin,d for Antenna A. With a relative permittivity of εr = 3, the results of Antenna

A show fairly good agreement between analytical (model) results and HFSS results

for the second resonance that appears in the HFSS simulation. The model does not

seem to predict the first resonance that appears in both the measured and HFSS sim-

ulations. Some potential reasons for this will be suggested after all three antenna

results have been presented.

Similar to Figure 4.17, Figure 4.19 compares the real part of the measured Zin,d

against the HFSS simulated Zin,d and the impedance generated using the model

proposed in Section 3.4 for Antenna B. Then similar to Figure 4.18, Figure 4.20

shows the comparison for the imaginary part of Zin,d for Antenna B. In this test

case, the analytical model predicts two resonances over the frequencies of interest

that are shifted in frequency from both the simulated and measured results. In

addition to this, the predicted impedance peaks are of a larger magnitude than the
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Figure 4.17: Real part of the de-embedded input impedance, Zin,d, for antenna A.

Figure 4.18: Imaginary part of the de-embedded input impedance, Zin,d, for antenna
A.

measured and simulated values.

Figure 4.21 compares the real part of the measured impedance against the HFSS

impedance and the impedance generated using the model proposed in Section 3.4

for Antenna C. Figure 4.22 shows the comparison for the imaginary part of Zin,d

for Antenna C. Similar to the stated observations for Figures 4.19 and 4.20, the

analytical result for Zin,d does predict two resonances in the frequency range of
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Figure 4.19: Real part of the de-embedded input impedance, Zin,d, for antenna B.

Figure 4.20: Imaginary part of the de-embedded input impedance, Zin,d, for antenna
B.

interest, but these peaks are shifted in frequency from both the measured and HFSS

simulated impedance values.

An observation of the data shown in Figures 4.17 through 4.22 is that the mea-

sured and HFSS simulated results are shifted in frequency and do not align exactly.

This difference may be caused because the effects of the solder used to attach the

connector to the board have not been taken into account or because there may exist
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Figure 4.21: Real part of the de-embedded input impedance, Zin,d, for antenna C.

Figure 4.22: Imaginary part of the de-embedded input impedance, Zin,d, for antenna
C.

small inconsistencies in the shape of the slot caused during the lithography fabri-

cation process. It should be noted that the HFSS simulated results align more with

the measured results as the test cases increase in permittivity.

From the measured results shown in Figures 4.17 through 4.22, it can be seen

that, in general, there is a large discrepancy between analytical, simulated, and mea-

sured results. In general, if the predicted system coupling impedance is not exactly
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correct, extra resonances can appear on the system level. These extra resonances

can change how the de-embedded analytical system impedance, Zin,d, appears. This

realization provides an argument for the need to develop a highly accurate coupling

model. The work that has been done in this thesis provides a sound theoretical

framework upon which a more improved model can be developed. To this end,

some future work that can be done on this topic to move towards a better analytical

model for the coupling between a microstrip line and a slot is given in Chapter 5.

77



Chapter 5

Conclusions and Future Research

A model has been proposed in Section 3.4 to describe the specific case of coupling

between a microstrip feed line and a finite slot in a ground plane that rivals the

accuracy of the previous proposed models in [5] and [6]. This model depends on

defining a mutual inductance and mutual capacitance based on analytical field mod-

els for the microstrip line and for the slot line, which is a new perspective on the

coupling problem. This method is flexible such that it could easily be extended to

work for a multiple feed-line structure, coupling through a layered system with an

aperture, or for different feed line types such as slot lines or strip lines. Thus, the

research that was done to develop this model has ultimately provided a fundamental

theoretical framework for models of vertical coupling between microstrip lines and

finite apertures as well as other types of printed planar feed lines such as strip lines

and slot lines.

As a part of developing a model to describe coupling between a microstrip line

and a finite slot, an analysis of the validity of the Knorr model [5] and the Das

model [6] has been performed. These models were tested against HFSS simulation

results as well as the model proposed in this thesis by using the coupling impedance

metric Z. These models, in general, aligned with the expected HFSS coupling

impedance result except for a slight magnitude and frequency shift. The model
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proposed in this thesis rivals the accuracy of these previously proposed models. It

is also less computationally intensive than the Das model, in general. A closed form

expression is provided by Das for the rigid case of coupling between a microstrip

line and an slot line extending a quarter wavelength past the transition region. For

structures that vary from this physical constraint, the Das model may approach the

computational intensity of a full wave solver. Beyond this, the model proposed in

this thesis is more robust than the Knorr model because it takes into account both

electric and magnetic coupling effects.

In addition, a link between Lorentz Reciprocity Theorem and General Coupling

Theory [12] has been derived. The link between these theories lies with the mu-

tually stored energy that was derived and defined in this thesis. The difference be-

tween the coupling coefficient provided by General Coupling Theory and the turns

ratio of an ideal transformer has also been clarified. It was found that the coupling

coefficient and the turns ratio of an ideal transformer are not the same quantities.

This is an important clarification as it may be a common point of confusion for

some engineers.

Future research on this topic will require the development of a more compre-

hensive model for the fringing fields at the slot edges beyond the simple electric

field perturbation and modified propagation constant method used in the proposed

model. Beyond this, the coupling model can be made more rigorous by including

higher order modes of the microstrip line in the microstrip field model beyond the

TEM approximation used as a part of this research as well as an improved model for

the fringing effects along the length of the microstrip line. Further research should

also be done to derive the link between the proposed model and the mutually stored

energy that has been defined in this thesis.
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