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Abstract 

In gynecologic oncology, ovarian cancer is the second leading cancer with highest 

mortality rate. Since most of ovarian cancer patients are diagnosed at advanced stage 

occurred with metastatic tumors, chemotherapy is a necessary treating procedure after the 

aggressive surgery which removes the patient’s primary ovary tumor (Primary 

cytoreduction). However, currently, no method is able to effectively and efficiently 

predict the tumor response to the chemotherapy at early stage (i.e. 4-6 weeks after the 

treatment). This study aims to investigate whether using quantitative image features 

computed from CT images enables to more accurately predict response of ovarian cancer 

patients to chemotherapy. During the experiment, we retrospectively assembled a dataset 

involving 91 patients. Each patient had two sets of pre-and post-therapy (4-6 weeks 

follow up) CT images. A computer-aided detection scheme was then developed, which is 

able segment the metastatic tumors and computed image features. Next, we built two 

initial feature pools using image features computed from pre-therapy CT images only and 

image feature difference computed from both pre- and post-therapy images. The 

predicting performance of each feature was evaluated using the area under ROC curve, 

which is based on the criteria 6-month progression-free survival (PFS).  Among these 

features, the optimal feature cluster was determined and an equal-weighted fusion method 

was used to generate a new image marker to predict PFS of the patients.  The results 

indicate that the highest single feature AUC values are achieved as 0.6842 ± 0.0557 and 

0.7705 ± 0.0495 respectively, which are computed from pre-therapy CT images only and 

both pre- and post-therapy CT images. When applying fusion-based image markers, AUC 

values significantly increased to 0.8103 ± 0.0447 and 0.8292 ±0.0431 (p < 0.05), 



x 

 

respectively. This study demonstrated that it is feasible to predict patients’ early stage 

response to chemotherapy using quantitative image features computed from pre-therapy 

CT images. However, we can significantly improve the prediction performance when 

adding information from the 4-6 week follow up CT images.   
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Chapter 1: Introduction 

Ovarian Cancer 

Ovarian cancer is the second most common cancer in gynecologic oncology. In 

2016, approximately 22,280 newly diagnosed cases and 14,240 deaths are estimated in 

United States [1]. Given that early symptoms originating from ovaries are hard to be 

detected and even more likely to be confused for something far less serious, routine pelvic 

examinations are not able to effectively detect ovarian cancer. As a result, approximately 

70% of ovarian cancer patients’ are diagnosed at an advanced stage [2] with metastatic 

tumors, and ovarian cancer is the leading cause of death among all the gynecologic 

cancers. As indicated in Figure 1, the five-year survival rates for stage III and IV epithelial 

ovarian cancer patients are only 36% and 17% respectively [3]. For the advanced stage 

ovarian cancer patients, an aggressive surgery is first operated to remove the primary 

ovarian tumors (Primary cytoreduction) and chemotherapy is then followed to control the 

metastatic tumors. Since ovarian cancer is highly heterogeneous, and the metastasized 

tumors are typically P53 driven and genetically instable [4], the chemotherapy response 

varies significantly among the patients. Therefore, a large number of clinical trials have 

been performed to develop and test the efficacy of new biologically targeted agents, drugs 

and/or chemotherapeutic procedures. However, one of the major challenges in these 

clinical trials is the limited ability to accurately categorize patients to find a certain group 

of patients which is more likely to respond to target treatment. In addition, most of the 

chemotherapy drugs have significant side effects and high costs. As a result, there is a 

clinically imperative need for developing an early stage prognostic assessment method to 
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accurately categorize the patients into groups that are likely or not to benefit from the 

new therapies. 

 

Figure 1: Five-year survival rate of epithelial ovarian cancer patients according to 

National Cancer Institute, SEER Data Base for the patients diagnosed from 1995 to 2007 

[3] 

 

Evaluating early response to chemotherapy drugs 

Extensive researches have been conducted to develop novel clinical markers for 

prognostic assessment of tumor response to chemotherapy, which can be classified into 

two subgroups: genetic biomarkers and radiographic imaging. In the recent years, many 

genetic biomarkers have been discovered and investigated [4-6] to select optimal 

treatment methods [7-9]. However due to the complexity and heterogeneity of ovarian 

cancer, no existing biomarkers are able to accurately select treatment options, predict 

clinical benefit, and determine drug resistance to date. This could be attributed by the 

facts that the current biomarkers are (1) applicable only to a certain group of patients [8-
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10], (2) high costs [11-12] and (3) lower specificity [13-15]. Hence, radiographic imaging 

analyses are critically important to assess the prognostic response of ovarian cancer 

treatment [5-6].  

 

Radiographic imaging  

Current imaging modalities in treating ovarian cancer include ultrasound, 

perfusion X-ray computed tomography (CT), magnetic resonance imaging (MRI) and 

Positron emission tomography (PET). Due to several benefits like wider availability, 

rapid acquisition of images, a wealth of clear and specific information, high diagnostic 

performance, and low operating cost, perfusion X-ray CT is considered to be the most 

popular technique currently used for prognostic assessment of ovarian cancer in clinical 

practice [7]. 

 

RECIST guidelines  

Response Evaluation Criteria in Solid Tumors (RECIST) is the current clinical 

standard to assess patients’ response to treatment [8-9] (i.e. tumors in cancer patients 

increase, stabilize or decrease). RECIST evaluation includes following steps: (1). 

Identify, record and measure all measurable lesions up to 2 per organ and a maximum of 

5 in total for all organs. The target lesions are selected based on their size/ longest 

diameter (LD) and their suitability for further measurements. (2). Compute the sum of the 

LD’s of all the target lesions for response assessment. The assessment can be classified 

into four groups: Complete Response (CR): Disappearance of all target lesions; Partial 

Response (PR): Decrease of at least 30% in the sum of LD’s of all the target lesions; 
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Progressive Disease (PD): Increase of at least 20% in the sum of LD’s of all the target 

lesions; Stable Disease (SD): Insignificant increase or decrease in the sum of LD’s of 

target lesions to be classified as either PD or PR respectively. 

 

Radiologist assessment  

In order to assess the patients’ response to new chemotherapy drugs or procedures, 

radiographic perfusion CT examinations were performed on each patient. This study 

includes one set of CT scan images taken pre-therapy and a multiple sets of CT scans 

taken during the period of post therapy. In order to assess and/or categorize patients’ 

response, radiologists will examine and mark up to 5 metastatic tumors from the pre- and 

post- treatment CT images, using RECIST guidelines. However, these results are based 

on one-dimensional size and don’t take changes in tumor volume [10] to consideration 

often leading to a low association between radiologist results and clinical outcome [11]. 

 

Computer Aided Detection (CAD) scheme 

In order to improve the early prognostic assessment of patients’ response and 

assist the radiologist in making optimal treatment decisions for ovarian cancer patients, a 

CAD scheme was developed to more accurately assess the tumor response to 

chemotherapy, using pre- and post- treatment CT images. The scheme firstly segments 

tumors marked by radiologist and then computes quantitative image features to detect and 

quantify tumor volume, shape, and density heterogeneity. The individual and combined 

features are finally used to predict 6-month progression free survival (PFS) of the patients, 

which is both recommended and approved criterion by Food and Drug Administration 
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(FDA) of the United States and European Medicines Agency (EMA) [12]. The overall 

objective of this study is to examine 1) whether quantitative image features computed 

from pre-therapy CT images offer information to predict patient response prior to 

chemotherapy and 2) whether quantitative image features computed from both pre- and 

post- therapy CT images offer significantly higher prediction capabilities to predict 

ovarian cancer patients response to chemotherapy than using traditional RECIST criteria. 
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Chapter 2: Materials 

Image dataset 

Under institutional review board (IRB) approved protocol, we retrospectively 

collected a dataset consisting of de-identified CT images acquired from 91 ovarian cancer 

patients. Each patient was diagnosed with recurrent, high-grade (serous, endometrioid or 

mixed) ovarian/ peritoneal /tubal carcinoma and underwent a clinical trial. The clinical 

trials involved 32 different new therapeutic drugs, each patient was given a mixture of 

1/2/3 drugs which depends on her condition and doctor’s treatment decision. Two sets of 

CT scans: pre-treatment and 4-6 weeks post-treatment were acquired for each patient. 

These CT images were obtained based on a pre-established CT scanning protocol in our 

medical center using either a 64-row detector CT machine (Light Speed VCT, GE 

Healthcare, Milwaukee, WI, USA) or a 16-row detector CT machine (Discovery 600, GE 

Healthcare). The X-ray power was operated at 120 kVp and 100-600mAs, depending 

upon the patient body size. A 100cc of contrast agent was injected into patient’s body at 

a rate of 2-3cc/sec before CT examinations for better visualization of the tumor. 

For each case, radiologist tracked the metastatic tumors in both pre- and post-

treatment CT image, and the tumor size changes were estimated based on RECIST 

criteria. Since our study is retrospective, the 6 month PFS were also collected in the 

dataset for the performance assessment. In this dataset, 52 patients remained 6-month 

PFS (CR, PR, SD), while 39 did not maintain 6-month PFS to the treatment with signs of 

progressive disease (PD). Table 1 summarizes the detailed information about both the 

classes of patients 
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Table 1: Detailed information about patients separated by PFS 

 
PFS "Yes" PFS "No" 

Number of patients 52 39 

Patient average age 66 ± 8 67 ± 9 

Number of metastatic 

tumors 

101 96 

Average tumor diameter  

(before therapy) 
27 mm 24mm 

 * The chemotherapy agent given varies among patients 
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Chapter 3: Quantitative image features analysis 

Segmentation methods 

In order to segment the tumors effectively and efficiently, we developed a 

segmentation scheme consisting of 8 different segmentation algorithms. This 

segmentation scheme can be categorized in to 3 sub-groups: 1) region growing methods, 

2) canny operator based methods and 3) partial differential equation based methods. 

Figure 2 illustrates the flowchart for these three types of methods. 

 

                                  (a)                                                        (b) 

 

 (c) 

Figure 2: Flow chart of (a) region growing, (b) canny operator and (c) partial differential 

equation based segmentation algorithms 
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Region growing methods 

This sub-group consists of two segmentation algorithms: connected and 

neighborhood region growing segmentation. Connected region growing is a modified 

form of regular region growing algorithm. For the connected region growing method, we 

initially select a seed point within the tumor and then evaluate whether its neighboring 

pixels are part of the tumor or not. If the intensity difference between neighbor pixel and 

the initial seed point is below the pre-determined threshold value, the neighbor pixel is 

considered as a part of tumor. This process is repeated for all the connected pixels until 

no neighboring pixel can satisfy the threshold condition. Neighborhood region growing 

is similar to the connected region growing method, and the only difference is that the 

pixel will be considered as part of the tumor if all its neighbors satisfy the intensity 

difference threshold. 

Canny operator methods 

This sub-group consists of two algorithms: Canny boundary extraction and multi-

scale canny methods. Canny boundary extraction method includes three steps. First, A 

Gaussian filter is used to suppress the noise in the image. Next, a gradient intensity image 

is computed, for which hysteresis threshold is applied to optimize the edge detection. For 

this method, two thresholds (high and low thresholds) are used on the gradient intensity 

image, where high threshold filters the noise and maps the genuine edges in the image 

(T1), and low threshold is applied to track back the faint edges in T1 and make a 

continuous boundary image (T2). Finally, dilation is applied from the initial set seed point 

in all the direction until it reaches the traced continuous boundary to extract the tumor. 

Multi-scale canny method is a modified form of canny edge detection algorithm which 
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uses down sampled image with different scales. In canny edge detection, the resulting 

image can be considered as the convolution between the original image F and first 

derivative of the Gaussian kernel θ: 

 
𝜕𝐹(𝑥,𝑦)⊗𝜃(𝑥,𝑦)

𝜕𝑥
= 𝐹(𝑥, 𝑦) ⊗

𝜕𝜃(𝑥,𝑦)

𝜕𝑥
= 𝐹(𝑥, 𝑦) ⊗ 𝜓1(𝑥, 𝑦)  (1) 

 
𝜕𝐹(𝑥,𝑦)⊗𝜃(𝑥,𝑦)

𝜕𝑦
= 𝐹(𝑥, 𝑦) ⊗

𝜕𝜃(𝑥,𝑦)

𝜕𝑦
= 𝐹(𝑥, 𝑦) ⊗ 𝜓2(𝑥, 𝑦)  (2) 

In case of multi-scale canny, we use dilated Gaussian kernel as follows: 

 𝜓
2𝑗
1 =

1

2𝑗 𝜓1 (
𝑥

2𝑗 ,
𝑦

2𝑗)  (3) 

  𝜓
2𝑗
2 =

1

2𝑗 𝜓2 (
𝑥

2𝑗 ,
𝑦

2𝑗)  (4) 

Thus we compute the dilated derivative image at different scales: 

 𝐷
2𝑗
1 (

𝜕𝐹(𝑥,𝑦)⊗𝜃(𝑥,𝑦)

𝜕𝑥
) = 𝐹(𝑥, 𝑦) ⊗ 𝜓

2𝑗
1   (5) 

 𝐷
2𝑗
2 (

𝜕𝐹(𝑥,𝑦)⊗𝜃(𝑥,𝑦)

𝜕𝑦
) = 𝐹(𝑥, 𝑦) ⊗ 𝜓

2𝑗
2   (6) 

In this study, the multi-scale edge detection is accomplished by applying the 

canny operator on the down sampled image with different scales. Given that most tumors 

are small, the scale number j is set to be 1 in this experiment. The multi-scale canny edge 

detecting operation is implemented by performing the canny operator on the down 

sampled images. After the operation, the extracted boundary is up sampled to the original 

scale. 
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Partial differential equation methods 

The algorithms in this group are based on level set segmentation and consist of 

four algorithms: Fast marching, shape detection, geometric active contour and threshold 

level set methods. For level set methods, the boundary function 𝑓(𝑥, 𝑦) is defined as a 

curve when setting the three dimensional surface ψ to be a constant number 𝐶: ψ(𝑥, 𝑦) =

𝐶. In most cases, the three dimensional initial surface is a paraboloid and its boundary 

curve is a circle. Next, the surface propagates based on the gradient values of the target 

image and its boundary changes accordingly. Surface propagation can be described using 

partial differential equation as below: 

 
𝜕𝜓

𝜕𝑡
+ 𝐹|𝛻𝜓| = 0  (7) 

 
𝜕𝜓

𝜕𝑡
= −𝐹𝐴|𝛻𝜓| − 𝐹𝐺|𝛻𝜓| − 𝐹𝑘𝑘|𝛻𝜓|  (8) 

Where 𝐹𝐴 is the advection speed given by the user, 𝐹𝐺  is the local geometric speed 

term as follows: 

 𝐹𝐺 = −
𝐹𝐴

(𝑀1−𝑀2)
{|𝛻𝐺𝜎 ∗ 𝐼(𝑥, 𝑦)| − 𝑀2}  (9) 

Where 𝑀1, 𝑀2 are the maximum and minimum of image gradients, 𝛻𝐺𝜎 is the 

gradient Gaussian kernel, I(x, y) is the image. Accordingly, the total speed of the surface 

propagation will be slow at the high gradient image area and high at the low gradient area. 

Given that the image gradient will be maximized at the tumor boundary, the surface will 

stop or move very slowly at the boundary. 

In fast marching, the image is initially pre-processed using three steps. First, an 

anisotropic filter is applied to smooth the image. Next, gradient image is computed. After 

that, the gradient image is passed to a sigmoid filter. Using the gradient image, the local 
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propagation speed  𝐹𝐺  is estimated by formula (9). The surface propagation is finally 

determined by 𝐹𝐴, and  𝐹𝐺: 

 
𝜕𝜓

𝜕𝑡
= −𝐹𝐴|𝛻𝜓| − 𝐹𝐺|𝛻𝜓|  (10) 

In shape detection, the surface propagation uses all the three terms including mean 

curvature term (𝐹𝑘). This term improves the boundary propagation by removing the noisy 

area in the target image. 

 
𝜕𝜓

𝜕𝑡
= −𝐹𝐴|𝛻𝜓| − 𝐹𝐺|𝛻𝜓| − 𝐹𝑘𝑘|𝛻𝜓|  (11) 

Where curvature term 𝐹𝑘 is estimated as follows: 

 𝑘 = −
𝜓𝑥𝑥𝜓𝑦

2 −2𝜓𝑥𝜓𝑥𝜓𝑥𝑦+𝜓𝑦𝑦𝜓𝑥
2

(𝜓𝑥
2+𝜓𝑦

2)3/2   (12) 

In Geometric active contour, a second advection term is added to the surface 

propagation which is able to attract the computed contour to the target tumor boundary. 

 
𝜕𝜓

𝜕𝑡
= −𝐹𝐴|𝛻𝜓| − 𝛼𝑔(𝐼)|𝛻𝜓| − 𝐹𝐺|𝛻𝜓| − 𝐹𝑘𝑘|𝛻𝜓|  (13) 

For the last algorithm, threshold level set is a combination of both region growing 

and level set algorithms. A pre-determined threshold interval [LT, UT] is used to identify 

the tumor, while the smoothness of the propagation surface stops the leakage that usually 

happens in region growing algorithms. 

The sample segmentation images of all the above discussed eight segmentation 

techniques are shown in the Figure 3. 
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 (a)                                (b)                              (c)                               (d)  

                        

              (e)                                (f)                              (g)                               (h)  

Figure 3: Segmentation samples of (a) connected (b) neighborhood (c) canny (d) multi-

canny (e) fast marching (f) shape detection (g) geometric (h) threshold segmentation 

algorithms 

 

Shape/volume based features 

This group includes 10 shape and/or volume based features (F1-F10) [14-17]. 

These features estimate tumor characteristics including shape, volume, and related 

geometric distortions.  

1. Convexity: It describes the smoothness of edges of the tumor, which can be 

calculated as follows: 

 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =   
𝑇𝑢𝑚𝑜𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 𝑎𝑟𝑒𝑎

𝐶𝑜𝑛𝑣𝑒𝑥 𝑟𝑒𝑔𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
  (14) 

2. Tumor volume: This is the total volume of all the tumor voxels. 

3. Max radius: we computed all the possible radii between the center and all tumor 

surface pixels. Then the maximum of radii is considered as the max radius. 
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4. STD RL: It is the ratio of standard deviation and average of all the radii between 

center and tumor surface pixels. 

 
𝑆𝑇𝐷 𝑅𝐿 =

√∑ (𝐼𝑖−𝑅 𝑖)
2𝑁

𝑖=1
𝑁−1

1

𝑁
∑ 𝑅 𝑖

𝑁
𝑖=1

=  
𝑆𝑇𝐷 𝑜𝑓 𝑟𝑎𝑑𝑖𝑖

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑟𝑎𝑑𝑖𝑖
  

(15) 

5. Surface area: In order to simplify the computation, the tumor is approximated by 

generalized cylinder. Accordingly, the surface area of the generalized cylinder is 

used as an estimation of the tumor surface area.  

6. Compactness1:  

 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠1 =  
𝑉

√  𝜋𝐴
2
3

  (16) 

7. Compactness2: 

 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠2 =  
36 𝜋𝑉2

𝐴3   (17) 

8. Spherical disproportion: It measures the difference between the tumor surface 

and a sphere with equivalent radius: 

 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  
𝐴

4𝜋𝑅2  (18) 

9. Sphericity: This feature is a measurement of the shape distortion of the tumor 

when comparing with the sphere, which is computed as follows:  

 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  
𝜋

1
3(6𝑉)

2
3 

𝐴
  (19) 

10. Surface area to tumor volume: It is the ratio of surface area to the tumor volume. 
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Density features 

These features are computed based on pixel intensities within the tumor and/or 

surrounding boundary pixels and describe their distribution [18]. This subgroup consists 

of 21 features (F11-F31), among which (F11-F15) are computed based on the 2D central 

slice and the rest of them are computed based on 3D tumors which are discussed below: 

1. ISO-intensity: The feature computes the density of all the outer ring (boundary) 

pixels for which the intensity is higher than the threshold determined by the pixels 

inside the tumor. (where,10th percentile intensity of pixel values inside the tumor 

is the threshold) 

2. Fluctuation mean: The fluctuation is defined as the maximum absolute 

difference between the target (Central) pixel and all the neighbor pixels within its 

5×5 neighborhood. Thus fluctuation mean is the average fluctuation value for all 

the tumor pixels. 

3. Fluctuation standard deviation: This feature is the standard deviation of 

fluctuation value of all the tumor pixels. 

4. Gradient Mean: It is defined as the average gradient value of all the tumor 

boundary pixels.  

5. Gradient standard deviation: This feature is the standard deviation of gradient 

value of all boundary pixels. 

6. Density: This feature computes the average intensity of all the pixel values within 

the tumor. 

7. Standard deviation of density: It computes the standard deviation of all the pixel 

values within the tumor. 
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8. Mean contrast: For this feature, we initially compute an inner ring within the 

tumor and an outer ring surrounding the tumor then, the intensity ratio of the inner 

ring to surrounding outer ring is computed as follows: 

 𝑚𝑒𝑎𝑛 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
𝑚𝑒𝑎𝑛 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑟𝑖𝑛𝑔 𝑡𝑢𝑚𝑜𝑟 𝑝𝑖𝑥𝑒𝑙𝑠 (𝐼𝑖𝑛𝑛𝑒𝑟)

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑟𝑖𝑛𝑔 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑖𝑥𝑒𝑙𝑠 (𝐼𝑜𝑢𝑡𝑒𝑟)
  (20) 

9. Contrast: It is the difference between the mean of inner ring tumor pixels and the 

mean of surrounding outer ring boundary pixels.  

 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  𝐼𝑖𝑛𝑛𝑒𝑟 − 𝐼𝑜𝑢𝑡𝑒𝑟  (21) 

10. Skewness: Skewness measures the asymmetry of the probability distribution 

curve of all the tumor pixel values about its mean. 

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  √𝑁 ∗
∑ (𝑰𝒊−𝑰)

𝟑𝑵
𝒊=𝟏

∑ (𝑰𝒊−𝑰)
𝟑
𝟐𝑵

𝒊=𝟏

  (22) 

11. Kurtosis: Kurtosis measures the "tailed-ness" of the tumor density distribution 

when comparing to the standard normal distribution:  

 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  𝑁 ∗
∑ (𝑰𝒊−𝑰)

𝟒𝑵
𝒊=𝟏

(∑ (𝑰𝒊−𝑰)
𝟐

) 𝑵
𝒊=𝟏

𝟐  (23) 

12. STD ratio: It is defined as the ratio of STD of tumor intensity to the boundary 

intensity.  

13. Energy: It is a sum of the squared tumor pixel values. 

 𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝐼𝑖
2𝑁

𝑖=1    (24) 

14. Entropy: This feature describes the randomness/ uncertainty in an image. 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑃𝑖 𝑙𝑜𝑔2 𝑃𝑖
𝑁𝑙
𝑖=1   (25) 

Where 𝑃 is first order histogram of tumor pixels with 𝑁𝑙 discrete intensity levels. 
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15. Max: It is the maximum value of all the tumor pixels 

16. Mean absolute deviation: It is defined as the mean absolute deviation between 

the tumor pixel value and the average tumor intensity:  

 𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
1

𝑁
∑ |𝐼𝑖 − 𝐼|𝑁

𝑖=1   (26) 

17. Median: It is the median value of all the tumor pixels. 

18. Min: It is the minimum value of all the tumor pixels. 

19. Range: It measures difference between the maximum and a minimum value of all 

tumor pixels. 

20. RMS: it is the root mean square value of tumor pixels. 

21. Uniformity: This feature is a measure of histogram randomness and can be 

computed as follows: 

 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =  ∑ 𝑃𝑖
2𝑁𝑙

𝑖=1   (27) 

 

Texture based features 

These features are computed using the gray level run length (GLRL). Gray level 

run is the number of consecutive elements with the same gray level in a certain direction 

(i.e. 0°, 45°, 90°, and 135°), while the run length is the number of the gray level run. 

The run length provides meaningful texture information for tumor classification 

[19-20]. In our study, we estimated a total of 11 texture features [21-23] and are as 

follows: 
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1. Short Run Emphasis (SRE) 

 𝑆𝑅𝐸 =  
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)

𝑗2
𝑁
𝑗=1

𝑀
𝑖=1 =  

1

𝑛𝑟
∑

𝑝𝑟(𝑗)

𝑗2
𝑁
𝑗=1   (28) 

2. Long Run Emphasis (LRE) 

 𝐿𝑅𝐸 =
1

𝑛𝑟
∑ ∑ 𝑝(𝑖, 𝑗). 𝑗2𝑁

𝑗=1
𝑀
𝑖=1 =  

1

𝑛𝑟
∑ 𝑝𝑟(𝑗). 𝑗2𝑁

𝑗=1   (29) 

3. Gray-Level Non-uniformity (GLN) 

     𝐺𝐿𝑁 =  
1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)𝑁

𝑗=1 )
2𝑀

𝑖=1 =
1

𝑛𝑟
∑ 𝑝𝑔(𝑖)2𝑀

𝑖=1   (30) 

4. Run-Length Non-uniformity (RLN) 

 𝑅𝐿𝑁 =  
1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)𝑀

𝑖=1 )2𝑁
𝑗=1 =

1

𝑛𝑟
∑ 𝑝𝑟(𝑖)2𝑁

𝑗=1   (31) 

5. Run Percentage (RP) 

 𝑅𝑃 =  
𝑛𝑟

𝑛𝑝
  (32) 

6. Low Gray-Level Run Emphasis (LGRE) 

 𝐿𝐺𝑅𝐸 =  
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)

𝑖2 = 𝑁
𝑗=1

𝑀
𝑖=1

1

𝑛𝑟
∑

𝑝𝑔(𝑖)

𝑖2
𝑀
𝑖=1   (33) 

7. High Gray-Level Run Emphasis (HGRE) 

 𝐻𝐺𝑅𝐸 =  
1

𝑛𝑟
∑ ∑ 𝑝(𝑖, 𝑗). 𝑖2𝑁

𝑗=1
𝑀
𝑖=1 =

1

𝑛𝑟
∑ 𝑝𝑔(𝑖). 𝑖2𝑀

𝑖=1   (34) 

8. Short Run Low Gray-Level Emphasis (SRLGE) 

 𝑆𝑅𝐿𝐺𝐸 =  
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗)

𝑖2 .𝑗2
𝑁
𝑗=1

𝑀
𝑖=1   (35) 

9. Short Run High Gray-Level Emphasis (SRHGE) 

 𝑆𝑅𝐻𝐺𝐸 =  
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗).𝑖2

𝑗2
𝑁
𝑗=1

𝑀
𝑖=1   (36) 

10. Long Run Low Gray-Level Emphasis (LRLGE) 

 𝐿𝑅𝐿𝐺𝐸 =  
1

𝑛𝑟
∑ ∑

𝑝(𝑖,𝑗).𝑗2

𝑖2
𝑁
𝑗=1

𝑀
𝑖=1   (37) 
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11. Long Run High Gray-Level Emphasis (LRHGE) 

 𝐿𝑅𝐻𝐺𝐸 =  
1

𝑛𝑟
∑ ∑ 𝑝(𝑖, 𝑗). 𝑖2. 𝑗2𝑁

𝑗=1
𝑀
𝑖=1   (38) 

In these formulas, P is a GLRL matrix, in which P (i, j) is the number of runs for 

gray level i and length j. 𝑛𝑟  is total number of runs, and 𝑛𝑝 is the number of distinctive 

elements in the GLRL matrix P. 

Given that the above 11 GLRL features can be estimated in four different 

directions (i.e. 0°, 45°, 90° and 135°), thus we finally have 44 GLRL features. (F32-F75 

GLRL features in four directions). 

 

Wavelet features 

In this study, a two-dimensional wavelet transform ("Coiflet 1" filter) was applied 

on each image [18], which decomposes the original image (I) into four components: ILL, 

ILH, IHL, and I HH, where L and H denotes the low and high pass filters respectively. For 

example, IHL is obtained by applying high-pass filter along the x-direction and low pass 

filter along y-direction on original CT image (I). Mathematically, it can be described as 

follows: 

 𝐼𝐻𝐿(𝑖, 𝑗) =  ∑ ∑ 𝐻(𝑝)𝐿(𝑞)𝐼(𝑖 + 𝑝, 𝑗 + 𝑞)
𝑁𝐿
𝑞=1

𝑁𝐻
𝑝=1   (39) 
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Figure 4: Wavelet decomposition of target CT slice using wavelet transforms (one-level 

and un-decimated two-dimensional wavelet transforms using "Coiflet 1" filter) 

 

Accordingly, for each component, we estimated the same density features as 

described above. All the features are summarized in Table 2. 

Table 2: Summary of all the 159 features separated by their feature class 

Feature 

class 

Feature 

number 

Feature description 

 

Shape 1-10 convexity, Tumor volume, maximum radius, STD RL , surface area, 

compactness feature 1, compactness feature 2, spherical 

disproportion, Sphericity, ratio of surface area to Tumor volume 

Density 11-31 ISO-intensity, fluctuation mean, fluctuation STD, gradient mean, 

gradient STD, Density, density STD, mean contrast, contrast, 

skewness, kurtosis, STD ratio of tumor to boundary, energy, entropy, 

maximum intensity, mean absolute deviation, median, minimum, 

range, rms, uniformity 

 

Texture 32-75 11 gray level run length based features extracted in four directions 

(0°, 45°, 90°, and 135°)  

Wavelet 76-159 Apply the density features on the four wavelet components 
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For each case, we computed these 159 features on both pre-treatment (Fi
Pre) and 

4-6 week follow-up (Fi
Post) CT image sets. Then, the tumor feature differences ∆Fi =

 Fi
Post −  Fi

Pre were also computed. After that, feature sets Fi
Pre, ∆Fi were normalized 

within the range between μ + 2σ and μ − 2σ, where μ and σ denote the mean and 

standard deviation of the feature values respectively. In accordance with the RECIST 

guidelines, 1 to 5 tumors were tracked and studied by radiologists for different cases. In 

this study, the average feature computed from M tumors (1 ≤ M ≤ 5) corresponding to 

the same case was also computed and used to represent the final case-based feature value. 

We used the case-based features to assess their association to the 6-month PFS of the 

patient. 

After building two initial feature pools containing Fi
Pre and ∆Fi = Fi

Post − Fi
Pre, 

we firstly assessed the performance of each feature, using receiver operating 

characteristic (ROC) curve[21-22]. Then we sorted features based the area under the 

curve (AUC) values and top 20 features are selected in both feature pools, to investigate 

whether using feature difference ∆Fi = Fi
Post − Fi

Pre could yield significantly high 

performance than using the features computed from pre-therapy CT images only. Next, 

an equal-weighted Fusion model was built to combine the optimal feature cluster and 

generate a new combined feature marker to predict the 6-month progression free survival 

(PFS). We also used the ROC analysis method to assess the predicting performance of 

the combined marker. Finally, we built three confusion matrices using the prediction 

results generated by two fusion image markers and RECIST criteria used by radiologists 

in current clinical practice. The predicting accuracy of our new quantitative image 

markers were compared with the conventional RECIST method. 
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Chapter 4: Results 

Tumor segmentation results 

A number of 138 tumors are used to assess the performance of these segmenting 

algorithms. All of these tumors are selected and tracked from the advanced ovarian cancer 

patients with recurrent metastatic tumors. Figure 3 illustrates some typical segmenting 

examples of the eight methods, which demonstrated that these methods are effective for 

the tumor segmentation of the ovarian cancer cases. However, given that the metastatic 

tumors are highly sophisticated, none of the above eight approaches are able to effectively 

segment all the tumors. As indicated in Table 3, the PDE based methods are achieved a 

better performance than the region growing and Canny boundary operator methods, for 

which the fast marching, geometric active contour, and threshold level set yielded a 

number of 106, 104, and 107 satisfied segmenting results. In addition, although each 

single method is not able to segment all of these tumors, each of the tested tumors can be 

successfully segmented by at least one of the eight methods without the manual boundary 

correction. 

Table 3: Summary of the eight segmenting result of the 138 metastatic tumors for the 

advanced stage ovarian cancer patients 

Segmenting 

methods 

Region 

growing 

Neighborhood 

region growing 

Canny operator Multi-scale 

canny 

Unsatisfied 78 102 76 109 

Satisfied 60 36 62 29 

Segmenting 

methods 

Fast 

marching 

Geometric 

active contour 

Shape 

detection 

Threshold 

level set 

Unsatisfied 32 34 48 31 

Satisfied 106 104 90 107 
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          (a)       (b)                         (c)                        (d)                        (e)           

Figure 5: An aortic tumor segmented by our hybrid segmenting scheme from the (a) 2nd 

upper adjacent slice (b) 1st upper adjacent slice (c) central slice selected by the radiologist 

(d) 1st lower adjacent slice (e) 2nd lower adjacent slice 

 

In order to segment the 3D tumor from the multiple CT slices, the professional 

radiologist will first mark one central slice containing the tumor, which was segmented 

by one of the developed algorithms. Once the tumor region and boundary contour are 

segmented on this center slice, the result provides a reference to guide the segmentation 

of the tumor regions depicting on the two adjacent CT image slices. The scheme will keep 

segmenting the tumors on the adjacent slices until the tumor disappears. Figure 5 shows 

an example of 3-D aortic tumor segmented from a series of adjacent CT image slices. The 

tumor depicted on Figure 5 (c) was first segmented from the target slice marked by the 

radiologist, which has the largest 2-D area. Figure 5 (d) and (e) indicate that the tumor 

significantly decreases and disappear on the first and second lower adjacent slices, 

respectively. The similar results can also be revealed on the upper adjacent slices, as 

shown in Figure 5 (a) and (b). 

 

Quantitative image feature analysis results 

Table4, Table 5 summarizes two sets of 20 best performed image features computed from 

pre-therapy CT image only and two CT scans acquired pre- and pre-post therapy. The 
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pre-therapy set consists of five tumor density features (Skewness, Uniformity, Entropy, 

kurtosis, and STD), thirteen wavelet features (Contrast-LH, Contrast-HL, Skewness-HH, 

Density std Ratio-HL, Kurtosis-HL, Mean contrast-LH, Density std Ratio-HH, 

Skewness-LH, Range-HL, Density-LH, Mean contrast-HL, Minimum density-LH, and 

Kurtosis-LL), and two tumor shape features (Sphericity and Compactness-2). AUC 

values of these 20 features range from 0.5692 to 0.6842. The best performed feature is 

Skewness with an AUC value of 0.6842±0.0557. Similarly, another set based on the 

image feature difference between the pre- and post-therapy has nine tumor density 

features (Energy, Median, Rms, Average density, Maximum density, Density range, 

Fluctuation std, std-RL, and Entropy), eight wavelet features (Fluctuation std-LL, 

Entropy-HL, Energy-HH, Entropy-LL, Energy-HL, Maximum density-HH, Maximum 

density-HL, and Gradient mean-HL), and three tumor shape features (Compactness-1, 

Tumor volume, and Surface area). AUC values of using these 20 features ranged from 

0.6511 to 0.7705, among which the feature of Compactness-1 yielded the highest AUC 

value of 0.7705±0.0495. 
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Table 4: Summary of top 20 features obtained using pretreatment CT images 

Feature AUC ± STD Feature AUC ± STD 

Skewness 0.6842 ± 0.0557 Mean contrast-LH 0.5960 ± 0.0601 

Contrast-LH 0.6521 ± 0.0592 Kurtosis 0.5923 ± 0.060 

Contrast-HL 0.6426 ± 0.0576 Density std Ratio-HH 0.5907 ± 0.0614 

Uniformity 0.6367 ± 0.0579 Skewness-LH 0.5877 ± 0.0597 

Skewness-HH 0.6225 ± 0.0586 Range-HL 0.583 ± 0.0611 

Sphericity 0.6209 ± 0.0579 Density-LH 0.578 ± 0.0609 

Entropy 0.6192 ± 0.0589 Mean contrast-HL 0.5774 ± 0.0599 

Density std Ratio-HL 0.6178 ± 0.0581 Minimum density-LH 0.5734 ± 0.0617 

Kurtosis-HL 0.6149 ± 0.0587 Kurtosis-LL 0.5704 ± 0.0608 

Compactness2 0.6022 ± 0.0585 STD of density 0.5692 ± 0.0613 

 

Table 5: Summary of top 20 features obtained using both pre and posttreatment CT 

images 

Feature AUC ± STD Feature AUC ± STD 

Compactness 1 0.7705 ± 0.0495 Density range 0.677 ± 0.0558 

Volume 0.7547 ± 0.0512 Energy-HH 0.6696 ± 0.0567 

Surface area 0.7389 ± 0.0523 Entropy-LL 0.6688 ± 0.0555 

Fluctuation std-LL 0.7108 ± 0.0535 Energy-HL 0.6671 ± 0.0597 

Energy 0.7066 ± 0.0548 Maximum density-HH 0.6629 ± 0.058 

Median 0.6949 ± 0.0542 Fluctuation std 0.6616 ± 0.056 

Entropy-HL 0.6865 ± 0.0545 Maximum density-HL 0.6603 ± 0.0582 

Rms 0.685 ± 0.0549 Gradient mean-HL 0.6583 ± 0.0565 

Density  0.6835 ± 0.0549 Std-RL 0.6532 ± 0.0563 

Maximum density 0.6815 ± 0.0555 Entropy 0.6511 ± 0.0566 
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The selected optimal clusters consisting of 4 and 9 features from two feature sets 

of (1) using pretreatment CT images only (𝐹𝑖
𝑃𝑟𝑒) and (2) using both pre- and post-

treatment CT images (∆𝐹𝑖) respectively. These optimal clusters were evaluated using 

ROC curve. As indicated in Figure 6Figure 7, the AUC values of final fusion markers are 

0.8103 ±  0.0447 and 0.8292 ± 0.0431 for optimal feature cluster sets (𝐹𝑖
𝑃𝑟𝑒) 

and(∆𝐹𝑖) respectively. The predicting powers of the fused markers are significantly 

higher when comparing to the AUC values of single features in the initial individual 

feature sets. At a specificity of 0.6, the sensitivity values are 0.8241 and 0.8735 for the 

final pre-treatment and the pre-post treatment fusion markers respectively. 

 

Figure 6: ROC curves of the best individual feature and the final fusion image marker 

for pre-treatment features 
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Figure 7: ROC curves of the best individual feature and the final fusion image marker 

for pre-posttreatment features 

 

Table 6,Table 7, and Table 8 shows the confusion matrices obtained using two 

fusion markers and conventional RECIST criteria respectively. The pre-treatment marker 

predicts 46 cases as responsive cases, among which 36 cases are clinically responsive to 

the therapy. Similarly, this marker predicts 45 cases as non-responsive cases, and 29 of 

them are clinical non-responders. Thus the pre-treatment marker yields a positive 

predictive value (PPV) of 78.26% and a negative predictive value (NPV) of 64.44%. The 

overall prediction accuracy of this pre-fusion marker is achieved as 71.43%. For the pre-

post treatment marker, 60 and 31 cases are predicted as responsive and non-responsive 

cases, among which 47 and 26 cases are clinical responders or non-responders. Therefore 

the PPV and NPV are 78.33% and 83.87%, respectively. As a result, an overall prediction 
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accuracy of 80.22% was obtained for the pre-post fusion marker. As a comparison, Table 

8 summarizes the confusion matrix of the conventional RECIST method, in which CR, 

PR, and SD are considered as responsive to treatment by maintaining 6-month PFS and 

PD as non-responsive to treatment. The overall prediction accuracy using RECIST 

criteria is 74% 

Table 6: A confusion matrix predicting 6-month PFS when fusing features obtained from 

pre-treatment CT images 

                    6-month PFS 

Prediction                

Yes No 

Yes 36 10 

No 16 29 

 

Table 7: A confusion matrix predicting 6-month PFS when fusing features obtained from 

both pre- and post-treatment CT images 

                    6-month PFS 

Prediction                

Yes No 

Yes 47 13 

No 5 26 

 

Table 8: A confusion matrix predicting 6-month PFS when using RECIST criteria 

                    6-month PFS 

Prediction                

Yes No 

Yes 52 23 

No 0 16 
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Chapter 5: Discussion 

CT is the most widely used imaging modality for assessing the efficacy of 

chemotherapy drugs in treating ovarian cancer patients. Currently, most of the clinical 

evaluations are based on RECIST criteria which use one-dimensional tumor diameter 

change to categorize patients’ response to chemotherapy. However, the previous studies 

have proved that diameter change cannot be sole measure for optimal assessment. For 

example, 1) when using bevacizumab-based therapy in clinical trials to treat recurrent 

ovarian cancer, RECIST based assessment categorized 21% as responsive when there 

were actually 40% patients who remained 6-moth PFS [26]. 2) When using immune-

stimulatory agents like CTLA4 for therapy, some tumors might have an initial increase 

in tumor size on CT images which is not permanent and can shrink at a later time [27-

28]. As a result, there is a need for new approaches which is not entirely based on one-

dimensional size.  

In this study, we developed a CAD model which computes a number of 159 

quantitative image features to estimate the tumor shape, size, density and texture 

characteristics. Two sets of the quantitative features, pre-treatment and pre-post treatment 

features, were computed by our new CAD scheme to predict the response of ovarian 

cancer patients to chemotherapy. The results indicate that the pre-and pre-post treatment 

features are able to yield AUC values of 0.8103 ± 0.0447 and 0.8292 ± 0.0431 

respectively, which is significantly higher than the results accomplished by the 

conventional RECIST method. The performance superiority can be attributed by two 

main advantages of our new method.  
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First, this study indicates that pre-therapy CT imaging data includes useful 

information for the therapy response prediction. The study supports the concept of 

emerging Radiomics, which hypothesizes that the tumor heterogeneity features detected 

and quantified from radiographic images (e.g., CT) enable to phenotype corresponding 

genomic or biological biomarkers to predict cancer prognosis or tumor response to the 

therapies [18]. In this study, we found that a number of tumor density and texture 

heterogeneity related image features, had significantly higher discriminatory or 

prediction power than random guess (AUC = 0.5). As indicated in Table 4, the highest 

AUC value of 0.6842 ± 0.0557 was achieved using one image feature computed from the 

pre-therapy CT images. Furthermore, by fusing a cluster of four selected optimal features 

using a simple equal-weighting method, the prediction performance significantly 

increased to 0.8103±0.0447 (p < 0.05). After applying an operation threshold, this fusion 

image marker achieved an overall prediction accuracy of 71%. In addition, this is a totally 

different approach of using RECIST in current clinical practice, which requires 

comparison of tumor size change in two sets of CT images acquired pre- and post-therapy. 

Thus, one potential advantage of using quantitative image feature analysis is enabling to 

predict or assess cancer prognosis or PFS before therapy. If successful, this will help 

clinicians (e.g., oncologists) select optimal or personized cancer treatment strategy for 

the individual patients to achieve the maximum therapy benefit while minimizing 

unnecessary toxicity. 

Second, our study also showed that although using pre-therapy CT images can 

help predict patients’ response to therapy, adding quantitative images features computed 

from post-therapy CT images could provide more discriminatory information. As a result, 
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many individual image features computed from pre- and post-therapy CT images yielded 

significantly higher prediction performance than using the image features computed from 

pre-therapy CT images only. In addition, comparing to using RECIST which yielded 74% 

prediction accuracy in this study, the overall prediction accuracy of using quantitative 

imaging marker increased to 80%. The higher performance is probably due to the fact 

that quantitative image feature analysis method is able to extract more useful information 

of tumor characteristic change from the CT images (i.e., tumor volume, density, boundary 

spiculation). RECIST, however, only assesses one dimension tumor size change from two 

sets of CT images. As shown in Table 5, besides tumor volume change, other 19 selected 

features with higher discriminatory power cover more tumor characteristics related to 

tumor shape (compactness-1) and density heterogeneity changes. This can be attributed 

by the fact that the chemotherapy treatment will not only lead to the change of the tumor 

size, but also result in the change of some other tumor characteristics, such as the tumor 

density, necrosis, stiffness and other heterogeneity patterns. Many of these characteristic 

changes will not be reflected on the tumor size measurement, but can be extracted by 

quantitative image feature analysis. Because of these facts, quantitative image feature 

analysis is a new promising approach to more accurately predict patients’ response to 

therapies.  

Even though the results are encouraging, this study has some limitations. First, 

we noticed that although adding the post-therapy CT image data can significantly 

improve the predicting performance on the single feature (e.g., 0.7705 ± 0.0495 vs 0.6842 

± 0.0557), the performance improvement between using two fusion based image markers 

was not substantial (e.g., 0.8292 ± 0.0431 vs 0.8103 ± 0.0447). The reason behind this 
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observation needs to be further investigated using other independent image datasets. 

Second, due to the limited size of our image dataset, only a simple equal weighted fusion 

method was applied to build image marker. In the future study, a large image dataset 

needs to be built and the state of the art machine learning methods need to be investigated 

to optimally combine image features to further improve the predicting performance. 

Third, for each case, we only investigated the tumors marked and tracked by the 

radiologist based on RECIST guideline. For the features of these different tracked tumors, 

we only computed the average value as the final case-based feature, which might not be 

the optimal method. Thus, we still need to investigate the more effective algorithms to 

quantify the case-based image features. Fourth, in this dataset, the patient cases were not 

classified with different chemotherapy drugs. Given that the tumor responsive to a certain 

type of drug may contain some specific tumor characteristics, dividing and finding the 

best features for the patients with different therapy groups may further improve the 

predicting accuracy. Last, although we have accumulated 91 cancer cases, the robustness 

of our experiment results need to be tested and verified using large and diverse image 

datasets in the future.  

In conclusion, even with few limitations, we believe that this initial study is 

unique and valid, which demonstrated that pre-therapy CT image analysis provide useful 

information in predicting ovarian cancer patients response to chemotherapy and addition 

of post-therapy information can further improve the model effectiveness by generating 

higher prediction accuracy than both pre-therapy and conventional RECIST criteria 

methods. As a result, this study provides a valid foundation for us to continue developing 

more robust quantitative image analysis scheme to identify clinically useful imaging 
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markers, which can more accurately predict the clinical benefit of the chemotherapy at 

the early stage for ovarian and/or other cancer patients. 
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