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A NEW METHOD FOR REALIZING PARALLEL PROCESSING

MACHINES USING MULTIPLE-VALUED LOGIC

CHAPTER I

INTRODUCTION

Parallel Processing Machines

The need to improve the speed of computation, often motivated
by the desire to solve special classes of problems, has produced several
computer processors that are capable of performing several operations
simultaneously. The Illiac IV, STAR, CRAY-1, and ASC computers all rely
on some degree of parallelism to achieve high performance. In general,
a parallel processor is one that contains multiple arithmetic units and
operates on multiple data streams [1l]. The multiple hardware elements
are often identical and must exhibit semi-independent concurrent opera-
tion. Overall, a parallel processor may or may not be capable of
executing more than one machine instruction at a time. If not, the
machine is referred to as a single instruction, multiple data stream
(SIMD) processor. If more than one machine imstruction can be executed
concurrently, the machine is a multiple instruction, multiple data

stream (MIMD) processor.



It is often difficult tec classify parallel machines based
strictly on concurrency of operation. For example, a form of parallel-
ism is achieved in some machines by overlapping otherwise time sequential
operations using a technique called pipelining. The method is often
employed for machine or microinstruction fetch operations and allows the
overlap of instruction execution with the fetching of the next instruc-
tion. Piping is also a feature of floating point arithmetic units and
provides higher throughput rates. Pipelining, however, is not considered
here as representative of the parallel processor concept since multiple
identical or highly similar hardware elements capable of a variety of
operations are not necessarily incorporated into a pipelined hardware
design.

The main objective in constructing parallel machine hardware is
to create an aggregate machine that can perform one of several operations
concurrently in time. Specific types of problems that require the same
operations to be applied to multiple quantities of data, i.e., matrix or
vector manipulations, aée particularly well suited as applications for
parallel processors. In an SIMD machine each processor can execute the
same instruction on different data segments. Each processor generates
an intermediate result concurrently with the others. The overall prob-
lem solution time is therefore greatly reduced. Considerable effort may
be involved to convert a problem into a form suitable for parallel
processing, but this topic is not considered here. Specifically, we are

interested in a new method that provides inherent hardware concurrency.



A New Approach

Currently, all parallel processors are realized with binary
logic gates and storage devices. The identical elements of a machine
that operate in parallel are simply multiple copies of the same binary
logic circuit. Interconnection of the parallel elements also relies
upon binary logic gate hardware.

A new method for simultaneous logic operation and, hence, the
realization of parallel processors exists in the application of suitable
multiple-valued logic gates and storage elements. Selection of a 2%-
valued logic allows the replacement of m binary machines with one
multiple-valued machine. In the latter machine, the logic values of the
individual binary machines exist simultaneously as multiple-valued logic
levels. The multiple-valued storage elements (multi-stables) simul-
taneously store the information for all the m individual binary machines.
The state of the individual machines need not be the same, and any one
machine can change to a new state independently of the other machines.
The technique is applicable to the entire range of typical hardware
systems or subsystems, that is, from a simple circuit like an adder to
an entire central processing unit (CPU). Both combinational and sequen-
tial circuits are necessarily included.

The encoding of several binary logic signals into a single
system of multiple-valued logic leve;s is the basic premise of the idea
being presented and represents, in a fashion, the multiplexing of seve-
ral binary machines within a single multiple-valued machine. The scheme
is somewhat analogous to frequency multiplexing in a communication

system, whereby several conversations are simultaneously carried over



the same wire. The simultaneous storage of state information for two or
more binary f£lip-flops by a single multi-stable suggests an appropriate
descriptor, state integration. In other words, the states of the individ-
ual binary machines are integrated into a single composite state of the
multiple-valued machine. A multiple-valued logic system organized to
operate as two or more simultaneous lower radix machines will therefore

be referred to as a state integrated and multiplexed digital system.

By simultaneously providing the logic functions of several
machines within the circuitry of a single machine, the state integrated
and multiplexed machine concept inherently exhibits the parallelism
previously described. As an additional benefit the method significantly
reduces the number of signal paths as compared to the multiple individ-
ual machines. The technique also produces a tightly coupled set of
machines and potentially reduces the problem of control and information
interchange between individual machines.

It should be clear that the individual machines within a state
integrated and multiplexed digital system remain completely autonomous
with respect to the other machines in both internal state and time.

They are, however, only "logically" separate since they operate within
the same circuit elements. The logical sub-machines form an inherently
tightly coupled composite machine and can be arranged, via hardware and
software techniques, to cooperate much the same as a parallel or multi-
ple processor binary configuration. By focusing on parallel binary
machines, the existing universe of knowledge dealing with binary systems
is préserved and is especially important when viewing the work from a

software perspective.



Research Objective

The state integrated and multiplexed digital system proposes
a generalized use for multiple-valued logic that has not been previously
investigated. This research will necessarily draw upon previous work in
multiple~valued logic, but will differ in that earlier results have
generally assumed that the multiple-valued logic elements operate in
their respective natural radix. The work here will show that the multiple-
valued logic devices, and circuits developed therefrom, can operate
simultaneously as two or more lower radix devices and circuits. For
example, a four-valued logic circuit can perform the same function as
two identical binary logic circuits.

Since this work is somewhat new, there are several approaches
for the research. First, one might assume--with little or no foundation--
that the state integrated and multiplexed concept is feasible and con-
sider various new architectures and organizations of automata that
incorporate the essential features of the scheme. Certainly, this is
justified to some extent, but a considerable amount of work must still
be done to insure that the hardware is realizable; otherwise, the

' As a second

research may degenerate into a shuffling of "black boxes.'
approach, the work could pursue electronic circuit development for logic
devices. This is necessary since improvements in multiple-valued gates
can lead to specific realizations, however restricted they might be.
Neither of these two extreme approaches will be used, rather an overall
justification of the concept will be based on some theoretical founda-

tions followed by analysis of state integrated and multiplexed logic

circuits. The design and analysis of both combinational and sequential



logic circuits will be considered. Specific realizations for logic
gates are included in this work, but the primary emphasis is on logic
circuit development and behavior analysis. Whenever needed, worst case
operating conditions in the multiple-valued logic are assumed. It is
anticipated that these assumptions will accommodate ome or more actual
realizations for the logic gates.

The research will attempt to justify the state integrated and
multiplexed conjecture by showing what elements comprise the logic
circuits and, further, investigate the response of meaningful and useful
circuits. It is not reasonable to show results for all possible state
integrated and multiplexed machines, but since a great deal more is
known about binary logic than, say, three-valued or ternary logic, the
emphasis is centered on replacing m, m = 2, parallel binary machines
with one multiple~valued machine having a radix r = 2M, In many of the
specific circuit examples, the value of m = 2 is selected in order to
keep the circuit development and analysis as simple as possible.

It will be shown that previously used multiple-valued storage
devices will not suffice logically for a state integrated storage ele-
ment and some work will be directed toward the development of a suitable
multi-stable. Without this new device, state integrated sequential
logic circuits are not easily realizable.

When the foregoing results are satisfactorily obtained, state
integrated and multiplexed digital system design will become a new
method for realizing two or more identical digital machines. The
concept underlies and adds impetus to the construction of a true dual

radix machine or processor. Such a machine would be capable of operating



in the state integrated and multiplexed mode as two or more identical
processors, or it could be switched to function as a single processor
operating in the natural radix of the multiple-valued logic employed.
Therefore, this work hopes to solve half of the problem by showing that
multiple-valued logic elements will support the replacement of two or
more binary machines. Future follow-on research may be able to show
detailed results for either the case of non-binary sub-machines or the

dual radix processor concept.

Previous Work

Parallel processing logic has been used to increase the speed
of several computer systems [1,2]. These large parallel processors are
among the most powerful machines available today. All of these machines
are realized by the application of binary logic elements. We are con-
cerned here with an alternative realization method for parallel machines
that uses multiple-valued logic elements. Successful manufacture of
multiple-valued logic devices has been achieved using Integrated Injec-
tion Logic or 1%L, [3,4]. Smith [5] has presented an overview of various
electronic implementations for multiple-valued logic devices.

Much of the work in multiple-valued logic systems has involved
devising algebraic structures. The Post algebras [6] have been widely
used and form the basis for several combinational and sequential circuit
design methods. The minimization of Post based multiple-valued switch-
ing functions has been the work of several authors [7-9]. Combinational
design methods similar to those in a binary system have been proposed by
Allen [10]. From experience gained from actual I°L circuit fabrication,

McCluskey [11,12] has proposed a new combinational design technique.



His work allows a rich set of primitive functions, some of which occur
naturally in the current mode I2L circuits.

Sequential circuit design for multiple-valued systems relies on
the combinational work but also includes exploration of memory elements
and the interaction of circuit components that result in hazard and race
conditions. Wojcik [13,14] and Sheafor [15] have examined the problem
of asynchronous sequential circuit design. Both studies considered the
memory element requirement and the need for combinational circuits that
are free of hazard conditions. Specific effort for the development of
memory elements is found in [16-19]. In particular, Wills [19] has
prescribed a concise model for the behavior of multiple-valued memory
elements. Race conditions do not pose as great a problem as do hazards,
but the subject has been considered by Moraga [20] for three-valued or
ternary logic systems.

Boolean based multiple-valued systems have received attention
primarily at the algebraic level and little consideration has been given
for serious design of logic devices. Wojcik [21] has shown relationships
between Post and Boolean single variable functions. Wojcik and Metze [22]
have provided a method based on these relationships that allows minimi-
zation of higher-order Boolean functions after the function is mapped to
a corresponding Post function.

One advantage in designing with higher-order Boolean based
logic devices is the possibility of extending existing techniques of the
By binary Boolean system. The necessary mathematical basis for the By
and higher-ordered systems is given by Lee [23]. When the multiple-

valued digital system operates in the natural or higher radix mode, an



important shortcoming of higher-ordered Boolean algebras is the fact
that the AND, OR and COMPLEMENT functions do not comprise a functionally
complete system for multiple-valued logic. For example, in the combi-
natorial sense, there are 256 functions of one variable in a four-valued
logic system; however, there exist only 16 Boolean functions of one
variable [21]. Without the inclusion of additional functions, the
Boolean system consisting of AND, OR, and COMPLEMENT will not suffice
for the general multiple~valued logic system. On the other hand, if the
nultiple-valued system represents a set of Boolean systems operating in
parallel, as is the case for the state integrated and multiplexed
digital system, then the Boolean algebra is functionally complete.

The evaluation of digital circuit designs for proper operation
is often performed for binary systems through the use of circuit simu-
lation computer programs [24]. DPrograms of this type are often catego-
rized as design automation tools. Digital simulators may be of the gate-
level type [25], or they may be structured at a higher or functional
level [26]. A functional simulator is convenient for describing large
systems, such as an entire computer, prior to the selection of circuit
elements. With both types of simulators, the designer is able to
explore the interaction of the pertinent variables and functions that
comprise the digital system.

With multiple-valued digital systems the variables and functions
become correspondingly more complex, and the need for a simulation tool
cannot be overlooked. Circuit designs consisting of only a few gates
can be exceedingly difficult to analyze by hand. The inclusion of new

and unfamiliar multiple-valued gate functions can also confuse the task
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of circuit evaluation if performed manually. Moraga [27] has reported a
ternary gate-level simulator and in [28] proposes the model for an
enhanced version of the simulator. A note of caution to prevent unnec-
essary confusion is that a true multiple-valued logic element simulator
is being considered here and not binary logic simulators that may employ
so-called multiple-valued techniques to depict dynamic binary logic

phenomena such as 0-1 transitions [24].

Thesis Summary

This thesis is basically concerned with the investigation of
logic design requirements for state integrated and multiplexed digital
systems. Such systems, it is claimed by way of conjecture, offer a new
method for realizing parallel processing machines. The methods of
designing combinational and sequential logic circuits and memory ele-
ments will be analyzed. Specific results are limited to replacing two
or more parallel binary machines with one multiple-valued logic machine.
Meaningful circuit examples are used throughout, and actual results of
circuit behavior are derived by using a logic circuit simulator.

Chapter II discusses the basic motivation for the state inte-
grated and multiplexed digital system by first showing how an actual
computer CPU can be realized in whole or in part to yield two or more
CPUs or elements thereof. Chapter III presents the notation and circuit
operating concepts to be applied in the analysis of logic circuits.
Assumptions regarding delays and device signal responses are given
followed by a discussion of pertiment theoretic work., Multiple-valued

logic circuit simulation, to be used as a tool for evaluating logic
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circuit behavior, is also presented. Finally, the realization of perti-
nent multiple~valued logic gates is given.

Logic circuit design is the topiec of the next three chapters.
Chapter IV presents the combinational circuit design philosophy and
gives results for simulated examples. Chapters V and VI are concerned
with sequential logic circuit design. In Chapter V the logical design
of a new memory element is given. The device is shown to be able to
simultaneously store the state or information for two or more binary
machines. Several variations of the basic memory device are developed
and allow both synchronous and asychronous operation, depending on the
device chosen. Chapter VI uses the results of the previous two chapters
and develops the sequential logic circuit design process. Again,
example circuits are shown along with simulated results.

Two appendices are included to provide user information and
source listing for the multiple-valued logic simulator. Appendix A is a
user's guide to the simulator, giving the capability range of the soft-
ware and the means for supplying input data and execution control.

Appendix B contains the software source listing.




CHAPTER II

CONSTRUCTION OF PARALLEL MACHINES

USING MULTIPLE~VALUED LOGIC

Digital System Components and Circuit Types

The construction of some parallel processors, such as Illiac IV
[2], is centered about the application of several small binary pro-
cessors operating in parallel to achieve an overall high rate of through-
put. Without being overly concerned with a specific parallel processor
architecture, consider a small single CPU architecture such as Intel
8080/8085 microprocessor [29]. A simplified block diagram of this pro-
cessor is given in Figure 2.1. Note that the machine has several
general parts. There is an arithmetic and logic unit (ALU) used for
addition and logic operations. The internal registers comprise another
major portion of the CPU. Several registers are used for data manipu-
lation and storage. Register A is the accumulator and generally sup-
plies an argument for arithmetic and logic functions, and the result of
these operations is stored back in the accumulator as well. Other
registers, such as the program counter (PC) and stack pointer (SP) have

special uses. The last major part of the system is the control umnit

12
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which decodes instructions and controls their execution. In general,

all of these operations are synchronized by the clock.

Registers
Control | | Clock A
Unit l B
Phe G
’ D
¢ E
ALU H
L

N PC

SP

Figure 2.1. A Simple Processor Architecture

Using this architecture as a model, consider the types of
binary logic circuits that are used to construct it. First, the ALU
can be built as a combinational logic circuit which functions under the
supervision of the control unit, The control unit, on the other hand,
is basically a sequential circuit. The internal registers attach to an
internal bus, and together these elements comprise a register transfer
circuit which, for purposes here, will be considered a special type of
sequential circuit. These three circuit types are present in practi-
cally every central processing unit.

To replicate such a binary processor, in whole or in part, in
order to generate a multiprocessor or parallel processor architecture
requires the external connection of two or more such machines. Now

consider the use of multiple-valued logic devices for the construction
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of an ALU. Applying the state integrated and multiplexing scheme using
eight-valued logic functions, three such binary processors could be con-
structed to operate simultaneously within the multiple-valued logic.
Further, the three processors could each operate independently of the
others; that is, they could execute different instructions and contain
different internal data and states.

To accomplish the construction of the multiple-valued proces-
sor, the logic functions must be identified, and the logic circuit
design methods for the three circuit types mentioned previously must
also be examined. Finding suitable methods will allow the specification
of digital systems based upon the state integrated and multiplexed

approach.

The Encoder/Decoder Interface

Supposing that a multiple-valued logic state integrated and
multiplexed system can be built that will replace two or more identical
processors, a possible problem exists for interfacing the system to
existing external binary components. TFor example, it may be advanta-
geous to use high density binary memories for the primary storage unit.
An encoder/decoder interface is necessary to encode binary signals into
multiple-valued signals, and a decoder is needed to convert in the
reverse direction. Edwards [30] has presented IZL circuits that encode
and decode binary to four-valued signals, and this ability is exactly
what is needed for conversion between binary components and a four-
valued state integrated and multiplexed processor.

The encoder/decoder circuits are applied on all external pro-

cessor signal paths that exit the processor and connect to binary
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components. Normally, this group includes all bus signals that communi-
cate with external binary devices. For the processor architecture given
above, Figure 2.2 shows how the encoders and decoders are applied. To

simplify the diagram, not all external signals are shown. For this

Binary
Address Busfj—— Address
Decoder [——" Busses
Multiple-Valued
Processor Data Bus - >~ Binary
Encoder — Data
Busses
Data Bus
Decoder

Figure 2.2. Application of Encoder/Decoder Circuits

particular machine architecture the address bus is one-way for the CPU,
and no encoder is required. However, the data bus requires both an
encoder and a decoder. Note that on the righthand side of the encoder/
decoder circuits, the busses are binary and each signal path carries one
binary signal. These binary signals could be connected to separate
binary memory systems, each containing a different software program and

data.

A Simple Circuit Example

To demonstrate the state integrated and multiplexed concept at
a finer level, a simple circuit example will be given. The example is
also useful for showing that the concept can be applied at various func-
tional levels, i.e., an entire processor need not be designed. The
detailed circuit behavior is not discussed at this time and is deferred
until additional material is presented; however, this specific circuit

example will help clarify the ideas being discussed.

T T g L T T
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Figure 2.3 shows a combinational half adder circuit. Instead
of being binary, the logic gates should be considered as four-valued.
Binary to quaternary encoders and decoders are shown on the circuit in=-
puts and outputs, respectively. All signal paths between the encoders
and decoders carry four-valued logic signals. The logic gates are

Boolean AND, OR, and COMPLEMENT gates.

a, — — ©2

1 E D

Ay —of N E

2 c C
0 Y S
D D — “1
E E

B, .

1 R R S2
S S

By .

Figure 2.3. .State Integrated and Multiplexed Half Adder

The circuit functions by encoding pairs of binary input signals
Al, Ag, and By, B, into four-valued signals, summing these four-valued
inputs, and generating the sum and carry-out. The four-valued sum is
decoded into binary signals S1 and SZ’ Likewise, the carry-out is de-
coded into Cy and C,. In explicit terms, the 4; and Bl binary values
are summed together and, simultaneously, the A2 and B2 binary inputs are
summed together. The circuit, therefore, operates as if it were two
binary half adders operating in parallel.

Circuits of this type are important when the function being
performed is needed concurrently in time by two or more processes.
Such could be the case for an adder in a CPU since the adder may be used

to increment (add one to) a register such as the PC as well as perform a
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normal addition operation resulting from the execution of an ADD instruc-
tion. This situation occurs so frequently that some binary CPUs possess
a separate arithmetic unit to perform address calculations concurrently
and separately from the normal arithmetic unit. With a state integrated
and multiplexed arithmetic unit incorporated into a binary CPU, two or
more arithmetic circuits are inherently provided. The penalty of
encoding and decoding must be paid to achieve this capability. One
advantage gained, however, is that fewer signal paths are required.

The overall goal of the thesis is to extend the state integra-
ted and multiplexing concept to include more than arithmetic elements,
although in practice this type of circuit may be a good place to initial-
ly apply the scheme. The remaining chapters will develop the three main
circuit types and analyze circuit behavior so that the state integrated

and multiplexed technique is established for a broad range of applications.



CHAPTER III
PHYSICAL AND THEORETICAL LOGIC CIRCUIT CONCEPTS

Notation

For an r-valued digital system denote the r distinct logic
values as 0,1,2,...,r-1. These numerical elements represent the values
that a logic variable may assume. A functionally complete Post algebra
[6] with zero element 0 and universal element r-1 consists of the set of

elements S, = {0,1,...,r~1}, and the operations defined as

MIN: Xl A X2 MIN (Xl, X

9)
MAX: Xy V Xy = MAX (Xy, X,)

+a
CYCLE: X; = Xl + a (mod r).
The strong negation unary function is defined as

Xl 1

This function is often considered for implementable switching algebras

= (r-1) - X

but cannot be used solely to replace the CYCLE operation without sacri-
ficing the functional completeness property. Functional completeness
necessitates the ability to express r' functions of a single variable.
Figure 3.1 shows the function maps, truth tables and associated logic

symbols for the foregoing functions with r = 4.

18
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X, X,
0 1 2 3 0 1 2 3
010 0 0 0 olo 1 2 3
100111 111 1 2 3
X
210 1 2 2 1 212 2 2 3
3o 1 2 3 313 3 3 3
B 0o
(a) MIN Function (b) MAX Function
a=1 a=2 a=3 SR
o1 2 3 013
112 3 o0 112
213 o 1 2 11
3 /0 1 2 310

-a —D)-

(c) Cycle Function (d) Strong Negation

Figure 3.1. Multiple-Valued Functions for r = 4,
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A functionally complete higher-order Boolean algebra with ele-
ments having cardinality r = Zm, m an integer 2 1, is formed by the

operations defined as

AND: Xl p:4 X2
OR: Xl + X2
. COMPLEMENT: Xl = (r-1) - Xl.

The symbols (x,+) are chosen to depict the multiple-valued nature of
these operations and prevent confusion with the binary system when
examining logic functions and gates. For the binary case (r = 2), the
familiar (*,+) will be used for the AND and OR operations, respectively.
The function maps and logic symbols for the four-valued Boolean system
are given in Figure 3.2. Binary AND gates and OR gates will be shown

without the internal symbols.

2 2
01 2 3 01 2 3 X.| X
i1
0l0 0 0 O 001 2 3 0 3
110 1 0 1 1{1 1 3 3 1 2
210 0 2 2 Xl 212 3 2 3 2 1
310 1 2 3 313 3 3 3 3 0
1D- T D~
(a) AND Function (b) OR Function (c) COMPLEMENT

Figure 3.2 Multiple-Valued Boolean Functions for r = 4.
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Behavioral Concepts

As defined in the previous section, the r values associated
with an r-valued system are denoted by S = {0,1,...,r=1}. Signal or
variable transitions within the r values can be ordered by three methods
[13]. For 0<1<2<...<r-1 and a variable transition from a value i to a
value j, i,j € R, the ordering is linear if the variable temporarily
assumes all values between i and j. If 0<1<2<...<r-l and the transi-
tions from r-1 to 0 and O to r-1 can be made directly, the ordering is
cyclic. If it is possible to transfer directly from any value i to any
value j, the ordering is complete.

Physical representation of multiple-valued logic levels could
be implemented by several methods. Multiple frequency signals in
electronic devices or multiple color (frequency) methods in electro-
magnetic radiation are two possible schemes. By far, the most common
method encountered in present-day technology will be an electronic
voltage or current representation of the logic values. In the voltage
case, the voltage levels [vo,vl,vz,...,vr_l] have a linear ordering,
VoSV SVy...2v. ;. The correspondence between these levels and the logic
values assigns voltage level v, to logic value i. Thus, the voltage
scheme requires the logic values to be linearly ordered. A similar
argument exists for the current representation method. Since both
voltage and current methods presently exist and since the assumption of
linearly ordered variables is a worst case condition, it is assumed in
this thesis that all variables will take on linearly ordered values.

The linear ordering assumption places constraints on the tran-

sitions that can occur on signal lines of a multiple-valued circuit.
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Each logic gate in the circuit produces an output that may change from i
to j. Such a change, which results from one or more input transitiomns,
is constrained to reflect all values in linear order between i and j.
Each value will exist on the line for some arbitrary finite length of
time.

The logic device reaction to changes on an input line is also
an important consideration. If the input value makes a transition from
i to j, the gate may or may not react to intermediate logic values. If
the gate's inertial delay, AI, is exceeded by an input signal, the gate
will react to the logic value. It could be the case that the device
reacts to some intermediate values but not others. Perhaps a worst case
condition, which is the one assumed here, is that the gate reacts to all
intermediate values. Depending on the gate type, some or all of these
reactions may cause a change in the output of the device. This assump-
tion thus causes AI = 0.

In all cases it is assumed that the gate exhibits a transport
delay of finite time. For transport delay Ap, an input change at time

t. that causes an output change will necessitate the change on the gate

1
output at time t,, where tjy = 31 + Ap. It should be pointed out that
the output begins to change at tye If the change is a multiple-level
transition, each intermediate value will be reflected on the output in
linear order at some time following tj,.

To accurately specify the transition time, consider a signal
changing from logic value i to logic value j. Let AR and AF be the rise

and fall time, respectively, between adjacent logic levels. The follow-

ing discrete rise/fall time procedure is used to calculate the time
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at which logic levels will be observed on a line that is changing value
beginning at t2:

1) 1If |i-j| = 1, the change is reflected at t,.

2) If i-j > 1, the signal is falling. The logic value
i~-1 is reflected at t2. Logic levels i-2, i-3,...,]
are observed respectively at ty + Ag, t2 + ZAF,...,tZ
+ nbp, where n = (i-j) - 1.

3) If j-i > 1, the signal is rising. The logic value i+l is
reflected at time ty. Logic levels i+2, i+3,...,Jj are
observed respectively at t,y + AR, ty + ZAR,...,t2 + nAR,
where n = (j-1i) ~ 1.

The foregoing procedure thus allows the first adjacent logic

value to be observed immediately following the gate transport delay.
Succeeding 19gic transitions, if any, are delayed by the rise or fall

time delay. Now, with some loss of generality, it is assumed that

AL =

R = 4 for all signals regardless of source.

Table 3.1 briefly summarizes the gate and signal delay assump-
tions made for purposes of this thesis. These operating conditions
place as few restrictions as possible on physical devices so that cir-
cuits, which might be implemented in the future by any of several
methods, can be studied prior to actual comstruction. In particular, it
is felt that the discrete rise/fall time assumption is a valid approxi-
mation for the study of circuit behavior. This is especially true when
a unit time circuit simulator is used, wherein the designer can specify
the various gate delay times. The rise/fall time can thus be scaled

relative to the transport delays as necessary to more accurately reflect

actual circuit operation.
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Table 3.1. Gate and Signal Assumptions

CHARACTERISTIC ASSUMPTION REMARKS
1. Signal Transition Linearly Ordered
2. Transport Delay AT >0 Defined for each gate in the

circuit; constant, i.e.,
non-ambiguous,

3. Inertial Delay AI =0 Gates react to all logic
levels.
4, Rise/Fall Delay Ag = 8p > 0 Constant throughout the circuit.

Theoretical Concepts

Consider an r-valued logic system and let r = 2B, m > 2, Using
such a multiple-valued system, previous research has focused on the
design of digital systems that operate in the natural radix of the given
logic system. In contrast, it is suggested here that the r-valued logic
system, with r = 2®, can simultaneously support m binary systems and,
hence, m binary digital machines. Thus, for m = 2, two binary systems
simultaneously exist in the four-valued logic., '"Simultaneously" implies
that the four-valued or quatermary logic level signals and memory con~
tents represent the information flow and internal state of two
independent binary machines. Since the information for the machines is
multiplexed via the logic levels and since the memory elements simulta-
neously store the state of both machines, the system is termed a state
integrated and multiplexed digital system.

It is possible to generalize these concepts to higﬁer logic

levels and radii. In general, for r = q©

, we can speculate that there
exist m lower radix machines, each having a radix q. Utilizing the

modeling of lower radix logic in a higher radix logic {331, even more
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general statements are possible, but due to the complications introduced
by this extension, our attention is restricted to radix q systems,
r = q", and in particular r = 2™, Table 3.2 depicts several multiple-

valued logic systems and the corresponding radix q systems supported by

each.
Table 3.2. State Integrated and Multiplexed
Logic System Arrangements
LOGIC LEVELS (x) RADIX (q) RADIX q SYSTEM QUANTITY (m)
4 2 2
8 2 3
9 3 2
16 2 4
16 4 2
25 5 2
27 3 3
32 2 5
36 6 2

As stated above, the particular systems of concern possess a

2™, The algebras of interest are the 2M-

multiple-valued radix with r =
valued Boolean Bszzx...sz and Bzm systems. From an implementation
viewpoint it is acknowledged that the Post algebras must also be con-
sidered since the specification of multiple-valued AND, OR and COMPLEMENT
gates is possible in the functionally complete Post systems. Thus, the
Post algebras can provide the building blocks for the other multiple-
valued Boolean systems. Four-valued Boolean AND and OR gate reali-
zations, which have a basis in the Post algebra operations, are presented
later in this chapter.

To explore the logical structure and logic circuit behavior of

the state integrated and multiplexed digital system requires the properties
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of the higher ordered Boolean algebras whenever binary sub-machines

are assumed. In the following discussion four-valued systems, r = 22,
are used without significant loss of generality. This case is emphasized
since it clearly exemplifies and supports the state integrated and
multiplexed property, and it would likely be the first radix chosen for
implementation. Extension of the concepts to larger values of m is
possible and fairly straightforward.

The B, Boolean system is an ordered set, S(BA) = {0,1,2,3}, on
which the closed operations AND (x) and OR (;) are defined. The follow-
ing postulates hold for BA:

Pl The operations x and + are commutative; that is,

for each pair of elements a and b in S(BA),
a+b=b+a
and axb=bx a.
P2 Each operation x and + is distributive over the

other; that 1s, for any three elements a, b, and

c in S(BA),
a+ Mbxc)=(atbd) x (a+c)
ax(b+ec)=(axb)+(axc).

P3 There exist in S(BA) distinct identity elements,
denoted here as 0 and 3, relative to the operatiomns
+ and x, respectively; that is, for every element b in

S(8,),

W
%
o
1
o
e
(9%
I
4
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P4 TFor every element b in S(B4) there exists an
element* b' in S(Ba) such that

b+ b

3

bxb' =0
where 0 and 3 are the indentity elements of
Postulate 3.

The idempotent, associative, absorbtive, and involution proper-

ties hold for B, [23]. These are summarized below:

a=ag; at+a=a

M.

Idempotent: a

(axb)xasj;a + (b + a) = (a + b) +a

5 e
~
o
b
w
A4
]

Associative: a

a; a + (a x b) = a

»
~
v
+o
o
Sa?
[

Absorption: a x
Involution: (a")' =a
DeMorgan's Theorem also holds for B, [23] and, for each pair of
elements, a and b, in S(B4), can be stated algebraically as
(axb) =a"+b'

(a + b)' =a' x b'.

Another important result is that the identity elements of B4, 0 and 3,
are complements of each other. The proof is the same as for B, [36].

A second four-valued Boolean algebra is the Bsz2 system formed
by the Cartesian product (x) of two binary Boolean algebras. The ele-
ments of B,xB, are the set S(Bszz) =.{00,01,10,ll}. The universal
elements of this system are the additive identity (00) and the multipli-
cative identity (11). The isomorphism of B, with ByxBy is given with

the following theorem.

*The prime (') and bar (~) symbols will be used interchangeably
to denote complementation.
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Theorem 3.1. All four-valued Boolean algebras are isomorphic.

Proof: Let C and D be generalized four-valued Boolean algebras.
To construct the elements of C, first note that C must contain two
distinct universal elements. Call these OC and lc. let c € S(C) # OC’
1 . The complement of c, written c', must also be an element of C. To

c

show ¢' is another distinct element, consider the following. If c' =

OC’ then ¢ = (¢')' = Oé = lC’ which is a contradiction. If c' = lC’
then ¢ = (c¢")' = 1' = 0, also a contradiction., If ¢' = ¢, then the
property c +c' = lC implies that c +e= lC. For this to be true c¢c =

lC' Therefore, ¢ # ¢' and ¢' is the fourth element of C. The elements
of C are thus established, and S(C) = {OC,lC,c,c'}. In a similar manner
" the four-valued Boolean system D can be constructed with S(D) = {OD,lD,
d,d'}.

Consider the mapping @#: C - D, where

#(0c) = 0y
91 = 1
@(c) =d

B(c') =4d'.

The mapping is obviously one-one and onto. For elements w,x ¢ C and
v,z € D, such that @(w) = v and @(x) = z,

Bw + x) = B(w) + B(x) (1)
(W) % B(x) . (2)

and B(w x x)

Equation (1) holds by noting that

OC Fx=x OD +z=2
lC +x = lc 1D + z = lD
and x+x'=1 z+2'=1
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Equation (2) holds by similar argument,

0C X x= 0 OD X z = OD

lC XX =X lD X z =z
c x' = < ! =

X X X OC Z X z 0D

Thus, § is a mapping and the isomorphism is established. QED

This theorem allows the statement that Bsz2 is isomorphic to
B,. Table 3.3 summarizes both systems and their respective elements.
Because of the established equivalence between B4 and Bszz, the use or
referral to one system or the other is simply a matter of convenience in
notation. For example, when denoting signal values and logic truth
tables, S(B,) = {0,1,2,3} is possibly more convenient, but when discussing

or visualizing the state integrated and multiplexing concept for actual

variables, the notation using S(BZsz) = {00,01,10,11} is more meaningful.

Table 3.3. B, and B,xB, Element Summary

B, Element B,xB, Element B,_Complement B,xB, Complement
0 00 3 11
1 01 2 10
2 10 1 01
3 11 0 11

For work that appears in later chapters, it will be necessary
to briefly present éome properties of the Post algebras. Of particular
concern are the postulates and theorems that enable algebraic manipula-
tion of switching functions. Rather than state these formally, we will

simply note that the P, algebra with elements S(P4) = {0,1,2,3} and

4
operations MIN, MAX, CYCLE and strong negation have the following proper-

ties for general elements x, y, and z [34]:
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Commutative: XAy =y AX  ; XVy=yVvVx
Associative: x A (yAz)=(xAy)Az;xVv(yvz)=(xVy)Vz

Distributive: x V (y A z2) = (xVy)A(xVz);

xA(yvaz)=&EAy)V (xAz)
Idempotent: XAX=X3; XVX=xX
Absorption: xAEEVY)=x;xV(xAy)=x
Involution: "' =x
Universal
Elements: XxVvV0O=x;xA3=x

In addition, DeMorgan's Theorem holds for P4 [34] and can be stated as:

(xAy)'=x Vy'

Evy'=x"ay'.
Note that
x Ax'=0
and xvzx' =3

do not hold for the P4 algebra.

Throughout the remainder of this thesis Bsz2 is the primary
algebra employed for specific circuit examples, even though B4 elements
may be cited. This should not cause undue confusion if the equivalence
of the two systems is kept in mind. To further aid the discussion, by
logically separating the sub-machines in the four-valued state integra-

ted and multiplexed circuits, the notation of a left machine, Mg, and

a right machine, Mg, is utilized. The superscripts, L and R, imply left
and right, respectively. The subscript 2 refers to the radix-2 or
binary system. Considering the S(Bszz) = {00,01,10,11}, the elements

are regarded as ordered 2-tuples (aiaj). The a; and aj parts represent
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the binary logic value of M% and Mg, respectively. Thus, (aiaj) = (10)
means that the logic value of M% is 1, while that of M% is 0. The
corresponding logic value notation in B4 is 2 but, of course, has
precisely the same implication for M& and M%.

By a machine M% is meant a deterministic, finite-state, sequen-
tial machine of the Mealy or Moore type having a set of inputs I, a set
of internal states S, and a set of outputs Z. When two machines of the
same radix, M% and Mg, are specified the set of states of M% are desig-
nated by {S%} and the set of states of Mg by {S?}. Using the left and
right designations for o and B and restricting the radix to the binary
case, the set of states for M% and Mg become {SE} and {S?}, respectively.

The construction of the product machine formed by combining two
binary machines is M%xM% and follows closely the definition of the
general composite machine given by Smith and Kohavi [35]. However, in
the discussion below, the concept is generalized further by making the
inputs to each logical machine independent of the other machine, thus
resulting in a total composite machine.

Definition 3.1. With respect to two machines M% and MR having

2

sets of states {S%} and {S?}, respectively, a total composite machine

(TcM) is that machine which contains the set of states {S%XS?} = {Sij},
where (x) denotes the Cartesian product and Sij is the new symbol for
the state of the TCM which corresponds to S% in M% and (simultaneously)

to S? in Mg. If ng and Z?q are the outputs produced by the inputs

Ip and Iq when M% and M%, respectively, are in states S% and S?, then

LR =

the corresponding output of the TCM is designated by le iq Ziqu'
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In the case of a Moore machine, the outputs are independent of Ip and
Iq; thus, the outputs of M%, M%, and the TCM become simply Z?, Z?, and
zij’ respectively.

If the next-state values of M% and MR are related to the

2

present-state values and input values by the expressions

L L R R
ST, ~ Sr and Squ -+ St’

P
then the next state value of the TCM is related to its present-state

value and input by the corresponding expression.

SijIPq d Srt'

Thus, the state table for a TCM can be constructed from the state tables

of M% and M%.
Figure 3.3 shows a state table for a biﬁary asynchronous machine,

My. Both the next-state and output subtables are given. Circled entries

in the table indicate stable machine states. Letting M% = M% = M2 s

the TCM is formed by M%ng. For M, having s states (in this case s =

3), M%xM% has s2 = 9 states. The next-state table for the TCM is given

in Figure 3.4.

NEXT-STATE OUTPUT

Figure 3.3. Binary Machine State Table
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NEXT-STATE OUTPUT
S Z
SlJ Il I2 13 I4 Il 12 13 14

§31 {512 S11 S32 @ - - = I3y
832 [ 12 513 @ S33 - - I33 -
S33 511 S13 S31 @ - - = 133

Figure 3.4. TCM State Table

Before further development of TCM properties, the concepts of

state and machine equivalence are required. ZLee [23] defines these as

follows:
Definition 4.2. Let Si and Sj be two states of machines Mg and
Mg (M% and Mg may be the same machine). S and Sj are said to be

equivalent if for any sequence of input symbols applied to them, the

output sequences are identical. If Si and Sj are not equivalent, we say

they are distinguishable.

Definition 4.3. Let Mg and Mg be two machines. M; and Mg are

. . . a .
said to be equivalent if for every state of M2 there exists at least one

equivalent state in MS and visa versa. If M; and Mg are not equivalent,

we say that they are distinguishable.
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The following theorem for the TCM, which is based on a similar

theorem in [35], can now be proven.

Theorem 3.2. If M% and M% having sets of states {S?} and

{S?}, respectively, are reduced machines, then the TCM having the set of
states {Sij} is a reduced machine.
Proof: Let the next-state values of Mé

be related to the present-state values and to the input by the express-

and Mg, respectively,

iomns:
sbt - st st o gR
1P r jiaq t
st st sfr & SR
m p u n q v
The next-state values for the TCM are given by
S..I =+5§ S I =S5 .
1j pq rt mn pq uv
Sij is equivalent to Smn if and only if Ziqu is identical to Zmnpq for
. . _.L R
every p and q, and likewise for Srt and Suv' But Ziqu = Zip qu and

- »L SR =
Zmnpq = Zmp an. Also Srt S

L

sR and s = sL SR, The equivalence of
r t uv u v

Srt and S, implies the equivalence S% = Sg and SE = Ss . However,
since the original machines M% and Mg are in reduced form, S% and S&
cannot be equivalent, and S% cannot be equivalent to 85 . Therefore,

See is not equivalent to S . . A special case occurs if for every p

and q
skt > st st » sR
1P r iq t
sk - sC SR > sR |
mp r nqg t
. L L .
- - . - -
Then SijIpq Srt and SmnIpq Srt Since 3 and Sm are not equiva
L L . . R R . R
lent, Z; Z , d . i
ip # _— similarly ZJq # an since Sj is known not to be
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equivalent to SE . This implies Ziqu # Zmnpq ; hence Sij # S - QED

From this theorem we gain the insight that the TCM is reduced
and further work toward its reduction is not required. That is, for a
TCM composed of two identical binary machines, the TCM is a reduced
machine if the binary machine is first reduced. The reduction process
is much easier if it is performed on the binary machine rather than the
TCM since the TCM has many more states.

It should be clear at this point that a TCM is exactly a state
integrated and multiplexed machine. The realization of such a machine
in the form of a multiple-valued sequential circuit is the topic of a

subsequent chapter.

Logic Circuit Analysis Using Simulation

Logic simulation is the process of formulating a model of a
logic circuit and exercising the model for purposes of signal evaluation
as a function of time and some set of applied inputs. Two applications
are typically made of logic simulators. The first is the evaluation of
a new circuit design for logical correctness, timing, signal character-
istics, and possibly race and hazard conditions. The second application
is for the evaluation of fault conditions. Fault simulation is important
for the generation of circuit tests and the determination of circuit
operation under the presence of fault conditions.

This section is concerned with the formulation and description
of a four-valued (quaternmary) logic simulator. Such a simulator, termed
QLOSIM and operating in a timesharing environment, has been constructed
using the FORTRAN language. The simulator is considered to be satis-

factory for use in evaluating four-valued circuit designs based on the
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assumptions presented in previous sections. No fault simulation capa-
bility is provided, although this is a logical extension to the work
presented here. To supplement the formal simulator description contained
in this section, an appendix is provided to assist a user in the actual
execution of the software. Much of the following discussion is based on
material found in [24].

Logic circuit simulators are generally classified as determin-
istic [31] since for a given input condition the output is uniquely
determined. The two primary types of logic simulators, i.e., gate-level
and functional, are both considered deterministic. Both types generally
handle only precisely defined logic functions, gates, or functional
"black-box" circuits. A gate-level simulator often places the designer
closer to the actual circuit implementation than does a functional
simulator. Gate-level simulation requires the actual specification of
the logic gates as well as the topology of the circuit being simulated.
With this approach a critical evaluation of circuit behavior can be
made. Because of these qualities the gate-level simulator was chosen
for implementation and is believed to be adequate for supporting and
demonstrating the concepts of state integrated and multiplexed digital
systems. TFurther, it is anticipated that the four-valued simulator
presented here will satisfy not only the immediate needs of this thesis,
but will be general enough to support other research efforts in multiple-
valued logic.

The input information for the QLOSIM logic simulator consists
of:

1. Description of the circuit to be simulated.
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2. Circuit input values specified with timing information.

3. Initial value of circuit inputs and feedback lines.

4, Signals to be monitored and reported.

Ease of data entry for these parameters is an important consideration.
Selection of a timesharing environment and FORTRAN list directed I/0 was
felt to be a versatile method for input and control of the logic simu~
lator. The DECSystem-10%* computer was chosen as the host machine.

To enhance the universality of the simulator for multiple-
valued logic, a rich set of four-valued functions are contained in the
simulator. All of these functions have been proposed in the literature
[4,10,11,21]. ©Non-unary function gates can contain two, three, or four
inputs. All gates contain one output, and OR-tied outputs are not
supported. Fan-in and fan-out constraints are ignored.

In addition to the functions described in the previous chapter,
the strongly negated or complemented functions for the MIN, MAX, AND,
and OR are included in the simulator. These are commonly written as
ﬁfﬁ,'ﬁzi, NAND and NOR. The generalized form of the LITERAL or window
function is supported and is defined as:

0 4if X; <aor Xi > b

LITERAL: BXia’b =
B ifa<X. <b

i
where 0 < B < 3,
McCluskey [11] has reported three functions that are useful in

I2L fabrication of four-level logic circuits, Two of these, the PLUS

and INHIBIT, can be implemented somewhat naturally in the IZL circuitry.

*DEC is a trademark of Digital Equipment Corporation, Maynard,
Massachusetts.
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These functions are defined as follows:

X +X 1if X +X, <3

PLUS: X X, = 12 1 72
1 3 Af K+ Xy >3
0 if X #0
INHIBIT: BX® = 1
1 B if X, =0

where 0 < B < 3. The PLUS function is also included. The third function
is a universal gate that utilizes the MAX, PLUS and INHIBIT functioms.
The gate is described by

B
f(wl’WZ’Xl’Xz’Yl’YZ) = Yi YE (Wl % WZ) & Xl % X,

where 0 < B £ 3,

In addition to other IZL circuits, Dao [4] has described a
multiple-valued multiplexer. Clever use of the multiplexer in digital
circuits can often create simplistic designs [32]. The quaternary logic
simulator includes a 4-to-1 multiplexer having four-valued inputs
described below as Xl’ X2, X3, X4, and Yl. The Y1 input selects one of
the Xi inputs and causes the gate output to be set to the value of the

selected input. The multiplexer output is thus given by

( . -
Xl if Y1 = 0
X2 if Y1 = 1
f(Xl, X2, X3, XQ, Yl) = < X .f Y _ 2
3 Y
{ X4 if Yl = 3,

Each gate is assumed to react to input conditions as described

previously. A transport delay, Ap, must be provided for each gate in
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the circuit. The value specified is constant for that particular gate.
The inertial delay, Ay, is assumed to be zero for every gate. This
yields a typical gate mecdel as given in Figure 3.5. The rise and fall

time delays, A, and AF, are implemented according to the discrete rise/

R
fall time assumption given in the previous section. Further, it is
assumed that the rise and fall times are equal and comnstant throughout

the circuit.

Figure 3.5. Typical Gate Delay Model

The QLOSIM logic simulator is a unit-time, event-driven simu-
lator containing several lists implemented as arrays. These lists are
used to store circuit gates, interconnections, logic values, time
values, and various flags. During the execution of the simulator, all
lists reside in main memory.

The circuit topology is integrated into three lists with each
list containing links or pointers to the other two lists. Referring to
Figure 3.6(b), the three lists are shown as the circuit node list (NLIST),
the gate list (GLIST) and the gate fan-in list (INLIST). Each circuit
node (interconnect) and gate are assigned unique identifiers or names by
the user. This is depicted for the sample circuit in Figure 3.6(a).

To outline the method used for circuit traversal during the

simulation process, the circuit of Figure 3.6 will be used. First, note
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that each list is implemented by arrays with each array element having
an implied relative position or index. The index is not actually stored
in the list, rather each element is referenced by its index or subscript.
List pointers are simply the index or subscript value that point to the
desired elements in another list. For example, both nodes A and B are
inputs to gate Gl. Both nodes contain a "1" in the NLIST first gate
pointer field indicating that they input to the first gate (Gl) in the
GLIST. A pointer value of zero indicates the null or non-existent

pointer. Node G contains a zero pointer since it is an output only node.

Y
D_— G

f
S
Ve

‘ G2
A\ E
c __/
(a)
NLIST INLIST
Pointer to Node Next Gate
Index Node ID First Gate TIndex Pointer Pointer
1 A 1 1 1 0
2 B 1 2 2 2
3 C 2 3 2 0
4 D 3 4 3 0
5 E 4 5 4 0
6 F 4 6 6 0
7 G 0 7 5 0
GLIST
Fan-In List Fan-In List Output Node
Index Gate ID Pointer Quantity Pointer
1 Gl 1 2 4
2 G2 3 2 5
3 G3 5 1 6
4 G4 6 2 7
(b)

Figure 3.6 Circuit Topology Data Structure
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Continuing with the example, the fan-in list pointer field in
GLIST provides a link to the INLIST. The number of successive entries
in the INLIST that are associated with a particular gate is found in the
GLIST fan-in quantity field. The quantity field is necessary since the
number of gate inputs is variable depending on the type of gate. Using
the gate Gl1, it is seen that two INLIST entries, beginning with the
first element, are associated with Gl. The first INLIST entry (Index=1)
contains a pointer back to the first NLIST element, i.e., mode A. Since
node A does not fan-out to any other gates, the next gate pointer for
the first INLIST entry is set to zero. In contrast, node B is the
second INLIST entry, and it is also an input to gate G2. This circuit
connection is represented by setting the INLIST next gate pointer value
equal to two, thus pointing to gate G2.

Using this data structure arrangement, it is possible to
(1) start with a given node and determine all gates that have the node
as an input, and (2) start with a given gate and determine all input and
output nodes associated with the gate. These two basic circuit topology
requirements are necessary for performing the simulation process.

Figure 3.6 shows only selected elements that are contained in
the NLIST and GLIST. The NLIST also contains the immediate logic value
for the node, a flag that indicates whether or not the node is monitored
and reported, and a link to the event queue which is discussed below.

To conserve memory space, the logic value and report flag fields are
packed into one array element. The additional GLIST fields are the gate

type and the transport delay value.
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As mentioned previously, the simulator is event driven. This
implies that the simulator's internal time counter is advanced to the
next event requiring evaluation. Using this method, no computer over-
head is incurred for intervals during which no circuit changes occur.

To implement this scheme, a time-event queue is necessary to record or
schedule all future circuit changes. The particular queue cell structure
used by the quaternary simulator is given in Figure 3.7. One time—gvent
queue cell is used for each circuit change to be simulated. Five hundred
memory resident cells are provided in the simulator.

The queue is implemented as a linked list in which the cells
are linked in ascending order by time of change. The next time-event

cell link will always point to the cell having the next highest time

Time Node Logic Value Next T-E Next T-E
of List and Cell Cell on
Change Pointer Delete Flag Link Same Node Link

Figure 3.7. Time-Event Queue Structure

value. Logic changes or events scheduled for a given node are also
linked together. This facility simplifies scanning of the queue

for the purposes of unscheduling events under certain conditions and the
inspection of future scheduled node changes and logic values.

Still referring to Figure 3.7, the node list pointer links the
queue cell with a node list cell. The node pointed to by this field is
the particular circuit node for whicﬁ the logic change is scheduled.

The logic value to be assumed is packed with the delete flag. The
delete flag is used to tag processed cells that are subsequently deleted
by a garbage collection routine. Queue deletions occur following all

processing for a given time value.
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Based on these list data structures, the simulation process is
similar to those previously described for binary logic simulators [24],
The unique function for multiple-valued simulation is the scheduling of
multiple-valued signal transitions under the assumptions given previously.
The linear ordering assumption, in particular, leads to subtle algorith-
mic processes. Future events are scheduled in the simulator using the
time-event queue. TFor a given gate output change, the quaternary case
requires that zero to three new events are scheduled to represent the
output transitions. However, it may be the case that one or more of
these future events will not occur. To depict this situation and better
demonstrate the multiple-valued process, a brief example is given.

Figure 3.8 shows a hypothetical unary.function. The gate
transport delay, AT, is assumed to be 10 time units. Further, assume
that the signal rise/fall delay is one time unit. Figure 3.9 provides a
representation of the pertinent data structure elements necessary for
the example function. To set the initial conditions, assume that an Xl
transition from logic wvalue 1 to 0 has just occurred, and the future
events for X2 have been scheduled at g+ 10, t; + 11 and £, + 12,
Letting £y arbitrarily equal 50, the TETIME values are 60, 61, and 62,
respectively. The corresponding logic value for each time is given in
the TEVAL field. ©Note that the pointers for node X, have the following
structure and are shown pictorially by solid lines rather than quanti-
tatively. The node list time-event pointer (NLTEPT) for node X2 points
to the last time-event list entry for this node. The next cell on the
same node field (TENCSN) links the remaining two entries for node X,

(solid lines). The time-event pointer links all three X, node entries
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el )
X, 1 f& )X 0 3
1 2
L 110
2 3
AT = 10 3 2
(a) Unary Gate (b) Truth Table

Figure 3.8. Unary Gate Simulation Example

Node List (NLIST) Time~-Event List (TELIST)

NLNODE  NLTEPT TETIME TENPTR TELVAL TENCSN
TELOW
52 ,/P 1 0

60 \ 1 0 R
\ [
X d A "
61 v 2 N
[ )
X = ) —1
NN * 62 ! 3 /
N T 4
N\ \\ Iy 7
TN > I LI
N 62 o 1 |
v T /
\ N / / Py
\ ' 2 -
\\ 63 ;7 7/ 0

*Unscheduled (Deleted) Event

Figure 3.9. Simulation Example Data Structure



45

to the X2 node cell in the node list. Only one time-event list entry

exists for node X but it is linked in a similar fashion.

12
The variable TELOW points to the next time-event cell (event)
to be processed. This occurs at Time 52 and represents a change on node
Xy from logic value 0 to 1. When this cell is processed, logic value
transitions for node X, must be scheduled based upon the gate function
as well as future events residing in the time-~event list. With a trans-~
port delay of 10 time units, the earliest X2 change should occur at Time
62. However, a future event for node Xy is already scheduled at Time
62, To resolve this future cvent conflict, the simulator scans the
time-event list for node X, and examines the TETIME field. If TETIME is
greater than or equal to the current time plus transport delay, 62 in
this case, the cell is marked for deletion. This cell represents a
previously scheduled event that will net occur and must be unscheduled.
New events for X2 are scheduled based upon the latest (in time) event
that remains undeleted. The latest event occurs at Time 61 and has a
logic value of 2. New future event logic wvalues to be added to the

time-event queue consider that X, will have a logic value of 2 at Time

2
61.

Unscheduling requires the rearrangement of pointers and links
between the lists after the new events for node X, at Time 62 and 63
are added. The results of this process are shown by the dotted lines.
The final result is that X, now has a 0 to 1 transition scheduled at Time
60, a 1 to 2 transition scheduled at Time 61, a 2 to 1 transition at

Time 62 and a 1 to O transition at Time 63. The transition from 2 to 3

at Time 62 is purged from the time-event list.
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A timing diagram for this example is given in Figure 3.10. The
diagram is drawn using discrete time units to depict the mature of the
simulation. Note that the linear ordering assumptions are preserved.
New events are always scheduled with regard to this assumption and thus

represent the operation of devices that exhibit this behavior.

50 51 52 60 61 62 63
TIME

Figure 3.10. Simulation Example Timing Diagram

To illustrate actual results obtainable from the quaternary
logic simulator, two circuits that form a basis for later developments
will be given. Both a combinational and a sequential circuit are simu-
lated. Input options necessary for generation of the particular report
formats exhibited here can be found in Appendix A.

The first circuit considered is the four-valued state integrated
and multiplexed half adder that was introduced in Chapter II., The half
adder logic circuit is given in Figure 3.11 and is shown without the
encoder/decoder interface. Recall that the logic gates and signals are

four-valued and that the circuit simultaneously produces the sum and
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carry outputs as if it were two identical binary half adders operating
in parallel. ©Nodes A and B are inputs to the circuit. The sum output

is S, and the carry output is C.

?% C
vl

G3

T
{>G‘3/NA X

Figure 3.11. Four-Valued Half Adder Circuit

| G5
) Do

G4

A listing of the simulator input file is given in Figure 3.12.
Different groups of input records are delimited with '$$'. The input
file groups, in order of occurrence, specify the circuit topology,
initial node conditions for nodes A and B, the dynamic input values for
input nodes A and B, and the circuit nodes to be traced or reported.
Note that nodes A, B, S, and C are made reportable so that only these
nodes will appear in the simulator tabular output report.

Figure 3.13 shows the results of the half adder simulation. To
conserve space, only the tabular simulator output is given. For this
simulator execution the rise/fall time was specified via the user
terminal as AR = dp = 1 time unit. This is clearly evident in the

output listing by the time required for nodes A and B to change from
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logic level 0 to logic level 2. As shown in the input file listing, the

transport delay, 4 for each gate is 10 time units.

T?
By analyzing the simulator output, it is seen that output node
S produces the simultaneous sum of inputs A and B. For example, at
Time 32, T settles to a value of 1, indicating that the simultaneous sum
of A= 2 and B = 3 is 1. Thinking of the values for A and B as the 2-
tuples (10) and (11), it is clear that the elementwise sum is (0l). The
carry output C is 2, or alternately (10), and has settled by Time 12,
This value for C indicates a carry from the left 2-tuple element, which
is indeed the case for these values of A and B. At Time 100, node B
begins a change to a value of 1. The sum given at Time 133 is the
simultaneous sum of A = 2 and B = 1. The remaining input changes for A
and B and the resulting sum and carry outputs can be examined in a

similar manner.

It is interesting to note that output node S tends to wander

about before finally stabilizing on the final value. This is due to

'Gl' 'comMP' 10 'B' 'NB' /
'G2' 'cOMP' 10 'A' 'NA' /
'G3' 'AND2' 10 'A' 'NB' 'E' /
'G4' 'AND2' 10 'B' 'NA' 'F' /
'GS' 'orR2' 10 'E' 'F' 's' /
|G6| 'ANDZ' 10 'A! 'Bv lCI /
'$$" /

lAl O

IB’ 0

'$8' /

'A' 1,2 200,1 300,0 /

'B' 1,3 100,1 200,0 /

'$8' /

'Al 'Bl lsl IC' /

'$8' /

Figure 3.12. Four-Valued Half Adder Simulator Input Data
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QUATERNARY LOGIC SIMULATOR - QLOSIM
HADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE

32
100
10l
111
112
120
121
132
133
200
200
220
221
222
230
300
320

NpPp.ununmunmunewrPrununnununhOOEwnumunuumooaw W > W
HFFOMFMNMWHEFMNDMNMFORFEFNONMNMNWLONONMNFHFOFRFONKMEOO
OCOFOHFHMNOMFWMNHFOOMFNMENWNEFNKFWN N -

SIMULATION TERMINATED AT TIME 320

Figure 3.13. Four-Valued Half Adder Simulator Output
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the assumption that each gate reacts to all input changes; therefore,
each gate will attempt to reflect its respective truth table values on
its output., The ramifications of this action are discussed in more
detail in the remaining chapters.

The second example circuit is a basic four-valued cross-coupled
set-reset r-flop that has been suggested by several authors [15,16,19].
Wills [19] provides a thorough analysis of the circuit. Referring to
Figure 3.14, the four-valued circuit is similar to the cross-coupled
binary NOR gates in the familiar binary system; however, for the multiple-

valued case the gates are the MAX type. The next-state table for the

Figure 3.14. Four-Valued RS r-Flop

RS r-flop is shown in Figure 3.15. The dashed entries represent states
that are the result of undesirable inputs on the R and S inputs. These
are the multiple-valued equivalent to the undesirable input in the
binary case when R = § =1,

Figure 3.16 gives the input file specification for the RS z-

flop. The transport delay, A, is 10 time units for each gate. The

T
initial conditions specified in the file place the r-flop in the reset
condition at Time O with Q = 0 and NQ = Q' = 3. All four nodes in the

circuit are reported.
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Q(t+1)
RS RS RS
00 01 02 03 |10 11 12 13{20 21 22 23130
0 0 1 2 3 0 1 2 -y 0 1 - =-}]0
1 1 1 2 3 1 1 2 - 1 1 - - 0
Q(t) 2 2 2 2 3 2 2 2 -11 1 - =~1ta0
3 3 3 3 3 2 2 2 -}11 1 - =-}0

Figure 3.15. Next-State Table for Four-Valued RS r-Flop

le' 'NMAXZ' 10 lsl 'Q' 'NQ’ /
'G2' 'NMAX2' 10 'R' 'NQ' 'Q' /
'sst /

'R' 0

vsv 0

’Q' 0

'NQ' 3

'$st /

's' 1,2 100,0 400,3 500,0 /
'R' 200,1 300,0 600,3 700,0 /
|$$| /

lsl lRl '0_' VNQI /

'$st/

Figure 3.16. Four-Valued RS r-Flop Simulator Input Data
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QUATERNARY LOGIC SIMULATOR - QLOSIM
RSFF.EX2 SIMULATION RESULTS:
TIME NODE PREV. VALUE NEW VALUE

1

2
11
12
21
22
100
101
200
300
400
401
402
412
422
500
501
502
600
601
602
610
611
612
620 NQ
621 NQ
622 NQ
700 R
701 R
702 R

O 0

OO00WHWHWwm U)U:&Dj%(n nNnnH-HnunooOoZZ2nn
HMNWNHOFMWMNHOMMNMWNREFMNMHORFRFOMFHNEONWRO
OFRMNWMNHOFRNWNNHOFEFMNMWOWNMHOROHNREINF NN K

SIMULATION TERMINATED AT TIME 702

Figure 3.17. Four-Valued RS r-Flop Simulator Output
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The QLOSIM simulator output shown in Figure 3.17 is, again,
only the tabular portion of the output report. Using the next-state
table for the RS r-flop, Figure 3.15, the simulator output shows that
the circuit does indeed perform as expected. For the first circuit
stimulation, the set input, S, rises from 0 to 2. The circuit responds
by entering state Q = 2 at Time 22. The S input then returns to logic
value 0. At Time 200 the reset input, R, rises to 1 and returns to 0
at Time 300. As predicted by the next-state table, the r-flop remains
in state Q = 2. The next circuit input occurs at Time 400 with S

making a transition from O to 3. This changes the r-flop state from Q =

2 to Q = 3. Again, S returns to 0. At Time 600 R goes from 0 to 3; the
r-flop resets to state Q@ = 0, and the simulation terminates with R at O
and Q = 0.

This is not an exhaustive simulation of all transitions, but it
demonstrates the use of the simulator for partial operatiomal verifi-
cation of a simple sequential circuit. The RS r-flop is an important
basic circuit from which other r-flops can be comstructed. This circuit
will be considered again in Chapter V.

In addition to studying circuit behavior the logic simulator
can be used for evaluating four-valued mixed algebraic expressions, i.e.,
expressions that contain both Post and Boolean operations. A relation-

ship that will be used in Chapter V can be handled in this manner.

Consider the mixed algebraic expression

XVvE+Y) =xX+Y.
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This relationship can be verified by using the circuit given in Figure
3.18, where gates Gl and G2 represent the left side of the expression
and gate G3 represents the right side. Inputting all possible values for
X and Y into the circuit and observing that nodes Z and W always have the
same response for a given input condition verifies the relationship. The
simulator output for this circuit is given in Figure 3.19 and clearly

shows that the conditions are met. In a similar manner, the relation
XA @XxY)=Xx¥Y

can be shown to be true. This simulator capability is an additional
benefit that was not anticipated during its construction, but the results
generated above are quite necessary for later work in memory element

development.

Figure 3.18. Circuit for Yerification of
XvVE+Y)=X+1Y

Multiple-Valued Boolean Gate Realizat:ions

It is clear that the construction of a state integrated and
multiplexed system with binary sub-machines will resquire the develop-

ment of multiple-valued Boolean AND and OR gates. Fabrication of

2

multiple-valued I“L circuits has proven successful [3,4] and has
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QUATERNARY LOGIC SIMULATOR - QLOSIM
IDENT.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 Y

11 W

21 Z
100 Y
110 W
120 Z
200 Y
210
220
300
300
301
302
311
312
321
322
400
500
510
511
520
521
600
700
700
701
702
710
720
800
810
820
900
910
920
1000
1010
1020
1100
1100
1101
1102
1200
1300
1400

MHFOFNMNMWPRNPODNODMNWLWWRHFRNNNMOWWLWHFHFNDOWLWRERENMNDMEHEFNNMFHFEPFONWMNRNOWEFHFENDNWONNODNEEFEREOOOO
WNHFHFORFRFNMNWWLWWLWWIRORNNWLWWLWENPDNOEFEFENNWLWWLWNWNNNODEFE R NDNEFRNNOFFNDEFWWWNNDN

Hd M NSNS NN A ANNSD S NN < d N

Figure 3.19. Simulator Verification of X v (X + Y) = X +Y
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resulted in logic design techniques that can be used to specify four-
valued Boolean gates. Although other circuit fabrication technologies

might later be shown to yield less expensive gates, the IZ

L technology
is sufficiently developed to provide a basis for the Boolean gate
specifications. No attempt is made to focus on the uniqueness of these
particular circuit designs, rather they are offered to show feasibility.
Only the two-input gates will be designed. Since the four-valued Bool-
ean COMPLEMENT gate is identical to the normal four-valued IZL
COMPLEMENT gate [4], no new work is required for it.

The four-valued AND gate design will be given first. Details
of the design procedure are omitted but are given by McCluskey [12].
Because of the richness of operations available in IZL, several varia-
tions in the design are possible. The availabily of the four-valued 4-
to~-1 121 multiplexer, described previously, allows the use of a design
technique given in [32]. For a two-input AND gate, one of the inputs
is used to control the multiplexer select input. Because of the sym-
metry of the AND gate, either input can be used in this manner. From
the function map of the AND gate, Figure 3.2, four functions are
written in the other input variable. These four functions become the
four data inputs into the multiplexer.

Arbitrarily choose input variable X, to control the multi-

2

plexer. From Figure 3.2 the four functions in X, can be written using

1
operations previously discussed. Referring to the first column in the

AND gate function map, it is clear that

£,(%) =0,
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thus giving the first function. Likewise, the last column in the map
gives
fé(Xl) =3,
The second function, from column two, can be written
3,3
£,(%) = 1xp°l v 1%,
where V is the MAX operation. The third function is given as
= 9v2,3
Functions fl(Xl) and fz(Xl) are constant and are therefore realized some-

what naturally. In the 12

L technology they are generated by constant
current sources in the circuit. Functions fz(Xl) and f3(Xl) both have
I2L realizations [4]. As mentioned above, other functionally equivalent
realizations are also possible., TFor example, the MAX operation in the
expression for fZ(Xl) can be replaced by the PLUS operation. Applying
the functions to the IZL multiplexer, the two-input AND gate is realized
and is shown in Figure 3.20. The X2 input controls the select input S,

and the four functions input to D,, through D4, respectively. The

1’

multiplexer output is the AND function.

%
S
£1(X1) = 0 ——iD;
= lsl 3’3_—— — |t = <
f.(X,) = 2X2’3 D o
31 T 1 - "3

Figure 3.20. 12L AND Gate Realization
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Using the same design technique, the two-input OR gate
expressions are written from the OR gate function map in Figure 3.2

as

&Y =%

1xd0 1 v 3523

£2 (%)

£4(X1) = 1x0,0 v 1x2,2
f4(Xl) =3,
The resulting realization is shown in Figure 3.21. Again, fz(Xl) and

f3(Xl) have realizations in T2L.

2
{
5
£&) =% 0
£5(%p) = 1x01 v 3x5% D, deto-l—£(X,,X,y) = X X,
_— Mux
£3(x;) = 1x0,0 v 1x%:2 —Ip,

Figure 3.21. 121, OR Gate Realization

The AND and OR gate circuits contain several transistor
elements and will be considerably more expensive to fabricate than
binary gates. However, there has been little or no previous work that
suggested any sort of AND and OR gate realizations. In the following
chapters the state integrated and multiplexed logic circuits will be
examined in detail, and it is hoped that this work will provide moti-

vation for improved multiple-valued Boolean gate realizations.



CHAPTER IV

STATE INTEGRATED AND MULTIPLEXED COMBINATIONAL CIRCUITS

Circuit Behavior Characteristics

Combinational logic circuits have the property that their
outputs at any time are determined strictly by the circuit inputs at
that time. The combinational circuit, therefore, does not possess
feedback connections, but this circuit type is important for the design
of other circuits that do contain feedback connections, i.e., sequential
circuits. The restriction of time in the relationship of combinational
circuit input to output is rather aloof in the physical sense because
all circuit devices exhibit some delay in their operation. This physi-
cal reality will be of some significance in this study since the response
of circuit elements that possess delay and the resulting circuit behavior
is the primary focus of the analysis.

Classification of multiple~valued combinational circuit behav-
ior is based om that given by Sheafor [153] and Wojcik [13,14]. Let Sy =
{0,1,...,r-1} denote the set of logical values of the algebraic system,
and let V. = {VO’Vl"°"Vr-1} be the physical quantitieé associated with
the logical values. The logical and physical quantities are assumed to

59
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>
be linearly ordered. For the following discussion let Xj = {X(k-l)j’

...,Xoj} be a k-tuple with each th €S .

> >
Definition 4.1. Two k-tuples Xi and Xj are adjacent if and

only if they differ in exactly one component Xhi and th respectively,
b4
0<hs k1, and [X; - xhjl‘ < 1.
Denote a k-variable function of the algebraic system by f(i) =

> - >
f(Xk_l,...,Xo) and let X, and Xj be distinct argument k-tuples of £(X).

>
Definitiqn 4.2. £(X) contains an operation hazard if for any

> -> > >
two adjacent k-tuples X; and Xj’ |f(Xi) - f(Xj)] > 2,
It should be noted that an operation hazard is a property of

the function itself, and not of the function realizations, so that it

cannot be eliminated. The hazard behavior is forced when the input

—

-> 2
changes from X; to Xj and the output must change by more than a single
value. If this output is used as an input to another circuit, incorrect
operation may result.

-
Definition 4.3. Let X; be a k~tuple of inputs to a circuit,

>
and let this k-tuple change to Xj. This change is said to be a ;ingle—

> -
value single-input change (SVSIC)if X; and Xj are adjacent. It is
- ->
said to be a multiple-value single-input change (MVSIC) if X; and Xj

differ in exactly one component but are not adjacent. Otherwise, the

change is a multiple-input change.

- -
Definition 4.4. Let X, and Xj be two input k-tuples (not

> ->
necessarily adjacent). The output transition from f(Xi) to f(Xj) is
said to be proper if the output assumes the values:
- >

> -
a) £(X),£(&;)+1,. .., £(X)-1,£(X,), in exactly that order

- -
when f(Xi) < f(Xj).
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-> > -+ >
b) f(Xi),f(Xi)-l,...,f(Xj)+1,f(Xj), in exactly that order,
> >
when f(Xi) > f(Xj).
> -> ->
c) f(xi) only, when f(Xi) = f(Xj).
In other words, a proper transition is one which proceeds directly from
the initial value to the final value, and if any intermediate values
occur, they are traversed in linear order.

-
Definition 4.5. A function £(X) is said to be multiple-value

>
tolerant with respect to input X, MVT(X;)) if, given any k-tuple Xi,

consecutive single-value single-input changes in variable Xi produces a

.
proper transition at the output. A function £(X) is multiple-value tol-

erant (MVT) if it is MVT(Xi) for all i.

Sheafor [15] has shown that this deﬁinition is equivalent to
saying that the function is monotone non-increasing or monotone non-
decreasing in variable Xi.

Subsequent to these definitions and the assumptions given in
Chapter III, the following additional operational characteristics are
stated for purely combinational circuits.

1. Multiple~valued changes are allowed for any input

variable.

2. The logic value of an input variable can change at any

time.
Thus, any purely combinational circuit, e.g., a simple adder circuit,
may experience multiple-valued multiple-input changes without regard to
time. Multiple-valued input changes must be permitted in a state inte~-
grated and multiplexed system. For a four-valued system assume that

both binary sub-machines have an input with logic value zero. For the
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left machine input to change to logic value of 1, the input signal must
change from 0 to 2. Acceptable operation must follow even though an
intermediate logic value of 1 is experienced on the circuit input.

This permissive operating environment does not imply that all
combinational circuits will or should be subjected to an uncontrolled
stimulus, rather there exist no restrictions within the logic gates or
quaternary simulator that prevent events of this type from occurring.
The application of combinational circuits often employs a means of con~
trolling the input and output signals. This is normally done by using a
control or strobe signal to AND the input or output signals, thus
allowing the timely application of input information and the timely
sampling of the circuit output. In essence, the practical methods used
in binary logic circuits to control logic signals can also be applied in
the multiple~valued circuits; however, some undesirable gate reactions
cannot be prevented. These issues will be investigated in the following

sections.

Static Hazard Conditions

The occurrence of multiple~valued changes on circuit inputs has
a major impact on state integrated and multiplexed combinational cir-
cuits. The Bsz2 functions, AND, OR, and COMPLEMENT, are shown again
in Figure 4.1, except here the variables and function outputs are given
as 2-tuples. From this representation it is easily seen that the
operations are performed elementwise on the elements aiaj that comprise
the 2-tuples. Considering the AND function, it is seen that the opera-
tion is not multiple value tolerant in either Xq or X,. When Xl =01

and X, changes from a value of 01 to 11, the output will take on an
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intermediate value of 00. The same condition exists when Xl and X2 are
interchanged. A similar condition exists in the OR function when X1 or

X2 = 10 and the other variable changes from 0l to 1l.

X2 X2
00 01 10 11 00 01 10 11 Xl ii
00| 00 00 00 OO0 00|00 01 10 11 —55—_11_
X; 01j00 01 00 01 X1 0101 01 11 11 01] 10
10/ 00 00 10 10 10{10 11 10 11 10{ 01
1100 01 10 11 11411 11 11 11 114 o0
AND OR COMPLEMENT

Figure 4.1. Bsz2 Representation of Boolean Functions

This sort of behavior is hazard free in the multiple-valued
sense of Definition 4.2. However, when the individual left and right
machines are considered, the 2-tuples are adjacent, and static hazard
conditions exist for the right logical circuit. TFor both the AND and
OR functions the right circuit output experiences an intermediate 0
logic value. This behavior is described more precisely by the following
binary system definitions [36].

Definition 4.6. When a binary output is to remain at the value

1 and a momentary 0 output is possible during the transition between two

adjacent input states, the hazard is called a static-one-hazard.

Definition 4.7. When a binary output is to remain at the value

0 and a momentary 1 output is possible during the transition between two

adjacent input states, the hazard is called a static-zero-hazard.

As described above, static hazards in Bsz2 gates result from

the inherent nature of the four-valued AND and OR functions. It is
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difficult to logically solve this sort of inherent operational difficulty
without introducing specialized gate inputs to control the intermnal
operation of the gate. The introduction of additional control makes

the entire application of four-valued Boolean gates more expensive and
less of an alternative. We will, therefore, not attempt to provide any
method of control and will accept the inherent static hazard condition

in the AND and OR gates.

Static hazards also occur in B,y combinational circuits for the
same classical reasons that they occur in binary combinational circuits,
namely through an imbalance of signal delays on different paths of the
logic circuit. To exemplify this situation for the BoxB, system, a
brief analysis will be given for the static-one-hazard case. The
circuit operation of the example is slightly complicated by the inherent
hazard condition of the AND and OR gates, and the inherent condition
should be distinguished from the classical hazard conditions being
examined. For the discussion, the four-valued Bsz2 circuit is con-
sidered as representing both a "left" and "right" binary circuit or
machine.

Figure 4.2 shows a four-valued circuit that contains a static-
one-hazard. The ocutput of the circuit is given by the sum—of-products
expression

Z=XxYV) + & xW .
The hazard results because of the longer delay through gates G2 and G3
when the value of X changes from a 1 to Q for either the left or right
circuit. This has the effect of switching from the first to the second

term in the output expression.
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In the four-valued Bsz2 system there are several types of
transitions in X that will exhibit the static-one-hazard for the left
and/or right circuits. Three such changes are depicted in the simula-
tion results in Figure 4.3. For this simulation Ap = 10 time units for
all gates, and the rise/fall time is 1 time unit. Initially, W=X-=1Y

= 3 so that both the left and right binary circuits are held at 1 (Z = 3)

v Gl
B
X ‘
5
3
Z
g" \ @3 |
X

AT = 10 (All Gates)
z=(XxY) + & xW

Figure 4.2. BZ:{B2 Circuit Containing Static-One-Hazard

by the first term of the output expression. The right circuit hazard is
exhibited by X changing from 3 to 2 at Time 1. At Time 21 it is seen
that Z dips momentarily to a value of 2 before returning to 3. This
behavior shows that the right circuit switches from the first to second
term of the output expression, but the left circuit remains unchanged.
The X input then returns to a value of 3 at Time 50, but for this
transition Z does not glitch since gate Gl is able to switch to a 3
before gate G3 (node B) drops to 0.

The left circuit static-one-hazard is slightly more compli-
cated. At Time 100 X drops to a value of 1. Because X must pass

through the wvalue of 2 and since the gates are assumed to react to this
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QUATERNARY LOGIC SIMULATOR - QLOSIM
S1HAZ.EX1 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE
1 X )
11 NX
11
21
21
31
50
60
60
70
100
101
110
110
111
111
120
120
121
121
131
132
150
151
160
160
161
161
170
170
171
171

[ Right Circuit
Static 1 Hazard

ZNNUU$>pZ<:NNNbUD>

=

>

g Left Circuit
Static 1 Hazard

»~

-
MFRFWNNERROBNDNHENHERDHOONMHWOMNMWRHENMHENMNNWOWOW

WO MNMMWOMNHWMNWODFHFNDNOOHEFEFNDNMERENDOWLWOWLWWLNHENMEN

NMENEPZAPZ R/ HKNNNTNE S

Figure 4.3. Simulatiom of BZXBZ Static-One~Hazard Condition -~ Part 1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

S1HAZ.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALU
200 X 3 2
201 X 2 1
202 X 1 0
210 NX 0 1
210 A 3 2
211 NX 1 2
211 A 2 1
212 NX 2 3
212 A 1 0
220 B 0 1
220 Z 3 2 Left and Right
221 3 1 2 > Circuit Static 1
221 A 2 1 Hazard
222 B 2 3
222 z 1 0
230 Z 0 1
231 Z 1 2
232 Z 2 3 )
250 X 0 1
251 ke 1 2
252 X 2 3
260 NX 3 2
260 A 0 1
261 NX 2 1
261 A 1 2
262 NX 1 0
262 A 2 3
270 B 3 2
271 B 2 1
272 B 1 0

SIMULATION TERMINATED AT TIME 272

Figure 4.3. Simulation of Bszz Static-~One-Hazard Condition - Part 2
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value, both a left and right static-one-hazard condition occurs for Z.
The right circuit condition at Time 120 actually results from the inher-
ent static hazard of the four-valued Gl AND gate; however, the effect on
Z is the same. At Time 132, the left circuit is held at 1 by term one
of the output expression, and the right circuit is held at 1 by term
two. When X returns to 3 at Time 150, gate Gl again reacts to the
intermediate value of X = 2, resulting in a dip in the Z output.

A left and right circuit static-one-hazard condition occurs
again when X changes from 3 to 0 beginning at Time 200. The value of Z
is seen to drop to 0 at Time 222 before rising to 3 at Time 232, Both
the left and right circuits are held at Z = 1 by the second term of the
output expression. When X rises back to 3, no effect is shown in Z as
both circuit halves switch back to the first term.

Correction of the static hazard conditions can be performed for
B2m combinational circuits in the same manner as for binary circuits.
In the binary circuit additional intermediate terms are added to the
output expression to hold the output at the proper value [36]. For the
example above, the addition of the term (W X Y) to the expression will
prevent the static-one-hazard conditions. The resulting circuit con-
tains an additional gate, and the OR gate has three inputs instead of
two. Simulation of this circuit is possible, but it is not necessary to
show the results since, as expected, the new term (Y x W) will hold Z to
a value of 3 for all of the previous input conditions. Thus, the static-
one-hazards are eliminated.

Further classification of B m combinational circuit behavior

2

can be made, but this is beyond the scope necessary for this work.
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Results presented in the next chapter permit freedom from transient or
hazardous conditions that occur in the combinational circuits. These
conditions normally have their greatest effect on sequential circuits
where they can falsely trigger memory elements and result in incorrect
circuit operation. By and large, transient and hazard conditions will
be of only passing concern because of the memory elements that are
developed. With this in mind, the combinational circuit design specifi-

cation is considered next.

Design Methodology

The binary adder is a highly used combinational circuit and is
necessary in some form in practically every computer central processing
unit since it comprises a major portion of the arithmetic and logic
unit. In this section, a one bit B,xB, multiplexed full adder will be
designed. This example will show the use of binary combinational design
methods for B2m combinational circuits. The binary/quaternary encoder
and decoder circuits discussed in Chapter 1I are not given but can be
added to this or any other circuit as necessary.

In the binary full adder, designate the inputs as A, B and CI’
where A and B are the single bit binary numbers to be added and CI is
the carry input. The outputs of the circuit are the sum S and the

carry-out C The procedure used for the circuit design will be the

0
Karnaugh map method, but other binary procedures, such as the Quine-
McCluskey method [36], can also he employed. The implementation will be

straightforward and no further attempts at minimality or minimum cost

circuits will be made.
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The Karnaugh map for the sum output is shown in Figure 4.4(a).
Circling on 1's yields the sum-of-products expression for S,

S = (A'"*B.C') + (A*B':C") + (A'*B'.C) + (A*B:C) .
Similarly, the Karnaugh map for the carry-out is shown in Figure 4.4(b)
and yields the sum—of-products expression

CO = (A'B) + (B-C) + (A-C)

Implementing these results with binary gates, the circuit in Figure 4.5
is obtained.

A,B

00 01 11 10

0 o@o@

¢ 1@ 0o (O o
S = (A'"-B+C') + (A*B":C") + (A'"*B':C) + (A-B:C)

(a)

A,B

00 01 11 10

010 0 |1} o

CI 1 ]0(C1 g‘i_ 1

CO = (A*B) + (B*C) + (A-C)

(b)

Figure 4.4. TFull Adder Karnaugh Maps
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Figure 4.5. Binary Full Adder Circuit
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Designing the state integrated and multiplexed full adder does
not require a new synthesis procedure. To convert the binary full adder
to a B?_xB2 full adder, the binary gates are replaced on a one-to-one
basis with the corresponding four-valued Boolean gates. The switching
functions for the S and C0 outputs are identical to the binary expres-
sions except for notation of the AND and OR operatioms. All circuit
interconnects remain the same, but now each lead in the circuit carries
a multiplexed four-valued signal with each signal viewed as a 2-tuple.
The circuit inputs and outputs are four-valued and simultaneously repre-
sent the inputs and output for two binary full adders. Likewise, the
carry-out operates in the multiplexed fashion; that is, the signal
simultaneously represents the carry-out for both binary adders. Thus,
if CO = 01, the carry-out for the left adder is 0 and the carry-out for
the right adder is 1. In other words, the Bsz2 full adder operates as
if two binary adders were each operating independently of the other.

Simulation of the four-valued full adder shows that the circuit
performs as expected. A simulator output for selected input conditiomns

is given in Figure 4.6. Initial values for A, B, and C,. are zero. The

I
first stable sum output occurs at Time 32, The value of S represents
the sum of A = 1 and B = 2 with CI = 0. The C0 output is zero for these
input values. The sum output value of 3 is interpreted as a value of
one for both the left and right logical binary adder circuits. At Time
200, B changes to 0, and the S output changes.to 1. The carry input,

CI’ is asserted for the right logical circuit at Time 300 which changes

the sum to zero but produces a carry-out of value one. The CO =1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

FADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 A 0 1
1 B 0 1
2 B 1 2
21 co 0 1
21 S 0 1
22 co 1 0
22 S 1 2
23 S 2 3
31 S 3 2
32 S 2 3
200 B 2 1
201 B 1 0
220 co 0 1
220 S 3 2
221 co 1 0
221 ] 2 1
230 S 1 0
231 S 0 1
300 CI 0 1
320 Co 0 1
330 S 1 0
400 A 1 2
420 co 1 0
420 S 0 1
421 S 1 2
430 S 2 3
500 CI 1 2
520 Co 0 1
520 S 3 2
521 Co 1 2
530 S 2 1
531 S 1 0
600 A 2 3
600 B 0 1
600 CI 2 3
601 B 1 2
602 B 2 3
620 co 2 3
620 S 0 1
621 S 1 2
622 S 2 3
SIMULATION TERMINATED AT TIME 622

Figure 4.6. Simulation of Four-Valued Multiplexed Full Adder
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represents a carry-out for the right adder circuit. Subsequent input
changes occur at Time 40C, 500, and 600 and produce varying but similar
results.

Close scrutiny of the simulator output for the full adder shows
that the outputs of the circuit indicate the presence of transient or
hazardous conditions. This is especially evident in the Co output.
Since the circuit does not contain static hazards, the hazard conditions
observed must be tolerated. As mentioned previously, these conditions
are significant only if they falsely trigger a subsequent circuit or if

the circuit output is used prior to achieving full stability.

Combinational Circuit Examples

In this section, simulator results for two combinational state
integrated and multiplexed circuits will be given. Both circuits are
important for the binary case and occur quite frequently in digital
system design. The first is a four-to-one multiplexer circuit that
gives interesting results for the state integrated and multiplexed case.
The second circuit is the extension of the four-valued state integrated
and multiplexed full adder to form a four bit state integrated and
multiplexed ripple-carry adder.

Figure 4.7 shows the circuit of the four-to-one state inte-
grated and multiplexed multiplexer circuit. The circuit is derived
directly from one-half of a 74153 binary integrated circuit [37]. For
the binarv case the circuit operation is simple. The four data inputs
to the circuit are 1CO, 1Cl, 1C2, and 1C3. The A and B inputs select
one of the data inputs whose value is reflected on the 1Y output,

provided the enable or E1 input is zero.
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Figure 4.7. Four-Valued State Integrated and Multiplexed
Four-to-One Multiplexer Circuit

For the four-valued state integrated and multiplexed case, the
the multiplexer circuit operation is more complex. First, the data
inputs represent data values for the logical left and right circuit
inputs. Second, the A and B inputs simultaneously select a data input
for the left circuit and a data input for the right circuit. Finally,
the El input can selectively enable or disable the left, right, or both

logical circuits.
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Table 4.1 summarizes the four-valued multiplexer operation for
the various A and B input values. It is assumed in the table that the
El input will have a value of zero in order to enable both the left and
right circuits.. As shown by Table 4.1, it is possible to select any
combination of data inputs for the left and right circuits by proper
application of multiplexed A and B inputs. TFigure 4.8 gives a simulator

output which shows the various A and B input combinations and the

Table 4.1. TFour-Valued Four—~to~One Multiplexer Truth Table

SELECTOR INPUTS SELECTED INPUTS
BA LEFT CKT. RIGHT CKT.
00 10 1C0
01 1€0 1cl
02 1c1 1C0
03 1c1 1cl
10 1¢0 1c2
11 1¢0 1c3
12 1cl 1c2
13 1c1 1c3
20 1c2 10
21 1c2 1cl
22 13 1C0
23 1c3 1cl
30 1c2 1c2
31 1c2 1C3
32 1c3 1C2
33 1c3 1C3

resulting 1Y output. At the start of the simulation the four data
inputs, 1CO through 1C3, are set to logic values O through 3, respec~
tively. All possible values for A and B are cycled through the circuit.
Using Table 4.1, it can be verified that the final circuit responses are
correct for each input combination. Beginning at Time 2000 in the
simulation the effect of the E1l input is demonstrated., Note that El1 =1
disables the right logical circuit, El = 2 disables the left logical

circuit, and El = 3 disables both.
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QUATERNARY LOGIC SIMULATOR - QLOSIM

MUX.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE

1 El 3 2

1 1C1 0 1

1 1c2 0 1

1 1C3 0 1

2 El 2 1

2 1c2 1 2

2 1C3 1 2

3 1c3 2 3

3 El 1 0
100 A 0 1
140 1Y 0 1
200 A 1 2
240 1Y 1 0
300 A 2 3
340 1Y 0 1
400 B 0 1
400 A 3 2
401 A 2 1
402 A 1 0
430 1Y 1 0
441 1y 0 1
442 1Y 1 0
500 A 0 1
540 1Y 0 1
600 A 1 2
640 1Y 1 0
700 A 2 3
740 1Y 0 1
800 B 1 2
800 A 3 2
801 - A 2 1
802 A 1 0
840 1Y 1 2

Figure 4.8. Four-Valued State Integrated and Multiplexed Four-to-One
Multiplexer Simulation -~ Part 1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

MUX.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
841 1Y 2 3
842 1Y 3 2
900 A 0 1
940 1y 2 3

1000 A 1 2

1030 1y 3 2

1031 1y 2 1

1041 1Y 1 2

1100 A 2 3

1140 1y 2 3

1200 B 2 3

1200 A 3 2

1201 A 2 1

1202 A 1 0

1230 1y 3 2

1231 1y 2 3

1232 1y 3 2

1241 1Y 2 3

1242 1y 3 2

1300 A 0 1

1340 1y 2 3

1400 A 1 2

1430 1y 3 2

1431 1Y 2 1

1440 1y 1 2

1500 A 2 3

1540 1Y 2 3

2000 El 0 1

2030 1y 3 2

2200 El 1 2

2230 1y 2 1

2400 El 2 3

2430 1y 1 0

SIMULATION TERMINATED AT TIME 2430

Figure 4.8. Four-Valued State Integrated and Multiplexed Four-to-One
Multiplexer Simulation - Part 2
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The second four-valued combinational circuit investigated is
the state integrated and multiplexed four-bit ripple-carry adder. This
circuit is formed by cascading four state integrated and multiplexed
full adder circuits. The full adder operation was demonstrated in the
previous section. Figure 4.9 shows the interconnect arrangement for the
four-bit ripple-carry adder. CIO is the extermal carry input, and CO3

is the final carry output. The S outputs are the sum of the A and B

inputs.
AC ?O Al Bl A2 B2 A3 B3
| I | | | I |
Full Full Full Full
CI0 tAdder CO0 CI1 |Adder | COl CI2 |Adder |_CO2 CI3 |Adder | CO3
(0) (1) (2) (3)
[ l l l
S0 sl 52 S3

Figure 4.9. State Integrated and Multiplexed Four~Valued
Ripple-~Carry Adder

As implemented here, the ripple-carry adder contains 48 gates
and is simulated with all gates having a transport delay of 10 time
units. Since all circuit input combinationms result in an extremely
large number, only selected input values will be simulated. Table 4.2
shows several values of inputs to the ripple-carry adder and the expected
circuit outputs. Figure 4.10 presents the simulator output. Simulation
of these values is performed at the time given in Table 4.2 with the
CI0 input applied at different times for each A and B input combination.
These particular values highlight the propagation of the interstage

carry values for both the left and right logical adders.
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Table 4.2. Selected Inputs and Expected Results for the State
Integrated and Multiplexed Ripple~Carry Adder

A3-A0 B3-B0 CI0 $3-50 €03 TIME
0101 0101 0 1010 0 1
0101 0101 1 1011 0 250
1010 1010 0 0100 1 500
1010 1010 0 0101 1 750
0101 1010 0 1111 0 1000
0101 1010 1 0000 1 1250
0202 0202 0 2020 0 1500
0202 0202 2 2022 0 1750
2020 2020 0 0200 2 2000
2020 2020 2 0202 2 2250
0202 2020 0 2222 0 2500
0202 2020 2 0000 2 2750
0101 2020 0 2121 0 3000
0101 2020 1 2131 0 3250
1010 2020 0 3030 0 3500
1010 2020 2 3032 0 3750
3030 3030 0 0300 3 4000
3030 3030 3 0303 3 4250
0303 0303 0 3030 0 4500
0303 0303 3 3033 0 4750

The two previous examples indicate that four-valued Boolean
combinational circuits can be derived directly from binary circuits.
This ability greatly simplifies the design of state integrated and
multiplexed combinational circuits. The behavior of these four-valued
circuits, under the assumptions given here, is more complicated than the
binary case, but it should be possible, using the quaternary simulator,
to predict the circuit response. Combinational circuit behavior is most
acute when the circuit is used within a sequential circuit, This topic

is covered in the following chapters.
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QUATERNARY LOGIC SIMULATOR ~ QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 A0 0 1
1 BO 0 1
1 A2 0 1
1 B2 0 1
21 S0 0 1
21 s2 0 1
31 SO 1 0
31 s2 1 0
41 s1 0 1
41 s3 0 1
250 CIO 0 1
270 SO 0 1
500 AO 1 0
500 BO 1 0
500 CIO 1 0
500 Al 0 1
500 Bl 0 1
500 A2 1 0
500 B2 1 0
500 A3 0 1
500 B3 0 1
520 SO 1 0
520 co3 0 1
540 Sl 1 0
540 S2 0 1
540 S3 1 0
750 CIo 0 1
770 S0 0 1
1000 A0 0 1
1000 CIO 1 0
1000 Al 1 0
1000 A2 0 1
1000 A3 1 0
1020 S0 1 0
1020 co3 1 0
1030 S0 0 1
1030 SL 0 1
1030 s2 1 0
1030 83 0 1
1040 co3 0 1

Figure 4.10. Four-Valued State Integrated and Multiplexed
Ripple-Carry Adder Simulation - Part 1
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QUATERNARY LOGIC STIMULATOR - QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1050 s2 0 1
1050 S3 1 0
1060 Cco3 1 0
1070 s3 0 1
1250 CIO 0 1
1280 S0 1 0
1300 s1 1 0
1320 52 1 0
1330 Cco3 0 1
1340 s3 1 0
1500 AO 1 2
1500 BO 0 1
1500 CI0 1 0
1500 Bl 1 0
1500 A2 1 2
1500 B2 0 1
1500 B3 1 0
1501 BO 1 2
1501 B2 1 2
1520 S0 0 1
1520 s2 0 1
1520 Co3 1 0
1521 SO 1 2
1521 S2 1 2
1530 S0 2 3
1530 S1 0 1
1530 52 2 3
1530 S3 0 1
1531 S0 3 2
1531 82 3 2
1532 S0 2 1
1532 s2 2 1
1533 S0 1 0
1540 s1 1 0
1540 s2 1 0
1541 Sl 0 1
1542 S1 1 2
1542 S3 1 2
1750 CIo0 0 1
1751 CI0 1 2

Figure 4.10. Four-Valued State Integrated and Multiplexed
Ripple~Carry Adder Simulation - Part 2
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QUATERNARY LOGIC SIMULATOR ~ QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1770 S0 0 1
1772 S0 1 2
1791 S1 2 3
1792 S1 3 2
2000 AO 2 1
2000 BO 2 1
2000 CIO 2 1
2000 Al 0 1
2000 Bl 0 1
2000 A2 2 1
2000 B2 2 1
2000 A3 0 1
2000 B3 0 1
2001 AQ 1 0
2001 BO 1 0
2001 CIO 1 0
2001 Al 1 2
2001 Bl 1 2
2001 A2 1 0
2001 B2 1 0
2001 A3 1 2
2001 B3 1 2
2020 SO 2 1
2020 Sl 2 3
2020 S2 0 1
2020 co3 0 1
2020 S3 2 3
2021 S0 1 0
2021 S2 1 0
2021 Co3 1 2
2022 Sl 3 2
2022 S3 3 2
2031 sl 2 3
2031 83 2 3
2032 s3 3 2
2040 Sl 2 1
2040 s2 0 1
2040 co3 2 3
2040 S3 2 1
2041 s1 1 0
2041 s2 1 2

Figure 4.10. Four-Valued State Integrated and Multiplexed
Ripple-Carry Adder Simulation - Part 3
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
2041 Cco3 3 2
2041 S3 1 0
2060 S2 2 3
2061 s2 3 2
2250 CIO0 0 1
2251 CIO 1 2
2270 S0 0 1
2271 S0 1 2
2500 AO 0 1
2500 CI0 2 1
2500 Al 2 1
2500 A2 0 1
2500 A3 2 1
2501 AQ 1 2
2501 CIO 1 0
2501 Al 1 0
2501 A2 1 2
2501 A3 1 0
2520 SO 2 1
2520 Sl 0 1
2520 S2 2 3
2520 Co3 2 1
2520 S3 0 1
2521 S0 1 0
2521 Sl 1 0
2521 52 3 2
2521 Cco3 1 0
2521 S3 1 0
2530 S0 0 1
2530 S1 0 1
2530 S3 0 1
2531 S0 1 2
2531 S1 1 2
2531 S2 2 1
2531 S3 1 2
2532 s2 1 0
2540 sl 2 3
2540 S2 0 1
2541 Sl 3 2
2541 S2 1 0

Figure 4.10. Four-Valued State Integrated and Multiplexed
Ripple-Carry Adder Simulation - Part 4
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
2541 S3 2 ' 3
2542 Co3 0 1
2542 S3 3 2
2543 Co3 1 2
2550 S2 0 1
2551 s2 1 2
2552 S3 2 1
2553 53 1 0
2560 Co3 2 1
2560 S3 0 1
2561 co3 1 0
2561 S3 1 0
2570 S3 0 1
2571 S3 1 2
2750 CIO 0 1
2751 CIo 1 2
2770 50 2 3
2771 SO 3 2
2781 SO 2 1
2782 s0 1 0
2791 sl 2 3
2792 s1 3 2
2802 S1 2 1
2803 S1 1 0
2812 S2 2 3
2813 s2 3 2
2823 s2 2 1
2824 s2 1 0
2833 S3 2 3
2834 co3 0 1
2834 83 3 2
2835 Co3 1 2
2844 S3 2 1
2845 S3 1 0
3000 AQ 2 1
3000 CI0 2 1
3000 A2 2 1
3001 CI10 1 0
3020 S0 0 1
3020 s2 0 1

Figure 4.10, Four-Valued State Integrated and Multiplexed
Ripple-Carry Adder Simulation -~ Part 5
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QUATERNARY LOGIC SIMULATOR ~ QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
3030 S0 1 0]
3031 S2 1 2
3031 S0 0 1
3032 S2 2 3
3040 S1 0 1
3040 Co3 2 1
3040 S3 0 1
3041 €03 1 0
3041 S3 1 0
3041 sl 1 0
3050 S1 0 1
3050 s3 0 1
3051 83 1 2
3051 sl 1 2
3060 S2 3 2
3061 S2 2 1
3070 82 1 0
3071 s2 0 1
3080 s3 2 3
3081 S3 3 2
3250 CIO 0 1
3280 SO 1 0
3290 Sl 2 3
3500 A0 1 0
3500 CIO0 1 0
3500 Al 0 1
3500 A2 1 0
3500 A3 0 1
3520 S2 1 0
3520 83 2 3
3530 Sl 3 2
3540 S2 0 1
3550 Sl 2 3
3560 S2 1 0
3750 CI0 0 1
3751 CI0 1 2
3770 S0 0 1
3771 S0 1 2
4000 CI0 2 1
4000 Al 1 2

Figure 4.10. Four-Valued State Integrated and Multiplexed
Ripple-Carry Adder Simulation - Part 6
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
4000 Bl 2 3
4000 A3 1 2
4000 B3 2 3
4001 CIO 1 0
4001 Al 2 3
4020 S0 2 1
4020 s1 3 2
4020 S3 3 2
4020 co3 0 1
4021 S0 1 0
4021 S1 2 3
4021 €03 1 2
4021 S3 2 3
4022 co3 2 3
4030 S1 3 2
4030 S3 3 2
4031 s1 2 1
4031 S3 2 1
4032 Sl 1 0
4032 S3 1 0
4040 s2 0 1
4041 S2 1 2
4042 s2 2 3
4250 CIO0 0 1
4251 CIO0 1 2
4252 CIO0 2 3
4270 S0 0 1
4271 SO 1 2
4272 S0 2 3
4500 A0 0 1
4500 BO 0 1
4500 CIO 3 2
4500 Al 3 2
4500 Bl 3 2
4500 A2 0 1
4500 B2 0 1
4500 A3 3 2
4500 B3 3 2
4501 AO 1 2

Figure 4.10. Four-Valued State Integrated and Multiplexed
Ripple-Carry Adder Simulation - Part 7
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RADDER.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
4501 BO 1 2
4501 CIO0 2 1
4501 Al 2 1
4501 Bl 2 1
4501 A2 1 2
4501 B2 1 2
4501 A3 2 1
4501 B3 2 1
4502 AQ 2 3
4502 BO 2 3
4502 CIO0 1 0
4502 Al 1 0
4502 Bl 1 0
4502 A2 2 3
4502 B2 2 3
4502 A3 1 0
4502 B3 1 0
4520 S0 3 2
4520 co3 3 2
4521 SO 2 1
4521 co3 2 1
4522 S0 1 0
4522 co3 1 0
4540 s1 0 1
4540 s2 3 2
4540 S3 0 1
4541 Sl 1 2
4541 S2 2 1
4541 83 1 2
4542 S1 2 3
4542 S2 1 0
4542 S3 2 3
4750 CIO0 0 1
4751 CIO 1 2
4752 CIO 2 3
4770 S0 0 1
4771 S0 1 2
4772 S0 2 3
SIMULATION TERMINATED AT TIME 4772

Figure 4.10. Four-Valued State Integrated and Multiplexed
Ripple-Carry Adder Simulation - Part 8



CHAPTER V

MEMORY ELEMENT DEVELOPMENT

Behavior Model

In order to construct state integrated and multiplexed sequen-
tial circuits, a memory element capable of simultaneously storing the
state for two or more binary machines must be developed. The logical
structure of such a device will be investigated. The basic operation of
the memory element must allow each machine to set and clear its logical
part of the device independently of the other machines. The memory
element will be multiple-valued, and previous work dealing with multi-
stables is required for the development of the state integrated memory
element. ‘//f

Wills [19] has proposed a behavioral model for multiple-valued
memory elements or r-flops. The model, which is applicable to a wide
variety of multistables, depicts the r-flop as a device which:

1. 1Is defined for any r 2 2;

2. 1Is capable of remaining in any one of r discrete

states when no external stimuli are applied;

89



90

3. Can be described by some deterministic next-state

and/or next-output function or table;

4. Changes to its proper next-state value in a manner

that can be described as either leading edge, level,
trailing edge, or master-slave triggered;

5. Presents one or more outputs that change from

their present-state to their next-state values in
a monotonic, non-increasing (or non-decreasing),
non-return-to-zero fashion;

6. Can be driven from any one of its stable states to

any other stable state by the application of exactly
one input change (and clocking cycle, for synchronous
designs);

7. Responds to intermediate values of input and/or

clock signals in such a fashion that is rise or
fall time independent (within practical limits).

Achieving these characteristics in a device is highly desirable
since they are closely related to the behavior of binary flip-flops. As
suggested by Wills, the similarity of multiple-valued devices to the
binary devices is highly desirable if the circuit design techniques of
the binary system can also be extended to the multiple-valued case. We,
therefore, wish to maintain this idea in the development for the Bzm

state integrated memory devices and sequential circuits.

Multiple-Valued Storage Elements

The basic cross—coupled RS r-flop studied by several authors

[15,16,19] was given in Chapter III as a simulation example. Figure 5.1
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shows the same circuit again along with an alternate design using MIN
gates. These circuits conform nicely to the behavioral model, but it
should be noted that the circuit is asynchronous, so consequently the R
or S inputs must not change until the circuit is stable. This restriction
does not disallow multiple-valued changes, but it can be shown for the
four-valued case that transient inputs can cause circuit oscillation.
This result can be verified by pencil-and-paper or computer simulation
with the MAX r-flop reset, R = S = 0, and allowing an S transition from
O to 2 and back to O before the circuit stabilizes in state §Q = 2. This

behavior was not previously reported by Wills [19].

Figure 5.1. RS r-Flop Circuits

The addition of a clock signal allows the construction of the
clocked RS r-flop and the D-type r-flop. Both designs are given in
Figure 5.2. 1In general, clocked r—-flops operate with a binary clock.
For the four-valued case, the clock is active or asserted only at the
logic level of 3. The inactive clock level is 0, and the logic levels 1
and 2 should be transition levels only to avoid improper r-flop oper-

ation. This action is true for the r-flops shown in Figure 5.2.
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(a) RS Type

Clock - |
S

(b) D Type

Figure 5.2. Clocked Four-Valued r-Flops
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Other r-flops have been studied [17,18,19], but those given thus far are

sufficient for the purposes here.

State Integrated Storage Elements

The RS r-flop operation necessary for state integrated and
multiplexed sequential circuits is very similar to the RS r-flop given
above. The next-state table for the four-valued state integrated r-flop,
however, differs slightly and is given in Figure 5.3. The four—valﬁed
state integrated RS r-flop simultaneously stores the state for both the
left and right binary machines and must respond to the R and $§ inputs
accordingly. For convenience, the next-state table uses the B4 elements,
although the action represents the B,xB, system. Dashed entries represent
ambiguous or undesirable input conditions analogous to the binary case.

To distinguish the state integrated r-flop from previously studied

types, the term SIM-flop will be used.

Q(t+1)

RS RS RS RS

00 01 02 03}10 11 12 13|20 21 22 23|30 31 32 33

o{o 1 2 3/0 - 2 -{0 1 - -{0 = - -
1{1 1 3 3{0 - 2 -1 1 - -fo0o - - -
Q) 212 3 2 3|2 - 2 -0 1 - -{0 - - -
3{3 3 3 3|2 - 2 -{1 1 - -fo0o - - -

Figure 5.3. State Integrated RS SIM~Flop Next-State Table

Analyzation of the SIM-flop next-state table reveals several
aspects of the operating behavior required of the circuit implementation.

The significant characteristic is that the RS SIM-flop must be setable



94

and resetable independently for both the left and right machines. For
example, if Q = 0, R = S = 0, and the set input changes from 0 to 2,
indicating that the left machine is to be set, the SIM-flop must change

to state Q = 2. If the S input then returns to 0, the SIM-flop should remain

in state Q 2. This action must occur even though the set input passes
through the logic value of 1 with at least one gate reacting to this
value. Another example of the independence of circuit actionm occurs

0.

when the SIM-flop is in state Q = 1 (right machine set) with R = §
Assuming the right machine is to be reset and the left machine is to be
set, R must change from 0 to 1, and S must change from 0 to 2. Even if
the R and S changes occur simultaneously, the final SIM-flop state
should be Q = 2. Note that the at-rest or no-change state of the

inputs occur for R = S = 0.

Circuit implementation for the RS SIM-flop requires a basic
asynchronous circuit from which other types of SIM-flops can be con-
structed. Following the binary flip-flop design, a simple cross-coupled
quaternary NOR gate circuit is a reasonable specification. Such a
circuit is given in Figure 5.4. The next-state table for the circuit
was given in Figure 5.3. The next-state equation for the circuit is

similar to the binary cross—-coupled NOR flip-flop, and is given as
Q=R'"=x(q+8) ,

where Q is the next-state and q is the present-state. Although the
circuit is quite simple, its action under the assumptions given in

Chapter III are not as expected.
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Simulation results for the circuit in Figure 5.4 reveal that
the multiple-valued intolerance of the NOR gate produces circuit oscilla-
tion for certain multiple-valued input transitions. This circuit action
is clearly evident in the QLOSIM simulator tabular report shown in

Figure 5.5. In this simulator execution, the circuit is initially in

R .
+ Q
Q
S (NQ)

Figure 5.4. Cross-Coupled NOR Gate RS SIM-Flop

state Q = 0 with R = S = 0. Both NOR gate delays are 10 time units, and
the rise/fall time is 1 time unit. When the S input changes from 0 to
2, beginning at time 1, the circuit is thrown into oscillation. The
repetitive oscillation patterns are indicated in the figure. In viola-
tion of the fundamental mode operation, the S input returns to 0 at time
150, but the circuit continues to oscillate. Of course, this type of
operation cannot be tolerated, even though an actual realization of the
circuit might actually damp the oscillation and force the SIM-flop into
a stable state. However, if damping occurs, the final state is not

deterministic and could be different for each physical copy of the

circuit.



96

QUATERNARY LOGIC SIMULATOR - QLOSIM

SRSFF.EX1  SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 S 0 1
2 S 1 2
11 NQ 3 2
12 NQ 2 1
21 Q 0 1
22 Q 1 2
31 NQ 1 0
32 NQ 0 1
41 Q 2 3)
42 Q 3 2 3 Oscillation
51 NQ 1 0 Cycle 1
52 NQ 0 1)
61 Q 2 3)
62 Q 3 2 Oscillation
71 NQ 1 0 f Cycle 2
72 NQ 0 1
81 Q 2 3)
82 Q 3 2
91 NQ 1 0 j
92 NQ 0 1) .
101 Q 2 3 .
102 Q 3 2
111 NQ 1 0 f
112 NQ 0 1
121 Q 2 3
122 Q 3 2 Oscillation
131 NQ 1 Oj Cycle 5
132 NO 0 1
141 Q 2 3
142 Q 3 2
150 S 2 1
151 S 1 0
151 NQ 1 0
152 NQ 0 1
160 NQ 1 0
161 NQ 0 1
161 Q 2 3
162 Q 3 2
170 Q 2 3
171 Q 3 2
171 NQ 1 0
172 NQ 0 1
180 NQ 1 0
SIMULATION TERMINATED AT TIME 180

Figure 5.5. Simulation of NOR Gate RS SIM-Flop
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Attempts at correcting the circuit behavior by altering and
imbalancing the element transport delays have been unsuccessful, due
primarily to the fact that each gate continues to react to each logic
level. Imbalancing the feedback path delays has also proven unsuccess-
ful. For these reasons, this basic cross-coupled NOR gate arrangement
will be abandoned.

As mentioned previously, the next-state table for the four-
valued RS SIM-flop is similar to that given for the four-valued r-flop,

differing in varying degrees in the columns under the RS = 01, RS = 02,

RS 10, RS = 20, and RS = 11 inputs. See Figures 3.15 and 5.3. The

RS 11 input is actually invalid or undesirable for the four-valued RS
SIM-flop but not for the RS r~flop. The undesirable input condition for
the SIM-flop does nét imply that the circuit has no output, but simply
means that the outputs are undefined or meaningless in an operational
sense.

These observations suggest that the four-valued RS r-flop may
be adapted or modified to give the proper circuit behavior. Indeed,
this is the case. The circuit given in Figure 5.6 utilizes the cross-
coupled four-valued MAX gates hich are modified by the addition of
four-valued OR gates, that are coupled into the feedback loops. Although
this RS SIM-flop circuit appears different, it is possible to show that

the circuit is algebraically equivalent to the previous cross-coupled

NOR SIM-flop, that is, the circuit's next-state quation an be reduced to
Q=R"x (g +8),

where Q is the next-state and q is the present-state.
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Figure 5.6. Modified RS SIM-Flop Circuit

To show this result, first note that the following relationships

hold,
A=q' +R
B=q+8
q' = (q Vv B)'
Q=1(q"va'

Substituting for A in the last equationm,

Q=1Iq' Vv (q' +R]"
From the results of Chapter III, it is known that

' V(" +R =q +R.

Applying this result,

Q=(q" +R)

and substitution for q' gives

Q=1[(qVvB)+R]

Substituting for B,

Q=1{[qV (qg+8)]"+R}
Again, applying the results from Chapter III,

Q =[(q+8) +Rr]
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Using DeMorgan's Theorem,

Q=(q+89) xr'

and Q=R'"x(q+59),

which is the same next-state equation as before. Therefore, the two
SIM-flop types are algebraically equivalent. It is interesting to note
that the same algebraic result holds for the equivalent binary f£lip-flop
in which the MAX becomes a NOR gate. In the binary system the MAX and
NOR gates are identical, and the resulting flip-flop circuit is highly
redundant but produces the same functional result.

Although equivalent algebraically to the circuit in Figure 5.4,
the modified SIM-flop produces superior behavioral characteristics.
Simulation results for this SIM-flop show that the previously observed
oscillatory conditions are suppressed. Figure 5.7 gives the same
simulation conditions as before in which S changes from 0 to 2. C(Clearly,
the modified SIM-flop reaches a stable state Q = 2 as required by the
next-state table. At time 150, S returns to 0. Except for a final
1-to-0 O-to-1 transition on the a.oquut, the stability of the SIM-flop
is evident. The implication of the‘6 behavior will be discussed later.

To give a better idea of the SIM-flop behavior, a more detailed
simulation of the circuit is given in Figure 5.8. In this simulation
both the R and S inputs are stimulated, sometimes simultaneously for the
left and right logical machines. The SIM-flop is initialized in state Q

= 0 with R

S = 0. At Time 1, S changes from 0 to 2 which sets the left

2 at Time 42, S then returns to 0. At Time 200, both S

machine, Q
and R change values with S going from O to 1 and R going from 0 to 2.

This input combination represents the right machine being set and the
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QUATERNARY LOGIC SIMULATOR - QLOSIM

SRSFF.EX2 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE

1 S 0 1

2 S 1 2
21 NQ 3 2
22 NQ 2 1
41 Q 0 1
42 Q 1 2
61 NQ 1 0
62 NQ 0 1
150 S 1 0
151 S 1 0
170 NQ 1 0
171 NQ 0 1

SIMULATION TERMINATED AT TIME 181

Figure 5.7. Simulation of Four-Valued RS SIM-Flop
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left machine being reset. The final state should be Q = 1, and this,
indeed, is the‘result at Time 262. After R and S return to 0, S changes
to a value of 3, leaving the circuit in state Q = 3 at Time 442. Finally,
R resets both machines, and the simulation terminates at Time 702 with

Q = 0.

Although favorable operation of the RS SIM-flop is achieved for
the simulation above, not all valid input transitions cause acceptable
operation. Two particular R and S input transitions cause oscillation
to occur when the transport delays of the OR gates are equal. The two
cases for which the oscillatory conditions occur are (1) when Q = 2 and
R changes from O to 2 and S changes simultaneously from 2 to 0, and (2)
when Q = 1 and R changes from 2 to O and S changes simultaneously from 0
to 2. Both conditions are correctable by making the OR gate transport
delay values unequal, e.g., the Gl AT value can be 11 and the G2 AT
value can be 10. When the R and S input changes are separated in time
by more than the OR gates' AT value, assuming the AT's are equal, oscil-
lation will not occur provided the ordering of the input changes is
correct. That is, for the first case cited above, R must first change
from 0 to 2 followed by the change in S at least AT+1 time units later,
where AT is the transport delay of the OR gates. For the second case,
the same relationship is true except that the timing for R and S is

interchanged.

S, The application of the RS SIM-flop in sequential circuits must

‘\;‘\{
N
be examined closely to insure that the oscillation conditions discussed

above do not jeopardize normal circuit behavior. The QLOSIM simulator

is, of course, available to investigate these possibilities, and, if
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QUATERNARY LOGIC SIMULATOR - QLOSIM

SRSFF.EX3 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE

1 s 0 1

2 s 1 2
21 ¥Q 3 2
22 NQ 2 1
41 Q 0 1
42 Q 1 2
61 NQ 1 0
62 NQ 0 1
100 S 2 1
101 s 1 0
120 NQ 1 0
121 NQ 0 1
200 S 0 1
200 R 0 1
201 R 1 2
220 NQ 1 0
221 Q 2 1
222 Q 1 0
240 Q 0 1
241 NQ 0 1
242 NQ 1 2
261 Q 1 0
262 Q 0 1
300 S 1 0
300 R 2 1
301 R 1 0
320 Q 1 0
321 Q 0 1
400 S 0 1
401 S 1 2
402 S 2 3
421 NQ 2 1
422 NQ 1 0
441 Q 1 2
442 Q 2 3
500 s 3 2
501 s 2 1
502 S 1 0

Figure 5.8. Detailed Simulation of Four-Valued RS SIM~Flop - Part 1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

SRSFF.EX3 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
600 R 0 1
601 R 1 2
602 R 2 3
620 Q 3 2
621 Q 2 1
622 Q 1 0
640 NQ 0 1
641 NQ 1 2
642 NQ 2 3
700 R 3 2
701 R 2 1
702 R 1 0
SIMULATION TERMINATED AT TIME 702

Figure 5.8. Detailed Simulation of Four-Valued RS SIM-Flop -~ Part 2

necessary, a specific circuit employing the SIM-flop can be "tuned" to
provide proper response.

The remaining combinations of RS SIM-flop inputs can be shown
to yield proper SIM-flop operations using balanced OR gate transport
delays. There are, however, other characteristics of the RS SIM~flop
that require investigation. The mechanics of the stability are nec-
essary, and these help to understand why the glitches occur on the Q
and/or 6 outputs. For example, in Figure 5.7 a glitch appeared on the'6
output as the S input changed from 2 to 0. Knowing that the gates react
to all intermediate transitiomns, the G2 OR gate in Figure 5.6 will react
to the intermediate value of 1 on the S input. Since the Q input is 2,
the G2 output is temporarily a 3 and causes a change in the output of the G4
MAX gate. The G4 reaction occurs for only one time unit and is a 1-to-0
O-to-1 transition. The SIM-flop remains stable, however, because the Gl

OR gate transport delay buffers the Q glitch and prevents it from
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affecting the Q output. Before the Gl gate reacts to the a'input, Q has
returned to 1 and prevents the Gl output from affecting G3. Thus, the Q
side of the RS SIM~flop remains stable. The criteria for stability is
that the OR gate transport delay must be greater than the signal rise/fall
time. This is a conservative requirement and should be true for most
electronic devices.

The tolerance of the RS SIM~flop to short duration input
glitches or transients is another interesting characteristic., This type
of transient input is in violation of the fundamental mode of operation,
but asynchronous sequential circuits may exist in which this action will

occur. Although actual physical device characteristics may differ from

QUATERNARY LOGIC SIMULATOR - QLOSIM

SFF.EX4 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 S 0 1
2 S 1 2

10 S 2 1
11 S 1 0
11 B 0 1
12 B 1 2
20 B 2 1
21 B 1 0
21 NQ 3 2
22 NQ 2 1
30 NQ 1 2
31 NQ 2 3
31 A 3 2
32 A 2 1
40 A 1 2
41 A 2 3
SIMULATION TERMINATED AT TIME 41

Figure 5.9. RS SIM-Flop Tramsient Behavior Simulation
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the assumptions made here, the transient input tolerance of the RS SIM-
flop is nevertheless a useful topic and helps to predict its behavior in
larger sequential circuits.

Figure 5.9 shows the result of a short simulation in which the
S input to the RS SIM-flop is changed from 0 to 2 and back to O before
the SIM-flop has fully responded to the initial 0 to 2 transition. The
SIM-flop is initially in state Q = 0 and the rise/fall time delay is one
time unit., All gate transport delays are 10 time units. Although the
circuit responds to the transient input on node S, the state of the SIM-
flop remains unchanged. The ratio of rise/fall time to the tramsport
delay of the Gl OR gate is again a critical aspect of the SIM-flop's
stability, i.e., if the S input transient, including rise/fall time,
does not exceed the Gl OR gate transport delay, the RS SIM-flop will
remain stable,

If the S input transient duration exceeds the Gl OR gate
transport delay but is less than the latch time of the circuit, the RS
SIM-flop is unstable and will oscillate. Simulation results for this
condition can be summarized as follows. Let TS be the tramsient duration
on input node S. Further, let AT (Gi) be the transport delay of the ith
gate in Figure 5.6 and let ARFS be the total rise/fall time of the S
input. An unstable condition exists for the RS SIM-flop if

Ap(GL) < Tg < {[Ag(Gg) + Ap(G&) + A (GL)] + Agpg + 1} .

If TS exceeds the right hand side of the relation above, a stable
condition exists and the RS SIM-flop will change state normally.

With this characterization of the RS SIM-flop established,

other SIM-flop types can be specified. Using the RS SIM-flop as a
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Figure 5.10. Four-Valued Clocked RS SIM-Flop

Figure 5.11. TFour-Valued D-Type SIM-Flop
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basis, the clocked RS and D-type SIM-flops are simple extensions.
Circuits for these two SIM-flops are shown in Figure 5.10 and Figure
5.11. Both of these four-valued SIM~-flops possess clock inputs that are
true multiple-valued clocks. That is, the clock input level selects the
machine, left, right or both, for which the input stimulus is to be
applied. As an example, suppose the Q output of the D-type SIM-flop is
0, and the clock input is also 0. If the D input is 3 and the clock
changes to 1, the Q output will change to Q = 1. Thus, only the right
machine changes state. This type of behavior is evident in the next-
state table of the D-type SIM-flop which is given in Figure 5.12. The

clocked RS SIM-flop has a similar mode of operation. Simulation of

Q(t+1)

o0 o o0 0y0 1 O 10 o0 2 20 1 2 3
141 1 1 10 1 ©0 1y1 1 3 3f0 1 2 3

Q(e) 22 2 2 2%+2 3 2 310 0O

8%
N
o
=
N
L

33 3 3 312 3 2 3(1 1 3 3{0 1 2 3

Figure 5.12. Four-Valued D-Type SIM-Flop Next-State Table

the clocked RS and D-type SIM-flops will be seen in sequential circuit
examples that follow in the next chapter.

The basic design of the RS SIM-flop given in Figure 5.6 can be
extended to the three-machines or B2XBZXB2 case. This extension yields
an eight-valued logic device that simultaneously stores the state for

three binary machines. The algebraic results for the eight-valued case
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are the same as were given previously; that is, the next-state equation
is

Q=R"x% (q+59) .

It is difficult to manually evaluate the detailed behavior of the eight-
valued RS SIM-flop for all possible input conditions and SIM-flop states.
The next-state table contains 512 entries that result from eight SIM-
flop states and 64 combinations of the eight-valued R and S inputs.
With eight logic values, the analysis problem is exponentially more
difficult than the four-valued case. Nevertheless, it is felt that the
cross—coupled four-gate SIM-flop structure is reasonable and, hopefully,
workable for the three-machine case.

In summary, the work in this chapter has established a logical
structure for a state integrated multiple-valued memory element.
Detailed functional and behavioral results have been shown for the four-
valued RS SIM-flop. In addition, other SIM-flop types were derived from
the basic RS device. The capability of these devices to work well in
state integrated and multiplexed sequential circuits will be shown in
the next chapter. The ability to apply these devices in state integrated
sequential circuits with the same ease as one would apply a flip-flop in

a binary sequential circuit is a very important result of this work.



CHAPTER VI

STATE INTEGRATED AND MULTIPLEXED SEQUENTIAL CIRCUITS

Circuit Model and Behavior

A sequential circuit is defined [36] as a network in vhich the
output at any instant is dependent not only upon the inputs present at
that instant, but also upon the past history (or sequence) of inputs.
The past history of inputs must be preserved by the network. For this
reason, sequential circuits have memory. The concept which allows
information to be preserved is referred to as the internal state, or
simply state, of the network. 1In a sequential circuit realization, the
internal state becomes the collection of signals at specified points
within the network.

The general sequential circuit model is shown in Figure 6.1.
The circuit contains n inputs KpsXgsee X and m output terminals

designated 24,2 »Z . The combinational circuit portion is the same

gtz
as described in Chapter IV. The memory portion was discussed in Chapter
V and consists of circuit elements or devices arranged to store logic
levels. The memory devices may be delay mechanisms or actual memory
elements referred to as r-flops (flip-flops in the binary case). The

secondary inputs M OTERE ,yp are the present-state terminals, and the

109
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Xl . Zl
Xz —-:-———. ": - ZZ
— e Z
Combinational ¥ m

Y1 Circuit 1

52 12

Y

Ip p

Memory

Figure 6.1. General Sequential Circuit Model

secondary outputs are the Yl’YZ’ ...,YP connections. Note that the
model provides feedback paths from the memory elements that are logi-
cally combined with the inputs. In general, the output variables are
related to the inputs as follows:

Z; = fi(xl,xz,...,xm,yl,y ,...,yp) i=1,2,...,m

2
and Y. = gi(xl,xz,...,xn,yl,yz,...,yp) j=1,2,...,p.

J
When these relationships hold explicitly, the circuit is referred to as
a Mealy machine. When the primary outputs are not a function of the
primary inputs, i.e., they are a function of only the secondary inputs,
Yk, the circuit is a Moore machine,

Sequential circuits are also distinguished by the method of
operation, being either synchronous or asynchronous [23]. Synchronous
sequential circuits operate in either the clocked or pulse mode. In
the clock mode, a clock signal is used on the r-flops to control or

synchronize the change of state. In the pulse mode, circuit input

pulses control the application of circuit input signals. All internal
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states are stable in the synchronous circuit. Only one mode of operation,
the fundamental mode, exists for the asynchronous circuit. The basic
requirements for fundamental mode operation are that only a single

input may change value at a time, and once this change occurs, all other
inputs must remain unchanged until the circuit reaches a final stable
state. These restrictions are important since the asynchronous circuit
can possess intermediate unstable transition states. When an input
changes, the state transition may pass through these unstable transition
states, and the restriction on input transitions insures that the proper
final stable state will be reached.

The description of a sequential circuit can be given as a flow
table. The flow table depicts the operation of a machine independent of
the manner in which it is ultimately constructed. A general flow table
was given in Chapter III. Except for the labels on the inputs, the
multiple-valued flow table will be exactly like one for a binary cir-
cuit. Given a flow table for an r~valued machine, it can be converted
into a reduced flow table by methods given by Givone [36].

Sheafor [15] restricts the construction of the multiple-valued
flow table to exclude ambiguous circuit operation. For example, in the
asynchronous flow table of Figure 6.2, assume that the machine is in
state A with input X = 0. For X changing to a value of 2, the operation
of the circuit is questionable since it is not clear whether the circuit's
final state will be B or C. That is, if the circuit reacts completely
to the intermediate value of X = 1, the final state of the circuit is B.
If the circuit does not react to X = 1, the final state is C. As a

consequence of this ambiguous action, Sheafor formulates conditions for
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flow table construction. Basically, two types of restrictions are

asserted. If the flow table is constructed as in Figure 6.2, then the

1 2 3

0
A 0 B,1 C,1 1
B 4,0 1 E)o a1
c |4, 0 @o @1 D, 0
D a0 31 ¢ 1 (D)o

Figure 6.2. Four-Valued Flow Table

type of input change described above is not allowed. If this type of
input change is possible, then the flow table entries in the row which
is under a column between the initial stable entry and the final entry
must be either stable or a transition to the same row as the final
entry.

Flow table construction for the B2m state integrated and
multiplexed digital system will not be restricted as described above.
The flow table presented in Chapter III and the one in Figure 6.2 are
perfectly valid for the work presented here. The SIM-flops developed
in Chapter V tolerate multiple-valued signal transitions and contribute
significantly to the proper operation of state integrated and multiplexed

sequential circuits.

Circuit Design Methodology

The sequential circuit design philosophy for multiple-valued
state integrated and multiplexed digital systems is basically the same

as for combinational circuits. That is, the sequential circuit design is
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first performed for the binary case and is then projected to the B2m
system by a simple substitution of multiple-valued logic gates. 1In
this section the details of this synthesis procedure for four-valued
sequential circuits will be performed by way of example. To keep the
circuit simple but still provide feedback connections, a non-reduced
flow table will be used. Using the reduced flow table results in a
circuit that does not contain feedback and, hence, is not a good cir-
cuit for demonstrating the design philosophy.

The non-reduced binary flow table is given in Figure 6.3 for a
fundamental mode asynchronous machine. The circuit has one input,
labeled X, three internal states, and one output, labeled Z. The
circled entries indicate stable states. Since the flow table contains
three states, two binary flip-flops are required for the circuit reali-
zatiom.

The adjacency diagram is given in Figure 6.4 and clearly shows

that states B and C can be reached from state A; however, A cannot be

Next State Output
(4,B,0) ()
Input (X) Input (X)
0 1 0 1
s |3 @) - 0
B c | 1 -
c | B @ - 1

Figure 6.3.

reached from B or C.

Fundamental Mode Binary Flow Table

To prevent race conditions, the diagram further

implies that the state assignment for B should be adjacent to both A and
C, but A and C need not be adjacent states. Therefore, the states are

coded with the following yly2 assignments:
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A =00
B =201
¢ =11,

Figure 6.4. State Adjacency Diagram

This state assignment is race free. Using RS flip-flops for the binary
memory elements, the excitation table is shown in Figure 6.5. Based on
the state assignment given above, this table provides the necessary R
and S inputs for the two RS flip-flops. Using the Karnaugh maps in
Figure 6.6, the expressions for the R and S inputs and output Z can be
constructed. The circuit realization for the binary asynchronous machine
is shown in Figure 6.7. To form a four-valued asynchronous state inte-
grated and multiplexed machine, the binary combinational gates are
replaced by four-valued Boolean gates, and the binary RS flip-flops are
replaced with RS SIM-flops. This projection of the binary circuit into
the Bzxﬁz system forms the four-valued total composite machine (TCM)
M%xM%, where M% is equivalent to MZ' However, one additional modifica-

tion is required for the TCM. Since the delay in the feedback paths may
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be less than the latch time of the RS SIM-flops, additional gates or
buffers are added at the output of the RS SIM-flops. The resulting
four-valued TCM circuit is shown in Figure 6.8, where the nodes have

been labeled for the simulator evaluation that follows.

MEMORY OUTPUT
(R1S135R,S,) ()
Input (X) Input (X)
0 1 0 1
00 --301 -0;-0 1 0
Y199 01 -0;~0 01;0- 1 1
11 10;0- 0-30- 1l 1

Figure 6.5. Excitation Table

Before simulating the TCM circuit, an input transition sequence
is required to structure the verification process. Although the sequen-
ces that verify correct circuit operation for both M% and M%, can be
generated from the binary state table, the use of the TCM state table
will better illustrate the method. Figure 6.9 shows the TCM state table
in which the next-state output subtables are given together and separated
by commas.

An input transition sequence for the TCM will verify that each
state transition will be made properly. The adjacency diagram for the
binary circuit, however, shows that state A is not reachable from states
B or C. This means that the transition sequence will consist of several

disjoint subsequences.
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Figure 6.6.

Excitation and Qutput Karnough Maps




117

i \
> ik

v

Ry 73

Figure 6.7. Binary Circuit Realization

Figure 6.8. Four-Valued TCM Realization
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Next State (Yle)

Input (X)
0 1 2 3

00{03,3 02,2 O01,1 ,o
or|03,3 13, 3 ,1 1, 1

11103,3 13,3 00,1 @,1

02 | 03, 3 ,2 23,3 22,2

Present 03 ,3 13,3 23,3 33,3
State

(¥155) 13| 03 , 3 @,3 23,3 33,3

220 03,3 02,2 23,3 @,2

231 03,3 13, 3 @,3 33, 3

33/ 03,3 13,3 23,3 @,3

Figure 6.9. TCM State Table

The transition subsequences given in Figure 6.10 were con-
structed from the TCM state table. The state Y19 values are shown in
the circles and the value of the X input is given on the arrows. Each
subsequence requires a separate execution of the QLOSIM simulator. Many
of the transitions are redundant in that each subsequence need not begin
at state y;y, = 00; however, this initial state selection allows more
efficient tracing in the state table and is a convenient starting point
for execution.

The sequences have been grouped to reflect the type of opera-
tion within the MY and M} machines. In the first subsequence given in

2 2

Figure 6.10(a), both M% and Mg are driven to state B (ylyz = 03), and

then all TCM B and C state tramnsition combinations follow. In the

subsequences of Figure 6.10(b) M% is driven to state B while M% is held

in state A, whereas, in Figure 6.10(c) the reverse is done. Once both
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TCM Input Transition Sequences

Figure 6.10.
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Mg and Mg enter state B or C concurrently, the subsequences in Figure
6.10(b) and (c) join the subsequence given in Figure 6.10(a).

Simulation of all the subsequences in Figure 6.10 can be per-
formed and shown to work properly; however, only the subsequence in
Figure 6.10(a) and the first subsequence in Figure 6.10(b) and (c) are
repeated here. These simulations are given, respectively, in Figures
6.11, 6.12 and 6.13. All three simulations were run with the AT delay
for the G4 and G8 OR gates (see Figure 6.8) set to 11 time units. All
other gate delays have a AT delay of 10 time units. For this particular
TCM circuit, the OR gate delay is necessary on gate G4 since the 3 to 1
transition of X at Time 1000 in Figure 6.13 will cause oscillation in
the Y1 RS SIM-flop. In this case S1 is changing from 2 to 0, simulta-
neously, as R changes from 0 to 2. Figure 6.14 shows the oscillatory
condition simulated starting with the X transition from 3 to 1 and
y1¥9 = 22. All gate transport delays are 10 time units for this simu-
lation. The oscillation is clearly evident on the Y1 output and will
continue on in time except that the simulator was forced to stop at Time
1101.

The synchronous or clocked RS SIM-flop can be used in place of
the asynchronous RS SIM-flop in the TCM circuit. The clocked RS SIM-
flop does not exhibit the oscillatory condition but does require external
control of the clock input. Figure 6.15 shows the TCM circuit implemen-
ted with clocked RS SIM-flops. The simulation of this circuit using the
first subsequence of Figure 6.10(c) is given in Figure 6.16. All gate
AT values are 10 time units. Note that no oscillation occurs for this

circuit realization. The clock input is asserted after the input has
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QUATERNARY LOGIC SIMULATOR ~ QLOSIM

TCM.EX1 SIMULATION RESULTS:
TIME NODE PREV. VALUE NEW VALUE
1 X 3 2
2 X 2 1
3 X 1 0
21 Z 0 1
22 Z 1 2
23 z 2 3
41 NY2 3 2
42 NY2 2 1
43 NY2 1 0
61 Y2 0 1
62 Y2 1 2
63 Y2 2 3
500 X 0 1
551 Y1 0 1
1000 X 1 2
1001 X 2 3
1030 Y1 1 0
1031 Y1 0 1
1051 Y1 1 2
1052 Y1 2 3
1500 X 3 2
1530 Y1 3 2
2000 X 2 1
2001 X 1 0
2030 Y1 2 1
2031 Y1l 1 0
2500 X 0 1
2501 X 1 2
2502 X 2 3
2551 Y1 0 1
2552 Y1 1 2
2553 Y1 2 3
3000 X 3 2
3001 X 2 1
3030 Y1 3 2
3031 Y1l 2 1
3072 Y1l 1 0
3073 Y1 0 1
3500 X 1 2
3530 Y1 1 0
3551 Y1 0 1
3552 Y1 1 2
4000 X 2 1

Figure 6.11. TCM Subsequence Simulation for Figure 6.10(a) - Part 1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

TCM.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
4030 Y1 2 1
4031 Y1 1 0
4051 Y1l 0 1
4071 Yl 1 0
4072 Y1 0 1
4500 X 1 0
4530 Y1l 1 0
5000 X 0 1
5001 X 1 2
5052 Yl 0 1
5053 Y1 1 2
5500 X 2 3
5551 Y1 2 3
6000 X 3 2
6001 X 2 1
6002 X 1 0
6030 Yl 3 2
6031 Y1 2 1
6032 Y1 1 0
SIMULATION TERMINATED AT TIME 6053

Figure 6.11. TCM Subsequence Simulation for Figure 6.10(a) - Part 2
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QUATERNARY LOGIC SIMULATOR ~ QLOSIM
TCM.EX2 SIMULATION RESULTS:

TIME NODE PREV., VALUE NEW VALUE

1 X 3 2

21 Z 0 1

41 NY2 3 2

61 Y2 0 1
500 X 2 3
551 Y1 0 1
1000 X 3 2
1030 Y1 1l 0
1500 X 2 1
1501 X 1 0
1520 Z 1 2
1521 Z 2 3
1541 NY2 2 1
1542 NY2 1 0
1561 Y2 1 2
1562 Y2 2 3
SIMULATION TERMINATED AT TIME 1602

Figure 6.12. TCM Subsequence Simulation for Figure 6.10(b)
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QUATERNARY LOGIC SIMULATOR - QLOSIM

TCM.EX3 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 X 3 2
2 X 2 1
21 Z 0 1
22 Z 1 2
41 NY2 3 2
42 NY2 2 1
61 Y2 0 1
62 Y2 1 2
71 Z 2 3
72 Z 3 2
81 NY2 1 0
82 NY2 0 1
112 NY2 1 0
113 NY2 0 1
500 X 1 2
501 X 2 3
520 Z 2 3
521 Z 3 2
540 NY2 1 0
541 NY2 0 1
551 Y1 0 1
552 Y1 1 2
1000 X 3 2
1001 X 2 1
1020 Z 2 3
1021 Z 3 2
1031 Yi 2 1
1032 Y1 1 0
1040 NY2 1 0
1041 NY2 0 1
1052 Y1 0 1
1053 Yi 1 0
1072 Y1 0 1
1073 Y1 1 0
1500 X 1 0
1520 Z 2 3
1540 NY2 1 0
1560 Y2 2 3
SIMULATION TERMINATED AT TIME 1600

Figure 6.13. TCM Subsequence Simulation for Figure 6.10(c)
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QUATERNARY LOGIC SIMULATOR -~ QLOSIM

TCM.EX4 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE
1 X 3 2
2 X 2 1
21z 0 1
22 2 1 2
41 NY2 3 2
42 NY2 2 1
61 Y2 0 1
62 Y2 1 2
71z 2 3
72z 3 2
81  NY2 1 0
82  NY2 0 1
112 NY2 1 0
113 NY2 0 1
500 X 1 2
501 X 2 3
520 Z 2 3
520 2 3 2
540  NY2 1 0
541  NY2 0 1
550 Y1 0 1
551 Y1 1 2
1000 X 3 2
1001 X 2 1
1020 Z 2 3
1021z 3 2
1031 Y1 2 1
1032 Y1 1 0
1040  NY2 1 0
1041 NY2 0 1
1051 Y1 0 1
1052 Y1 1 0
1071 Y1 0 1
1072 Y1 1 0
1081 Y1 0 1
1082 Y1 1 0
1091 Y1 0 1
1092 YL 1 0
1101  ¥1 0 1
SIMULATION TERMINATED AT TIME 1101

Figure 6.14. TCM Simulation Showing Oscillatory Condition
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changed and settled. This mode of operation results in smooth circuit
response and state transitions.

As previously mentioned, the clock input for the clocked-type
SIM~flops is a true four-valued input. In the previous simulation that
used clocked RS SIM-flops, the clock was asserted in the binary fashion,
i.e., 0 to 3 transitions, thus allowing both machines to change state as
necessary. The same result can be obtained by asserting the clock at
logic level 2 for the first three transitions of the subsequence in
order to change only the left machine. For the final transition the
clock is asserted at logic level 1 to allow the right machine transition,
the end result being the final ¥1¥9 = 03 state. The simulation of this
TCM subsequence is shown in Figure 6.17.

The versatility of the clock input is better exemplified by
using the first transition of the subsequence in Figure 6.10(a). For
the transition as given both machines normally enter state y;y, = 03
when X changes from 3 to 0. 1If the clock input is asserted at 2, only
the left machine will change state, resulting in y;y, = 02, Then if X
is held at 1 and the clock does finally change to a value of 3, the TCM
circuit will enter state yly2 = 03, This action is shown in the simu-
lator output of Figure 6.18. Note that the clock input rises to a value
of 2, the machine enters state Y199 = 02, the clock input returms to 0,
and after the clock rises to a value of 3, the circuit enters state
y1y9 = 03.

From the examples of circuit realization given above, it is
seen that the TCM circuit using the RS SIM-flop, clocked or unclocked,

will perform as expected. It is, of course, difficult and time consuming
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CLK

Figure 6.15. TCM Clocked RS SIM-Flop Realization
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QUATERNARY LOGIC SIMULATOR -~ QLOSIM

TCM.EX5  SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 X 3 2
2 X 2 1
21 Z 0 1
22 Z 1 2
100 CLK 0 1
101 CLK 1 2
102 CLK 2 3
131 NY2 3 2
132 NY2 2 1
151 Y2 0 1
152 Y2 1 2
161 Z 2 3
162 Z 3 2
171 NY2 1 0
172 NY2 0 1
212 NY2 1 0
213 NY2 0 1
400 CLK 3 2
401 CLK 2 1
402 CLK 1 0
500 X 1 2
501 X 2 3
520 Z 2 3
521 Z 3 2
600 CLK 0 1
601 CLK 1 2
602 CLK 2 3
651 Yl 0 1
652 Y1 1 2
900 CLK 3 2
901 CLK 2 1
902 CLK 1 0
1000 X 3 2
1001 X 2 1
1020 Z 2 3
1021 Z 3 2
1100 CLK 0 1
1101 CLK 1 2
1102 CLK 2 3
1132 Y1 2 1
1133 Y1l 1 0
1400 CLK 3 2
1401 CLK 2 1

Figure 6.16, TCM Simulation Using Clocked RS SIM-Flops - Part 1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

TCM.EX5 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1402 CIK 1 0
1500 X 1 0
1520 Z 2 3
1600 CIK 0 1
1601 CLK 1 2
1602 CLK 2 3
1630 NY2 1 0
1631 NY2 0 1
1632 NY2 1 0
1650 Y2 2 3
1651 Y2 3 2
1652 Y2 2 3
1900 CLK 3 2
1901 CIK 2 1
1902 CLK 1 0
SIMULATION TERMINATED AT TIME 1912

Figure 6.16. TCM Simulation Using Clocked RS SIM-Flops - Part 2
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QUATERNARY LOGIC SIMULATOR - QLOSIM

TCM.EX6 SIMULATION RESULTS:
TIME NODE PREV. VALUE NEW VALUE
1 X 3 2
2 X 2 1
21 Z 0 1
22 Z 1 2
100 CLK 0 1
101 CLK 1 2
131 NY2 3 2
132 NY2 2 1
151 Y2 0 1
152 Y2 1 2
161 Z 2 3
162 Z 3 2
171 NY2 1 0
172 NY2 0 1
212 NY2 1 0
213 NY2 0 1
400 CLK 2 1
401 CLK 1 0
500 X 1 2
520 Z 2 3
521 yA 3 2
600 CLK 0 1
601 CLK L 2
651 Y1 0 1
652 Y1 1 2
900 CLK 2 1
901 CLK 1 0
1000 X 3 2
1001 X 2 1
1020 Z 2 3
1021 Z 3 2
1100 CLK 0 1
1101 CLK 1 2
1132 Y1l 2 1
1133 Y1 1 0
1400 CLK 2 1
1401 CLK 1 0
1500 X 1 0
1520 z 2 3
1600 CLK 0 1
1601 CLK 1 2
1602 CLK 2 3

Figure 6.17. TCM Simulation of Figure 6.22(c) Subsequence
using Controlled Four-Valued Clock - Part 1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

TCM.EX6 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1630 NY2 1 0
1631 NY2 0 1
1650 Y2 2 3
1651 Y2 3 2
1652 Y2 2 3
1900 CLK 3 2
1901 CLK 2 1
1902 CLK 1 0
SIMULATION TERMINATED AT TIME 1912

Figure 6.17. TCM Simulation of Figure 6.22(c) Subsequence
using Controlled Four-Valued Clock - Part 2
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QUATERNARY LOGIC SIMULATOR - QLOSIM

TCM.EX7 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
1 X 3 2
2 X 2 1
3 X 1 0
21 Z 0 1
22 Z 1 2
23 Z 2 3
100 CLK 0 1
101 CLK 1 2
130 NY2 3 2
131 NY2 2 1
150 Y2 0 1
151 Y2 1 2
170 NY2 1 0
171 NY2 0 1
211 NY2 1 0
212 NY2 0 1
500 CLK 2 1
501 CLK 1 0
530 NY2 1 0
531 NY2 0 1
1000 CLK 0 1
1001 CLK 1 2
1002 CLK 2 3
1030 NY2 1 0
1031 NY2 0 1
1032 NY2 1 0
1050 Y2 2 3
1051 Y2 3 2
1052 Y2 2 3
1500 CLK 3 2
1501 CLK 2 1
1502 CLK 1 0
SIMULATION TERMINATED AT TIME 1512

Figure 6.18. TCM Simulation of Figure 6.10(a) Subsequence
Transition Using Controlled Four-Valued Clock
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to show all possible variations in input timing and gate delays, but for
the conditions given, it is felt that sequential circuits can be suc-
cessfully constructed using the methods given here. The design method
for state integrated sequential circuits is basically a projection of a
binary circuit design, new or existing, into a B2m realization., It is
clear that the m machines within a B o realization function independently

2

of each other and realize m parallel binary machines.

The Register Transfer Circuit

The register transfer circuit is a general type of digital logic
circuit used in central processing units [38]. This circuit was dis-
cussed in Chapter II and represents the mechanism by which digital
information is moved from register to register, When the register
circuit is supplemented with combinational and sequential circuits, the
necessary building blocks are available for designing a computer proces-
sor. Because of this significance, the state integrated and multiplexed
register transfer circuit will be investigated as a special type of
sequential circuit. It will be seen that the state integrated property
of simultaneous data storage within the circuit's SIM-flops is highly
visable. To simplify the analysis of the circuit behavior, the two-
machine or four-valued case is emphasized.

Figure 6.19 shows one method for implementing a simple state
integrated and multiplexed register transfer circuit. Consider the
circuit to be four-valued. This OR-Bus form of the circuit is quite
similar to the corresponding binary version. TFour two-bit registers
are given where Rl and R2 are the source registers while R3 and R4 are

the destination register. Conceivably, any source register can be a
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destination register, and vice versa. In general, any register can
be arranged to transfer information to any other register, including
itself; however, to simplify the circuit, a distinction is made between

the source and destination registers.

CP3
R1 CP1 ®3
si1 s o}k : | D t— Q31
x .
— l_CLK
R1l R
812 __|s Q12 : D — Q32
X .
%: CLK
R12 _|R D—D—l—o
R2 \ 3 L & R4
Q21 ) 41
s21 S © ) D — Q
Q X
. / OR Bus CLK
R21 —R
2 '
S22 —S Q Q22 . ) | D — Q42
— — CIK
R22 —R
CP2 CP4

Figure 6.19. Four-Valued State Integrated and Multiplexed
Register Transfer Circuit
The circuit operates by selecting a source register using
either CPl or CP2 which gates data from either Rl or R2, respectively,
to the OR gates. The data is then strobed into a destination register,

R3 or R4, by asserting either CP3 or CP4, respectively. For this
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particular implementation, the CP3 and CP4 control signals can be tied
directly to the clock inputs of the D-type SIM-flops. In the four-
valued case, it is possible to transfer the comntents of R1L or R2 to R3
or R4 for either the left or right machine. The left and right machine
data transfers can occur simultaneously with differing source and desti-
nation registers. For example, data can transfer from Rl to R3 for the
left machine while a simuitaneous transfer occurs from R2 to R4 for the
right machine. Data in the unaffected machine half of the destination
registers remains unchanged by the operations. Note that the control
pulses are multiplexed four-valued signals similar to the true four-
valued clock signals previously described for the clocked SIM-flops.
For example, to gate data into R3 for the right machine, CP3 has a logic
value of one. To gate data for the left machine, CP3 has a logic value
of 2, and to gate data for both machines, CP3 has a logic wvalue of 3.
Table 6.1 summarizes the allowable transfer combinations for
the register transfer circuit of Figure 6.19. The superscripts, L and
R, represent the left and right machines, respectively. When only one
"FROM" column entry appears in the table, for a given row, the "TO"
column entries represent an inclusive OR transfer combination. For
L

example, it is possible to transfer Rﬁ to either R3

R% and Ri. The other transfer combinations are given explicitly.

or RZ’ or to both

The four-valued register transfer circuit in Figure 6.19 is
comprised of 50 gates and is simulated for the transfer combinations
shown in Table 6.2. Successive rows of the table are cumulative and
reflect the action of previous rows. Figure 6.20 gives the simulator

output for these transfer combinations.
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Table 6.1. Four-Valued Register Transfer Combinations

FROM FROM TO TO
Ri‘ - RT:; Ry
Rfl‘ - R% RIZ
RT?: - le R};
Rlz‘ - Rg{ R‘Z}
R% le R% R}}
RI:E le ng R§
RIZ‘ Rg ng RE
SIS R
RTi' Rg RI:; Rz{
RTla ng R}; R§
Rll* RY R% RY
Ri{ RS RE RI:;;
LR _ RLR  pILR
o R
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In row one of Table 6.2, Rl is set to 33 and the contents of
the right side of Rl are transferred to ﬁ3. Figure 6.20 shows this
result at Time 301. For this initial transfer, observe that control
signal CPl holds the source data active while CP3 is used as a strobe
signal to clock the data into the destination register. Thus, CPl is
held active throughout the strobe time of CP3, All transfers are per-
formed by using the control pulses in this manner.

Table 6.2. Simulated Transfers for the Four-Valued Register
Transfer Circuit

Source Registers Control Pulses Destination Registers
Transfer No. R1 R2 CP1 CP2 CP3 (P4 R3 R4
1 33 00 1 0 1 0 11 00
2 33 00 2 0 0 2 11 22
3 33 22 0 2 2 0 33 22
4 00 22 3 0 3 0 00 22
5 11 22 1 0 1 1 11 33
6 00 00 3 0 3 3 00 00
7 33 00 3 0 2 1 22 11
8 33 00 0 3 3 3 00 00
9 33 33 2 1 1 2 11 22

The next data transfer moves the data for the left side of R1
to the right side of R4 and is essentially completed at Time 603. Prior
to the third transfer, register R2 is set to a value of 22. R2 is then
transferred to the left side of R3 giving a wvalue of R3 = 33 at Time 1123.
Note that the right side of R3 was not affected by this data movement.
For this particular transfer, the R3 D-type SIM-flop is not well behaved
and actually results in oscillation when the gate transport delays are
equal. This is a similar condition as was previously discussed for the
RS SIM-flop. The instability is cured, as before, by unbalancing the

gate delays, although the resulting behavior is still slightly erratic.
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The next transfer is row four of Table 6.2 and shows that both
sides of Rl are cleared, followed by a transfer of this result to R3.
This is shown in the simulator output at Time 1583. The fifth transfer
is performed by setting the right side of Rl and then simultaneously
transferring the right side of Rl to both R3 and R4. This gives R3 = 11
and R4 = 33 at Time 2101l. Again, note that the left side of R4 was
unchanged by the right side transfer. The sixth transfer clears Rl and
R2 and moves Rl to both R3 and R4, giving a result of 00 for both at
Time 2583.

The last three data transfers clearly show the multiplexing
capability of the circuit. The seventh row of the table shows that the
left side of R1 is transferred to R3 and, simultaneously, the right
side of Rl is transferred to R4, R3 and R4 reach their values of 22 and
11 at Times 3101 and 3102, respectively. 1In the eighth transfer the 00
value of R2 is used to clear both R3 and R4 simultaneously. R3 and R4
are clear at Time 2583. The final data movement begins by setting both
Rl and R2 to a value of 33. The left side of Rl is transferred to R4,
and at the same time the right side of R2 is transferred to R3. R3 and
R4 are equal to 11 and 22 at Times 3901 and 3902,

These results strongly imply that the state integrated and
multiplexed register transfer circuit is logically sound and suggest
that circuits of this type can be used in a computer central processing
unit to achieve simultaneous movement of data for two independent
machines operating within the same logic circuitry. Functionally, these
results can be extended to the case of m binary machines operating in

parallel. Again, no detailed predictions can be made on the specific
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operation of the circuit, but it should be possible to choose m = 3
and realize a three-machine register transfer circuit much the same

way, if not exactly the same way, as for m = 2.
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT.EX1 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE

1 s11 0 1

1 s12 0 1

2 sl 1 2

2 812 1 2

3 si1 2 3

3 812 2 3
41 Q11 0 1
41 Q12 0 1
42 Qll 1 2
42 Q12 1 2
43 Qll 2 3
43 Q12 2 3
100  S11 3 2
100 S12 3 2
101 sii 2 1
101 s12 2 1
102 sil 1 0
102 S12 1 0
200  CPl 0 1
220 D2 0 1
220 D1 0 1
250  CP3 0 1
301 Q32 0 1
301 Q31 0 1
350  CP3 1 0
400  CPl 1 0
420 D2 1 0
420 D1 1 0
500  CPl 0 1
501  cPl 1 2
520 D2 0 1
520 D1 0 1
521 D2 1 2
521 D1 1 2
550  CP4 0 1
551  CP4 1 2
602 Q42 0 1
602 Q41 0 1
603 Q42 1 2
603 Q41 1 2
650  CP4 2 1

Figure 6.20. Four-Valued Register Transfer Circuit Simulation
Part 1
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT.EX1 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE
651  CP4 1 0
700  CP1 2 1
701 cpl 1 0
720 D2 2 1
720 Dl 2 1
721 D2 1 0
721 Dl 1 0
800  $21 0 1
800 S22 0 1
801  s21 1 2
801  $22 1 2
830 Q21 0 1
831 Q21 1 2
840 Q22 0 1
841 Q22 1 2
900  s21 2 1
900 822 2 1
901  s21 1 0
901  §22 1 0

1000  CP2 0 1

1001  CP2 1 2

1021 D2 0 1

1021 DL 0 1

1022 D2 1 2

1022 DL 1 2

1050  cP3 0 1

1051  CP3 1 2

1081 Q32 1 0

1081 Q31 1 0

1082 Q32 0 1

1082 Q31 0 1

1103 Q32 1 2

1103 Q31 1 2

1106 Q32 2 3

1104 Q31 2 3

1111 Q32 3 2

1111 Q31 3 2

1112 Q32 2 3

1112 Q31 2 3

1122 Q32 3 2

1122 Q31 3 2

Figure 6.2Q0. Four-Valued Register Transfer Circuit Simulation
Part 2
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT.EX1 SIMULATION RESULIS:

TIME  NODE PREV. VALUE NEW VALUE
1123 Q32 2 3
1123 @31 2 3
1150  CP3 2 1
1151  Cp3 1 0
1181 Q32 3 2
1181 Q31 3 2
1182 Q32 2 3
1182 Q31 2 3
1200  CP2 2 1
1201  CP2 1 0
1220 D2 2 1
1220 D1 2 1
1221 D2 1 0
1221 . DL 1 0
1300  R11 0 1
1300  R12 0 1
1301  R1l 1 2
1301  R12 1 2
1302 Rl 2 3
1302  R12 2 3
1320 Qi1 3 2
1320 QL2 3 2
1321 Q11 2 1
1321 Q12 2 1
1322  qQll 1 0
1322 Q12 1 0
1400  R11 3 2
1400  R12 3 2
1401 R1l 2 1
1401  R12 2 1
1402  RL1 1 0
1402  R12 1 0
1500  CPl 0 1
1501  CPl 1 2
1502 Pl 2 3
1550  CP3 0 1
1551  CP3 1 2
1552  CP3 2 3
1581 Q32 3 2
1581 Q31 3 2

Figure 6.20. Four-Valued Register Transfer Circuit Simulation
Part 3
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT,EX1 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE
1582 Q32 2 1
1582 Q31 2 1
1583 Q32 1 0
1583 Q31 1 0
1650  CP3 3 2
1651  CP3 2 1
1652  CP3 1 0
1700  CP1 3 2
1701  CP1 2 1
1702 CPL 1 0
1800  S11 0 1
1800  S12 0 1
1840  Qll 0 1
1840  Ql2 0 1
1900  S11 1 0
1900  S12 1 0
2000  CPl 0 1
2020 D2 0 1
2020 D1 0 1
2050  CP3 0 1
2050  CP& 0 1
2101 Q32 0 1
2101 Q31 0 1
2101 Q42 2 3
2101 Q41 2 3
2150  CP3 1 0
2150  CP4 1 0
2200  CPl 1 0
2220 D2 1 0
2220 D1 1 0
2300  R1l 0 1
2300  R12 0 1
2300  R21 0 1
2300  R22 0 1
2301  R21l 1 2
2301  R22 1 2
2320  Qll 1 0
2320 Q12 1 0
2321 . Q21 2 1
2321 Q22 2 1

Figure 6.20. Four-Valued Register Transfer Circuit Simulation
Part 4



144

QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT.EX1 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE
2322 Q21 1 0
2322 Q22 1 0
2400  R11l 1 0
2400  R12 1 0
2400  R21 2 1
2400  R22 2 1
2401  R21 1 0
2401  R22 1 0
2500  CPl 0 1
2501  CPl 1 2
2502  CPl 2 3
2550  CP3 0 1
2550  CP4 0 1
2551  CP3 1 2
2551  CP4 1 2
2552  CP3 2 3
2552  CP4 2 3
2581 Q32 1 0
2581 Q31 1 0
2581 Q42 3 2
2581  Q4l 3 2
2582 032 0 1
2582 Q31 0 1
2582 Q42 2 1
2582 Q4L 2 1
2583 Q32 1 0
2583 Q31 1 0
2583 Q42 1 0
2583 04l 1 0
2650  CP3 3 2
2650  CP4 3 2
2651  CP3 2 1
2651  CP4 2 1
2652  CP3 1 0
2652  CP4 1 0
2700  CP1 3 2
2701  CPl 2 1
2702  CPl 1 0
2800  S11 0 1
2800  $12 0 1

Figure 6.20. Four-Valued Register Transfer Circuit Simulation
Part 5
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT.EX1 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE
2801  sSl1l 1 2
2801  Sl12 1 2
2802  sl1l 2 3
2802  S12 2 3
2840  Qll 0 1
2840 QL2 0 1
2841  Qll 1 2
2841 Q12 1 2
2842  Qll 2 3
2842 QL2 2 3
2900  S1l 3 2
2900  S12 3 2
2901  sll 2 1
2901  S12 2 1
2902  sl1l 1 0
3000 Pl 0 1
3001  cPl 1 2
3002  CPl 2 3
3020 D2 0 1
3020 Dl 0 1
3021 D2 1 2
3021 Dl 1 2
3022 D2 2 3
3022 Dl 2 3
3050  CP3 0 1
3050  CP4 0 1
3051  CP3 1 2
3101 Q32 0 1
3101 Q31 0 1
3101 Q42 0 1
3101 Q41 0 1
3102 Q32 1 2
3102 Q31 1 2
3150  CP3 2 1
3150  CP4 1 0
3151  CP3 1 0
3200 Pl 3 2
3201 CPL 1 0
3202 Pl 1 0
3220 D2 3 2

Figure 6.20, Four-Valued Register Transfer Circuit Simulation
Part 6
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT.EX1 SIMULATION RESULTS:

TIME  NODE PREV. VALUE NEW VALUE
3220 D1 3 2
3221 D2 2 1
3221 D1 2 1
3222 D2 1 0
3222 Dl 1 0
3300  CP2 0 1
3301  CP2 1 2
3302 CP2 2 3
3350  CP3 0 1
3350  CP4 0 1
3351 CP3 1 2
3351  CP4 1 2
3352 CP3 2 3
3352 CP4 2 3
3381 Q42 1 0
3381 Q41 1 0
3382 Q32 2 1
3382 Q31 2 1
3382 Q42 0 1
3382 Q4l 0 1
3383 Q32 1 0
3383 Q31 1 0
3383 Q42 1 0
3383 Q41 1 0
3450  CP3 3 2
3450  CP4 3 2
3451  CP3 2 1
3451  CP4 2 1
3452 CP3 1 0
3452  CP4 1 0
3500  CP2 3 2
3501  CP2 2 1
3502  CP2 1 0
3600  S21 0 1
3600 S22 0 1
3601  S21 1 2
3601 S22 1 2
3602 S21 2 3
3602 §22 2 3
3640 Q21 0 1
3640 Q22 0 1

Figure 6.20. Four-Valued Register Transfer Circuit Simulation

-

Part 7
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QUATERNARY LOGIC SIMULATOR - QLOSIM

RICKT.EX1 SIMULATION RESULTS:

TIME NODE PREV. VALUE NEW VALUE
3641 Q21 1 2
3641 Q22 1 2
3642 Q21 2 3
3642 Q22 2 3
3700  s21 3 2
3700 S22 3 2
3701 s21 2 1
3701 S22 2 1
3702 s21 1 0
3702 S22 1 0
3800  CPl 0 1
3800  CP2 0 1
3801  CPl1 1 2
3820 D2 0 1
3820 D1 0 1
3821 D2 1 2
3821  Dpl 1 2
3822 D2 2 3
3822 Dl 2 3
3850  CP3 0 1
3850  CP4 0 1
3851  CP4 1 2
3901 Q32 0 1
3901 Q31 0 1
3901 Q42 0 1
3901 Q41 0 1
3902 Q42 1 2
3902 Q4l 1 2
3950  CP3 1 0
3950  CP4 2 1
3951  CP4 1 0
4000  CP1 2 1
4000  CP2 1 0
400L  CPl 1 0
4020 D2 3 2
4020 D1 3 2
4021 D2 2 1
4021 D1 2 1
4022 D2 1 0
4022 D1 1 0
SIMULATION TERMINATED AT TIME 4032

Figure 6.20. Four-Valued Register Transfer Circuit Simulation
Part 8



CHAPTER VII

CONCLUSION

Summary of Results

This thesis int?oduces and examines the concept of state
integrated and multiplexed multiple-valued digital systems. The logic
circuit design methods for the multiple-valued Bzm’ m 2 2, cases were
considered, and Bsz2 was studied in detail. An important result is
that the four-valued BZXBZ circuits are realizable directly from the
binary design techniques. The actual behavior of the four-valued
circuits was studied by the application of the quaternary logic simu-
lator, QLOSIM. This simulator was developed for purposes of this thesis
but can be applied to other studies of four-valued digital systems.

The circuit operating characteristics assumed in the thesis are
believed to be reasonable predictions of how actual gates would perform.
Hence, the overall results obtained from the logic circuits considered
herein suggest that the state integrated and multiplexed concept is
feasible.

The design of four-valued state integrated and muléiplexed
combinational circuits is relatively straightforward with some circuit

148
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behavior phenomena being quite similar to the binary case. For example,
static hazards are eliminated by the same methods used for binary circuits.
The same result was found to be true for sequential circuits except that
the sequential circuit problem necessitated the development of a new
memory element, the SIM-flop. The stability of the four-valued SIM-flop
was studied for various conditions. Three SIM-flop types, the RS,
clocked RS, and D-type, were applied in sequential circuits and shown
via simulation to perform adequately. The state integrated and multi-
plexed register transfer circuit operation was also examined, and quite
good results were obtained from it. In total these findings give a
complete and detailed account of the logic circuit operation for a two-
machine state integrated and multiplexed digital system. Of particular
importance is that all of the circuits investigated can be generated
directly from the binary circuit design, and the resulting state inte-
grated and multiplexed circuit will replace two or more copies of the

binary circuit.

Suggestions for Further Research

To provide an adequate foundation for state integrated and
multiplexed digital systems, this thesis necessarily covers a wide
range of topics in the area of multiple~valued digital design. Addi-
tional work can extend the basic concepts presented here. Using tools
such as the quaternary logic simulator, further work can be done in the
system design area toward the specification of a machine organization
based on this concept. TFor example, by constructing a computer control

unit from four-valued TCM circuits and supplementing this with Bszz
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arithmetic and register transfer circuits, the specification of a fairly
complete state integrated and multiplexed central processing unit is
possible. Such a machine actually represents two independent binary
machines and would be capable of executing two software programs simul-
taneously. The architectural and system level advantages gained from
this capability deserve further attention. In addition, this work
represents the first step toward the design of a dual radix hardware
computer system.

A more detailed investigation of B, combinational and sequen-

om
tial circuits can be undertaken. TFurther work on the various SIM-flops
and their characterization should be considered. However, the need for
actual gate hardware realization is significant. IZL circuit designs
were given for the AND and OR gates, but more work is necessary to
generate results for these or functionally equivalent circuits.

The quaternmary logic simulator provided valuable insights into
the possible behavior of the state integrated and multiplexed digital
circuits. In addition, the simulator was used to study four—-valued
algebraic relationships. It is expected that the simulator will like-
wise prove valuable for other work, but since the total needs of these
studies are not known presently, the need for additional software
enhancement is likely.

Certainly, this thesis provides many of the answers for the
design and analysis of state integrated and multiplexed digital systems.
Strong evidence that such systems will perform is presented, but many
questions still remain. Lest we continue to pose them all, humbly note

that,
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"The outcome of any serious research can only be
to make two questions grow where only one grew
before." - Thorstein Veblen.
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APPENDIX A

SIMULATOR USER'S GUIDE

Simulator Capabilities

The quaternary logic simulator, QLOSIM, is a gate level simu-
lator designed to simulate four-valued logic circuits exclusively. The
software described here was designed to operate on a DECSystem-10
computer, using the TOPS-10 operating system.

Several gate types comprise the simulator's library. Each gate
type used in a circuit possesses a unique identification. Gates such as
MIN, MAX, AND and OR require more than one input, and QLOSIM permits
two, three, or four inputs for these gates. Table A.l lists each type
of gate supported. The user should consult thesis Chapter III for
specific function definitioms.

The version of QLOSIM given in Appendix B limits the size of
the simulated circuit to 100 gates or 200 nodes. Neither constraint can
be violated. Every circuit node must possess a unique identification.
The node identification is any one to five character string selected by
the user. Each circuit must be initialized, using the input file, by

specifying logic values for all circuit input nodes. If the circuit
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Table A.1, QLOSIM Gate Types

Ip ' Function
MAX2 Two input MAX
MAX3 Three input MAX
MAX4 Four input MAX
MIN2 Two input MIN
MIN3 Three input MIN
MIN4 Four input MIN
COMP Complement or strong

negation

AND2 Two input AND
AND3 Three input AND
AND4 Four input AND
OR2 Two input OR
OR3 Three input OR
OR4 Four input OR
CYCL1 Cycle (a = 1)
CYCL2 Cycle (a = 2)
CYCL3 Cycle (a = 3)
PLUS Two input PLUS
NMAX2 Two input MAX
NMAX3 Three input MAX
NMAX4 Four input MAX
NMIN2 Two input MIN
NMIN3 Three input MIN
NMIN4 Four input MIN
NAND2 Two input NAND
NAND3 Three input NAND
NAND4 Four input NAND
NOR2 Two input NOR
NOR3 Three input NOR
NOR4 Four input NOR
NPLUS Two input PLUS
1LTOO 1x9:0 riteral
11711 1x1>1 Literal
11122 1x222 Literal
11133 1x3:3 Literal
1LTO1 1x051 Literal

1LTO2 1x922 Literal
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Table A.1l. QLOSIM Gate Types (continued)

ID Function
11712 1x152 1iteral
1L.T13 1x153 Literal
1LT23 1x253 Literal
2LT00 2%0,0 piteral
2LT11 25151 piteral
2LT22 2%2,2 piteral
21133 2%353 Literal
2LTO01 2x0,1 riteral
2LT02 2%052 Literal
2LT12 2x1:2 piteral
2LT13 25153 Literal
2LT23 2%x253 Literal
3LT00 3x0,0 Literal
3LT11 3xlsl Literal
3LT22 3x252 Literal
3LT33 3%353 Literal
3LTO01 3%0,1 riteral
3LT02 3%052 1iteral
3LT12 3x1,2 Literal
3LT13 3x1s3 Literal
3LT23 3x253 Literal
1INH2 Two input INHIBIT (B = 1)
1INH3 Three input INHIBIT (B = 1)
1INH4 Four input INHIBIT (B = 1)
2INH2 Two input INHIBIT (B = 2)
2INH3 Three input INHIBIT (B = 2)
2INH4 Four input INHIBIT (B = 2)
3INH2 Two input INHIBIT (B = 3)
3INH3 Three input INHIBIT (B = 3)
3INH4 Four input INHIBIT (B = 3)
1UNIV Universal gate (B = 1)
2UNIV Universal gate (B = 2)
3UNIV Universal gate (B = 3)

MUX41 Four-to-one Multiplexer
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contains feedback nodes, these must also be initialized. If the initili-
zation is not performed, a simulation failure will occur.

QLOSIM will initialize the circuit at Time O by propagating
the initial circuit conditioms through the circuit. Once this process
is successfully completed, the dynamic input node changes are applied to
the circuit and the results are reported as selected by the user.

The simulator always scans the input data for accuracy. Several
errors can be detected by the program, but the logical correctness of the
circuit data is the user's responsibility. Error messages are summarized

in a later section.

Data Preparation

The circuit input data file is prepared prior to simulator
execution and is generally done using a text editor. The input file
consists of four parts, (1) the circuit topology, (2) the initial node
conditions, (3) the dynamic input node changes, and (4) the list of
circuit nodes to be reported. The input file is constructed using the
normal rules for FORTRAN list directed I/0.

The preparation of a data file is best illustrated using an
example, Figure A.l shows a four-valued logic circuit and the result-
ing input data file. The circuit is labeled with all information
necessary for generating the circuit topology data. The circuit top-
ology records for the example circuit are given as the first four lines
of the data file. Each of the first four lines consists of several
fields. The first field is the gate identification. The second field

is the gate type and must be one of the types given in Table A.l.
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w
>
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'—l
5]

C]
;o

3

Lﬁ

(a)

'Gl' 'MIN2' 10 'A' 'B' 'E' /
'G2' 'MIN2' 10 'B' 'Cc' 'F' /
'G3' 'MIN2' 10 'c' 'D' 'G' /
'Gli' 'MAX3' 10 IEV lFt ’G' 1
'$$t/

'A' O

'B' O

'c' 0

'D' O

'$$t /

'A' 1,2 400,3 /

'B' 100,1 200,2 300,3 /
'c' 300,3 400,2 500,1 6
'$st /

IAI YBI lcl YDV Yzl /
'$st o/

00,0 700,2

(®)

Figure A.l. Example Circuit and Input Data
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The third field is a numeric entry that gives the gate transport delay.
The remaining fields are the input and output nodes for the gate. The
gate's output node is always specified as the last node field, and the
total quantity of node fields must correspond to the particular gate
type. Up to seven node fields are allowed, but only the universal gate
utilizes seven nodes. For all other gates the "/" (forward slash) is
used to terminate the circuit topology record. The space between each
field is necessary as a field separator. The carriage return or new
line characters appearing at the end of records are ignored. The

"1$8'" /" record terminates the circuit topology data.

The second group of data records provide the circuit initiali-
zation information. Each record consists of a single circuit node and
its associated initial logic value. These records are terminated by the
nrest /M.

The third portion of the input data file is the dynamic input
node information. Only one node can be given per record. Each record
gives the circuit input node and up to five numeric time-value/logic-
value pairs. The commas are optional and, if omitted, a space must be
used as the field delimiter. When fewer than five pairs are given on a
line, the record is terminated with a "/". When a node requires more
than five entries, as is the case for node C in Figure A.1(b), additional
records are entered. The time values entered can be either absolute
time or they can be time values relative to the previous time value.
Either method can be selected, but only one method can be used for a
given data file. As before, the "'$$' /" terminator denotes the end of

the dynamic node change information.
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The last group of data records specifies the nodes to be
reported in the simulator output. A maximum of ten nodes can be speci-

fied per record. The final "'$$' /" is required.

Program Execution

It is assumed in the following that the input data file has
been prepared prior to the execution of the simulator. The notation for
the dialogue below has all user responses underlined. All responses are
terminated by typing a new line character. The simulator prompts the
user for parameter information by way of the timesharing terminal. The
simulation report, however, is sent to the line printer. If the user
desires the output report on the terminal, the ASSIGN command should be
used to redirect the output.

The simulator is invoked with the RUN command by typing
RU QLOSIM . The program types out

QUATERNARY LOGIC SIMULATOR - QLOSIM
ENTER FILE NAME CONTAINING CIRCUIT DATA:
The user responds by entering the file name of the input data file that
was prepared earlier. The next prompt requests the method of treating
the time values contained in the dynamic node change records. The
request is

HOW ARE TIME VALUES GIVEN FOR DYNAMIC LOGIC CHANGES?

1 = ABSOLUTE

2

RELATIVE TO PREVIOUS CHANGE
The user responds by entering 1 or 2 depending on how the data was pre-

pared. Next, the method of reporting is requested by
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ENTER REPORT FORMAT STYLE:

1

EACH REQUESTED NODE CHANGE REPORTED

2 = ALL NODES REPORTED AT SPECIFIED TIME INCREMENTS
If the response is 1, the simulator will print node changes as they
occur for those nodes to be reported. A response of 2 means that the
simulator will print values for all reportable nodes at successive time
values. If 2 is entered, the program will follow with a request to
enter the time value. For example, if 100 is entered, the simulator
will report node logic values at every 100 time units. Actually, the
report will occur at the time of the next logic change which is greater
than or equal to a multiple of 100 time units. The next input request
is for the rise/fall time delay between successive logic values and is
requested by

ENTER RISE/FALL TIME DELAY PER LOGIC LEVEL CHANGE:
The user response is a numeric time delay value greater than zerc. The
stop condition is selected next by

ENTER STOP CONDITION:

1 = UNTIL ALL VALUES HAVE PROPAGATED

2 = SPECIFIED TIME LIMIT

An entry of 1 will allow the simulator to propagate all input conditioms
until no further circuit changes occur. If 2 is entered, the program
will prompt for a time value entry that gives the termination time. The
second option is especially good if the user is uncertain of the sta-
bility of the circuit and needs to control the duration of the simulator

execution. The final input parameter is the selection of the timing
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diagram option. The five possibilities are requested by

ENTER TIMING DIAGRAM OPTION:

0 = NO DIAGRAM GENERATED

1 = 80 COLUMN PAGED OUTPUT DIAGRAM

2 = 80 COLUMN CONTINUOUS OUTPUT DIAGRAM
3 = 132 COLUMN PAGED OUTPUT DIAGRAM

4 = 132 COLUMN CONTINUOUS OUTPUT DIAGRAM

The options are fairly self-explanatory. The paged output diagram
option will place a page heading on each page of the timing diagram,
whereas the continuous option will not. The 80 column report places up
to six nodes across the report while the 132 colummn can print up to ten
nodes across the report page. The choices, of course, give the user
flexibility with regard to his particular printer or terminal.

Figure A.2 gives a complete execution output for a sample
circuit. This output was obtained by assigning the printer output to
the user's terminal. Parts 2 through 5 would normally comprise the por-

tion of the report sent to the line printer.

Error Condition Summary

Table A.2 gives a tabulation of the simulator error messages
and a brief supplemental description for some. Unless otherwise speci-
fied, the errors are fatal and cause immediate termination of the
simulator execution. Normally, the location of the error message in the
output report gives an indication of the invalid condition. Some of the
error conditions are the result of internal checks that are used for
debugging purposes. These error messages should not occur and are so

labeled.
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RU QLOSIM

QUATERNARY LOGIC SINULATOR - QGLOSIN

ENTER FILE NAME CONTAINING CIRCUIT DATA:
SRSFF7.DAT
HOW ARE TIME VALUES GIVEN FOR DYNAMIC LOGIC CHANGES ?

t = ABSOLUTE
RELATIVE TO PREVIOUS CHARGE

N
L}

ENTER REPORT FORMAT STYLE:
EACH REQUESTED NODE CHANGE REPORTED
2 = ALL NODES REPORTEN AT SPECIFIED TIME INCREMENTS

-—
u un

ENTER RISE/FALL TIME DELAY PER LOGIC LEVEL CHANGE:

UNTIL ALL VALUES HAVE FROPAGATED

ENTER STOF CONDITION:
= SPECIFIED TIME LIMIT

ENTER TIHING DIAGRAM OPTIOMN:

NO DIAGRAM GENERATED

80 COLUKN PAGED OUTPUT DIAGRAM

80 COLUMN CONTINUOUS OUTPUT DIAGRAM
132 COLUMN PAGED OUTPUT DIAGRAM

132 COLUXN CONTINUOUS QUTPUT DIAGRAM

»GIN - O
g u & onon

Figure A.2. 1Illustration of a Complete Simulator Output - Part 1
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=+ =< QUATERNARY LOBIC SINULATOR - LOSIH
0LOSIN INPUT DATA FILE = SRSFF7.D4T

GATE ID  GATE TYPE  BATE DELAY OO 6ATE NODESCH (33K
G1 OR2 10 R N h
62 OR2 10 5 a B
63 NHAX2 10 A NG 8
64 NMAX2 10 B o N

INITIAL NODE CONDITIONS:

NODE R LOGIC VALUE 0
NODE § LOGIC VALUE ©
NODE @ LOGIC VALUE 1
NODE W@ LOGIC VALUE 2

DYNAMIC NODE CHANGES:
NODE ID TIME VALUE TIME VALUE TIHME VALUE TIME VALUE TIME
§ 1 2 0 0 0 0 0 0 0
R 1 1 0 0 0 0 0 0 0
NODES REPORTED:
§ R a NQ A B

INPUT PARAMETER SUMHARY:
DYNAMIC CHANGE TIME VALUES ARE ABSOLUTE
ALL (REQUESTED) NODE CHANGES REPORTED
RISE/FALL TIME PER LOGIC LEVEL CHANGE = 1
SINULATION STOPS WHEN ALL CHANGES HAVE PROPAGATED
TINING DIAGRAM GENERATED

END INPUT DATA REPORT

Figure A.2. Illustration of a Complete Simulator Output - Part 2

4

VALUE
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QUATERNARY LOGIC SIMULATOR - QLOSIM

SRSFF7.DAT INITIAL CIRCUIT CONDITIONS:

NODE R INITIAL VALUE = 0
NODE NG INITIAL VALUE = 2
NODE A INITIAL VALUE = 2
NODE S INITIAL VALUE = 0
NOBE @ INITIAL VALUE =1
NODE B INITIAL VALUE = 1

RUATERNARY LOGIC SIMULATOR - QLOSIH
SRSFF7.DAT SIMULATION RESULTS:

TINE NODE  PREV. VALUE  NEW VALUE
t 8 0 1
1 R 0 1
2 S ! 2

L 2 3
12 B 1 2
13 B 2 3
218 1 0
22 N@ 2 1
23 N@ 1 0
3t B 3 2
32 A 3 2
33 A 2 1
41 NGO 0 1
2 @ 0 1
43 @ 1 2
32 R 2 3
33 B 3 2
62 N@ 1 0
63 NB 0 1
SIMULATION TERMINATED AT TIME 63

Figure A.2. Illustration of a Complete Simulator Output -~ Part 3
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QUATERNARY LOGIC SINULATOR - QLOSIM

SRSFF7.DAT

FILE

TINING DIAGRAN

Na

10

15

20

25

30

35

Illustration of a Complete Simulator Output - Part 4

Figure A.2.
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40
45

FILE = SRSFF7.DAT

uUATERNARY LOGIC SIMULATOR - QLOSIM

TIMING DIAGRAM
NG

30

t 2 3 01

0

T2 3 0 1 3

0

oy

2 3

1

TIME 0

Illustration of a Complete Simulator Output - Part 5

395

60
CPU TIME: 1.00 ELAPSED TIME: 5:22.45

END OF EXECUTION
EXIT

Figure A.2.



Error No.

S

10

11

12

13

15

16

17

18

19

21

22

170

Table A.2., Error Message Summary

Message Text

Comment

MISSING GATE ID, TYPE, OR DELAY

INVALID GATE TYPE

INVALID NODE ID OR NODE QTY

CIRCUIT ARRAYS CAPACITY EXCEEDED

INITTIAL CONDITION NODE INVALID

INITTAL CONDITION LOGIC VALUE INVALID

TIME-EVENT QUEUE OVERFLOW

DYNAMIC NODE ID INVALID

DYNAMIC CHANGE LOGIC VALUE INVALID
DYNAMIC NODE NOT INITIALIZED
REPORT NODE INVALID - SKIPPED
PREMATURE END OF INPUT DATA

INITTALIZATION SIMULATION FAILURE

INVALID GATE INDEX

TIME~EVENT QUEUE STRUCTURE PROBLEM
TIME-EVENT QUEUE OUT OF SEQUENCE
LINK ERROR BETWEEN NODE & T~E LISTS
LOGIC CHANGE GENERATED > 4

GATE OUTPUT EVALUATION INVALID

Check input data.

Type is not one of
those given in

Table A.l.

Check node

fields.

More than 100 gates
or 200 nodes.

Check node

Check node

Initialize

Warning.

Check node
zation.

Should not

. Should not

Should not
Should not
Should not

Should not

ID.

ID.

the node.

initiali-

occur.

occur.

occur.

occur.

occur.

occur.



APPENDIX B

SIMULATOR SOURCE LISTING
The QLOSIM simulator FORTRAN source listing is provided on the
following pages. Note that the software is copyrighted and is the
property of the Western Electric Company, Incorporated. Permission to

use the software for research or other academic purposes is freely granted.

171
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QUATERNARY LOGIC SINULATOR - QLOSIH
DECSYSTEM-10 VERSION
ISSUE 1. MARCH, 1979
ISSUE 1.1 MAY, 1979 - ADD TIMING DIAGRAM GENERATOR.
AUTHOR HP TULL
COPYRIGHT APRIL 1,1979 HONTE P. TULL
ALL RIGHTS TO THIS PROGRAM AND ASSOCIATED SUBROUTINES
BELONG 70 WESTERN ELECTRIC CO, INC,

OO0DOoOOO00O0

IHPLICIT INTEGER (4-2)
REAL*8 FILNAN
C NODE LIST ARRAYS
COMMON /NLIST/NLNODE(200),NLIGPT(200),NLLVAL (200,
INLTEPT(200)
C GATE LIST ARRAYS
COMMON /GLIST/GLGATE(100),GLTYPE(100),6LDLAY(100),
{GLINPT{100),6LONPT{100)
C TIME-EVENT LIST - DOUBLY LINKED
COMMON /TELIST/TETIME(S00),TENPTR(300),TELVAL(S00),
ITENCEL(500),TENCSN(500)
C INPUT NOBE LIST
COMMON /INLIST/INPTR(300),INNGPT{(300)
C MISCELLANEDUS COMMON AREAS
COMHON /AREAI/NLNUM,GLNUM, INNUM,ERR,RPTSW,RPTIME,
1IHVTIN, STOPSY,STOPTH, GATEMX, NLHAX, GLKAX , INHAX
COMMON /AREA2/TENUM,TELDW,TENAX,TEHIGH, TEFREE, TINTYP
c
DINENSION GTPTABR(70),GNRATY{70)
C
C GATE TYPE TABLE
DATA GTPTAB /“MAX2‘,"HAX3‘, 'MAX47, "MIN2-, "MIN3”, MIN4",
1“COMP, “AND2”, “AND3’, “AND4“,“OR2“, OK3“, OR4", CYCL1",
“CYCL27,“CYCL3~, PLUS”, "NMAX2", “NMAX3", "NHAX4", "NMINZ’,
NMINI, "NMIN4*, “NAND2<, NAND3", NAND4~“, NOR2, NOR3",
“NOR4~, "NPLUS”,71LTOO", "1LTI¢ ", L7227, “ILT33, "1LTO1 ",
SILTO27, “ILTI27, LT3, 1LT237,72LT00", “2L T, "2LT22 7,
“2LT337, 721701, 2LT027,72LT127, 2L T3, “2L 7237, "3LT00,
“3LTH17, " 3LT227, 3LT337,73LT01,“3LTO2,“3LTI127,“3LT13",
“3LT237,“VINH2Y,“1INH3", 1 INH4~,“2INH2Z, 2INH3", "2INH4",
9<3INH27,"JINH3“,“3INH4A", “TUNIV/,72UNIV-, “JUNIV-, "NUX41"/
C GATE NDDE QUANTITY TABLE

~J O~ N B Cd D

=]

DATA GNRTY/3,4,5,3,4,5,2,3,4,5,3,4,5,2,2,2,3,
13,4,5,3,4,5,3,4,5,3,4,5,3,2,2,2,2,2,2,2,2,2,
22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
33,4,5,3,4,5,3,4,5,7,7,7,8/

€
€ INITIAL DIALOGUE - DETERMINE SOURCE DF DIATA
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C
100 HRITE(S,1)
1 FORMAT (10X, "GUATERNARY LOGIC SIMULATOR ~ QLOSIN-,//)

WRITE(S,2)

2 FORMAT(” ENTER FILE NAME CONTAINING CIRCUIT DATA:",/)
READ(S,3)FILNAN

3 FORMAT(A10)

€ ENTER RUN TINE PARAMETERS

101 WRITE(5,11)

1 FORMAT(” HOW ARE TIME VALUES GIVEN FOR DYNAMIC LOBIC”,
1 CHANGES 77,/,5X,”1 = ABSOLUTE*,/,

25%,2 = RELATIVE TO PREVIOUS CHANGE,/)
READ(S,*)TINTYP
IF(TINTYP.NE.1 .AND. TINTYP.NE.2)G0 TO 101
102 WRITE(S,4)
FORMAT(* ENTER REFORT FORMAT STYLE:’,/,5X,
171 = EACH REQUESTED NOLE CHANGE REFORTED’,/,SX,
22 = ALL NODES REPORTED AT SPECIFIED TIME INCRENENTS,/)
READ(S,*)RPTSH
IF(RPTSH.ER.1)G0 TO 110
IF(RPTSW.NE.2)G0 T0 102

112 WRITE(S,4)

4 FORMAT( ENTER TIME INCREMENT:”,/)
REAL(S,*)RPTIHE )
IF(RPTIKE.GT.0)G0 TD 110
URITE(5,15)

15 FORMAT( VALUE MUST BE POSITIVE®)

50 TO 112

110 WRITE(5,8)

8 FORMAT(* ENTER RISE/FALL TIME DELAY PER LOGIC LEVEL”,
1/ CHANGE:*,/)

READ(S,*) DHVTIH

IF (DMYTIN.GE.0)GD TO 111
WRITE(5,15)

60 TO 110

11 WRITE(S,9)

9 FORMAT(* ENTER STOP CONDITION:®,/,5X,

171 = UNTIL ALL VALUES HAVE PROPAGATEL®,/,5X,
22 = SPECIFIED TIHE LINITY,/)
READ(S,*)STOPSY
IF(STOPSW.EQ.1)G0 TO 120
IF(STOPSW.NE.2)60 T 111
WRITE(S,10)
10 FORMAT (< ENTER STOP TIME:,/)
READ(5,*)STOPTH

20 WRITE(5,16)
14 FORMAT(” ENTER TINING DIAGRAN OFTION:®,/,5X,

170 = NO DIAGRAM GENERATED”,/,3X,
271 = 80 COLUMN PAGED OUTPUT DIAGRAM®,/,3X,
372 = 80 COLUMN CONTINUOUS OUTPUT UIAGRAM",/,3X,
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473 = 132 COLUMN PAGED DUTPUT DIAGRAM",/,3X,
34 = 132 COLUNN CONTINUOUS OUTPUT DIAGRAM®,/)
READ(S,#)FRMAT
IF(FRMAT.LT. 0 .OR. FRMAT.6T.4) G0 TO 120
IF(FRHAT.ERQ.0) GO TD 126
C DELETE OLD TIMING DATA FILE
OPENCUNIT=21,DEVICE="DSK",ACCESS5="SEQRIN",
IFILE="TINING.DAT”,ERR=121)
CLOSE(UNIT=21,DISPOSE="DELETE")
121 OPEN(UNIT=21,DEVICE="DSK”,ACCESS="SEQOUT/,FILE="TINING.DAT")
C
C INITIALIZE NODE, GATE, & TIME-EVENT LISTS
126 GATEMX=70
NLNUM=0
NLHAX=200
GLNUM=0
GLHAX=100
INNUH=D
INHAX=300
TENUN=0
TEHAX=5090
TELON=1
TEHIGH=1
TEFKREE=1
ERR=1
CALL LINIT

£
C READ IN CIRCUIT DATA & LOAD NODE & GATE LISTS
CALL INDATA(FILHAM,GTPTAB,GNATY,FRHAT)
C
C INITIALIZE THE CIRCUIT
CALL CINIT
13 FORMAT(5X,A410,” INITIAL CIRCUIT CONDITIONS:®,/)
LINE=99
TINE=0
DO 130 J=1,NLNUM
IF(LINE.LE.50)G0 TO 125
WRITE(3,14)
14 FORMAT (1H1,22X, “QUATERNARY LOGIC SIMULATOR - GLOSIN®,/)
WRITE(3,13)FILNAH
LINE=)
125 LYAL=HOD (NLLVAL (J),256)
WRITE(3,12)NLNODE(J),LVAL
12 FORMAT(SX, "NODE *,45,° INITIAL VALUE = “,I1)
LINE = LINE + 1
IF{LINE.LE.50)60 TO 135
WRITE(3,14)
WRITE(3,13)FILNAK
LINE = 9
135 IF{FRHAT.ER.0) 6O 70 130
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WRITE(21,17)TINE,NLNODE (J),LVAL
FORMAT (17,45,11)
CONTINUE

C SINULATE THE CIRCUIT

(X

c
500

fyrd

CALL SINUL (FILNAH,FRHAT)

IF(FRMAT.EQ@.0) GO TD 500
CLOSE(UNIT=21)
CALL TIMGEN(FILNAM,FRMAT)

CALL EXIT
END

£
£ LINIT ROUTINE INITIALIZES THE TIME-EVENT DATA STRUCTURE.

[ e T ur B wv ]

£

100
C

110

[ B I o]

[or N or BN o Bl o

THE TIME-EVENT LIST IS DOUBLY LINKED. ~1 IS5 KEPT IN
UNALLOCATED T-E TIME CELLS.

SUBROUTINE LINIT

IMPLICIT INTEGER (A-2)

COMMON /NLIST/NLNODE(200),NLIGPT(200),NLLVAL{200},
INLTEPT(200)

COMMON /TELIST/TETIME(S00),TENPTR(S00),TELVAL(500),
TTENCEL(500),TENCSN(500)

TENCSN(1)=0 ; TETIME(1)=~1
TENCEL(1)=2

TENCEL{500)=0 ; TETINE(500)=-1
TENCSN(500)=499

DO 100 J=2,499

TETIME(J)==1

TENCEL(J)=J+1

TENCSN(J)=0

CONTINUE

CLEAR NOIE LIST LOGIC VALUE ARRAY
B0 110 J=1,200

NLTEPT(J)=-1

NLLVAL(J)=0

CONTINUE

RETURN

END

INDATA ROUTINE READS THE CIRCUIT UESCRIPTION DATA & STORES
THE DATA IN THE VARIDUS STRUCTURES. ALL DATA IS REFORTEL.
ALL INITIAL CONDITIONS ARE FROPAGATED THRU THE CIRCUIT TO
ESTABLISH INITIAL STATIC NODE VALUES.

SUBROUTINE INDATA(FILNAN,GTPTAR,GNATY,FRHAT)
IMPLICIT INTEGER (A-2)
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C CLEAR
100

101

102
3

176

REAL*#8 FILNAN

COMMON /NLIST/NLNODE(200),NLIGPT(200),NLLVAL(200),
INLTEPT(200)

COMMON /GLIST/GLGATE(100),GLTYPE(100),6LBLAY{100),
tGLINPT(100),6LONPT(100)

COMMON /TELIST/TETIME(S00),TENPTR(500),TELVAL(500),
I TENCEL (300),TENCSN(300)

COMMON /INLIST/INPTR(300),INNGPT(300)

CONMON /AREA1/NLNUM,GLNUM, INNUM,ERR,RFTSH,RPTIME,
1DMVTIN,STOPSW,STOPTM,GATENX, NLHAX,GLMAX, INMAX
COMMON /AREA2/TENUN,TELOW, TEMAX,TEHIGH,TEFREE, TINTYP

DIMENSION NODE(7),GTPTAB(70),GNGTY(70),
INIDLST{(10),DTIKE(S) DVAL(T)

OPEN (UNIT=20,LEVICE=*DSK*,ACCESS=*SEQIN',FILE=FILNAN)
WRITE(3,2)FILNAK

LINE=0

FORMAT(1H1,22X, QUATERNARY LOGIC SINULATOR - GLOSIH®,//,
118X, 0LOSIN INFUT DATA*,10X,°FILE = *,A10,//,

22X,7GATE ID  GATE TYPE  GATE DELAY  <3<3{3<a(3d37,
3/GATE NODES{H<3¢3<<><3)

INPUT NODE LIST

DO 101 J=1,7

NODE(J)="

CONTINUE

READ(20,* ,END=999)GATE ,GTYPE,GILAY,NODE

IF(GATE.EQ.“$$  *)B0 TO 200

LINE=LINE+1

IF(LINE.LE.50)G0 T0 102

WRITE(3,2)FILNAM

LINE=0

WRITE(3,3)GATE,GTYPE,GILAY ,NOUE
FORMAT(4X,A5,6X,A5,8X,15,5X,7{A5,1X))

C VERIFY INPUT DATA

IF(GATE.ER.” )60 TO 400
IF(GTYPE.EQ." 260 TO 400
IF(GDLAY.ER.0)GD 7O 400

C FIND GATE IN GATE TABLE

DO 110 J=1,GATEMX
IF(GTPTAB(J) .EQ.GTYPEXGD TO 129

110 CONTINUE
C GATE TYPE INVALID
60 TO 410
C
120 H=GNATY(J)
g 130 K=1,d
IF(NORECK) LER.” 7260 TO 420
130 CONTINUE

IF(H.ER.7) G0 TO 131
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L (NUBE(MET ) GNEL S TIBU LY 420
C LOAD GATE ARRAY
131 BLNUM=GLNUH+1

IF(GLNUM.GT.GLHAXIGO TD 430
GLGATE(GLNUH)=GATE
GLTYPE(GLNUM)=
GLDLAY(BGLNUM)=GIILAY
C LOCATE WODES IN NODE LIST - K COUNTS NUM OF NODES IN RECORD
K =1
135 CALL FNDNBD(NODE(K),L)
IF (L.NE.O)GD TD 130
{ NODE NOT FOUND IN NODE LIST - ADD IT
NLNUM=NLNUH+1
IF(NLNUM.GT.NLHAX)GO TO 430
NLNODE (NLNUM)=NODE(K)
NLLVAL (NLNUM) =99
NLIGPT(NLNUM)=D
IF{K.ER.M)GO TO 145 :
€ SAVE INPUT NODE DATA IN THE INPUT NODE LIST
NLIGPT(NLNUM)=GLNUN
INNUM=INNUH+1
IF(INNUH.GT.INMAX)GO TO 430
INFTRCINNUH) =NLNUN
INNGPT(INNUM)=0
K=K+1
6O TO 135
C FINISH UPDATE OF GATE LIST FOR QUTPUT WNODES & INLIST POINTERS
143 GLONPT(GLNUM)=NLNUN
GO TO 147
146 GLONPT(GLNUM) =L
L PACK INPUT NODE @TY UITH INPUT NODE LIST POINTER
147 GLINPT(GLNUM)=C CINNUN - (H-2)) * 254) + (¥-1)
GO TO 100

[y ]

£ NODE WAS FOUND IN NODE LIST - UPDATE INPUT NODE LIST &
€ CHANGE FOINTER 70 PREVIQUS GATE ON THIS NODE.
C IF K = M, THIS 15 AN OUTFUT NODE.
150 IF(K.EQ.H)GD TO 146

INNUM=INNUN+1

TF(INNUR.GT . INHAXIGO TO 4390

INFTRCOINNUM) =L

INNGPT(INNUM)=NLIGPT(L)

NLIGPT(L)=GLNUH

K=K+1

GO TO 135

INFUT INITIAL CONDITIONS
00 LINE=LINE+3
IF(LINE.LE.S0)G0 TD 205
LINE=3
WRITE(3,5)FILNAN

2% B qu I o]
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[ &

FORMATC1HY,22X, "QUATERNARY LOGIC SIHULATOR - BLOSINY,//,
118X, "GLOSIN INPUT DATA,10X,“FILE = “,A10)

205 NRITE(3,4)
8 FORMAT (1HO,* INITIAL NODE CONDITIONS:®,/)
210 REAIN20,%,END=999)HIL,LVAL
IF(NID.ER. $$  “)G0 TG 230
LINE=LINE+1
IF(LINE.LE.50)60 TO 211
LINE = 0
WRITE(3,5)FILNAN
WRITE(3,4)
an WRITE(3,8)NID,LVAL
3 FORMAT (10X, “NODE  “,A5,5X, "LOGIC VALUE -,I1)

IF(LVAL.LT.0 .OR. LVAL.GT.3)G0 TO 460
C SCAN NODE LIST FOR VALID NODE

CALL FNDNODNID,J)

IF(J.EQ.0)GD TO 450

c
C ADD INITIAL VALUE CONDITION TO NOIE LIST
229 NLLVAL (J)=LYAL

GO TO 210
C
C INPUT DYNAMIC LDGIC CHANGES. UPDATE TIME-EVENT QUEUE
C FOR EACH CHANGE., ERROR EXISTS IF A DYNAMIC CHANGE
C IS SPECIFIED FOR A NON-INITIALIZED NOLE.
230 LINE=LINE+6

IF(LINE.LE.50)60 T 235

LINE=3

WRITE(3,5)FILNAH
35 WRITE(3,9)

FORMAT(1HO,” DIYNAMIC NOLE CHANGES:*,//,

12X, “NODE ID¥,5(2X, TIHE  VALUE®))
C CLEAR PREVIDUS NODE VARIABLE - FNID

PNID=" '
C CLEAR INPUT TIME & LOGIC VALUE LISTS
240 10 241 J=1,5

DTINE(J) =0

DVAL(J)=0
241 CONTINUE
READ(20,%,END=999)NID, (OTINE(J),DVAL (J),d=1,5)
IF(NID.EQ.“$$  “)GO TO 300
LINE=LINE+!
IF{LINE.LE.50)G0 TO 245

IR V]

LINE=4
URITE(3,5)FILNAM
URITEC3,9)
245 WRITE(S,11)NID, (DTINECJ),DVAL (D), d=1,5)
1y FORMAT(3X,A5,3X,3(14,3X,I1,4X))
C VERIFY INFUT DATA - K COUNTS QTY OF LOGIC CHANGE ENTRIES
K=0

o 250 J=1,3
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IF(DVALCD) LT.O .OR. DVALCD).6T.3)60 TD 490
IF(OTIME(J) LE.O)BD TD 240
K=K+1
30 CONTINUE
FIND NDDE IN NODE LIST
60 CALL FNDNOD(NID,J )
IF(J.EQR.0)GO TO 480
C NODE WAS FOUND ~ CHECK THAT IT WAS INITIALIZED
IF(NLLVALYJ).ER.99)GD TO 500

3O

INSERT DYNAMIC CHANGES IN T-E GUEUE. HULTIVALUED

T-E QUEUE INSERT SUBROUTINE PERFORMS THE QUEUE INSERTION.

80 IF(K.ER.0)G0D TO 240

CHECK IF PREVIOUS NODE IS SAHE AS CURRENT NODE
IF(PNID.EQ.NID)GO TD 281
ITIHE=0
PUAL=NLLYAL (J)

281 g 290 L=1,K

IF(TIMTYP.ER.1)G0 TO 283
ITIME=ITIHE+DTIHE(L)

c
C
C CHANGES ARE BROKEN DOWN INTO INDIVIDUAL T-E ENTRIES.
c
2
C

G0 TO 284
283 ITIHE=DTIAE(L)
C COMFUTE HVAL = NUMKER OF LOGIC LEVEL CHAMGES
284 MVAL=ABS(PYAL - DVAL(L))

IF{MVAL.ER.0)GO TO 290
DO 285 H=1,HVAL

C DETERMINE DIRECTION OF CHANGE
IF{FVAL.GT.DYAL{L))GO TO 286
NVAL=FUAL +#

G0 70 287
284 NVAL=PUAL-H
287 CALL TEINST(J,ITIHE,NVAL)

ITIHE=ITIHE+DHVTIH
2835 CONTINUE
PUAL=DVAL (L)
2990 CONTINUE
PNID=NID
GO TD 240

READ IN NODES TO BE REPORTED
0 IF(LINE.LE.35)60 T0 310
WRITE(3,5)FILNAM
310 URITE(3,12)
12 FORMATC(IHO,” NODES REFORTED:",/)
C CLEAR INPUT NODE LIST
350 o 315 L=t,10
NIDLST(L)="
313 CONTINUE
READNC20,* END=3460) (NIDLST(J),J=1,10?
IF(NIDLST{1).ER."$%  “)GO TO 340
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0o 320 “=1,10

IF(NIDLST(L).EQ.” 2)G0 TO 320

CALL FNIINOD(NIDLST(L),J)

IF(J.NE.O)GD TO 3235

12 - KREPORT NODE INVALID - NON-FATAL

ERR=0

ERRNO=12

CALL ERROR(ERRNO,“REPORT NODE INVALID - SKIFPED 7)
ERR=1

60 1O 320

C SET REPORT FLAG IN NODE LIST

325
320
|5

J

c

NLLVAL{J)=NLLVAL(J) + 256
CONTINUE
WRITE(3,15)(NIDLST¢J),d=1,10)
FORMAT(SX,10(A5,2X))

60 TO 330

C FINISH PARAMETER REPORT

360
29

16

3635
17
370
18

380
20

390

391
a7
395
21

£

WRITE(3,25)
FORMAT(1HO,* INPUT PARAMETER SUMMARY:®)
IF(TIMTYP.EQ.1)60 TO 34!

WRITE(3,22)

FORMAT(1HO,5X, “DYNAHIC CHANGE TIME VALUES ARE RELATIVE®)
50 TO 362

URITE(3,23)

FORHAT(1HO,5X, "DYNAMIC CHANGE TIHE VALUES ARE ABSOLUTE)
IF(RPTSW.EQ.1)G0 TO 365

WRITE(3,14)RPTINE

FORHAT (1H9,5X, “REPORT GENERATED EACH *,I4,° TIHE UNITS®)
50 T0 370

WRITE(3,17)

FORHAT(1HO,5X, “ALL (REQUESTED) NONE CHANGES REPORTED®)
WRITE(3,18) IKVTIH

FORMAT(1HO,5X, “RISE/FALL TINE PER LOGIC LEVEL CHANGE = -,I3)
IF (STOPSW.ER.1)50 TO 380

WRITE(3,19)STOPTH

FORMAT(1HO,5X, “SIHULATION STOPS AT TINE = <, 17)

50 70 390

WRITE(3,20)

FORMAT(1HO,5X, “SIHULATION STOPS WHEM ALL CHANGES HAVE-,
1 PROPAGATED)

IF(FRNAT.EQ.0) GO TO 391

WRITE(3,26)

FORHAT(1HO,5X, “TIHING DIAGRAM GERERATED®)

G0 TO 395

WRITE(3,27)

FORMAT(1HO,5X, “NO TINING DIAGRAM GENERATED’)

WRITE(3,21)

FORMAT (1HO, 20X, “END INFUT DATA REPORT)

RETURN
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CONDITIONS

I - INVALID GATE ID, GATE TYPE, OR DELAY YALUE - FATAL
ERRND=1

CALL ERROR(ERRNO,“MISSING GATE ID, TYPE, OR DELAY
2 - INVALID GATE TYFE - FATAL

ERRND=2

CALL ERRORCERRNOD,”INVALID GATE TYPE

3 - INVALID NODE ID - FATAL

ERRND=3

CALL ERROR(ERRNO,“INVALID NODE ID OR NODE QTY

4 - CIRCUIT ARRAYS CAFACITY EXCEEDED - FATAL
ERRND=4

CALL ERROR(ERRNO,“CIRCUIT ARRAYS CAPACITY EXCEEDED
& - INITIAL CONDITION NODE INVALID - FATAL

ERRNO=4

CALL ERROR(ERRNO, INITIAL CONDITION NODE INVALID

7 ~ INITIAL CONDITIODN LOGIC VALUE INVALID - FATAL
ERRND=7

CALL ERROR(ERRNO, INITIAL CONDITION LOGIC VALUE INVALID
? ~ DYNAMIC NODE ID INVALID - FATAL

ERRND=9 .

CALL ERROR(ERRNO, DYNAMIC NODE ID INVALID

10 - DYNAHIC CHANGE LOGIC VALUE INVALID - FATAL
ERRNO=10

CALL ERROR(ERRNO, DIYNAMIC CHANGE LOGIC VALUE INVALID
11 - DYNAMIC CHANGE NODE NOT INITIALIZED - FATAL
ERRNO=11

CALL ERROR(ERRNO, DYNAHIC NODDE NOT INITIALIZED

13 - PREMATURE END OF INPUT DATA - FATAL

ERRND=13

CALL ERROR(ERRNO, PREMATURE END OF INPUT DATA

END

FIND NODE SUBRDUTINE - FNDNOI.

NODE LIST SEARCHING FOR SNODE.

RETURNS K=0 IF NOT FOUND, ELSE K POINTS
NODE LIST CELL FOUND.

SUBROUTINE FNDNOD{SNODE,K)

INPLICIT INTEGER (A-1)

COMMON /NLIST/NLNOLDE(200),NLIGPT(200),NLLVAL(200),
INLTEPT(200)

COMNON /AREA1T/NLNUM

K=0
0 100 J=1,NLHUN
IF(SNODE.EQ.NLNODE{J))GO TO 110



100

119
120
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CONTINUE
60 TO 120
K=J
RETURN
END

FROPAGATES INITIAL LOGIC VALUES THRU THE CIRCUIT

C
C
C CIRCUIT INITIALIZATION ROUTINE ~ CINIT.
C
c

TO PRODUCE INITIAL STATIC CIRCUIT QUTPUTS.

T
A

C
C
£
c
100

SUBROUTINE CINIT

INPLICIT INTEGER (A-2)

COMMON /NLIST/NLNGDE(200),NLIGPT(200),NLLYAL(200),
IRLTEPT(200)

COMMON /GLIST/GLGATE(100),GLTYFE(100),BLBLAY(100),
IBLINPT(100),GLONPT(100)

COMMON /TELIST/TETIME(S00),TENFTR(500),TELVAL(S00),
ITENCEL(500), TENCSN(3500)

COMMON /INLIST/INPTR(300),INNGPT(300)

COMMON /AREA1/NLNUH,GLNUN, INNUM,ERR,RPTSU,RFTIHE,
1DWYTIN,STOPSW,STOPTH,GATEHX , HLMAX,GLHAX, INMAX
COMMON /AREA2/TENUM,TELOW,TEMAX,TEHIGH, TEFREE,TIATYF
DIMENSION NVAL(4)

0 INITIALIZE CIRCUIT, SCAN GATE LIST AND SIMULATE UNTIL
LL GATES HAVE ESTARLISHED AN DUTPUT VALUE.

FOUND=0

ADLED=0

DD 200 GCTR=1,GLNUH
NPTR=GLONFT(GLTR)
H=MOD(NLLYAL{NPTR)Y,256)
IF(M.NE.99)G0 TD 200
FOUND=1

£ QUTPUT NODE HAS NGO ESTABRLISHEL WALUE, FIND INPUT NOLES.
C UNFACK INPUT NODE FOINTER & INPUT NODE GTY. (MODULOD 236)

K=GLINFT{GCTR)
INLFTR=K / 234
INLQTY=NOD(K,256)

£ CHECK IF INFUT NODES HAVE ESTABLISHED VALUES & LOAD

P

120

UVALUES IN NUAL ARRAY.

DD 120 K=t,INLQTY
NFTRI=INPTR{INLPTR+(K-1))
M=MOD(NLLVAL{NPTR1),236)
IF{M.EQ.?9)60 TO 200

NVAL (K)=H

CONTINUE

€ ALL INFUTS HAVE A VALUE. CONWPUTE GATE FUNCTION.

C UFDATE DUTFUT NDDE VALUE. PRESERVE REPORT F

CALL GEVAL(GLTYPE(GCTR),NVAL,LYAL)
LaG.
343

NLLVAL{NPTR)=( {NLLUALINPTR) / 238) * 2 = LYAL
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ADDED=1
200 CONTINUE
C CHECK IF ANY NEW NODES FOUND & ANY NEW NODES ADLEL.
IF(FOUND.EB.0)GO TO 250
IF (ADDEL.ER.0)GD TO 210
C MAKE ANDTHER PASS
GO TO 100
€
C ERROR 15 - NODE WAS FOUND RUT NO NODES ADDEDL - FATAL
210 ERRNO=15
CALL *ERRORCERRNO, "INITIALIZATION SIHULATION FAILURE

c
230 RETURN
END
C
»
C GATE EVALUATICN ROUTINE - GEVAL.
C EVALUATES THE QUTFUT FUNCTION FOR EACH TYPE OF GATE.
c

SUBKOUTINE GEVAL{GTYFE,NVAL,LVAL)

IHPLICIT INTEGER (A-1)

COMMON /AREA1/NLNUM,GLNUN, INNUN, ERR
DIMENSIDN NVAL(8),MAXTEL(4,4),HINTEL(4,4),
IANDTEL(4,4) ,ORTBL(4,4)

c
DATA MAXTEL/0,1,2,3,1,1,2,3,2,2,2,3,3,3,3,3/
DATA HINTEL/0,0.0,0.00101,1,0,1.2,2,001,2.3/
IATA ANDTEL/0,0,0,0,0,1,0,1,0,0,2,2,0,1,2,3/
DATA ORTEL /9,1,2,3,1,1,3,3,2,3,2,3,3,3,3,3/
C
C INCREMENT EACH LOGIC VALUE PASSED. THEY WILL BE IN A RANGE
C FROM 1 - 4 AFTER INCKEHENTING TO USE FOR TAELE SUESCRIPTS.

o 110 J=1,4
NVAL ) =NVAL () +1

119 CONTINUE
LVaL=0

C BRANCH 7O INDIVIDUAL GATE ROUTINES
60 10 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
116,17,18,19 20,21,22,2 ,24 35,26,27,28,29,
"30.41,4..33 34,35,36,37,38,39,
331,32,33,34,35,34, 3,.38 39,
431,32,33,34,35,34,37.38,39,
540,41,42,40,41,42,40,41 4~,43 43,43,44) ,GTYPE
60 70 5090

C 2-INFUT HMAX GATE

1 LUAL=MAXTEBL (NVAL (1), NVAL(2))
G0 TO 100

L 3-INPUT MaX GATE

2 J=MAXTEL (NVAL{T),NVAL(2)) + 1
LVAL=RAAXTRL{J, NVALE3))
50 Tu 100
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€ 4-INPUT HAX GATE

3 J=HAXTEL(NVAL(1),NVAL(2)) + 1|
K=MAXTEL(NVAL(3) ,NVAL(4)) + 1
LUAL=HAXTBL (J,K)

60 TO 100

C 2-INPUT HIN GATE

4 LYAL=HINTEL{NVAL(1),NVAL(2))
GO T0 100

C 3-INPUT MIN GATE

5 J=MINTBL(NVAL(1),NVAL(2)) + 1
LVAL=MINTBL(J,HVAL(3))
GO TD 100

C 4-INPUT HIN GATE

4 J=MINTEL(NVAL (1), 8VAL(2)) + 1

K=MINTEL (NVAL(3) ,NVAL{4)) + 1
LUAL=AINTBL(J,K)

60O TO 100

€ PSEUDO-COMPLEMENT GATE

7 LUAL=3 - (WVAL{1) - 1)
G0 TO 100

C 2-INPUT AND GATE

8 LVAL=ANDTRL ONVAL (1) ,NVAL(2))
GO TO 100

C 3-INPUT AND GATE

J=ANDTBL(NVAL{1),NVAL(2)) + 1

LUAL=ANDTEL (J, NYAL{3))

60 TO 100

C 4-INPUT AND BATE

10 J=ANDTEL(NVAL(1),NVAL(Z2)) + 1
{=ANDTBL{NVAL{3),NVAL(4)) + 1
LVAL=ANDITEL{ J,K)
GO 70 100

£ 2-INFUT OR GATE

i1 LUAL=ORTEL (NVAL(1),NVAL(2))
60 70 1090

€ 3-INPUT OR GATE

12 J=ORTHL{NVAL (1), NVAL(2)) + |
LUAL=0RTRL{J,NVAL(3))
60 TO 100

C 4-INFUT OR GATE

13 J=ORTRL(NVAL (1) ,NVAL(2)) + 1
K=ORTBLCNVAL(3) ,NUAL(4)) +
LVAL=0RTBL (J,K)
GO TO 100

C CYCLE 1 GATE

[4 LVAL=HOD((NVAL{1)-1)+1,4)
GO TO 100

C CYCLE 2 GATE

13 LUAL=MODI( (NVAL(1)-1)+2,4)
G0 TO 100

€ CYCLE 3 GATE

~O
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16 LVAL=HOD((NVAL(1)-1)+3,4)
G0 70 190

C PLUS GATE

17 LYAL=(NVAL(1) = 1) + (NVAL(2) - 1)
IF(LVAL.GT.3) LVAL=3
50 T0 100

C 2-INFUT NOT MAX GATE

18 LYAL=3 - (HAXTBLINVAL(1),NVAL(2)))
60 TO 100

C 3-INPUT NOT HMAX GATE

19 J=MAXTBLINVAL{1) ,NVAL(D)) + |
LVAL=3 - (HAXTBL(J,NVAL(3)))
GO TO 100

£ 4-INPUT NOT NAX GATE

20 J=MAXTBLINVAL(1),NVAL(2)) + 1

K=MAXTEL{NVAL{3) ,NVAL{d)) + 1
LVAL=3 - (MAXTBL(J,K))
GO TO 100

C 2-INPUT NOT HIN GATE

a1 LVAL= 3 =~ (HMINTBLONVAL(1),NVAL(2)))
G0 70 100

C 3-INPUT NOT MIN GATE

22 J=MINTBLONVAL(1) ,NVAL(2)) + 1
LVAL= 3 - (MINTBL(J,NVAL(3)))}
G0 TD 100

C 4-INPUT NOT HIN GATE

3 J=MINTRLONVAL (1) ,NVAL(2)) + 1
K=MINTHBL{NVAL(3),NVAL{4)) + 1
LVAL= 3 - (MINTRL(J,K))
GO TO 100

L 2-INPUT NAND BATE

24 LVAL= 3 - (ANDTEL(NVAL(1),NVAL(2)))
60 TO 100

€ 3-INPUT NAND GATE

23 J=ANDTRLINVAL{1) ,NVAL(2)) + 1
LYAL= 3 - (ANDTBLCJ,NVAL(3}))
GO T0 100

C 4-INFUT NAND GATE

26 J=ANITEL{NVAL (1) ,NVAL(2)) + 1
K=ANDTBL(NVAL(3),NVAL(4)) + 1
LVAL= 3 - (ANDTBL{J,K)}
60 TO 100

£ 2-INFUT NOR GATE

7 LVAL= 3 - (ORTEL(NVAL(1),NVAL(Z2)))
60 TO 109

€ 3-INFUT HOR GATE

28 J=ORTBL(NVAL{1),NVALC2)) + 1
LVAL= 3 - (DRTBL(J,NVAL{3)))
GD 70 100

£ 4-INFUT HOR GATE

a9 J=ORTEL(NVALC(1) ,NVAL(2)) + 1
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K=URIBL(NVAL(S) ,NVAL(4)) + 1
LvaL= 3 - (ORTRL(J,K))

60 TO 100
£ NOT PLUS
20 LVAL = (NVALC1) = 1) + (NVAL(2) - 1)

IF(LUAL.G6T.3) LVAL=3
LVAL = 3 - Lval
GO T0 100

LITERAL GATES - KRECALL THAT NVAL WAS INCREMENTED BY 1
AT START OF SUBROUTINE.

LITERAL 0,0
! IF(NVAL(1).EQ.1)60 TD 100
60 TO 200
LITERAL 1,
IF{NVAL(1).EB.2)60 T0 100
GO TO 200
LITERAL 2,2
IF (NVAL (1) .ER.3)B0 T0O 109
50 T0 200
LITERAL 3,3
4 IF(NVAL(1).EQ.4)GD TO 100
60 TO 200
LITERAL 0,1
IF(HVAL{1).EB.1 .OR. NVAL(1).EQ.2)G0 TO 100
G0 TO 200
LITERAL 0,2
IF(NVAL{1).NE.4)60 TO 100
60 TO 200
€ LITERAL 1,2
37 IF(NVAL(1).EQ.2 .OR. NVAL(1).EG.3)G0 TO 100
60 TO 209
LITERAL 1,3
8 IF{NVAL{1).NE.1)60 TD 100
G0 TO 200
¢ LITERAL 2,3
39 IF(NVAL(1).EG.3 .OR. NVAL{1).EG.4)60 TO 100
0 TO 200

WLOOoODOO0n
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C
C SET LITERAL QUTPUT VALUE. ACCOHPLISHED BY KNOWING THE
€ LITERAL"S ARKRAY FOSITION RELATIVE TO ARRAY POSITION 31.
200 K= (C GTYPE - 31 ) / 2 ) + 2

LVAL = MINTBL(K,3)

30 TO 100

c

C 2-INFUT INHIBIT GATE

40 IF(NYAL(1).GT.1 .DR. MVAL(2).G7.1)60 7O 100
GO TO 300

€ 3-INFUT INHIBIT GATE ‘

41 IF{NVAL(1).BT.1 .OR. NVAL(2).GT.1)60 TO 190
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IF(NVAL{3).6T.1)G0 TO 100

G0 TO 300

€ 4-INPUT INHIRIT GATE

42 IF{NVAL(1).6T.1 .OR. NVAL(2).GT.10G0 TO 100
IF(NYAL(3).GT.1 .OR. HVAL(A).G6T.1)60 TO 109
G0 TO 300

C SET INIHIRIT GATE ODUTPUT VALUE. ACCOMPLISHED BY
C KNOWING THE VALUE OF GTYPE. 1ST INHIBIT IS IN ARRAY
C POSITION 58.
300 K = ({GTYPE -38) / 3) + 2
LVAL = MINTEL (K,4)

GO 70 100
L
C UNIVERSAL GATE
43 IF(NVAL(S).GT.1 .OR. NVAL(S).GT.1)60 TO 100

K = HAXTBL (NVALC1),NVAL(2))
J = (NVAL(3)-1) + (NVAL{4)-1)
IF(J.6T.3) J=3
LVAL = J + K
IFCLVAL.GT.3) LVAL=3

C SET UNIVERSAL GATE OUTPUT VALUE
IF(GTYPE.ER.67)L=1
IF(GTYPE.EQ.68)L=2
IF(GTYFE.ER.49)L=3
IF(L.LT.LVALIGD TO 109
LUAL = L - LVAL
G0 TO 100

C

£ 4-70-1 HUX GATE

44 IF(NVAL(S) LER.TILVAL=NYAL (1) -1
IFCNVAL(S) JER.2ILVAL=NVAL{2)~1
IF(NVAL(S).EQ.3ILVAL=NVALI3) -1
IF(NVAL(S).EQ.4) LVAL=NVAL(4) - 1
6O TO 100

C ERROR 16 - INVALID GATE INDEX - FATAL
300 ERRNO=16

CALL ERRORCERRNO, "INVALID GATE INDEX ")
£
C ERROR 22 - GATE OUTPUT INVALID -~ FATAL
510 ERRND = 22
CALL ERROR(ERKNO, GATE OUTFUT EVALUATION INVALID ")
100 IF(LYAL.LT.0 .OR. LVAL.ET.3) G0 TO 310
C
RETURN
END
c
C
C ERROR MESSAGE ROUTINE - ERROR
L IF ERR = 9 A NON-FATAL ERROR HAS OCCURRED: OTHERWISE, THE
{ PGN IS ABORTED.
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SUBROUTINE ERROR(ERRNO,MSG)
IAPLICIT INTEGER (A-Z)

COMMON /AREA1/NLNUN,GLNUN, INNUM,ERK
DIMENSION HSG(8)

IF(ERR.EQ.0)G0 TO 100
WRITE(S,1)ERRNOD,HS6

FORMAT(1HO,“FATAL ERROR *,12,7 - *,8A%)
WRITE(3,1)ERRND,HS6

CALL EXIT

WRITE(S,2)ERRNO,HSG

FORMAT(1X, ERROR *,12,” - *,84%)
WRITE(3,2)ERRNO,HS6

RETURN

END
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c
C TIKE-EVENT QUEUE INSERT ROUTINE - TEINST.
C UPDATES THE T~E QUEUE BASED ON THE NODE, TIME & LOGIC
C VALYUE PASSED. QUEUE IS5 ORDERED RY ASCENDING TIME VYALUE.
€
SUBROUTINE TEINST{(NDDPTK,ITIHE,IVAL)
INPLICIT INTEGER (A-Z)
COMMON /NLIST/NLNODE(200),NLIGPT{200),NLLVAL(200),
INLTEPT(200)
COMMON /TELIST/TETIME(S00),TENPTR(S500) ,TELVAL(500),
ITENCEL(300) ,TENCSN(500)
COMMON /AREA1/NLNUM,GLNUM, INNUM,ERR
COMMON /AREAZ2/TENUM,TELOW,TEMAX,TEHIGH,TEFREE, TINTYP

€ GET A FREE T-E LIST CELL. RETURMED IN J
CALL GTECEL(J)
IF(TENUM.EQ.0)BO TO 110

O

IF(ITIME.LT.TETIME(TELGW))GO TO 120
H=TELOW
100 IF(TENCEL(M).EB.0)60 TO 14D
IF(ITIME.LT.TETIME(TENCEL{M)))GO TO 130
MN=TENCEL (M)
GO T8 100
C INSERT THE FIRST T-E NODE
119 TENCEL(J)=0
TELDY=J
TEHIGH=J
60 TO 139
C NEW TELOW CELL
120 TENCEL{J)=TELOW
TELDU=J
G0 70 1350
€ NORMAL T-E INSERT
130 TENCEL{J)=TENCEL(M)
TENCEL(M)=)
60 TO 1390
C NEW HIGH CELL
140 TENCEL(J)=0
TEHIGH=J
TENCEL(M)=]
€ FINISH NEW CELL UPDATE
130 TENUM=TENUM+1
TETIHECJ)=ITIHE
TENFTR(J)=NOIPTR
TELVAL(J)=IVAL
O LINK NLIST TO TELIST. IF LIMK EXISTS ALREADY, UFDATE
7 THE LINKS FOR THE NEW T-E ENTRY.
IFCNLTERFT(HODPTR)LEQ.-1)G60 TO 200
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TENCSN(J)=NLTEPT(NODPTR)
NLTEPT(NODFPTR)=J

G0 TO 300
NLTEPT(NODFTR)=J
TENCSN(J)=0

RETURN
END

GET TIME-EVENT CELL ROUTINE - GTECEL
SECURES THE NEXT T-E FREE CELL, IF AVAILABLE,
AND RETURNS CELL POINTER IN J.

SUBROUTINE GTECEL(J)

IMPLICIT INTEGER (A-Z)

COMMON /TELIST/TETIME(S500),TENPTR(500),TELVAL(500),
TTENCEL(500), TENCSN(S00)

COMMON /AREA1/NLNUM,GLNUM, INNUN,ERR

CONMON /AREA2/TENUM,TELOY, TENAX, TEHIGH, TEFREE, TINTYP

IF(TEFREE.EQ.0)GD TD 100
IF(TETIME(TEFREE).NE.-1)G0 TC 110
J=TEFREE

TEFREE=TENCEL (J)

RETURN

3 - TIHE-EVENT QUEUE OVERFLOW - FATAL
ERRNO=8

CALL ERROR(ERRNO,” TIME-EVENT QUEUE OVERFLOW

17 - TIME-EVENT QUEUE STRUCTURE PROELEM - FATAL
ERRND=17

CALL ERROR(ERRNO,TINE-EVENT QUEUE STRUCTURE PROBLEAM
END

TIME-EVENT QUEUE RETURN CELL ROUTINE - RTECEL.
RETURNS CELL J TO THE T-&E FREE LIST.

SUBRBUTINE RTECEL(Y)

IMPLICIT INTEGER (A-I)

CONMON /TELIST/TETIME{S00),TENPTR(300),TELVAL(30D),
T TENCEL(S500), TENCSN(500)

COMMON /AREAZ/TENUM,TELOW,TEMAX,TEHIGH, TEFREE, TIMTYF

IF(J.EQ.0XGD TO 100
TENCEL(J)=TEFREE
TETIME(J)=-1
TEFREE=J

RETURN

END
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SINULATE SUBROUTINE - SIMUL.
FERFORMS THE SIMULATION FROCESS, FRINTS RESULTS, ETC.

SUBRODUTINE SIMUL(FILNAH,FRMAT)

IMPLICIT INTEGER (A-1)

REAL*8 FILNAH

CONMON /NLIST/NLNODE(200),NLIGPT(200),NLLVAL({200),
INLTEPT(200)

COMMON /GLIST/GLGATE(100),6LTYPE(100),BLILAY(100),
1GLINPT(100),6LONPT(100)

COMMON /TELIST/TETINE(S00),TENPTR(S500),TELVAL(500),
ITENCEL(500),TENCSN(300)

COMMON /INLIST/INPTR(300),INNGPT(300)

COMMON /AREA!/NLNUM,GLNUM, INNUM,ERR,RPTSH,RPTINE,
tDHYTIH,STOPSW,STOPTH, GATERX  NLMAX, GLMAX, INMAX
COMMON /AREA2/TENUM,TELOW,TENAX,TEHIGH,TEFREE,TIHTYF
DIMENSION CHGLST{200),NVAL(6)

INITIALIZE SIHULATION VARIABLES
RPCNT=0
LINE=99
ERR=1
TCNT=0

EXAMINE TIME-EVENT QUEUE 70 FIND ALL WODES TO BE UPDATED AT
THE CURRENT LOWEST TIME {TETIME(TELOW)). CONSTRUCT A LIST
OF THESE NODES IN CHGLST WHICH CONSISTS OF POINTERS TO THE
SELECTED T-E QUEUE CELL(S). IF MOKRE THAN ONE ENTRY EXISTS
FOR THE SAME NODE, THE NEAREST LOGIC VALUE TO THE CURRENT
NODE VALUE IS SELECTED.

50 IF(TENUN.EQ.03GO TO 440
TIME=TETINE{TELOW)
TEFTR=TELOW
CHGNUM=0
10 IF(TETIME(TEFTR).GT.TINE)GO TO 200
IF(TETIME(TEPTR) .LT.TIHE)GO TO 470
IF(CHGNUH.EQ.0)GO TD 130
CHECK IF WOLE ALREALY IN CHGLST
00 120 J=1,CHGNUM
K=TENPTR{CHGLST(J))
IF(K.EQ.TENPTR(TEPTR)IGO TO 140
20 CONTINUE
NOT FOUND IN CHGLST - ADD IT
30 CHGNUM=CHENUHK+1
CHGLST(CHGMUB)=TEPTR
SET DELETE FLAG ON 7-£ CELL
& TELVAL(TEPTR)=TELVAL{TEFTR?} + 234
TEPTR=TENCEL(TEFTR)
CHECK END-DF-LIST

3o
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IFCIEMIK.EH.0) GO T 200
GO T0 110

T-E MODE WAS FOUND IN CHGLST., DETERMINE IF CHGLST

ENTRY SHOULD BE SUPERCEEDED. K FOINTS TO NODE.

0 DVALI=ABS{NLLYAL(K) =~ TELVAL(CHGLST(J}))
DVAL2=ABS(NLLVAL(TENPTR(TEFTR)) - TELVAL (TEFTR))
IF(DVALT.LE.DVAL2)GD TO 135

SUPERCEED CURRENT CHGLST VALUE.

CHGLST(J)=TEFTR
60 TO 13§

C
c
c
1

3

L9p ]

SIMULATE THE NODE CHANGES THAT WERE LOALED INTO CHGLST.
TO EVALUATE THE AFFECTED' GATES, THE CHGLST IS CONSULTED
FOR ALL INPUT NODES TO SEE IF A SINULTANEDUS LOGIC CHANGE
1S PENDING. 1IF 50, THE NEW YALUE IS USED. [IF NOT FOUND
IN CHGLST, THEN THE CURRENT NLLVAL VALUE IS USED.

O o B o B o B o B o]

E % 2 o B we

00 e 400 J=1,CHGNUM
PRTSH = 0
NXTGTE=0
NPTR=TENPTR(CHGLST(J))
C UPDATE NODE VALUE. PRESERVE REPORT FLAG.

OLIVAL=MOD(NLLVAL(NFTR),256)

NLLVAL{NPTR)={ (NLLVAL(NFPTR)/254)#256) + HMOD{(TELVAL(CHGLST(J)),254
€ IF THIS NODE IS REPORTARLE, CHECK FOR TIHING DIAGRAM OUTPUT.
RFLAG = NLLYAL{NPTR) / 254
IF{RFLAG.ER.0) GO TQ 205
IF(FRHAT.ER.9) GO TO 203
NEWVAL = HOD(NLLVAL (NPTR),236)
WRITE(21,8)TIHE,NLNODE(NPTR) ,NENVAL

3 FORMAT(IZ,AS,I1)
C SET GPTR TQ FIRST GATE ON NODE.
203 GPTR=NLIGPT(NFTR)

C IS THIS AN OUTPUT-ONLY NODE? IF 50, GPTR WILL BE ZERO.
IF(GPTR.ER.O)GO TO 250
0 GET INLIST POINTER & QTY
2190 NLIST=GLINFT(GFTR) / 234
NRTY=MOD(GLINPT(GPTR),238)
M COUNTS THE INFUT NODE QTY. AT END OF LODP NXTGTE WILL
FOINT TO NEXT GATE ON THIS NODE.
#=0
#HSTOP=NLIST + NQTY -1
DO 240 K=NLIST,NSTOP
C CHECK IF THIS INPUT LIST NODE I5 EQUAL TO THE CURRENT NODDE BEING
C UPDATED. IF 50, THEN SET NXTGTE.
IFUINPTR{K) NE.TEMPTR(CHGLST(J) )60 TO 220
NXTGTE=INNGPT(K}
0 fizti+]
SEE IF THIS INPUT LIST NODE 1S PENDING UPDATE AT THIS TIHE.
ARE THE FOINTERS EQUAL?

C
C

22

0
C
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00 230 N=1,CHGNUN
IF(INPTR{K).NE.TENPTR(CHGLST(N)))GO TO 230
NVAL (M)=MOD(TELVAL{CHGLST(N)),254)
60 TO 240
230 CONTINUE
€ HO UPDATE FOR INPUT NODE PENDING - SELECT CURRENT LOGIC VALUE.
NVAL {M)=MOD(NLLVAL(INPTR(K)),254)
240 CONTINUE
£
C EVALUATE GATE FUNCTION.
CALL GEVAL(GLTYFE(GPTR),NVAL,LVAL)
C REPORT CHECK
250 IF(RPTSH.EQ.2)G0 TO 313
C CHECK IF RESULTS HAVE BEEN FRINTED. 1IF S50, PRTSW = 1.
IF(PRTSW.EQ.1) GO TO 315
PRTSN =1
RFLAG=NLLVAL(NPTR) / 256
IF(RFLAG.EQ.0)GO TO 313
IF(LINE.LE.50)GD TO 250
URITE(3, 1)FILNAM

1 FORMAT (1H1,22X, “QUATERNARY LDGIC SIMULATOR - QLOSIH",//,
15X,A10, " SIMULATION RESULTS:",/)
WRITE(3,2)

2 FORMAT(15X,"TINE  NODE  PREV. VALUE  NEW VALUE")
LINE=0

269 LINE=LINE+1

NEWVAL=HOD{NLLVAL (NFTR),254)

WRITE(3,3) TINE,HLNONE{NFTR),OLDVAL , NEWVAL
FORWAT{14X,15,3X,45,8X,11,12¢,11)

SCHEIULE THE T-E ENTRIES FOR THE GATE DUTFRUT
NODE AT TIHE = (TINE + GLDLAY).
CHECK AGAIN IF THIS IS AN QUTFUT ONLY NOTE.
N IF{GFPTR.EQ.0)GD TO 400
ONFTR=GLONPT{GPTR?
TEPTR=NLTEPT(ONFTR)
IF(TEFTR.EQ.-1)60 TO 330
C FOR THE OUTPUT NOIE, CHECK FOR T-E ENTRIES WITH A TINME
C »= (CURRENT TIHE + GLDLAY). UMNSCHEDULE THESE ENTRIES BY SETTING
€ THEIR DELETE FLAG. ALSO FIND THE LOGIC VALUE FOR THE T-E
£ ENTRY WITH THE LARGEST TIHE < CURRENT TIME, IF ARY.
C VARIABLE HIT DETERMINES IF ANY VALID (UNDELETED)
C ENTRIES ARE FOUND., 1IF 50, HIT IS > 9O
HIT = 0
LTIME = 0
TEFTRI=TEFTR
ITIHE = TIME + GLDLAY(GPTR)
N = TEPTR
G0 TO 323
320 N=TENCSN(TEPTR)
IF(N.ER.0Q)GD TO 3490
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323 HIT = HIT + |
IFCTETIME(NY.LT.ITINE) GO TO 321
TELVAL(N) = TELVAL(N) + 256
HIT = HIT - |
G0 70 323

321 IF(TETINE(N) .LE.LTINE) 60 TO 323
LTINE=TETINE (W)

TEPTRI=N

325 TEFTR=N
GO T8 320

C ND T-E ENTRIES EXIST FOR NODE - USE CURRENT LOGIC VALUE.

330 KVAL=MOD(NLLVAL(ONPTR),2564)

6O T0 345

C USE T-E PENDING LOGIC VALUE FOR NODE VALUE, IF HIT » 0.

340 IF¢HIT.LE.0) BO TD 330
IF(LTIME.EQ.0) GO TD 330
KVAL=HOD(TELVAL(TEPTR1),256)

C COMPUTE NUMBER OF LOGIC LEVEL CHANGES.

343 MVAL=ABS(KVAL-LVAL)
IF(NVAL.EG.0)G0 TO 380
IF(HVAL.GT.4)60 TO 4890
ITIME=TIHE + GLOLAY(GPTR)

0o 370 H=1,MVAL

L DETERMINE DIRECTION OF CHANGE.
IFCKVYALLGT.LYAL)GO TO 330
JUAL=KVAL +
60 T0 340

350 JUAL=KVAL - H

350 CALL TEINST(ONFTR,ITIHE,JVAL)
ITIHE=ITIAE + DHYTIH

370 CONTINUE
C
C CHECK NEXT GATE TO BE SIMULATED
380 IF(NXTGTE.EQ.0)GD TD 400
GFTR=NXTGTE
60 TO 210

400 CONTINUE

G

C DIELETE T~-E CELLS THAT WERE FLAGGED
CALL TEPURG

C

IF(RPTSW.EQ.2)GO TD 270

-

i
C CHECK FOR STOP TIME.

425 IF{(STOPSW.ER.1)60 TO 450
IF(TIME.GE.STOPTHM)GO TO 449

(]

C CHECK EACH 5000 TIME UNITS TO INSURE NO CIRCUIT
C OSCILLATION EXISTS.
430 TNUH=TIHE 7 50090

IFCTNUMLLE.TCNT)GO TO 100
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TCNT=TNUM
C ASK FOR CONFIKMATION TO CONTINUE SIKULATION.

WRITE(S,6)
4 FORMAT(5X,“5000 TIME UNITS HAVE ELAFSED - ENTER 0 TO CONTINUE,/)

REAIN(S,#)CONTSY
IF(CONTSW.ER.0)GO TO 100

4460 WRITE(3,7)TINE

7 FORMAT(1HO, 15X, “SIMULATION TERHINATED AT TIME 7,I7)
60 TO 500

C REPORT TO BE MADE AT TIME INTERVALS - CHECK THE TIME.

270 NRPCNT=TIME / RPTIME
IF{NRFCNT.LE.RFCNT)30 TO 425
RPCNT=NRPCNT
IF(LINE.LE.50)60 TO 280
LINE=0
WRITE(3,1)FILNAK
WRITE(3,4) TINE

4 FORMAT (1H0, 10X, LOGIC VALUES AT TIME *,17,//,
115%,“NODE  VALUE*,/)

. 60 TO 299

280 WRITE(3,4) TIHE

290 00 310 N=1,NLNUN
RFLAG=NLLVAL(N) / 2564
IF(RFLAG.ER.0)GD TO 310
IF(LINE.LE.50)60 TO 300
LINE=0
WRITE(3,1)FILNAH
WRITE(3,4) TIAE

309 LINE=LINE + 1
NEWVAL=HOL (NLLVAL(N) ,256)
WRITE(3,5)NLNODE (), NEWVAL

5 FORMAT{13X,05,5%,11)
310 CONTINUE
50 TO 425
C
C ERROk 18 - TIHE-EVENT QUEUE OUT OF SEQUENCE - FATAL
470 ERRND=18

CALL ERRORCERRNO, "TINE-EVENT RUEUE OUT OF SERUENCE “)

C ERROR 21 - LOGIC CHANGE GENERATED > 4 - FATAL
480 ERRNO=21
CALL ERROR(ERRNO, LOGIC CHANGE GENERATED - 4 ")

00 RETURN
END

C
C DELETE FLAGGED TIME-EVENT QUEUE CELLS - TEPURG
c

SUBROUTINE TEPURG
IMFLICIT INTEGER (A-2)



196

COMMON /NLIST/HLNDDE(200),NLIGPT{200),NLLVAL (200),
INLTEFT(200)

COMMON /GLIST/GLBATE(100),6LTYPE(100),G6LILAY(100),
1GLINPT(100),GLONPT(100)

COMMON /TELIST/TETIHE(500),TENPTR(500),TELVAL(500),
1TEMCEL (500) , TENCSN(500)

COMHON /INLIST/INPTR(3200),INNGFT(300)

COMMON /AREA1/NLNUM,GLNUN, INNUM,ERR,RPTSH,RFTIHE,
{DMVTIM,STOPSW,STOPTH,GATENX , NLKAX , GLHAX, INMAX
COMMON /AREA2/TENUM,TELOW,TEMAX, TEHIGH, TEFREE, TIHTYF

TEPTR=TELOW
PRVCEL = TEPTR

100 DFLAG=TELVAL{TEFTR) / 255
IF(DFLAG.ER.O)GO TO 250

C T-E CELL MARKED FOR DELETION - SECURE ALL LINKS IN NLIST

C & T-& QUEUE LISTS.

NFTR=TENPTR(TEFTR)

C ALTER NLIST T-E FOINTER VALUE.
IF(NLTEPT(NPTR).EQ.-1)G0 TD 400
IF(HLTEPT(NPTR).EQ.TEPTRIGO TOD 159

C NLIST T-E POINTER POINTS ANOTHER T-E CELL. S5CAN T-E LIST

€ 70 FIND CORRECT CELL.

TECELL=NLTEPT{(NFTR)

TENEXT=TENCSN(TECELL)

IF{TENEXT.EQ.TEPTR)GD TD 149

IF(TENEXT.ER.0JGD 7D 400

TECELL=TENEXT

TENEXT=TENCSN{TENEXT)

GO TD 130

C CELL WAS FOUND - UPLATE TENCSN LINKS

140 TENCSN(TECELL)Y=TENCSN(TENEXT)

—
23]
<>

GO TO 140
C NLTEPT POINTED 70 T-E CELL BEING DELETED.
130 NLTEFT(NPTR) = TENCSN(TEPTR)

IFCTENCSN(TEPTR).EQ.O) NLTEPT(NPTR) = -1
C DELETE & RETURN THE T-E CELL 7O THE FREE FODL.
160 IF(TELOW.EQ.TEFTR) GO TD 170
C UFDATE FREVIOUS T-E CELL-S NEXT CEL POINTER
TENCEL(PRVCEL) = TENCEL(TEPTR:

G0 TO 180
C SET NEW TELOMN VALUE
170 TELOW = TENCEL(TEPTR)
180 TELVALC(TEFTRI=0

C SAVE CURRENT VALUE OF TENCEL(TEPTR); IT WILL KE ALTERED BY
C RTECEL. NXTCEL HOLDS THE VaLUE.

HXTCEL=TENCEL{TEPTR)

CALL RTECEL(TEFTR)

TENUA=TENUH - 1

(]

C CHECK FOR NEXT CELL OK END-OF-LIST.
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200 LEINXICELLEW.0)GU (U 500
TEPTR=NXTCEL
60 TO 100

C

250 IF(TENCEL(TEPTR).EB.0)G0 TO 500

PRYCEL = TEPTR

TEPTR=TENCEL(TEPTR)

GO 70 100
c
C ERROR 19 - LINK ERROR IN NODE & TIME-EVENT LISTS - FATAL
400 ERRND=19

CALL ERROR(ERRNO, “LINK ERROR BETUEEN NONE & T-E LISTS

[& 3 w]

00 RETURN
END

TIMING DIAGRAM GENERATOR - TIMGEN.

GENERATES A FDUR-LEVEL TIMING DIAGRA# FOR
CIRCUIT NODES SELECTED FOR REPORTING.

80 OR 132 COLUMN, FAGED OR CONTINUOUS FORMAT
SELECTED' BY VARIAELE FRHMAT,

COOOoOoLO0Oo

SUBROUTINE TIMGEN(FILNAM,FRHAT)
IMPLICIT INTEGER (4A-2)

REAL#3 FILNAM

REAL+3 HEAD1{10) ,HEAD2(10)

DIMENSION RPTLSTC100),LYALC10),CVAL(10),FUALI2,10)

Lye]

DATA HEADY/10 * 70 1 7/
DATA HERD2/10 * ~ 2 37/

C OFEN TIMING DATA FILE
QPEN(UNIT=21,DEVICE="DSK",ACCESS="SERIN",FILE="TIMING.TAT")

[ B wr}

INITIALIZE VARIAKLES & LISTS
HIONE=0
FTIHE=0
LATY=0
L3TATY=0
RESTRT=0
LINE=99
BROUF=0
HIT=0
10 100 J=1,100
RPTLST(J) = -
100 CONTINUE
102 B0 101 J=1,190
LVaL(J) = 0
CVAL(J) = 0
101 CONTINUE
IF(FRMAT.LT.3) GO 70 195
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IF(FRMAT.EQ.4) LINE = -
fODATY=10

HEAD = (GROUP * 10) + 1
TAIL = HEAD + 9
IF(LINE.NE.-1)GD TO 110
WRITE(3,3)FILNAH

5 FORMAT(1H1,22X, “QUATERNARY LDGIC SIMULATOR - QLOSIH',//,
117X,  TINING DIAGRAM’, 14X, “FILE = “,410,/)

6 FORMAT (4X,10(7X,A5))

14 FORMAT(3X,“TINE *,10(245,2X))
60 TO 11D

105 HODATY=6

IF(FRHAT.ER.2) LINE = -
HEAD = (GROUP =+ 4) + 1

TAIL = HEAD + 5
IF(LINE.NE.-1)GO 7O 119
WRITE(3,3)FILNAM
FORNAT(4X,6(7X, AS))

17 FORHAT(3X, “TINE - »8(245,2X))

~dJ

Lyr]

110 tOF = 0
READ(21,1,END=500) TIHE NOLIE, NLVAL
1 FORMAT(I7 ,A35,11)
TTIHE = TINE
60 10 115
it READ(2Y,1,END=500) TINE,NODE,NLVAL
C CHECK FOR MODE IN LIST BEING REPORTED
113 D 120 J=HEAL,TAIL
IF(NQDE.EQ.RPTLST(J)) G0 TO 200
120 CONTINUE
C NOT FOUNDI' - CHECK IF THIS IS FIRST FASS THRU FILE.
IF{GROUP.EQ.0) GO TD 123

G0 70 111
{ CHECK IF NODE IS IN RPTLST. IF WNOT, ADD IT.
125 IF(LSTQTY.LT.TAIL) GO 70 145

K = TAIL + 1

Op 130 H=K,LSTBTY
IF(NDOE.EG.RPTLST(M)) G0 TO 111

130 CONTINUE

L ®NDT FOUND IN RPTLST

140 LSTATT = LSTATY + 1
RETLST(LSTATY} = NODE
G0 To 111

143 LATY = LATY + |

LSTQTY = LSTRTY + 1
RPTLST(LSTATY) = NOLE
LVAL(LATY) = NLVAL

GO 70 111

o B )

06IC
C HIS S AN INITIALIZIATION RECORD (TIHE = @7,

. SAVE L CHANGE LIRECTION IN CWAL LIST.
IF T I
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. UPBATE LVAL LIST ONLY.

200 SAVEJ = J - 1
IF{TIME.GT.TTIKE) GO TO 300

209 HIT =1
f = MOD(SAVEJ,HODRTY) + 1
IF(TIRE.NE.O) 60 TO 210
LVAL(H) = NLVAL
GO 70 1N

210 CUAL (M) = NLVAL - LVAL ()
60 TO 11

[ap]

C REPORT NODE VALUES.
C CHECK TIME DIFFERENTIAL. IF > 10, RESTART TIME.
300 FNUM = (HEAD + LQTY) - 1
DTIME = TTINE - PTIME
IF(OTIME.LE.10) GO TO 330
£ TERMINATE PREVIOUS TIME & RESTART AT (TIHE - 1).
0 310 N=1,LATY
PUALL1,N) =
PUAL(2,N) = - :
LVALY = LVAL(N) +
60 TO (311,312,313,314),LVALT

K1 PUAL(1,N) = 7|
60 70 3190

312 PUALCT,N) = 7 1 7
60 TO 3190

313 PYAL{Z,N) = 7}
G0 TO 310

314 FUALL2,MN) = ¢ b

310 CONTINUE
PTIME = PTINE + 1
IF{LINE.GE.0) GO TO 320
IF(HDONE.EQ.1) GO TO 325
HIONE = 1

321 IF(FRMAT.LT.3) 50 TO 322
URITE(3,4) (RPTLST(N) ,N=HEAD, FNUH}
WRITE(3,16) (HEAI1(N) ,HEAD2(N) ,N=1,LATY)
G0 TO 325

322 WRITE(Z,7) (RPTLST(N) ,N=HEAD,PNUK)
WRITE(3,17) (HEADT (N),HEAD2 (N) ,N=1,LATY)
50 TO 325

120 IF(LINE.LE.50)60 TD 325

LINE = 0

WRITE(3,5)FILNAK

G0 TO 321

WRITE(3,10)PTIHE, ({FVAL(I,Jd),I=1,2),J=1,LATY)

FORMAT(14,16,1%,10(243,2%))

WRITE(3,11)

I FORMAT(1HO,7X, < {mmmmmmmmmm NO CHANGE -=--------- 20D
IF(LINE.GE.0) LINE = LINE + 4
RESTRT = 1

w

- G
< D



c
C BRING
330

341

200

G0 70 380

DIAGRAH UP TO CURRENT TIME

N = TTIHE - PTIME

IF(N.LE.1) GO TO 340

00 340 ¥ = 1,LATY

PUAL{T,N) = 7 .

PVAL{2,N) = * ’

LVALY = LUAL(N) +

G0 TO (331,332,333,334),LVALI

FUAL(T,N) = <1 7

GO TO 340

PUALCI,N) = < 1 ¢

GO TO 340

PUALC2,H) = ©

G0 TO 340

PUAL(2,N) = ¢ 1F

CONTINUE

PTIME = PTINE + 1

MTINE = MOD(FTINE,S)

IF(LINE.GE.0) GO TO 344

IF{HDONE.EQ.1) GO TO 345

HDONE = 1

IF(FRHAT.LT.3) GO TO 342

WRITE(3,5) (RPTLST(N) ,N=HEAD ,PNUH)
WRITE(3,16) (HEADT(N) HEAD2(N) ,N=1,LATY)
G0 TO 345

WRITE(3,7) (RPTLST(N) .N=HEAD,PNUH)
WRITE(3,17) (HEADT (N) HEAD2 (N, N=1,LATY)
GO TO 345

IF{LINE.LE.50) GO TO 345

LINE = 0

WRITE(3,5)FILNAK

GO TD 341

IF(MTIHE.NE.D) GO TO 350
WRITE(3,10)PTIHE, ((FVAL(I,J),I=1,2),J=1,LATY)
GO TO 351
WRITE(3,12) ((PVAL(I, ), I=1,2),J=1,LQTY)
FORMAT(BX, 10(245,2X))

IF(LINE.GE.0) LINE = LINE + 1

60 TO 330

£ SET-UP LOGIC CHANGE ARD FRINT IT

350

DO 381 N=1,LATY
PUAL(T,N) = ~ ’

PUAL(2,M) = ~ ’

LYALT = LVALIN) + |

50 TO (361,363,367,371),LVALI
IF{CVAL{N) ER.9) GD TO 342
PYALCTLH) = 71, 7

60 TO 380



201

362 PUAL(1,N) = I
0 TO 380
353 IF(CUAL(N)) 364, 3a5 366
364 PUAL(T,N) = 7.
60 TO 380
345 PUALCT,N)
G0 TO 380
366 PUAL(T,N)
PUAL(2,N) = “_,
G0 TO 380
367 IF(CUAL(N))388,369,370
348 PUAL (1, M) = .
PUAL(2,N)
G0 TO 380
349 FUAL(2,N)
G0 TD 380
370 PUAL(2,N) = < 1__.°
50 TO 380
371 IF(CVAL(N).EG.0) GO TO 372
PUAL(2,N) = .1
60 TO 380
PUAL(2,N) =
LYALIN) = LVAL(N) + CUAL(N)
CVAL(N) = 0
381 CONTINUE
C

"o

"

s
HE

[¥3 I 41
[« AN

<D

IF(LINE.GE.O0) GO 7D 394
IF(HUONE.EQ.1) GO TO 393
HIONE = 1

391 IF(FRMAT.LT.3) GD TO 392
WRITE(3,S) (RPTLST(N),N=HEAD, PNUH)
WRITE(3, 16) (HEADT (N)  HEADZ (1) ,M=1,LATY)
G0 TO 395

392 WRITE(3,7) (RPTLST(N),N=HEAD,PNUM)
URITE(3,17){HEADT (R),HEAD2{N) ,N=1,LATY)
50 TO 395

394 IF{LINE.LE.50} GO TD 395
LINE = |
WRITE(3,5) FILNAN
RESTRT = 1
50 T0 391

395 IF(RESTRT.EQR.iJ GO TO 335
ATINE = HOD(TTINE,S)
IF(MTIKE.NE.0) GO TD 399

385 WRITE(3,10)TTIHE, ((FVAL{I,d),I=1,2),d=1,LRTY)
50 10 400

390 URITE(3, 12)C(PUAL(T,d),1=1,2),d=1,LATY)

400 FTINE = TTIME
TTIHE = TINE
RESTRT = 0

IF(LINE.GE.0) LINE = LINE + 1|
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IF(EDF.ER.0) GO TO 205
GO TO 503
C
{ END-OF-FILE. CHECK FOK LAST PRINT-OUT REQUIRED,
C THEWN UFDATE GROUP, ETC., & REWIND FILE.
300 EOF = 1
IF(HIT.NE.O) GO TO 300
303 GROUP = GROUP + 1
IF(FRMAT,LT.3) GO TD 510
LBTY = LSTATY - (GROUP * 10)
IF(LATY.G6T.10) LATY = 10
GO TO 320
310 LBTY = LSTATY - {(GROUF * &)
IF(LE@TY.BT.8) LOTY = 4
320 IF{LATY.LE.D) GD TO 900
HIONE = 0
PTINE = 0
RESTRT = 0
LINE = 99
REWIND 21
60 10 102

900 CLOSE{UNIT=21,BISFOSE="TELETE")
RETURN
END



