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Abstract

The key drivers of success in unconventional oil and gas recovery,
specifically in shale plays, is the rapid growth in hydraulic fracturing and
horizontal well technology. With these completion methods, wells contact
increasingly larger reservoir volumes with highly conductive pathways for
fluid flow from ultra-low permeability formations.

Although the industry is moving towards larger fracture stage designs
and increasing number of fracture stages per well, there is very limited post-
fracture analysis of the subsequent well performance. Decline curve analysis
and rate/pressure transient analysis are the most common approaches to
interpret production data, often in real-time, to assess formation and hydraulic
fracture properties such as matrix permeabilities and effective fracture half
lengths. While these methods are powerful and have been successfully applied
to several thousands of wells across several shale plays, the biggest drawback
of these approaches is that they have limited utility when addressing
multiphase flow and when dealing with complex fracture patterns. This is
because the underlying equations rely on analytic formulations that are
restricted to certain classes of well and completion geometries.

In this thesis, I utilize a numerical simulation based approach that
addresses the challenges of analytic formulations and simultaneously allows
for rapid characterization of the reservoir and the hydraulic fracture
geometries. The method is based on utilizing the frequency content of pressure

data to estimate large-scale reservoir- and completion-related variables. The



advantage of this approach is that is permits generalization to any level of
fracture and well complexity. The numerical simulation model can additionally
be constrained to known heterogeneities and structural features and therefore
preserves geologic realism for more accurate forecasting and predictions. The
approach has previously been applied to cross-well pumping tests for
interpretation of inter-well connectivity. In this thesis, [ demonstrate the power
and utility of this approach on synthetic case studies as well as a field-case

study to estimate hydraulic fracture permeabilities/conductivities.
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Chapter 1: Introduction and Background

Hydraulic fracturing is an essential part of well completions in ultra-low
permeability shale formations. By hydraulically fracturing the formation, the
contact area of the wellbore with the formation is enhanced by several orders
of magnitude. This allows for economic production of hydrocarbons from
previously uneconomic shale plays. In fact, the significance of hydraulic
fracturing to North American hydrocarbon production cannot be minimized.
Valko and Economides (1995) indicate that approximately 50% of oil wells and
70% of gas wells were hydraulically fractured in North America since 1950s.
Since then with the advent of development activity in shales, this number is
likely to be higher.

There are many factors that govern the eventual design of the fracture
for a specified well and completion geometry. These factors can be reservoir
specific such as in-situ pressure and stresses, reservoir permeability, formation
moduli, and fluid viscosity (Rahman and Joarder 2006) or they may be
operations-related such as the size of the fracture treatment, the pumping rate,
the volume of fracture fluid pumped, the amount of proppant used and the
pressure at which the fracture was created.

Economides and Nolte (2000) state that hydraulic fracturing occurs due
to an initial rise in pressure that initiates fractures at weak points within the
rock or reactivates existing natural fractures. As the injection continues, the
fractures continue growing and the rate of growth is dictated by fluid injection

and leak-off rates. At injection rates faster than leak off, the increase in
1



pressure is accompanied by fracture propagation. The initial pressure required
to initiate fracture growth is known as the fracture initiation pressure (FIP).
However, as the injection stops, the fractures start to close due to the closure
stresses as shown in Fig. 1. In order to keep the fractures open, the pumping
schedule also requires the use of a propping agent. Proppants are usually sand

grains or material of similar properties that help keep fractures open as long as

possible.
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Figure 1 - The figure shows the pressure trend exhibited with increasing volumes of mud
pumped. The formation starts breaking at FIP with increasing injection volume. After
the injection is stopped, the fractures initiated start closing at FCP (after Lee et al. 2004).

The figure above, Fig.1 is a typical pressure-volume/time diagram used
to describe the results of a Leak-Off Test (LOT). Usually Leak-Off Tests are
carried to evaluate the integrity of the cementing job as well as reservoir
formation around the well (Lee et al. 2004). The term LP is the Limit Pressure;

FIP is the Fracture Initiation Pressure; SPP is the Stop Pump Pressure. In



addition, UFP is the Unstable Fracture Pressure; FPP is the Fracture
Propagation Pressure; and ISIP is the Instantaneous Shut In Pressure. The
terms FCP and FRP are the Fracture Closure Pressure and the Fracture

Reopening Pressure, respectively.

1.1 Hydraulic Fracture

Hydraulic fracturing is what happens to the formation when a fluid is
pumped at faster rates than the fluid can spread through the pores of the
formation. Pumping fluids at injection pressures higher than formation
pressure forces the formation to breakdown as seen in Fig.1. This breakage is
called a hydraulic fracture as it is created due to hydraulic fluid pressure. The
pressure at which the fracture is initiated is called the Fracture Initiation
Pressure. Generally, the fractures are created in the direction perpendicular to
the minimum stress.

As the high pressure injection fluid is retained, the fracture propagates
at pressures defined as Fracture Propagation Pressures, as shown in Fig.1. This
exposes the undamaged formation to the pumped fluid and the increasing
pressure which result in more fractures. If fluid pumping is stopped and the
injected fluid leaks off, the fractures attempt to close as noticed in Fig.1. The
pressures at which the fractures close are called Fracture Closure Pressure. In
order to keep the fractures open, a propping agent is used. The propping agent

is added to the injection fluid and together they are pumped into the formation.



The injection fluid flows back to the well, while the propping agent remains
inside the fractures (API HF1 2009).

The design of the hydraulic fracturing procedure is very complicated.
Many parameters are studied and integrated to ensure the success of the
process. Rock mechanics, fluid mechanics and fluid chemistry are integral
elements of the hydraulic fracture treatment design because they control
fracture geometry, fluid flow, leakoff, proppant delivery and long-term
proppant performance (Economides and Nolte 2000). In this section, I provide
a brief overview of some of the variables that impact fracture design and

fracture complexity.

1.1.1 In-Situ Stress

Fracture orientation, geometry and direction of propagation are
controlled by the in-situ stress field (Smith and Shlyapobersky 2000). This field
is defined by three principal compressive stresses, a vertical stress and a
maximum and minimum horizontal stresses, which are perpendicular to each
other. The minimum in-situ stress is also known as the fracture closure
pressure and controls the direction in which fractures grow and propagate.

If the pressure within the fracture is higher than the fracture closure
pressure, the fracture remains open. However where the fracture closure
pressure is higher than the pressure within the fracture, the fracture inevitably

closes.



Hubbert and Willis (1957) conducted experiments on rocks concluding
that fracture orientation is controlled by the injection and overburden
pressures. Fractures at areas subjected to thrust faulting should be horizontal
when the injection pressure is equal or greater than the overburden pressure.
However, fractures should grow vertically in areas subjected to normal faulting
when the injection pressure is less that the overburden pressure. Also, the
pressure created as a difference between the two stressed geological elements
dictates the growth length of the fracture. Therefore, the stresses in pay,
underlying, and overlying zones must be obtained for accurate hydraulic
fracturing procedure.

The value of the minimum stress is extremely important in dictating the
direction of fracture formation and growth. The breakdown or fracturing
pressure depends greatly on the minimum stress. As mentioned above,
hydraulic fractures grow in the direction normal to the minimum stress
direction. At locations where the minimum principal stress is in the vertical
direction, horizontal fractures form. Vertical fractures form when the vertical
stress is the maximum principal stress and the horizontal stress is the least
stress (API HF1 2009). Horizontal fractures form parallel to the formation
bedding plane while vertical fractures are perpendicular to the bedding plane.

The growth of fractures is controlled by the in-situ stress difference
between layers. The in-situ stresses of the overlying and adjacent zones
control fracture growth. In addition, the direction of the three principal

stresses also influences the geometry and the length of the fracture.
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An adequate barrier of fracture migration is characterized by a greater
in-situ stress which results in a dominant stress difference. In cases where the
overlying zones possess high stress confinements, the upward fracture
migration is stopped due to the zone’s ability to contain the fluid injection
pressure. This ability is characterized by high rock strength and elasticity
promoted by the stress confinements. The upward or downward growth of
fractures are controlled by the hydrostatic gradient of the injection fluid in
comparison to the vertical gradient of the minimum horizontal in-situ stress. In
cases where the hydrostatic gradient is less than the minimum horizontal
stress, upward or downward propagation is possible (Economides and Nolte
2000).

The propagation of the fractures in any other direction is controlled by
the direction of the maximum horizontal stress. If a fracture propagate to
another boundary zone where the direction of the principal stress is different,
the fracture will attempt to re-orient its growth direction normal to the
direction of the minimum stress. This is the reason behind vertical fractures
transforming to horizontal fractures when they propagate upward towards

zones with minimum stresses in the vertical direction (Simonson et al. 1978).

1.1.2 Reservoir Properties
The dimensionless fracture conductivity, Crp is defined as the
relationship between the ability of the fracture to carry fluid and the

reservoir’s ability to supply it with fluids (Pearson 2001). This quantity is
6



controlled by the reservoir permeability as shown below in Eq. 1. The
parameters (k) and (k) are the fracture and matrix permeabilities,
respectively. The fracture width is defined by the notation (w) while the
fracture half-length is defined by the parameter (k¢). On the other hand, the
conductivity of a fracture is the product of the proppant pack permeability and
the fracture width. This conductivity usually decreases with time due to many
factors such as propping agent embedment, crushing, and/or stress corrosion.
Generally a value of Csp greater than 50 is considered to represent an
infinite conductivity fracture in which the pressure gradient within the fracture
can be assumed to be negligible compared to the pressure drop within the

matrix.

Crp =%, (1)

Because the dimensionless fracture conductivity, Csp is controlled by
the matrix permeability that has values on the order of a few to 10s of
nanodarcies, the hydraulic fractures in shales are generally considered to be
infinite conductivity fractures.

Matrix permeability also influences the amount and rate of leak-off
during a hydraulic fracturing operation. The efficacy of a hydraulic fracturing
job can be controlled by mitigating excessive leak-off to high permeability
regions and natural fractures. This is done to redirect the flow of the injection
fluid towards low permeability regions for more fracture initiations. In

addition, the importance behind controlling the flow and rate of leak-off lays in



the significant effect of leak-off on the final geometry of the fractures created
(Penny et al. 1985). In the next section, I also provide an overview of the rock

mechanical properties that control fracture growth and initiation.

1.1.3 Rock Mechanics

Because the fracture is initiated by applying fluid pressures in excess of
the breakdown strength of the rock, other properties that control fracture
growth are related to the mechanical strength of the rock. These include the
Young’s Modulus and Poisson’s ratio (Warpinski et al. 1982). These may be
obtained by the use of well log data or by conducting experiments in the lab on
retrieved core samples (Economides and Nolte 2000). Young's Modulus
defined the stiffness of the formation which affects the fracture geometry. As
the value of Young’s Modulus increases, the stiffness of the formation increases.
High formation stiffness forces the initiated hydraulic fractures to have a
narrow width. However, the fracture length growth increases due to high
friction pressure gradients created by the narrow widths (Rahim and Holditch
1992).

The brittleness of a rock is defined by the both Young’s Modulus and
Poisson’s ratio. The former describes the formations potential to maintain
fracture propagation while the latter indicates the formation ability to fail. A
brittle formation, such as Shale, characterized by high Young’s Modulus and
low Poisson’s ratio tend to fail easily (Rickman et al. 2008). In unconventional

resources, identifying brittle regions is important for the success of the
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hydraulic fracturing process. This is because the high brittleness characteristic
of Shales facilitates fracture initiation and propagation.

In cases where the rock mechanical properties are unavailable, there are
several mineralogy-based proxies for the brittleness of the formation. One of
the first mineralogy-based brittleness index was proposed by Jarvie et al.
(2007). These have since been modified to also include the effect of TOC in

shales. It is defined as shown below in Eq. 2.

_ Qz
Bl = Qz+Ca+Cly (2)

The term (BI) is the Brittleness Index; Qz is the fractional Quartz
content; Ca and Cly are the fractional Calcite content and the clay content,
respectively. Other measures of brittleness have also been developed based on
the use of seismic data that provides significantly larger areal and vertical
coverage (Alzate and Devegowda 2013 and Perez and Marfurt 2015)

The concept of brittleness is sometimes misleading. A formation can
possess high brittleness as well as high rock strength. Rock strength influences
the rock’s potential to break. This creates the confusion of identifying the best
areas to fracture. Therefore, identifying regions characterized by high
susceptibility to fracturing is a more adequate method. This approach utilizes
the Ultimate Rock Strength of a formation to infer the formation’s potential to
fail. Formations with high potential to fracture tend to possess low formation

strength (Bai 2015).



1.1.4 Proppants

After initiation of the fracture and reduction of pump pressures, the
fractures may close if the fracture closure pressure exceeds the fluid pressure
within the fracture. In order to maintain a high conductivity fluid migration
pathway, the fracture treatment includes the use of proppants. Their
composition and size depends on the lithology of the formation, the desired
long-term well performance and cost (Veatch and Moschovidis 1986).
Proppant selection depends on many parameters such as the maximum stress
effect on the proppants, conductivity at in-situ conditions, and designed
fracture width. In addition, the perforations size, the injected fluid viscosity,
and temperature are among many other parameters that determine the
selection of proppants’ type, size, and concentration.

In order to ensure that the fracturing job is successful, we need to avoid
screenout. Screenout occurs when the continued injection of the fluid inside the
formation requires additional high pressure and high proppant loadings at the
tip of the fractures or perforations (Economides and Nolte 2000). The
proppants will create a bridge across the fracture or the perforations which
will block flow and plug the well.

Screenout in the fracture occurs when the fluid pumping rate is lower
than the fluid loss rate occurring at the fracture tip. In addition, screenout
occurs when a propping agent is pumped inside fractures with narrow widths.
In both situations, the proppant particles are forced to enter the fractures and

solidify restricting flow. In order to ensure that no screenout occurs, the
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formation must be flushed by a pad before any proppants are injected. Also,
the proppants and the slurries must be pumped at volumes and rates that are

consistent with the amount of fluid leakoff (Nolen-Hoeksema 2013).

1.2 Post Treatment Evaluation

The effectiveness of the hydraulic fracturing procedure and its impact
on well deliverability, its pressure responses and well drainage volumes is a
key element of post-treatment fracture evaluation. This is often performed to
predict long-term well performance, to estimate optimal well and fracture
spacing and to predict the stimulated reservoir volume (SRV) (API HF1 2009).

In unconventional shale plays, the horizontal wells are often completed
with multistage hydraulic fracture treatments over the length of the lateral
(Gutierrez et al. 2014). Each of these stages is associated with a set of hydraulic
factures that increase fracture-fracture, well-fracture, and reservoir-fracture
contact as shown in Fig. 2. As these contacts are created and enlarged, the
stimulated reservoir volume (SRV) is increased. The SRV represents the
volume of the reservoir that contains re-activated natural fractures as well as

induced fractures that connect to the wellbore.
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Simple Fracture Complex Fracture

v

v

Complex Fracture Complex Fracture
With Fissure Opening Network
Figure 2 - The different complexities of fractures (after Mayerhofer et al.
2008)

The size of the SRV depends greatly on the size of the treatment pumped
while fracturing. Higher treatment size generally results in a larger size of SRV
which ultimately increases the production rates. In vertical wells, the size of
the treatment usually controls the size of SRV. However, in horizontal wells,
more factors can be manipulated to increase the stimulated volume. Two other
factor affecting SRV are the lateral length and number of stages. Increasing the
number of stages and the use of longer laterals enlarges the SRV size but comes
at a higher cost and operational complexity. Perforation clusters, diversion
technics, and completion systems in addition to many others impact the size of
the SRV (Zimmer 2011).

Direct treatment evaluations are usually performed through the use of
different logging and fracture-mapping procedures such as microseismic data

analysis. Indirect measurements include analysis of the pressure response in
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well testing as well as production data analysis (Barree et al. 2002). Indirect
methods are capable of probing larger reservoir volumes in comparison to well
logs and can provide an estimate of the fracture characteristics at any period
while a well is operating. The major limitation of this technique is its strong
dependency on the use of assumed models of reservoir formation and fluids
characteristics. In this section, I provide a brief overview of some of these post-

treatment evaluation methods.

1.2.1 Fracture-Mapping and Logging Techniques Evaluation

There are many logging and fracture imaging techniques that are used
to evaluate the success of hydraulic fracturing (Bennet et al. 2005). Logging and
imaging tools such as caliper and production logging usually generate fair
amounts of information about the fracture. They are usually restricted to near
wellbore distances due to their small investigation lengths. Far-field
measurements such as tiltmeters and microsiesmic imaging provide large scale
information about the fractures and the reservoir. Together, the near and far
field tools provide well detailed look of the fractures (Barree et al. 2002).

Fracture growth can also be mapped by utilizing temperature surveys.
Because the fracturing fluid is initially cooler than the formation temperature
the fracture height may be conveniently mapped. While temperature surveys
are promising, they are limited to logging runs where the fluid and formation
temperatures are sufficiently different. A method of mapping fracture growth

and complexity in three-dimensional space for multiple fracture stages is the

13



use of microseismic imaging. Microseismic imaging relies on mapping shear
slippage wave events arising from fracturing (Mayerhofer et al. 2008).

As the formation and natural fractures break due to the high pressures
exerted by the injected fluids, shear slippages occur adjacent to the fractures
resulting in clouds of microseismic events. These microseismic clouds provide
estimates of the locations where the rock has failed. Ultimately, the estimation
of the fracture locations, length, height, azimuth, and asymmetry provides
enough information to estimate the size of the SRV. Ultimately, the estimation
of the stimulated reservoir volume in a three dimensional model showing the
fracture networks and the areas that have been affected the stimulation

process (Fisher et al. 2004) becomes possible as shown in Figs. 3 and 4.

-
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Figure 3 - An example of Microseismic events (after Lewis and Perry 2011).
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Figure 4 - An example of SRV Estimation (after Lewis and Perry 2011)

1.2.2 Flow Regimes and Pressure Transient Analysis

Well testing and production data analysis are powerful techniques to
evaluate hydraulic fracture geometry. The fractures, their orientation and
geometry create conditions for new flow regimes which alter the pressure

response within the reservoir (Ozkan et al. 1987).
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Pressure Drop Normalized Gas Flowrate,
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(1:2 Slope — Linear flow/High fracture conductivity)
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(1:4 Slope — Low fracture
conductivity)

¥ 10' 10°
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Figure 5 - Typical diagnostic plot showing expected flow regimes in a multi-fractured

horizontal well (after Blasingame 2015)

The pressure response observed in fractured reservoirs display

different flow regimes as shown in Fig 5. In hydraulically fractured horizontal

wells where the fracture conductivity is finite, a bilinear flow regime is

observed. This flow regime is characterized by two linear flows; from matrix to

fracture and from the fracture to the well. The second flow regime exhibited by

hydraulically fractured horizontal wells is the linear flow regime. This regime

occurs when there is a flow towards the fractures of the fractured well. On

diagnostic plots, the bilinear flow regime is recognized as a 1:4 slope while the

linear flow regime is recognized as a 1:2 slope (Dmour and Shokir 2010).
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1.3 Reservoir Characterization

Throughout the last few years, the focus on reservoir characterization
and pressure response analysis methods has increased tremendously. The
reasons behind such interest are the difficulties faced throughout all attempts
administrated to acquire reservoir parameters. Such difficulties create a lack in
information needed to understand the complex nature of the unconventional
resources. Therefore, different approaches and tools are invented and created

in order to understand those resources.

1.3.1 Analytic Approaches

Different techniques and methods are used to conduct fracture analysis
and reservoir performance characterization. These techniques have been
examined and analyzed in many studies (Wattenbarger et al. 1998; Aanonsen
et al. 2009; Khan and Callard 2010). However, their applications are

constrained by few limitations and restrictions.

Wattenbarger et al. (1998) framed a method where reservoir behavior
is examined at the linear flow stage for stimulated reservoirs with infinite
conductivity fractures. The method uses a reservoir with a rectangular
drainage area and a fracture that extends to the boundaries. The length
extending from the boundaries of the reservoir and is perpendicular to the

fracture is defined by the term (y,) as shown in Fig. 6. The conductivity of the
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fracture is assumed to be infinite (C;p > 50) where Cfp is defined by Eq. 1

mentioned above.

Where the terms (k;) and (x;) are the hydraulic fracture permeability
and half-length, respectively. The parameter (w) is the fracture width and (k) is

the permeability.

<\<>

N

Figure 6 - Top view of a rectangular reservoir with a fracture extending to the
boundaries (after Wattenbarger et al. 1998).

The study was conducted to model infinite conductivity fractures and
find solutions for linear flow of fractures forecasting. The following equations
describe the solutions for inner boundaries set by constant rate and flowing
bottomhole pressure (P, f)in a closed linear reservoir, separately.

Constant Rate Condition

_om ()1, (%)’ _ 2 (ve\yeo (L 22 (%)
Pwp = 2 (xf> [3 + (ye) thf] 2 (xf> Zn:l (nz) exp[ n-m (ye) thf] (3)
Constant Pressure Condition
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Znoddexp[ P (ye) Epxg

(4)

The term (y,) is the distance from fracture to outer boundary and (n) is the
number of layers in a linear layered reservoir. The dimensional variables are

defined by the following set of equations:

__ kh(pi—pwy)

Pup 141.2qBu ()
1 _ kh(pi—pwy)
qp  141.2qBp (6)

£ o 000633kt
Dxg — pucexs?

(7)

The notations (p;) and (p,f) are the initial and bottomhole flowing
pressure, respectively. The parameter (h) is the net thickness; (q) is oil flow
rate; (B) is the oil formation volume factor; and (i) is the viscosity. The total
compressibility is defined by (c;) while the porosity and time are defined by

(¢) and (t), respectively.

Wattenbarger et al. (1998) used type curves to describe the solutions
that were found. In order to give only one curve for all case for any rectangular
geometry, the terms ((x—f)P ) and ((x—f) L) were plotted against (tp, ) as

’ ve) WP ve/ ap Dye

shown in Fig. 7. This study was conducted for both liquid and gas wells.
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Figure 7 - Solutions for constant rate and pressure conditions for a closed linear
reservoir with infinite conductivity fractures (after Wattenbarger et al. 1998).

Khan and Callard (2010) formulated a new technique and type curve
that analyzes reservoir behavior during linear and bilinear flow regimes. This
method utilizes the data provided in order to evaluate reservoir parameters in
finitely conductive fractured reservoirs. The techniques assume a formation
and fracture with characteristics and geometries like the ones used by

(Wattenbarger et al. 1998) shown in Fig. 8.
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Figure 8 - A rectangular reservoir with a thickness (h) (after Khan and Callard 2010).

Khan and Callard (2010) formulated a new type curve to model the
intersection of well flow and the finitely conductive fracture flow. The
equations used to derive the type curves are defined for both bilinear and
linear flows. The solution relating the dimensionless reciprocal rate and time in

the bilinear flow (Bennett et al. 1986) as follows:

1 2.722
. 0.25 (8)

=—1t
an [—CfD DJCf

Where the dimensionless variables are defined by:

1 kh(m(m)—m(ow))

an - 1422qT 9)
0.00633kt
tDXf - (PﬂCtsz (10)

The term (qp) is the dimensionless flow rate and (T) is the reservoir
temperature. The term (m(p)) is the real gas pseudo pressure. The linear
dimensionless reciprocal rate-time relation for the linear flow is defined as

follows:
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1.5

1 b4

= 7 Vibx (11)
This equation can be written in its dimensional form:

1

. mepV € (12)

Where (m,,) is the slope of 1/q, and V't and is defined as:

315.2T 1

h\/(j)(Tt)pr [m)-m(pws)| Ky

The subscript (Psp) defines the pressure at which properties are

Mep = (13)

formulated. The intercept in a plot of the dimensionless reciprocal rate against
square root time is greater than zero. Therefore, the equation describing that

relationship is defined by:

1.5

1 T 1
E_T /thf+; (14)

i
The relationship is also exhibited by a numerical simulation of a

provided model show the relationship as:

=t (15)

dp d4p; 8
The term (Qp) is the dimensionless cumulative production. Eq. 15 can

also be written in the following dimensional form:

Gy (16)

The notation (Gp) is the cumulative gas production. Comparing the
dimensional form of the previous equation and the rate-cumulative hyperbolic

form of Arps equation with 2 for the b exponent (Arps 1956) defined by:

1 1 D
==+ = 17
q ﬁi+ﬁi2 Gp A7)
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An identity can be formulated to relate the intimal decline rate (D;) and
the term (m(,). This helps in utilizing Arps equation in describing the linear

flow period of the reservoir. This identity is shown below.

C?izmcp2
Di = T (18)

The term (D;) is the initial decline rate. The cumulative production rate-

time relation described by Arps equation with b exponent of 2 (Arps 1956) is:

Dj
~ 2
2q;

Gp2+%Gp—t=0 (19)

The bilinear and linear flows can be noticed in a type curve plot of
reciprocal rate against time both multiplied by dimensionless fracture

conductivity as seen in Fig. 9.

1000

—_CfD =500
——CfD =250
——CfD =100 /
—CcfD=50
cfD =10

—CfD=5
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—_cfD=05
— _CcfD=03

CfD = 0.1
e End of Bilinear Flow for CfD > 10

100

10

Cin/ o
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0.00001 0.0001 0.001 0.01 0.1 1 10 100

Qoo

Figure 9 - Type curve showing the Bilinear and Linear flow of a reservoir
model (after Khan and Callard 2010).

Rodrigues and Callard (2012) perform production analysis on a

horizontal well with constant pressure production. The schematics of Fig. 10
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are used to identify the linear flow period as well as the boundary dominated

flow.

= = = Linear Flow

1 A elf (End of Linear Flow)

Boundary Dominated Flow

Reciprocal Rate

Cumulative Production

Figure 10 - Flow Periods of constant pressure production in a gas well
(after Rodrigues and Callard 2012).

The flow regimes of Fig. 10 are described by Arps hyperbolic equation

with b exponent of 2 (Arps 1956) as follows:

o=t M (20)
The term (ﬁli) is the intercept, (m,,.) is the slope, and (Q) is the

cumulative production. The relationship between the initial decline rate and

the intercept and slope is described by

D; = q;* My (21)
The end points of the linear flow regimes are used to identify the rates

at the boundary flow, which are equal to ending rates of the linear flow regimes

described by (q.). Utilizing the cumulative production at the linear flow end

point (Qc;r), the following can be generated:
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1 1

elf = q_l + mrchelf (22)

The initial decline of rate of the boundary flow regime (D;,f) is equal to
the ending decline of the linear flow regime. This decline can be described

using Arps equation

D;
Dievs = (1+2Diterf) (23)

Utilizing the set of equations mentioned earlier, few reservoir and
fracture parameters can be inferred. The permeability can be estimated using

the following equation:

¢ (pce) Yez
k=310 — 12 (24)
tetfcp
where
T 1
teifcp = —m2 < Qelf2 + W Qerf (25)
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Figure 11 - An example of Reciprocal Rate against Cumulative Production plot (Modified
after Rodrigues and Callard 2012).

The figure above, Fig. 11 shows an example of the reciprocal rate
plotted against cumulative production. The plot shows two wells; each with
different end points of the linear flow. The slope of this plot can be used to
calculate the half-length of the fracture using the equation below:

315.4T
Vkxy = ——— (26)
! h 2myrcp

The half-length of the fracture can be estimated by dividing the equation
above by the permeability found through utilizing the equation generated
earlier.

Although the formulations can be used adequately to estimate reservoir
and fracture parameters, they have few limitations. The shortcomings of these

methods lay in the assumptions made in formulating the techniques.
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Homogeneity, uniformity, and linearity are few of many assumptions made. In

addition, they require long running time and complicated calculations.

1.3.2 Semi-analytic and Numerical Approaches

In addition to analytic techniques to interpret pressure-rate data for
formation/fracture properties, there are other techniques that are based on an
inverse modeling approach. These techniques are classified as pure
deterministic (analytic), full probabilistic (Stochastic, geostatistical, and
statistical), or heuristic.

One of the more popular models for history matching/data assimilation
is the Ensemble Kalman Filter (Evensen 2003; Gu and Oliver 2007; Aanonsen et
al. 2009; Arroyo-Negrete et al. 2008). It is a sequential Monte Carlo technique
that allows for continuous updates of a suite or ensemble of reservoir model.
The relationship between the measurements and the model parameters are
expressed using a covariance matrix and the assumption behind the method is
that the model is linear and all model parameters are normally distributed. The

basic equation for a linear system are shown in the following set of equations:

v = Ays (27)

Y& =y} + Ky (dopsn — HyY) (28)
T T -1

Kn=Co H (1 C,r HT + Ca,) (29)

C,r=ACy A"+ C, (30)
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Cyg = (1~ KoH)C s (31)

The coefficient (y) is the estimated state vector for the system while the
term (d,ps) are the measurements. The matrices(C,), (Cy)and (C;) are the
covariance matrices for the model noise, state vector of the system, and the
measurements error, respectively. The subscripts (f), (a), and (n) represent the
forward step, analysis step, and time index, respectively. The matrix (A) defines
the dynamics of the system and Matrix (H) defines the linear relationship
between the measurements and the states; while (K) is the Kalman gain matrix.
Despite its popularity, this method contains few limitations. The main issue
encountered is the constant updating of the covariance matrix in high-
dimensional systems. Additionally when the ensemble size is kept small for
computational efficiency, there may be a loss of variability and ensemble
collapse (Arroyo-Negrete et al. 2008). Additional limitations arise because of
non-Gaussian state variables, nonlinearity in system equations and non-

Gaussian model errors.

1.4 Problem Statement

Well test analysis utilizes the pressure response to production or
injection to infer formation and hydraulic fracture-related properties. Given a
reservoir model, it is possible to extract information about the dimensionless

fracture conductivity, fracture half-length and formation permeability from
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well test data. However, as with decline curve analysis, long-term production
or well test data is required for these low permeability shales.

Additionally, the approaches in Khan and Callard (2010) and
Wattenbarger et al. (1998) share the same limitations such as:

1. The reservoirs are rectangular with a uniform thickness.

2. The formation is isotropic and homogenous.

3. The fracture and formation flow is uniform and linear.

4. The fractures are horizontal and their extent outlines the width of

the reservoir.

These assumptions restrict the class of models that may be analyzed for
formation- and completion-related properties. The method proposed in this
thesis is based on earlier work by Vasco and Karasaki (2006) that utilizes the
low frequency content of the bottomhole pressure data to infer hydraulic
fracture permeability or conductivity. The advantage of the proposed approach
is that it relies on the use of numerical simulation tools and therefore can easily
be generalized to complex reservoirs and complex fracture networks and well
architecture. Additionally, because only the low frequency content of the
pressure data is utilized to infer formation/fracture properties, the method is
robust in the presence of noise, which is typically characterized by high
frequency variations. Moreover, by working in the frequency domain, the
number of observations required in the inversion procedure is dramatically

reduced.
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The calculations and derivation of the asymptotic inversion approach
are discussed later in the paper. Appendix C provides a full explanation of the

governing equations used for pressure inversion and sensitivity analysis.
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Chapter 2: Mathematical Formulation

The central idea behind the approach adopted in this thesis is to utilize
the frequency content of bottomhole pressure data to estimate
reservoir/completion properties such as formation permeability and fracture
conductivity. This allows for interpretation of fracture -characteristics
irrespective of the geometry of the fracture and can easily be generalized to
heterogeneous media. The key drawback of analytic approaches is that they are
limited to a small subset of possible well/fracture geometries and typically rely
on assumptions of homogeneity and uniform formation thickness.

The steps in deriving the pressure inversion solution are listed in the
next few sections. The formulation starts transformation of the diffusivity
equation to the frequency domain. The reasons behind this domain
transformation is discussed in details in later sections. In the frequency
domain, the pressure equation is truncated to only consider low frequency
variations in the pressure signal. Finally, the sensitivity of the pressure
amplitudes to changes in gridblock permeabilities are computed. The
derivation of the sensitivity equation is thoroughly discussed in Chapter 3.

In order to transform the pressure equation from the time domain to
the low frequency domain, the application of the Fourier Transform and the
vector differential operators are needed. A basic explanation of both concepts
is provided in this chapter. Moreover, Gradshteyn and Ryzhik (1980) provide

detailed explanation of the Fourier Transform. In addition, Appendix C
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provides all the steps taken to generate the final forms of the equations of the

derivation.

2.1 Methodology

Evaluation of pressure responses post-hydraulic fracturing is essential
to quantify fracture geometries and formation permeabilities. Vasco and
Karasaki (2006) have investigated an asymptotic solution of low frequency
transient pressure variations to estimate formation permeability for cross-well
tests. The use of this approach is conducted through applying constant rate
tests that are run for specific periods of time. The pressure is monitored at one
or several locations at the injection/producing well and these are interpreted
to provide an estimate of interwell connectivity. In this work, I adopt this low-
frequency asymptotic approach to estimate fracture conductivities.

Pressure data, especially bottomhole pressure data, often comprises of
large datasets that are accompanied by noise. The low frequency asymptotic
approach utilizes the frequency domain to reduce the amount of data needed to
determine formation properties. This is done by truncating the pressure
equation in the frequency domain to only account for low frequency
components of the pressure. The formulation of transforming the pressure
equation to the low frequency domain is explained in section 2.4.

This study focuses on using the low frequency approximation of the
diffusivity equation, the pressure equation, because of the following

assumptions:
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1. The high frequency variations are sensitive to noise in the
measurements.

2. The low frequency responses correspond to lateral and vertical
variations in the reservoir/completion properties.

3. Working in the frequency domain reduces the number of bottomhole
pressure observations needed for fracture properties estimation,
significantly.

4. The method can easily be generalized to many different reservoir
and testing scenarios.

5. The final form of the semi-analytical approach is independent of the
number of frequencies chosen and can therefore be easily solved.

6. The high frequency approximations require computations that can

be difficult to achieve due to background and well effects.

2.2 Fourier Transform

The Fourier transform is a method typically used to break down the
waveform to its simplest representations. This function transforms between
signals in the time and frequency domains. It is usually associated with
periodicity and repetition descriptors such as frequency (periodicity of time)
and periods (periodicity in space). Fourier Transform is defined by the

following integrals (Gradshteyn and Ryzhik 1980):

Synthesis (Inverse Solution)  f(t) = i f:roioF(a))e"“’t dw (32)
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Analysis (Forward Solution) F(w) = fj;of(t)e‘i“’t dt (33)

Where F is the Fourier transform of function f, while w and t are angular
frequency and time, respectively. The notations describing the Fourier
Transform Integral were specifically chosen to suit the parameters and
notations used later in the mathematical formulation of the study. The
transform utilizes the periodical characteristics of the sine and cosine through
the use of Euler’s Formula:

e =cos@®+ i sin® (34)

2.3 Derivation of the Pressure Equation

In order to derive a mathematical expression that effectively describes
the pressure variations with time and space in multiphase medium, few basic
governing equations must be used (Peaceman, 1977). These equations are
Mass Balance equation, Darcy’s Law, and the Equation of State. Integrating and
solving the three equations will generate the diffusivity equation described in

Eq. 35 below.

c(Vp)? + V3p = S %P (35)

The coefficients (c) and (c;) are the fluid and total compressibilities,
respectively. The term (p) is the pressure and (k) is the permeability. The
porosity is defined by (¢) and the viscosity is defined by (p).

Starting our derivation by incorporating multiphase flow parameters in

Darcy’s Law illustrated in Eqgs. 36. In this case, two flowing phases are applied
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and are defined by the subscripts (n) and (w) denoting the nonwetting and
wetting phases, respectively. It must be noted that the two flowing phases,
wetting and nonwetting, flow concurrently and hence interfere with each
other’s flow. Therefore, the concept of relative permeability is utilized and

Darcy’s law equations are rewritten in the multiphase form as follows:

By = == (Vpy + pagVb) (36a)
5 Ky
Vw = _v (pr + prVD) (36b)

Here (v) is the superficial velocity and (K) is the absolute permeability.
The terms (k,) and () define the relative permeability and viscosity,
respectively. In addition, (g) is the gravitational acceleration; (p) is the density;
and (D) is the parameters depth. The single phase form of the Material Balance

equation can be utilized to incorporate the two flowing phases, as in Egs. 37.

V- (apy By) + gy = —a "E2 (37a)
a wew
V- (apy By) + g, = —a o (37b)

The notations (S) and (¢) denote the saturation and porosity values of
the wetting and nonwetting phase. The term («) is a geometric factor function.
This function is added in order to be able to use the same equation for any
number of dimensions (Peaceman, 1977). Expanding the time derivative terms

of the continuity equations illustrated by Egs. 37 produces:

R dpn 0pn asn
V- (@pn B) + @y =~ | ppSn 50+ $Sn 5 T + Gy (382)

. dwaw asw
V'((I,DWUW)-FCZQW:—(Z [pWS ¢+¢SWdZ L +¢w

W at

(38b)
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Since these two phases are the only fluids flowing in the pores, the
saturations are defined by (S,, + S,, = 1). The two sets of Egs. 38 are divided
by the terms ap, and ap,,, respectively. The average pressure and phase

mobilities are given by:

Average Pressure: Pavg = p“% (39)
Phase Mobilities - Nonwetting Ap = % (40a)
Phase Mobilities - Wetting Aw = K:fﬂ (40b)

In order to generate the final form of the equation needed for pressure
variations, Darcy’s law described by Egs. 36 are substituted into the produced
continuity equations of Egs. 38a and 38b after division. Similarly, the constraint
equation(S, + S, = 1), the average pressure shown in Eq. 39, and phase
mobilities, defined by Egs. 40a and 40b, are incorporated in the same resultant
Egs. 38. A fully detailed derivation of the pressure equation can be found in
Appendix B. The following equation defines the final form of pressure
variations P(x, t):

V(KA)- VP +KAV- VP =CP (41)
Where the term (4;) denotes the total mobility defined as:
A = 'L—: + 'L—V“v” (42)

The Coefficient (C) is given by:

C =2+ pcaSn + Py (43)
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The terms (c¢,) and (c,) are the nonwetting and wetting phase
compressibilities, respectively. Total mobility does not vary significantly with
position (x) thus it will be treated as a constant. The dependency of coefficient
(C) on time can be neglected when the compressibilities are similar and the
medium is not deformed, as a result of the saturation constraint (S, + S,, = 1)
mentioned above. Therefore, coefficient (C) is assumed to independent of time
but dependent on space.

The pressure variations P(x, t), described in Eq. 41 above, is considered

to be the basis of the asymptotic model derivations.

2.4 Low Frequency Asymptotic Solution

In this study, an asymptotic inversion technique is utilized to interpret
and invert pressure variations in the low frequency domain. Working in the
frequency domain requires the transformation of the pressure variations
through the Fourier Transform discussed above. Transforming the pressure to
the frequency domain reduces the volume of observation data to a much
smaller quantity of observations.

The pressure data in the frequency domain is then utilized to
characterize the reservoir and the completions. This is accomplished through
the use of inverse methods and model parameter sensitivities. Sensitivities are
defined as the change in the output to a change in the input. In this specific
problem, the sensitivities refer to changes in the pressure data in the frequency

domain to changes in gridblock permeability values. Sensitivities can be
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computed either analytically or numerically. Numerical sensitivities can be
computed by changing the value of each gridcell permeability, then running
Eclipse to predict bottomhole pressure variations. The bottomhole pressure
variations are estimated every time the permeability in each single gridblock is
altered. This is repeated N+1 times, where N is the number of gridcells and the
additional simulation run is for the reference model. The sensitivities to
changes in gridcell permeabilities is then computed as change in bottomhole
pressure to a corresponding change in gridcell permeabilities. Eventually this
will result in sensitivity values for each gridcell for each well in the model. The
main disadvantage of numerical sensitivity computations is the need for
several simulation runs. This can become prohibitively expensive when
considering large field-scale studies.

In this work, I overcome the problems associated with numerical
sensitivity computation by analytically computing them. Analytical Sensitivity
calculations are discussed later in the chapter.

The main purpose of the asymptotic approach is to find a solution for
the diffusive pressure component that emulates the characteristics of the wave
propagation model. Virieux et al. (1994) and many others have studied the
asymptotic approach in deriving the diffusivity equation in the frequency
domain. The following notation describes the general form of the solution to
the diffusion equation in the frequency domain. The use of this equation is

discussed later in the chapter.
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e—Vwa(x)
Vo

P(x,w) = w(x, )
Virieux et al. (1994) explains that the diffusion equation when
transformed depends on the expression exp(vw). A similar factor exp(w'/?)
appeared in the asymptotic solution of wave propagation model of Hilbert
Transform. As a result of the observations found by Virieux et al. (1994), the
diffusion equation in the frequency domain was defined in that specific form.
The asymptotic solution for the equation describing the diffusive
component, pressure, is transformed to the frequency domain using a Fourier
transform integral described in Eq. 44. Working in the low frequency or long
period domain requires transforming P(x, t), pressure variations, a function of
space(x) and time (t) to P(x,w). The term P(x,w) is defined as the pressure
variations in the frequency domain as a function of space (x) and frequency
(w).
Plx,w) = [T et P(x,t) dt (44)
In order to describe the behavior of pressure variations in the frequency
domain, the pressure is transformed through a Fast Fourier transform. As a
result, the pressure (shown in Eq. 41) in the frequency domain becomes:
V(KA VP + KA V- VP = wCP (45)
Hydraulic permeability is presented by the term K(x) and the pressure
variations in the frequency domain is defined by the term (P). The term () is

the frequency and the function (C) is defined by:

d¢

C=d—P

+ dcaSn + dcy Sy
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Pressure variations can also be described in the frequency domain

through power series representations (Virieux et al. 1994):

~ —Vw a(x)
Pr,w) = T 52 o Pu(@) 0" (46)

The function o(x) is defined as the phase and (n = 0, 1, 2 ...). This form
of the pressure equation is adopted from the representation of the diffusivity
equation in the frequency domain in a homogenous medium for an impulsive
source (Virieux et al. 1994). This type of equation is dominated by the first few
terms for when the magnitude of the frequency (w) is small. The solution of the
pressure equation in uniform mediums is described by some form of a
modified Bessel function of the zeroth order K,(vwar). The term a is a
constant depending on medium properties and r is the distance from the
source. The solution of the pressure variations, illustrated in Eq. 46, is an
adaptation of the modified Bessel function for small frequency (w) (Vasco and
Karasaki, 2006). The solution to the variation and the diffusion equation in the

frequency domain is

e—Vw a(x)
Vo

P(x,w) = w(x, ) (47)

The expression w(x,w) depends on the orders of the frequency
magnitudes and is defined by its series form as
w(x, w) = Xglo Py (x) @™ (48)
The pressure variation term in Eq. 48, defined by the expression B, (x),
is a function of space (x). Note that in order to work in the low frequency
domain, only the smallest magnitudes of frequency where (w « 1) were used.
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Therefore, the representation of the pressure P(x, ) in Eq. 46 is significantly
controlled by the first few terms. Accordingly, the final form of Eq. 46 can be
used to adequately represent the pressure variations in the low frequency
domain. This is shown in Eq. 49, where the term P,(x) is defined as the zeroth-

order amplitude of the pressure variations.

~ e—Vwa(x)
P(x,w) = = Py(x) (49)

In order to utilize the equation above to calculate the low frequency
pressure variations for a given model, the terms Py(x) and o(x) need to be
calculated. Substituting and solving Eqs. 47 or 46 into Eq. 45 generates a new
set of terms characterized by different orders of frequency (w). The
mathematical operations conducted are summarized below. The terms (V) and
(V- V) are spatial derivatives that are defined as the gradient and the Laplacian
expressions, respectively. For straightforwardness reasons, only the final
solutions for solving Eqgs. 47 and 45 are described below. A step-by- step

detailed mathematical formulation of the solution can be found in Appendix C.

Pressure Gradient VP (x, w)

e—Vwa(x)
Vo

VP(x,w) = (VW(X, ) — Vo Vo(x) w(x, u))) (50)

Pressure Laplacian V - VP (x, w)

V- VP(x @) = ffgm (wx o Vo) Vo (x) ~ V@ V- Vo@w(x,) -
2V Vo (x)(Vw(x, ) + V- Vw(x, w)) (51)
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Substituting the definitions of VP(x,w) and V- VP(x, w), described by

Egs. 50 and 51, into Eqg. 45 generates the following equation:

K(x)A; (W(X, w)VoVa(x) Va(x) — V- Vo(x)w(x, w) — 2 Vo (x)Vw(x, ) +
w12V -V w(x, w)) + VK (x)A, (w‘1/2 Vw(x, w) — Vo(x) w(x, oo)) =
Vo C(x)w(x, w) (52)

The generated equation above represents the final form of Eq. 45 after
substitution, factoring out the exponent term, and dividing both sides by the
term Vow. As mentioned earlier and as Eq. 48 indicates, the term w(x, )
depends on different orders of frequency. Therefore, the term w(x, w) was

defined in power series form as seen in Eq. 48.
WX, w) = Yno Po(x) @" (48)

If we were to substitute the power series form of Eq. 48 into Eq. 52, the
solution will generate a sum of infinite number of expressions with varying
orders of frequencies vw. Let us recall that we are aiming to working in the low
frequency domain. Therefore, only frequencies (vw ) of small magnitudes are
considered.

The solution to deriving an equation of pressure variations in the low
frequency domain is done through examining the terms of Eq. 52. The terms

combined with the smallest orders of the term v/w , are selected. The solutions
-1 —0 1
to terms withv/ow ,WVw ,andVw frequencies are discussed below.

-1
Terms of ordervw
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Examining terms with the smallest order V/w provides the equation
defining the zeroth-order amplitude of the pressure variations P, (x).
K(x)A:V-VPy(x) + V[K(x)A:] - VPy(x) =0 (53)

The expression above is a first order differential equation that
resembles the equation governing the steady state pressure. Note that the
solution of the zeroth-order amplitude Py(x) equation depends on the total
mobility A; and the hydraulic permeability K (x) . In addition, the solution of Eq.
53 is independent of frequency, thus, only one solution per well point is

needed.

Terms of order N
Examining terms with the second smallest order of frequency Yw,
provides an equation needed to solve for the phase coefficiento(x).
Kx)A: Po(x)V-Vo(x) + VI[K(x)A] - Py(x) Vo(x) + 2 K(x)A;VPy(x) - Vo(x) =0
This equation shows the dependency characteristics of the phase
coefficient on the zeroth-order amplitude Py(x), the total mobility 4;, and the
hydraulic permeability K(x). In order to solve for the phase parameter, Eq. 53
must be solved first. The equation above can be rewritten in a more compact
form using the coefficients and vector of coefficients defined below.
Qx)V-Vo(x)+YX) -Vo(x) =0 (54)
Where the terms Q(x) and Y(x) denote the scalar and vector coefficients
mentioned above, respectively.
Q(x) = Kx)A; Py(x)

Y(x) = VIK(x)2:]Po(x) + 2 K(x)A. VP, (x)
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The equations required to solve both the zeroth-order amplitude P, (x)
and phase coefficient 6(x) are both independent of the frequency. As a result

only one solution per well is needed for each parameter.

Terms of order Jw !

Examining terms with the largest order of frequency Vw, provides an
equation relating the zeroth-order amplitude P;(x), the phase coefficient o(x),
and the amplitude term P; (x).

V - [K(x)A: - VP ] = [C(x) — K(x)A.Vo - Vo]P, (55)

Solving for amplitude term P; (x) requires solutions for both Egs. 53 and
54. Solution of the diffusive travel time in high frequency domain is described
by the eikonal equation represented by the right side of Eq. 55.

In order to estimate the pressure variations in the frequency domain,
both the zeroth-order amplitude pressure and the phase coefficients must be
calculated using Egs. 53 and 54. The equations governing P,(x) and o(x) are
independent of the frequencies, therefore only one solution per well needs to

be calculated.
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Chapter 3: Model Parameter Sensitivity Calculations

In this chapter, I discuss the analytic sensitivity calculations for
variations in pressure amplitudes to changes in gridblock permeability values.
In the previous chapter, I derived the frequency-domain form of the diffusivity
equation and then derived the low-frequency approximation to describe
pressure variations as a function of location and frequency.

The main purpose of the sensitivity calculations is to relate variations of
a specific model parameter at point y to observations recorded at point x. In
this study, the perturbation method is used to calculate model parameter
sensitivities, which are essential parts of every iterative inverse method. In this

study, the perturbations in hydraulic permeability 6k; or 6k(y) located at

point y are related to the observed values of the pressure change §P(x, ) in
the well located at point x.

In order to assess the validity of the semi-analytic sensitivity
computation, I also compare them to the numerical sensitivities for a synthetic

case study that [ will describe later in this section.

3.1 Semi-Analytical Sensitivity Calculations

The sensitivities are calculated through the comparison of hydraulic
permeabilities at point y altered slightly from base or background
permeability with value K?(y). The same method is used to compare changes

created at the pressure at point x to a background or base model that has a
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pressure of P?(x, w). The comparisons made between the permeabilities and
pressure before and after perturbations are shown in Eqs. 56 and 57:

6K(y) = K°(y) — K() (56)
§P(x,w) = PP (x,w) — P(x, w) (57)

According to Vasco et al. (2000), an equation defining the term 8P (x, w)
can be derived. This is done through substituting the terms k(y) and
P(x, w) into Eq. 45 and focusing on the first order terms in the perturbation. If
we were to solve Eq. 45 after substitution, the equation would be identical to
static pressure equation with additional source terms.

Using Green'’s function solution VG (x,y, w), the term SPP (x,w) can be
calculated through integrating over a volume, V. The resultant formula is
shown below:

§P(x,w) = =2 [, VG(x,y, ) - VPP (y, w)Sk(y)dy (58)

The term VG (x, y, w) describes the pressure variations at point x due to
perturbations at source point y. Applying the asymptotic technique and
making use of Eq. 49, Green’s function in frequency domain becomes:

G(x,y,0) = Po(y,x)e V@0 h(w) (59)

The term y(w) represents the coefficients that are dependent on
frequency. Pressure Py(y,x) is described as the pressure amplitude at point x
due to perturbations at source point y. A similar zeroth order representation is
generated for P?(x,,y, w) where pressure amplitude variations at point y due

to a source at point xg:
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P (x5, y, ) = Py (x5, y)e™V*0CsM1)(w) (60)
The expression o (y,x) describes the phase at point x due to
perturbations at source point y and o(x,, y) describes the phase at point y due
to a source at point x;. The spatial gradients of terms G(x,y,w) and
PP(x,,y, w) are expressed as:
VG(x,y, ) = VP (y, )e Vo0 (w)
—VwVa(y, )P (y, x)e V0 (w) (61)
VP (x5, y,@) = VPy (x5, y)e (s (w)
—V@Vo(xs.) Py (x5, y)e Vs (w) (62)
Substituting and solving Egs. 61 and 62 into the expression defined by

Eq. 58, the following is generated:

5P(x,w) = ~2 f VP (3, ) - TPy (e Y2 (@)
4

xe - Volo(xsy)+o(y.x)] SK(y)dy (63)

Using only low frequency values by disregarding higher frequencies and

assuming the expressions defined by Egs. 64 and 65, we can define Eq. 63 in a
more compact form as shown in Eq. 66.

(x5, %) = 0o(xs,y) + (¥, %) (64)

M(xs, x, ) = =2 VP (y,x) - VP (x5, y)P* () (65)

As mentioned above, the following equation is achieved through

substitutions of Egs. 64 and 65 into Eq. 63:

§P(x,w) = [, N(xy,x, w)e VO IES §k(y)dy (66)
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The final term describing the resultant variations of observed pressure

at point x due to hydraulic permeability perturbations at pointy is:

8P(x,w)
Sk(y)

= T1(xs, X, w)e VO L) (67)

[t must be noted that if the source points xs and x are not situated in the
same location, a total of four solutions needed. Two solutions of phase and
zeroth-order amplitude per point is needed to be able to solve for sensitivities.
However, if the source points xs and x are in the same location, only two
solutions are needed to calculate and measure model parameters sensitivities.

In the case of this study, both source points xs and x are in the same
location. Therefore, the sensitivities for this single source well is defined by the
square of the pressure gradient as shown in Eq. 68. The phase coefficient needs

not to be calculated at frequencies (w = 0) as it is automatically dropped.

) = 2 TPy (x,7) - TPy (3, y)e 0 (68)

3.2 Numerical Sensitivity Calculations

The main reason behind calculating sensitivities is to assess the validity
of the semi-analytical approach that was discussed above. In addition, both the
semi-analytic and the numerical sensitivities were applied to a base model for
comparison purposes. This base model consists of a 21x21x1 cell reservoir
with a producing well in the middle of mesh as shown in Fig. 12. The uniform
permeability of the reservoir formation is 8.12 millidarcies and the uniform

porosity is 10%. The initial water saturation of the reservoir is 22.1%. The
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initial pressure of the reservoir is 3000 psi and the well is set to produce at a

Io.74661

rate of 35 bbl/D.

0.76280

14661

Figure 12 - A synthetic model with a producing well placed at cellblock 11x11x1.

The first step to computing the numerical sensitivities was perturbing
the permeabilities of each of the gridblocks one at a time. This is done by
perturbing the permeability of a gridblock by 5% and re-computing the
bottomhole pressure at the observation well by running Schlumberger Eclipse.
The wunperturbed and the perturbed pressure variations are Fourier
transformed into the frequency domain. The difference between the two
frequency-domain pressures is then calculated and divided by the permeability
differences for the chosen gridblock to obtain the numerical sensitivity for that
gridblock. The model used in this work has a 21x21x1 mesh and therefore, the
total number of simulation runs is 442.

The resultant numerical sensitivities for the base model are shown in

Figs. 13 and 14. The numerical sensitivities calculated for the base model were
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calculated for two different frequencies. The sensitivities for the two
frequencies agree in their patterns. The most sensitive areas are concentrated

around the well.
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Figure 13 - Numerical Sensitivity Model for Frequency 1.

2 4 6 8 10 12 14 16 18 20

Figure 14 - Numerical Sensitivity Model for Frequency 2.
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The semi-analytical sensitivities calculated for the same base model are
shown in Fig. 15. The semi-analytical sensitivities were calculated only for
Frequency 1. Examining Fig. 13 and comparing to Fig. 15, we see excellent
correspondence in terms of the sensitivity patterns. The advantage of the semi-
analytic sensitivity computation is that is requires only two full field simulation
runs and therefore provides for two orders of magnitude reduction in the
number of simulation runs required. The sensitivities shown in Figs. 13 and 14
provide validation for the semi-analytic sensitivities derived earlier. I can now
use this in an inverse scheme to estimate gridblock permeabilities using

pressure data.

2 4 6 8 10 12 14 16 18 20

Figure 15 - Semi-Asymptotic Sensitivity Model for Frequency 1.
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In the next chapter, I describe the application of this approach to a
hydraulically fractured well where the goal is to estimate the hydraulic fracture

permeabilities.
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Chapter 4: Application of Semi-Analytic Approach to Estimating

Hydraulic Fracture Properties

In the previous chapter, I described the semi-analytic sensitivity
computation and demonstrated the excellent correspondence between
numerical sensitivities and the semi-analytic sensitivities using a synthetic case
study.

In this chapter, I describe the application of the approach to estimate
hydraulic fracture permeabilities from bottomhole pressure data using
synthetic oil and gas reservoir case studies as well as a field case study based

on a well from the Eagle Ford shale play.

4.1 Application to Synthetic Case Studies

The synthetic case study used to demonstrate the low frequency
asymptotic approach to estimation of hydraulic fracture properties. The
fractured model is defined on a 21x21x1 mesh with the producing well located
in the middle of the reservoir. The reservoir has a permeability of 8.12
millidarcies and porosity of 10%. A single bi-wing hydraulic fractures
characterized by 21 gridcells with a permeability of 1000 millidarcies
intersects the well as seen in Fig. 16. The well is constrained to produce at a
rate of 35 bbl/D. The procedure described in Chapter 4 is employed for the

sensitivity calculations.
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Figure 16 - Initial permeability pattern of the synthetic reservoir model.

4.1.1 Synthetic Oil Reservoir Case Study

As mentioned above, the oil reservoir has a formation permeability of
8.12 md and hydraulic fracture permeability of 1000 md. The reservoirs
properties are listed in Table 1.

Table 1 - Reservoir Properties for Synthetic Oil Reservoir

Initial Reservoir Pressure 3000 Psi
Depth 1000 ft

Net Thickness 37 ft

Initial Water Saturation 221 %
Reservoir Formation Porosity 10 %
Reservoir Formation Permeability 8.12 md
Initial Solution Gas-0il Ratio 1.27 Mscf/stb
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[ use these values of permeabilities to generate bottomhole pressure
data which will serve as reference or true data for this synthetic case study. My
initial guess for the fracture permeability is 100 md as shown in Fig. 17. ]
attempt to use a starting (or prior) model with a background permeability of
8.12 md and a fracture permeability of 100 md to generate model-predicted

bottomhole pressures.

2 4 6 8 10 12 14 16 18 20

Figure 17 - The permeability pattern for the initial guess for the fracture permeability

The observed (or reference) and predicted values for the pressure
variations are shown in Fig. 18. It can be seen that the trend exhibited by the
observed and the predicted pressure values are somewhat similar. However,
the bottomhole pressure data from Fig. 18 is then Fourier transformed and the

frequency-domain misfit is computed.
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Figure 18 - Pressure values for predicted and observed states.

For the initial guess of 100 md, I compute the semi-analytic sensitivities
as shown in Fig. 19. The numerical sensitivities for this model is shown in Fig.
20. Although there are differences between the two figures, it is important to
note that the high sensitivity regions in both figures show excellent
correspondence, again proving the validity of the semi-analytic sensitivity
approach. The differences in sensitivity magnitudes between the numerical and
the analytical method is a result of calculation rescaling. One important factor
to note is the total time required for the sensitivity calculations. The total time
required for the numerical sensitivity method is approximately 40 minutes of
running time. However, implementing the semi-asymptotic sensitivity
calculation requires only a few seconds of running time and therefore can easily

be extended to even larger field-scale studies.
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Figure 19 - Semi-Asymptotic Sensitivities for the oil case model.
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Figure 20 - Numerical Sensitivities for the oil case model.

These sensitivities are then utilized in an inverse approach (Vasco and
Karasaki 2006) to generate updates to the permeability field in the first

iteration. The pressure data misfit and sensitivities are then computed again
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using the new permeability field and updated in a second iteration. This
process can be continued over several iterations till the bottomhole pressure
data misfit is acceptable. At that point, the model-predicted bottomhole
pressure is reconciled with observations and the fracture permeabilities are
then output.

The pressure misfit over 10 additional iterations is shown in Fig. 21.
The total misfit values are calculated for pressure perturbations in both time
and frequency domains and the misfit is seen to reduce considerably over 10

iterations.
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Figure 21 - Total misfit calculated in frequency and time domains for 10 iterations.

The final bottomhole pressures compared to observed pressures are
shown in Fig. 22. Comparing Figs. 18 and 22, one can noticed the difference

between the two bottomhole pressures has reduced significantly.
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Figure 22 - The final bottomhole pressures versus the observed bottomhole pressures.

The final result of the permeability field is shown in Fig. 23. The
permeability does not change substantially from the prior model. The entire
solution for this problem only required a few seconds of computation time.
This is a key advantage of the proposed approach over the use of numerical

sensitivities that will require 442 simulation runs for each iteration.
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Figure 23 - The final result of permeability estimation through pressure
variations Inversion.
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The misfit between the initial and the final permeabilities for the ten
iterations is shown in Fig. 24. The misfit was calculated by squaring the
difference of the initial and final permeabilities. Generally, the misfit is
decreasing with increasing number of iterations. This proves that the updated
permeability patterns are approximately similar to the expected or the

reference permeability.
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Figure 24 - The total permeability misfit of the synthetic oil reservoir for 10 iterations.

4.1.2 Synthetic Gas Reservoir Case Study

In this section, I describe the utility of the proposed approach to a dry
gas reservoir. Again, the model is defined on a 21x21x1 mesh reservoir with a
producing well in the middle. The formation and fracture permeabilities are
8.12md and 1000md respectively. The reservoirs properties are listed in Table

2.
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Table 2 - Reservoir Properties for Synthetic Gas Reservoir

Initial Reservoir Pressure 3000 Psi
Depth 1000 ft
Net Thickness 37 ft
Initial Water Saturation 221 %
Reservoir Formation Porosity 10 %
Reservoir Formation Permeability 8.12 md

The prior model (or initial model) has a fracture permeability of 100
md. The pressure-time plot for the predicted and observed bottomhole

pressures is shown in Fig. 25.
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Figure 25 - The pressure values for predicted and observed states.

The misfit between the predicted and observed pressure values are

shown in Fig. 26 showing a decrease in the misfit over successive iterations.
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Figure 26 - Total misfit calculated in frequency and time domains for 10 iterations.

Egs. 53 and 68 are used for the calculation of the semi-analytical
sensitivities; results are shown in Fig. 27. The numerical sensitivities are
shown in Fig. 28. The highest sensitivities are concentrated around the well

and in direction of the highest permeabilities.

Figure 27 -Semi-Asymptotic Sensitivities for the gas case model.
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Figure 28 -Numerical Sensitivities for the gas case model.

The final bottomhole pressures are shown in Fig. 29. A comparison
between the observed bottomhole and the final bottomhole pressures is also
shown in Fig. 29. The difference between the two bottomhole pressures shown

in Fig. 29 decreased considerably compared to the difference of Fig. 25.
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Figure 29 - The bottomhole pressure values for final (predicted) and observed states
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Both the misfit and the sensitivities are already calculated, we are now
able to update the permeability model. The reconstructed permeability of the

reservoir is shown in Fig. 30.

Figure 30 - The reconstructed permeability of the synthetic gas reservoir
model.

If we were to compare reference and reconstructed permeabilities, we
would be able to see that the difference is minimal. The total permeability
misfit for 10 iterations is shown in Fig. 31. It can be noticed that the misfit is

mainly decreasing with successive iterations.
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Figure 31 - The total permeability misfit of the synthetic gas reservoir for 10 iterations.

After demonstrating the power and utility of this approach on synthetic
case studies, [ now describe its application to a field study based on an Eagle

Ford shale volatile oil well.

4.2 Eagle Ford Shale Reservoir Model

The model for the Eagle Ford volatile oil well model is defined on a
53x53x1 mesh model with one producing well. The reservoir drainage area is
approximately 50 acres with a total net pay of 150 ft. The fluids of Eagle Ford
formation range from dry gas to black oil (Ilk and Broussard 2012); however
this model belongs to the volatile oil window of the play. The reservoir data are
collected from Texas Railroad Commission (Railroad Commission of Texas

2013). In addition, the field data including the bottom-hole pressure and the oil
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rates are taken from (Ilk and Broussard 2012). The reservoir and fracture
properties of the Eagle Ford shale model are listen in Table 3.

Table 3 - Reservoir Properties of the Eagle Ford Shale Reservoir

Initial Reservoir Pressure 6000 Psi
Depth 7000 ft

Net Thickness 150 ft

Initial Water Saturation 20.0 %
Reservoir Formation Porosity 9.0 %
Reservoir Formation Permeability 0.003 md
Hydraulic Fracture Permeability 1500 md
Initial Solution Gas-0il Ratio 0.812 Mscf/stb

The well produces for 480 days and it encounters two shut-ins early and
late in the life of the well. The formation permeability is 0.003 md while the
fracture permeability is 1500md. The initial permeability pattern of the

reservoir model is shown in Fig. 32.
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Figure 32 - Initial permeability pattern of the Eagle Ford reservoir model.

The observed and predicted pressure data is shown in Fig. 33. The PVT
properties remain confidential and are not reported in this thesis. The
reservoir contains fractures with permeabilities of 1500 md. A comparison

between the predicted and observed pressure is shown in Fig. 33.

7000
6000 CENNINNINetse0e000800000 €H000INI0EE000 ootatee
H °

_ 5000 ® °

%) ]

o

@ 4000 \

—

5 B Y

%]

[}

—

a9

3000 \ L
2000 \
[C05655%)
°

1000
0 { 3 L & N J
0 100 200 300 400 500 600
Time, days

®(Observed @ Predicted

Figure 33 - Observed and predicted pressure data.
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The pressure data misfits as a function of iteration are shown in Fig. 34.
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Figure 34 - The total pressure misfit for 10 iterations. The misfit is reducing with more
iterations.

The semi-asymptotic sensitivities of the reservoir model are shown in
Fig. 35. The large-scale sensitivity trends are analogous to those shown earlier
with the synthetic case studies. In addition, the highest magnitudes of

sensitivities are noticed along the hydraulic fracture and the well.
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Figure 35 - Analytical Sensitivities for the Eagle Ford reservoir model.
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The observed and final bottomhole pressure data is shown in Fig. 36. We can

see that there is a dramatic improvement in the predicted BHP in comparison

to the initial values shown in Fig. 33. Although the match cannot be considered

satisfactory, this is because the model chosen for demonstration is simplistic

and contains a single bi-wing hydraulic fracture. Additionally, because this well

belongs to the Eagle Ford shale, there are stress sensitivities that I have not

considered in my reservoir model. Nevertheless, Fig. 36 shows great

improvement and if the complete physics/completion details are included, it is

likely to result in a better match and a more realistic final model.
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Figure 36 - The observed and final bottomhole pressure data.

The final estimated permeability of the reservoir model is shown in Fig. 37.
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Figure 37 - The final permeability patterns of the Eagle Ford reservoir model.
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Chapter 5: Conclusions

A low frequency asymptotic formulation for pressure inversion was
introduced to estimate hydraulic fracture properties from well pressure data.
This method is shown to be promising and has several advantages over the use

of decline curve analyses or pressure/rate transient analyses.

The method relies on interpreting the low frequency content of the
bottomhole pressure data and therefore considerably reduces the number of
observations required for estimation of formation/fracture properties.
Working in the low frequency domain also makes the method robust to high
frequency noise in the measurements. Model parameter sensitivity calculations
relate perturbations in pressure variation to perturbations in the hydraulic
fracture properties. The sensitivities computed using the proposed semi-
analytic approach and the numerical sensitivities show excellent agreement,

but require significantly less computational effort and time.

The power and utility of the low-frequency asymptotic approach was
demonstrated on two synthetic and one field case studies. In all case studies,
the inversion approach was able to reconcile model-predicted bottomhole
pressures with observed values by calibrating the formation and fracture

permeabilities.
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5.1 Recommendations and Future work

In this study, for the purposes of demonstration, I restricted the case
studies to a simple, bi-wing hydraulic fracture. In reality, fracture systems can
be complex and can include sealed and re-activated natural fractures in
addition to a more complex hydraulic fracture geometry. Additionally, several
formations may be stress-sensitive and the fracture conductivity and formation
permeability may be strong functions of the in-situ stresses and pore
pressures. My recommendation for future work is to extend the method
proposed in this thesis to such case studies with the correct physical

assumptions.
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Appendices

Appendix A: Nomenclature

B= 0il formation volume factor, RB/STB

c= Isothermal Compressibility, psi!

c;= Total compressibility, psi!

C¢p= Dimensionless Fracture Conductivity

D;= Initial decline rate, 1/day

g =Gravity, ft/sec?

G= Green’s Function

Gp= Cumulative gas production, Mcf

h= Thickness, ft

k= Formation Permeability, md

kP= Background Permeability, md

ks = Permeability in the Fracture, md

K= Hydraulic Permeability, md

K, = Effective permeability for the nonwetting phase, md
k.., = Relative permeability for the nonwetting phase
k.., = Relative permeability for the wetting phase
K, = Effective permeability for the wetting phase, md
m(p)= Real gas pseudo pressure, psi/cp

p;= Initial pressure, psi

pn= Pressure of the nonwetting phase, psi

pw= Pressure of the wetting phase, psi

pws= Bottomhole flowing pressure, psi

P= Pressure Variations, psi

P= Fourier Transform of Pressure Variations, psi
q = Flow rate, STB/D

qp= Dimensionless flow rate

Qp= Dimensionless cumulative production

S= Saturation, %

S,= Saturation of the nonwetting phase, %

Sw= Saturation of the wetting phase, %

t=Time, secs

T= Reservoir temperature, R

V= Volume, ft3

w = Fracture Width, ft

xs= Fracture Half-Length, ft

x,= Source Point, ft

y. = Distance from fracture to outer boundary, ft
a= Phase

A,= Mobility of the nonwetting phase, md/cp

A= Total Mobility, md/cp
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A= Mobility of the wetting phase, md/cp

u= Viscosity, cp

W, = Viscosity of the nonwetting phase, cp

u,, = Viscosity of the wetting phase, cp

p= Density, Ib/ft3

pn= Density of the nonwetting phase, Ib/ft3

pw= Density of the wetting phase, lb/ft3

v= Velocity, ft/sec

U, = Superficial velocity of the nonwetting phase, ft/sec
7, = Superficial velocity of the wetting phase, ft/sec
¢= Porosity, p.u. (%)

w= Frequency, Hz

V= Del Operator
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Appendix B: Derivation of the Pressure Equation
The pressure equation is derived through utilizing the Mass Balance
equation, Darcy’s Law, and the Equation of State. The equations governing

Darcy’s law in a two phase flow is as follows:

4 Krn
By = == (Vp, + pngVb) (B-1a)
5 Ky
Uy = — hy (Vpw + pwgVD) (B-1b)

Where (v ) is the superficial velocity and (k,) is the relative
permeability. The terms (D), (K), and (p) define the parameters depth,
absolute permeability, and viscosity, respectively. In addition, (g) is the
gravitational acceleration and (p) is the density. The Material Balance

equations for the wetting and nonwetting phases are defined below:

0($pnSn)

V- (apn ﬁn) +agq, = _aa—t (B-2a)
> 9(PppwSw
V- (apy By) + g, = —a o (B-2b)

The notations (S) and (¢) denote the saturation and porosity values of
the wetting and nonwetting phase, respectively. The term () is a geometric
factor function added to account for any number of dimensions when using the
equation. The following is a description of the geometric function as noted by
Peaceman (1997):

One Dimension: a( x,y,z) = A(x)
Two Dimensions: a( x,y,z) = H(x)

Three Dimensions: a( x,y,z) = 1
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Expanding the time derivative of the continuity equation, Egs. B-2 above

generates:
- dpn Opn 6Sn

V- (apn vn) +aq, = [ann ot + ¢Sn Z on + (»b Pn (B'Sa)
. dpw Opw asw

V- ((I,DW vw) +aqy = [pWSW at + ¢)Sw Z Pw ¢ Pw (B-3b)

Diving Eq. B-3a by (ap,) and Eq. B-3b by (ap,,), the following equations

are produced:

1 - 1d n 0 n asn
_a_an. (apn vn) + Sn ot + dSn on dz o + ¢ (B'4’a)
1 dpy Opw asw
_JV (apw vw) + SW at + (]b w, dZw 2w + ¢ (B'4b)

Adding Eqgs. B-4a and B-4b would produce:

1 dpn apn

- _V (apn vn) + - _V (apw vw) + Sn at + d) n o dpn Ot +
asn 1 dpw Opw 0Sw R
qb + SW at + ¢S wdpy Ot at (B-5)

The wetting and nonwetting phases are the only fluids flowing in the
pores, therefore the saturations are defined by:
Sp+Sy=1 (B-6)
Utilizing Eq. B-6, the equation above, Eq. B-5 can be rewritten in a

compacted form:
1 - 1 - d J n 9 w
— =V (app B) ~ =V (@py ) + Qp = 57+ BSpen T2+ @S g (B-T)

It can be noticed that the saturations time derivatives are no longer part

of Eq. B-5. The term (Q;) is the total volumetric injection rate and is defined by:

an dw
= =4 = B-
Qt Pn + Pw ( 8)
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The coefficients (c¢,) and (c,) are the nonwetting and wetting phase

compressibilities and are defined by:

1dp,
Cn = ——75—
" ppdp,

1 dpy,
Cw = ——75—

Pw APy,

Defining the mobilities of the nonwetting and wetting phases by:

_ ke

Ap =—
Hn

_ krw

Ay =—
Hw

The average pressure of the two phases can be defined by:

Pavg = pn-l-% (B-9)

In addition, the pressure of each phase is described below:

Pn = Pavg + % (B-10a)

Pw = Pavg — % (B-10b)
Where the term (p,.) is the capillary pressure of the phases. Substituting

Darcy’s law of Egs. B-1 into Eq. B-7 and rearranging terms produces:

1
2apw

1
[2-7 - @puKA) + 2=V (@0 KA T + [75 7 - (@puK ) = oV

2a

(aprflw)] Vpe +Qr =

do ODavg P(Sncn—Swew)| 9pc
[(dpavg> + ¢(Sncn + SWCW) ] at + [ 2 at +

1
g [aipn V- (@paKin) + =V (@py?KA,)| VD (B-11)
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Generally, the capillary pressure is very small compared to (pg,4). The
terms accompanying the depth can be considered as a modification to the
source term (Q,). In addition, if we were to disregard the variations of (ap,)
and (ap,,) with position, Eq. B-11 can be written in a more simple form as

shown below:

apavg

V- (K/1n + K/lw)vpavg + Qt ~ (f)Ct at

(B-12)

The term (c;) is the total compressibility which is defined by:

Cp = (é) (d;l:ig) + (Spcn + Swew)

The total mobility can be defined as:

kﬂ1+_krw>

Hn Hw

%=M+M=(

In addition, defining the coefficient (C) as:

—de = o | (1) (-
C=o=¢ [( 5) ( dpa,,g> + (Sucn + swcw>]

If we were to assume no source terms, the final form of Eq. B-12

defining the pressure equation can be written as:

V(KA,) - Vpavg + KA V- vpavg = Capa% (B-13)
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Appendix C: Asymptotic Solution
The general form of the pressure equation P(x,t) in the time domain is

described by Eq. C-1 below
(General Form) V(KA)- VP +KAV- VP =CP (C-1)
In order to work in the frequency domain, Fast Fourier transform is

applied to the pressure equation P(x,t) through the integral defined by Eq. C-

2.

(Integral Form) Plx,w) = [ et P(x,t) dt (C-2)
The resultant pressure equation after transformation to the frequency

domain becomes

(General Form) V(KA)- VP +KAV- VP = wCP (C-3)
Aiming to work in the low frequency domain, the series form of the

pressure P(x, w) in the frequency domain (Virieux et al. 1994) is defined and

utilized

~ —Vw a(x)
(Series Form) P(x,w) = = Yoo Bi(x) @™ (C-4)

The function o(x) is defined as the phase and P,(x) is the amplitude of
the pressure variations. It must be noted that the general form used to describe
the pressure P(x, w) in the frequency domain (Virieux et al. 1994) is also used
to describe the solution of the diffusion equation in the frequency domain as

seen in Eq. C-5.
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e—Vw a(x)

(General Form) Plx,w) =w(x, w) = (C-5)
The expression w(x, w) is defined in its series form as
(Series Form) w(x ) =Yoo B(x) o™ (C-6)

The equation representing the pressure variation P(x, w) in the low
frequency domain is derived through the substitution of the Egs. C-4 and C-5
into the frequency pressure equation defined by Eq. C-3. Note that in order to
work in the low frequency domain, only the smallest magnitudes of frequency
where (w « 1) were used. Therefore, the pressure P(x, w) represented by Eq.
C-4 is significantly controlled by the first few terms. Accordingly, the final form
of Eq. C-4 that can be used to adequately represent the pressure variations in

the low frequency domain is described by Eq. C-7 below.

e—Vwa(x)
Vo PO (X)

P(x,0) = (C-7)

In order to calculate the low frequency pressure variations for a given
model, the expressions Py(x) and o (x) must be known. If the series form of Eq.
C-4 is substituted into Eq. C-3, the solution generated will simply be an infinite
sum of expressions of various orders of vVw. This occurs due to the significant
dependency of the series expression w(x, w) on the powers of term vw. As a
result, only the terms of the lowest frequency (vw) are considered.

For simplicity purposes, Eq. C-5 will be used in the substitution instead
of Eq. C-4. Generating the final solutions by substituting Eq. C-5 into Eq. C-3,

requires the use of the Del operator and its identities. In this study, the Del

spatial derivatives defined by the gradient (V) and the Laplacian (V-V)
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notations are especially used. These expressions, depending on the operator
notations and function types used, can yield vector or scalar fields when
multiplied with mathematical functions.

The gradient (V) and the Laplacian (V-V) of the pressure variations
defined by Eq. C-5 are solved separately for accuracy and simplicity purposes.
The solutions were generated by utilizing the gradient identity v (fg) = ng +
gVf and the Laplacian identity V2(fg) = fV2g + 2Vf -Vg + gV%f . The

gradient VP (x, w) and the Laplacian V - VP(x, ) of pressure are solved below.

. e—V& o (x) V@ o(x)
VP(x,w) = w(x,w) V= N + Vw(x, w) =
= e_\/jg(x) [Vw(x, w) — Vo Vo (x) w(x, w)] (C-8)

N e—\/z a(x)
V -VP(x,w) =wx w)V (T (—\/5 Va(x))) +
(Vw(x w) 2 oo ( N Va(x))) + V- Vw(x, w) _\/\/—_a(x)
e Voo e~V o)
= w(x, w) T(—\/ZV : Va(x)) + Vo Vo(x) ——— N Vo Vo (x)
e Voo e—Vo o)

+2 | Twlx ) —=— (-Vo Vo) |+ V- Vw(x, ) ——
w
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e—Vwa(x)
Vo

e—Vwa(x)
Vo

= w(x, o) (—\/Z v- vJ(x)) + w(x w)o Vo(x) Vo(x)

—V a(x) —Va o(x)
2 (VW(X, ) = (-\/5 w(@)) +VVwix )=

e—Vwa(x)
Vo

V -VP(x,w) = (w(x, W) Vo (x) Vo (x) — Vo V- Vo () w(x, w) —

2V Vo (x)(Vw(x, ) + V- Vw(x, w)) (C-9)

The final forms of the gradient VP (x, w) and the Laplacian V - VP (x, w)of
pressure are illustrated in Egs. C-8 and C-9. Consequently, these equations are
substituted into the pressure equation described by Eq. C-3. The resultant

expression is shown below:

e—Vwax)

K ()2 (W(x, ) Vo (x) Vo (x) — Vo V- Vo () w(x w) —

2w Vo () (Vwx, 0)) + V- Vw(x, a))) + VK (x) A, e V0o

Vo

(Vw(x, w) —
e—Vwa(x)
Vo

Vo Vo (x) w(x, oo)) = wC(x)W(x, w) (C-10)

In order to simplify Eq. C-10, both sides are divided by the terms

e—Vwa(x)
Vo

and vw. The final form of Eq. C-3 becomes
K(x)A; (W(X, w)VoVa(x) Va(x) — V- Vo(x)w(x, o) — 2 Vo (x)Vw(x, ) +
w12V -V w(x, w)) + VK (x)A, (w‘1/2 Vw(x, w) — Vo(x) w(x, oo)) =

Vo C(x)w(x, w) (C-11)
As mentioned earlier, the expression w(x,w) depends greatly on
different powers of the frequency vw. Therefore, substituting the series form of

w(x, w) into Eq. C-11 will produce a sum of infinite sources. Let us recall that in
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order to work in the low frequency domain, only the lowest magnitudes of vV
-1
are considered. This means, we can only use the terms of magnitudesvw
0 1
AVw andVw asseen below.

-1
Terms of ordervw

Terms with the smallest order \/5_1provide the solution for the zeroth-
order amplitude of the pressure variations, P,(x). This indication is described
in the next equations sets.

K(x)A:V-VPy(x) + V[K(x)A:] - VPy(x) =0 (C-12)

The solution for the zeroth- order amplitude P,(x) is provided by Eq. C-
12. This scalar first-order differential equation is identical to the steady state
pressure equation. Also, it is independent of frequencies thus only one solution

needed per well regardless what the frequency configurations might be.

0
Terms of order v

Expressions governed by the order \/ZO, the second largest frequency
magnitude, are described below.
Kx)A: Po(x)V-Vo(x) + VI[K(x)A] - Py(x) Vo(x) + 2 K(x)A;VPy(x) - Vo(x) =0
The equation above can be rewritten in a simpler form:
Qx)V-Vo(x)+Y(x) Vo(x) =0 (C-13)
Where the terms Q(x) and Y(x) denote the scalar and vector coefficients
defined below, respectively.
Q(x) = Kx)A; Py(x)

Y(x) = VIK(x)A:]Py (x) + 2 K(x)2 VP (x)
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The set of equations above help solve the phase coefficient o(x). The
phase equation, described in Eq. C-13, is a linear second-order differential
equation and does not contain any frequency expressions. Therefore, it needs
to be solved only once, regardless of any number of frequencies present. It is
important to note the equation depends on the zeroth- order amplitude P, (x),
the permeability K(x), and the total mobility coefficient (4;). In order to solve
for phase coefficient 6(x), the zeroth- order amplitude P,(x) must be solved

first using Eq. C-12.

1
Terms of order v

1
Examining the terms of order vw , the following equations are inferred.
These equations provide a relationship relating the terms o (x), Py(x)

and P, (x):
V - [K(x)A: - VP ] = [C(x) — K(x)A:Vo - Vo]P, (C-14)

The equation above is used to calculate P; (x) after calculating o (x) and

Py(x) from Eqgs. C-12 and C-13 that were generated earlier.
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