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Abstract 

 

Pre-existing normal faults are commonly cited as influencing both the sequence of 

faulting and the location of thrust faults in fold-thrust belts. Scaled experimental models 

for both frictional and ductile detachments were conducted to study the influence of 

pre-existing normal faults on the subsequent development of thrust faults. Frictional 

detachment experiments used layers of silica sand directly overlying the detachment, 

whereas ductile detachment experiments used layers of sand representing sediments 

overlying silicone gel, representing a ductile layer in 60° angle normal faults. The 

experiments suggest that the normal faults influence the location and orientation of the 

frontal thrusts rather than the sequence of fault propagation. Furthermore, the influence 

is more pronounced for detachment folds and thrusts formed above a ductile detachment 

than for duplexes above a frictional detachment. The orientation of the normal faults 

influences the orientation of subsequently formed thrust faults in different ramp 

settings, so that normal faults with orientations oblique to the direction of contraction 

result in oblique frontal thrusts. Offsets in the location of the normal faults along lateral 

ramps or transfer zones result in offsets in the location of the frontal thrusts. The effect 

of the pre-existing normal faults on the thrust-fold geometry depends on the relative 

distance between the normal fault and the forethrust positions, detachment type, and the 

geometry of the normal fault. The results are directly applicable for understanding the 

locations and orientation of thrust faults, mapping of fold-thrust structures using surface 

and subsurface data, and for comparison with natural examples.
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1 Introduction 
1.1 Introduction 

 The formation of the sedimentary basins is commonly associated with the formation of 

normal faults, resulting in symmetric grabens or asymmetric half-grabens. Contraction 

induced by tectonic or gravitational forces results in reverse faults and the interaction 

between these faults and the pre-existing extensional structures occurs during the 

closure of the basin. Three main types of interactions occur between compressional 

structures and pre-existing normal faults [Mitra, 1993] (Figure 1.1): (1) the normal 

faults can be reactivated as reverse faults resulting in the formation of inversion 

structures, (2) the normal faults can act as buttresses and provide stress concentrations 

for the localization of thrust faults, and (3) the normal faults can be folded and 

decapitated by the reverse or thrust faults.  

In this thesis, I address the geometry and kinematic evolution of fold and thrust 

structures formed by the buttressing effect of pre-existing normal faults. A normal fault, 

which offsets a stiff stratigraphic unit, provides a mechanical perturbation and hinders 

the propagation of the fold and thrust belt towards the foreland [Mitra, 1988; Butler, 

1989; Sassi et al., 1993; Tavarnelli, 1996]. Further contraction at the perturbation 

results in a fault-related fold whose forelimb and backlimb may cut by thrust ramps 

branching off the basal detachment. The normal fault is eventually truncated or thrusted 

over, and the compression front migrates toward the foreland.  
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Figure 1.1 Three main types of interactions between compressional structures and 
pre-existing extensional structures: (a) planar normal fault, with synextensional units 
(stippled pattern) thickening in the hanging wall; (b) normal fault reactivated as as 
reverse fault resulting in an inversion structure; (c) normal fault providing a stress 
concentration for the localization of thrust faults; (d) normal fault folded and 
decapitated by later-formed compressional structure. Arrows in b-d indicate the 
direction of compression [Mitra, 1993]. 
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Both the sequence of thrust formation and the location of thrust faults may be 

influenced by the presence of pre-existing normal faults. Furthermore, their geometries 

and trends may be influenced by the normal faults. Therefore, a detailed analysis of the 

different types of structures formed above normal faults during contraction is useful for 

interpretation of fold-thrust structures.  

This study investigates the role of the pre-existing normal faults on fold-thrust 

geometries developed above both ductile and brittle detachments using scaled sandbox 

experiments with different normal fault geometries. The models are compared with 

examples of natural fold-thrust belt structures that are influenced by pre-existing normal 

faults.  

1.2 Objectives  

The main objective of the current study is to analyze the influence of pre-existing 

normal faults on the geometry and kinematics of the fold-thrust structures using scaled 

sandbox models. The study considers structures formed above the two types of basal 

detachments: (a) brittle (sand), and (b) ductile (silicone gel), and investigates a number 

of normal fault settings, including frontal, lateral, and oblique, and more complex 

settings, including offset, oblique intersecting, and curved ramp settings (Figure 2.1). 

This analysis mainly emphases on the evolution and geometry of the frontal thrust and 

associated folds developed above the normal faults. Moreover, quantitative analysis of 

the wedge height, fault spacing, fault dip, and the position of the frontal thrust relative 

to the top of the normal fault are interpreted using cross sections, progressively 

deformed top images, and 3-D laser scanning data. The model results are compared 
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with natural fold-thrust belts with pre-existing normal faults. These models may be 

useful to interpreting the subsurface structures using surface and subsurface data.  

1.3 Previous studies 

The geometry, kinematics, and dynamics of the fold-thrust belts could be related to 

many parameters such as lithology of the deforming crust, decollement dip, pre-existing 

extensional structures such as normal fault, tectonic underplating, basal friction, oblique 

convergence, and surface processes such as erosion [Schreurs et al., 2006; Nilforoushan 

et al., 2008]. There have been many comprehensive studies that focused on the effects 

of brittle and ductile detachments on the propagation, topography, geometry, and strain 

in fold-thrust belts [e.g., Davis and Engelder, 1985; Cobbold et al., 1989; Costa and 

Vendeville, 2002; Bahroudi and Koyi, 2003]. Thrust front reaches farther in area 

detached on a ductile detachment whereas above a brittle detachment area shortening is 

accommodated by additional uplift and penetrative strain [Cotton and Koyi, 2000]. 

A role of pre-existing normal faults on fold-thrust development is observed in several 

fold-thrust belts including southwestern Appalachian, Alps, Alberta Foothills, and 

Potwar Salt Range Province. Sassi et al. [1993] investigated the mechanical role of the 

pre-existing faults in thrusting along a detachment using analog and numerical models. 

The pre-existing faults resulted disturbed dilated zones with 10-20 % lower friction 

angle than the homogeneous sand. In the thrust systems, reactivation of the faults 

depends on their orientations to the stress field and spacing of the pre-existing faults. 

[Cotton and Koyi, 2000] used sand as the frontal ramp to show the deformation style 

above a ductile and a frictional detachment. Dixon and Spratt [2004] used centrifuge 

models to explain the effect of lateral ramp and tear faults in the Limestone Mountain 
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area of the southern Alberta Foothills thrust system. They found a transverse link 

between two frontal ramps is unstable and the transverse link is abandoned to form a 

transfer zone. Faisal and Dixon [2015] also used a centrifuge analog models to 

investigate the structure differences in the frontal and the lateral ramp settings and 

compared those structural variations along and across strike structures in the Salt Range 

and Potwar Plateau. 

Kinematic models that show  the influence of pre-existing normal fault on thrust ramp 

development are explained by Mitra [1993] (Figure 1.1) and Tavarnelli [1996]. 

Restored balance sections are used to explain the role of pre-existing normal fault in 

detachment thrusting in Southwestern Appalachian [Mitra, 1988],Western Alps [Butler, 

1989], and Umbria-Marche Apennines [Tavarnelli, 1996]. Buttressing effect of the 

normal fault can result in localization of thrust, upright folds, strain, and cleavage 

intensification in the thrust belts [Butler, 1989]. 

Inversion structures kinematics and geometries formed by the compressional 

reactivation of pre-existing normal fault are well documented in detail [Glennie and 

Boegner, 1981; McClay, 1989; Mitra, 1993; Mitra and Islam, 1994]. In previous 

studies, the importance of the pre-existing normal faults without undergoing 

reactivation in fold-thrust geometries has been noticed, however, the detail 

investigations of the fold-thrust geometries detached on brittle and ductile detachments 

in different normal fault settings using analog modeling with detail interpretation are 

scarce.   
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2 Methodology  
 

Analog models are scaled experiments that use low strength materials such as sand, 

clay, wax, silicone putty, and beads to simulate tectonic processes [Hubbert, 1937; Koyi 

and Mancktelow, 2001]. Geological data from many fold and thrust belts suggest that 

the structural inheritance in the form of a various type of heterogeneities such as pre-

existing arrays of faults, decollement horizons due to ductile materials (clay-evaporites), 

and stratigraphy pinchout have important implications for the fold and thrust structures  

[Butler, 1989; Jean Letouzey, 1990]. In this study, two sets of experiments for brittle 

(sand) and ductile (silicone gel) detachments were conducted with pre-existing normal 

faults acting as buttresses that influence the development of thrust faults. The fold and 

thrust geometries in two different detachment sets are compared to investigate the role 

of the normal fault for different normal fault settings. The primary questions addressed 

were: (1) the role of the normal faults in influencing the geometry and location of the 

thrust faults; (2) the difference in the influence for ductile and brittle detachments, and 

(3) whether the normal faults influence the sequence of development of the thrust faults.  

2.1 Set up of the sandbox experiment  

A sandbox of 57 cm X 33 cm X 15 cm was used for the experiments. Wood and steel 

blocks pre-cut into different configurations have been used in the past to represent 

basement faults for analog experiments [Sanford, 1959; Lowell, 1970; Horsfield, 1977; 

Groshong and Rodgers, 1978; Tsuneishi, 1978; Withjack et al., 1990; Bose and Mitra, 

2009]. In the current study, pre-existing normal faults were simulated with a wood 

block 0.7 cm thick pre-cut so as to form a fault dipping 60° towards the hinterland. 



7 
 

Eleven different sets of experiments were done that included both brittle and ductile 

detachments, including: (1) a single frontal ramp: model BDFR and model DDFR, (2) a 

frontal ramp offset along a vertical transverse fault: model BDOFR and model DDOFR, 

(3) an oblique ramp trending degrees: model BDOBR and model DDOBR, (4) a frontal 

ramp bounded by a vertical lateral ramp: model BDLR, and model DDLR, (5) two 

frontal ramps with an oblique intersection: model BDOBIR, and (6) a curved frontal 

ramp: model BDCR and model DDCR (Figure 2.1). These configurations were chosen 

because they represent some of the common possibilities in natural structures. The basin 

formed on the downthrown side of the pre-existing normal fault was filled up to the top 

of the normal fault (wood block) with sand or sand overlying silicone gel to represent 

brittle and ductile detachments, respectively. Loose sand was sieved and distributed 

uniformly into the box to form a total thickness of about 3 cm above the top of the wood 

block to represent the sedimentary cover (Figure 2.2). 

 A motorized backstop shortened the section with the constant speed of 1.5 cm/hour for 

6 hours for a net shortening of 9 cm. The models were illuminated oblique to the 

contraction direction to differentiate foreland and hinterland dipping thrusts. Sequential 

top photograph images were taken at regular intervals using a digital camera mounted 

above the sandbox to capture the progressive deformation. Uniform 0.5-inch-wide 

square grids imprinted on the top of the model enabled tracking of the deformation. 

After each hour of shortening, the experiment was stopped for a short time to scan the 

3-D model topography. After completion of the experiment, the models were covered 

with loose sand and saturated with water to cut cross-sections parallel to the contraction 

direction. Rigid side walls resulted in edge effects along the margins. Therefore, the top 
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images were trimmed off on the margins to remove edge effects. The interpretation of 

the main structures in the center of the model was not affected by the edge effects. 

2.2 Material properties and scaling 

This study used fine-grained sand ranged from 0.15 - 0.2 mm. The geometry of the sand 

wedge and the kinematics of the internal structure are controlled by the internal friction 

and cohesion. It also depends on the detaching layer whether brittle or ductile, 

detachment thickness, cover sediment compaction, an overburden thickness, basal 

friction between the material and the pre-existing fault or discontinuities. The cover 

sediments on the top of the basal detachments (sand for brittle frictional detachment and 

silicone gel for ductile detachment) was 3 cm thick dry quartz sand, a Mohr-Coulomb 

material with negligible cohesion. Silicone gel, a Newtonian viscous fluid, (from Crazy 

Aaron Enterprises ©) [Karama, 2014] used had a viscosity of 10.1 X 104 Pas and 

density of 0.9 g/cc and represents the salt. The experimental material properties, 

geometry, and kinematics such as density, viscosity and strain require proper scaling 

[Hubbert, 1937; Weijermars and Schmeling, 1986]. The model settings had a geometric 

scaling of 105 i.e. 1 cm in the model corresponding to 1 km in nature. In regard to time, 

each hour of shortening in the experiment corresponded to 1 million years in nature. To 

distinguish between two interlayers white sand was colored with dark gray which did 

not modify the bulk material properties significantly. The pre-existing normal fault was 

simulated by a wood block of 0.7 cm thick pre-cut at about 60° dip dipping towards the 

hinterland. The wood block is rigid and act as buttress and controls the geometries of 

the thrusts and prevents the detachment deformation beyond it toward the foreland in 

the current experiment setups. 
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2.3 Model Interpretation 

The progressive deformation in each model was interpreted using sequential top photos. 

In experiments involving brittle detachments, imbricate thrusts formed with a high taper 

angle [Letouzey et al., 1995] and greater relief. The frontal structure verged toward the 

foreland, whereas in the ductile detachment experiments asymmetric detachment folds 

formed in the hinterland, and more symmetrical frontal pop-up structures grew coevally 

with a low taper angle in the foreland. The detachment folds were faulted during further 

contraction. The frontal ramp created a foreland verging fault-related fold. The normal 

fault influenced the location and geometry of the frontal thrust but not the sequence of 

faulting. The frontal thrust orientated oblique to the contraction direction results in 

oblique thrust fault. Offset and lateral ramp settings result in two variable propagating 

frontal wedges connected with the transfer zone  [Dixon and Spratt, 2004]. Transverse 

structures connecting the two wedges were rotated and eventually become unstable.  

Cross-sections were used to measure the fault dip, distance from the top of the normal 

fault to the base of the forethrusts, and to interpret the lateral and vertical propagation of 

the structures. In addition to thrust geometries, cross-sections of the ductile detachment 

models were used to map the silicone distribution. 3-D laser scanning data were used to 

create the topography and profiles of the deformed models.   
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Figure 2.1 Plan view of the experiments showing the position of the pre-existing 
normal faults. Basin south of normal faults was filled with sand (brittle) or silica gel 
(ductile) detachment up to the level of the top of the normal fault (wood) which was 
further covered with 3 cm sand and compressed from south to north. (a) A frontal 
ramp; (b) a frontal ramp offset along a vertical transverse fault; (c) an oblique ramp 
trending 76 degrees; (d) a frontal ramp bounded by a vertical lateral ramp; (e) oblique 
intersecting frontal ramps; and (f) a curved frontal ramp. 
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Figure 2.2 Frontal ramp brittle detachment experiment set up (Model BDFR) (Fig. 
2.1a). (a) 3-D view; (b) cross-section A-A’. In all experiments, shortening was from 
South to North. 
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3 Results  
 

All models were deformed at a rate of 1.5 cm/hour for 6 hours to obtain a total 

shortening of 9 cm. Three different top view photos of deformed sand models at 3, 6, 

and 9 cm are shown for all experiments. For reference, the north direction has been 

placed horizontally to the right of the page. In all models, the contraction was applied 

from the south (left) to the north (right) (Figure 3.1). All the sections were orthogonal to 

the shortening direction (north-south) and were facing the east. The height of the wedge 

was measured above the top of the initial undeformed sand. Baseline kinematics and 

deformation mechanisms for the formation of the foreland verging imbricate thrusts and 

duplexes in the brittle detachment, and the development of symmetric to asymmetric 

detachment fold, pop-up, and pop-down structures are explained, respectively in the 

brittle (model BDFR) and ductile (model DDFR) detachments on the frontal ramp 

experiments. In other complex ramp experiments, only the main differences in the 

structures and geometries of the fold-thrust belt between different ramp settings and 

among two types of detachments brittle and ductile are discussed.  

3.1 Model BDFR: Brittle detachment on a frontal ramp 

Foreland verging duplexes consisting of five imbricate thrust sheets (T1-T5) were 

formed (Figure 3.1) which were transported into the foreland as piggyback stacks. The 

deformation started with a foreland verging fold where a forethrust developed 

connecting inflection points on the beds. The deformation in the hinterland was 

controlled dominantly by a backthrust BT1 formed near the backstop. The strain was 

dissipated in thickening of the wedge and foreland propagation of forethrusts (Figure 
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3.2). The map view of the frontal thrust, T5, followed the geometry of the frontal ramp 

of the pre-existing normal fault. T5 first formed parallel to the normal fault and then 

stepped over it (Figure 3.1c & Figure 3.2). The forethrusts (T1-T4) progressively 

increased dips from 24° to 34°, as they were rotated and carried by the younger 

forethrusts toward the foreland (Figure 3.2). Fault spacing between thrusts T1-T2 and 

T3-T2 was 1.6 cm, T3-T4 was 2.4 cm and T4-T5 was 6 cm (Figure 3.3). Frontal thrust 

T5 formed at a greater fault spacing than its predecessor forethrusts (T1-T4), due to the 

presence of a pre-existing normal fault as the frontal ramp. Therefore, the normal fault 

ramp influenced the location of the frontal thrust fault, but not the sequence of faulting. 

Backthrust BT2 developed due to the buttressing effect of the frontal ramp and to 

accommodate the deformation from the frontal thrust T5. In the final stage, the height of 

the wedge was 3.7 cm above the initial top sand (Figure 3.3). The frontal thrust, T5, 

formed 1.7 cm from the normal fault. This model BDFR is the prototype model which 

shows the baseline kinematic and geometries of the fold and thrust belts for the brittle 

detachment and serves as a comparison for subsequent more complex normal fault 

geometries for brittle detachments. 
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Shortening 
3 cm  
 

(a) 

 
 
 
 
 
 
 
Shortening 
6 cm  
 
(b) 

 
Shortening 
9 cm  
 
(c) 
 
 

 
Figure 3.1 Progressive top photos of the brittle detachment on a frontal ramp 
experiment, model BDFR, with fault interpretation. (a) 3 cm shortening; (b) 6 cm 
shortening; (c) 9 cm shortening. A-A’ shows the cross-section line for Figure 3.2. 
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Figure 3.2 Section A-A’ of a brittle detachment on a frontal ramp experiment model BDFR 
(see Figure 3.1 for location). Foreland verging imbricate forethrusts showed a systematic 
decrease in dips in the direction of transport in a piggyback thrusting sequence. BT1 = 
backthrust, T1-T5 = forethrusts younging in age. (a) Section image; (b) line drawing of a 
section A-A’ with fault interpretation. 
 

 
Figure 3.3 Final top surface profile along A-A’ of the brittle detachment on a frontal 
ramp experiment, model BDFR, (Figure 3.1) after 9 cm shortening. Elevations are 
above the initial undeformed sand top (0 cm shortening). 

-5

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350El
ev

at
io

n 
ab

ov
e 

th
e 

in
iti

al
 to

p 
sa

nd
  

(m
m

)

Distance (mm)

9.0 cm shortening

T5 

T4 

T
3 

T2 

T1 

BT1 

(a) 

BT2 

(b) 



16 
 

3.2 Model DDFR: Ductile detachment on a frontal ramp 

The deformation started with a formation of a backthrust and related faulted detachment 

fold, followed by a forethrust and a similar related structure. Both structures were 

asymmetric and were associated with back thrusts. (Figure 3.4). The structures became 

tighter with increasing deformation with the silicone gel flowing into the cores of the 

folds. The backthrusts and forethrusts rooted in the basal silicone layer. The frontal 

thrust, T3, climbed the frontal ramp of the normal fault and onto the upper flat (Figure 

3.4 & Figure 3.5).  

In this model, the deformation front traveled 8.7 cm toward the foreland from the top of 

the normal fault. Propagation of the frontal thrust toward the foreland was farther in this 

model DDFR compared to the model BDFR; however, the wedge height was less than 

in model BDFR.  
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Shortening 
3 cm  
 

(a) 

  
 
 
 
 
Shortening 
6 cm  
 

(b) 

 
 
Shortening 
9 cm  
 
(c)  

 
Figure 3.4 Progressive top photos of the ductile detachment on a frontal ramp 
experiment, model DDFR, with fault interpretation. (a) 3 cm shortening; (b) 6 cm 
shortening; (c) 9 cm shortening. A-A’ shows the cross-section line for Figure 3.5.   
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 (a) 
                                                                                                

 (b) 
Figure 3.5 Cross-section A-A’ of a ductile detachment on a frontal ramp experiment, 
model DDFR (see Figure 3.4 for location). T1-T3 = forethrusts, BT1-BT2 = 
backthrusts. (a) Section photo (b) line drawing of the section with fault interpretations. 
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3.3 Model BDOFR: Brittle detachment on a frontal ramp offset along a vertical 

transverse fault 

Deformation was initially similar to the model BDFR with the formation of forethrusts 

T1 and T2 (Figure 3.6b). Additional shortening created the frontal thrusts T3 which first 

nucleated on the west frontal ramp and then nucleated on the east frontal ramp. Both 

segments climbed the frontal ramps and were connected by a transfer zone or a relay 

ramp at the offset frontal ramp boundary (Figure 3.6c). Movement on the frontal thrust 

rotated imbricate thrusts T1 and T2 to greater dips and the fold profile in the wedge 

became more rounded (Figure 3.7). After the formation of the frontal thrust T3, the 

wedge height increased in the west frontal ramp. The deformation front propagated 

farther toward the foreland in the east frontal ramp compared to the west frontal ramp 

(Figure 3.6). A symmetric frontal wedge formed on the frontal ramp to the east and a 

broad asymmetric wedge developed on the frontal ramp to the west. The slope of the 

imbricate wedge varied from 9 degrees to the east and 16 degrees to the west. The offset 

frontal ramp increased the taper angle on the west side. The key differences from the 

model BDFR are: (1) the formation of the transfer zone (2) hinterland structures on the 

backlimb bounded by backthrusts (BT1, and BT2) (Figure 3.7) and (3) more backthrusts 

formed in this model BDOFR compared to the model BDFR.   
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3 cm  
 
(a) 

 
 
 
 
Shortening 
6 cm  
 
(b) 

 
Shortening 
9 cm  
 
(c) 
  

 
 

Figure 3.6 Progressive top photos of the brittle detachment on an offset frontal 
ramp, model BDOFR, with fault interpretation. (a) 3 cm shortening; (b) 6 cm 
shortening; (c) 9 cm shortening. A-A’, B-B’, and C-C’ show the cross-sections 
lines for Figure 3.7. 
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       (a) 

     (b) 

       (c) 

     (d) 

     (e) 

(f) 
Figure 3.7 Cross-sections of the brittle detachment on offset frontal ramps, model 
BDOFR. (a) A-A’ section; (b) line drawing of a; (c) B-B’ section; (d) line drawing of c; 
(e) C-C’ section; (f) line drawing of e (see Figure 3.6 for section locations).    
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3.4 Model DDOFR: Ductile detachment on a frontal ramp offset along a vertical 

transverse fault 

 The effect of the pre-existing offset frontal ramps on thrust geometry was seen from the 

very first forethrust T1 in the model DDOFR. This effect is obvious and earlier in the 

ductile detachment (model DDOFR) than its brittle detachment counterpart (model 

BDOFR) (Figure 3.8). As in the model BDOFR, the frontal thrust T2 first nucleated on 

the west frontal ramp and later connected to the frontal thrust formed on the east frontal 

ramp by a transfer zone (Figure 3.8). Frontal thrust T2 used the pre-existing normal 

fault ramps to form the frontal thrusts. The shape of the backthrust BT2 also followed 

the shape of the frontal thrust T2 (Figure 3.8). The backwedge height rose higher on the 

west frontal ramp after the formation of the frontal thrust T2. Backthrust BT2 had more 

displacement on the east frontal ramp area than on the west frontal ramp area. The 

transfer zone curvature on the model DDOFR was greater than that on the model 

BDOFR (Figure 3.8). The slope of the imbricate wedge increased from 7° in the east 

frontal ramp to 11° in the west frontal ramp.  
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9 cm 
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Figure 3.8 Progressive top photos of the ductile detachment on offset frontal 
ramps experiment, model DDOFR. (a) 3 cm shortening; (b) 6 cm shortening; 
(c) 9 cm shortening. A-A’, B-B’, and C-C’ show the cross-sections lines for 
Figure 3.9. 
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 (a) 

 (b) 

 (c) 

 (d) 

 (e) 

(f)  
Figure 3.9 Cross-section of the ductile detachment on an offset frontal ramps 
experiment, model DDOFR. (a) A-A’ section; (b) line drawing of a; (c) B-B’ section; 
(d) line drawing of c; (e) C-C’ section; (f) line drawing of e; (see Figure 3.8 for 
sections locations).    
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3.5 Model BDOBR: Brittle detachment on an oblique ramp trending 76 degrees 

In this model, the normal fault was oblique to the direction of maximum shortening, 

trending 76 degrees.  Formation of the first forethrust T1 was followed by T2 which 

branched from T1 and was in a more forward position to the east. Similarly, thrust T3 

was followed by T4 which had a more forward position (Figure 3.10). The geometry of 

both T2 and T4 was in conformity with the oblique trend of the normal fault. Finally, 

the frontal thrust T5 showed a clear oblique trend, with the eastern part in a more 

forward position, and offset from the western part along an oblique transfer zone. The 

base of the frontal thrust was oblique and approximately parallel to the trend of the 

normal fault (Figure 3.11). The frontal thrust propagated 8.6 cm in the east and 10 cm in 

the west from the top of the normal fault.  

Therefore, unlike previous models, the oblique trend of the normal fault was reflected 

not only in the final formed thrust, but also in the branching segments of earlier formed 

faults.  The general trend of lateral propagation of the faults was from west to east. The 

taper angle in the east was 14°, and in the west, was 16°, so that the structural relief was 

greater to the west.  
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Figure 3.10 Progressive top photos of the brittle detachment on an oblique 
ramp trending 76 degrees experiment, model BDOBR with fault 
interpretation. (a) 3 cm shortening; (b) 6 cm shortening; (c) 9 cm 
shortening. A-A’ and B-B’ show the cross-sections lines for Figure 3.11. 
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 (a) 

 (b)  

 (c) 

(d)  
Figure 3.11 Cross-section interpretation of the brittle detachment on an oblique ramp 
trending 76 degrees experiment, model BDOBR (a) A-A’ section; (b) line drawing of 
a; (c) B-B’ section; (d) line drawing of c (see Figure 3.10 for sections locations). 
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3.6 Model DDOBR: Ductile detachment on an oblique ramp trending 76 degrees 

The ductile detachment resulted in two faulted detachment folds verging towards the 

foreland, with related backthrusts. The trend of the first thrust T1 was normal to the 

direction of maximum shortening, and largely unaffected by the normal fault. The 

second thrust T2, however, had an oblique trend, similar to that of the normal fault 

(Figure 3.12). As in other ductile detachment models, the base of the frontal thrust was 

very close to the base of the normal fault, and almost parallel to it (Figure 3.13). Both 

forethrusts had curved geometries, and this is interpreted to be largely due to edge 

effects along the boundary of the model (Figure 3.12).  

The structure developed a steeper wedge and greater relief to the west compared to the 

east. The development of the second thrust and the movement of the thrust sheet over 

the normal fault also occurred with a smaller amount of shortening (3 cm), compared to 

the brittle detachment experiment. This is due to the faster rate of propagation and 

lower taper angle of ductile detachment fold-thrust belts than those with a brittle 

detachment. 
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Figure 3.12 Progressive top photos of the ductile detachment on an oblique ramp 
trending 76 degrees experiment, model DDOBR with fault interpretation. (a) 3 cm 
shortening; (b) 6 cm shortening; (c) 9 cm shortening. A-A’ and B-B’ show the cross-
sections lines for Figure 3.13. 
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 (a) 

 (b) 

 (c)  

(d) 
 
Figure 3.13 Cross-section interpretation of the ductile detachment on an oblique ramp 
trending 76 degrees experiment, model DDOBR. (a) A-A’ section; (b) line drawing 
of a; (c) B-B’ section; (d) line drawing of c (see Figure 3.12 for sections locations). 
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3.7 Model BDLR: Brittle detachment on a frontal ramp bounded by a vertical 

lateral ramp 

In this model, a frontal ramp of the normal fault was bounded by a lateral ramp offset 

along a transverse fault (Figure 3.14). Here the deformation was initially similar to the 

model BDFR with the formation of forethrust T1. Additional shortening created the 

frontal thrusts T2 which first nucleated on the west frontal ramp and then it connected 

to the forethrust T1 on the east. Then the frontal thrust, T5, developed on the west 

frontal ramp and climbed the normal fault (Figure 3.14). The forethrusts T2 and T3, and 

forethrusts T5 and T4 were formed nearly at the equal position on the east and west in 

contrast to the more forward position of the forethrsuts in the model BDOBR. Thus, it 

confirms these forethrusts T4 and T5 were using the pre-existing normal faults’ ramps 

as the thrust ramps. The frontal thrust, T6 was formed in the transverse fault area and 

was connected to the frontal thrusts T4 and T5 on the sides. However, this frontal thrust 

T6 did not use the transverse fault as a thrust ramp which as opposed to the model 

DDLR (Figure 3.15). Fault spacing between younger faults is smaller than the fault 

spacing between the older faults. Forward propagation of the forethrusts were hindered 

by the lateral ramps once the frontal thrusts climbed the frontal ramp because of the 

close spacing of the lateral ramps and the transverse fault. Though this effect was not 

observed in the ductile detachment, model DDLR which was because of the ductile 

detachment.  
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Shortening 
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Shortening 
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Figure 3.14 Progressive top photos of the brittle detachment on a frontal 
ramp bounded by a vertical lateral ramp, model BDLR. (a) 3 cm shortening; 
(b) 6 cm shortening; (c) 9 cm shortening. A-A’, B-B’ and C-C’ show the 
cross-sections lines for Figure 3.15. 
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Figure 3.15 Cross-section interpretation of a brittle detachment on a frontal ramp 
bounded by a vertical lateral ramp, model BDLR. (a) A-A’ section; (b) line drawing 
of a; (c) B-B’ section; (d) line drawing of c; (e) C-C’ section; (f) line drawing of e 
(see Figure 3.14 for sections locations).    
  

(a) 
(b)

) 

(e) 

(f) 

(c) 

(d) 



34 
 

3.8 Model DDLR: Ductile detachment on a frontal ramp bounded by a vertical 

lateral ramp 

Deformation resulted in the formation of the foreland verging imbricate thrusts, T1 and 

T2 (Figure 3.16). Forethrust T3 nucleated on the west frontal normal ramp first and 

propagated laterally to the east. The frontal thrust T4 climbed the east frontal normal 

ramp and propagated westward. Later both T3 and T4 propagated almost equally to the 

foreland. 

The geometry of frontal thrust T5 was influenced by that of the normal fault. T5 formed 

close to T3 and T4 along the eastern and western areas, but in a more frontal position in 

the central part of the model. This central segment connected with the eastern and 

western segments along oblique faults to form a curvilinear trace convex towards the 

foreland. The geometry of the fault followed the geometry of the normal fault and 

transverse normal fault ramps. The curvature of T5 and its structural relief increased 

with increasing shortening. The frontal wedge sloped at 24-29° along the lateral ramps 

and 23° on the frontal segment (Figure 3.17). The easier and farther thrust propagation 

is seen in the ductile detachment model DDLR than its counterpart model BDLR which 

was due to the ductile detachment.  
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Figure 3.16 Progressive top photos of the ductile detachment on a frontal 
ramp bounded by a vertical lateral ramp experiment, model DDLR with fault 
interpretation. (a) 3 cm shortening; (b) 6 cm shortening; (c) 9 cm shortening. 
A-A’, B-B’, and C-C’ show the cross-sections lines for Figure 3.17. 
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Figure 3.17 Cross-section interpretation of the ductile detachment on a frontal ramp 
bounded by a vertical lateral ramp experiment, model DDLR. (a) A-A’ section; (b) 
line drawing of a; (c) B-B’ section; (d) line drawing of c; (e) C-C’ section; (f) line 
drawing of e (see Figure 3.16 for sections locations). 
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3.9 Model BDOBIR and BDCR:  Brittle detachment on oblique intersecting 

ramps and brittle detachment on a curved ramp 

Model BDOBIR used two oblique faults trending 76 degrees and making nearly 150 

degrees at a intersection point (Figure 3.18). This system may result from an 

orthorhomic strain pattern [Reches, 1978]. BDCR used a gently curved normal fault 

ramp, which may result from two oblique faults connecting along a smooth curve. In 

both cases, duplex structures with stacked faults were formed (Figure 3.18 & Figure 

3.20). The trends of early formed thrust faults were unaffected by the geometry of the 

normal faults, and developed a stacked thrust faults on duplex structures (Figure 3.19 & 

Figure 3.21). The frontal thrust ramped up approximately 7.3 cm from the top of the 

normal fault for the intersecting normal faults, and 7.6 cm from the top of the normal 

fault for the curved fault.This fault showed a very similar geometry trend to the normal 

fault with an angular geometry in the first model and a more curved geometry in the 

second (Figure 3.19 & Figure 3.21).  
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Figure 3.18 Progressive top photos of the oblique intersecting ramps on a brittle 
detachment experiment, model BDOBIR with fault interpretation. (a) 3 cm 
shortening; (b) 6 cm shortening; (c) 9 cm shortening. A-A’, B-B’, and C-C’ 
show the cross-sections lines for Figure 3.19. 
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Figure 3.19 Cross-section interpretation of brittle detachment on oblique intersecting 
ramps experiment, model BDOBIR. (a) A-A’ section; (b) line drawing of a; (c) B-B’ 
section; (d) line drawing of c; (e) C-C’ section; (f) line drawing of e (see Figure 3.18 
for sections locations).    
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Figure 3.20 Progressive top photos of the brittle detachment on a curved ramp 
experiment, model BDCR with fault interpretation. (a) 3 cm shortening; (b) 6 cm 
shortening; (c) 9 cm shortening. A-A’ and B-B’ show the cross-sections lines for 
Figure 3.21. 
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 (a) 

 (b)  

 (c) 

(d) 
Figure 3.21 Cross-section interpretation of the curved ramp on a brittle detachment 
experiment, model BDCR. (a) A-A’ section; (b) line drawing of a; (c) B-B’ section; 
(d) line drawing of c (see Figure 3.20 for sections locations). 
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3.10 Model DDCR: Ductile detachment curved ramp 

Model DDCR used a ductile detachment and a curved ramp, except there was greater 

curvature of the normal fault ramp than in model BDCR (Figure 3.22). Deformation 

resulted in two faulted detachment folds vergent towards the foreland with associated 

back thrusts. The first thrust had a linear trend, but thrust T2 developed a curved shape 

parallel to the trend of the curved normal fault. The frontal thrust T2 was formed when 

the model was shortened to 3 cm, so that it developed earlier than in the brittle 

detachment model. It propagated 10 cm from the top of the normal fault in the middle 

of the model. Progressive contraction translated the frontal wedge to the foreland and 

increased the height of the wedge. The backthrust BT2 (Figure 3.23) was formed south 

of the frontal thrust T2 and followed the shape of the frontal thrust T2.  
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Figure 3.22 Progressive top photos of the ductile detachment on a curved 
ramp experiment, model DDCR with fault interpretation. (a) 3 cm 
shortening; (b) 6 cm shortening; (c) 9 cm shortening. A-A’, B-B’, and C-
C’ show the cross-sections lines for Figure 3.23. 
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(a) 

 (b) 

 (c) 

 (d)  

 (e) 

(f) 
Figure 3.23 Cross-section interpretation of the ductile detachment on a curved ramp 
experiment, model DDCR. (a) A-A’ section; (b) line drawing of a; (c) B-B’ section; 
(d) line drawing of c; (e) C-C’ section; (f) line drawing of e (see Figure 3.22 for 
sections locations).   
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4 Discussions- Natural Structures 
 

4.1 Pine Mountain Thrust Sheet 

4.1.1 Field structures 

The Appalachians Mountains were formed by a series of orogenic events in the 

Paleozoic, of which the late Paleozoic Alleghenian orogeny is the dominated one 

affecting the foreland thrust belt in the southern Appalachians. The Pine Mountain 

thrust bounds the southern Appalachian thrust sheet to the northwest. The thrust sheet 

associated with the thrust fault was bounded by the Wallen Valley and Hunter Valley 

thrusts to the southeast (Figure 4.1). Two tear faults, the Russell Fork and Jacksboro 

faults bound the Pine Mountain thrust to the northeast and southwest, respectively 

(Figure 4.1). In a general section, the Pine Mountain thrust brings the Cambrian Rome 

Formation over the Devonian Chattanooga Shale and then to the surface. An anticline-

syncline pair is formed as a result of the movement of the thrust sheet over the ramp.  

Stratigraphic units in the Pine Mountain Thrust can be divided into a number of 

lithotectonic units which controls the geometry of the structures. It includes the 

Precambrian crystalline basement and Precambrian to Cambrian basal clastic sequence, 

which is generally not involved in the thin-skinned deformation. The Lower Cambrian 

Rome Formation and the Middle to Upper Cambrian Conasauga Formation consist 

mostly of incompetent shales and carbonates. The basal detachment of the thrust belt is 

located in the lower part of the Rome Formation. The Cambrian Maynardville 

Formation and the Cambro-Ordovician, the Knox Group, consist of interlayered  
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(a)

 

 
(b) 
Figure 4.1 (a) Geological map of the Pine Mountain thrust sheet showing the major 
folds and thrusts. (b) Inset map: Structure map of the center fenster area of the Pine 
Mountain thrust sheet showing the location of a cross-section C-C’ ( Figure 4.2). S2 to 
S8 are seismic profiles. a = Chestnut Ridge fenster, b = Martin Creek fenster, c = 
Possum Hollow fenster, d = Bethel fenster, e = Big Fleenortowrn fenster, f = Sulphur 
Spring fenster, g = Town Branch fenster, 1 = Brooks well, 2 = Rosenbaum well, 3 = 
H.B. Nolan well, 4 = R. L. Bales well, 5 = Hobbs well, 6 = Hensley well, 7 = L. S. 
Bales well, 8 = McClure well, 9 = Snodgrass well [Mitra, 1988]. 
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dolomites and limestones which are competent units that deform mainly by fracturing 

and imbrication. In the central area of the Pine Mountain thrust, the Maynardville 

Formation is separated from the Conasauga Formation by an intermediate detachment. 

The Middle Ordovician Chickamauga Group consists dominantly of limestones which 

deform by minor folding and imbrication as well as fracturing and pressure solution. 

The Upper Ordovician units consist of an inhomogeneous sequence of thin-bedded 

shales alternating with limestones and sandstones. The Devonian Chattanooga 

Formation consists of the upper detachment for the thrust belt. The Mississippian and 

Pennsylvanian units consist mostly of competent limestone and sandstone.  

The Pine Mountain thrust is folded by underlying thrust forming horses and duplexes 

that result in erosional fensters in some places. The two major oil-producing areas 

include the Sulphur Springs and Big Fleenortown fensters in the Ben Hur area, and the 

Martin Creek, Chestnut Ridge and Possum Hollow fenster in the Rose Hill area. The 

structure consists of three overlapping ramp anticlines associated with three thrust 

sheets in the Martin Creek fenster area (Figure 4.2). The three thrusts sheets are the Pine 

Mountain, Bales I, and Bales II sheets. The Pine Mountain thrust climbs from the 

Cambrian Rome Formation to the base of the Cambrian Maynardville Limestone of the 

Conasauga Formation, and finally to the base of the Devonian Chattanooga Shale. The 

Bales I thrust climbs from the Rome Formation to the base of the Chattanooga Shale 

which folds the Pine Mountain thrust with steepening of the frontal limb with dip 

exceeding 60°.  

Seismic data show that the location of the Bales II is related to a pre-existing basement 

normal fault (Figure 4.3). The thrust brings the Rome Formation over the Conasauga 
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Formation. Moreover, the folding associated with the Bales II thrust creates the 

irregularities in the geometry of the Bales I thrust. Mitra [1988] constructed and 

interpreted several cross-sections in the Pine Mountain thrust sheets by using well, 

seismic, and field data. These cross-sections are then plainspastically restored to check 

that they are balanced and to estimate the shortening in each section. They are also used 

to construct maps showing the geometry of the major thrusts in the deformed and 

restored sections (Figure 4.2). The cross section represented in Figure 4.2 incorporates 

surface data and seismic reflection profiles S3 and S4 (Figure 4.3) and confirms the 

presence of the pre-existing normal fault. Mitra [1986a] suggested the role of additional 

lateral and oblique thrust ramps and tear faults in the evolution of the Pine Mountain 

thrust geometry. Kinematic interpretation of the geometry of the Pine Mountain thrust 

changed northeastward from a single thrust ramp to a double ramp. The displacement of 

the ramp may have been caused by the minor discontinuity or buttressing effect from a 

pre-existing normal fault and a change in the regional dip of the Rome detachment.  

4.1.2 Comparison to the experimental model 

Martin Creek fenster area (Figure 4.2) resembles the brittle detachment on the frontal 

ramp experiment (Figure 3.1 & Figure 3.2) (model BDFR), as suggested by the parallel 

orientation of the Clinch Port, Wallen Valley, and Pine Mountain thrust sheets in the 

map view (Figure 3.1). Note the fault spacing also increases from the Clinch Port thrust 

to the Pine Mountain thrust which is also observed in the model BDFR. The frontal 

thrust, Bales II thrust has a small amount of slip, because it is in its early stage of 

deformation, so the model BDFR does not exactly replicate this thrust, in which the 

frontal thrust had undergone significant shortening. 
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Figure 4.3 Interpreted (time-migrated) seismic profiles S3 and S4 along section C-C’ 
in the Martin Creek fenster area (see Figure 4.1 for location) [Mitra, 1988]. 
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The geometry and position of the forethrusts are controlled by the presence of the 

normal faults which is observed in the Bales I and Pine Mountain thrust sheets folded 

by the Bales II subthrust. Imbricate thrusts are translated in a piggyback sequence and 

rotated. Although the main objective of the current modeling approach is not to 

replicate the exact structural styles of Pine Mountain fold-thrust geometry and 

kinematics, however, the model BDFR explains the general geometry of the Pine 

Mountain thrust belts as controlled by the pre-existing normal fault. Usually, fold-thrust 

structures within the pre-existing normal fault are interpreted in a cross-section along 

the thrust dip. The experimental models suggest that the dip cross-sections with the pre-

existing normal fault may look similar in general for different normal fault settings; 

however, when examined in three dimensions, different structures may form spatially 

and temporally in different ramp configurations. 

4.2 The Western Alps thrust system 

4.2.1 Field structures 

The Alps is formed from the closure of the Ligurian-Piemontese oceanic domain that 

opened during the Jurassic period after the Permo-Triassic to Early Jurassic rifting [Von 

Raumer et al., 1999; Guillot et al., 2009]. Later the Alps thrust sheets were emplaced 

during the Late Cretaceous, and Tertiary compressional phases which were affected by 

a highly heterogeneous crust within the Liassic half-grabens inherited from the rifting 

stage. In some places this compressional deformation was strong enough to obscure the 

pre-compressional basin geometry. During late Cretaceous, flysch basins developed in 

the internal domains which suggest the onset of the closure of the oceanic area and 
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beginning of the continental collision. The deformation was highly variable between the 

rigid basement and the weak Jurassic sediments. The primary objective of the current 

study is to explain the natural structures with the help of experimental models. 

Therefore the stratigraphic detail in the Western Alps is not presented in this thesis and 

see Debelmas and Kerckhove [1980] and Lemoine et al. [1987] for stratigraphic detail. 

Most of the structures that developed during the rifting stage exhibit larger 

displacements than pre-rift structures, and have played a vital role in the location of the 

thrust-fold belt in the Tertiary contraction. The Frontal Pennine thrust formed during the 

Tertiary contraction is the major tectonic boundary that separates different Mesozoic 

units and divides the external and internal tectonic domains [Debelmas and Kerckhove, 

1980] (Figure 4.4).  

4.2.2 The Jura thrust systems  

In the Jura, the Sole thrust detached Mesozoic cover sediments along Triassic 

evaporites which created detachment folds and imbricate faults above an undeformed 

rigid basement. The Jura fold-thrust belt and Bresse basin is bounded by two sets of 

normal faults which dip to west. The dipping of the normal faults and the contraction 

direction are same (Figure 1.1c). Thus, they did not act as buttress to the cover 

sediments. The frontal termination of the Jura detachment lies close to the Bresse basin. 

It lies in the more forward position of the sub-Alpine thrust systems. Enay [1982] 

proposed that the emergent fontal thrust overstepped and truncated at the Bresse basin 

normal faults (Figure 4.4). In this orientation, these normal faults were unfavorable for 

reactivation during contraction. Nevertheless, their presence dropped the Triassic 

detachment to the west and prevented the activation of the detachment. So they control 
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the site of the emergent thrust front in the Jura area [Butler, 1989]. Similar detachment 

between the basement and cover sediment occurs in the sub-Alpine thrust systems as 

observed beneath the Jura. Geophysical studies show the basement top beneath Jura 

thrust systems dips towards eastwards until it reaches the buried leading edge of the 

external Belledonne massif which is the surface expression of a hanging wall anticline 

lying on the frontal Alpine basement thrust or Sole thrust.  

4.2.3 The Western Alps Vercors Sub-Alpine thrust systems 

In the west Vercors district, the frontal thrust ramp is nucleated on a pre-existing normal 

fault named as Faille de l’Iser dipping towards the oncoming thrust sheets. Two sets of 

normal faults formed the asymmetrical sloping graben (Figure 4.6). In this region, the 

Jura and sub-Alpine thrust belts converge and becomes narrow. In some places, normal 

faults are truncated by the later thrusts [Butler et al., 2006]. The detachment occurs in 

Liassic shale between the cover sediment and the basement which is basement involved 

in places where the basement is uplifted (Figure 4.7). The simplified balanced and 

restored cross-sections though the Vercors sub-Alpine thrust belt show the location and 

geometry of the Alpine frontal thrust controlled by the pre-existing normal faults 

(Figure 4.5 & Figure 4.6). This result is confirmed by the seismic, surface, and 

stratigraphic data. Moreover, the backthrust displacement and location are also 

controlled by the normal fault. Regional uplifts are spread out in the Vercors area which 

can be related to the steeply dipping normal faults probably penetrating deeply into the 

crust before acquiring listric geometry which are generally difficult to invert by dip slip 

movements. Furthermore, there is no evidence of reactivation of the normal fault as 

inversion except in the deeper crust [Butler, 1989].  They form buttresses to 
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displacement on cover detachments and gently inclined basement faults. This decrease 

in displacement on the hanging-walls due to buttresses leads to the generation of layer 

parallel shortening, gentle to tight folds depending on the amount of contraction, back-

folds, backthrust systems, and short cut thrust geometries.  

4.2.4 Models representing the Jura and the Westerns Alps thrust systems 

None of the current models can exactly replicate the Jura and western Alps thrust sheets 

because the pre-existing normal fault in the Jura is dipping away from the oncoming 

thrust front  (normal faults dipping towards the contraction direction in all experiments). 

Basin had sloping full graben structure before contraction in the western Alps. 

However, the farther propgation of the frontal Alpine thrust could be related to the 

ductile detachment models. The offset frontal ramps models explain the general 

structures formed in the western Alps although all structures from both experiments and 

nature do not match or form. The ductile detachment on offset ramp model (Figure 

4.8a) could explain the general Jura thrust belt deformation style. The major pre-

existing normal faults in the Jura fold-thrust belt are far from the sub-Alpine thrusts 

which lie near to the Bresse basin (Figure 4.4) whereas, in the Chambery and Vercors 

area the pre-existing normal faults are close to the sub-Alpine thrust belt. The frontal 

fold-thrust belt of the Jura lies ahead west of the main sub-Alpine (Bornes) thrust 

systems. While in the Vercors area, they are continuous and become narrow. Due to the 

farther offset of the pre-existing normal faults that dips away from the contraction 

direction in the northwest and ductile detachment at the Jura area, the frontal Alpine 

basement thrust propagated farther in the Jura than in the Vercors. The curved transfer 

zone or relay ramp joins this thrust in Burger hills and Chambery areas as observed in 
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the models DDOFR and BDOFR (Figure 4.8a & Figure 4.8b). Molasse basins in the 

Annecy regions is wider and deeper which is formed by the displacement of the sub-

Alpine and the Jura thrust systems. Similar molasse basin was developed in the ductile 

detachment on the offset ramp experiment, model DDOFR (Figure 4.8a & Figure 4.8c). 

However, no major backthrust formed in the Jura as was observed in the model 

DDOFR.  

Vercors subalpine thrust detaches in the Liassic shale, which resembles the brittle 

detachment on offset ramp configuration (model BDOFR). Foreland verging duplexes 

imbricate thrust sheets were formed and the frontal ramp was located by the pre-

existing normal faults (Figure 4.6 & Figure 4.7). This model also explains the large 

scale backthrust in the Dome de la Mure massif (Figure 4.6). 
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Figure 4.4 Simplified tectonic map of the NW Alps showing the main structural units 
and locations of the cross-sections (Figure 4.5 & Figure 4.6) FPT = Frontal Pennine 
thrust, BBT = Basal Brianconnais thrust, SB = SubBrianconnais zone, AAT-Austro-
alpine thrust. The inset shows the location of the study area [Butler, 1989].  

 
Figure 4.5 (a) Simplified balanced; (b) restored cross-section through the Jura and sub-
Alpine chains along the Bornes transect (see Figure 4.4 for location). The frontal thrust 
overstepped and truncated pre-existing normal fault Bresse basin faults. UHT = 
Ultrahelvetic thrust, EBM = External Belledonne massif, A = Annecy town [Butler, 
1989]. 

Fig. 4.6 

Fig. 4.5 
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Figure 4.6 (a) Simplified balanced; (b) restored cross-section through the Vercors 
subalpine along the Bornes transect (see Figure 4.5 for location). B = Cole de la Bataille 
area 5 km south of line [Butler, 1989]. 

 
Figure 4.7 Simplified true scale restored crustal section through the Vercors and 
neighboring districts showing the distribution of Mesozoic basins and the predicted 
geometry of the bounding normal faults. The dashed line shows the future position of 
the Alpine Sole thrust system [Butler, 1989]. 
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4.3 Northeastern Salt Range-Potwar fold-thrust belts 

4.3.1 Field structures 

The Salt Range-Potwar fold-thrust belt is developed south of the Himalayas because of 

a continuous collision between India and Eurasia plates [Baker et al., 1988; Jaumé and 

Lillie, 1988]. This collision caused southward-verging fold-thrust deformation in this 

region above a basal detachment within the Neoproterozoic Salt Range Formation[Lillie 

et al., 1987]. There are three main zones of tectonic deformations across the Salt Range-

Potwar Plateau: from north to south, these are the Northern Potwar deformation zone 

(NPDZ), the Soan syncline, and the Salt Range (Figure 4.9).  

The progressively propagating southward thrust system has brought allochthonous 

Cambrian to Quaternary sedimentary units to the surface and overthrusted over 

Quaternary rocks of the autochthonous foreland basin [Crawford, 1974; Seeber and 

Armbruster, 1979]. The South Potwar Basin is hydrocarbon prolific because of the well-

developed anticlinal structures. In this region the rocks range in age from Precambrian 

to Recent and comprise four major unconformity-bounded sequences [Jaswal et al., 

1997]. They are (1) Precambrian crystalline rocks of the Indian craton, (2) 

Neoproterozoic evaporite (Salt Range Formation), (3) Cambrian-Eocene (Carapace 

strata), and (4) Miocene-recent molasses sediments (Rawalpindi and Siwalik groups). 

The Precambrian crystalline basement that is cut by normal faults from Neoproterozoic 

rifting dips gently to the north at 1° in the Salt Range and 3°-4°in the Potwar. Thrust 

ramp is situated above a north-dipping basement normal fault that has a displacement of 
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1 km, decreasing toward the east which is well imaged on seismic profiles [Lillie et al., 

1987; Baker et al., 1988] (Figure 4.10).  

The NPDZ consists of a complex stack of imbricated thrust faults. Jaswal et al. [1997] 

state that the NPDZ is a passive roof duplex with a roof thrust located at the base of the 

Murree Formation and a sole thrust at the top of the basement. The transition between 

the South Potwar Basin and the NPDZ is separated by the triangle zone located beneath 

the Khari Murat forethrust and the Soan backthrust [Baker et al., 1988; Jaswal et al., 

1997]. The Potwar Basin, an autochthonous foreland basin is bounded by the Salt 

Range thrust in the south and by the Soan backthrust or Dhurnal Fault in the north. It 

subsequently became a piggyback basin. Complex detachment folds, hinterland and 

foreland-verging thrusts faults are observed in the eastern part of the basin whereas, few 

deformation features are observed in the western part [Lillie et al., 1987; Baker et al., 

1988]. The emergent Salt Range Thrust places the Salt Range Formation and Cambrian-

Eocene Carapace rocks onto recent sediments [Gee, 1980; Yeats et al., 1984]. This Salt 

Range Thrust becomes blind in the east Potwar. Grelaud et al. [2002] used the seismic 

data to forward model the present compressional structures in the Salt Range and 

Potwar Plateau. They showed the pop-up structures and fault bend fold developed 

above the pre-existing normal faults (Figure 4.10 & Figure 4.11).  

Qayyum [1991] suggests an east-dipping transverse fault or lateral ramp cutting cover 

sediment but not a basement at the east end of the Salt Range province. This lateral 

ramp produced telescoping deformation style and a lateral culmination, apparent as 

Chambal Ridge. In contrary rigid translation deformtion style controlled by the frontal 

ramp is observed in the Salt Range [Faisal and Dixon, 2015]. 
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4.3.2 Comparison to the experimental models 

Normal faults also influence the location of other thrust faults in the area. Brittle 

detachment on the frontal ramp, model BDFR, explains the NPDZ that has imbricated 

thrusts and duplex structures with an incipient of backthrust at the hinterland. The Soan 

syncline and Salt Range Thrust structures can be explained by the ductile detachment on 

the frontal ramp experiment, model DDFR (Figure 4.12b). The Eastern Potwar Plateau 

deformation zone is likely similar to a ductile detachment on the lateral ramp 

experiment, model DDLR (Figure 4.13). As observed in the East Potwar Plateau, the 

frontal thrust in the lateral ramp ductile detachment model propagated farther on the 

back end of the lateral ramp (Figure 4.13). In this region, broader pop-up structures and 

gentler folds developed in the eastern Potwar Plateau than in the central and western 

Potwar Plateau. Narrower tight small detachment folds, pop-ups, and thrusts are 

developed in the central and western side as observed in the model (Figure 4.13).   
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Figure 4.9 Geological map of the eastern Salt Range and Potwar Plateau. A-A’ is 
seismic transect. MBT = Main Boundary Thrust, KMF = Khari Murat fault, DT = 
Domeli Thrust, SRT = Salt Range Thrust, RF = Riwat Fault, SB = Soan Backthrust 
(Adapted from Grelaud et al. [2002]) 
  



 

 
 

63 

   

 
 (

c)
 

Fi
gu

re
 4

.1
0 

In
iti

al
 a

nd
 fi

na
l g

eo
m

et
ry

 fr
om

 th
e 

TH
R

U
ST

PA
C

K
 m

od
el

 o
f t

he
 S

al
t R

an
ge

 a
nd

 P
ot

w
ar

 P
la

te
au

 c
om

pa
re

d 
w

ith
 

th
e 

co
rr

es
po

nd
in

g 
in

te
rp

re
te

d 
cr

os
s-

se
ct

io
n.

 (a
) I

ni
tia

l s
ta

ge
 m

od
el

 (O
lig

oc
en

e)
 w

ith
 p

re
de

fin
ed

 te
ct

on
ic

 u
ni

ts
 c

or
re

sp
on

di
ng

 
to

 th
e 

cr
os

s-
se

ct
io

n 
pr

io
r t

o 
fo

ld
in

g;
 (b

) D
ep

th
-c

on
ve

rte
d 

cr
os

s-
se

ct
io

n 
us

in
g 

se
is

m
ic

 d
at

a 
(s

ee
 F

ig
ur

e 
4.

9 
&

 F
ig

ur
e 

4.
11

); 
(c

) 
R

es
ul

t o
f t

he
 fo

rw
ar

d 
m

od
el

in
g 

[G
re

la
ud

 e
t a

l.,
 2

00
2]

. 



 

 
 

64 

  

 
 Fi

gu
re

 4
.1

1 
In

te
rp

re
te

d 
se

is
m

ic
 li

ne
s i

nt
o 

th
e 

cr
os

s s
ec

tio
n 

(s
ee

 F
ig

ur
e 

4.
10

). 
(a

) L
in

e 
dr

aw
in

g 
sh

ow
in

g 
th

e 
va

ry
in

g 
sh

ap
e 

of
 

th
e 

Sa
lt 

R
an

ge
 th

ru
st

 a
nd

 n
or

th
 d

ip
pi

ng
 n

or
m

al
 fa

ul
t r

es
po

ns
ib

le
 fo

r c
re

at
in

g 
th

e 
th

ru
st

 ra
m

p.
 C

-E
 =

 C
am

br
ia

n 
to

 E
oc

en
e 

ca
rb

on
at

es
 [G

re
la

ud
 e

t a
l.,

 2
00

2]
. 

 
 



65 
 

 

 
Figure 4.12 Model explaining tectonics evolution of tectonic zones of Potwar Salt 
Range Province. (a) Brittle detachment on the frontal ramp experiment, model BDFR 
showing NPDZ (Northern Potwar Deformation Zone) (see Figure 3.1); (b) ductile 
detachment on the frontal ramp experiment, model DDFR (see Figure 3.4) explains 
the formation of Soan Syncline, Salt Range, Salt Range Thrust, and Punjab Plain. 

 
 
Figure 4.13 Ductile detachment on a frontal ramp bounded by a vertical lateral ramp 
experiment, model DDLR that includes structures in the eastern and western Potwar 
Plateau. PP = Potwar Plateau, SRT = Salt Range Thrust. 
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Conclusions 

1. The analog models for both brittle and ductile detachments suggests that pre-

existing normal faults play an important role in determining the geometry and 

kinematics of fold-thrust belts. The normal faults influence the location and 

orientations of later formed thrusts, rather than the sequence of fault propagation. In 

some instances, the presence of the normal faults changes the fault spacing.  

2. The normal fault acts as a buttress and influences the position of the base of the 

thrust fault. For brittle detachments, the base off the thrust is usually a small 

distance from the normal fault, whereas for ductile detachments, the base is either at 

or very close to the normal fault. Frontal fault dips are greater for ductile 

detachments than for brittle detachments. 

3. Favorably oriented frontal thrusts along the normal fault propagate faster and farther 

when the frontal thrust uses the normal fault as a ramp. 

4. Brittle detachment result in a slower propagation of the deformation front to the 

normal fault, the formation of a larger number of faults, and a steeper wedge, 

whereas ductile detachments result in faster propagation of the front to the normal 

fault and a gentler taper.  

5. A linear frontal normal fault ramp results in a linear frontal thrust. Normal faults 

oriented obliquely to the contraction direction result in oblique frontal thrusts, 

whereas normal faults with offsets result in thrust fronts with transverse or oblique 
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segments. Backthrusts formed during the formation of the structures also have 

geometries and orientations that follow the geometry of the normal faults. 

6. Curved normal faults result in curved frontal thrusts. The obliquity of the transfer 

fault is greater for a ductile detachment. For frontal ramps separated by two lateral 

ramps, two transfer zones develop in both brittle and ductile models.  

7. In summary, the effect of the pre-existing normal faults on the thrust-fold geometry 

depends on the relative distance between the normal fault and the forethrust 

positions, detachment type, and the geometry of the normal fault.  
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