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Abstract 

The in situ test is an important part of a geotechnical engineer’s arsenal. Currently, there 

are no established methods for interpreting results of in situ tests in unsaturated soils. 

The difficulty in interpreting in situ tests in unsaturated soil comes from the presence of 

suction, which is often unknown and directly influences a soil’s stress state. Unsaturated 

soils are also subject to fluctuating soil moisture conditions and therefore, fluctuating 

suction and stress states.  For such soils, it is important to establish a methodology to 

estimate the influence of variable moisture conditions on the interpreted results of in 

situ tests. This is particularly true when those in situ tests are used as a basis for analysis 

and design in geotechnical projects. The doctoral study outlined in this dissertation is an 

important step toward the development of a comprehensive methodology for 

interpreting in situ tests considering possible variations in soil suction resulting from 

changes in moisture content. In addition, this study goes one step further by including a 

laboratory scale investigation of foundation response to loading in unsaturated soil at 

different moisture conditions that has been also been tested using the pre-bored 

pressuremeter. The goal is to observe the influence of suction on the results of an in situ 

test and foundation performance, simultaneously. In this way, the methods of analysis 

developed for interpreting in situ tests in unsaturated soil can be calibrated and 

validated against observed foundation performance. 

The primary objectives of the research work described in this dissertation 

include collection of data that describes the influence of matric suction on in situ test 

results including the pressuremeter (PMT), cone penetration test (CPT), and standard 

penetration test (SPT). In situ test and suction data was analyzed and recommendations 



xix 

for interpreting results of aforementioned in situ tests when soil moisture conditions 

fluctuate were made. Finally, a method was developed through which bearing capacity 

and settlement of shallow foundations on unsaturated fine-grained soils can be predicted 

based on pressuremeter results. To achieve the objectives of this project the following 

tasks were completed: 1) a detailed literature search was performed to gather 

information regarding in situ tests in unsaturated soil, model bearing capacity tests on 

unsaturated soils, and predicting shallow foundation behavior in unsaturated soil with 

the pressuremeter. 2) Established two field test sites to perform field tests including the 

pressuremeter, cone penetration test, and standard penetration while monitoring weather 

conditions and soil volumetric moisture content. Performed in situ tests, collected soil 

samples, and observe field sites over a two-year period. 3) Performed soil tests to 

identify engineering properties of the soil for both field sites and developed soil water 

characteristic curves for soils involved in the research to establish the relationship 

between the soil moisture content and suction. 4) Conducted extensive analysis of the 

results of in situ tests to establish empirical relationships. 5)  Conducted extensive 

theoretical analysis of the pressuremeter and CPT data using cavity expansion theory 

for unsaturated soils. 6) Constructed a testing chamber and load frame such that model 

bearing capacity tests on unsaturated soils could be performed. Constructed a miniature 

pressuremeter for testing soil in the chamber. 7) Performed pressuremeter and model 

bearing capacity tests on unsaturated soil and conducted extensive analysis of the data.  

The major contributions of this research include: 1) a unique and valuable dataset 

including the results of PMTs at two fine-grained soil sites, with accompanying 

measurements of soil moisture content determinations, total suction determinations, and 
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other supporting laboratory test data was developed. Similar datasets were developed 

for CPTs and SPTs. 2) Empirical relationships between matric suction and 

pressuremeter parameters including: limit pressure, pressuremeter modulus, and unload-

reload modulus were developed for different soil types encountered at the test sites. In 

addition, relationships including the limited data that could be extracted from the 

literature, were developed, which expand the knowledge gained through the current 

study. 3) Empirical relationships between matric suction and CPT parameters including: 

tip resistance, and sleeve friction, were also developed for different soil types 

encountered at the test sites. Further empirical relationships between matric suction and 

standard penetration test N-value and N1(60) were also developed. 4) The use of 

unsaturated cylindrical cavity expansion theory for prediction of limit pressures under 

fluctuating soil moisture conditions was further investigated. This involved developing 

a theoretically based approach to estimating limit pressure as a function of changing 

suction. In a similar manner to the PMT, a method to apply unsaturated spherical cavity 

expansion theory for prediction of tip resistance under fluctuating soil moisture 

conditions was provided. 5) A unique and incredibly valuable dataset was obtained by 

conducting model scale footing tests and miniature pressuremeter tests in unsaturated 

soil prepared to different moisture conditions. The dataset includes load-displacement 

curves from five footing tests, pressuremeter test curves from all five test beds, water 

content and total suction data from test beds as well as other supporting laboratory data. 

Observations from this testing were extremely valuable in providing insight into the use 

of PMT for shallow foundation analysis in unsaturated soi
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  Introduction 

1.1 Overview 
 

Unsaturated soils exist in a state between fully saturated and completely dry. 

These soils are found throughout the world and require special attention in geotechnical 

engineering projects. Most areas around the world are subject to seasonal wetting and 

drying that can cause soil moisture content to vary, sometimes over extreme ranges in 

moisture content. This can lead to soil being either saturated or unsaturated. 

Geotechnical engineering analyses typically apply to soils in a fully saturated condition 

using methods of analysis based on the effective stress concept. Effective stress is 

defined as the difference between total stress at a depth of interest and the pore water 

pressure at the same depth. It is a measure of the intergranular stress or stress carried by 

the soil skeleton. Geostatic total stress is easily calculated by simply knowing the unit 

weight or density of the material while hydrostatic pore water pressure can be found if 

the height of the water table is known. 

The state of stress of unsaturated soils cannot be described using the traditional 

effective stress technique. This is because water in unsaturated soil does not fill all of 

the void space. In unsaturated soil, air is present in voids and the contractile skin, which 

is the air-water interface, should be accounted for to understand the full state of stress. 

Several different equations have been developed to describe the stress state of 

unsaturated soil; which equation is best is not fully agreed upon by researchers. One 

method developed by Bishop (1959) includes a soil parameter, χ, which accounts for the 

soils degree of saturation, and the soil’s matric suction, ψ. Matric suction, otherwise 

known as capillary pressure, is the difference between the pore air and water pressure in 
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the soil at the time. The addition of a soil property to describe a stress state is contrary 

to traditional approaches to constitutive modeling. Experimental evidence suggests that 

for proper modeling of the state of stress in unsaturated soils, two stress state variables 

may be needed. Many researchers have adopted the two stress state variable approach in 

their attempts to model unsaturated soil behavior. Two stress state variables often 

adopted include: 1) net normal stress, which is the difference between total stress and 

pore air pressure, and 2) matric suction, which was described earlier. The two stress 

state variable approach was proposed by Fredlund and Morgenstern (1977). For 

studying in situ test results from unsaturated soils described in this dissertation, the net 

normal stress and matric suction were assumed the controlling stress state variables; 

however, different effective stress models were examined with regard to interpreting the 

test results.  

 Currently, there are no established methods for interpreting results of in situ 

tests in unsaturated soils. The difficulty in interpreting in situ tests in unsaturated soil 

comes from the presence of suction, which is often unknown and directly influences a 

soil’s stress state. Unsaturated soils are also subject to fluctuating soil moisture 

conditions and therefore, fluctuating suction and stress states.  For such soils, it is 

important to establish a methodology to estimate the influence of variable moisture 

conditions on the interpreted results of in situ tests. This is particularly true when those 

in situ tests are used as a basis for analysis and design in geotechnical projects. The 

doctoral study outlined in this dissertation is an important step toward the development 

of a comprehensive methodology for interpreting in situ tests considering possible 

variations in soil suction resulting from changes in moisture content. In addition, this 
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study goes one step further by including a laboratory scale investigation of foundation 

response to loading in unsaturated soil at different moisture conditions that has been 

also been tested using the pre-bored pressuremeter. The goal is to observe the influence 

of suction on the results of an in situ test and foundation performance, simultaneously. 

In this way, the methods of analysis developed for interpreting in situ tests in 

unsaturated soil can be calibrated and validated against observed foundation 

performance.  

In situ testing is a valuable tool in a geotechnical engineer’s arsenal. The main 

goal when performing a geotechnical investigation is to assess the engineering behavior 

and mechanical properties of a soil profile of interest. It is a challenging problem 

because most soil profiles are not observable without invasive testing and collection of 

samples for laboratory tests. The results of these tests can also be deceiving due to 

problems associated with disturbance. Soil, in situ, exists at a certain level of vertical 

and horizontal stresses, as well as, specific pore air and water pressures. These can be 

estimated and reproduced in a laboratory; however, the stress states imposed under 

laboratory conditions are often isotropic, and only approximate the conditions of the 

soil in a field setting. Furthermore, the laboratory samples suffer from the influence of 

disturbance and stress relief during the sampling and testing process. While in situ tests 

are not without issues associated with soil disturbance, they offer several advantages 

over laboratory testing including the fact that generally more tests can be conducted in 

less time, and encompass a much larger volume of the site soil profile. Furthermore, for 

some in situ tests, the soil response observed is directly related to the initial field stress 

conditions prior to testing. However, it is very important that engineers, who rely on in 
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situ test results for geotechnical analysis and design, fully appreciate the impact that 

variable moisture conditions can have on in situ test results in the unsaturated soil zone. 

This study examines the impact of varying suction relative to three invasive in situ tests, 

the pre-bored pressuremeter test (PMT),  cone penetration test (CPT) and the standard 

penetration test (SPT). 

The pressuremeter test (PMT) is the only in situ test that provides a stress-strain 

curve. It encompasses both the elastic and plastic behavior of soil. Thus, both elastic 

parameters and shear strength can be estimated from the results of a single test. The 

pressuremeter probe has a rubber or steel-sheathed membrane surrounding a hollow 

metal pipe. There is tubing running through the center of the metal pipe that runs to a 

control unit. Figure 1.1 shows a schematic of a pressuremeter test. The open borehole 

the pressuremeter is placed in is created with a hand auger or drilling rig, and care must 

be taken to ensure there is limited disturbance on the walls of the borehole. Once it 

reaches the test depth, it is held in place and the membrane is expanded while volume 

and pressure are recorded. Analysis of the results provides the pressure and volume 

change in the soil. There are several versions of the pressuremeter and most of the 

differences come from the manner in which the device is inserted into the ground. There 

are full-displacement pressuremeters with conical tips that are pushed to the desired 

depth, while others are low displacement self-drilling units. The pressuremeter that will 

be focused on for this research is the pre-bored pressuremeter test that involves 

lowering the pressuremeter in a pre-bored hole. With respect to the degree of 

installation disturbance of the soil surrounding the test probe, the pre-bored 

pressuremeter falls in between the full-displacement and self-boring devices. From here 
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on the pre-bored pressuremeter test will simply be referred to as the pressuremeter test 

or PMT.  

 Cone penetration testing (CPT) is popular throughout the world due to its ability 

to define soil types and soil profiles fast and simply. The cone penetration test consists 

of a cone instrumented with load cells to measure the resistance from the soil on the tip 

of the cone, as well as, the sleeve friction on the side of the cone that develops as the 

cone is pushed vertically into the ground. Figure 1.2 shows a schematic of a cone truck, 

pushing the cone into the ground and an example of CPT test results. As shown in 

Figure 1.2, a CPT test provides a continuous profile of tip resistance and sleeve friction 

with depth that can be used to determine soil type and estimate numerous soil 

properties. In saturated soil, pore water pressure (pwp) measurements associated with 

the piezocone penetrometer (PCPT), can be useful for classification, as well as, pore 

water dissipation testing to determine rate of consolidation information. 

 

Figure 1.1: Pressuremeter set up 
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The standard penetration test (SPT) is the most common in situ test performed at 

a site of interest in a geotechnical investigation. The test is dynamic and consists of a 

split spoon sampler attached to drill rod stem that is driven by a hammer. The hammer 

hits an anvil on top of the drill rods that in turn drives the split spoon sampler into the 

ground. The number of blows per six inches of penetration are counted until a total of 

eighteen inches is obtained. The SPT “N” value is the number of blows obtained for the 

last 12 inches of penetration. There are a number of correlations between SPT test 

results and soil parameters. For example, these correlations include relative density 

(Kulhawy and Mayne, 1990) and shear strength (De Mello, 1971), as well as studies to 

assess seismic soil liquefaction potential (e.g. Cetin et al., 2004). 

The current methods of interpretation for the PMT, CPT, and SPT rely on the 

assumptions that soil is either saturated or completely dry. Depending on geographic 

location, such conditions may exist at one time or another on a seasonal basis and in 

most cases considering a saturated condition provides a conservative design. The 

problem is that the in situ conditions on the day of testing may or may not represent a 

worst-case condition. Furthermore, in arid regions, some soils may never actually see 

saturated conditions so assuming a saturated soil condition in the analysis can lead to an 

overly conservative and costly design. 

In addition, another problem comes with performing an in situ test in 

unsaturated soil. In places such as Oklahoma that are subjected to prolonged periods of 

drought, soil can become extremely stiff and strong. This is due to an increase in matric 

suction. If a period of wetting occurs that brings the soil out of drought conditions, the 
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soil becomes soft and weak. No method of in situ test interpretation can account for 

future changes in soil moisture conditions. Therefore, one goal of this research is to 

provide a method of interpretation for engineers so that in situ tests can be performed on 

any day with any soil moisture condition and interpreted in a manner that accounts for 

fluctuations in soil moisture. As part of the research to accomplish this goal, in situ tests 

were performed in two fine-grained soil deposits at instrumented test sites over a two-

year period in order to observe the test response to changing moisture conditions. 

There are relatively simple equations in existence that allow for determination of 

bearing capacity and settlement from pressuremeter parameters. The influence of 

changes in matric suction on bearing capacity and settlement predicted by the 

pressuremeter has not been explored for fine-grained soils. To gain some new 

perspective on the effects that varying moisture conditions have on pressuremeter 

predicted bearing capacity and settlement, some model footing bearing capacity tests 

were performed in an unsaturated soil profile in the laboratory. In addition, 

pressuremeter tests were performed in the model soil profile and then used to predict 

bearing capacity and settlement.  
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Figure 1.2: Cone Penetration Test (CPT) setup  
 

1.2 Objectives and Tasks 
 

 The primary objectives of the research work described in this dissertation 

include: 1) Collect data that describes the influence of matric suction on in situ test 

results including the pressuremeter (PMT), cone penetration test (CPT), and standard 

penetration test (SPT). 2) Analyze trends observed in the in situ test and suction data 

and, establish recommendations for interpreting results of aforementioned in situ tests 

when soil moisture conditions fluctuate. 3) Develop a method through which bearing 

capacity and settlement of shallow foundations on unsaturated fine-grained soils can be 

predicted based on pressuremeter results.  

 In order to achieve the objectives of this project the following tasks were 

completed: 

1) Performed a detailed literature search to gather information regarding in situ 

tests in unsaturated soil, model bearing capacity tests on unsaturated soils, and 
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predicting shallow foundation behavior in unsaturated soil with the 

pressuremeter. 

2) Established two field sites with relatively uniform soil properties to perform 

field tests including the pressuremeter, cone penetration test, and standard 

penetration while monitoring weather conditions and soil volumetric moisture 

content. Perform in situ tests, collected soil samples, and observe field sites over 

a two-year period.  

3) Performed soil tests to identify engineering properties of the soil for both field 

sites and developed soil water characteristic curves for soils involved in the 

research to establish the relationship between the soil moisture content and 

suction. 

4) Conducted extensive analysis of the results of in situ tests to establish empirical 

relationships. 

5) Conducted extensive theoretical analysis of the pressuremeter and CPT data 

using cavity expansion theory for unsaturated soils.  

6) Constructed a testing chamber and load frame such that model bearing capacity 

tests on unsaturated soils could be performed. Constructed a miniature 

pressuremeter for testing soil in the chamber. 

7) Performed pressuremeter and model bearing capacity tests on unsaturated soil 

and conducted extensive analysis of the data.  

1.3 Organization of Dissertation 
 

 The dissertation presented herein was written so that information would flow in 

a logical arrangement. Chapter 2 provides the literature review, which is structured to 
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introduce each subject that is relevant to the development of this dissertation, provide 

further details regarding the state of knowledge for that subject, and provide limitations 

of the current state of knowledge. Chapter 3 provides a detailed discussion of the 

research methodology for the situ tests performed. Chapter 4 provides details regarding 

the model footing tests. Chapter 5 discusses the results obtained from in situ testing and 

model bearing capacity tests. Chapter 6 provides the conclusions and recommendations 

based on the results of this research. 
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  Literature Review 

2.1 Organization of literature review 
 

This literature review is divided into three main topical areas. The first deals with in 

situ testing. This includes relevant literature regarding the pressuremeter (PMT), cone 

penetration test (CPT), and standard penetration tests (SPT), as well as, literature 

describing their analysis in unsaturated soils. The second section examines cavity 

expansion theory that has been used to describe and interpret PMT and CPTs in 

unsaturated soil. The literature describing the use of cavity expansion theory to interpret 

in situ tests results from unsaturated soil was also included in this survey. The PMT and 

CPT are often used for foundation design. Therefore, the final section provides an 

outline of foundation analysis based on in situ test results. This is followed by 

discussion of literature regarding model-bearing capacity testing of unsaturated soils. 

Finally, the literature review concludes in a section that summarizes the main gaps in 

knowledge exposed by the literature review, and how the research described in this 

dissertation helps to fill the knowledge gaps with regard to in situ testing and foundation 

analysis for unsaturated soil conditions. 

 
2.2 In Situ Tests 
 

 In situ testing in combination with a thorough laboratory investigation is a useful 

tool and vital part of any geotechnical investigation. The ultimate goal in any 

geotechnical investigation is to understand the soil in intricate detail including soil type, 

layering, plasticity, shear strength, and compressibility behavior. There are many 

approaches to obtain this type of information from a site of interest. The most common 
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method is to use a combination of field sampling with laboratory tests, and some in situ 

tests. 

2.2.1 Pressuremeter Test (PMT) 

 The pressuremeter is a device that can be placed into soil to determine its 

mechanical properties. The pressuremeter consists of an aluminum or stainless steel 

body with a rubber membrane covering the central portion of the body. At the ends are 

collars that secure the rubber membrane in place. Fluid is pumped into the sealed 

annulus behind the rubber membrane, which results in expansion. The pressure used to 

pump the fluid into the probe is controlled by the user, so different pressure increments 

can be used to accommodate soils of varying stiffness. Probe pressure corrected for 

device effects is equal to the pressure felt by the soil. The volume of fluid injected into 

the probe is measured so that the corresponding soil displacements can be determined. 

This allows the user to make a determination of the stress-strain response of the soil 

around the pressuremeter. 

 There are several ways to insert the pressuremeter into the soil at the desired 

depth. The pre-bored borehole method is most popular; and was used in this research. 

This method consists of excavating a borehole, in this case with a hand auger, and 

inserting the pressuremeter into the hole. The borehole should be no greater than 1.2 

times the diameter of the uninflated probe and no less than 1.03 times the diameter of 

the uninflated probe (Briaud 1992). This minimizes the inaccuracy during testing from 

overinflating the probe and helps to achieve proper placement.  

The pressuremeter test (PMT) is based on theory in which the probe is modeled 

by the expansion of an infinitely long cylinder in an infinite soil mass. Results from a 
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PMT are presented in terms of corrected volume versus corrected pressure, as shown in 

Figure 2.1. These corrected values represent the actual change in volume of the soil and 

actual pressure applied to the soil surrounding the probe. Corrected volume represents 

the volume of liquid injected into the probe at a given pressure, corrected for the system 

compressibility. Corrected pressure represents the pressure measured above the ground 

surface, corrected for the resistance of the membrane surrounding the probe and 

includes the additional pressure that results from fluid head between the measuring 

point and the center depth of the probe. The pressuremeter expansion curve can be used 

to create an in situ stress-strain curve for the soil. The radial stress is obtained from the 

probe pressure while hoop strain is obtained from volume change measurements 

associated with an assumed expanding radial soil cavity. From the in situ stress-strain 

curve, or the corrected pressure-volume curve, several soil parameters can be 

determined.  

 As shown in Figure 3, there are three phases associated with the PMT expansion 

curve. In the first phase, the probe is expands to fill the borehole cavity and is assumed 

to reload the soil to the in situ state of stress.  The second phase is the pseudo-elastic 

region of the expansion where the soil response is assumed primarily elastic. However, 

an unload-reload procedure is assumed to provide a truer estimate of the elastic 

response as the pseudo-linear initial loading behavior is believed to be influenced by 

soil disturbance. The third and final phase of the test begins with soil yielding and 

development of a failed plastic zone of soil around the expanding cavity. The transition 

points between these phases and soil response within Phases II and III are used to 

determine soil parameters of interest. 
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The first parameter is the at rest total earth pressure, Poh, which can be estimated 

from the transition point between Phase I and II. The pressuremeter modulus, Ep, and 

unload-reload modulus, Er, represent the Young’s modulus of elasticity. These 

parameters are found by fitting a straight line to the initial linear portion in Phase II, and 

a secant line to the unload-reload portion in an unload reload loop, respectively. The 

yield pressure shown in Figure 3 represents the transition from elastic to plastic 

behavior while the limit pressure corresponds to the ultimate resistance when the plastic 

zone surrounding the probe is fully mobilized. Practically, the limit pressure is 

determined as the radial soil stress corresponding to a soil cavity that has been inflated 

to twice its initial volume. The limit pressure is usually not obtained during field 

measurements, and so it is found by extrapolating the pressure-volume response to 

estimate the pressure at two times the initial soil cavity volume.  

 

Figure 2.1: Pressuremeter curve showing different test phases 
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2.2.2 Pressuremeter Tests in Unsaturated Soil 

The pressuremeter has been proven a useful and reliable tool for obtaining soil 

parameters in a geotechnical investigation. However, established methods of 

interpreting data from a pressuremeter such as those described by Briaud (1992), do not 

account for soil suction. The presence of suction has a direct influence on soil strength 

(Fredlund et al., 2012). Suction in unsaturated soils has been shown to have a major 

effect on parameters derived from the pressuremeter including the modulus and limit 

pressures (Miller and Muraleetharan 2000, Miller 2014, Miller and Tan 2008, etc.). In 

general, soils with low suction exhibit softer characteristics than soils with high suction. 

This means that if two PMT are performed at the same depth for the same site during 

the wet and the dry times of the year, the drier test will show a stronger soil deposit than 

the wetter test. This becomes troublesome because planning a soil investigation around 

the weather is not common practice and shallow foundations designed based on results 

of a particular pressuremeter test can end up being either under or over designed in the 

long term. Due to the complexity of the problem, there have been only limited studies 

completed to address the problem.  

The first noted description regarding use of the pressuremeter in unsaturated 

soils is described by Schnaid et al. (1996). The authors recommend the use of the 

pressuremeter in unsaturated soil deposits to identify the influence of suction on soil 

strength. This was recommended due to the difficulty in performing suction controlled 

laboratory testing. The pressuremeter performed in situ in combination with saturated 

lab testing provided a complete soil property profile that could be used in design. This 

study did not attempt to create any framework for interpretation of the pressuremeter in 
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unsaturated soils; however, it did indicate early recognition of the importance of suction 

on the PMT test results.  

The first demonstrated attempt at constructing a method of interpretation for the 

pressuremeter in unsaturated soil was presented in Miller and Muraleetharan (2000). 

The authors presented data from unsaturated silt tested during wet and dry periods. The 

site was instrumented with tensiometers in order to measure matric suction. The data 

showed increasing limit pressure for increasing matric suction. Modulus was unaffected 

by the changes in suction. Calibration chamber data was also presented that showed 

increasing limit pressure and modulus for increasing matric suction. Cavity expansion 

equations originally derived by Vesic (1972), and modified for unsaturated soils via 

Muraleetharan et al. (1998), were used to obtain expressions for ultimate cavity 

pressure, which is analogous to limit pressure in a pressuremeter test. The equations, 

which will be presented in detail in a later section, contain several soil parameters that 

can be readily estimated or determined by laboratory testing. However, the 

determination of two of the parameters is much more difficult; these parameters include 

the change in matric suction and volumetric strain in the plastic zone during expansion. 

Due to the difficulty in obtaining these, the authors developed a method to estimate 

these parameter based on their unsaturated PMT test results. They did this using an 

iterative approach whereby experimentally determined soil properties and pressuremeter 

test results were incorporated into the theoretical equations and then volumetric strains 

were changed iteratively until the resulting changes in degree of saturation and matric 

suction were consistent with experimentally determined soil-water characteristic 

behavior.  
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The method developed by Miller and Muraleetharan (2000) produced 

reasonably promising results; however, it has several facets that make it difficult to use 

in professional practice. Further, the method is somewhat cumbersome due to the large 

number of unknown variables in the cavity expansion equations.  

 Muraleetharan et al. (2003) performed numerical modeling of the PMT in 

unsaturated soil. The analysis compared PMT performed in a calibration chamber using 

a miniature pressuremeter to results of a numerical model. The numerical model made 

reasonable predictions of pressure-volume changes; however, the model 

overconsolidation ratio for the calibration chamber soil had to be increased by around 

three times the measured values, so that predictions matched measured PMT curves. 

The analysis did not model the stress release in the soil due to drilling of the borehole 

prior to pressuremeter insertion. The change in suction in the zone of influence during 

pressuremeter expansion was found to be quite small and nearly insignificant, which is 

a useful finding for simplifying cavity expansion models. 

 Pereira et al. (2003) developed a numerical model to predict pressuremeter 

behavior in unsaturated soil. The results of this modeling showed differences in the 

results between saturated and unsaturated soils during pressuremeter expansion. The 

influence of the suction on the pressuremeter data was reasonable; however, it was not 

compared to experimental results. 

 The work of Tan (2005) provided a framework to describe the behavior of the 

PMT in unsaturated soil. The author performed PMTs in a suction controlled calibration 

chamber, which allowed for control of initial mean effective stress, and suction. The 

results of this testing showed that increasing matric suction also increased limit pressure 
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and modulus of a pressuremeter test. The author used unsaturated cavity expansion 

equations to predict the influence of suction on pressuremeter results. The author 

developed a series of volumetric strain versus suction curves, which can be used in the 

simplified unsaturated cavity expansion equations to predict limit pressure. The analysis 

indicated that some of the back calculated volumetric strains for the soil in the test data 

showed compression because the magnitude of the result was positive. The amount of 

compression in the plastic zone decreased with increasing matric suction and limit 

pressure.  Only one soil type was studied in this research so it is difficult to apply the 

results to other soil types. The nature of calibration chamber testing is that the user can 

control nearly all variables during testing; the method developed through this testing 

was not verified by any field-testing. Typical field-testing at shallow depths, similar to 

what was performed in this research would have lower initial mean effective stress 

compared to the calibration chamber. 

 Miller and Tan (2008) evaluated the at-rest lateral stress based on miniature 

pressuremeter tests in the calibration chamber. The interpreted at-rest lateral earth 

pressure was on average close to chamber confining pressure for the low confining 

pressure condition. As the confining pressure increased, the interpreted at-rest lateral 

earth pressure was around 80% of the applied chamber pressure. The matric suction and 

dry unit weight of the soil bed were found to have an influence on the interpreted at-rest 

coefficient of lateral earth pressure (K0). The K0 values decreased with increasing 

confining pressure, increased with increasing suction, and increased with increasing dry 

unit weight. The presence of unsaturated soil was again shown to have a profound 

impact on pressuremeter results. 
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 Miller et al. (2012) described the influence of matric suction on pressuremeter 

modulus based on miniature pressuremeter tests in the calibration chamber. The results 

showed that increasing suction increased pressuremeter modulus and unload-reload 

modulus. The modulus obtained from a PMT relates the stress to strain behavior during 

expansion and is related to the soil’s stiffness.  

 Zhang et al. (2013) provided a methodology for identifying soil parameters for 

use in the Barcelona Basic Model (BBM) based on inverse analysis of cavity 

pressure/strain curves from PMT in unsaturated soil. This work did not attempt to create 

a methodology for the interpretation of PMT in unsaturated soils. It does use 

unsaturated PMT data to obtain soil properties in soil profiles that are influenced by 

suction. This is another example of researchers using the pressuremeter to identify 

unsaturated soil properties. The authors also recommend significant laboratory testing 

so that the saturated soil conditions are well known. This is another example for the 

need of a method of interpretation of the pressuremeter in unsaturated soils that does not 

rely so heavily on other advanced laboratory testing methods.  

 Another attempt to find a method of interpretation for the pressuremeter in 

unsaturated soils is shown by Miller (2014). In this paper, the author uses the yield 

pressure, the point at which the soil behavior transitions from linear elastic to yielding, 

to create a prediction model for limit pressure in unsaturated soils. The author assumed 

the soil experienced elastic-perfectly plastic behavior and that the stress path of a soil 

element next to the pressuremeter was one of simple shear. Under these assumptions, 

the yield stress is equal to the radial stress, which is equal to the major principal stress at 

failure. Incorporating an unsaturated Mohr-Coulomb failure law, the relationship 
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between suction, yield stress and strength parameters can be established. For a given set 

of unsaturated strength parameters, the relationship between yield stress and suction can 

be determined. Further, the actual PMT limit pressure can be estimated using an 

assumed ratio of limit pressure to yield pressure. Test results from the calibration 

showed that the ratio of limit to yield pressure did not vary consistently or significantly 

with changes in suction. This method was used to make predictions for lab and field 

tests. The method did not work perfectly, but it provided reasonably close predictions 

with the assumptions made. 

 Elwood et al. (2015) examined PMT in compacted or heavily overconsolidated 

soils. Theses soils can have a degree of saturation that would qualify them as 

unsaturated soil, however, during pressuremeter expansion the soil may undergo 

volume changes which results in the compression of occluded air. This indicates the 

initial circumferential strains during pressuremeter expansion are a function of 

volumetric changes and not a result of borehole expansion alone. The authors developed 

a method to determine the applied radial total stress that results in saturation during a 

pressuremeter test. 

2.2.3 Cone Penetration Test (CPT) 

The cone penetration test (CPT) is one of the most useful in situ tests commonly 

used in geotechnical testing. Its usefulness comes from its ability to “rapidly” test to 

great depth and provide near continuous indications of soil stratigraphy. This makes it 

possible to know site stratigraphy in detail and obtain a basic knowledge of the soil 

properties at the site rather quickly. The drawbacks of the CPT are that one must have a 

fully functional truck and specialized equipment to perform the test, and thus it is 
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relatively expensive. In addition, the test does not allow for subsurface sampling and so 

must accompany standard field sampling methods. Field testing with an electric friction 

cone penetrometer involves pushing an instrumented probe into the ground at a standard 

rate of 2 cm/s (0.79 in./s), while simultaneously measuring the force exerted by the soil 

on the tip and on a separate friction sleeve just behind the tip. These forces are 

converted to the tip resistance and sleeve friction by dividing by the projected area of 

the tip and sleeve area, respectively. 

One primary application of the cone penetration data is soil classification (e.g. 

Robertson et al., 1989) using tip resistance and friction ratio, where the friction ratio is 

sleeve friction divided by tip resistance. Here the tip resistance and friction ratio are 

normalized for overburden at the depth of interest. Together these two values can be 

used to determine the soil behavior type using an empirically derived method. Pore-

water pressure measurements can be used to refine soil identification based on cone 

penetration results. There are many applications of the CPT in soil deposits around the 

world. There is however, very little information regarding the interpretation of cone 

penetration results in unsaturated soil deposits. The ease of use and quality of results 

produced in saturated soil profiles also makes it an ideal candidate for use in 

unsaturated deposits. The lack of a tangible method of interpretation in unsaturated 

deposits, however, hinders the proper interpretation of the cone test results. Further 

information about the current state of knowledge regarding this topic is subsequently 

presented. 
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2.2.4 Cone penetration testing in unsaturated soils 

In general, cone penetration testing in unsaturated soils is not well explored in 

the literature. There are notable studies where researchers have explored the CPT in 

sand, such as Russell et al. (2010), Lehane et al. (2004), Pournaghiazar et al. (2013), 

and Yang and Russell (2015b). On the other hand, research on the CPT in unsaturated 

fine-grained soil is very limited (Tan 2005). The previously mentioned studies have 

taken steps towards development of a method to interpret the CPT in unsaturated soils; 

however, none of this work has moved far enough to be generally applicable in practice.  

Most of the work surrounding the CPT in unsaturated soil deals with sand and 

comes from researchers in Australia. The work published by Lehane et al. (2004) 

documented the effects of performing a CPT at one site during a dry and wet time of 

year. The CPT profiles obtained from the test results showed different results that were 

attributed to differences in matric suction. During the dry season tip resistance and 

sleeve friction were higher than when measured during the wet season. The suction 

profiles were back calculated using a relationship between stiffness values (determined 

in the laboratory) and relative density (determined through correlation with tip 

resistance). This work was one of the first to look at different sets of data from the same 

site and attribute differences in test results to matric suction.  

Russell et al. (2010) presented a method of interpretation for the CPT in 

unsaturated sands. The method is based upon the power law proportionalities between 

initial effective stress and cone penetration resistance. An equation was developed that 

allowed for suction to be back calculated based on tip resistance profiles. 
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Pournaghiazar et al. (2013) performed CPT in a calibration chamber containing 

unsaturated sands at different initial densities and confining stresses. The authors 

showed that suction has a significant influence on tip resistance, and increased the tip 

resistance above that of saturated samples in all cases. The authors used the power law 

relationship described by Russell et al. (2010) to find a relationship between net stress 

and tip resistance that includes the soil suction. The authors provide a theoretical 

example for a soil in which suction is not accounted for in cone penetration analysis in 

an unsaturated soil. The result is that by failing to account for matric suction in cone 

penetration analysis leads to an overestimation of relative density and friction angles 

using empirical correlations. This work provides a simple way to incorporate soil 

suction into the interpretation of CPT results and shows the impact that fluctuations in 

suction can have. The work is limited to clean sand however, which typically exhibits 

suction values much lower than would be encountered in clays and silts.  

In Yang and Russell (2015b), the cone penetration test in unsaturated silty sands 

is examined. The calibration chamber used in Pournaghiazar et al. (2013) was again 

used this time in a mostly sand soil with 27% non-plastic fines. The authors found that 

using a constant Bishop’s effective stress parameter multiplied by suction could 

simplify data interpretation. This is useful because changes in suction during cavity 

expansion have been noted to increase the complexity of the problem in pressuremeter 

applications (Miller and Muraleetharan 2000). The work also shows that initial 

hydraulic state (i.e. if the soil is in a state of wetting or drying) has a negligible 

influence on the tip resistance versus net confining stress relationship. A failure to 

account for the effects of suction resulted in overestimation of relative density and peak 
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friction angle using a semi-theoretical correlation. This is one of the first studies of cone 

penetration in unsaturated silty sands and provides a useful set of data that may have 

some applicability for similar soil types.  

 Relatively few studies evaluate the CPT on unsaturated fine-grained soils. Tan 

(2005), as previously described, worked with silt in a calibration chamber. The author 

used spherical cavity expansion equations to build a methodology for interpreting CPT 

in unsaturated silt. The increase of suction in the soil caused increasing tip resistance 

determined by miniature CPTs. The application of spherical cavity expansion equations 

revealed that soil in the plastic zone around the cone undergoes dilation during probe 

penetration, volumetric strain in the plastic zone decreased with increasing matric 

suction, and volumetric strain also decreased with increasing tip resistance. The 

prediction method developed by the author was used to interpret field data. The 

predictions made were reasonable based on the results of the field data. 

 The Tan (2005) study has, to date, been the most comprehensive study on 

unsaturated fine-grained soils. The findings from Tan’s research and the findings from 

other researchers who have worked with sands are examined within the context of the 

current research presented in this dissertation.  

2.2.5 The Standard Penetration Test (SPT) in unsaturated soil 

The standard penetration test (SPT) is the most commonly used test in any 

geotechnical investigation. The results of the test includes the dynamic blow count 

necessary to drive a split-barrel sampler into the soil (N-Value). Many correlations are 

used in the design of shallow foundations based on the SPT N-value. These can be used 

to estimate density, stiffness, friction angle, and undrained shear strength. Empirical 
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correlations even exist to predict bearing capacity and settlement of foundations based 

on N-value. The samples that are collected during SPT can be used for soil index testing 

such as Atterberg limits and grain size distribution. 

The popularity of the SPT in almost all applications would suggest that there are 

correlations that will allow the user to interpret results from unsaturated soil profiles; 

however, this is not the case. One study, where a reference to SPT in unsaturated soil 

was made was in Mohamed and Vanapalli (2015) who used a combination of SPT, and 

in situ plate load tests to establish a relationship between N-value and bearing capacity 

of unsaturated sands. The authors used SPT correlations to determine CPT tip resistance 

and then used a relationship to relate tip resistance to bearing capacity. The authors 

found good correlation between the predicted bearing capacity and measured bearing 

capacity. This method provides a simple way to predict the impact of suction on bearing 

capacity. However, the soil tested was poorly graded sand, so resulting correlations are 

unlikely to be appropriate for fine-grained soils.  

2.2.6 Cavity Expansion Theory for Unsaturated Soils 

Cavity expansion theory defines the expansion of a cylindrical or spherical cavity 

in an infinite soil mass. The importance of cavity expansion theory in geotechnical 

engineering comes from its connection with a number of geotechnical problems 

including bearing capacity of deep foundations, interpretation of pressuremeter tests, 

cratering by explosives, and breakout resistance of anchors (Vesic, 1972). The work of 

co) presented a general framework for cylindrical and spherical cavity expansion theory 

in an infinite soil mass. This work was then carried on by researchers who were able to 
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use cavity expansion theory to describe stress components of PMT and CPT (e.g. Yu 

1990, Salgado et al. 1997, etc.) 

Some caveats to the cavity expansion theory described by Vesic (1972) includes 

the assumptions that cavity expansion takes place in drained or undrained conditions. 

This means that only a single stress-state variable, the Terzaghi effective stress, is 

needed to describe the soils strength behavior. In soils that are not fully saturated a 

Bishop-type effective stress model or two stress-state variable approach is needed. 

Research described in this dissertation focuses on the two stress-state variables 

presented in Fredlund and Rahardjo (1993). These include the net normal stress, which 

is defined as the difference between total stress and pore air pressure (σn-ua) and the 

matric suction, defined as the difference between the pore air and pore water pressure 

(ua-uw). 

In order to use cylindrical and spherical cavity expansion equations in 

unsaturated soils the two stress-state variables must somehow be included in the general 

equations provided by Vesic (1972). To do this Muraleetharan et al. (1998) derived 

cylindrical and spherical cavity expansion equations for unsaturated soils incorporating 

the net normal stress and matric suction as well as associated elastic parameters and 

strength parameters associated with two stress-state variables. The equations were 

applied to pressuremeter analysis in Miller and Muraleetharan (2000) as previously 

mentioned. Further, Tan (2005) used the cylindrical and spherical cavity expansion 

equations described in Muraleetharan et al. (1998) to interpret results of CPTs and 

PMTs in a calibration chamber.  
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These equations were developed considering the equilibrium of stress conditions 

at the boundary of the elastic and plastic zones indicated by the arrow marked “Rp” 

shown in Figure 2.2. The inner portion of Figure 2.2 represents the expanding spherical 

or cylindrical cavity. The initial radius of the cavity is indicated as Ri, Ru represents the 

ultimate cavity radius and Pu represents the ultimate cavity pressure. The radius of the 

plastic zone is indicated by Rp and radial and circumferential stresses are shown as σr 

and σθ, respectively. The radial displacement is indicated as up. The radial stress at r = 

Rp is indicated as σP. The assumptions involved in the analysis and further assumptions 

employed by Tan (2005) were as follows:  

 The soil beyond the plastic zone behaves as a linear elastic solid and soil within 

the zone behaves as a compressible plastic solid. This allows for determination 

of the relationship shown in Equation 2-1, which relates the radius of the plastic 

zone to the radius of the cavity. This is described in more detail in Tan (2005). 

ோ೛

ோೠ
= ඥܫ௥௥

ᇱ      (Eq. 2-1) 

 

 Young’s Modulus was taken as the pressuremeter modulus, EP. 

 Poisson’s ratio, ν, is known and is equal to 0.333. 

 Gravimetric water content, w, and matric suction do not change during 

expansion. This was an assumption employed by Tan (2005) to simplify the 

analysis. It is also supported by Muraleetharan et al. (2003) where numerical 

modeling indicated matric suction did not change during PMT expansion. 

 Pore air pressure, ua, remains at atmospheric pressure (ua=zero kPa gage 

pressure) during cavity expansion. 
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Employing these assumptions, reduced forms of cylindrical and spherical cavity 

expansion equations were presented as follows. 

1) The reduced form of cylindrical cavity expansion equation for unsaturated soil is 

given as Equation 2-2, 

Pu=F’qp+F’cc     (Eq. 2-2) 

Where: 

Pu = ultimate cavity pressure, 

F’q, F’c = dimensionless cylindrical cavity expansion factors 

p = mean net normal stress 

c = effective cohesion 

c= c’ + (ua-uw) tan (߶௕)    (Eq. 2-3) 

c’ = cohesion 

uw = pore water pressure 

ua = pore air pressure 

φb = angle of internal friction with respect to matric suction variation 

௤ܨ
ᇱ = (1 + sin ߶ᇱ)ܫ′௥௥

     ௦௜௡థᇲ/(ଵା௦௜௡ ᇲ)   (Eq. 2-4) 

φ' = angle of internal friction, 

I’rr = reduced rigidity index, 

௥௥′ܫ
   =

ଵାఌೡ
೑మ
಺ೝ
ᇲ ାఌೡ

        (Eq. 2-5) 

f2 = cos φ'     (Eq. 2-6) 

௖ܨ
ᇱ = ௤ܨ)

ᇱ − 1) cot ߶′    (Eq. 2-7) 

௥ܫ
ᇱ =

ா

ଶ(ଵାఔ)[௣ ୲ୟ୬ థᇲା௖]
   (Eq. 2-8) 
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௥ܫ
ᇱ = rigidity index and, 

εv = volumetric strain in the plastic zone.  

2) The reduced form of spherical cavity expansion equation in unsaturated soil is 

given by Equation 2-9, 

Pu = F’qp+F’cc     (Eq. 2-9) 

Where parameters are the same as for Equation 2-2, except: 

F’q, F’c = dimensionless spherical cavity expansion factors, 

௤ܨ
ᇱ =

ଷ(ଵା௦௜௡థᇲ)

ଷି௦௜௡థᇱ
௥௥ܫ

ᇱ ସ௦௜௡థᇲ/ଷ(ଵା௦௜௡థᇲ)  (Eq. 2-10) 

௖ܨ
ᇱ = ௤ܨ)

ᇱ − 1) cot ߶′    (Eq. 2-11) 

௥௥′ܫ
   =

ଵାఌೡ
೑భ
಺ೝ
ᇲ ାఌೡ

     (Eq. 2-12) 

ଵ݂ =
ଷ௖௢௦థᇲ

ଷି௦௜௡థᇲ     (Eq. 2-13) 
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Figure 2.2: Expansion of cavity (Vesic, 1976) 
 

 The appeal in using the above equations to interpret pressuremeter and cone 

penetration data is that nearly all of the parameters can be determined through 

laboratory and field-testing. The lone parameter that cannot be determined through 

testing is the volumetric strain in the plastic zone, εv. The results obtained by Tan 

(2005) from calibration chamber testing using miniature pressuremeter and cone 

penetration tests produced enough data such that εv could be back calculated. The 

volumetric strain was found to correlate with ultimate cavity pressure, which is 

analogous to limit pressure and tip resistance. Thus, Tan (2005) computed volumetric 

strain for different cavity pressure ranges and soil suction ranges. With estimates of the 
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volumetric strain, it is possible to predict changes in cavity pressure due to changes in 

matric suction if the elastic parameters and shear strength parameters can be estimated 

for the soil. The method developed by Tan (2005) was investigated relative to the field 

data collected in this dissertation.  

 The effects of hydraulic hysteresis in cavity expansion behavior were evaluated 

by Yang and Russell (2015a&b). They developed a numerical model to simulate cavity 

expansion in an unsaturated silty sand. The investigation focused on the soil’s initial 

location on its soil-water characteristic curve (SWCC). The authors found that starting 

location on the SWCC was significant to the cavity wall pressure developed via their 

numerical model. The authors used three soil moisture conditions in their model and 

evaluated the effect of each on the result. These included constant suction, constant 

moisture content, and constant contribution of suction to the effective stress meaning 

that as cavity expansion progressed the Bishop effective stress parameter multiplied by 

suction, χs, remained constant. The constant contribution, of the suction to effective 

stress was found to provide the best approximation of the other two conditions 

simplifying in situ test analysis. This partly justifies the assumption made by Tan (2005) 

that suction is constant during cavity expansion, which results in the reduced cavity 

expansion equations.  

2.2.7 Use of in situ tests for foundation analysis 

In situ testing is often a key component of foundation design. The key aspects of 

a foundation design include analysis of bearing capacity and settlement. Many in situ 

tests are capable of providing direct inference of properties used to calculate bearing 

capacity and settlement potential. Most geotechnical investigations involve the SPT. 
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Ideally the SPT should be used to collect samples and identify soil layers for further 

investigation as necessary; however, in many investigations it is the only in situ test 

conducted and N-values become the basis for foundation analysis. The prevalent use of 

the SPT has led to the development of many correlations that can be used to predict 

shear strength, friction angle, and density, as well as, provide direct estimates of bearing 

capacity and settlement. Correlations that exist for clays, however, are not 

recommended to obtain shear strength (Reese et al. 2006). 

The CPT allows for simple determination of bearing capacity by using one of the 

several available correlations. Lunne et al. (1997) lists several correlations for 

cohesionless soils based on tip resistance multiplied by some empirical factor related to 

the shape of the foundation, the soil overburden pressure, or a combination of the two. 

In fine-grained soils, correlations based on tip resistance are used to determine 

undrained shear strength for bearing capacity determination. The undrained shear 

strength is calculated according to the following equation, 

௨ݏ =
(௤೎ିఙೡ೚)

ேೖ
     (Eq. 2-14) 

Where: 

su = undrained shear strength, 

qc = tip resistance, 

σvo = vertical overburden stress, and 

Nk = empirical cone factor which is about equal to 17 for many soils. 

The undrained shear strength is used to determine bearing capacity according to the 

following equation, 

௨௟௧ݍ =  ௖ܰݏ௨ +  ௭     (Eq. 2-15)ߪ 
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Where: 

 ,௨௟௧ = ultimate bearing capacityݍ

Nc = Terzaghi bearing capacity factor, 5.7 for a friction angle of zero, and 

 .௭ = total overburden pressure acting at the base of the foundationߪ

The results of pressuremeter testing are straightforward to apply to foundation 

engineering. To determine bearing capacity there is a simple equation presented by 

Briaud (1992) as, 

௅ݍ = ݇ ௅ܲ௘
∗ +  ௢    (Eq. 2-16)ݍ

Where: 

 ,௅= ultimate bearing capacityݍ

k = pressuremeter bearing capacity factor, 0.8-1.2 for clay, 0.8-1.5 for silt, and 0.8-2 for 

sand, 

௅ܲ௘
∗ = ඥ ௅ܲଵ

∗
௅ܲଶ
∗ … ௅ܲ௡

∗೙     (Eq. 2-17) 

௅ܲ௘
∗ = equivalent net limit pressure determined from PMT tests with 1.5B of the bearing 

level, 

௅ܲ௡
∗ = ௅ܲ − ைܲு    (Eq. 2-18) 

௅ܲ௡
∗ = net limit pressure from test n equal to the limit pressure minus at-rest horizontal 

earth pressure, and 

ைܲு= at rest horizontal earth pressure. 

One equation for settlement from Janbu et al. (1956) is as follows, 

ݏ = ଵ(1ߤ଴ߤ − ݍ(ଶߥ
஻

ா೛
     (Eq. 2-19) 

Where: 

s = settlement, 
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 ,଴ = correction factor which account for depth of embedmentߤ

 ,ଵ= correction factor which accounts for depth to a rigid stratumߤ

ν = Poisson’s ratio, 

q = bearing pressure, 

B = foundation width, and 

Ep = pressuremeter modulus. 

2.2.8 In situ testing applied to foundation analysis for unsaturated soils 

The equations described in the previous section allow for determination of 

bearing capacity and or settlement based results from a single in situ test. This shows 

the practicality of performing in situ tests even if it is only part of a larger investigation. 

However, there has been very little research involving the use of in situ tests for 

foundation design is in the area of unsaturated soils. This represents a significant gap in 

available knowledge in light of the fact that nearly all shallow foundations are 

constructed on unsaturated soils. As mentioned previously, some limited work was 

recently published by Mohamed and Vanapalli (2015) that describes using a correlation 

to relate the SPT N-value to cone penetration tip resistance, which is then corrected for 

suction using an empirical correlation before determining bearing capacity. The study 

was performed in sand. The research described in this dissertation begins to fill the 

knowledge gap by addressing the use of in situ tests in fine-grained soils for foundation 

analysis.  

2.3 Model bearing capacity testing in unsaturated soil 
 

The challenge of working with soil is that site-to-site the characteristics of the 

material can change. This challenge has led to the development of site-specific solutions 
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to understand the fundamental characteristics of the material that will be relied upon. 

One site-specific solution that has developed over time is the plate load test. This test 

essentially aims to mimic the behavior of a shallow foundation on soil loaded to an 

ultimate failure state to obtain specific solutions to bearing capacity and settlement 

problems. There are countless examples of researchers using model footings in a 

laboratory or field setting to collect bearing capacity and settlement data (e.g. Cerato 

and Lutenegger 2007, Zhu et al. 2001, Skempton 1951, Anderson et al. 2007, etc.). This 

research has led to many developments on how to perform these tests on all types of 

soils. The research regarding the use of these tests in unsaturated soil is much more 

limited. 

The work of Costa et al. (2003) details some model bearing capacity tests 

performed on a lateritic clayey sand layer. The authors performed ten plate load tests 

using a circular plate 0.8 meters in diameter and 25 mm thick. Two distinct loading 

procedures were used, the first being a slow maintained load, the other a quick 

maintained load. A settlement criterion was established to determine when subsequent 

incremental loads should be applied during testing. The settlement criteria used for the 

slow maintained load was presented as follows, 

௧ݏ − ௧/ଶݏ ≤ ௧ݏ)0.05 −  ௧௜)    (Eq. 2-20)ݏ

Where:  

 ,௧= settlement recorded at time tݏ

 ௧/ଶ= settlement recorded at time t/2, andݏ

 .௧௜= initial settlement at t=zeroݏ



36 

For the quick maintained load, each increment was held constant for 15 minutes and 

readings were taken at 0, 1, 2, 3, 6, 9, 12, and 15 minutes. In five of the ten tests, the test 

pit was inundated with water. In the other five tests, the in situ moisture content was 

maintained. In order to obtain different soil suctions, tests were performed at various 

times of the year. Suction was monitored using tensiometers installed next to the pit at 

depths of 100, 300, 600, and 800 mm. The authors did not see a clear failure pattern in 

the test results. Most soils tested exhibited punching failure and strain hardening. 

Therefore, the failure criteria were set by the authors to be the yield stress. The results 

showed that the plate-load test results were heavily influenced by increasing matric 

suction. A nonlinear relationship was developed for the ultimate stress at failure, ߪ௙ , 

which corresponds to the onset of permanent soil deformation and is as follows: 

௙ߪ = 48.1 + ௔ݑ)6.2 −  ௪)଴.଻଴   (Eq. 2-21)ݑ

The rate of settlement showed a non-linear decreasing response with increasing 

soil suction. For an applied stress level, settlement rate increases with decreasing soil 

suction. The influence of suction was more significant for comparatively high-applied 

stress levels and for comparatively low suction values.  

 Xu (2004) performed plate load tests on an unsaturated expansive soil. A square 

plate 30 x 30 cm was used in the testing. A load-controlled test was used where each 

load was applied until the settlement reached less than 0.01 mm per hour. Tests were 

performed in situ on Handan and Ningxia soils, which are locally expansive clays. The 

clays were tested in a saturated and unsaturated condition. The results of the testing 

showed that samples with lower moisture content (higher suctions) had larger bearing 

capacity. The unsaturated soils studied had relatively high degree of saturation (greater 
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than 80%). The authors related bearing capacity to swelling pressure because it is 

typically easier to measure in a laboratory than unsaturated strength parameters and 

matric suction. The predictions of bearing capacity based on swell pressure are quite 

good. 

 Rojas et al. (2007) performed five plate load tests on an unsaturated lean clay 

deposit, and two in a saturated condition. Five different matric suction values were used 

in the tests, which were verified using tensiometers inserted at depths of 10, 30, 60, and 

90 cm around each test pit. For each load increment, the load was held until the 

maximum deformation of 0.03 mm/min was obtained for three consecutive readings. 

Tests were stopped when either the maximum capacity of the hydraulic jack used to 

apply the load was reached, or the plate reached 10% settlement. The authors found an 

increasing nonlinear trend between matric suction and bearing capacity. 

 Vanapalli and Mohamed (2007) proposed a technique to predict the bearing 

capacity of an unsaturated poorly graded sand using saturated shear strength 

parameters, ܿᇱ and,߶ᇱ. The authors performed bearing capacity tests using a model 

footing in a laboratory. The tank, which contained the soil, had an adjustable water 

table, which was used to achieve a desired matric suction. The matric suction was 

measured using commercially available tensiometers. The authors noticed an increase in 

bearing capacity based on an increase in matric suction. An equation was developed for 

bearing capacity based on the Terzaghi’s (1943) bearing capacity equation. The new 

equation included effective cohesion, which was presented as Eq. 2-3. The influence of 

suction on shear strength as described by the friction angle with respect to matric 
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suction,߶௕ is difficult to determine experimentally, so a relationship between the 

effective friction angle and degree of saturation was used instead, as follows, 

tan ߶௕ =  ܵ௞ tan ߶ᇱ     (Eq. 2-22) 

Where,  

S = degree of saturation, and 

݇ = fitting parameter. 

This equation is then used to define bearing capacity for unsaturated soils as follows: 

௨ݍ = [ܿᇱ = ௔ݑ) − ௪)ܵటݑ tan ߶ᇱ] ௖ܰߦ௖ + ܤߛ0.5 ఊܰߦఊ
 (Eq. 2-23) 

Where, 

߰ = Bearing capacity fitting parameter, and 

௖ܰ, ఊܰ = Terzaghi (1943) bearing capacity factors for cohesion and unit weight, 

௖ߦ , ఊߦ
 = Vesic (1973) shape factors for cohesion and unit weight, 

 ,unit weight = ߛ

B = footing width.  

 

To make full use of the equation provided by Vanapalli and Mohamed (2007) it 

is necessary to have information about the soil’s shear strength parameters, including 

cohesion, and friction angle, as well as, the soil water retention curve data. The authors 

plotted measured bearing capacity versus matric suction and back calculated the fitting 

parameter, ψ. This, together with data from literature was used to find a relationship 

between plasticity index and the fitting parameter that can be obtained through the 

following equation, 

߰ = 1 + ܫ0.34ܲ −  ଶ   (Eq. 2-24)ܫ0.0031ܲ
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Where: 

PI = plasticity index.  

The bearing capacity of unsaturated sands was further evaluated by Li (2008) 

who performed model bearing capacity tests on three sands under saturated and 

unsaturated conditions. The results showed that bearing capacity of fine-grained sand 

increased as matric suction increased, and for coarse-grained sand decreased with 

increasing matric suction. The explanation for the decrease in bearing capacity in the 

coarse-grained sand was attributed to the sensitivity of the soil to compaction energy. 

However, this is interpreted, as the void ratio was higher as suction increased which 

caused a decrease in bearing capacity. The author had difficulty installing tensiometers 

so suction was estimated by using the distance to the water table from the soil surface.  

 Oh and Vanapalli (2013) evaluated the modified effective stress approach 

(MESA) presented in Vanapalli and Mohamed (2007) for application to footings in 

fine-grained soils. The modified effective stress approach essentially replaces the 

cohesion parameter in Terzaghi’s bearing capacity formula with parameters that account 

for the impact of matric suction. An example of the MESA is shown in Equation 2-23. 

The authors identified some limitations in using the MESA and sought to overcome 

these by using a modified total stress approach (MTSA). The modified total stress 

approach (MTSA) essentially reduces the Terzaghi bearing capacity equation to only 

the first parameter and now the “c” parameter is equal to the undrained shear strength. 

The authors’ previous research indicates the main failure mechanism in bearing 

capacity tests of unsaturated fine-grained soils is punching shear. The authors assumed 

that the compressibility characteristics of the soil below the footing dominates the 



40 

bearing capacity of unsaturated fine-grained soil. The constant water content triaxial test 

is the most reasonable test to simulate loading and drainage for unsaturated fine-grained 

soils; however, these tests are time consuming and require specialized equipment. For 

these reasons, the authors used unconfined compression testing to estimate bearing 

capacity of unsaturated fine-grained soils. To evaluate the validity of the MTSA and 

MESA an experimental program using a 50 x 50 mm model footing on fine-grained 

soils for five matric suction profiles was conducted. A low PI (PI=15) soil was used in 

the study. The results of the testing showed that the MTSA could be used to predict 

bearing capacity behavior of fine-grained soils based on UC tests. The bearing capacity 

factor, Nc, was back calculated based on the results of the bearing capacity testing. The 

MTSA was then tested using data from Consoli et al. (1998) who conducted in situ plate 

load tests in an unsaturated low PI (PI=20) deposit. The results showed good agreement 

when compared to Consoli et al. (1998); however, the UC test used to make the 

calculation must come from a depth that represents the average suction for the site. 

 The modulus of elasticity is important for the computation of settlement in soil. 

Oh et al. (2009) presented work that resulted in a method to predict the variation of 

modulus of elasticity with respect to matric suction for sandy soils based on the soil 

water characteristic curve (SWCC) and saturated modulus of elasticity. The authors 

presented results of model footing tests for three separate sands, using two different 

footing sizes. Tests were completed at matric suctions ranging from 0-0.87 psi. 

Modulus of elasticity was calculated from the linear portion of the stress versus 

settlement relationship of the bearing capacity tests. A model to predict the unsaturated 

modulus of elasticity was developed that makes use of the modulus of elasticity for 
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saturated conditions, the current matric suction, atmospheric pressure, degree of 

saturation, and two fitting parameters, α, and β. The parameters α, and β control the 

nonlinear variation of modulus of elasticity. The authors found that the model provided 

a good fit to measured modulus values. Fitting parameters of α = 2.5, and β = 1 provide 

reasonable estimation of modulus for unsaturated sandy soil. The authors suggested that 

α between 1.5 and 2 provides conservative elastic settlements in engineering practice. 

The authors also looked at the effects of desaturation on the elastic modulus and found 

that it is at a peak value near the air entry point on the soil water characteristic curve.  

2.4 Summary of Knowledge Gaps and Contribution of Current Research 
 

The literature review reveals that while there have been significant advancements in 

knowledge, there is very little real data that reveals the influence of variable saturation 

on results of in situ tests or foundation performance. Most experimental work on 

foundation performance focused on sandy soils and there appears to be a lack of studies 

involving nearly simultaneous foundation testing and in situ testing in the same soils 

under variable saturation. Research conducted and described in this dissertation 

contributes to the knowledge base in several ways as follows: 

1. Created valuable data set, which included pressuremeter, cone penetration, and 

standard penetration tests at two fine-grained sites under variable saturation. 

2. Created valuable data set, which included miniature pressuremeter and model 

footing, tests on a clayey soil under variable saturation in the laboratory. 

3. Developed an empirical and analytical method of analysis for interpreting in situ 

tests in unsaturated soils. 
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4. Developed methods for foundation analysis using PMT under variable 

saturation. 
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 Experimental Testing: In Situ 

3.1 Overview 
 

In situ tests, including cone, pressuremeter, and standard penetration, were 

performed at two field sites over the course of two years. During each site visit, detailed 

test and site data were collected and analyzed. At each of the two sites, a weather station 

was installed to track weather information at the site, as well as volumetric soil moisture 

data from sensors located at 1ft, 3ft, and 6ft below the ground surface. Index property 

testing was performed on soil samples from the site to identify basic soil parameters 

such as particle size, plasticity index, and specific gravity. Strength testing was 

performed with constant water content triaxial tests for soil depth of 3ft, 6ft, and 9ft 

from each of the field sites. From each site visit soil, samples were collected for suction 

and moisture content determination. Details on the methods used to perform tests are 

provided in this section.  

 

3.2 Test Sites 
 

Two sites were chosen for this research. These sites will be referred to as the 

North Base and Goldsby sites. Both sites were located a short driving distance from the 

University of Oklahoma campus, which made them ideal candidates for testing. The 

North Base site is located west of the Max Westheimer Airport in Norman, OK 

(latitude: 35°14'6.58"N, longitude: 97°27'46.39"W). The soil profile at the site contains 

low and high plasticity soil with soil plasticity greater near the surface. A water table 

was found to fluctuate between depths of 8 to 9 feet. The majority of material found at 
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North Base is considered fine-grained; however, there were some rock inclusions found 

near bedrock. The Goldsby site is located near Goldsby, OK approximately 5 miles 

south of the University of Oklahoma (latitude: 35° 9'20.61"N, longitude: 

97°28'40.04"W). The soil profile contains low plasticity clay for at least ten feet, which 

was the depth of interest for this investigation. There was no bedrock or a water table 

encountered during the research at Goldsby. The city of Norman and surrounding areas 

are shown in Figure 3.1. Indicated on the figure are the North Base site, and the 

Goldsby site.  

 

Figure 3.1: City of Norman with Goldsby and North Base research sites 
highlighted with yellow indicators 
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3.3 Site Instrumentation 
 

The initial fieldwork started at the Goldsby site in June 2012, at which time the 

weather station was installed and data collection was initiated. The weather station was 

manufactured by Campbell Scientific Instruments. It included sensors that quantify 

rainfall, air temperature, relative humidity, wind speed, wind direction, solar radiation, 

and volumetric water content at three depths in the soil profile. 

A similar weather station was installed at the North Base site in August 2012 at 

which time data collection began. A photograph of the weather station installed at North 

Base is shown in Figure 3.2. Also shown in the picture is the Oklahoma Department of 

Transportation (ODOT) Cone Penetration Test (CPT) truck on one of their site visits. 

The weather station details are shown in Figure 3.3; this includes the component parts 

connected with model numbers. The range of measurement of the sensors is also 

provided in Figure 3.3. 

  

Figure 3.2: Weather station installed at North Base test site, Oklahoma 
Department of Transportation truck in background performing CPT. 
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Figure 3.3: Components of Campbell Scientific weather station including range of 
measurements (Doumet, 2015) 
 
3.4 In Situ Site Characterization 
 

The site visits were a key aspect of this research. Tests were performed on 

roughly 100-ft.-by-100-ft. plots. Each site visit would typically consist of a sampling 

phase followed by testing. Tests were performed as often as possible. Typical PMT tests 

were performed either monthly or bi-monthly depending on equipment availability. 
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CPT and SPT was performed as often as the Oklahoma Department of Transportation 

(ODOT) was available. Test locations were mapped so that multiple tests would not be 

performed at the same location. Maps of each sites with test locations are presented in 

later sections. This was done in unison for pressuremeter testing. When the Oklahoma 

Department of Transportation (ODOT) was on site the sampling was done using split 

barrel tube sampling during Standard Penetration Testing (SPT). The sampling during 

pressuremeter testing (PMT) was performed using a 3-inch diameter hand auger. At the 

North Base (NB) site, bedrock was found at around 9 feet on average and the water 

table rose throughout the first year of testing. Thus, sampling was limited to depth of 

7.5 feet at North Base. At Goldsby (GB) and sampling was conducted in the upper 9.5 

feet of the soil profile. The sampling procedure for both sites proceeded as follows: at 

each six inch interval a sample was taken from the hand auger for moisture content 

determination, these were placed in sample tins and sealed with electrical tape to 

prevent any premature evaporation. In the intermediate depths between the six inch 

intervals material was collected in sandwich bags for use in grain size analysis, 

plasticity indices, and specific gravity determination. This process was repeated until 

the termination depth was reached. In the case of pressuremeter testing the sampling 

was placed on hold near test depths of 3ft, 6ft (5ft for NB), and 9ft (7ft for NB) so that 

probe could be inserted and a test could be administered. After completion of the test, 

sampling continued as previously described. The samples were then transported to the 

laboratory where soil index property testing, moisture content determinations, and 

suction measurements were made. Results of these tests will be provided in more detail 

in further sections. 
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Additional in situ samples were collected using Shelby tubes. The Shelby tubes 

were pushed into the ground using an ODOT drilling truck. Shelby tube samples were 

then sealed on top and bottom using a combination of rubber caps and duct tape. 

Samples were brought to the laboratory as quickly as possible for extrusion. Once 

extruded, samples were measured and weighed, then sealed in plastic wrap and stored in 

a moisture room until they were required for testing. 

3.5 Laboratory Testing Methods 
 

3.5.1 Basic soil properties 

Laboratory testing was conducted to determine basic physical and index 

properties. Grain-size distribution and liquid and plastic limit tests were conducted in 

general accordance with ASTM standards (D422, D4318) on samples obtained at depths 

encompassing the locations of in situ tests (0 to 10 ft.). Results of these tests were used 

to classify the soils at each test site. Specific gravity was determined on selected 

samples in accordance with ASTM Standard D854. 

 In addition, Cation Exchange Capacity (CEC) was determined for selected 

samples by a commercial laboratory, Agsource, in Lincoln Nebraska. The summation of 

cations method was used to determine the amount of exchangeable cations. This method 

involves measuring the amounts of available calcium, magnesium, potassium, and 

sodium; the method used by Agsource is described in detail in Brown and Warncke 

(1988). 

3.5.2 Soil Water Characteristic Curve (SWCC) test 

The WP4 dewpoint potentiameter, manufactured by Decagon, was the primary 

method for the determination of the SWCC for Goldsby and North Base. The WP4 
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measures total water potential (total suction) using the chilled mirror method to 

determine the relative humidity of the air above a sample in a closed chamber. The 

relative humidity above the sample is assumed to be at equilibrium with the air in the 

sample. At temperature equilibrium, relative humidity is directly related to water 

potential. Total suctions in the range of approximately 1 to 300 MPa (145 to 65,265 psi) 

can be determined using this method, as indicated by Decagon. 

The material collected in the moisture tins at the field location was brought to the 

laboratory and immediately subjected to a suction measurement. The WP4 device 

comes with small stainless steel cups that are filled, by hand, half way with a 

representative sample. The cups filled with soil are placed inside the WP4 chamber and 

a suction measurement is made. Figure 3.4 shows the Decagon dewpoint potentiameter 

with stainless steel sample cups half filled with soil. The remaining material in the 

moisture tin is weighed and placed in an oven for moisture content determination in 

accordance with ASTM D2216.  
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Figure 3.4: Decagon dewpoint potentiameter and soil sample cups 
 

3.5.3 Determination of shear strength 

The soil samples collected in Shelby tubes were used to determine shear strength 

characteristics of the soil at the in situ test sites. The samples extruded from the Shelby 

tubes were tested in a conventional triaxial compression device. After extrusion from 

the Shelby tubes, samples at depths of interest were trimmed and placed in the rubber 

membranes inside of a triaxial cell. A multi-stage isotropically consolidated undrained 

compression test (CIUC) with pore water pressure measurement was used to obtain 

shearing characteristics. Undrained triaxial testing coupled with pore water pressure 
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measurement was desired so that drained and undrained shearing information could be 

obtained according to ASTM D4767.  

Table 3.1 presents the site name, borehole number, sample depth, cell pressure, 

and backpressure used for each triaxial test. The effective stress range was varied. 

Backpressure saturation was used to reach close to 100% saturation.  

3.6 In Situ Testing Methods 
 

The in situ tests used in this research included the pressuremeter test (PMT), cone 

penetration test (CPT), and standard penetration test (SPT). The PMT was performed by 

the author and an assistant. The CPT and SPT were performed with cooperation of the 

Oklahoma Department of Transportation (ODOT). 

3.6.1 Pressuremeter tests (PMT) 

The pressuremeter probe used in all tests was a Roctest Texam pressuremeter 

with a rubber membrane shown in Figure 3.5. This probe has an expandable portion 

measuring 14.25 inches long and approximately 2.75 inches in diameter. The rubber 

membrane was used as opposed to a steel-sheathed “Chinese lantern” style membrane 

because the soils tested were relatively soft, so a flexible membrane provided better 

contact and more uniform cavity expansion. Stress-controlled tests were conducted in 

accordance with ASTM D4719-09 procedure A, whereby expansion pressure is 

increased incrementally while monitoring volume injected into the probe during a 60-

second interval for each pressure increment. Regulated nitrogen was used to force fluid 

into the pressuremeter probe while injected volume was monitored using a sight glass 

on the fluid standpipe. 
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The PMT probe was placed in the borehole such that the center of the inflatable 

portion of the probe was placed at the depth of interest. Relatively small pressure 

increments were used in an attempt to produce well-defined expansion curves and in 

most cases; an unload-reload sequence was used. To capture an unload-reload loop the 

soil was loaded until it showed slight yield behavior. At this point, the pressure was 

decreased and the soil was allowed to rebound for five minutes prior to reloading. When 

reloading commenced, the probe inflation continued until the injected volume reached 

the safe limit. The probe was then deflated and retracted from the borehole. A summary 

of PMT tests conducted during this study is provided in Table 3.2. Table 3.2 includes 

test dates, test depths, measured suction and water contents obtained for each test depth. 

3.6.2 Cone penetration testing (CPT) 

The Oklahoma Department of Transportation (ODOT) performed cone 

penetration tests at both Goldsby and North Base. Three test soundings were obtained 

per site visit. The cone was pushed to a depth of approximately 10 feet for each 

sounding. Thirty-nine cone soundings were conducted over the course of this research, 

as summarized in Table 3.3. 

The CPT was run in general accordance with ASTM standard D5778-12, with a 

penetration rate of approximately 0.73 in./sec (2cm/sec) using a standard cone with a 

60-degree apex conical point having a projected tip area of 1.55in2, and a friction sleeve 

just behind the cone with an area of 23.3 in2. Electronic signals from the tip and sleeve 

load cells were collected with a data acquisition system and used to compute tip 

resistance and skin friction.  
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3.6.3 Standard penetration testing (SPT) 

Standard penetration testing (SPT) was performed by the Oklahoma Department 

of Transportation (ODOT). An automatic hammer was used to drive the split spoon 

sampler into the ground. One test was performed per test date in general accordance 

with ASTM D1586-11.  

 

Table 3.1: Summary of multi stage triaxial compression tests conditions for 
Goldsby and North Base. 

Site Sample Date 
Sample 
Depth 
(in.) 

Back 
pressure 

(psi) 

Cell pressure (psi) 

Stage 
1 

Stage 
2 

Stage 3 

Goldsby 
12/8/2014 30-37.5 61 64 68 76 
5/10/2013 71-81 50 52 57 79 

 

North 
Base 

9/3/2013 48-54 50 53 57 65 
7/31/2014 70-77 105.6 116.9 127.6 150.6 
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Figure 3.5: Roctest Texam NX long probe pressuremeter used for all PMT. 
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Table 3.2: Summary of PMTs from Goldsby and North Base 

  Test Date 

Tested Depth (ft.) 

3 5 7 

Suction 
(psi) 

Water 
Conten

t 

Suction 
(psi) 

Water 
Content 

Suction 
(psi) 

Water 
Content 

N
o

rt
h

 B
a

se
 

2/1/2013 463.4 14.8 95.7 17.2 - 

3/11/2013 302.4 14.5 72.5 16.2 - 
4/12/2013 359.7 14.7 117.5 13.8 45 19.5 

4/30/2013 378.1 15.8 168.2 16.1 59.5 18.2 
10/11/201

3 
427.9 16.2 103 21 84.1 21 

1/7/2014 224.8 23.5 121.8 19.5 113.1 26.1 
3/31/2014 223.4 21.6 71.1 22.9 - 

7/25/2014 91.4 20.6 46.4 20.8 7.25 20.3 
8/22/2014 245.1 20 100.1 20.4 53.7 22.6 

10/31/201
4* 

226.3 18 110.2 18.5 76.9 19.2 
269.8 19 76.9 17.8 15.9 19.9 

  

G
o

ld
sb

y 

2/1/2013 306.5 13.5 73.5 15.6 89.9 17.8 

3/13/2013 310.4 10.6 103.7 12.2 46.4 16.9 

4/15/2013 62.4 20.4 53.7 14.3 46.4 18.1 
5/2/2013 81.2 20.3 90.4 13.8 74.9 17.2 

6/10/2013 87 21.4 130.5 12.7 87 17.1 
10/16/201

3 
124.7 13.5 63.8 18.5 72.5 20.3 

1/8/2014 81.2 19.2 85.6 17.6 110.2 21.8 
3/31/2014 46.4 18.8 34.8 21.2 8.7 20.5 

7/23/2014 103 15.1 85.6 16.2 66.7 18.1 
8/22/2014 174 13.7 92.8 14.8 81.2 17.2 
10/17/201

4* 
195.8, 
339.4 

10.5, 
9.8 

84.1, 
89.9 

15.1, 
13.8 

78.3, 
68.2 

18.0, 
17.6 

* two tests performed on this date 
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Table 3.3: Summary of CPT from Goldsby and North Base 

  Test Date 
Number of 
Soundings 

Average Site 
Moisture Content 

North Base 

2/1/2013 3 16.6 
5/6/2013 3 20.5 
9/3/2013 3 17.7 

11/21/2013 3 20.2 
2/18/2014 3 22.6 
9/10/2014 3 18.9 

12/30/2014 3 20.4 
Total North Base 

Soundings 
21   

Goldsby 

2/1/2013 3 15.1 
5/6/2013 3 16.7 

7/29/2013 3 16.8 
11/21/2013 3 16.8 
2/18/2014 3 18.5 
9/10/2014 3 13.9 

Total Goldsby Soundings 18   
 

  



57 

  Experimental Methods: Model Footing Bearing Capacity 

Testing 

4.1 Overview 
 

Model footing (4-in. diameter) bearing capacity tests and miniature 

pressuremeter tests were performed in an unsaturated low plasticity clay in a testing 

chamber prepared at five different moisture contents. Three miniature pressuremeter 

tests were performed prior to the bearing capacity test at locations surrounding the 

footing. The tests were performed at a distance of 6 inches from the outside diameter of 

the footing. This distance was assumed to be far enough from the footing that any 

disturbance from the excavation would be minimal to the bearing capacity test. The 

holes were backfilled after completion of the MPMT. It was thought that the model 

footing test would influence the MPMT more than the MPMT would influence the 

footing test. A hydraulic pump was used to apply pressure to a hydraulic jack that 

transferred axial load to the footing. A load cell placed between the hydraulic jack and 

the bearing plate was used to measure force applied. Two diametrically opposed dial 

indicators were used to measure settlement. At the end of each test, post-mortem 

sampling was performed on the soil bed to determine density, moisture content, and 

total suction. This chapter describes details of the methods used to perform model 

bearing capacity and miniature pressuremeter tests.  

4.2 Bearing Capacity Test Apparatus 
 

The apparatus for testing was constructed using a structural steel tank mounted 

to a steel base plate. Four threaded rods were used to mount a reaction frame that was 
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constructed from two steel channel sections welded together. A schematic of the test 

apparatus is shown in Figure 4.1. The baseplate used was 38 inches in diameter with 

2.5-inch thickness. Sitting on top of the baseplate is the structural steel tank. This tank 

had an inner diameter of 29 inches, 20 inches in height, and 1-inch wall thickness, 

which was selected based on the largest size chamber shell available in the laboratory. 

There was a two-inch flange mounted on the outer rim the top and bottom of the tank 

with boltholes for connecting the reaction frame and baseplate. 

 

Figure 4.1: Model bearing capacity test assembly 
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Four ¾-inch all-thread rods were used to connect the reaction frame to the soil 

tank. Nuts and washers were used to secure the rods to the tank and the reaction frame 

to the rods. The reaction frame was sized such that deflection during loading was 

assumed negligible. A ten-ton hydraulic jack was mounted to the base of the reaction 

frame. A 10-kip load cell was secured to the hydraulic jack using threaded rod. A ball 

joint was used to connect the threaded rod at the base of the load cell to the bearing 

plate. The ball joint was used as a moment break to ensure that only concentric axial 

load reached the footing. Two dial indicators with 0-1 inch range of measurement were 

mounted to the side of the testing tank using magnets, and positioned to measure 

vertical displacement of the bearing plate.  

4.3 Soil Properties 
 

A low plasticity clay soil was desirable for this research to ensure that the effects 

of suction did not make the sample overly strong and for workability during sample 

preparation. The soil chosen for this research was collected near Chickasha, Oklahoma. 

It comes from the McClain Series soil, which is primarily a thick layer of silty-clay 

material (Esmaili, 2014). The soil was collected along U.S. Route 62. It is referenced by 

Esmaili (2014) as cs2780 (cross-section 2780). The basic soil properties for the 

McClain clay are presented in Table 4.1, which come from tests performed by Esmaili 

(2014). The Atterberg limits, grain size distribution, maximum dry unit weight and 

optimum moisture content were determined in accordance with ASTM D4318, D422, 

and D698, respectively. The soil was classified using the USCS as low plasticity clay, 

CL.  

 



60 

 

Table 4.1: McClain clay soil properties (after Esmaili, 2014) 
 

McClain Clay 

Liquid Limit 39% 
Plastic Limit 22% 

Plasticity Index 17% 
% Passing #200 95.2% 

Optimum Moisture 
Content 18% 

Maximum Dry Unit 
Weight 119.7pcf 

Friction angle 34.2° 
Cohesion 3.0 psi 

 

4.4 Sample Preparation 
 

The McClain clay used in this study had been stockpiled from a previous study 

that had made use of the soil (Esmaili, 2014). The soil was brought into the laboratory 

and spread on a concrete floor with a fan circulating dry air over the sample to allow it 

to come to air-dry conditions. The soil was turned with a shovel to ensure that the soil 

was uniformly dry. Once this state was reached, the soil was processed through a #4 

sieve. The soil was then sealed in 5-gallon buckets until mixing. 

The aim of this research was to measure the influence of matric suction on the 

bearing capacity characteristics of low plasticity clay and develop a method of 

prediction of bearing capacity using the pressuremeter. To do this several moisture 

contents were targeted in a range of 10% to 17%, which produced a range of suctions 

consistent with that expected under field conditions. A density equal to 90% of 

maximum dry unit weight (119.7 pcf) was selected as the target. The target dry unit 
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weight was 107.7 pcf and used for all tests performed while target moisture contents 

were varied. Target moisture contents, suctions determined using the WP4, and dry 

densities for the five test beds are presented in Table 4.2. The average suctions, and 

moisture contents shown are based on post mortem sampling of the test bed in one-inch 

increments for the full 19 in. depth of the test bed. The dry density is based on the 

amount of soil put into the test tank and the moisture content of the material. The 

variations in dry density relative to the target are attributed to some difficulty during 

compaction.  

To prepare for each test, the hygroscopic moisture content of the dry soil was 

determined. From this, the amount of water and dry soil that would be necessary to 

achieve the target moisture content and dry unit weight was calculated for each test. 

First, an empty mixing tub was placed on the scale and its mass was determined. Then 

around 45-50 lbs. of dry soil depending, on the sample being prepared, was put into the 

mixing tub. Water was then “rained” over the soil using a watering can. Once the 

correct amount of water was added to the soil, the soil and water were mixed by hand 

until they were observed to be homogenous. After this point was reached, the mixture 

was transferred to a five-gallon bucket and sealed with a lid overnight. 

The soil was compacted into the tank in seven layers. The buckets were prepared 

such that three buckets would contain the correct amount of soil to fill each layer; thus, 

a total of 21 buckets of soil were prepared for each test. Once the soil was placed into 

the test tank, it was spread so that it was level. Compaction was performed using a 

tamper. Horizontal lines were marked inside of the tank to ensure the proper layer 

height. Once the proper height of each soil layer was achieved, the top of the layer was 
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scarified and the next layer was added. This process was repeated until the soil reached 

the top of the tank. Excess soil was then trimmed from the top, collected and weighed 

so that dry density of the material in the tank could be determined. Soil near the surface 

of the tank was difficult to compact because there was no lateral confinement above the 

rim of the tank, which is believed to contribute to the inconsistency in the dry density of 

the tests performed. After leveling the surface of the soil in the tank, it was covered with 

thick plastic sheeting to prevent any moisture loss. The sample was allowed to sit for 24 

hours prior to testing.  

4.5 Miniature Pressuremeter Testing (MPMT) 
 

 The work of Tan (2005) involved the successful use of a miniature 

pressuremeter (MPMT) in calibration chamber testing of silt. This success and the size 

of the test bed used in this research made a miniature pressuremeter a good choice. The 

miniature pressuremeter works the same as a traditional pressuremeter; however, the 

scale of the equipment is smaller. Water is injected into an expandable rubber 

membrane while pressure and volume are maintained until the safe limit of the rubber 

membrane is reached. The MPMT used for this research was constructed at the 

University of Oklahoma with an aluminum body. It is pictured with the membrane 

attached in Figure 4.2 in its uninflated form. The expandable portion of the 

pressuremeter measures 6.26 inches in length and has a diameter of 0.75 inches. This 

provides a length to diameter ratio of 8.3, which exceeds the recommended value of 6.5 

needed to simulate plane strain cylindrical cavity expansion (Briaud 1992, Tan 2005). 

The MPMT was conducted in three locations around the model footing. The tests were 
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conducted in a zone of soil roughly located between the stress bulb created by the 

model footing and the walls of the container.  

 
 Rubber surgical tubing was used for the MPMT membrane. This was obtained 

from Kent Elastomer in a size of ½ in. inner diameter (I.D.), and 1/16 in. wall thickness 

(W.T.). Originally, a ½ in. I.D., 1/32 in. W.T was used; however, this size was 

discontinued so the slightly thicker tubing was used. The first three test beds were tested 

using the thinner wall thickness surgical tubing for a membrane. The latter tests were 

performed using the thicker tubing. Typical corrections for a pressuremeter test include 

a correction for membrane resistance and system compressibility during testing. These 

corrections were determined for each membrane. The results of the compressibility 

testing for both the thinner wall thickness tubing and the thicker tubing are shown in 

Figure 4.3. The pressure loss in the system for both the thinner tubing and the thicker 

tubing curves are shown in Figure 4.4. The results of pressuremeter tests were corrected 

based on these figures. 

 

Table 4.2: Average suctions, moisture content, and dry density for model footing 
bearing capacity tests 

Date of 
Test 

Average 
Suction 

(psi) 

Average 
Moisture 
Content 

(%) 

Dry 
Density 
(lb./ft3) 

2/29/2016 84.9 17.0 104.8 
3/14/2016 115.6 12.7 102.2 
3/28/2016 190.8 9.6 105.3 
5/5/2016 94.6 13.9 110.1 

5/27/2016 200.0 10.5 100.1 
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Figure 4.2: Miniature pressuremeter shown in uninflated condition 
 

 

Figure 4.3: PMT system compressibility curves for using different membranes 
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Figure 4.4: Membrane pressure loss for miniature pressuremeter membranes 
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battery operated hand drill. This meets the limit set by Briaud (1992) for an acceptable 

borehole. After completion of the MPMT, the borehole was filled with leftover material 

that had been trimmed from the top of the sample and tamped into place. 

4.6 Model Bearing Capacity Test Methodology 
 

 Once the MPMTs were performed, the upper frame was put into place and the 4-

inch diameter footing was set on the center of the soil bed. Dial indicators were placed 

diametrically opposed on the footing and the load cell was turned on. Model footing 

tests were performed immediately after completion of the MPMT. All tests were load-

controlled. Small loading increments were used initially to seat the plate and account for 

any slop in the testing apparatus. Settlements were measured at 0, 0.5, 1, 2, 4, 8, and 16 

minutes, or until the movement between readings was less than 0.005 inches. Loading 

of the plate continued to the recommended settlement, which was 10% of the footing 

width (0.4 inches). The first test performed was stopped prematurely; however, all 

subsequent tests were carried to at least 0.4 inches of settlement. The load was 

maintained for each increment with an accuracy of ± 10 lbs. 

 After the completion of a bearing capacity test, moisture content and suction 

samples were collected. An excavation was made under the center of the footing .A 

hand auger was used to make a borehole in the soil. Soil was collected in moisture tins 

at one-inch increments and sealed. Small soil samples were taken from moisture tins 

and total suction was measured using the WP4. The remaining sample was dried in an 

oven and moisture content was determined. The soil that remained in the test tank after 

testing was removed and moved to another room to dry for use in subsequent tests.  
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Figure 4.5: Pressure controller and miniature pressuremeter used in model footing 
tests 
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  Results and Discussion: Laboratory and Field Testing 

5.1 Field Instrumentation 
 

 Monitoring of weather data at the Northbase site lasted from August 24, 2012 to 

October 20, 2014. The following data were collected: average daily air temperature, 

wind speed, maximum daily relative humidity, maximum and minimum air 

temperature, total daily solar radiation, precipitation, and average daily soil volumetric 

moisture content and temperature at depths of 1, 3, and 6 feet. For the monitored dates, 

the average daily temperature ranged from 105°F to 5°F at North Base. For this 

research, the most important information obtained from the weather stations includes 

the rainfall information and the soil volumetric water content. Therefore, this 

information will be highlighted; further information is presented in Doumet (2015).  

 The average daily temperature, rainfall, and volumetric water contents at depths 

of 1 ft., 3 ft., and 6 ft. for North Base are shown in Figure 5.1. From this figure, it is 

noticeable that after rainfall there are peaks in volumetric moisture content. These peaks 

are staggered with depth. The smallest overall change in volumetric moisture content is 

at the lowest depth, which is logical as it takes more time for water to permeate through 

fine-grained soil. There are several areas on the volumetric moisture content graphs 

where there are no values viewable, which is due to readings exceeding the devices 

range of measurement. It is also noticeable from the graphs that the volumetric water 

contents of the soil around February 2013 are relatively low, which is consistent with 

high soil strength determined by in situ testing.  

 The temperature, rainfall data, and volumetric moisture contents at 1ft, 3ft, and 

6ft for the Goldsby site are presented in Figure 5.2. The main noticeable difference 
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between the North Base and Goldsby volumetric moisture content data is that there are 

sharper differences in peaks. This is attributed to the higher permeability of the Goldsby 

soil compared to the North Base soil, which has on average higher plasticity and greater 

fines content. There is a delay period between the rainfall and the moisture content 

increase, which is due to the low permeability of the fine-grained soil. On average, the 

variations in moisture content at the Goldsby Site are greater than at the North Base 

Site. 

Total monthly rainfall for the months prior to the start of the in situ testing 

regime left most of Oklahoma in drought conditions. In situ testing at North Base 

started in February of 2012. The total monthly rainfall in inches for both test sites, 

which were only 5.5 miles apart, is shown in Figures 5.1 and 5.2.  Prior to February 

there was meager rainfall amounts; however, by the end of August nearly the entire 

state of Oklahoma was out of drought conditions after record rainfall. 
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Figure 5.1: Maximum and minimum daily temperature, total rainfall, and 
volumetric moisture content at North Base. 
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Figure 5.2: Maximum and minimum daily temperature, total rainfall, and 
volumetric water content at the Goldsby site.  
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5.2 Test Site Soil Characteristics 
 

Particle size distribution was the first test performed on soil returned from each test 

site. The majority of material from each site was fine-grained. To determine the fine-

grained particle size distribution, two tests were performed. First, one sample from each 

foot of depth was wet washed through a No. 200 sieve to determine fines percentage. 

Second, for selected depths a hydrometer analysis was used to determine actual particle 

size distribution of the fines. Atterberg limits were then determined for each foot of soil 

at both sites. The results of these tests were used to classify the material at the sites and 

create profile graphs.  

 The soil profile for Goldsby is shown in Figure 5.3. Above 5 feet, over 90% of 

material passed through a No. 200 sieve. Below this depth, there was more sand present 

in the soil. The percent of fines for all tests is 75% or above which indicates a mostly 

fine-grained soil profile. The plasticity indices through ten feet of depth are relatively 

low with an average PI of 11. There is an increase in plasticity around four feet where 

the PI reaches 14; however, it returns to near the average value below this depth.  

 The soil profile for North Base is shown in Figure 5.4. The majority of material 

from North Base passed through a No. 200 sieve, which classifies it as fine-grained. 

The average percent of material passing the No. 200 sieve is around 85%. The Atterberg 

limits at North Base revealed two distinct soil layers. With the exception of the first foot 

of soil at North Base, the PI in the top five feet of soil is above 40. Below five feet, the 

average PI drops to around 14. 

 Other visual/manual tests were performed to characterize the soil at both sites 

including the dry strength test and acid reaction tests. It was noted that soil from both 



73 

sites have high dry strength and Goldsby soil reacted to HCl, which indicates the 

presence of calcium carbonate. The only significant reaction to HCl at North Base was 

on samples collected at a depth of ten feet, where the weathered rock layer was 

encountered.  The specific gravities for North Base and Goldsby are presented in Table 

5.2. Specific gravity was measured for three depths at each site. For both sites, shallow 

depths had lower specific gravity. Soils at both sites had specific gravities consistent 

with clay, silt and sandy soils.  

 

Figure 5.3: Goldsby site profile including Atterberg limits and percent of material 
passing a No. 200 sieve.  
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Figure 5.4: North Base site profile including Atterberg limits and percent of 
material passing a No. 200 sieve.  
 

Cation exchange capacity (CEC) was measured for both sites for all depths. 

Cation exchange capacity is typically measured in milliequivalents per 100g of soil 

(meq/100g). A higher CEC corresponds to a higher ability for the soil to hold 

exchangeable cations. This becomes a measure of a soils attraction to water which 

results in greater shrink/swell characteristics and soil plasticity. Soils with high CEC 

typically exhibit behavior that makes construction with them more challenging. They 

may be useful in situations where absorption of water is a desirable feature such as 

liners in landfills. The results of CEC testing are shown in Table 5.2. Generally, 

Goldsby soils show lower CEC than North Base. The CEC for Goldsby is lower for the 
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top four feet of soil and then increases for depths of 5 to 8 feet followed by a decrease at 

9 feet. North Base soil shows especially high CEC at 3 feet and then decreases with 

increased depth. 

The location of tests for North Base and Goldsby are shown in Figures 5.5 and 

5.6 for Goldsby and North Base, respectively. Seen in the figures are the location of 

CPT, PMT, and SPT. The test locations were selected such that the same location was 

not selected twice.  

Table 5.1: Specific gravity and cation exchange capacity for North Base and 
Goldsby  

Depth 
(ft.) 

Goldsby North Base 

CEC 
(meq/100g) 

GS CEC (meq/100g) GS 

1 11       
2 11.9   20.6   
3 10.7 2.66 38.2 2.66 
4 13.3   29.7   
5 19.4   21.6   
6 21.6 2.79 18.1 2.75 
7 20.3   15.3   
8 16.9       
9 12.1 2.69   2.74 
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Figure 5.5: Goldsby site map and test locations 
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Figure 5.6: North Base site map and test locations 
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1. Make total suction and moisture content measurements in the laboratory from 

multiple samples collected in the field. Use this relationship to represent the 

SWCC for the field sites. 

2. Create total suction SWCCs for field sites at depths corresponding to PMT 

measurements in the laboratory by measuring total suction on a single sample 

while drying and wetting.  

3. Perform the pressure plate test on selected samples to obtain direct 

measurements of matric suction and water content for both field sites. 

4. Determine the SWCC in the form of gravimetric water content versus matric 

suction using methods provided by Zapata et al. (2000). 

 

The Decagon WP4 was used to complete total suction measurements. It was 

initially assumed that the osmotic suction, which is one of the components of the total 

suction, would be minimal. This would allow total suction measurements to represent 

matric suction (ua-uw) measurements. There were some initial clues that the total suction 

may not be accurately representing the matric suction, particularly for high water 

contents. The first of the clues came from preliminary review of pressuremeter data. 

Limit pressure data showed comparatively large changes in suction had little to no 

effect on limit pressure as shown in Figure 5.7 for the data between 50 and 100 psi. 

Review of limit pressure versus water content data from the same depth and site showed 

relatively strong correlation as shown in Figure 5.8.  
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Figure 5.7: Total suction versus limit pressure from North Base at five feet with 
little changes in limit pressure for large changes in suction 

 

Figure 5.8: Water content versus limit pressure from North Base at five feet 
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CPT (i.e. every foot). These samples are retrieved either during SPT or with a hand 

auger. Samples are immediately placed in moisture tins, sealed, and brought to the 

laboratory.  In the laboratory, the moisture tins are opened, and a small part of the 

sample is removed and placed in a WP4 soil cup and the total suction is measured. The 

remainder is used to determine moisture content. The relationship between total suction 

and moisture content was plotted for both field sites. Figure 5.9 shows the total suction 

versus moisture content data points for Goldsby (green stars).  

 A SWCC was created based on total suction measurements for depths 

corresponding to PMTs. The samples used in these tests were collected using a thin-

walled tube sampler (Shelby tube). The minimally disturbed samples were brought to 

the laboratory and extruded. Samples from representative depths (i.e. 3 ft., 6 ft., and 9 

ft. for Goldsby) were carefully trimmed to fit into oedometer rings. Filter paper was 

then placed over the top and bottom of the oedometer ring, followed by porous stones. 

Some weights were placed on the samples in an attempt to minimize swelling. The 

samples were then inundated with water and allowed to imbibe water for 48 hours. 

After this, the samples were trimmed further to fit into WP4 sample cups. The total 

suction, mass, and volume of the sample was determined. Then each sample dried while 

periodic total suction and mass measurements were made. The total suction versus 

water content was plotted. It is displayed in Figure 5.9 for Goldsby (black and white 

circles and triangle). It is clear that there is discrepancy between measured total suctions 

from discrete in situ test measurements and SWCCs determined from individual 

samples in the laboratory. This is likely because field measurements represent 

individual samples obtained on different dates and subject to natural variability with 
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respect to density, sample disturbance, and drying and wetting paths. On the other hand, 

laboratory SWCCs were obtained from dying a single sample from an initially saturated 

state. 
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Figure 5.9: Field total suction measurements and total suction SWCC measured 
using WP4 
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Figure 5.10: Addition of pressure plate data to soil moisture/ total suction 
measurements using WP4 
 

 Pressure plate measurements of matric suction were made from samples 

obtained from a Shelby tube sample collected in the field. The sample came from a 

depth of 3 ft. from Goldsby and 4 ft. from North Base. There were no adequate samples 

available from North Base at 3 ft., which corresponds to a PMT depth, so the next 

closest depth, 4 feet, was used; it was assumed that the soil from these depths was 

similar. The Shelby tube sample was trimmed to fit into thin rubber rings and filter 

paper was placed on the bottom of the sample. These samples were then saturated. After 

saturation was reached, the pressure plate test was completed by incrementally 

increasing the matric suction. The pressure plate data is shown as red triangles in Figure 

5.10.  
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Once pressure plate data was added, there was still considerable discrepancy in 

the data. The first discrepancy appears to come from osmotic suction, which is the 

difference between total suction and matric suction. The osmotic suction can be seen 

clearly in Figure 5.10 as the difference between the red pressure-plate data points and 

the green stars, which represent field data, or the black and white circles and triangles, 

which represent laboratory total suction SWCC. The second discrepancy is related to 

the saturated water content and the related suction measurement.  

Wet soils collected from the field and appearing to be near saturation had 

moisture contents near 24%. Furthermore, analysis of Shelby tube samples from 

Goldsby also indicated saturated water contents should be about 23% to 24%; this 

analysis does not account for volume change due to swelling upon imbibition of water. 

However, both the pressure plate data and the total suction SWCC data show saturated 

water contents near 31%, which is most likely the result of saturation of WP4 and 

pressure plate samples that allows for nearly unrestrained swelling in the lab. This 

results in higher gravimetric water contents at saturation than observed for field 

samples. In addition, volume increases in lab samples may result from sample 

disturbance and stress unloading. Therefore, an estimated saturated water content of 

23% is reasonable to represent the field SWCC given that the range of overburden 

pressures at depths of interest would somewhat restrain volume change during complete 

saturation. 

 Finally, the Zapata et al. (2000) method was used to determine the SWCC 

representing gravimetric water content versus matric suction. This procedure relies the 

plasticity index and percentage of soil passing a #200 sieve for a site of interest. From 
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this, the matric suction can be estimated for a given water content using modified 

parameters from the Fredlund and Xing (1994) SWCC curve fitting technique. The 

result is shown in Figure 5.11, which includes the previously mentioned suction and 

moisture content measurements. In general, the Zapata et al. (2000) matric suction 

predictions appear closer to the measured field total suction values at low water 

contents where the difference between total suction and matric suction is less 

distinguishable.  At higher water contents, the difference between total and matric 

suction is obvious because osmotic suction dominates the total suction measurement. 

The final predicted SWCC representing matric suction based on Zapata et al. (2000) is 

shown as the dashed line in Figure 5.11. This curve was ultimately used to determine 

matric suction for field samples based on the measured gravimetric soil moisture 

content. Since matric suction, and not osmotic suction, controls the mechanical behavior 

of the soil, particularly at high water contents, the Zapata et al. (2000) curve was used to 

estimate field matric suction. Further, this curve was selected over the pressure plate 

SWCC since it corresponds to the estimated field saturated water content. Finally, it 

generally agrees with pressure plate data at lower water contents. A similar procedure 

was followed in order to obtain matric suction SWCC for North Base. 

As mentioned and shown in Figure 5.4 there are two distinct soil layers at North 

Base. Therefore, two SWCC plots were made for North Base representing the upper CH 

layer, and lower CL layer. The in situ total suction and water content data showed 

different suction ranges depending on whether it was collected above or below four feet 

from North Base. This behavior suggests that using two SWCC to describe the North 

Base soil profile is logical. The pressure plate SWCC was obtained from soil collected 
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from 4 feet, which corresponds, to the upper layer at North Base. The estimated matric 

suction values for this layer, Layer 1, fall in the same range as the measured matric 

suctions. The suction versus moisture content plot for North Base is shown in Figure 

5.12. For fitting the SWCC, the saturated water content in the field was estimated to be 

close to 28% based on experimental observations, in a manner similar to Goldsby. 

These included observations indicating the influence of matric suction was negligible at 

water contents above approximately 28%, and calculations of saturated water content 

from Shelby tube samples.  

 

 

Figure 5.11: Full SWCC for Goldsby 
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Figure 5.12: SWCC for North Base 
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Table 5.2: Summary of triaxial results for North Base and Goldsby 

 Goldsby North Base 

Depth 
(ft.) 

3 6 9 3 5 7 

Moisture 
Content 

(%) 
19.1 24.2 18.3 20.2 23.9 15.6 

Wet Unit 
Weight 

(pcf) 
122.7 134.7 111.3 121.8 124.6 136.3 

Dry Unit 
Weight 

(pcf) 
103.0 108.5 94.1 101.3 100.6 117.9 

c' (psi) 2.5 2.0 - 10.0 1.0 - 

ϕ' (°) 25.4 31.0 - 26.0 31.0 - 

 

5.5 Pressuremeter (PMT) results 
 

5.5.1 Overview 

 This section will present the results of pressuremeter tests (PMT) at the Goldsby 

and North Base sites. First, an overview of the results from both sites is presented 

followed by a comparison of pressuremeter test parameters to the in situ moisture 

condition/suction measurements. Later in Chapter 7, relevant trends in this data are used 

to formulate empirical prediction methods for the PMT parameters based on the 

moisture/suction conditions. Further, in Chapter 7, the application of the cylindrical 

cavity expansion theory for unsaturated soils is examined as a means of providing a 

theoretically based prediction method. 
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5.5.2 Testing locations for North Base and Goldsby 

 The testing locations were mapped to ensure there was no location that was 

tested more than once during the project period, and to make sure the locations were 

within reasonable proximity to each other. The test site maps show a small rectangular 

box indicating the location of the weather station. Around the weather station are test 

points indicated by different markers that correspond to the test dates in the legend. The 

test site maps for PMT are shown in Figures 5.13 and 5.14 for Goldsby, and North 

Base, respectively. The weather station for both sites is centered at (zero, 0) and each 

side of the box is twelve feet in length. An arrow indicates the North direction and all 

distances are shown in feet. 

 The location of PMTs performed at Goldsby are shown in Figure 5.13. The tests 

were performed on all sides of the weather station, as the soil surface was relatively 

uniform and free of any natural slopes or big differences in surface vegetation. The 

North Base PMT locations are shown in Figure 5.14. Tests at North Base were mostly 

confined to the northwest corner of the research site. A natural drainage channel ran 

east to west just south of the weather station. Due to the channel, there was a slight 

slope to the drainage channel on the southern side of the site. Tests were then performed 

on the northwest corner of the site, as it was most level. 

5.5.3 Influence of soil suction on PMT results 

 Soil suction was observed to have a significant impact on the results of 

pressuremeter tests. The PMT stress-strain curves determined from each pressuremeter 

test are presented for both test sites in Appendix A.1 (Figures A.1-A.25). Differences in 

the shape and behavior of some of these stress-strain curves is evident for different test 
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depths at different dates when moisture conditions were different. These differences in 

the stress-strain behavior result in differences in the interpreted limit pressure (PL), 

pressuremeter modulus (EP), and unload-reload modulus (ER). These are important 

parameters used in geotechnical analyses based on pressuremeter testing. 

 

Figure 5.13: Goldsby PMT location map. 
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Figure 5.14: North Base PMT location map.  
 

 The results of PMT at both test sites for all test depths were interpreted to 

determine the limit pressure (PL), pressuremeter modulus (EP), unload-reload modulus 

(ER), the in situ horizontal stress (PO), and the coefficient of lateral earth pressure at rest 

(K0). The date the test was performed, the soil moisture condition, and total suction 

were determined as described previously. In addition, the corrected pressure-volume 

curves were used to determine in situ soil stress-strain curves (Briaud 1992) for each 

test depth.  

 An example of the influence of changing soil moisture conditions on corrected 

pressure volume curves for Goldsby is presented in Figure 5.15. The data shown in 

Figure 5.15 represent one year of pressuremeter tests conducted at Goldsby at the 3-foot 
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test depth. There are significant differences in the test data for this date. The tests 

conducted in February and March show steep slopes in the linear portion of the curve, 

which indicates a comparatively stiffer material. The peaks reached for these data are 

higher, which also indicates strong material compared to tests conducted at other dates.  

The water contents measured directly relate to the test data in that water contents 

measured in February and March are much lower than those measured through the 

spring and summer are. This behavior is similar for both sites and all test dates.  

 One goal of the research plan was to use sites that had semi-uniform soil profiles 

to minimize differences from site variability. However, this was much easier in theory 

than practice. It was found that at both sites, the test results could be quite variable on 

any given date, because of natural site variability. This is demonstrated in Figure 5.16, 

which shows soil moisture content and pressuremeter results based on two tests 

conducted in adjacent boreholes at Goldsby on 10/17/2014. The main variation in the 

data is seen at 3 and 6 feet, which are depths more likely to be influenced by seasonal 

wetting and drying. The curves shown have corresponding limit pressures of 132 psi for 

Test 1 and 262 psi for Test 2 at 3-feet, and limit pressures of 117 psi for and 172 psi for 

tests at 6-feet. These differences are significant for pressuremeter tests performed on the 

same day, and in what was thought to be the same soil. Some of the variation seen in 

Figure 5.16 may be caused by the differences in moisture content between the two tests. 

While not all of the scatter observed in the in situ test data presented in this dissertation 

can be attributed to site variation, it does seem to play an important part. In general, 

however, correlations between matric suction and in situ test parameters are strong 

enough to suggest matric suction has a large and noticeable effect on soil strength. 
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Figure 5.15: PMT pressure-volume curves and water content data for Goldsby at 3 
feet obtained in 2013 
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Figure 5.16: Comparison of pressure-volume curves from two PMTs performed at 
Goldsby on 10/17/2014 
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Limit pressure obtained from a PMT provides an indication of the soil’s ultimate 

strength. As previously mentioned this value can be used to calculate shear strength 

parameters and bearing capacity. Figure 5.17 presents the limit pressure against matric 

suction determined for Goldsby for all test depths. Limit pressure versus matric suction 

was fitted with a power function best-fit curve. A power function reasonably represents 

the theoretical behavior in that a measurable minimum limit pressure should exist at 

zero suction and a maximum threshold matric suction should exist above which no 

further increases in limit pressure occur. The goodness of fit for the correlation between 

limit pressure and matric suction decreases with depth as reflected by the r2 value. 

Nevertheless, with the exception of an outlier or two, the trend in the data is obvious 

and as expected. Note also that the range of suction measurement also decreases with 

depth because of the fact that seasonal variations in moisture content diminish with 

depth. At Goldsby, minimal variations in soil moisture content were observed below 5 

feet, and this is reflected in the matric suction determinations.  

The pressuremeter modulus relates the stress and strain experienced by the soil 

and is related to soil stiffness. Pressuremeter modulus values versus matric suction are 

shown in Figure 5.18. There does not seem to be a strong correlation between soil 

suction and pressuremeter modulus. It appears, for most of the range of measured 

matric suction values, the pressuremeter modulus was less sensitive to suction as 

compared to the limit pressure. 

Unload-reload modulus is calculated in a similar manner to pressuremeter 

modulus except that unload-reload modulus is determined after an initial loading and 

unloading of the soil, prior to any significant plastic deformation. The purpose of 
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conducting an unload-reload sequence during the PMT is to eliminate the influence of 

soil disturbance that may affect the initial loading and determination of EP. The unload-

reload modulus values for PMTs performed at Goldsby versus matric suction are shown 

in Figure 5.19. Similar to EP there seems to be minimal correlation between unload-

reload modulus and matric suction.  

 

Figure 5.17: Limit pressure versus matric suction for Goldsby (3-ft., 6-ft., and 9-
ft.) 

 

Figure 5.18: Pressuremeter modulus versus matric suction for Goldsby (3-ft., 6-ft., 
and 9-ft.) 
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Figure 5.19: Unload-reload modulus versus matric suction for Goldsby (3-ft., 6-ft., 
and 9-ft.) 
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effective stresses. The vertical stress can be simply determined by using the total unit 

weight of the soil multiplied by depth. The K0 is then determined by dividing the 

horizontal stress determined by the PMT, P0H, by the vertical stress. The results of these 

calculations are shown in Figure 5.21. There appears to be very little to no correlation 

between matric suction and K0; however, when the results from all tests depths are 

plotted together there appears to be positive correlation. Natural soil variability could 

provide some explanation to the observed scatter noted. This includes variations in the 

soil constituents, density, and stress history. Test method accuracy and experimental 

methods may also be a contributing factor to PMT scatter at Goldsby. Further, the 

influence of disturbance is likely to be much more significant at the beginning of the 

test when the accuracy of the pressure and volume measurements are the lowest because 

the measured values are small. Furthermore, at small strains the importance of suction is 

less profound compared to larger strains that mobilize the shear strength of the soil. 

It is noted in Figure 5.21 that K0 values are in range of less than one to about 14. 

Values much greater than 3 seems excessively large considering that passive earth 

pressure coefficients generally do not exceed 10. There does appear to be some 

correlation between matric suction and K0. The relationship is shown in Figure 5.22, 

which includes K0 data from all depths. This result indicates that there may be an 

unforeseen impact of matric suction on the at-rest earth pressure obtained from 

pressuremeter tests.  
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Figure 5.20: In situ horizontal stress versus matric suction for Goldsby at all 
depths (3-ft., 6-ft., and 9-ft.) 
 

 

Figure 5.21: At rest earth coefficient versus matric suction for Goldsby for all 
depths (3-ft., 6-ft., and 9-ft.) 
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Figure 5.22: At-rest earth pressure versus matric suction determined from 
pressuremeter tests at Goldsby for all depths (3-ft., 6-ft., and 9-ft.) 
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pressuremeter modulus at three and five feet. The data is presented in Figure 5.24. The 

data at three and five feet was fitted with a power function in similar fashion to the 

pressuremeter data. The modulus correlation at North Base is in stark contrast to 

Goldsby, which showed no strong correlation at any depth. The difference seems to be a 

result of the increased matric suctions observed at North Base. Limit pressure data at 

North Base showed a threshold matric suction below which there was a minimal effect 

on strength. There appears to be similar phenomena for modulus. Again, this may be 

due to an error in the model SWCC used to determine matric suction.  

 The unload-reload modulus at North Base showed positive correlation with 

matric suction as shown in Figure 5.25. This again is in contrast to the behavior 

observed at Goldsby and is likely the result of the higher suction range encountered at 

North Base. At all depths, there is improvement in correlation between unload-reload 

modulus and pressuremeter modulus. This is likely because the soil at North Base is 

sensitive to borehole disturbance. The unload-reload loop corrects for any disturbances 

in the borehole. This improvement in correlation from pressuremeter modulus to 

unload-reload modulus was not seen at Goldsby, which may indicate the soil there is 

less sensitive to borehole disturbance comparatively.  

 The in situ horizontal stress (Po) and at-rest earth pressure (K0) were determined 

from tests data. The result is presented in Figures 5.26and 5.27. For both sets of data, 

there is some correlation with matric suction if data from all depths are plotted together. 

This is similar to what was found at the Goldsby site. The at-rest earth pressure 

coefficients for all tests at North Base versus matric suction is presented in Figure 5.28. 

The results show strong correlation between matric suction and at-rest earth pressure.  
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Figure 5.23: Limit pressure versus matric suction for North Base (3-ft., 5-ft., and 
7-ft.) 
 

 

Figure 5.24: Pressuremeter modulus versus matric suction for North Base (3-ft., 5-
ft., and 7-ft.) 
 

 

Figure 5.25: Unload-reload modulus versus matric suction for North Base (3-ft., 5-
ft., and 7-ft.) 
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Figure 5.26: In situ horizontal stress versus matric suction for North Base (3-ft., 5-
ft., and 7-ft.) 

 

Figure 5.27: At rest horizontal earth pressure coefficient for North Base (3-ft., 5-
ft., and 7-ft.) 
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Figure 5.28: At-rest earth pressure coefficient versus matric suction determined 
from pressuremeter tests at North Base for all depths (3-ft., 5-ft., and 7-ft.) 
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Figure 5.29: North Base CPT Location map 

 

Figure 5.30: Goldsby CPT Location Map 
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5.6.2 Cone Penetration Test (CPT) results 

 The influence of matric suction at North Base was investigated by comparing 

three cone penetration tests conducted on a particular day. The tip resistance, sleeve 

friction, normalized tip resistance, and normalized friction ratio were compared to 

matric suction, which was determined from samples collected at the date of testing, and 

the SWCC constructed using Zapata et al. (2000). A figure was constructed for each 

date that presents moisture content (w %), matric suction (Ψ), tip resistance (qt), sleeve 

friction (Fs), normalized cone resistance (QT), and normalized sleeve friction (FR). The 

Figures for Goldsby and North Base are presented in the Appendix Figures A.26-A.39. 

To illustrate the effects of matric suction on tip resistance some selected test data will 

be used. 

The best way to illustrate the influence of matric suction on CPT results is to 

select two days with different soil moisture conditions and compare the measured data. 

Figure 5.31 presents the results of CPT performed on 7/29/2013 and 9/10/2014. The 

moisture content, matric suction, tip resistance, and sleeve friction profiles from the 

tests are presented in the figures. Looking at moisture content above a depth of 5-feet, 

the water content on 7/29/2013 was comparatively drier than the test conducted on 

9/10/2014, and thus these will be referred to as “dry” and “wet” tests, respectively. The 

tip resistance values measured during the “dry” test are on average 60 psi higher than 

the values measured during the “wet” test above a depth of 6 feet. For the same depths, 

the sleeve friction data show a similar pattern with a difference of 1.0 tsf between “wet” 

and “dry” days. Below a depth of 6 feet, the tip resistance and sleeve friction data for 

the two dates are more similar. This is consistent with the observation that moisture 
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contents change relatively little below a depth of 5 feet. However, on average the dry 

test date shows higher tip resistance and sleeve friction below 5 feet. This may be 

attributed to the fact that soil below 5 feet is actually undergone a small amount of 

drying that could result in suction increase due to the hysteresis effect. Use of a single 

SWCC to estimate matric suction for both dates would not capture this effect. The data 

shown in Figure 5.31 shows some scatter between tests; however, trends are relatively 

consistent for both sites.  

 The CPT from North Base on two different dates is shown in Figure 5.32. The 

results are comparable to Goldsby where on the “dry” date the tip resistance is higher 

and the sleeve friction is lower compared to the “wet date”. The hysteresis observed at 

Goldsby is not noticeable in the North Base data. This may be attributed to them being 

on the wetting curve of the SWCC so the fluctuations observed at Goldsby in data that 

were nearly a year apart are not noticeable.  

 The CPT data can be broken down further to better illustrate the effect of matric 

suction on tip resistance, and sleeve friction. The tip resistance (qt) and sleeve friction 

(fs) determined from each of three tests for each test date were averaged and the result 

plotted versus matric suction. Results for North Base are presented in Figure 5.33. Tip 

resistance, and sleeve friction are shown on each y-axis. The test results indicate a 

strong positive correlation between matric suction, and average values of tip resistance 

and sleeve friction. A power function was used to provide best-fit curves for test depths 

with strong correlation. The functions and r2 for each curve are presented in each 

corresponding figure.  
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The average tip resistance and sleeve friction versus matric suction plot for 

Goldsby can be found in Figure 5.34. The tip resistance shows some correlation with 

matric suction at most depths. There is a lack of correlation at three feet using all data; 

however, there is one point, which appears to be an outlier, and removal of this point 

would result in improved correlation at this depth. Sleeve friction does not seem to 

correlate well for Goldsby compared to North Base. This material is lower in plasticity 

than North Base, which may be a contributing factor as to why this behavior is 

observed. 
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Figure 5.31: CPT from “wet” and “dry” test dates for Goldsby 
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Figure 5.32: CPT from “wet” and “dry” test dates for North Base 
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5.7 Standard penetration testing (SPT) results 
5.7.1 Location of SPT tests at North Base and Goldsby 

The map of SPT locations at North Base is presented in Figure 5.36. The map of 

Goldsby SPT locations is presented in Figure 5.35. The arrow on each map is directed 

in the North direction. Distances are shown in feet. 

 

Figure 5.35: North Base SPT location map 
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Figure 5.36: Goldsby SPT location map 
 

5.7.2 Influence of soil suction on SPT results 

The SPT conducted at North Base indicates that soil suction has a direct impact 

on the measured N-value. North Base SPT versus depth and soil suction is presented in 

Figure 5.37. The N-value seems to increase for soils with increased soil suction and 

decrease with a decrease in suction. The tests conducted in February, and May 2013, 

show the largest N-Values especially below 2 feet depth. The suction values also are 

shown to be highest for these for these dates.  

 Goldsby SPT results are presented in Figure 5.38. This figure shows a similar 

trend to what is observed for the SPT at North Base, as well as, the CPT results from 

both sites. SPT N-value shows some increase with an increase in soil suction; however, 

the strength of the correlation is low. The test results from Goldsby show the 
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phenomena better than the results obtained from North Base. The tests conducted in 

February 2013 and September 2014 both show larger N-values and larger soil suction. 

Other tests presented show lower N-values and lower soil suction measurements. 

 
Figure 5.37: SPT N-value and matric suction versus depth for North Base 
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Figure 5.38: SPT N-value and matric suction versus depth for Goldsby 
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 Results and Discussion: Model Bearing Capacity Testing 

6.1 Overview 
 

 A total of five load-controlled model footing bearing capacity tests were 

performed with in parallel with miniature pressuremeter testing. An unsaturated low 

plasticity clay was used and water content and matric suction were varied in each test. 

The same dry density was targeted for each test. The bearing capacity and settlement 

equations from Briaud (1992), which are described in detail in Chapter 2, were used to 

build a baseline prediction model for changes in matric suction and its predicting the 

effect of changes in matric suction on predicting bearing capacity and settlement. 

 

6.2 Determination of matric suction 
 

 The matric suction for the McClain soil used in model footing bearing capacity 

tests was estimated in similar fashion to how matric suction was estimated for North 

Base and Goldsby. First, total suction soil water characteristic curves were completed 

on representative soil from two compacted samples. The compacted samples were 

prepared at the upper and lower end of water contents used in the model footing tests. 

These samples had dry densities equal to 107.7 lb. /ft3, which was the target dry density 

for all model-footing tests. The water content during compaction was 17%, and 10.5%, 

which includes the upper most and second lowest water contents used in model footing 

tests. After compaction the samples were saturated which increased the initial water 

content to 22.6% and 20.9%, respectively. From each compacted specimen, two 

samples were trimmed and placed and WP4 cups for total suction measurements. Mass 
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measurements were made on the samples as water evaporated in combination with total 

suction measurements. These total suction soil water characteristic curves are shown in 

Figure 6.1, and labeled WP4 1-4. The data from the higher water content compaction 

points are labelled WP4 1-2, while the lower water content compaction points are 

labelled WP4 3-4.  

 A total suction soil water characteristic curve was made for the McClain soil by 

Esmaili (2014). The results of this test are also included in Figure 6.1. No details are 

given about the initial water content or density. The results fall slightly below the range 

of the total suction measurements made with the WP4 for the previously mentioned 

density and water contents.  

 Also included in Figure 6.1 is the total suction measurements made on samples 

collected during model footing tests. These are shown by their test dates and in general 

fall in a lower range than their WP4 total suction SWCC measurements. This 

phenomenon was also seen in field data compared to WP4 SWCC measurements 

described in Section 5.3. This is likely the result of the significant differences in drying 

and wetting paths that SWCC samples followed (compacted, wetted to saturation, then 

dried) compared to footing test soil that was mixed with water and compacted to a 

target moisture content that changed very little thereafter.  

The percent of McClain soil passing a #200 sieve (92.5%) and the plasticity 

index (17%) was used to construct the SWCC based on matric suction following the 

method of Zapata et al. (2000). This SWCC is presented as the matric suction line in 

Figure 6.1. The curve is lower than the measured total suctions at high moisture 

contents due to the osmotic suction. At higher moisture contents, the test data 
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corresponds well with the estimated matric suction. The matric suction curve is parallel 

to total suction measurements made with the WP4. The water content of test samples 

will be used along with this SWCC to determine matric suction in subsequent analyses.  

 

6.3 Model footing tests 
 

Five model-footing tests were performed. The target water content was varied 

and the target dry density was held constant. The samples were compacted by hand 

using a tamping mass, which may account for the variation in density between tests. A 

table of the test dry density, average water content, average matric suction, and bearing 

capacities used in this study is presented in Table 6.1. Water content profiles for each 

test bed were determined from samples taken after completion of the bearing capacity 

and MPMT. A hand auger was used to extract the soil from the test bed and soil from 

each inch was obtained for moisture content determination. The full water content and 

matric suction profiles for all test beds are presented in Figure 6.2. There was some 

variability in the moisture content measurement with depth. This can be attributed to 

accuracy of the scale and variable humidity air temperature in the laboratory, and grain-

size distribution, which can lead to lead to different degrees of moisture loss during 

preparation of the test bed. The matric suction versus depth profiles were determined 

using the measured moisture contents and the soil water characteristic curve (SWCC) 

shown in Figure 6.1. 

 Load settlement curves are presented for the model bearing capacity tests in 

Figure 6.3. The bearing capacity was determined in two ways. The first method is 

simply taking the measured bearing pressure at a settlement equal to 10% of the footing 
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width, which for this research was 0.4 inches the load settlement curve with bearing 

capacities determined for 10% B are shown in Figure 6.3. The other method is 

described by Oh and Vanapalli (2013), which is determined by fitting tangent curves to 

the initial straight-line portion of the load settlement curve and the straight-line portion 

obtained after yielding. The intersection of these points determines the bearing capacity. 

It is referred to herein as the graphical method. 

The settlement shown is the average displacement of the two dial indicators 

placed on the footing that were diametrically opposed and equidistant from the center. 

In all but the first test, loading continued until the cumulative settlement reached 10% 

of the footing width, or 0.4 inches. The lone exception was the first test completed with 

soil having an average matric suction of 30.1 psi. This test was stopped early because of 

concerns with the loading equipment, which were addressed after completion. For 

subsequent tests, all footing settlements exceeded 0.4 inches. The bearing capacity was 

taken as the load at 0.4 inches of settlement. For the first test where 0.4 inches was not 

reached, the load-settlement curve was extrapolated to 0.4 inches. 

Table 6.1: Summary of average moisture content and matric suction of model 
bearing capacity tests 

Test Date 
Moisture 
content 

(%) 

Matric 
suction 

(psi) 

Dry 
Density 

(pcf) 

Bearing 
Pressure   

10% 
strain 
(psi) 

Bearing 
Pressure 
Graphical 

(psi) 

2/29/2016 17.0 30.1 104.83 90.5 55 
3/14/2016 12.7 103.8 102.17 180.0 187 
3/28/2016 9.6 298.2 105.3 150.0 200 
5/5/2016 13.9 72.6 110.12 147.0 128 

5/27/2016 10.5 215.9 100.14 134.0 130 
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Figure 6.1: Estimated Soil Water Characteristic Curve (SWCC) and measured 
total suction data for McClain Soil 
 

 

Figure 6.2 Water content and matric suction profiles for model footing tests 
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The measured bearing capacity versus average limit pressure is shown in Figure 

6.4 along with the limit pressure versus matric suction. It can be seen that there is a 

strong relationship between limit pressure and bearing capacity. The ultimate bearing 

capacities determined using the 10% method show incredibly strong correlation with 

limit pressure. The result indicates that the 10%B method for determination of bearing 

capacity is more consistent; thus, reported bearing capacities determined using this 

method are analyzed in subsequent sections. 

The comparison of ultimate bearing pressure and limit pressure in Figure 6.4 

makes it clear that the limit pressure and bearing capacity are responding to the different 

soil conditions and changing suction in a similar, consistent, and predictable manner. 

This is an extremely important observation as it verifies that the changes in the 

pressuremeter limit pressure due to variable soil conditions in unsaturated soil are 

adequately reflecting and generally proportional to the changes observed in bearing 

capacity of a footing loaded on the same soil. Thus, the pressuremeter should be a 

reliable tool for predicting bearing capacity of shallow foundations on unsaturated soils. 

Further, if one can predict the changes in PMT limit pressure due to changes in 

unsaturated soil conditions, using methods described in this dissertation for example, 

and then it should be possible to predict changes in bearing capacity under similar 

changes in soil conditions. 
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Figure 6.3: Load settlement curves for model footing tests with bearing capacity 
determined using the 10% method 
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Figure 6.4: Comparison of 10%B and graphical method for determination of 
ultimate bearing capacity and limit pressure versus matric suction for same data 
points 
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the load test. Three pressuremeter tests were taken per bearing capacity test. The 

average limit pressure, pressuremeter modulus, and unload-reload modulus are reported 

for each test in Table 6.2. Figure 6.5 presents limit pressure (Figure 6.5a), pressuremeter 

modulus (Figure 6.5b), unload-reload modulus (Figure 6.5c) and dry density (Figure 

6.5d) versus matric suction. The general trend in all pressuremeter parameters indicates 

that a peak in limit pressure and moduli occurs at an average matric suction of 100 psi, 

followed by a drop in these parameters at increased suctions. It was expected that the 

pressuremeter parameters would continue to increase at increased suctions as were 

observed from the field tests in presented in Chapter 5. There are several possible 

competing factors that may play a role in the observed behavior and that may provide a 

partial explanation for why PMT parameters decreased above a matric suction of 100 

psi. These factors include the variation in dry density, the influence of matric suction, 

and variations in the soil fabric between test beds.  

The dry density can have a strong influence on PMT results. Soil with lower dry 

density has more void space than a soil with high dry density, reducing shear strength 

and increasing compressibility. However, looking at Figure 6.5 there seems to be no 

correlation between dry density and PMT parameters, which indicates that while dry 

density may be one factor controlling pressuremeter parameters, it is not the only factor.  

The tests conducted at the three lowest matric suction values range in dry 

density from 102 pcf to 110 pcf. Matric suction for these tests increases from 30 psi to 

nearly 100 psi. There is an increase in pressuremeter parameters for all three of these 

tests even though dry density fluctuates. Matric suction has potential to cause an 

increase in mechanical soil properties so this could be a potential explanation for the 
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increase in pressuremeter parameters. However, the trend of increasing PMT parameters 

with increasing matric suction does not hold for the two highest matric suctions. This 

does not mean that matric suction is not playing at important role in the increase in 

PMT parameters from 30 psi to 100 psi.  

Matric suction is literally the difference between pore air and pore water 

pressure. As matric suction increases, there is an increase in the tensile force between 

soil particles which results in increased strength. There is a threshold matric suction 

where the area of the water between contact points of soil particles becomes so small 

that it no longer has much of an effect on soil strength. Above this matric, suction there 

would be little to no noticeable increase in soil strength from increased matric suction. 

This could partly explain the drop in PMT parameters for tests above 100 psi.  

Another possible explanation for the variation in PMT parameters at various 

matric suction is the difference in the soil fabric between tests. Each matric suction 

shown in Figure 6.5 comes from variation in the moisture content during test bed 

preparation. This means that each new test bed had a different initial soil structure 

depending on the initial water content. Drier soil exhibits a clod structure with 

considerable dual porosity, having macropores between clods and micropores within 

clods. Suction has a much different effect on such soils compared to soils compacted at 

higher water contents with more of a uniform porosity. These soil structural differences 

in the test beds certainly affect the pressuremeter results and may provide a partial 

explanation for the variation in results.  
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Table 6.2: Miniature pressuremeter parameters for all test dates 
  Test # PL (psi) Ep (psi) Er (psi) 

2/29/2016 

1 42.8 331.9 663.9 
2 49.6 377.7 - 
3 43.3 692.7 - 

Avg. 45.2 467.5 663.9 

3/14/2016 
1 156.1 4907.0 23494.7 
2 174.9 5913.1 34091.8 

Avg. 165.5 5410.0 28793.2 

3/28/2016 

1 134.3 - - 
2 130.5 2234.2 2366.6 
3 87.0 3655.7 10436.5 

Avg. 117.3 5579.8 10913.3 

5/5/2016 

1 114.9 1356.4 3152.3 
2 102.5 1349.2 3058.9 
3 114.1 1608.1 3717.9 

Avg. 110.5 1437.9 3309.7 

5/27/2016 

1 117.0 2446.3 3623.8 
2 120.5 2690.9 4052.0 
3 106.7 2517.8 4268.9 

Avg. 114.7 2551.7 3981.6 



127 

 

Figure 6.5: Limit pressure (a), pressuremeter modulus (b), unload-reload modulus 
(c), and dry density (d) versus matric suction 
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obtained in each test bed. There is some variation in the tests conducted on 3/28/16, 

which was due to some issues with the PMT membrane; this membrane material was 

replaced for subsequent tests. 

6.5 Prediction of bearing capacity and settlement based on PMT 
 

 Briaud (1992) presents a method to predict the bearing capacity of a shallow 

foundation based on the pressuremeter limit pressure. The Equation presented in 

Chapter 2 as Equation 2-16 can be used to predict bearing capacity if three factors are 

known. These factors are: 1) a bearing capacity factor, which is empirically estimated to 

be 0.8 for the McClain clay used in this study. 2) ௅ܲ௘
∗  (Eq. 2-17), the equivalent net limit 

pressure, which will be based on the three PMTs performed per test bed. 3) ݍ௢, which is 

the overburden pressure at the depth of embedment (zero for all tests).  

 The bearing pressure is determined from PMT data by simply multiplying the 

equivalent net limit pressure by a factor of k. The parameter k, which is the bearing 

capacity parameter, comes from the relationship between the horizontal and vertical 

stress. This value is typically 0.8 for all soils (Briaud, 1992) when there is zero depth of 

embedment. The bearing capacity calculations using k=0.8 are plotted in Figure 6.6. It 

is clear that k=0.8 does not provide a good match for the experimentally measured 

bearing capacity. Some possible reasons for this includes: a scale effect due to the fact 

that these measurements were made using a model footing, or these soils are 

unsaturated and k is a empirically derived parameter that may not apply to all soils and 

soil conditions. In the following sections, a theoretically based approach to determine k 

was explored for unsaturated soils. 
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Figure 6.6: Limit pressure versus measured and predicted bearing capacity 
 

 In Briaud’s (1992) discussion of the bearing capacity factor (k), it is described as 

the ratio (k=qu/quh) of the total vertical resistance (i.e. ultimate bearing capacity, qu) to 

the ultimate horizontal resistance component (quh), which contributes to the ultimate 

bearing capacity. The idea is that the limit pressure is equal to the horizontal component 

of resistance (PL=quh), which contributes to ultimate bearing capacity of vertically 

loaded footings. Thus, multiplying the limit pressure of the soil by the bearing capacity 

factor described above provides an estimate of ultimate bearing capacity of vertically 

loaded footings.  

To emphasize this point, a simple derivation of the bearing capacity factor based 

on theoretical considerations is provided in Briaud (1992) for undrained loading of clay. 
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Figure 6.7 shows the total and vertical resistance to loading and its relation to the k-

factor for saturated undrained loading as described in Briaud (1992). The basic idea is 

that the ultimate bearing capacity can be broken up into vertical and horizontal 

components (qu=quv+quh) and the goal is to develop theoretical expressions for qu and 

quh in order to calculate k=qu/quh, as described above. In the simplified analysis 

presented by Briaud, the ultimate bearing capacity for a circular footing at the ground 

surface is about six times the undrained shear strength (qu=6su). The vertical 

contribution (quv) to this is assumed to come from the soil beneath the footing with the 

surrounding soil removed, or in another words it is equal to the unconfined compression 

strength (quv=2su). The difference between the total ultimate resistance (qu) and vertical 

component (quv) gives the horizontal contribution to the bearing capacity (quh), which is 

4Su. The bearing capacity factor as defined above is given as, k=qu/quh= 6Su/4Su, which 

is equal to 1.5. 

The Briaud (1992) discussion of the k-factor can be further refined to determine 

a bearing capacity factor for unsaturated soils. The first step is to modify the ultimate 

bearing capacity equation for use with unsaturated soils by considering a c- soil with 

cohesion, c, modified to account for soil suction. The Terzaghi bearing capacity 

equation for general shear failure for a circular footing of diameter B is,  

௨ݍ = 1.3ܿ ௖ܰ + 0.3ܤ ܰ + ܦ ௤ܰ   (Eq. 6-1) 

Where:  

Nc, N Nq = Terzaghi bearing capacity factors, 

 = soil total unit weight, 

B = footing width,  
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D = depth of embedment and, 

c=cohesion component of shear strength.  

The cohesion component of shear strength can be modified to account for 

suction using Equation 6-2 or some other appropriate representation of the suction 

contribution. 

c = c’ + (ua-uw) tan (b),     (Eq. 6-2) 

 Assuming the suction is constant during loading, the vertical component of 

resistance (quv) can be derived, similar to Briaud’s approach, by considering only the 

soil beneath the footing with surrounding soil removed. The unconfined loading of this 

soil is simulated by drained triaxial compression loading from zero initial net-normal 

stress. The major principal stress at failure is equal to the vertical component of ultimate 

bearing capacity (quv), which for unconfined loading is equal to the deviator stress at 

failure since the minor principal stress is equal to zero (quv=qf=(v-h)/2). The Mohr-

Coulomb failure envelope and stress path for drained triaxial compression of an 

unsaturated soil are shown in Figure 6.8 in the p-q-r space; where: p = (v+h+2ua)/2, q 

= (v-h)/2, r = ua-uw, v = vertical total stress, and h = horizontal total stress. In this 

analysis, pore air pressure is assumed to be zero (ua=0) and matric suction (ua-uw) is 

constant for drained loading. From the geometry of the problem and analyzing the 

stresses at failure the equation for the major principal stress at failure equal to the 

vertical component of ultimate bearing capacity (quv) is given as,  

௨௩ݍ =
2(ܿᇱ + ௔ݑ) − (௪ݑ ((௕߶)݊ܽݐ cos ߶ᇱ

(1 − sin( ߶ᇱ))
 

   (Eq. 6-3) 
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 To obtain the total horizontal component of ultimate bearing capacity (quh), the 

vertical component (quv, Eq. 6-3) can be subtracted from the total resistance (qu, Eq. 6-

1). The total resistance can now be divided by the horizontal resistance to obtain the 

theoretical bearing capacity, k, for unsaturated soils. The bearing capacity factor can be 

determined for different soils and the effects of matric suction can be observed. The 

bearing capacity factor was determined for three cases: first, friction angle with respect 

to matric suction was assumed equal to zero (’ = 0); second high cohesion and low 

friction angle was considered; third, was high friction angle with low cohesion. Density 

was assumed equal for all conditions. Matric suction was varied from zero to 1,000 psi 

and results shown in Figure 6.9 indicate that matric suction has no impact on bearing 

capacity factor. This seems logical given that Equations 6.1 and 6.3 depend on the shear 

strength, which includes the contribution from suction, and both are based on the 

assumption that shear strength is isotropic. 

 The bearing capacity factor, k, back calculated from model footing bearing 

capacity and miniature pressuremeter tests was close to 1.5. The closest derived bearing 

capacity in the previous analysis comes from the undrained condition and is equal to 

1.37. While these theoretically derived k values are somewhat reasonable, there are 

several reasons they may not match the empirically derived k values. Of particular 

importance is that modeling the vertical component of ultimate bearing capacity using 

an unconfined compression analogy does not properly model the kinematics or stress 

paths of soil elements beneath a footing.   

In an attempt to capture the actual soil mechanics involved in this problem, 

another approach to derive the bearing capacity factor k was investigated. The essential 
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elements of this approach, and differences and similarities to the previous approach are 

summarized as follows: 

1) As with the previous approach, bearing capacity factor, k, is defined as the ratio of 

the ultimate bearing capacity to PMT limit pressure, k=qu/PL. 

2) Similarly, ultimate bearing capacity, qu, is calculated using Equation 6-1. 

3) Unlike the previous approach, theoretical limit pressure, PL, is calculated using 

cylindrical cavity expansion equations for unsaturated soil presented in Section 

2.2.6 of this dissertation. The theoretically derived ultimate cavity pressure is 

assumed to be equal to the PMT limit pressure (Pu = PL). While more complicated 

than the previous approach, this theory better models the actual kinematics and 

evolution of stresses and strains during a PMT.  

4) Unlike the previous approach, an attempt was made to capture the non-linear 

behavior of the limit pressure versus matric suction and bearing capacity versus 

matric suction relationships observed in the experimental data (Figure 6.5). This 

was accomplished by incorporating a non-linear model for the variation in shear 

strength as it relates to matric suction. The model used incorporates the influence of 

effective degree of saturation on the contribution of suction to the effective stress 

state of the soil (Alonso et al. 2009). The non-linear shear strength is embodied in 

the cohesion, c, which is used in equations describing the ultimate bearing capacity 

of footings and those describing the ultimate cylindrical cavity pressure. 
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Figure 6.7: Bearing capacity factor relating horizontal loading to total resistance 
(after Briaud 1992) 
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Figure 6.8: Mohr-Coulomb failure envelope and stress path for unconfined 
compression 
 

 

Figure 6.9: The effect of varied matric suction on bearing capacity  
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 Using the model of Alonso et al. (2009) gives the cohesive contribution to 

strength as, 

ܿ = ܿᇱ + ܵఈ(ݑ௔ − (௪ݑ sin(߶′)   (Eq. 6-4) 

Where:  

S  = effective degree of saturation, 

S = degree of saturation, and 

α = material parameter.  

The bearing capacity factor, k, for unsaturated soils using cavity expansion was 

determined as follows: 

1. The ultimate bearing capacity determined from model footing test was used to 

back-calculate parameters needed in the ultimate bearing capacity equation (Eq. 

6-1).  

2. McClain soil properties including measured friction angle, total density, 

estimated matric suction, and footing dimensions were used in the back 

calculation. The cohesion was assumed equal to zero.  

3. Terzaghi bearing capacity factors used to calculate ultimate bearing capacity are 

shown in Table 6.3. 

4. The effective cohesion (Eq. 6-4) was used to back-calculate ultimate bearing 

capacity.  

5. The material parameter in equation 6-4 is dependent on soil type. For this 

analysis, it was adjusted until measured results fit predicted results.  

6. Once the ultimate bearing capacity matched the measured value then ultimate 

cavity pressure was determined.  



137 

7. Volumetric strain in the plastic zone was unknown, so it was back calculated 

based on measured limit pressures prior to model footing tests.  

8. The unsaturated bearing capacity factor was then determined by dividing the 

ultimate bearing capacity factor by the ultimate cavity pressure. It was also 

determined based on Briaud’s (1992) simplified method however; Eq. 6-4 was 

used as the cohesion parameter.   

The result of this analysis is shown in Table 6.4. The pressuremeter bearing 

capacity determined using Briaud’s (1992) simplified analysis is also included in the 

upper half of Table 6.4. All bearing capacity factors determined through this method are 

on average 1.06. The bottom half of Table 6.4 shows the parameters used to determine 

ultimate cavity pressure (Pu) using cylindrical cavity expansion. The unload-reload 

modulus from the miniature pressuremeter tests was used for modulus. The 

determination of the pressuremeter bearing capacity factor using cylindrical cavity 

expansion seems to show closer agreement with the model footing tests than other 

methods. The average k, determined using cavity expansion is 1.37, which compared to 

the value Briaud (1992) recommends (0.8) is much more reasonable. One possible 

explanation for the continued deviation of the measured to predict values may come 

from the type of failure experienced in model footing tests. In all footing tests 

performed, punching failure was observed for each test. The ultimate bearing capacity 

equation may not accurately the ultimate resistance to loading for the footing tests due 

to the mode of failure.  

Table 6.3: Terzaghi bearing capacity factors 

Nc Nq Kp N 

52.6 36.5 76.0 0.0 
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Table 6.4: Bearing capacity factors determined from model footing tests 

S% α γt (psf) 
ua-uw 
(psi) 

k 
(simplified) 

0.68 6.55 122.7 30.1 1.07 
0.44 3.72 115.2 103.8 1.04 

0.54 6.93 115.5 298.2 1.08 

0.77 11.47 125.4 72.6 1.05 
0.56 7.11 110.6 215.9 1.08 

  

Er (psi) 
Pu 

(psi) 
εv 

k (cav. 
Expansion) 

663.9 45.2 -0.004447 2.00 

28793.4 165.5 -0.000101 1.09 

10913.3 117.3 -0.000298 1.28 

3309.7 110.5 -0.001381 1.33 

3981.6 114.7 -0.001066 1.17 
 

6.6 Prediction of settlement based on PMT 
 

 The settlement of a shallow footing can be predicted based on pressuremeter 

results. Two methods make direct use of the pressuremeter modulus to predict 

settlement. The first was mentioned in Section 2 and shown as equation 2-20 from 

Janbu et al. (1956). The settlement prediction equation has two correction factors, μ0, 

μ1, which account for depth of embedment and depth to a rigid stratum, respectively. 

There is no depth of embedment in this study, so μ0 is equal to 1.0. The correction 

factor for depth to a rigid stratum, μ1, is equal to 0.58, which is based on the footing 

shape (circular), footing width (4 inches), and depth to the bottom of the test tank (19.25 

inches). Poisson’s ratio, ν, was assumed equal to 0.333. The bearing pressures in the 

elastic range can be used to predict settlement and compared to actual settlement to get 
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an idea of the effectiveness of settlement prediction. Pressuremeter modulus and 

unload-reload modulus will each be used to make predictions. 

 The second method to predict settlement based on the pressuremeter results 

comes from Baguelin et al. (1978). This method splits the settlement into two 

components. The first is settlement associated with deviatoric loading. The second 

component is from spherical loading. The settlement equation from Baguelin et al. 

(1978) includes the deviatoric and spherical components of settlement and is as follows: 

ݏ =  
௤஻

ଽா೛
ௗߣ2)

ఈ +  ௖)   (Eq. 6-5)ߣߙ

Where, 

Ep = pressuremeter modulus within the zone of influence  

q = footing net bearing pressure,  

B = footing diameter, 

α= rheological factor, 

λd = shape factor for deviatoric term, and 

λc = shape factor for spherical term. 

 The parameters α, λd, and λc can be obtained from Baguelin et al. (1978) and for 

this research are shown in Table 6.5. The test conducted at 30.1-psi matric suction uses 

and α equal to 2/3, all others use 1.0. The α parameter is based on the ratio of 

pressuremeter modulus to limit pressure further values for different soil types and ratio 

ranges are shown in Baguelin et al. (1978). The settlement was determined using 

pressuremeter modulus and unload-reload modulus. Baguelin et al. (1978) indicates that 

use of Equation 6-5 for footings with no depth of embedment will over predict 

settlements by 20%. Nevertheless, settlements were predicted for the five model footing 
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tests. The measured versus predicted settlements for the model footing tests using the 

pressuremeter modulus (similar results are obtained using unload-reload modulus) and 

the method presented by Baguelin et al. (1978) are shown in Figure 6.10. Perfect 

agreement between measured and predicted results would show 1:1 agreement. For the 

lowest suction test, the predicted settlements are about 20% higher than measured 

settlements, which generally agrees with expectations reported in Baguelin et al. (1978). 

All other test results were under predicted using this method. The Janbu et al. (1956) 

method was also used to predict settlement, and the results are shown in Figure 6.11. 

Similar observations are made for the Janbu (1956) method, with some results over 

predicted while others are under predicted. 

 

Figure 6.10: Measured versus predicted settlement for model footing tests using 
Baguelin et al. (1978) method 
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Figure 6.11: Measured versus predicted settlement for model footing tests using 
Janbu et al. (1956) method 
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saturation is more compared to increased suction. Suction has shown to increase soil 

stiffness which is likely the reason the equations over predict settlement. A possible 

solution to this based on this test data is to plot the slope of the measured versus 

predicted settlement (Sp/m) curves versus matric suction which is shown in Figure 6.12. 

For this example, the Janbu et al. (1956) settlement predictions will be used. 

A possible solution to address the disparity between predicted and measured 

settlements is to use an empirical correction factor that is a function of the matric 

suction. Thus, the Janbu Equation 2-20, for example, would become, 

ݏ  = ܨܥ ∗ ଵ(1ߤ଴ߤ − ݍ(ଶߥ
஻

ா೛
     (Eq. 6-6) 

Where: CF = empirical correction factor that depends on suction and the rest of the 

terms are as defined for Equation 2-20. 

The empirical correction factor is obtained by plotting the slope of the measured 

versus predicted settlement (Sp/m) curves versus matric suction, as shown in Figure 6.12 

for the Janbu et al. (1956) settlement predictions. Then the correction factor is simply, 

CF = 1/Sp/m. 

 The predicted settlements using Equation 6-6 shown in Figure 6.13 are much 

closer to the measured values, as expected. This method provides a similar result using 

the Baguelin et al. (1978) settlement prediction method. It is clear that further study of 

settlement prediction based on pressuremeter modulus is required. The empirical 

approach used to enhance the traditional settlement equations is limited to the specific 

soil used in this study. The correction factor is dependent on the relationship between 

the slopes of the measured versus predicted settlement relationship. For this particular 

study low matric suction caused an over prediction of settlement, while high suction 
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caused under prediction. If this behavior holds for other unsaturated soil types, then a 

similar exponential decay equation can be used to correct settlement data. More tests on 

different soil types are required to obtain the viability of an empirical correction factor. 

Other characteristics such as density, void ratio, and differences in soil skeleton 

between tests is unaccounted for by the correction factor and they may play a significant 

role in predicting settlement based on pressuremeter modulus.  

 

Figure 6.12: Slope of measured versus predicted settlement based on Janbu et al. 
(1956) versus matric suction 
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Figure 6.13: Settlements predicted using Janbu et al. (1956) divided by slope of 
measured versus predicted values  
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 Prediction methods for in situ tests in unsaturated soil 

7.1 Introduction 
 

The in situ testing at Goldsby and North Base has provided a substantial data set of test 

results at various soil moisture conditions. These data were collected to create and 

implement a method for interpretation of PMT, CPT, and SPT in fluctuating soil 

moisture conditions. There have been historical attempts to develop methods to interpret 

the PMT and CPT (Miller and Muraleetharan 2000, Cudmani and Osinov 2001, Pereira 

et al. 2003, Lehane et al. 2004, Tan 2005, Russell and Khalili 2006, Russell et al. 2010, 

Miller 2014) however, there are no standard recommendations for practice. Many of the 

historical methods have shown promise; some are specialized for particular soil types, 

while others are overly cumbersome in terms of their application to practice. Included in 

this dissertation are some of the complex theoretical approaches as well as simple 

empirical approaches to interpretation. The spherical and cylindrical cavity expansion 

methods described by Muraleetharan et al. (2000) are applied to create a method of 

interpretation, while empirical relationships are provided to complement the theoretical 

application and provide soil specific recommendations. 

The three primary goals for the development of the method of interpretation are 

as follows: 

1) The method should allow an engineer to predict how much change will occur in 

a given in situ test parameter in a given soil type if the suction changes a 

specified amount from some initial value corresponding to the date of testing. In 

other words, the question “How much will the limit pressure change if the 

suction decreases by 20 psi from the date of testing?” for example, can be 
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answered. The PMT parameters addressed in this dissertation include the limit 

pressure, pressuremeter modulus, and unload-reload modulus. The CPT 

parameters included tip resistance. The SPT parameter included the N-value.  

2) The second goal for developing interpretation methods was to include as many 

soil types as possible by utilizing to the extent possible, results from other 

published studies. Data from in situ testing in unsaturated soil, along with matric 

suction measurements, are scarce in the literature.  

3) Finally, based on model footing tests and miniature pressuremeter testing a 

method was constructed to predict bearing capacity, and settlement in 

unsaturated soils using PMT parameters. The goal of the method is to use the 

existing bearing capacity, and settlement equations described in Briaud (1992) 

to account for matric suction, and therefore predict changes in settlement and 

bearing capacity when soils moisture and matric suction changes at a site. 

7.2 Empirical approach for predicting the influence of matric suction on PMT 
parameters 

 

The results of pressuremeter testing at North Base and Goldsby has revealed that 

there is strong and undeniable relationship between pressuremeter parameters and 

matric suction. These relationships could be used to provide users a guide to predict 

changes in pressuremeter parameters with a change in matric suction. As mentioned in 

Section 5.3 there are two distinct soil layers at North Base. The Goldsby soil profile 

does not show significant variation. Therefore, for interpretation purposes the upper 

layer at North Base was separated from the lower layer. This allows for interpretation of 

three distinct soil types. The upper layer at North Base has an average plasticity index 
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(PI) of 30, which classifies as CH. The lower layer has an average PI of 20, which 

classifies it as CL. Goldsby on average has a plasticity index of 10, which also classifies 

it as CL. The different soil types are categorized as three zones: North Base upper layer 

(Zone 1), North Base lower layer (Zone 2), and finally Goldsby (Zone 3).   

Limit pressure was normalized for the three soil zones and plotted versus 

suction. The results are presented in Figure 7.1. For all three-soil zones, there is strong 

correlation between the normalized limit pressure and suction. The data for each soil 

type was fitted with a linear function because it provides the best fit. Linear functions 

are not completely representative of actual soil conditions because they show increase 

in limit pressure with increasing matric suction without bound. It is more likely that the 

limit pressure will reach an uppermost value then stabilize. The coefficient of 

determination for the soil from North Base (Zone 1 & Zone 2) is greater than for the 

Goldsby (Zone 3) data. There are several explanations for the decrease in correlation in 

the Zone 3 data. The Zone 3 data accounts for all soil depths, whereas Zone 1 only 

accounts for data collected at three-feet, while Zone 2 contains data from five and 

seven-feet. Pressuremeter tests from field data shown in Chapter 5 showed a decrease in 

correlation between limit pressure and matric suction below the active zone. This was 

likely due to lack of fluctuation in soil moisture, which means that the variation in data 

below the active layer is likely the result of numerous factors including matric suction, 

site variability, borehole disturbance, etc.  

 The curves presented in Figure 7.1 can be used to make predictions of limit 

pressure as long as the soil type is similar. The soil water characteristic curve for the 

soil should be available otherwise it is difficult to know how a change in water content 
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corresponds to a change in matric suction. It is assumed that PMT performed in similar 

soils will behave in a similar manner. To best illustrate the impact in a decrease in 

matric suction consider the following example. A PMT is conducted in a low plasticity 

clay (PI≈20) in relatively dry conditions and it is desired to find how much the limit 

pressure will decrease if there is a prolonged wetting period. The initial PMT is 

conducted at a matric suction of 120 psi at a depth of seven-feet. The measured limit 

pressure on this date is 310 psi. If the matric suction drops to 25 psi then the change in 

limit pressure can be determined using the equation shown for Zone 2 in Figure 7.1. 

First, the initial pressuremeter reading should be normalized based on the sites 

overburden at the depth of the test. For this example, assume the soil has a total unit 

weight of 105 pcf. This will give a normalized limit pressure value of 60.7. Now, the 

equation shown in Figure 7.2 (PL/σv = 13.3 + 0.37Ψ) for Zone 2 can be utilized to 

determine the new limit pressure, which is 115.1 psi, at the desired matric suction, 25 

psi. 

Other parameters can be determined in similar fashion. Figure 7.2 presents the 

normalized pressuremeter modulus versus suction for the three soil zones. The degree 

of correlation between normalized modulus and suction is much weaker compared to 

limit pressure, especially for Zone 3. The unload-reload moduli for the three soil zones 

are presented in Figure 7.3. There is a better degree of correlation for Zones 1&2 

compared to the pressuremeter modulus; however, for Zone 3 there is very little 

correlation. The limited correlation for Zone 3 may suggest that the modulus of 

elasticity in low plasticity clays minimally affected by fluctuations in soil moisture and 

suction for the range of values observed. Thus, a user of these empirical relationships 
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may assume that the modulus will fluctuate minimally and use their measured value for 

all calculations. In this case, it would be more conservative to use the pressuremeter 

modulus and not the unload-reload modulus.  

 

Figure 7.1: Normalized limit pressure versus suction for three soil types 

Matric suction, (psi)

0 100 200 300 400 500

P
L/
 v

0

50

100

150

200

250

Matric suction, (psi)

0 50 100 150 200 250

P
L
/

v

0

20

40

60

80

100

120

Matric suction, (psi)

0 200 400 600 800 1000 1200 1400

P
L/
 v

0

20

40

60

80

100

120

140

160

180

PL/v = 14.9+0.3 r2=0.78

PL/v = 13.3+0.37 r2=0.63

PL/v = 31.3+0.095 r2=0.54

North Base- Zone 1 North Base- Zone 2 Goldsby- Zone 3



150 

 

Figure 7.2: Normalized PMT modulus versus matric suction for three soil types  
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Figure 7.3: Normalized unload-reload modulus versus normalized suction for 
three soil types 
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problems comparing the normalized field data presented in the previous figures because 

the tests performed in Tan (2005) were conducted in a calibration chamber at higher net 

normal stress than the comparative field stress. This causes some inconsistency when 

normalizing the PMT parameters. The measured limit pressure and matric suctions from 

Zones 1-3 and Tan’s limit pressure data are plotted in Figure 7.4. The results show a 

clear separation in the range of limit pressure data depending on soil type. The 

pressuremeter modulus and unload-reload modulus for all test data is presented in 

Figure 7.5 &7.6. These figures show no correlation between matric suction and 

modulus. 

 

Figure 7.4: Limit pressure versus matric suction from field test and Tan (2005) 
calibration chamber data 
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Figure 7.5: Pressuremeter modulus versus matric suction from field test and Tan 
(2005) calibration chamber data 

 

Figure 7.6: Unload-reload modulus versus matric suction from field test and Tan 
(2005) calibration chamber data 
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7.3 Application of unsaturated cylindrical cavity expansion theory to 
pressuremeter test results 

 

 The cylindrical cavity expansion equations (Eq. 2-2 – Eq. 2-8) for unsaturated 

soils were applied to the results of field tests at Goldsby and North Base. If several 

assumptions about the equations are made, the only missing parameter needed to solve 

the equation is the volumetric strain in the plastic zone. The assumptions made are as 

follows: 

1. The soil beyond the plastic zone behaves as a linear elastic solid and soil within 

the zone behaves as a compressible plastic solid. This allows for the relationship 

shown in Equation 2-1, which relates the radius of the plastic zone to the radius 

of the cavity. This is described in more detail in Tan (2005). 

ோ೛

ோೠ
= ඥܫ௥௥

ᇱ      (Eq. 2-1) 

2. Young’s Modulus, was taken as the pressuremeter modulus, EP,  

3. Ultimate cavity pressure, pu, was assumed to be equal to limit pressure, PL,  

4. Poisson’s ratio, ν, is known and is equal to 0.333, 

5. Gravimetric water content, w, and matric suction do not change during 

expansion, and 

6. Pore air pressure, ua, remains at atmospheric pressure (ua=zero kPa gage 

pressure) during cavity expansion. 

 Based on the assumptions volumetric strain was calculated using the results of 

field data. Shear strength parameters including cohesion, and friction angle were 

obtained from triaxial data (Table 5.4). The friction angle with respect to matric suction, 
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b, was assumed equal to 20° for all calculation. The mean net normal stress, p, was 

based on the overburden at the depth of the test. 

 Volumetric strain in the plastic zone versus matric suction plots were prepared 

for each soil zone. The equations for normalized limit pressure, and pressuremeter 

modulus shown in Figures 7.1 & 7.2 were used to create the generalized curves shown 

in Figures 7.7-7.9. The parameters such as mean net normal stress, friction angle, 

cohesion etc. used to calculate the curves are presented as average of each soil zone. 

This means that for Zone 1 (shown in Figure 7.7), which consists entirely of data from 

North Base at one foot, the net normal stress, friction angle and cohesion all come from 

this depth. However, for the Zone 3 data (shown in Figure 7.9), which is made up of all 

test data from Goldsby, an average friction angle, cohesion, and net normal stress were 

used to determine the curve shown. A similar procedure was used to determine the Zone 

2 curve shown in Figure 7.8. The average parameters used to determine the volumetric 

strain in the plastic zone curves are included in the Figures. The volumetric strain 

figures all show significant scatter from measured test results in comparison to the 

average curves for each soil zone. The parameters used to calculate the general curve 

for each soil zone is presented within the figures. 

 The volumetric strain figures all show significant scatter from measured test 

results in comparison to the average curves for each soil zone. There are several 

possible explanations for this behavior. The field site is assumed homogenous and the 

same at each test location, however this cannot be predicted exactly, so small changes in 

the variability of the site may be having a large impact on the test results, which leads to 

a larger impact on the back calculation of volumetric strain. The assumptions made at 
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the start to simplify analysis may be contributing to the lack of correlation in the results. 

For example, one of the key assumptions made to simplify the equations is that matric 

suction does not change during pressuremeter expansion. While this is a reasonable 

assumption and has been shown to be near correct in a numerical approximation by 

Muraleetharan et al. (2003), there may be some change in matric suction that is 

unaccounted for in the analysis. 

 

Figure 7.7: Back calculated volumetric strain from field test and general behavior 
for Zone 1 
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Figure 7.8: Back calculated volumetric strain from field test and general behavior 
for Zone 2 

 

Figure 7.9: Back calculated volumetric strain from field test and general behavior 
for Zone 3 
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 The volumetric strain in the plastic zone curves (Figures 7.10-7.12) can be used 

to make predictions about how a change in matric suction will change limit pressure. 

Based on the change in volumetric strain a new limit pressure can be determined. For 

example, the volumetric strain in the plastic zone can be back calculated from any 

pressuremeter test as long as some basic soil data is known. Based on this back 

calculated volumetric strain and soil type, the user can compare their volumetric strain 

to the average volumetric strain curve. Now, if the user wants to determine the effect of 

a change in matric suction on limit pressure they can find the change in volumetric 

strain for the corresponding change in matric suction and then calculate a new limit 

pressure based on the new volumetric strain.  

Matric suction can be normalized to account for variations from soil type, 

however there are no published studies regarding the normalization of matric suction. 

Therefore, a new method to normalize matric suction is proposed such that soils of 

various matric suction ranges can be compared. An example of how to normalize matric 

suction using the suggested method is presented below. Consider the SWCC for 

Goldsby shown in Figure 7.10. The linear portion of the SWCC is overlain with a red 

line. The range of matric suction through this linear portion is indicated by two arrows 

separated by 54 psi. This linear portion can be found on most soil water characteristic 

curves, which makes it useful for normalization of any soil type. The measured matric 

suctions can be divided by the linear suction range in order to obtain a normalized 

matric suction (ΨN).  
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Figure 7.10: Determination of normalized matric suction range 
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smaller. The soil in Zone 3 shows greater dilation as normalized matric suction 

increases. 

 

 An example of how to calculate a change in limit pressure based on the 

volumetric strain is as follows. Consider the field data and SWCC from Miller and 

Muraleetharan (2000) shown in Figure 7.15 (a) which is normalized by overburden (5.7 

psi). The field data comes from the Goldsby site; however, it was collected 15 years 

prior to the tests conducted in this study. It was not included in the database of test 

results used to create the prediction method. There is no other examples of field 

pressuremeter tests with matric suction measurements, therefore the data presented in 

Miller and Muraleetharan (2000) is the only “outside” data that can be used for 

predictions. The soil properties described for the soil are listed in Table 7.2. The 

prediction scenario involves a situation where only one PMT test is performed at a 

matric suction of 8 psi, and it is desired to predict the limit pressure of a test conducted 

at a lower matric suction of 4 psi. The following steps are used to estimate the limit 

pressure at the lower suction. 

1. Determine the volumetric strain at the initial matric suction using the soil 

properties listed in Table 7.1 and the measured limit pressure and PMT modulus. 

εvo = 7.092 x 10-3 for PL = 436 psi, at Ψ = 8.1 psi 

2. The soil tested in Miller and Muraleetharan (2000) most closely resembles the 

Zone 3 soil. It is assumed that similar soils will behave in a similar manner 

during pressuremeter expansion and that the volumetric strain matric suction 

relationship can be used to predict changes in limit pressure for changes in 
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matric suction. The mean net normal stress for the Zone 3 soil shown in Figure 

7.14 is based on an average from all field data points. The curve shown in 

Figure 7.14 can be determined using the mean net normal stress of the field data 

to provide a closer approximation of the volumetric strain in the plastic zone as 

long as it falls within a reasonable proximity to the values found at Goldsby. 

3. The suction should be normalized according to Figure 7.15 (b), and used with 

the curve from Zone 3. This gives an initial normalized suction for the field test 

data of: ΨN = 8.1 psi / 7.3 psi = 1.1. At this normalized suction, the volumetric 

strain for Zone 3 is εv1 = -1.9824 x 10-2.  

4. The normalized suction of interest is 4 psi, which gives a normalized suction: 

ΨN = 4.1 psi / 7.3 psi = 0.56. At this normalized matric, suction the volumetric 

strain in the plastic zone for zone 3 is εv2 = -1.2896 x 10-2. 

5. The change in volumetric strain from Zone 3 is Δεv = εv2 - εv1 = -1.2896 x 10-2 - 

-1.9824 x 10-2 + = 6.928 x 10-3. 

6.  The initial calculated volumetric strain was εvo = 7.092 x 10-3, addition of the 

change in volumetric strain in the plastic strain, Δεv = 6.928 x 10-3, gives the 

volumetric strain for the matric suction of interest: 

 εvf = εvo + Δεv = 7.092 x 10-3 + 6.928 x 10-3= 1.402 x 10-2. 

7. The new volumetric strain εvf can be used to calculate a new limit pressure, 

which gives: PL predicted = 47.6 psi. It was assumed that the pressuremeter 

modulus remained the same, which is a reasonable assumption for lean clay 

based on the Goldsby pressuremeter data. This can be compared to the actual 



162 

value from field-testing: PL actual = 49.3 psi. This gives an overall agreement of 

96.5%.  

 Figure 7.16 provides the referenced data points and the Zone 3 curve used to 

predict the change in limit pressure for a change in matric suction. The procedure used 

works well for the available field data. There is a lack of field data with corresponding 

matric suction measurements so it is not possible at this time to use this prediction 

method on data from different soil types. The agreement between the measured and 

predicted results indicates the method that has promise, and should be investigated 

further.  

 

Figure 7.11: Volumetric strain versus normalized suction 
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Figure 7.12:  Limit pressure and PMT modulus versus suction and SWCC for field 
data from Miller and Muraleetharan (2000) 
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Table 7.1: Parameters from field-testing in Miller and Muraleetharan (2000) 
φ 31° 
φb 27.5° 

c' (psi) 0.73 
v 0.333 

p (psi) 2.9 

 

Figure 7.13: Zone 3 volumetric strain versus normalized suction plot used to 
predict effect of a decrease in matric suction on limit pressure results 
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for Goldsby were comparatively weak. In Chapter 5 only a small collection of the 

average soil data was considered in order to get a general understanding of the effect of 

matric suction on CPT parameters. In general, these trends showed that increased matric 

suction results in increased tip resistance. The trends observed in Chapter 5 can be taken 

a step further by including all CPT Field data where matric suction measurements were 

made and by including CPT data from the literature. The additional field and historical 

data provides some clear relationships that can be useful for CPT analysis in 

unsaturated soil.  

The tip resistance was normalized to account for the influence of overburden 

pressure on the results. This allows for a presentation of all CPT data on a similar scale 

with differences now coming from soil type and various states of density, which was 

not considered in the analysis, but likely provides a substantial contribution to observed 

variations in CPT behavior. Figure 7.7 presents normalized tip resistance versus matric 

suction for Goldsby, North Base, and data in the literature from Lehane et al. (2004), 

Tan (2005), and Yang and Russell (2015b). Several unique relationships can be 

observed from the data. The first is that soil type has a strong influence on the 

normalized tip resistance. This is similar to cone penetration in traditional saturated 

conditions, as different soil types will fall into different ranges of behavior. It is seen in 

Figure 7.7 that normalized tip resistance generally tends to increase with matric suction 

with the possible exception of nonplastic uniform sand. There is some overlap in the 

data that comes from variability in the soil profiles at the field sites and similarities 

between the soils at both sites. The fine grained soils with high PI tend to reach higher 

values of matric suction, which is why clay soil types tend to shift right on Figure 7.7. 
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The sandy soil types tend to have higher tip resistance at lower matric suction 

comparatively to the other soil types. In dense sands, the interparticle contact stress 

dominates resistance to loading, which is why changes in matric suction only have a 

minimal effect on the normalized tip resistance. There is significant scatter is 

normalized tip resistance for the silty sand from calibration chamber testing in Yang 

and Russell (2015b). The scatter could come from several factors that include sample 

preparation, and competition between matric suction and density controlling test 

behavior. There does appear to be an increasing trend for normalized tip resistance with 

increasing matric suction.  

 The friction ratio is also useful for CPT analysis for determining soil type. There 

is limited data, in the literature, regarding, the friction ratio and how it is affected by 

matric suction. The only published study, other than this dissertation, where friction 

ratio measurements are presented with subsequent matric suction measurements is 

Lehane et al. (2004). The results are presented with the results from field-testing in 

Figure 7.8. There appears to be a strong dependence on soil type and matric suction 

range on friction ratio. Figure 7.8 shows the friction ratio range increasing with 

increasing plasticity and matric suction. There are several outliers especially from the 

North Base and Goldsby field data, however the majority falls in a similar range. 

 The current methods of soil type identification using CPT database on Roberson 

and Campanella (1983) has difficulty accounting for unsaturated soil. Table 7.1 shows 

CPT data from different dates at Goldsby. The fluctuations in soil moisture content 

causes the soil type predictions to fluctuate for the same material. The normalized tip 

resistance and friction ratio plots in Figure 7.7 and Figure 7.8 show clear delineations in 
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soil type as a function of matric suction. These should be used in combination with 

Robertson and Campanella (1983) to improve soil type predictions using CPT data.  

 

Figure 7.14: Normalized tip resistance versus matric suction for all test data 
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Figure 7.15: Friction ratio versus matric suction for all test data 
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7.5 Application of unsaturated spherical cavity expansion theory to cone 
penetration test results 

 

Just as cylindrical cavity expansion has shown to be a useful tool in the 

interpretation of unsaturated pressuremeter testing the spherical version of the equations 

are useful for CPT interpretation in unsaturated soils. A methodology similar to that 

applied in the interpretation of PMT in unsaturated soil was applied to CPT. The tip 

resistance in this analysis is analogous to the ultimate cavity pressure in spherical cavity 

expansion analysis. The soil zones developed for North Base and Goldsby were also 

used in this analysis to include a range of soil types. The assumptions used in section 

7.4 for cylindrical cavity expansion were also used in spherical cavity expansion. Some 

main differences are as follows: 

1. The elastic modulus in cylindrical cavity expansion was assumed equal 

to the pressuremeter modulus. In spherical cavity expansion, the elastic 

modulus was also assumed to equal pressuremeter modulus from similar 

dates and depths.  

2. Parameters including cohesion, c, and friction angle, φ were assumed 

constant for various layers and depths for ease of analysis and 

presentation. For example, in volumetric strain curves for each soil zone 

the data is made of tests from different depths, which would have 

different mean net normal stress, p, and potentially different soil 

parameters. These were assumed constant; however, these parameters 

can be adjusted by the user to account for any specific area of interest in 

a particular soil profile. 
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The soil at North base was divided into an upper zone, above 4 feet, of high 

plasticity (PI = 30) material and classified as Zone 1. The soil below 4 feet at North 

Base is lower plasticity material than Zone 1 (PI = 20), and is classified as Zone 2. The 

soil at Goldsby is relatively uniform, and is all low plasticity material (PI = 10), this is 

classified as Zone 3. Tip resistances collected from each soil zone were normalized by 

overburden pressure. For each test date three tests were performed. The results of these 

three tests were averaged for each date and plotted with their corresponding matric 

suction from the day of the test. The result of this is presented in Figure 7.17. It shows 

normalized tip resistance versus matric suction. The data shows relatively low r2 values 

however, there does appear to be a strong and undeniable positive correlation between 

increasing matric suction and normalized tip resistance. 

Volumetric strain in the plastic zone during spherical cavity expansion was back 

calculated from CPT results. The soil parameters for each depth and zone were used to 

make the calculation. A general curve for volumetric strain versus matric suction was 

constructed using the linear relationship between normalized tip resistance and matric 

suction. This eliminates a majority of the scatter in the results and provides curves that 

can be used to make predictions for similar soils. The result of this back calculation and 

refinement of the volumetric strain curves is presented in Figures 7.18-7.20.  
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Figure 7.16: Normalized cone penetration parameters versus matric suction used 
in spherical cavity expansion analysis 
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Figure 7.17: Volumetric strain in the plastic zone versus matric suction for Zone 1 
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Figure 7.18: Volumetric strain in the plastic zone versus matric suction for Zone 2 
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Figure 7.19: Volumetric strain in the plastic zone versus matric suction for Zone 2 
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the smallest range of matric suctions and therefore has the largest normalized suction 

range. 

 
7.6 Empirical approach for predicting the influence of matric suction on SPT 

parameters 
 

Standard penetration test interpretation in unsaturated soils can be extremely useful due 

to the widespread use of the test for geotechnical investigations. In Figure 7.9 the N-

values, corrected for overburden pressure, obtained at the North Base and Goldsby site 

are plotted against the matric suction obtained at specific test depths on corresponding 

test dates. The N1(60) which is a standardization for the N-value based on the 

overburden and a hammer efficiency of 60% was used to normalize SPT values. The 

lower graph in Figure 7.9 shows the uncorrected N-value plotted against suction for 

comparison. 

 It can be seen from Figure 7.9 that by accounting for overburden pressure, an 

obvious trend results in the corrected N-Value versus suction results. While the degree 

of correlation is not terribly strong, as indicated by r2, there is a noticeable increase in 

corrected N-value as suction increases, as expected. The scatter observed is likely due 

to natural variations in soil type, density, stress history, etc. that was also observed to 

affect the normalized CPT tip resistance. Figure 7.9 can be used to provide a rough 

quantitative indication of expected changes in corrected N-values due to suction 

changes. As with other correlations, care must be used in this application due to the 

limited number of sites investigated. 
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Figure 7.20: Volumetric strain versus normalized matric suction for all soil zones 
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Figure 7.21: SPT N-value and N1(60) from North Base and Goldsby versus matric 
suction 
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 Conclusions and Recommendations 

8.1 Major contributions of the research 
 

This study involved monitoring soil moisture content and conducting in situ 

tests over about a two-year period at two test sites underlain by fine-grained soils. The 

in situ tests performed included the pressuremeter test (PMT), cone penetration test 

(CPT), and standard penetration test (SPT). The results of these tests were analyzed to 

identify relationships between matric suction and in situ test parameters. Unsaturated 

cavity expansion analysis was used to analyze the results in order to use volumetric 

strain in the plastic zone to predict how changes in matric suction will affect in situ test 

results.  

The PMT is a useful tool for predicting bearing capacity and settlement of 

shallow foundations. Model footing and MPMTs tests were also performed on a fine-

grained soil at variable degrees of saturation. The current methods of analysis for 

prediction of bearing capacity and settlement based on pressuremeter analysis are 

evaluated and suggestions for modifications were made for applications to unsaturated 

soils.  

The following are considered the major contributions of this research: 

1.  A unique and valuable dataset including the results of PMTs at two fine-grained 

soil sites, with accompanying measurements of soil moisture content 

determinations, total suction determinations, and other supporting laboratory test 

data was developed. Similar datasets were developed for CPTs and SPTs. These 

rich data sets provide a basis for researchers to develop and validate constitutive, 
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analytical and numerical models to advance techniques for in situ 

characterization of unsaturated soils. 

2. Empirical relationships between matric suction and pressuremeter parameters 

including: limit pressure, pressuremeter modulus, and unload-reload modulus 

were developed for different soil types encountered at the test sites. In addition, 

relationships including the limited data that could be extracted from the 

literature, were developed, which expanded the knowledge gained through the 

current study. While empirical relationships have limitations, especially in light 

of the limited amount of data available for unsaturated soils, they are important 

to give engineers some insight into the problem of characterizing sites with 

variable saturation. For example, through the proposed relationships, an 

engineer can see how variations in matric suction can produce a change in limit 

pressure as well as get an idea of the potential magnitude of that change. This is 

especially important considering that subsurface exploration and in situ testing 

often takes place during hot dry months and periods of drought, during which 

soil strengths and stiffness are highest. 

3. Empirical relationships between matric suction and CPT parameters including: 

tip resistance, and sleeve friction, were also developed for different soil types 

encountered at the test sites. Further empirical relationships between matric 

suction and standard penetration test N-value and N1(60) were also developed. 

As mentioned above, such relationships are non-existent and while they must be 

used with caution in recognition of their inherent uncertainty, they are incredibly 
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valuable to provide engineers with some insight into how changes in saturation 

may influence in situ test results used for geotechnical analysis and design.   

4. The use of unsaturated cylindrical cavity expansion theory for prediction of limit 

pressures under fluctuating soil moisture conditions was further investigated. 

This involved developing a theoretically based approach to estimating limit 

pressure as a function of changing suction. This method builds on earlier work 

by Tan (2005) and, while still considered preliminary due to limited validation, 

it provides another tool for engineers to address in situ test results in unsaturated 

soils. 

5. In a similar manner to the PMT, a method to apply unsaturated spherical cavity 

expansion theory for prediction of tip resistance under fluctuating soil moisture 

conditions was provided, again following on the work of Tan (2005).  

6. A unique and incredibly valuable dataset was obtained by conducting model 

scale footing tests and miniature pressuremeter tests in unsaturated soil prepared 

to different moisture conditions. The dataset includes load-displacement curves 

from five footing tests, pressuremeter test curves from all five test beds, water 

content and total suction data from test beds as well as other supporting 

laboratory data. Observations from this testing were extremely valuable in 

providing insight into the use of PMT for shallow foundation analysis in 

unsaturated soil. As a result, recommendations for the use of the PMT in 

unsaturated soil were developed in this dissertation.  Further, the data will be 

valuable for use by other researchers working in the field; footing data from 
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unsaturated soils is incredibly scarce and data with additional in situ tests are 

virtually non-existent.  

 

8.2 Conclusions based on pressuremeter testing in unsaturated fine-grained soils 
 

1. The total suction measurement is significantly affected by the osmotic suction 

component using the WP4 device. It was expected that total suction would be 

nearly equal to matric suction; however, the difference was observed to be large 

and significant. The matric suction was estimated and results were compared to 

pressure plate, and total suction measurements. The resulting matric suction 

estimation based on Zapata et al. (2000) appeared to be an accurate 

representation.  

2. At the two fine-grained soil sites examined in this research, fluctuations in soil 

moisture conditions caused variation in pressuremeter results. Pressuremeter 

parameters including: limit pressure (PL), pressuremeter modulus (EP), and 

unload-reload modulus (ER), all showed sensitivity to changes soil moisture 

fluctuation. 

3. The limit pressure (PL) at North Base and Goldsby showed positive correlation 

with matric suction. In general, it was observed that as matric suction increased, 

limit pressure also increased.  

4. The pressuremeter and unload-reload moduli showed positive correlation at 

North Base with matric suction. At Goldsby, there was little observed 

correlation between matric suction and moduli. This may indicate that the 

pressuremeter results in unsaturated fine-grained soils are sensitive to soil type. 
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However, it was observed that the relationships between suction and moduli at 

both sites involved considerably more scatter. This is likely because moduli are 

based on small volume change measurements and therefore more sensitive to 

borehole disturbance, soil non-uniformities, and test accuracy. 

5. The at-rest earth pressure coefficient measured from the pressuremeter at both 

sites is much higher than what is typically found for similar soils. There does 

appear to be some correlation between matric suction and at-rest earth pressure 

and matric suction at both field sites. The observed trend was that as matric 

suction increased the at-rest earth pressure coefficient increased. 

8.3 Conclusions based on cone penetration testing in unsaturated fine-grained soils 
 

1. Soil moisture fluctuation has a direct impact on CPT results at two fine-grained 

soil field sites. The tip resistance was shown to increase with increasing matric 

suction at both field sites.  

2. The skin friction increased with increasing matric suction at one site, but 

showed little correlation at the other. The site with strong correlation between 

matric suction and skin friction had higher plasticity index.  

3. The Robertson and Campanella (1983) method for prediction of soil type based 

on CPT results is impacted by unsaturated soil conditions. CPT data from the 

same depth with different soil moisture conditions results in different soil type 

estimation based on Robertson and Campanella (1983). The normalized tip 

resistance and friction ratio versus matric suction show clear delineation of soil 

type. This can be used in combination with Robertson and Campanella (1983) to 
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provide a range of soil types for a particular result with various soil moisture 

conditions.  

  

8.4 Conclusions based on model footing and miniature pressuremeter testing 
 

1. The degree of saturation of the soil test bed played a direct role in the ultimate 

bearing capacity of the model footing. Test beds with high degree of saturation 

showed lower bearing capacities. It was observed that as degree of saturation 

decreased, ultimate bearing capacity increased.  

2. Miniature pressuremeter tests showed increasing limit pressure with increasing 

matric suction. The pressuremeter modulus and unload-reload modulus showed 

a small tendency to increase with increasing matric suction; however, there is 

significant scatter in the data.  

3. The prediction method for ultimate bearing capacity based on measured limit 

pressure described by Briaud (1992) was evaluated. The recommended bearing 

capacity factor, k=0.8 (Briaud 1992), under predicts ultimate bearing capacity. 

An adjustment of the bearing capacity factor to k=1.5, provides predictions 

comparable to measured results.  

4. The bearing capacity factor was derived for unsaturated soils based on a 

simplified analysis from Briaud (1992). Three soil conditions were considered: 

1) zero friction angle, 2) high cohesion, low friction angle and 3) low cohesion, 

high friction angle. The analysis indicates changes in matric suction have no 

effect on bearing capacity factor because the increase in matric suction is 

isotropic.  
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5. Settlement was predicted using the equations from Baguelin et al. (1978) and 

Janbu et al. (1956). The predictions show that at low matric suction, the 

equations over predict settlement.  At higher matric suction values, the equations 

under predict settlement. A correction factor was created based on the slope of 

the measured versus predicted settlement. The settlement equations were divided 

by the correction factor to provide a closer estimate of measured settlement.  

8.5 Conclusions based on application of unsaturated cavity expansion results 
 

1. A method was established to normalize matric suction. This method is based on 

measuring the linear portion of the soil water characteristic curve. Subsequent 

matric suction values are divided by this linear portion to provide a normalized 

matric suction value.  

2. The two field sites were divided into three general categories based on similar 

soil conditions. North Base was divided into two categories based on distinctly 

different soil conditions between an upper and lower layer. Volumetric strain in 

the plastic zone was determined based on the relationship between limit pressure 

and matric suction. It was observed that volumetric strain in the plastic zone 

decreased with increasing normalized suction.  

3. Volumetric strain in the plastic zone for tip resistance decreased with increasing 

normalized matric suction. 

4. A method was created to predict changes in limit pressure for a given 

pressuremeter result. The method uses volumetric strain in the plastic zone as a 

function of matric suction. The limit pressure was estimated to be 96% of the 

measured value based on test data from the same site.  
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5. A method was created to predict changes in tip resistance for a given cone 

penetration test result. The method uses volumetric strain in the plastic zone as a 

function of matric suction. 

8.6 Recommendations for future research 
 

1. Pressuremeter, cone penetration, standard penetration testing on other soil types 

with matric suction measurements to continue to build the database of results. 

This will also be useful for prediction of tip resistance and limit pressures using 

the methods described in Chapter 7. 

2. Pressure plate testing and tensiometers should be employed for all future testing 

to ensure accurate measurement of matric suction. 

3. Further tests involving the prediction of ultimate bearing capacity of shallow 

foundations using the pressuremeter should be performed on a variety of soil 

types. 

4. The bearing capacity factor for predicting ultimate bearing capacity on 

unsaturated soil should be investigated further.  

5. The settlement predictions made with pressuremeter parameters should be 

evaluated on other unsaturated soil types. The trends observed to create the 

correction factor for settlement prediction should be evaluated on other soil 

types. 

6. The at-rest earth pressure predictions with a pressuremeter should be more 

thoroughly investigated because test data showed it to be much higher than 

typical values in the literature.  
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Appendix 

The corrected pressure and volume curves for Goldsby and North Base are shown in 

Figure A.1-A.25. It is important to note that the first tests completed in February and 

March of 2013 at North Base, were completed at a depth of 6 feet. The test depth 

thereafter was adjusted to 5 feet because the water table at the site was around 9 feet, 

and so the deepest test needed to be raised to 7 feet. It was assumed that the small 

change in depth had minimal effect on test results. Tests conducted early in 2013 have 

stress-strain curves that indicate stiffer soil compared to tests conducted at later times. 

The majority of tests conducted after April of 2013 showed a similar grouping of tests 

results. The softest soil response occurred in August of 2014. 

 

Figure A. 1: Corrected pressure-volume curve for Goldsby on 2/1/2013 
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Figure A. 2: Corrected pressure-volume curve for Goldsby on 3/13/2013 

 

Figure A. 3: Corrected pressure-versus volume curve for Goldsby on 4/15/2013 
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Figure A. 4: Corrected pressure-versus volume curve for Goldsby on 5/2/2013 

 

Figure A. 5: Corrected pressure-versus volume curve for Goldsby on 6/10/2013 
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Figure A. 6: Corrected pressure-versus volume curve for Goldsby on 10/16/13 

 

Figure A. 7 Corrected pressure-versus volume curve for Goldsby on 1/8/2014 
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Figure A. 8: Corrected pressure-versus volume curve for Goldsby on 3/31/2014 

 

Figure A. 9: Corrected pressure-versus volume curve for Goldsby on 7/28/2014 
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Figure A. 10: Corrected pressure-versus volume curve for Goldsby on 8/22/2014 

 

Figure A. 11: Corrected pressure-versus volume for Goldsby on 10/17/2014-A 
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Figure A. 12: Corrected pressure-versus volume curve for Goldsby on 10/17/2014-
B 

 

Figure A. 13: Corrected pressure-versus volume curve for Goldsby on 7/14/2015 
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Figure A. 14: Corrected pressure- versus volume curve for North Base on 2/1/2013 

 

Figure A. 15: Corrected pressure-versus volume curve for North Base on 3/11/2013 
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Figure A. 16: Corrected pressure-versus volume curve for North Base on 4/12/2013 

 

Figure A. 17: Corrected pressure-versus volume curve for North Base on 4/30/2013 
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Figure A. 18: Corrected pressure-versus volume curves for North Base on 
10/11/2013 

 

Figure A. 19: Corrected pressure-versus volume curves for North Base on 1/7/2014 
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Figure A. 20: Corrected pressure-versus volume curves for North Base on 
3/31/2014 

 

Figure A. 21: Corrected pressure-versus volume curves for North Base on 
7/25/2014 

3/31/2014

Corrected Volume (in.3)

0 10 20 30 40 50 60 70

P
re

ss
ur

e 
(p

si
)

0

20

40

60

80

100

3 ft.  
5 ft. 
7 ft.  

7/25/2014

Corrected Volume (in.3)

0 10 20 30 40 50 60

P
re

ss
u

re
 (

p
si

)

0

20

40

60

80

100

120

3 ft. 
5 ft. 



203 

 

Figure A. 22: Corrected pressure-versus volume curves for North Base on 
8/22/2014 

 

Figure A. 23: Corrected pressure-versus volume curves for North Base on 
10/31/2014-A 
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Figure A. 24: Corrected pressure-versus volume curves for North Base on 
10/31/2014-B 

F  

Figure A. 25: Corrected pressure-versus volume curves for North Base on 7/15/15 
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The plot for North Base for the test performed on 2/4/2013 is shown in Figure A.26. 

This test shows average tip resistance, and skin friction of 45 tsf, and 3.5 tsf, 

respectively. The average water content at the peak is nearly 16% while the matric 

suction is 55 psi. 

 The CPT data for North Base for the tests performed on 5/6/2013 is shown in 

Figure A.27. The average tip resistance for this date was 25 tsf; average sleeve friction 

is 2.0 tsf. The average moisture content is 25% and suction is 30 psi. CPT data for tests 

conducted at North Base on 9/3/2013 is presented in Figure A.28. This data has an 

average tip resistance of 50 tsf, with a corresponding skin friction value of 2.5 tsf. The 

average water content, and matric suction for these tests is 20% and 40 psi. Based on 

the data alone there is a noticeable trend between fluctuation in matric suction and its 

effect on tip resistance and sleeve friction. Similar trends are noticed in the normalized 

data.  

 The CPT data for North Base for tests conducted on 11/21/2013 is presented in 

Figure A.29. This data shows an average tip resistance of 15 tsf with an average sleeve 

friction of 1.0 tsf. The average moisture content for this date is 22%, with a 

corresponding average suction of 10 psi. Cone data for North Base on 2/18/2014 is 

presented in Figure A.30. The average tip resistance and sleeve friction for this date is 

15, and 0.5 tsf, respectively. The average moisture content and matric suction for this 

test date is 24%, and 10 psi, respectively. The test data for these dates is very similar, 

which corresponds well with very similar soil moisture conditions.  

 Cone penetration test data for tests conducted on 9/10/2014 is presented in 

Figure A.31. The average tip resistance and skin friction for this test date is 60 tsf, and 
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2.5 tsf, respectively. The average soil moisture conditions for this date include 18% 

moisture content, and a matric suction of 35 psi. The test data for CPT tests conducted 

on 12/30/2014 is presented in Figure A.32. The average tip resistance for this date is 30 

tsf, with a corresponding sleeve friction of two tsf. The average soil moisture conditions 

are 22% water content and a matric suction of 10 psi.  

 The data from CPT conducted at Goldsby is presented in Figures A.33-A.39. 

The data from tests performed at Goldsby on 2/1/2013 is shown in Figure A.33. The 

average tip resistance, and sleeve friction for Goldsby is 60 tsf, and 1.5 tsf, respectively. 

The soil moisture conditions for this test date are 16% water content, and a matric 

suction of 20 psi. Test data from Goldsby on 5/6/2013 is presented in Figure A.34. The 

average tip resistance and sleeve friction for this site is 50 tsf, and 1.75 tsf. Soil 

moisture conditions for Goldsby on this test date is 15% water content and 14-psi matric 

suction. The CPT data for Goldsby on 7/29/2013 is shown in Figure A.35. The average 

tip resistance, and sleeve friction for this test date is 30 tsf, and 1.0 tsf, respectively. The 

soil moisture conditions for this test date is 17% water content and 12-psi matric 

suction.  

 The CPT data from Goldsby on 11/21/2013 is presented in Figure A.36. The 

figure shows and average tip resistance, and sleeve friction for this date of 40 tsf, and 1 

tsf, respectively. The average soil moisture conditions for this depth are 17%, and 14 

psi, respectively. The CPT data from Goldsby on 2/18/2014 is presented in Figure A.37. 

The site on this date had an average tip resistance on 30 tsf, and an average skin friction 

of 1.0 tsf. The average soil moisture conditions for Goldsby are 17% moisture content, 

and a matric suction of 9.5 psi. The CPT data for Goldsby on 9/10/2014 are presented in 
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Figure A.38. This data shows an average tip resistance of 70 tsf, and an average sleeve 

friction of 3.0 tsf. The average soil moisture conditions for this test date include a 

moisture content of 19%, and a matric suction of 20 psi. Finally, the last test performed 

at Goldsby was on 2/25/2015. The test data for this date are presented in Figure A.39. 

The results show an average tip resistance equal to 40 tsf, and an average sleeve friction 

equal to 1.0 tsf. The average soil moisture conditions for this test date include a 

moisture content of 19%, and a matric suction of 20 psi. 

 

 

Figure A. 26: CPT data for tests performed at North Base on 2/4/2013 

Moisture
Content

(%)

12 14 16 18 20

D
e

pt
h

 (
ft

.)

0

2

4

6

8

10

Matric
Suction

(psi)

0 200 400 600

Tip Resistance (tsf)

0 20 40 60 80 100

Sleeve Friction (tsf)

0 2 4 6

Test 1 
Test 2
Test 3

QT

0 200 400 600 800

FR

0.00 0.05 0.10 0.15 0.20



208 

 

Figure A. 27: CPT data for tests performed at North Base on 5/6/2013 

 

Figure A. 28: CPT data for tests conducted on 9/3/2013 at North Base 
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Figure A. 29: CPT data for tests conducted on 11/21/2013 at North Base 

 

Figure A. 30: CPT data for tests conducted on 2/18/2014 at North Base 
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Figure A. 31: CPT data for tests conducted on 9/10/2014 at North Base 

 

Figure A. 32: CPT data for tests conducted on 12/30/2014 at North Base 
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Figure A. 33: CPT data for tests conducted on 2/1/2013 at Goldsby 

 

Figure A. 34: CPT data for tests conducted on 5/6/2013 at Goldsby 
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Figure A. 35: CPT data for tests conducted on 7/29/2013 at Goldsby 

 

Figure A. 36: CPT data for tests conducted on 11/21/2013 at Goldsby 
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Figure A. 37: CPT data for tests conducted on 2/18/2014 at Goldsby 

 

Figure A. 38: CPT data from tests conducted on 9/10/2014 at Goldsby 
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Figure A. 39: CPT data from tests conducted on 2/25/2015 at Goldsby 
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 Figures A.40-A.44 present the corrected volume versus corrected pressure 

curves from miniature pressuremeter tests performed prior to model footing bearing 

capacity tests.  

  

 

Figure A. 40: Corrected pressure-corrected volume curves for test on 2/29/2016 
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Figure A. 41: Corrected pressure-corrected volume curves for test on 3/14/2016 

 

Figure A. 42: Corrected pressure-corrected volume curves for test on 3/28/2016 
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Figure A. 43: Corrected pressure-corrected volume curves for test on 5/5/2016 

 

Figure A. 44: Corrected pressure-corrected volume curves for test on 5/27/2016 
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