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Abstract 

High stability Fourier transform infrared (FT-IR) interferometers make it 

possible to conduct experiments designed to identify subtle sample structure changes 

resulting from external perturbations.  In particular, variable temperature diffuse 

reflection infrared Fourier transform spectroscopy (VT-DRIFTS) can be used to 

associate specific structure changes with incremental additions of thermal energy by 

observing the sample in-situ while heating, eliminating the need for separate 

measurements that can introduce error.  This fast, low cost spectroscopic technique 

requires a small sample and little preparation, but is complicated by the fact that when 

the sample is heated, the system is also perturbed rendering the data difficult to interpret 

due to so-called “thermal artifacts.” Until now little has been done to understand the 

effect of thermal fluctuations on IR spectra due to instrument response.  In this study a 

thorough characterization of the VT-DRIFTS system led to the identification of the key 

sources of spectral changes, minimization of thermal artifacts, and development of a 

data processing method.  Experimental studies have shown that the main causes of 

temperature-induced artifacts are thermal expansion-related alignment changes in the 

optical transmission system, especially near the sample holder and the interferometer, 

and modulated and unmodulated thermal emission from the sample itself and 

instrument components, which affect the detector response at high temperatures.  

Incorporating thermal barriers and redesigning the sample holder to incorporate quartz 

has decreased temperature-induced alignment changes.  Incorporating cube-corner 

mirrors at the interferometer and blocking 1/2 the IR beam between the interferometer 

and the sample solves the modulated thermal emission problem by the method of 



xix 

destructive interference of the noise waives.  Unmodulated emission (basically, excess 

heat) can be accounted for by scaling the data post-collection using computational 

macros.  Thus, the effects of temperature on IR spectra have been characterized, and 

solutions have been proposed for variable temperature instrument optimization.  

Capabilities of the VT-DRIFTS methodology are demonstrated in this work. 

 



 1 

 

 

1 Chapter 1: Introduction 

 

 

1.1 Spectrochemical Analysis 

 In science the ability to measure properties of matter indirectly based on the 

interaction of radiant energy with physical matter is of utmost importance.  A number of 

analytical techniques rely on the properties of interaction of electromagnetic radiation 

with a sample, and they are collectively known as Spectrochemical methods of analysis.  

These systems employ a source of electromagnetic energy, an optical system to deliver 

and capture electromagnetic waves, a detector, and a means of placing the sample in the 

path of the electromagnetic radiation beam.   

 

1.1.1 Spectral Range 

The wavelength (or frequency) of electromagnetic radiation is one factor that 

determines the type of information obtained during Spectrochemical analysis.  For 

example, X-ray diffraction can be used to measure interatomic distances in a crystal to 

determine its structure, or its identity based on comparisons with previously published 

data; near infrared (near-IR) spectroscopy can be used to detect overtone and 

combination vibrations for qualitative and quantitative analysis of organic and inorganic 

molecules; ultraviolet-visible (UV-vis) spectroscopy measures electron transitions from 

ground energy states to excited states; gamma-ray spectroscopy provides information 
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regarding gamma-emitters in the sample; and mid infrared (mid-IR) spectroscopy 

measures absorption of radiation resulting in changes to molecular rotations and 

fundamental vibrations, providing insight into the identity of the species present, their 

amounts, and their chemical environments. 

Above absolute zero temperature, all atoms in molecules experience a periodic 

motion known as a “molecular vibration.” These vibrations depend on the mass of the 

atoms and their interactions with other atoms in the molecule and the local environment.  

Infrared electromagnetic radiation wavelengths extend from the nominal red edge of the 

visible spectrum at 700 nm to about 1  mm (a frequency range from ~430  THz to 

~300  GHz), and includes most of the thermal radiation emitted by objects near room 

temperature due to molecular vibrations.  For mid-IR spectroscopy, the instrument 

range is typically 484 to 4033 cm–1.[1] 

Infrared radiation is emitted or absorbed by molecules when they change 

rotational-vibrational energy states.  Thus, determining the vibrational spectrum of a 

material can provide information about molecular bonding, which can aid in 

determining structure and composition. 

 

1.1.2 Samples for Spectrochemical Analysis 

The physical form of the sample is another factor to consider when choosing a 

spectroscopic analysis method, because it determines the most appropriate type of 

measurement technique.  Gasses can be analyzed in sealed cells or flow cells, liquids 

can be held in transparent cuvettes or flow cells, and solids are generally analyzed in 
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pellet, film, crystal, or powder forms.  The optical systems used for analyses are 

dictated by the type of sample holder employed. 

The mode of interaction between electromagnetic radiation energy and sample 

also varies with spectroscopic techniques.  In emission spectroscopy, electromagnetic 

radiation is emitted from excited samples as they return to ground state energies.  In 

elastic scattering spectroscopy, the sample reflects the radiation beam, causing it to 

deviate from its original path, providing information regarding the morphology of the 

sample.  In absorption spectroscopy, radiation irradiates the sample and some 

wavelengths are absorbed.  The wavelength and amount of absorbed radiation are 

related to the identity and concentration of particular sample components.  Transmission 

spectroscopy is most suitable for solutions and gaseous mixtures; attenuated total 

reflection spectroscopy is used for samples with negligible transmittance and 

reflectance properties, such as organic solids; and reflection spectroscopy (diffuse and 

specular) is employed to analyze the composition of powders and rough surfaces. 

 

1.1.3 Diffuse Reflection Fourier Transform Infrared Spectroscopy (DRIFTS) 

Diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) is used to 

analyze powder samples or rough surfaces by irradiating them with infrared radiation.  

Diffusely reflected radiation is collected, and absorption band wavenumber and 

intensity provides qualitative and quantitative information about the solid sample. 

In general, infrared spectroscopy is used to observe molecular vibrations.  

Variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-

DRIFTS) is a method used for analysis of solid samples in powder form that requires 
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little sample preparation.  [2]  VT-DRIFTS represents a unique approach to thermal 

analysis, and can be used to monitor real-time changes in chemical interactions between 

sample constituents and their environments.[3-12] 

Diffuse reflection FTIR spectroscopy has been used for qualitative analyses 

(when absorption band frequencies are used to identify sample constituents), 

quantitative analysis (when absorption band intensities are correlated with the 

concentrations of various sample components),[13]  and for structural analysis (when 

absorption band frequencies provide information regarding chemical bonding in the 

sample).[7, 9-12, 14]  In conjunction with thermogravimetry (TG) and differential 

scanning calorimetry (DSC), VT-DRIFTS can be used for temperature-dependent 

structural characterizations of solid samples,[3, 4, 15]  whereas TG combined with mass 

spectrometry (TG-MS) provides complementary structural information regarding 

evolved products.[6, 8]  VT-DRIFTS has been employed to study water desorption and 

readsorption,[10, 16]  thermal decomposition processes,[17]  and solid state chemical 

reactions.[7, 8]  In addition, quantitative VT-DRIFTS analyses have been used to 

determine chemical reaction activation energies.[3]  VT-DRIFTS in combination with 

TG-MS has been used in our research group to study the interactions of clays with 

benzoic acid, salicylic acid, and acetylsalicylic acid by observing dehydration 

processes, and thermal desorption mechanisms of various organic compounds adsorbed 

on clays.  [2, 10-12, 18] 
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1.2 Theory of DRIFTS 

1.2.1 Kubelka-Munk Theory of Diffuse Reflection 

Due to the fact that powders are inhomogeneous on the scale of light 

wavelengths, every diffuse reflectance spectrum depends not only on the properties that 

govern interactions between light and matter, but also the scattering characteristics of 

the specific sample.[19]  This makes the diffuse reflection light-sample interaction 

model complex, and, of the many diffuse reflection theories, the Kubelka-Munk 

description is the most widely accepted. 

Diffuse reflection theory can be described by comparisons to the theory of 

absorbance.  In absorbance, radiation intensity decreases exponentially as a function of 

the distance that light travels through a sample.  A constant fraction of radiation is 

absorbed after each infinitesimal step through the sample.  Thus, longer radiation travel 

distances to a particular sample location result in smaller amounts of light reaching that 

point, and thus, less radiation is available to be absorbed or transmitted from that point 

forward.   

The same is true for scattering.  As the beam penetrates into the sample, it is 

scattered at the first grain boundary that it encounters.  Thus, like absorption, only a 

fraction of the incident radiation continues to travel along the same path, and the 

intensity of radiation available for scattering at the next grain boundary becomes 

smaller.  The rate of change of the intensity of scattered radiation at point x along the 

beam path is a negative function of the incident radiation that made it to point x.[19] 

dIs(x) / dx = –I(x)          (1.1) 
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At the interface between two transparent media, incident radiation will be 

partially transmitted and partially reflected.  The relative intensities of the reflected and 

transmitted beams will depend on the refractive indices of the two transparent media 

and the angle of incidence. 

The angle of refraction for the transmitted portion of the beam can be calculated 

by Snell’s law:[20] 

n1 sin θ = n2 sin φ          (1.2) 

where n1 and n2 are the refractive indices of the two media, θ is the angle of incidence, 

and φ is the angle of refraction. 

The incident beam is characterized by the amplitude of the perpendicular 

component (perpendicularly polarized radiation, i.e. transverse electric, s (senkrecht) 

waves, wherein the electric field oscillates in the direction perpendicular to the plane of 

incidence) and the parallel component (parallel polarized radiation, i.e. transverse 

magnetic or p (parallel) waves), wherein the electric field oscillates in the direction 

parallel to the plane of incidence. 

Because the angle of refraction is related to the refractive indices of the media, 

the amplitude of the reflected portion of the beam can be calculated from the angle of 

incidence and angle of refraction by Fresnel equations for the parallel and perpendicular 

components of the beam:  

rs = –(sin(φ – θ)/sin(φ + θ))    (1.3)  

for the perpendicular component, and 

rp = tan(φ – θ)/tan(φ + θ)            (1.4) 

for the parallel component. 
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The Kubelka-Munk theory requires that the particle size is much smaller than 

the sample thickness, and that the absorbing and scattering media are uniformly 

distributed throughout the sample.  After incident radiation penetrates into the sample, it 

is scattered at many points, indicating changes in direction of the radiation and an 

increase in its path length through the sample.  The Kubelka-Munk theory results in a 

mathematical relationship between the scattering and absorption coefficients of the 

sample and the reflectance of the sample: 

k/s = (1 – R)2/(2R),        (1.5) 

where k is sample absorption coefficient, s is the sample scattering coefficient, and R is 

the sample reflectance.  Note that as the k/s ratio approaches zero, reflectance (R) tends 

towards unity, suggesting high sensitivity discrimination of diffuse reflection for weak 

absorbers.[19] 

 A fine powder is made up of small particles of solids.  Each particle has many 

edges, creating localized non-uniformities throughout the sample that deflect the 

incident beam, causing scattering.  Radiation reflected back at an angle equal to the 

incident angle is specularly reflected.  In this case, the beam does not penetrate into the 

sample and thus the reflected beam does not contain any absorption information about 

the sample.  In contrast, diffusely reflected radiation penetrates individual particles.  

Therefore it contains qualitative and quantitative information about the sample. 
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1.2.2 Derivation of the Kubelka-Munk Theory of Diffuse Reflection 

The importance of the Kubelka-Munk theory is in the ability to extract 

quantitative information about a sample from reflectance data.  For comparison, 

quantitative absorption spectroscopy relies on the use of Beer’s Law, 

𝛼 𝑇, 𝜆 = 𝑎𝑏𝐶                                              (1.6) 

which states that absorbance of electromagnetic radiation by a chemical species is 

directly proportional to sample absorptivity (a), the beam path length through the 

sample (b), and the absorber concentration (C).  For powder samples and rough 

surfaces, the beam path is not straight due to multiple reflections in random directions. 

After interacting with a rough surface or powder solid sample, the beam is 

scattered at multiple grain boundaries, and the beam path length for different packets of 

radiation interacting with the sample varies, depending on sample characteristics.  

Although absorption band information can be determined by comparing incident beam 

intensity (IIN) with the reflected beam intensity (IR) by the IR/IIN ratio, extracting 

quantitative information regarding concentrations of absorbing species is more complex 

for diffusely scattering samples. 

The Kubelka-Munk function: 

𝑓 𝑅! 𝜆 = ! !
! !

= !.!"!! ! !
! !

= !!!! ! !

!!! !
                    (1.7) 

relates absolute reflectance (R∞(λ)) to absorber concentration (C).  In equation (1.7), the 

absorbance coefficient k(λ) can be derived from 2.303𝑎 𝜆 𝐶, where 𝑎 𝜆  is the 

absorptivity of the sample, and C is its concentration.[21-23] 

Originally developed for the analysis of paint films,[24]  the Kubelka-Munk 

theory is one of several approximation models that relate sample concentration to 
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sample reflection properties.[19]  Although all models provide approximations of 

diffuse scattering theory, the Kubelka-Munk model is the most widely accepted and has 

been applied to the analysis of various sample types, including: paints, powders, papers, 

and textiles.[3, 6, 7, 9-11, 19, 23, 25-28] 

The complexity of diffuse reflectance stems from the fact that powders are not 

homogeneous on a scale comparable to the wavelength of radiation.  Scattering is 

affected by particle size, and radiation scatters from multiple points inside the sample.  

So, diffusely reflected radiation intensity depends not only on the properties that govern 

the interactions between light and matter, but also on the characteristics of the particular 

sample (e.g. particle size).   

Due to the inherent complexity of the problem, diffuse reflection theories rely 

on a number of assumptions.  The main assumptions are that the thickness of the sample 

layer probed by radiation is very small, and that the thickness of the sample is infinitely 

greater than the radiation penetration distance.[24]  This is applicable to powders 

because only the surface and near-surface layers of the sample are exposed to the 

incident beam.  The particles in the region exposed to radiation must be much smaller 

than the thickness of the radiation penetration distance.  Both the absorbing and 

scattering media must be uniformly distributed through this region.  The Kubelka-Munk 

theory is based on the assumption that incident radiation consists of diffuse 

monochromatic light, and that all detected radiation results from diffuse reflectance.  

The theory works best when samples reflect most of the incident radiation (i.e. >50%). 

The Kubelka-Munk theory describes diffusely reflected radiation as the intensity 

of light propagating through an inhomogeneous medium of randomly oriented particles 
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as a consequence of grain boundary reflections.  The phase angles of scattered 

electromagnetic waves sum to a time average of zero, so diffuse reflectance can be 

characterized by the intensity of the scattered light, thereby rendering the path of the 

beam irrelevant to the derivation.  The intensity of radiation travelling both downward 

and upward within a sample represents the total intensity reflected, refracted, and 

diffracted.[24]  The amount of radiation scattered (Is) is proportional to the incident 

radiation intensity (I) multiplied by the scattering coefficient s 

𝐼! ∝ 𝑠𝐼                                                         (1.8) 

!!! !
!"

= −𝐼 𝑥                                                  (1.9) 

This equation is analogous to the absorption law: 

!!!"# !
!"

= −𝐼(𝑥)                                                (1.10) 

However, there is an important difference: incident radiation decreases at each interface 

where radiation is absorbed, but scattered radiation does not “disappear”.  Instead, it 

continues within the sample medium when it reflects at interface boundaries.  Thus, the 

total intensity of scattered radiation decreases only because of radiation absorption. 

The following derivation is an adaptation from Milosevic, et al. [19], which was 

based on the original Kubelka and Munk publication.[24]  First, we define the following 

variables: 

k absorption coefficient, 

s scattering coefficient, 

I+ radiation travelling downward (“transmitted”), 

I– radiation travelling upward (“reflected”), 
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x coordinate along the beam path at a specific depth. 

By scattering in various directions, the effective path length of the beam 

increases.  In a semi-infinite sample illuminated from above, there are two general beam 

components: I+(x) propagating downward and I–(x) propagating upward.  The intensities 

of these two components can be expressed in terms of the sample absorption coefficient 

(k) and the sample scattering coefficient (s). 

As radiation travels into a sample, and as it is reflected back towards the 

incident beam, intensity decreases due to absorption and scattering, which is 

represented by the first terms in equations (1.11) and (1.12).  However, scattered 

radiation remains within the sample and simply changes direction, contributing to an 

increase in intensity of the beam travelling in the opposite direction.   

!"!(!)
!"

= − 𝑘 + 𝑠 𝐼! 𝑥 + 𝑠𝐼!(𝑥)                                (1.11) 

!"!(!)
!"

= − 𝑘 + 𝑠 𝐼! 𝑥 − 𝑠𝐼!(𝑥)                                 (1.12) 

The reversal of the sign in equation (1.12) is due to the opposite direction of travel of 

reflected radiation. 

The total intensity can be expressed as a single first order differential equation 

with a constant coefficient (A): 

!
!"

𝐼!
𝐼!

= − 𝑘 + 𝑠 𝑠
−𝑠 𝑘 + 𝑠

𝐼!
𝐼!

= 𝑨 𝐼!
𝐼!

                    (1.13) 

The solution is 

𝐼 𝑥 = 𝑒𝑨!𝐼(0)                                               (1.14) 

𝑨𝑥 =   − 𝑘 + 𝑠 𝑥 1 0
0 −1 + 𝑠𝑥 0 1

−1 0                           (1.15) 

thus, 



 12 

𝑒𝑨! =

𝑐𝑜𝑠ℎ !
!

!
!
+ 2 𝑠𝑥 −

!
!
!!

!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥 !

!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥

− !
!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥 𝑐𝑜𝑠ℎ !

!
!
!
+ 2 𝑠𝑥 +

!
!!!

!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥

  

(1.16) 

or,  

𝑒𝑨! =
𝑎!! 𝑎!"
𝑎!" 𝑎!!                                                (1.17) 

where 

𝑎!! = 𝑐𝑜𝑠ℎ !
!

!
!
+ 2 𝑠𝑥 −

!
!!!

!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥           (1.18) 

𝑎!" =
!

!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥                             (1.19) 

𝑎!" = − !
!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥                           (1.20) 

𝑎!! = 𝑐𝑜𝑠ℎ !
!

!
!
+ 2 𝑠𝑥 +

!
!!!

!
!
!
!!!

𝑠𝑖𝑛ℎ !
!

!
!
+ 2 𝑠𝑥         (1.21) 

For a sample of thickness t we can rewrite equation (1.13) as 

𝐼!
0 = 𝑨 𝐼!"

𝐼!
                                                (1.22) 

and redefine the upward and downward components to represent radiation intensity 

incident on the sample (IIN), radiation intensity transmitted (IT) through the sample of 

thickness (t), and radiation intensity reflected (IR) as 

𝐼!" = 𝐼! 0                                                   (1.23) 

𝐼! = 𝐼! 𝑡                                                   (1.24) 
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𝐼! = 𝐼! 0                                                   (1.25) 

Because no radiation enters the sample from the side opposite the incident beam,  

𝐼! 𝑡 = 0                                                      (1.26) 

With these definitions, equations (1.18 – 1.21) can be rewritten as: 

𝐼! = 𝑎!!𝐼!" + 𝑎!"𝐼!                                             (1.27) 

0 = 𝑎!"𝐼!" + 𝑎!!𝐼!                                             (1.28) 

Overall sample reflectance and transmittance are defined in terms of the incident 

radiation intensity 

𝑅 = !!
!!"

= !! !
!! !

                                                (1.29) 

𝑇 = !!
!!"

= !! !
!! !

                                                (1.30) 

However, T can also be expressed as: 

𝑇 = 𝑎!! −
!!"!!"
!!!

                                            (1.31) 

which, for a sample of thickness t, can be defined as absolute reflectance 𝑅! when 

𝑡 → ∞.  This yields the Kubelka-Munk result: 

𝑅! = !

!!!!!
!
!
!
!!!

= 1 + !
!
− !

!
!
!
+ 2                     (1.32) 

Note that as !
!
 approaches zero, 𝑅!nears unity.  Also, as 

!
!
 increases from zero, the 

absolute reflectance (𝑅!) decreases sharply.  Thus, the theory predicts that large sample 

reflectivity changes will result from small changes in concentration for weak absorbers.   

 Reflected radiation can be measured, and, using the derived relationship, 

absorption characteristics of the sample can be extracted from these measurements.  

Thus, to obtain a spectrum for which a plotted variable is directly proportional to the 
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concentration of the absorbing species, as is the case for Beer’s Law (A = abC), the 
!
!
 

ratio must be expressed in terms of reflectance (R). 

Rearranging equation (1.32) yields the well-known Kubelka-Munk transform: 

                                                   
!
!
= !!!! !

!!!
                                                             (1.33) 

This equation describes the reflectance of a sample of semi-infinite thickness 

with negligible front surface (i.e. specular) reflectance.  This diffuse reflectance 

transform is widely incorporated into software for commercial instruments.[19] 

Note that as 𝑘 → 0,  𝑅! → 1, (i.e. all the incident radiation is eventually 

reflected),  

!"!(!)
!"

= − 𝑘 + 𝑠 𝐼! 𝑥 + 𝑠𝐼!(𝑥)                                  (1.34) 

!"!(!)
!"

= − 𝑘 + 𝑠 𝐼! 𝑥 − 𝑠𝐼!(𝑥)                                   (1.35) 

When k = 0, these equations become: 

!"!(!)
!"

= −𝑠𝐼! 𝑥 + 𝑠𝐼!(𝑥)                                       (1.36) 

!"!(!)
!"

= −𝑠𝐼! 𝑥 − 𝑠𝐼!(𝑥)                                       (1.37) 

Also, at any point x within the sample, the intensity of the downward travelling 

beam,  𝐼!(𝑥), is equal to the intensity of the upward travelling component, 𝐼!(𝑥), due to 

similar reflection, refraction, and diffraction processes 

𝐼± 𝑥 =    𝐼±(0)                                                 (1.38) 

Reflected radiation has two basic components: radiation diffusely reflected from 

the sample surface and specular front surface reflection (IS), and radiation diffusely 
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reflected after penetrating into the sample, where it was scattered by particles back to 

the surface (IDIFF).   

R = IS + IDIFF                                                 (1.39) 

As stated earlier, in diffuse reflectance measurements, samples should be illuminated 

with diffuse radiation, and diffusely scattered radiation should then be detected.  

Specularly reflected radiation does not penetrate the sample, and therefore does not 

carry information regarding the absorption properties of the sample.  However, specular 

reflection increases the magnitude of reflected radiation reaching the detector, which 

creates unwanted spectral artifacts.  Therefore, it is imperative that the specular 

component of reflected radiation be removed or suppressed.  This dictates the design of 

diffuse reflection optics.  For example, in an integrating sphere, the sample can be 

irradiated with diffuse radiation, thus suppressing the intensity of the specular 

component.  In the “Praying Mantis” diffuse reflection accessory (DRA) used in this 

research, sample illumination and radiation collecting optics are designed so that the 

specular reflection component is not directed to the detector. 

 

1.2.3 Diffuse Reflection Accessories 

Diffuse reflection accessories are designed for analyses of materials that scatter 

incident radiation.  Many materials exhibit diffuse reflection, including powders, solids, 

films, and emulsion samples.  In diffuse reflection spectroscopy, the specular reflection 

component should be excluded from detection, when possible.   

For the analysis of powder samples, the optical system employed in this study 

includes the “Praying Mantis” (PM) optics, which incorporates elliptical aluminum-
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coated mirrors rather than an integrating sphere.  There are several advantages to using 

the PM optical system instead of an integrating sphere.  First, the focal point of the PM 

has a small diameter, allowing for analyses of samples as small as 3 mm in diameter 

and 1 mm thick.  In contrast, diffuse reflection measurements made by using an 

integrating sphere require samples that are ~12 mm in diameter and several millimeters 

thick.  Second, the sample is orientated horizontally, rather than vertically, as in an 

integrating sphere, allowing for a range of sample types including powders, films, 

emulsions, and solids, and better facilitating powder analyses.  Third, the PM accessory 

is more compact than an integrating sphere, allowing it to occupy the sample 

compartment of commercial instruments more readily.   

 

1.2.4 Fourier Transform IR Spectroscopy 

A Fourier transform infrared (FTIR) spectrometer is used to obtain broadband 

infrared spectra.  Unlike a dispersive IR spectrometer, which employs a monochromator 

for wavelength selection, an FTIR instrument detects radiation at all wavelengths 

simultaneously.  This is known as the multiplex or Felgett Advantage.[20]  An FTIR is 

equipped with a Michelson interferometer, which modulates source radiation and 

permits scanning over the entire spectral range in a few seconds.  The modulated signal 

reaching the detector yields an interference pattern, which is converted into a 2-

dimensional plot of detector signal versus interfering beam retardation called an 

“interferogram” (vide infra).  The Fourier transform algorithm is used to convert 

interferograms into “single beam spectra.”  Measured spectra are “single” beam because 

there is only one path between the radiation source and detector. 
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In order to obtain sample absorbance information from FTIR measurements, a 

reference single beam spectrum representing the maximum radiation intensity that can 

reach the detector is needed for comparison.  The ratio of a sample single beam 

spectrum to a reference single beam spectrum is computed to produce transmittance or 

reflectance spectra, depending on the measurement methodology.  When diffuse 

reflection is employed, the ratio of these single beam spectra yields a reflectance 

spectrum.  Although both transmittance and reflectance spectra can be converted to 

absorbance by computing –log10, absorbance is not proportional to concentration when 

diffuse reflectance measurements are made.  Instead, reflectance spectra are converted 

to Kubelka-Munk format. 

In general, the reference spectrum can either be collected separately (in a single 

beam instrument) or simultaneously with the sample measurement (in a double beam 

instrument).  In UV/vis spectrometry, it is common practice to collect sample and 

reference spectra simultaneously by splitting the source beam and irradiating the sample 

and the reference at the same time.  Double beam operation is very effective, as it 

compensates for atmospheric absorption interferences, alleviating the need to purge the 

instrument, and eliminates effects due to temperature and atmospheric pressure 

fluctuations, which may affect measurements.  In contrast, the use of double-beam 

instruments is very uncommon in FTIR.  Methods for splitting radiation exiting the 

interferometer involve complicated moving optical components, resulting in alignment 

issues that increase measurement noise.  Thus, in a typical single-beam FTIR 

spectrometer, the reference spectrum is collected separately from the sample spectrum.  
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Therefore, a different approach is needed to compensate for spectral variations caused 

by environmental variations that occur between reference and sample measurements. 

 To eliminate fluctuations in atmospheric absorptions, the instrument chamber is 

purged with an inert gas or dry and CO2-free air.  Wavelength-dependence of the source 

spectral radiance, detector responsivity (also a function of the wavelength of incident 

radiation), and optical efficiency of the instrument mirrors are assumed to be constant 

when analyzing the sample and the reference.  However, when this is not true, source 

and detector instabilities are not compensated by single beam operation.  Signal 

averaging scans helps to minimize effects caused by short-term instabilities, but may 

not completely eliminate their effects on the spectra.  The instrument employed in this 

study was typically used to signal average 175 scans to obtain single beam spectra, 

which required about 1 min.  Single beam spectra were ratioed to a reference spectrum 

to obtain reflectance spectra, which were then converted to Kubelka-Munk format.  The 

relevant instrument-specific file type designations and conversions are described in 

Appendix A. 

 

1.3 Research Objectives 

In addition to the factors that must be considered for high-quality isothermal 

analyses by DRIFTS, VT-DRIFTS measurement artifacts can occur due to effects from 

in-situ sample heating.  While heating the sample, temperature changes to the 

instrument components can affect spectra.  In fact, heating samples to high temperatures 

significantly decreases the quality of VT-DRIFTS spectra, complicating data 
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interpretations and obscuring important spectral features associated with chemical and 

physical changes in the sample.[29, 30]   

The goal of this study is to identify the main causes of temperature-induced 

spectral artifacts in VT-DRIFTS spectra, and to develop solutions for the prevention, 

elimination, or reduction of temperature-induced spectral artifacts.  This can be done by 

proper sample preparation, improving instrument component efficiencies, and by 

creating software for post-collection data manipulations.  Eliminating spectral artifacts 

permits observation of subtle chemical changes that would otherwise not be detected.[9, 

10]  
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2 Chapter 2: System Components 

 

 

2.1 VT-DRIFTS Apparatus and Data Collection 

Infrared spectra were collected by using a Mattson Instruments Inc., Nova Cygni 

120 FTIR system.  The apparatus is described in detail elsewhere[1], and a schematic of 

the experimental setup is provided in Figure 2.1.  The sample compartment of this 

instrument is large enough to hold the diffuse reflection optics and the sample holder 

environmental chamber.  A Harrick Scientific Inc.  environmental chamber (Figures 2.3 

and 2.4) was modified to incorporate a nichrome wire heater (Figures 2.2 and 2.3) and a 

K-type thermocouple (Figure 2.2) connected to a Eurotherm 818 Series Temperature 

Controller/Programmer for sample heating (Figure 2.1).  A software macro program 

was used to mediate the actions of the temperature controller and the FTIR to streamline 

experiments. 

VT-DRIFTS instrument control by the macro program is described in Appendix 

B.1, and the macro program is provided in Appendix B.2.  Executable programs utilized 

by the macro program are listed in Appendices B.3-B.7. 
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Figure 2.1 VT-DRIFTS schematic representation. 

 

2.1.1 Reflectance Spectrum Measurements 

After data collection, the operator processes the interferogram data to produce 

single beam spectra, which are ratioed to a reference single beam spectrum to create 

reflectance spectra.  When analyzing variable temperature spectra, two approaches for 

selection of reference spectra are viable.   

In one method, a series of reference single beam spectra are collected for a non-

absorbing material in the sample holder by means of a heating ramp, producing a set of 

reference spectra analogous to the sample spectra but lacking absorption bands.  Macro 

program commands can be used to retrieve sample and reference single beam spectra 
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measured at similar temperatures and then ratio these spectra to produce reflectance 

spectra.  Although this method is somewhat effective for temperature artifact 

compensation, it results in a loss of signal-to-noise ratio (SNR) with increasing sample 

temperature, because an overall decrease in interferogram signal intensity is one of the 

most apparent temperature-induced artifacts in VT-DRIFTS.  In addition, sample 

particle physical changes caused by thermal expansion and cooling may affect spectra 

and are not necessarily reproducible between experiments. 

 In another method, reflectance spectra are calculated by ratioing VT-DRIFTS 

sample single beam spectra to the same reference single beam spectrum, which was 

measured at ambient temperature.  Although temperature-dependent artifacts remain in 

reflectance spectra generated in this manner, particularly for high-temperature 

measurements, spectral signal-to-noise ratio (SNR) is greater and spectra are more 

reproducible because only sample single beam spectrum variations contribute to 

reflectance spectra changes. 

 The macro program used for computing the ratio of sample single beam spectra 

to a single reference spectrum is provided in Appendix B.8.  This software can be 

modified to ratio VT-sample single beam spectra to VT-reference single beam spectra 

by removing the # symbol from lines 27-43 of the code. 

 

2.1.2 Sample Chamber Design.  Heating the Sample 

A modified Harrick Scientific Inc.  environmental chamber was incorporated 

into the VT-DRIFTS instrument to facilitate sample heating (Figures 2.2 and 2.3).  The 

original chamber was modified to incorporate a nichrome wire heater and a K-type 
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thermocouple for better heating efficiency and improved temperature control.  The 

thermocouple was connected to a Eurotherm 818 Series Temperature 

Controller/Programmer.  A stainless steel environmental chamber lid was used to isolate 

the sample holder for control of the gaseous environment (Figure 2.4). 

The sample holder consisted of a steel post attached to the base of the 

environmental chamber.  At the top of the post, a piece of Pt foil was held in place by a 

ring spacer.  The platinum foil and ring attach to the steel post by two screws.  The foil 

and ring create a shallow void to which sample was added (Figures 2.2 and 2.3).  In 

addition to sample economy, the small sample size made it easier to obtain a smooth, 

homogenous sample surface, and reduced the energy needed to heat the sample. 

Electrical leads for the thermocouple and the nichrome wire heater enter the 

chamber through the base (Figure 2.2).  The thermocouple is in contact with the Pt foil 

at the bottom.  A quartz tube was placed over the steel post to prevent electrical 

conduction with the heating element, which was nichrome wire wrapped around the 

tube.  A larger quartz tube was placed over the wire to insulate the nichrome wire from 

the environmental chamber lid (Figure 2.3).  Sample height adjustment screws are 

located at each side of the base. 
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Figure 2.2 Diagram of the modified sample holder assembly. 
 

 

Figure 2.3 Modified sample holder assembly.   
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Figure 2.4 Harrick environmental chamber a) mounted in DRA optics, b) view 
with DRA optics removed. 

 

By placing the thermocouple under the sample rather than at its surface, sample 

temperatures can be measured without blocking part of the incident infrared beam.  

However, due to its location, the temperature recorded by the thermocouple represents 

the temperature at the bottom of the sample, whereas the more important temperature 

measurement would be at the sample surface, where the infrared beam interacts with the 

material being studied (vide infra).   

 

2.1.3 Sample Chamber Modifications for Alignment Optimization 

The DRA optics focus the infrared beam on the sample with a focal point 

diameter of about 1/8 in.  The sample holder size is close to the size of the focal point.  

Therefore, locating the sample at the optical focal point of the infrared beam is critical 

for proper alignment. 
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Horizontal sample location adjustments (i.e. in the xy-plane) were accomplished 

by mounting the sample holder on a moveable platform.  Adjustment screws on each 

side of the sample holder were used for vertical alignment (i.e. the z-axis) (Figure 2.3).  

By using these adjustments, the sample location could be properly aligned with the 

infrared beam focal point.  Optimum alignment was achieved by iterative mirror 

adjustments made while monitoring the interferogram signal intensity.  Set-screws were 

used to secure the sample holder in place after attaining optical alignment. 

 

2.1.4 Effects of Sample Purge 

 After loading the sample, the environmental chamber lid was installed and 

secured to seal the chamber (Figure 2.4), and the FTIR sample compartment cover was 

put in place so that the instrument could be purged with dry, CO2-free air to minimize 

CO2 and water background absorptions (Figure 2.5). 

 

Figure 2.5 CO2 and water vapor background absorptions. 
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The sample chamber was purged with a He gas flow to create an inert, oxygen-

free environment.  The purge gas inlet is shown in Figure 2.2.  It is important to 

eliminate oxygen from the sample chamber to prevent combustion and oxidation 

reactions that may occur at high temperatures.  In addition to sample degradation, the 

nichrome heater wire, environmental chamber base and lid o-rings, and the ZnSe 

windows can be damaged if the assembly is heated to high temperatures in the presence 

of oxygen.  When temperature-dependent reactions occur during sample heating, He 

purge removes reaction products from the chamber.  The gas outlet can be connected to 

other instruments (e.g. a gas chromatograph and/or mass spectrometer), for further 

analysis of the volatile products.  Prior to VT-DRIFTS analysis, sufficient time must be 

allowed to efficiently purge the sample chamber and FTIR instrument.  Typically, about 

one hour is sufficient for purging. 

 

2.2 VT-DRIFTS Instrument Parameters 

2.2.1 Interferogram Signal I(T, λ) and Radiant Power at the Detector ΦD(T, λ) 

The interferogram signal I(T, λ) used to calculate the single beam spectrum 

depends on the radiant power reaching the detector ΦD(T, λ), and other parameters[2]: 

I(T, λ) = ΦD(T, λ)RD(λ)gH(T, λ)                                      (2.1) 

where RD(λ) is the detector response function, g is the signal amplification gain factor of 

the detector electronics, and H(T, λ) is the detector transfer function.[2]  The radiant 

power reaching the detector is defined by a number of instrumental factors[2]: 

ΦD(T, λ) = B(TS, λ)ASΩLTOP(T, λ)R(T, λ)                               (2.2) 
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where B(TS, λ) is the infrared source radiance, AS is the source area viewed, ΩL is the 

limiting solid angle, R(T, λ) is the reflectance of the material in the DRIFTS sample 

holder, and TOP(T, λ) is the transmission efficiency of the optical system.  As indicated, 

the source radiance B(TS, λ) depends on the temperature of the source and the 

wavelength, whereas the reflectance of the material in the sample holder R(T, λ), the 

transmission efficiency of the optical system TOP(T, λ), and the detector transfer 

function H(T, λ) depend on ambient temperature and the wavelength.[3] 

 

2.2.2 Infrared Source and Radiance B(TS, λ) 

The Nova Cygni 120 FTIR spectrometer is equipped with a Globar infrared 

source, which consists of a silicon carbide rod that is heated to 1000–1650 °C to 

produce radiation in the mid-infrared wavenumber range of ~ 400-4000cm–1.  Electrical 

current is passed through the rod, causing it to heat and emit radiation.  The globar is a 

continuum source, producing a spectral continuum over a broad wavelength region, 

rather than narrow spectral lines.  The globar is continuously heated and suitably stable 

for long-term measurements.  The spectral radiance Φ of the source is frequency 

dependent and depends on the source temperature.  At 1000 cm–1, a typical globar 

spectral radiance Φ is approximately 10–4 W cm–2 nm–1 sr–1.[4] 

The globar source employed for studies described here was water-cooled to 

improve temperature stability, which is essential for high measurement 

reproducibility.[4]  It is common to leave the source on when the instrument is not in 

use.  This eliminates the time required for source temperature equilibration prior to 
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measurements and also continuously heats the KBr beamsplitter, which minimizes 

water absorption. 

The radiant power spectrum of an infrared source depends on its temperature, 

the hotter the source, the more short-wavelength radiation it emits.[4] By placing a 

highly reflective medium (e.g. Ag powder) into the sample holder, a reference single 

beam spectrum can be obtained (Figure 2.6).  Because of relative intensity variations, 

some spectral regions have higher SNR than others. 

 

Figure 2.6 Single beam Ag powder spectrum measured at ambient temperature 

 

The reference single beam spectrum in Figure 2.6 represents infrared radiation 

intensity (in units of emissivity) reaching the detector as a function of wavenumber 

between 7000 and 650 cm–1.  It is more common to use wavenumbers as the 

independent variable in spectrum plots than wavelengths in infrared spectroscopy.  

Wavenumbers are inversely proportional to wavelength and directly proportional to 

frequency and energy[5]: 
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E = hν = hc/λ = hcσ                                                 (2.3) 

where E is energy, h is Planck’s constant, ν is frequency, c is the speed of light in a 

vacuum, λ is wavelength, and σ represents wavenumbers. 

Due to the combined effects of the blackbody curve emitted by the source, 

reflection and absorption losses of the optics, and the response function of the detector, 

single beam spectrum intensity varies significantly as a function of wavenumber.  

Between 7000 and 4000 cm–1, and below 500 cm–1, detector signal intensity is relatively 

low.  Due to the sharp drop in signal intensity below 800 cm–1 (see Figure 2.6), infrared 

measurements are less reliable in this wavenumber region.  Likewise, spectral features 

above 4000 cm–1 are less reproducible and have lower SNR than those found in the 

4000-800 cm–1 range. 

Globar sources typically have a useful lifetime of a few years.  Due to 

accumulation of impurities over time, electrical resistance decreases, resulting in a 

gradual decrease in temperature with time.  An overlay of single beam spectra collected 

with an old and a new globar source is shown in Figure 2.7.  With the new source, 

emissivity is greater above 2000 cm–1 compared to the old source. 
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Figure 2.7 Overlay of ambient temperature single beam spectra measured with a 
new and old infrared source. 

 

 

2.2.3 Detector and Radiant Power ΦD(T, λ) 

A number of detectors are available for use with FTIR spectrometers.  The 

deuterated triglycine sulfate (DTGS) detector operates at ambient temperature and does 

not respond to temperature changes in the same manner as the mercury cadmium 

telluride (MCT) detector, which must be cooled with liquid nitrogen to 77 K prior to 

operation.  However, the overall sensitivity of MCT detectors is significantly greater 

than DTGS detectors, making them more suitable for the VT-DRIFTS technique, which 

requires detection of  low detector signals (vide infra). 

The instrument employed for studies described here was equipped with a 

mercury cadmium telluride HgCdTe (MCT) photoconductivity detector obtained from 

“Infrared Associates, Inc.” (Cranbury, NJ), Model No. 0465-0034 (Serial No. N-
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12804).  HgCdTe is the most commonly employed variable gap semiconductor material 

used for infrared detection.[6]  A large photoexcitation spectral range and a high 

quantum efficiency (the number of incident photons relative to the number of photons 

converted into electrons excited into the conduction band) yield high sensitivity and 

make the MCT detector the most popular choice for FTIR spectroscopy.  Based on 

spectral response function,[7]  the wavenumber range of MCT detectors is 

approximately 400 – 4500 cm-1,[7]  which closely overlaps the spectral range emitted 

by a globar radiation source.  Other detector materials are available for mid-infrared 

spectroscopy and provide competitive cost, stability, durability, and convenient 

mechanical properties, but performance characteristics of MCT detectors are typically 

the best.[6] 

The MCT detector operates in photoconductive mode, wherein the conductance 

of the resistive element increases when infrared radiation is incident on the active 

area.[7]  The detector employed for studies described here had a relatively small active 

area of about 0.0025 cm2.  In general, smaller active areas decrease detector response 

times.  With increasing temperature, valence electrons are promoted into the conduction 

band.  A constant current is passed through the detector, so the increase in conductance 

produces a voltage change.  Modulating the incident radiation yields an AC electrical 

output.[7]  The measured detector signal S(x) is the amplified change in voltage of the 

photoconductive element.  Plots of S(x) as a function of interferometer moving mirror 

displacement (x) yield interferograms (equations (2.9) and (2.10)). 

Detector cooling reduces effects from thermal excitation of electrons into the 

conduction band,[4]  and therefore minimizes noise.  The operating temperature of the 
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detector is 77 K, which is achieved with liquid nitrogen (LN2).  Resistance of the 

photoconductive element has been found to increase from 53.8 to 82.1 ohms when the 

detector is cooled from room temperature (300 K) to 77 K.[7] 

The transfer function for the detector H(T, λ) can be expressed by an equation or 

a plot of the electrical output (signal) versus radiant power Φλ incident on the detector.  

The rate of change of the electrical output signal in this plot represents the sensitivity 

Q(λ) of the detector  

Q(λ) = dS/dΦ                                                  (2.4) 

i.e. the slope of a plot of electrical output S versus incident radiant power Φ.  The 

magnitude of the electrical signal S (voltage) at any given incident radiant power Φλ is 

the responsivity, R(λ), of the detector  

R(λ) = rms S / rms Φλ                                             (2.5) 

Both sensitivity Q(λ) and responsivity R(λ) are wavelength dependent.  These 

parameters change with temperature, bias voltage, component parameters, and time.[4]  

The detector signal increases with increasing bias current, and for the specific model 

used in this study, responsivity ranges from 3049 to 13451 V/W.[7] 

The detectivity (D) is the measure of minimum detectability and is defined as  

D = 1/Φn                                                     (2.6) 

where Φn is noise equivalent power, which is the radiant power of the modulated beam 

incident on the detector that gives rise to a signal equivalent to the root-mean-square 

(rms) dark noise σd in a 1 Hz bandwidth.[4]  The magnitude of σd can be calculated 

from values for R(λ) and Φn:  

σd = R(λ)Φn                                                     (2.7) 
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Normalized detectivity D* takes into account the detector active area A and electrical 

bandwidth dependencies.[4] 

D* = DA1/2(Δf)1/2                                              (2.8) 

where Δf is the noise equivalent bandwidth.  From the technical data summary for the 

device employed for studies described here, A = 0.0025 cm2, Φn at 1 KHz ranges from 

2.79 to 14.42 nV/Hz1/2, and the normalized spectral detectivity D* ranges from 4.84 to 

76.93 cmHz1/2/W, depending on the bias voltage and electrical bandwidth.[7] 

 

2.2.4 Reflectance of the Sample Material R(T, λ).   

According to White[8], it is critical that reference spectra are measured under 

the same conditions as the sample.  A highly reflective non-absorbing material is best 

suited as a reference material.  DRIFTS samples are diluted in a highly reflective matrix 

to maximize the path length through the sample and satisfy the Kubelka-Munk theory 

assumption of infinite path length.  The diluent should also have the desired properties 

of a reference material, including inertness.[8-11]   

Because diffuse reflection spectroscopy requires significant reflection from 

samples, an ideal sample should have high reflectance properties and sharp, non-

overlapping, absorption bands.  Ideally, some radiation should pass to the detector at all 

measured wavenumbers.  Unfortunately, some samples don’t reflect very well, and 

instead absorb a significant portion of incident radiation.  At wavenumbers at which the 

intensity of the signal reaching the detector is near zero, it is not possible to accurately 

represent absorption intensities.  By using a highly reflective diluent, near zero detector 

signals can be avoided and SNR can be maximized.  The diluent must not absorb 
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infrared radiation, be inert, and for variable temperature experiments, be stable at high 

temperatures.  Some popular materials include KBr, KCl, and NaCl, but these salts are 

not suitable for dehydration reaction studies because they absorb water.  Silver (Ag), 

gold (Au), and diamond (Cdiamond) powders are also suitably non-absorbing and highly 

reflective materials that do not absorb water.  Ag powder is more reflective than 

diamond powder, and also cheaper.  Au powder is slightly more reflective than Ag 

powder, but is much more expensive.  Thus, Ag was used to dilute samples because of 

its excellent reflection properties and cost effectiveness.  In the mid-infrared range, Ag 

reflectance is between 99.2 – 99.5%.[12]  The use of a highly reflecting diluent 

maximizes the path length through the sample, which increases absorbance and 

provides sharp, quantifiable, absorbance bands.  Also, increased diffuse reflection 

maximizes the signal intensity at the detector, yielding greater SNR. 

In studies described here, Ag powder (99.95% pure) was used as the reference, 

diluent, and as the sample material. 
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2.3 Optical System 

 

Figure 2.8 FTIR Optical system. 

 

To direct infrared radiation from the source to the sample and the detector, the 

FTIR spectrometer is equipped with a series of front-reflection aluminum mirrors.  The 

diagram in Figure 2.8 gives the layout of the optical components. 

The infrared source is mounted off-axis relative to the collimating mirror (1) so 

that the source body does not block the collimated beam.[4]  Mirrors (2) and (3) direct 

the collimated infrared beam to the interferometer, where the radiation is modulated.  A 



 41 

90° Michelson interferometer is employed in the Nova Cygni 120 spectrometer.  

Michelson interferometer principles of operation are discussed in section (2.3.1). 

From the interferometer, the collimated and modulated infrared beam is directed 

into the sample compartment through a 3 in diameter round opening in the cover that 

separates the source, detector, and interferometer from the sample chamber.  After 

entering the sample chamber, the beam encounters a concave aluminum mirror (5).  

This mirror allows the collimated infrared beam to make a 90° turn towards the diffuse 

reflection accessory (DRA), and focuses the beam on mirror (6-1). 

Mirrors (6-1) through (6-6) are part of the diffuse reflectance accessory (DRA) 

(described in section 2.3.2 and shown in Figure 2.8).  The purpose of the accessory is to 

direct source radiation to the sample and then collect radiation reflected from the 

sample surface and direct it to mirror (7).  Mirror (7) is concave with the same focal 

length as mirror (5).  When the beam encounters mirror (7), it makes a 90° turn and 

becomes collimated on its path to the detector.  Mirror (8) has a short focal length and 

focuses the beam on the detector. 

 

2.3.1 Michelson Interferometer 

The Michelson interferometer is a two-beam interferometer that accepts all 

source radiation.  The Michelson interferometer [(4) in Figure 2.7] incorporates a fixed 

cube corner retroreflector mirror, a moving cube corner retroreflector mirror, and a semi 

infrared-transparent (~ 50%) beamsplitter oriented at a 45° angle relative to the fixed 

and moving mirrors so that the beam from the source is split into two beams of 
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relatively equal intensity.  The paths of the two ‘half-beams’ are at a 90° angle to each 

other. 

An ideal beamsplitter reflects 50% of incident beam and transmits the other 50% 

without any absorption or scattering losses.  A compensator (KBr optical flat) is 

attached to the beamsplitter to equalize the optical paths of the two ‘half-beams.’ 

When the path length to the fixed mirror equals the path length to the moving 

mirror, the two ‘half-beams’ recombine in-phase and produce a bright image of the 

source at the detector.  When the moving mirror is shifted by λ/4, the difference 

between path lengths becomes λ/2, and the two beams recombine out-of-phase with 

each other, resulting in darkness at the detector.[4]  A He/Ne red (632.8 nm) laser is 

employed to precisely measure the interferometer moving mirror distance and is used to 

trigger detector signal data acquisitions. 

The detector signal S(x) can be expressed as a function of the source radiant 

power Φν, Φλ, or Φσ by: [4] 

S(x) = K Φν cos (4πxν / c) = K Φλ cos (4πx / λ) = K Φσ (4πxσ)             (2.9) 

where K is a constant determined by the detector response function and geometrical 

factors, x represents moving mirror displacement relative to the zero path difference 

point, ν is the radiation frequency, σ is the wavenumber of the source radiation, λ is the 

corresponding wavelength, and c is the speed of light.  The measured signal S(x) plotted 

as a function of mirror displacement (x) constitutes an interferogram. 

 For a polychromatic radiation source, each frequency will be modulated as a 

separate cosine oscillation, and the interferogram represents the summation of all cosine 

oscillations produced by the radiation source.  When the interferometer moving mirror 
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position is such that the path length of both interferometer ‘half-beams’ is identical, all 

cosine oscillations are in phase, and the detector sees a bright field corresponding to the 

highest signal voltage in the interferogram.  As the mirror moves away from this zero 

path length difference position, detector signal drops to a relatively stable value 

between zero and the maximum signal value.  The AC detector signal is the integral 

over all frequencies [4]: 

𝑆 𝑥 = Φ! cos 4𝜋𝑥𝜎 𝑑𝜎!!
!!                                      (2.10) 

 

2.3.2  “Praying Mantis” Diffuse Reflection Accessory 

In 1991, Milosevic and Harrick patented an “Optical attachment for variable 

angle reflection spectroscopy.” According to the authors, the attachment works for 

external, internal, and diffuse reflection techniques.  Its main feature is that pre-focusing 

and post-collection mirrors can be rotated in unison to vary the incident and collection 

angles (between 5-85°) without misaligning the system, (i.e. without losing focus on the 

sample).  The “Praying Mantis” DRA, which is based on this attachment, is a highly 

efficient system for spectroscopic analysis of powders and rough surfaces.  It collects 

almost twice the diffusely reflected radiation when compared to an integrating 

sphere.[13] 
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Figure 2.9 FTIR spectrometer equipped with the "Praying Mantis" diffuse 
reflection accessory. 

 

The “Praying Mantis” DRA incorporates two 6:1 90° off-axis ellipsoid mirrors.  

One ellipsoid focuses the incident beam on the sample, and the second collects up to 

20% of the radiation diffusely reflected from the sample.[14]  The accessory gets its 

name from the visual appearance of the ellipsoid mirrors.  These mirrors are labeled (6-

3) and (6-4) in Figure 2.8.  Both ellipsoid mirrors are stationary and are not designed to 

be moved (adjusted) by the operator. 

Mirror (6-3) focuses the infrared beam onto the sample surface.  The sample 

interacts with the beam, scattering some of the radiation.  Mirror (6-4) collects the 
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scattered radiation and focuses it on mirror (6-5).  Unlike an integrating sphere, when 

the PM-DRA is used, the specular component of the reflected beam is not collected by 

the ellipsoid mirrors.[14]  Only diffusely reflected radiation is collected by mirror (6-4) 

and passed to the detector.  Most other commercially available diffuse reflectance 

attachments collect radiation at an azimuthal angle of 180°, where the specular 

component and reststrahlen bands have the highest intensity.[14]  In the PM-DRA, 

mirrors (6-3) and (6-4) are tilted forward, so that the diffusely reflected radiation is 

collected at an azimuthal angle of 120°.  In this arrangement, the specular reflection 

component passes the ellipsoid mirrors and is not collected.[14] 

In addition to the pair of ellipsoid mirrors, the DRA contains 4 plane mirrors.  

Mirror (6-1) is a small (less than 1 in2) aluminum on glass front-reflection plane mirror 

that is extremely critical to the alignment of the sample.  Small movements (a turn by 

only a few degrees) of this mirror can result in complete loss of signal at the detector.  

When mirror (6-1) is turned side-to-side by using the adjustment knob, the infrared 

source image at the sample moves along a circular trajectory in the yz-plane. 

Mirror (6-2) is also a plane mirror with the same construction as (6-1), but, due 

to its location and pivot, it is somewhat less sensitive than mirror (6-1) for signal 

adjustments.  A change in the rotation angle of mirror (6-2) results in a change in the 

detector signal intensity, but the change is not as much as the same rotation would cause 

for mirror (6-1).  Mirror (6-2) is equipped with two adjustment knobs.  One knob turns 

the mirror side-to-side, which moves the source image in a circular trajectory in the xz-

plane.  The other knob causes the mirror to pivot up and down, causing the infrared 
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source image to move in a plane along a one part of the circular trajectory, essentially 

back and forth along the z-axis. 

The diffusely reflected radiation component collected by the ellipsoid mirrors is 

reflected onto mirror (6-5).  Mirrors (6-2) and (6-5) have the same properties and are 

positioned on opposite sides of the DRA.  They exhibit similar behaviors when 

adjusted.  The same can be said regarding mirrors (6-1) and (6-6).  Differences in these 

mirrors are mostly related to function: mirrors (6-1) and (6-2) bring the source radiation 

to the sample, whereas mirrors (6-5) and (6-6) transfer diffusely scattered radiation to 

the detector. 

 

2.4 Transmission Efficiency of the Optical System TOP(T, λ) 

The transmission efficiency of an FTIR optical system rarely exceeds 10% due 

to the number of components in the optical system.  The image of the source fills the 

detector area in a well-designed spectrometer, which means that the system should not 

be limited by source photon shot noise, but may be limited by detector background 

noise.[15]  Although real instruments do not reach the performance characteristics of a 

shot noise limited system, even at transmission efficiencies of only a few percent and 

SNR limited to 1-5×103, which is far below the SNR expected for a shot noise limited 

system, FTIR systems exhibit high sensitivities.[16] 

 In order to observe sample chemical changes while heating them in-situ, 

additional optical components must be added that further decrease SNR.  Moreover, the 

system undergoes temperature-induced changes that increase fluctuations in the signal 
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reaching the detector.  In order to understand these effects and to propose 

improvements, it is important to examine the optical system in detail. 

 The optical system consists of a series of front surface aluminum mirrors, a 

germanium coated potassium bromide beamsplitter in the interferometer, zinc selenide 

windows in the environmental chamber housing the sample, and the detector window.  

The efficiency of the optical system can be estimated if the optical properties of the 

materials are known, and geometrical properties of the system are taken into account. 

 

2.4.1 Materials Used for Optics 

Aluminum reflection coefficients were obtained from the CRC Handbook of 

Chemistry and Physics.[12]  Over the range of interest, reflectance varies from RAl = 

0.9906 at 484 cm–1 to RAl = 0.9817 at 4033 cm–1.[12, 17]  Because there is no refraction 

at mirrors (there is no transmission) we can assume that reflection from the front surface 

of Al mirrors is the same regardless of the angle of incidence.  This simplifies the 

problem of estimating reflection losses. 

The beamsplitter is made from two relatively thick KBr windows with a layer of 

germanium coated on one of them.  The beamsplitter efficiency should take into 

account the transmittance and reflectance properties of KBr and Ge.  The transmittance 

of Ge (TGe) is about 47% and reflectance (RGe) is approximately  40% in the principal 

region of transparency, which is from 800 to 5000 cm–1,[17, 18]  which also 

corresponds with the spectral range of the FTIR system employed for the studies 

described here.  The transmittance of KBr (TKBr) exceeds 87%, making it a practical 

window material in systems where sensitivity to moisture is unimportant.  In fact, KBr 
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is the most commonly used material for FTIR beamsplitters.[19]  Reflectance of KBr in 

the relevant spectral region (RKBr) is about 7%.[17] 

Zinc selenide is a practical environmental chamber window material because it 

is stable at high temperatures (melting point exceeds 1100 °C [12]) and does not absorb 

moisture, which may be released when some samples are heated.  Transmission ranges 

for KBr and ZnSe extend beyond the wavenumber range of FTIR instruments.  Within 

the most useful range of the instrument (4000 to 800 cm–1), the transmittance of ZnSe (1 

– 12 mm thick) (TZnSe) exceeds 72%.[20] 

 

2.4.2 Maximum Optical Throughput of the FTIR Spectrometer 

The opening in the water-cooled sleeve around the infrared source subtends a 

solid angle Ω that is large enough to expose the entire surface of mirror (1) to infrared 

radiation (Figures 2.7 and 2.8).  The radiation collected by the first mirror represents the 

maximum radiant power for the spectrophotometer (Φ).  Over the measurement 

wavenumber range (4000 to 800 cm–1), and based on the wavenumber dependent 

reflectance of aluminum, at least 98% of the incident radiation will be reflected to 

mirror (2).  The same is true for subsequent mirror reflections.  By utilizing phosphor 

paper to visualize the infrared beam, it was apparent that the entire surface of mirrors 

(1) – (3) is irradiated with infrared radiation.  Mirrors (1) and (2) are orientated at a 90° 

angle to each other, so that most of the collimated radiation reflected from mirror (1) is 

captured by mirror (2).  Mirrors (2) and (3) are placed in parallel planes such that the 

focal points of the two mirrors are superimposed.  A collimated beam irradiates mirror 

(2) and is focused at the focal point of mirror (3), so that the radiation leaving mirror (3) 
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and directed into the interferometer is also collimated (3).  This design minimizes stray 

light passing to the interferometer, and provides a convenient location for an aperture 

(at the mirror (2) and (3) focal points), which could be used to control the amount of 

light passing through the instrument.   

Thus, the fraction of infrared source radiance reaching the beamsplitter must be 

at least: 

Φ × 0.983 = 0.94Φ                                             (2.11) 

Considering the interferometer (4), the incident collimated beam first strikes the 

beamsplitter (4a).  To make sure the entire beamsplitter is irradiated in the 

interferometer, the diameter of the projected area of the beamsplitter opening is smaller 

than the diameter of the collimated beam.  Based on the dimensions of mirror (3) and 

the beamsplitter, it is estimated that only ~ 96% of the beam from mirror (3) enters the 

interferometer (4) (see Appendix C.1 for calculations).  Considering that only 0.94Φ 

was reflected from mirror (3), only 

0.94Φ × 0.96 = 0.90Φ                                             (2.12) 

enters the interferometer (4). 

The collimated beam from mirror (3) passes through the KBr layer and then is 

split into two fractions by the Ge layer.  Thus, about ~ 50% of the radiation is reflected 

to the stationary cube corner retroreflector and ~ 50% is transmitted through the 

beamsplitter to the moving cube corner retroreflector.  The fraction of incident radiation 

reflected to the stationary retroreflector can be approximated by taking into account the 

reflectance of KBr (RKBr), transmittance through KBr (TKBr), reflection from Ge (RGe), 

and subsequent transmission through KBr (TKBr).   
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Fraction reflected to (4b) = RKBr + TKBr
2

 × RGe                           (2.13) 

The fraction transmitted through the beamsplitter and to the moving cube corner 

retroreflector can be approximated similarly by considering TKBr and TGe: 

Fraction transmitted to (4c) = TKBr
2 × TGe                               (2.14) 

At each cube corner retroreflector, the beam strikes a reflective surface (R(Al) = 

0.98) twice, hence a 0.982 fraction of the beam is reflected from each retroreflector back 

to the beamsplitter.  The radiation reflected from (4b) is split again when it returns to 

the beamsplitter (4a): one fraction is reflected back to the source, and another fraction is 

transmitted to mirror (5).  Radiation reflected from (4c) is split similarly: a fraction is 

transmitted through the beamsplitter to the source, and a fraction reflects from the 

beamsplitter (4a) and is directed towards mirror (5).  It follows that the intensity of the 

beam incident to mirror (5) is the sum of the intensities of the two half-beams, which 

recombines into a single collimated beam.  When the two half-beams recombine, their 

intensities are practically equal, but only when the beams are in phase.  Thus, 

considering that only 0.90 Φ undergoes modulation, the maximum amount of radiation 

reaching mirror (5) can be estimated as follows: 

0.90 Φ × 2 × (RKBr + TKBr
2 × RGe) × RAl

 2 × (TKBr × TGe) = 

0.90 Φ × 2 × (0.07 + 0.872 × 0.40) × 0.982 × (0.872 × 0.47) = 0.23 Φ       (2.15) 

Note that this estimate does not assume a thickness for the KBr optical flat or the Ge 

layer, and assumes that the radiation reflected from these surfaces is, in fact, directed 

towards the intended surfaces, rather than lost due to scattering or changes in direction 

due to refraction.  Although the beamsplitter KBr windows correct for beam path 

shifting caused by the high refractive index of Ge (n = 4.0)[17]  it is important to 
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remember that the optical properties of the beam and its mode of interaction with the 

window and mirror materials vary as a function of wavenumber. 

There is a change in intensity of the beam when the two half-beams recombine 

in and out of phase with each other when the moving retroreflector is in motion.  Tomas 

Hirschfeld  postulated that the power (relative to input) of the transmitted (T) and 

reflected (R) beams can be determined from the beamsplitter reflectance RB and the 

relative phase ϕ of the interferometer’s moving mirror for each wavelength using the 

equations [21]: 

T = 2RB(1 – RB)(1 + cos ϕ)                                        (2.16) 

R = RB
2 + (1 – RB)2 + 2RB(1 – RB) cos ϕ                             (2.17) 

Integrating these equations over many cycles of ϕ results in an average of 50% 

transmittance and reflectance over the entire spectral range.  At each particular 

wavelength, T and R vary between 0 and 50%, depending on moving retroreflector 

position. 

 The diameter of the opening to the sample compartment is large enough to 

accommodate the collimated beam travelling from the interferometer (4) to mirror (5).  

Following the interferometer, aluminum front surface reflection mirror (5) is mounted at 

a 45° angle relative to the path of the collimated and modulated beam and the path to 

the sample holder, allowing the beam to make a 90° turn.  Mirror (5) is large enough to 

capture the entire collimated beam, so the projected area of the beam is limited by the 

beamsplitter (see Appendix C.2).  From mirror (5), the beam travels to mirror (7) when 

the DRA sample accessory is not installed.  Mirrors (5) and (7) are F/1 mirrors.  For an 

F/1 mirror, the focal length equals the limiting diameter.[4]  The beam is transmitted in 
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the horizontal plane, so the width of the mirrors acts as the limiting diameter, and at 45° 

angles the projected area of the parabolic mirrors appears circular (i.e. the projected 

width and height are equal).  Mirrors (5) and (7) share the same focal point, they are 

placed symmetrically about the optimal sample location, which is about 6.0 inches from 

the centers of both mirror (5) and mirror (7) (Appendix C.3) at 45° from the normal to 

each mirror surface, as shown in Figure 2.7. 

Mirror (7) collimates the beam and reflects it to mirror (8), where the beam is 

focused on the detector window.  Considering the dimensions of mirrors (7) and (8), as 

well as the dimensions of the aperture between the front and rear instrument 

compartments, it appears that there are no geometrical restrictions (apertures) in the 

path of the beam from mirror (5) to the detector (Appendix C.4).  The detector window 

transmission efficiency is ~ 85% [15]. 

Thus, an estimated transmission efficiency for the FTIR optical system 

employed in these studies is 9.22% (Table 2.1), which is close to the a previously 

published estimate of 9.75% for a typical FTIR spectrophotometer.[15] 
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Table 2.1 Estimated Optical Transmission Efficiency of the FTIR Spectrometer. 

Without the DRA: 
Transmission 

efficiency 
factor 

Percent Source 
Radiance 

Transmitted 

Source radiance 
 

100.00% 

Mirror (1) RAl 0.98 98.00% 

Mirror (2) RAl 0.98 96.04% 

Mirror (3) RAl 0.98 94.12% 

Beamsplitter: Ap 4a / Ap M3, geometrical 
limitation 0.96 90.48% 

Interferometer optics transmission 0.25 23.05% 

Integrated intensity decrease due to 
interference of the two half-beams 0.5 11.52% 

Mirror (5) RAl 0.98 11.29% 

Mirror (7) RAl 0.98 11.07% 

Mirror (8) RAl 0.98 10.85% 

Detector window 0.85 9.22% 
 

 

 

2.4.3 Maximum Optical Throughput of the “Praying Mantis” Diffuse Reflection 

Accessory 

When the “Praying Mantis” diffuse reflection accessory (DRA) is placed in the 

path of the infrared beam, optical throughput decreases.  To estimate the transmission 

efficiency of the DRA optics, a sample reflectivity of 100% was assumed.  When the 

diffuse reflection accessory is installed between mirror (5) and mirror (7) (Figure 2.8), 

the beam first encounters mirror (6-1), a small (less than 1 in2) aluminum on glass front 

surface reflection plane mirror.  The distance from mirror (5) to mirror (6-1), center to 

center, is about 4.40 in, and the angle between these mirrors is approximately 45° in the 

horizontal plane.  The distance and angle vary somewhat depending on the position of 
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mirror (6-1), because it is adjustable.  Based on these values, the area of mirror (6-1) is 

large enough to capture the beam from mirror (5) and transmit it to mirror (6-2) 

(Appendix C.5). 

 From mirror (6-1) the beam goes to mirror (6-2), which is a plane mirror with 

the same construction as mirror (6-1).  The distance between mirror (6-1) and mirror (6-

2), center to center, is 3.66 in.  The 45° off-axis focal point of mirrors (5) and (7), which 

was at the sample holder without the DRA, is now between mirrors (6-1) and (6-2).  

Similar calculations were applied to determine that the dimensions of mirrors (6-2) and 

(6-3) are sufficient to transmit the beam from mirror (6-1) without geometrical losses 

(Appendix C.6). 

Thus, the DRA does not pose geometrical limitations on the transmission of the 

infrared beam.  However, each of the mirrors (6-1) – (6-6) reflects at most 98% of 

incident radiation due to aluminum reflectivity.  As previously noted, the ellipsoid (6-3) 

focuses the beam on the sample, whereas mirror (6-4) is used to collect up to 20% of the 

radiation diffusely reflected from the sample.  Thus, mirror (6-4) captures up to 20% of 

the 2π sr (hemisphere) reflection by the sample.  Mirrors (6-5) and (6-6) are the same as 

mirrors (6-2) and (6-1), respectively, and direct the beam to mirror (7).   

 When the “Praying Mantis” diffuse reflection accessory is installed and aligned, 

the overall signal intensity should decrease because of a minimum of 82.28% reduction 

of the radiant power that was incident to mirror (6-1) (Table 2.2).  The greatest loss of 

throughput occurs between the sample and ellipsoid mirror (6-4), which only collects 

20% of the diffusely reflected radiation. 
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Table 2.2 Estimated Optical Transmission Efficiency of the "Praying Mantis" 
DRA. 

"Praying Mantis" diffuse reflection 
accessory 

Transmission 
efficiency 

factor 

Percent Source 
Radiance 

Transmitted 

Radiation incident on mirror (6-1) 
 

100.00% 

Mirror (6-1) RAl 0.98 98.00% 

Mirror (6-2) RAl 0.98 96.04% 

Mirror (6-3) RAl 0.98 94.12% 

Sample 1 94.12% 

Mirror (6-4): ΩM(6-4) / 2π 0.2 18.82% 

Mirror (6-4) RAl 0.98 18.45% 

Mirror (6-5) RAl 0.98 18.08% 

Mirror (6-6) RAl 0.98 17.72% 
 

 

2.4.4 Optical Throughput Losses in Variable Temperature Experiments 

2.4.4.1 Environmental chamber 

In order to conduct in-situ variable temperature experiments, the sample must be 

housed in an environmental chamber, which can be used to maintain a controlled 

atmosphere and/or non ambient temperatures and pressures.[22]  The system 

characterized here was equipped with a modified Harrick Scientific Inc. vacuum 

chamber (HVC-DRP).  The chamber and post-factory modifications are described in 

detail in section 2.1.2 and in [1].  The environmental chamber lid (Figure 2.4) 

incorporates two ZnSe windows positioned perpendicular to the radiation travelling 

between the ellipsoid mirrors and the sample to eliminate specularly reflected radiation 

at these windows.[22]  The infrared beam passes through ZnSe twice, once when 
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travelling to the sample, and once from the sample to the radiation collecting ellipsoid 

(6-4). 

According to the manufacturer,[22]  the diameter of the ZnSe windows is 15 

mm, and the windows are secured to the chamber with compression nuts with an inner 

diameter of 12 mm (measured).  The visible area of each window is thus: 

AZnSe = π rZnSe
2 = π (6 mm)2 =  113 mm2 = 0.175 in2                    (2.18) 

The ZnSe windows define the limiting solid angle of the radiation transmitted into the 

chamber from ellipsoid (6-3) and out of the chamber to the collecting ellipsoid (6-4).  

The measured distance from the sample to each of the ZnSe windows rchamber is  about 

12 mm.  Thus, the limiting solid angle is: 

ΩZnSe = AZnSe / (rchamber)2 = (113 mm2) / (12 mm)2 = 0.785 sr          (2.19) 

Considering that each ellipsoid mirror subtends 20% of the 4π sr solid angle: 

Ω Ellipsoids = 0.2 × 2π = 1.26 sr                                     (2.20) 

The decreased throughput through the windows, ΩZnSe, can be calculated by: 

ΩZnSe / Ω Ellipsoids = 0.785 sr / 1.26 sr = 0.623                        (2.21) 

 The optical properties of ZnSe further decrease optical throughput, because TZnSe 

= 0.72 in the wavelength range of interest.[12]  However, refraction effects are 

negligible because radiation impinges on the windows at normal incidence. 

 Overall, when the environmental chamber is installed, optical throughput 

decreases by a factor of about 5, as shown by Table 2.3. 
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Table 2.3 Estimated Optical Transmission Efficiency of the Harrick Inc.  
Environmental Chamber. 

Harrick Scientific Inc.  environmental 
chamber 

Transmission 
efficiency 

factor 

Percent Source 
Radiance 

Transmitted 

Radiation reflected from (6-3) 
 

100.00% 

ΩZnSe / Ω Ellipsoids from (6-3) to sample 0.62 62.30% 

T (ZnSe) 0.72 44.86% 

Sample 1 44.86% 

ΩZnSe / Ω Ellipsoids from sample to (6-4) 0.62 27.95% 

T (ZnSe) 0.72 20.12% 
 

 

2.4.4.2 Thermal insulation of the rear instrument compartment 

Experiments have shown that a thermal barrier between the sample chamber and 

the source-interferometer-detector compartment of the instrument is advantageous for 

VT-DRIFTS experiments.  This decreases interferometer alignment variations and 

sample temperature induced decreases in signal intensity due to detector response from 

unmodulated infrared sample emission radiation. 

Infrared transparent KBr windows were mounted between (4) and (5), and 

between (7) and (8) by using magnets to achieve attachment and seal, as shown in 

Figure 2.9. 
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Figure 2.10 Sample compartment isolation by using KBr windows. 

 

The diameter of the windows (3 in) yields a projected area (7.07 in2) that is 

larger than the projected area of the collimated beam passing through them (4.20 in2).  

However, some radiation intensity is lost due to limited KBr transmittance.   

Because the collimated infrared beam is perpendicular to KBr window surfaces, 

refraction and reflection losses are minimal.  Assuming that the thickness of the KBr 

windows has minimal effect on transmittance, then T = 87%.  Thus, these two KBr 

windows reduce optical throughput by 24.31% (Table 2.4). 
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Table 2.4 Optical Throughput of the KBr Windows Between Compartments. 

KBr windows for thermal insulation of the 
rear instrument compartment. 

Transmission 
efficiency 

factor 

Percent Source 
Radiance 

Transmitted 

Throughput without KBr separators  100.00% 

T (KBr) 0.87 87.00% 

T (KBr) 0.87 75.69% 
 

 

2.4.4.3 Partially blocked beam method to eliminate sample emission artifacts 

The “partially blocked beam method,” [23], can be employed for interferometers 

incorporating cube corner retroreflectors to eliminate negative interferograms that result 

from sample emission at high temperatures.  This method requires that one-half of the 

collimated beam be blocked, which eliminates the path for this unwanted radiation 

through the interferometer and back to the detector.  When using this method, optical 

throughput is decreased by 50%. 

 

Figure 2.11 Illustration of the partially blocked beam method for eliminating 
modulated sample emission. 
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2.4.4.4 Summary 

Based on estimates made here, the transmission efficiency of the FTIR optical 

system when equipped with the “Praying Mantis” DRA should be:  

9.22% × 17.22% = 1.59%                                       (2.22) 

When additional components are installed that are required for VT-DRIFTS 

measurements, transmission efficiency further decreases by more than a factor of 10: 

1.59% × 20.12% × 75.69% × 50.00% = 0.121%                     (2.23) 

Due to high detector sensitivity[7, 10, 24] spectra collected at this low 

throughput are still informative [16].  However, with increasing sample temperatures, 

SNR rapidly decreases due to detector properties, alignment fluctuations, and other 

temperature-dependent changes.  The VT-DRIFTS methodology is highly sensitive, 

detailed, informative, and convenient, but could be improved if the effects of sample 

heating were eliminated or reduced.  This is the focus of the investigations described in 

this dissertation.  
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3 Chapter 3: Effects of Sample Heating on Infrared Spectral 

Features 

 

 

Experiments were conducted to assess the effects of DRIFTS sample holder and 

optics heating on infrared spectral features such as band intensity and band shape.  

Ideally, these tests could be performed by analyzing a sample by VT-DRIFTS that did 

not undergo a change in structure during heating.  Unfortunately, the physical and/or 

chemical properties of most if not all powdered samples are temperature dependent.  

Even if no chemical structure changes occur, particles may move, cleave, or aggregate, 

resulting in a scattering coefficient change.  Therefore, experiments were designed in 

which the sample holder and DRIFTS optics were heated, but the sample was not.  

Experiments were conducted by placing a polystyrene film sample in the beam path, but 

located away from the VT-DRIFTS sample holder and optics.  In this way, a heating 

program could be executed, but the sample composition would not change, because it 

was not heated.  Therefore, any observed spectral changes could be attributed to sample 

holder heating. 

Silver powder (99.95% pure) was loaded into the sample holder to achieve 

maximum sample reflectance.  The detector was cooled with liquid N2, and the 

instrument was purged with CO2-free dry air for about one hour prior to experiments. 
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A Nicolet matte finish polystyrene film (reference No.  018297)  supported by a 

cardboard sleeve with a circular opening of 1 inch diameter was used for VT-DRIFTS 

studies.  The matte finish reduced the amplitude of interference fringes that are 

characteristic of smooth films.  These fringes are caused by interference between 

radiation internally reflected at film surfaces and radiation transmitted through the 

sample.  The thickness of the film was unknown, but estimated to be in the range of 

0.03-0.038 mm based on comparisons with published spectra and information for 

similar samples.[1]  The best infrared beam location for the film was determined to be 

inside the sample compartment of the instrument between mirrors (7) and (8) (See 

instrument diagram, Figure 2.8), based on SNR optimization.  Temperature 

measurements made by using a data logger during sample holder heating showed that 

the temperature increase was minimal at that location.  By monitoring the interferogram 

signal in real time and adjusting the position of the sample in the plane perpendicular to 

the infrared beam path, the film was positioned so that the entire 3.14 in2 aperture was 

irradiated.  It was previously determined that the infrared beam cross-sectional area 

between mirrors (7) and (8) was 4.20 in2.  Thus, the film sample was the limiting 

aperture when it was present.  The film was attached to the metal frame of the 

instrument at the round opening between the sample compartment and detector by using 

a magnet.  A photograph of the mounted film is shown in Figure 3.1. 
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Figure 3.1 Experimental setup. 
 

Figure 3.2 shows a diffuse reflectance spectrum of the polystyrene film 

measured at ambient temperature and represented in Kubelka-Munk units.  The peaks in 

the spectrum were compared with information from the NIST.[2]  The peaks are 

consistent with reference data with the exception of the peak at 1493.87 cm-1, which 

may be due to UV-stabilizers or other additives often found in plastics.  For spectrum 

evaluations, only peaks with intensity greater than 0.10 Kubelka-Munk units were used 

for comparisons. 
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Figure 3.2 Kubelka-Munk spectrum of polystyrene film obtained at ambient 
temperature with Ag powder in the sample holder. 

 

By identifying the wavenumbers with the highest absorption intensity closest to 

the corresponding polystyrene film absorptions reported by NIST, absorption peaks 

were identified in the spectrum (Table 3.1).  The peak at 1493 cm-1 does not appear in 

the list of NIST peaks, but had high enough absorption intensity that it was included in 

the list. 
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Table 3.1 Polystyrene Absorption Peaks. 

NIST Peak 
Location (cm-1) Peak Location (cm-1) Emissivity Reflectance 

(%) 
K-M 

Intensity 

699.448 698.47 0.39 9.93 4.08 

756.58 756.39 0.58 9.62 4.24 

906.8025 906.97 5.55 59.39 0.13 

1028.334 1026.67 4.98 43.16 0.37 

1069.1485 1069.14 5.93 54.04 0.19 

1368.527 1370.31 9.74 54.58 0.18 

1449.675 1451.40 2.80 15.84 2.23 

- 1493.87 4.09 23.03 1.28 

1601.358 1601.98 6.21 36.95 0.53 

2850.062 2853.00 2.45 29.43 0.84 

2920.935 2922.50 0.35 4.49 10.30 

3001.412 3003.59 3.87 46.38 0.30 

3026.3975 3026.75 0.91 10.94 3.62 

3060.025 3061.50 1.75 21.18 1.46 

3082.208 3080.81 2.70 32.76 0.68 
 

 

Peak locations (cm-1) in Table 3.1 were determined by examining single beam 

spectra and identifying wavenumbers corresponding to the lowest emissivity over a 

small range of wavenumbers spanning each peak.  For the small shoulder at 3003.59 

cm-1, the inflection point was used to identify the peak location.  Due to the inherent 

laser reference wavelength calibration of FTIR instruments, spectrum wavenumber 

reproducibility was ± 0.02 cm–1.  For 50 measured spectra, peak minimum locations 

were 100% reproducible for all except for the peak at 2922.50 cm-1. 

The peak at 2922.50 cm-1 exhibited the highest absorptivity, therefore the signal 

reaching the detector was closest to zero (average emissivity at room temperature was 
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0.35).  Over the 2864.58 – 2961.11 cm-1 range (approximate peak width at base) 26 data 

points defined this peak, and the lowest signal was found at 3 different wavenumbers 

(i.e. at 2918.64, 2922.5, and 2926.36 cm-1) in the 50 acquired spectra.  It is reasonable 

to select the middle of these values as the peak location for further discussion, and in 

fact, this value corresponded to the minimum in the majority of spectra.  The peak at 

698.47 cm-1 had a similar emissivity value (0.39), but this peak was narrower and 

spanned only 11 data points, so the minimum was more distinct.  Figure 3.3 shows an 

overlay of the single beam spectra in the wavenumber regions near the 2922.50 (a) and 

698.47 cm-1 (b) absorption peaks shown on the same scale (40 cm-1 width and 

emissivity range between 0.0 and 1.0).  Figure 3.3 shows that absorption peak shape 

reproducibility can vary for peaks that have similar emissivities. 

 

Figure 3.3 Overlay of single beam spectra a) centered at 2922.50 cm–1 and b) 
centered at 698.47 cm–1. 

 

A number of tools are available in the Mattson Instruments FTIR WinFirst 

operating software package for determining peak intensity.  After the general location 
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of a peak is specified (by “point-and-click” or entering a wavenumber), the software 

either gives the y-value corresponding to the nearest data point (i.e. no peak picking 

filter), or calculates a value by spline interpolation or by finding the vertex of a parabola 

based on data points near the peak maximum.  Although peak intensity values 

determined by the software were similar, calculated peak locations can vary.  Table 3.2 

lists the values obtained by the “peak picking” WinFirst tool. 

Table 3.2 Calculated Peak Locations. 

Peak picking filter Peak wavenumber (cm-1) Peak intensity, K-M 

None 2922.50 9.02 

3 point weighted average 2924.01 9.02 

5 point weighted average 2923.99 9.02 

Cubic spline fit 2924.05 9.07 

½-max center (manual) 2923.61 9.03 
 

 

3.1 Reproducibility at Ambient Temperature 

To characterize instrument performance in the absence of sample heating, 50 

spectra were successively collected (~ 1 spectrum/min) at ambient (i.e. room) 

temperature.  Figure 3.4 shows an overlay of 6 single beam spectra over the 4000-650 

cm-1 range collected in about 10 min increments.  Polystyrene absorption peaks are 

clearly visible, and spectra overlay well, indicating high reproducibility at ambient 

temperature. 
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Figure 3.4 Overlay of single beam spectra collected at ambient temperature. 

 

By dividing polystyrene film single beam spectra by a reference background spectrum 

(i.e. Ag powder at ambient temperature), reflectance spectra were obtained (Figure 3.5). 

 

Figure 3.5 Overlay of reflectance spectra collected at ambient temperature. 

 

Kubelka-Munk format spectra calculated from these reflectance spectra by using 

equation 1.33 are shown in Figure 3.6. 
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Figure 3.6 Overlay of diffuse reflectance spectra collected at ambient temperature; 
a) complete spectra and b) expansion of the C-H stretching region. 

 

Although the overlaid spectra in Figures 3.4-3.6 should be identical, some differences in 

band intensities are apparent.  To compare differences in peak reproducibility observed 

for various spectrum formats, C-H stretching regions of spectra are shown in emissivity, 

% reflectance, and Kubelka-Munk units in Figure 3.7. 
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Figure 3.7 Overlay of the same ambient temperature C-H stretching region of 
spectra in a) emissivity, b) reflectance, and c) Kubelka-Munk format. 

 

The differences in reproducibility apparent in Figure 3.7 can be quantified by 

computing point-by-point standard deviations for the 50 digitized spectra. 

Figure 3.8 shows the single beam spectrum obtained by averaging all 50 single 

beam spectra (solid line) and a plot of standard deviations (dashed line) calculated at 

each digitized wavenumber.  The largest emissivity changes were found near 1550 cm-1 

and corresponded to the strongest absorptions.  Fluctuations in the 3550 – 4000 and 

1700 – 1500 cm-1 regions can be attributed to fluctuations in water vapor concentrations 

due to incomplete instrument purge. 
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Figure 3.8 Average single beam spectrum and standard deviations at ambient 
temperature. 

 

For reflectance spectra, similar fluctuations were observed.  The average 

reflectance spectrum and the standard deviation plot are shown in Figure 3.9.  Above 

4000 cm-1, reflectance spectrum noise increased because little radiation was reaching 

the detector at high wavenumbers (see section 2.2.2, Figures 2.5 and 2.6). 
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Figure 3.9 Average reflectance spectrum and standard deviations at ambient 
temperature. 

 

For the 50 measured spectra, individual spectral intensities and associated 

standard deviations can be represented by: ISBM ± sSBM, IRAS ± sRAS, and IDRT ±sDRT.  

IBKG can be used to represent the background single beam spectrum intensity (i.e. 

reference) employed to convert single beam spectra to reflectance.  Spectral fluctuations 

in reflectance and DRIFTS spectra can be estimated from error propagation 

calculations.[3] 

When single beam spectra were converted to reflectance, relative standard 

deviation was conserved because the same reference single beam spectrum was used for 

all calculations (i.e. sBKG was zero): 
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Accounting for error propagation when reflectance spectra were converted to  

Kubelka-Munk format, the relative standard deviation of intensities increased by a 

factor of 1.73: 

𝐼!"# ± 𝑠!"# =
!!!!"#±!!"# !
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                                     (3.3) 
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Thus, for Kubelka-Munk spectra, absolute standard deviation is proportional to 

the intensity multiplied by 1.73 times the RSD of the corresponding reflectance.  Thus, 

error is amplified in the Kubelka-Munk format and is larger for absorption bands with 

greater intensity.  Consequently, the worst reproducibility was associated with the most 

intense absorption bands (Figure 3.10). 

 

Figure 3.10 Average Kubelka-Munk spectrum and standard deviations at ambient 
temperature. 

 



 77 

Therefore, small variations in signal intensity at the detector causes significant 

fluctuations in Kubelka-Munk spectrum peak intensity.   

More detail regarding spectral fluctuations can be obtained by monitoring peak 

intensity changes as a function of time.  Selected peak intensity trends are shown in 

Figure 3.11.  The Kubelka-Munk intensity of the 2922.50 cm-1 peak is significantly 

greater than that for other peaks.  Peak wavenumber locations are listed in the legend in 

decreasing order of absorption intensity.  Changes were found to be largest for peaks 

with the greatest intensity.   

 

Figure 3.11 Elapsed time trends in Kubelka-Munk intensity at ambient 
temperature. 

 

Whereas most peak intensity fluctuations represented small changes superimposed on a 

constant mean, a gradual increase in peak intensity was observed for the most intense 

peak (i.e. at 2922.50 cm–1).  Temperature-dependent factors may be responsible for this 
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gradual intensity increase.  For example, if the liquid nitrogen cooled detector 

temperature was continuing to equilibrate over this period, interferogram voltages 

would gradually increase.  This increase would preferentially impact more intense 

absorption peaks because less infrared radiation strikes the detector, so that small 

voltage changes would represent large relative signal fluctuations.  This would explain 

why highly-absorbing peaks appear larger over time.  In addition, gradual systematic 

spectral changes may be due to equilibration of the electronics temperature, which 

gradually increases with time to a constant value.  Systematic changes to the instrument 

environment caused by purge gas temperature changes, or gradual source temperature 

changes could also affect peak intensities. 

 

3.2 VT-DRIFTS Polystyrene Spectral Variations 

After characterizing ambient temperature spectrum reproducibility, a heating 

program was initiated and 100 spectra were sequentially obtained while heating silver 

powder in the VT-DRIFTS sample holder from ambient temperature (26.4 °C) to 496.3 

°C at 5 °C/min.  Spectra were collected at about 1 minute intervals.  Figure 3.12 shows 

that significant changes in single beam spectra over the 4000-650 cm–1 range occurred 

when the VT-DRIFTS sample holder was heated.  Although polystyrene film 

absorptions were constant for all measurements, the single beam changes illustrated in 

Figure 3.12 lead to “apparent” reflectance spectrum changes. 
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Figure 3.12 Overlay of polystyrene single beam spectra measured during VT-
DRIFTS sample holder heating. 

 

Results show that the single beam spectrum measured at ambient temperature exhibited 

the highest emissivity.  Although absorption band locations appear to be the same in all 

spectra, the overall single beam intensity decreased significantly with increasing 

temperature.   

Decreasing single beam intensity with increasing sample temperature has been 

previously reported for VT-DRIFTS measurements.[4, 5]  It has been attributed to 

effects from unmodulated thermal emission and leads to a decrease in spectral SNR at 

higher temperatures.  The magnitude of this effect depends on the type of detector 

employed.[4]  With MCT detectors, as previously described, electrical conduction of 

the resistive element is positively correlated with the number of electrons promoted to 

the conduction band by heat energy.  A constant current is passed through the detector 

(i.e. a DC bias), so the increase in conductance results in a voltage change.[6, 7]  At 

higher detector temperatures (due to heating by unmodulated infrared emission) 
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background conductivity is higher than at ambient temperature, but infrared source 

emissivity remains constant.  As a result, with increasing unmodulated radiation, the 

voltage change caused by modulated radiation incident to the resistive detector element 

decreases compared to its ambient temperature value, so the integrated area under the 

single beam spectrum decreases. 

Converting single beam spectra into reflectance by dividing by a reference 

spectrum (Ag powder) produced the spectra shown in Figure 3.13.  When spectra were 

divided by the reference, reflectance decreased with increasing temperature due to the 

gradual decrease in sample single beam emissivity with increasing sample holder 

temperature.  This decreasing reflectance is also associated with a lower spectral SNR 

and baseline shifts.  For the polystyrene reflectance spectra shown in Figure 3.13, 

baseline corrections can be achieved by adding back reflectance offset values.  

However, for real samples for which the baseline is obscured by absorption peaks, 

baseline changes may be more difficult to correct by post data collection methods. 
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Figure 3.13 Overlay of VT-DRIFTS polystyrene reflectance spectra. 

 

Transforming reflectance spectra with the Kubelka-Munk transform produced 

the results shown in Figure 3.14.  Absorption band locations appear to be unchanged, 

but peaks and baselines do not overlap as well as when all measurements were made at 

ambient temperature.  Kubelka-Munk spectral intensity significantly increased when 

single beam intensity decreased.  For example, peak intensity for the largest peak (at 

2922.50 cm-1) was 12.8 Kubelka-Munk units at ambient temperature and 81.3 Kubelka-

Munk units at 496.3 °C.   
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Figure 3.14 Overlay of VT-DRIFTS Kubelka-Munk results a) complete spectra 
and b) expansion of the C-H stretching region. 
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Figure 3.15 Temperature-dependent trends in polystyrene Kubelka-Munk spectral 
peak intensities. 

 

Although peak intensity increased with increasing temperature, sample absorptions did 

not change, so peak shapes and magnitudes should not have varied.  The maximum 

intensity in these spectra occurred at 2918.64 cm-1, which was 4 cm-1 lower than 

2922.50 cm-1, which corresponded to the maximum for ambient temperature spectra.  

Temperature-dependent intensity trends for adjacent digitized spectrum values (i.e. at 

2914.78 and 2922.50 cm-1) are also shown in Figure 3.15.  Intensities at all three 

wavenumber locations exhibited similar behavior, but changes were greatest at the 

absorption maximum. 

 In general, computational error propagation revealed that the largest fluctuations 

in VT-DRIFTS Kubelka-Munk spectra should be associated with the most intense 

absorption peaks.  Compared to ambient temperature measurements, this error is 

significantly magnified when the sample holder was heated.  This was most likely due 

to the detector voltage decrease caused by increasing unmodulated radiation produced 
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when the sample holder was heated.  Figure 3.16 depicts the correlation between 

average Kubelka-Munk spectrum intensities and their standard deviations, comparing 

ambient temperature and variable temperature results.  At ambient temperature, average 

Kubelka-Munk peak intensities were lower, and reproducibility was better than when 

the sample holder was heated. 

 

Figure 3.16 Standard deviation of Kubelka-Munk spectra peak intensities as a 
function of peak intensity for ambient and variable temperature measurements. 

 

Because there is a systematic trend in Figure 3.16, specifically, a gradual increase in 

Kubelka-Munk intensities, methods for eliminating these variations were investigated. 

 

3.3 Post-Collection Manipulation of Variable Temperature Spectra 

Spectra can be scaled to remove baseline offsets by using a factor calculated 

from portions of single beam spectra that represent the baseline.  A polynomial function 

that modeled systematic temperature-dependent trends was used to scale single beam 
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spectra collected at different temperatures.  Scale factor variations with temperature 

were best determined by monitoring temperature-dependent trends in emissivity at 

single beam spectrum baseline locations.   

 

3.3.1 Identifying Single Beam Spectrum Baseline Locations  

Figure 3.17 illustrates the baseline wavenumber selection process.  The first step 

in identifying spectrum baseline locations was to determine wavenumber locations that 

exhibited the lowest standard deviations when multiple spectra were measured.  A 

single beam spectrum obtained with polystyrene in the beam is represented by short 

dashes in Figure 3.17.  For comparison, the reference Ag powder spectrum also 

obtained at room temperature is shown by long dashes.  The spectrum obtained with 

polystyrene in the beam was the result of averaging 50 spectra collected at ambient 

temperature.  Wavenumbers corresponding to the lowest Kubelka-Munk intensity 

standard deviations were identified in these 50 spectra.  Portions of single beam spectra 

corresponding to these wavenumbers are marked by the thick line on the polystyrene 

absorption single beam spectrum.  The standard deviations are represented by open 

circles on the bottom (right y-axis).  From those wavenumbers with the lowest relative 

standard deviations, some were selected to represent the baseline at various locations in 

the spectrum.  These wavenumbers, which most closely match reference single beam 

spectrum values, are depicted by triangles and labeled with their corresponding 

wavenumbers.   



 86 

 

Figure 3.17 Baseline wavenumber selection process. 
 

Selected baseline wavenumbers and their corresponding emissivity and standard 

deviations are listed in Table 3.3. 

Table 3.3 Baseline Location Characteristics. 

cm–1 
Average Baseline 
Point Intensities, 

Emissivity 

Standard 
Deviation RSD 

818.17 6.81 0.00881 0.00129 

879.95 7.13 0.00729 0.00102 

2107.80 11.22 0.00784 0.00070 

2215.91 10.18 0.00799 0.00078 

2447.58 8.66 0.00678 0.00078 

2617.47 7.92 0.00753 0.00095 

2733.30 7.62 0.00822 0.00108 

4818.33 2.36 0.00948 0.00401 
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Note that in the 1830-1950 and 3500-4000 cm-1 ranges, standard deviation 

significantly increases.  This is most likely due to fluctuations in water vapor absorption 

bands and related to instrument purge (see Figure 2.5).  Bands associated with water 

(1300-2045 cm-1 and 3200-4000 cm-1) and carbon dioxide (2290 – 2395 cm-1) exhibit 

greater signal fluctuations due to concentration variations inside the instrument. 

Therefore, these wavenumber ranges were not suitable for baseline characterizations. 

 

3.3.2 Single Beam Scaling 

Scaling factor temperature dependence was modeled by monitoring spectrum 

intensities at baseline locations with the highest emissivities and lowest standard 

deviations.  Scaling factors appropriate for correcting spectra at each measured 

temperature were calculated by ratioing the sample single beam spectrum emissivity 

value at ambient temperature to the emissivity values at other temperatures. Figure 3.18 

shows the trend in scaling factors as a function of temperature derived from different 

baseline locations.  All curves exhibit similar shapes.  However, the best fit trendline 

equation was generated from scaling factors calculated from 2107.80 cm-1 intensities.  

Based on these criteria, 2107.08 cm-1 was selected as the spectrum wavenumber from 

which scale factors were derived.  The WinFirst macro “scale.mac” (Appendix D) was 

used to scale individual single beam spectra. 
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Figure 3.18 Temperature-dependent scaling factors calculated at different baseline 
locations. 

 

Figure 3.19 shows an overlay of single beam spectra collected at different 

temperatures after the scaling procedure.  Spectra exhibit some variation on both sides 

of the baseline location selected for determining scaling factors (2107.80 cm-1).  For 

comparison, Figure 3.20 shows an overlay of single beam spectra collected at ambient 

temperature at 10 min intervals.  Ambient temperature spectra overlay well in the 650-

1500 cm-1 and 2000-2800 cm-1 spectral ranges.  However, more variation was observed 

in the water absorption ranges, most likely because of changes in instrument purge. 
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Figure 3.19 Overlay of scaled VT-DRIFTS sample single beam spectra. 
 

 

Figure 3.20 Overlay of DRIFTS sample single beam spectra collected at ambient 
temperature. 

 

Reflectance spectra calculated as a ratio of a variable temperature polystyrene 

single beam spectrum to the ambient temperature Ag reference single beam spectrum 

exhibited baseline offsets, as shown in Figure 3.21.  The ambient temperature spectrum 

is depicted by a thick line.  It is notable that the thin line representing the measurement 
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made at 496.3 °C is below the ambient temperature spectrum in the higher wavenumber 

region but above the ambient temperature spectrum in the low wavenumber region.  In 

contrast, the scaled spectrum obtained at 297.8 °C overlaps with the room temperature 

spectrum relatively well.  Thus, it is plausible that a change in the Ag powder contained 

in the sample holder occurred above 300 °C, causing a redistribution in signal 

intensities and creating a temperature-induced baseline slope. 

 

Figure 3.21 Overlay of scaled VT-DRIFTS polystyrene reflectance spectra. 
 

Although baseline changes appear to be small in reflectance spectra, conversion 

to Kubelka-Munk format amplifies these variations and affects relative peak intensities, 

rendering results less accurate for quantitative analyses.  Figure 3.22 is an overlay of 

scaled spectra after conversion to Kubelka-Munk format.  Note the poor peak height 

reproducibility, which is particularly evident in Figure 3.22b. 
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Figure 3.22 Overlay of scaled VT-DRIFTS polystyrene spectra in Kubelka-Munk 
format: a) complete spectrum and b) expansion in the C-H stretching region 

 

3.3.3 Baseline Offset 

Sloping lines were subtracted from spectra prior to conversion to Kubelka-Munk 

format by using a WinFirst macro command and selecting 2 absorption spectrum 

baseline locations.  The “slope.mac” macro program code can be found in Appendix E.  
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The effectiveness of slope removal by using various baseline locations was compared.  

The best baseline location choices yielded the lowest peak maximum standard 

deviations and near-zero baseline slopes in corrected reflectance spectra. 

 Thus, straight lines passing through baseline locations at 818.17 and 3605.47 

cm-1 were subtracted from all the scaled spectra over the entire spectral range.  Scaled 

and baseline corrected spectra were then converted to Kubelka-Munk format.  Although 

fluctuations in peak maxima were greatly reduced by using this method, ambient 

temperature spectrum reproducibility was still superior.   

Figure 3.23 shows an overlay of variable temperature single beam spectra after 

scaling and baseline correction.  These spectra overlay better than before baseline 

correction (compare to Figure 3.20).  Figure 3.24 shows an overlay of variable 

temperature reflectance spectra after scaling and baseline correction.  These spectra also 

overlay better than before baseline correction (compare to Figure 3.21). 

 

Figure 3.23 Overlay of scaled and baseline-corrected VT-DRIFTS polystyrene 
single beam spectra. 
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Figure 3.24 Overlay of scaled and baseline-corrected VT-DRIFTS polystyrene 
reflectance spectra. 

 

Kubelka-Munk peak intensities were lower after baseline correction, as shown 

in Figure 3.25, compared to before baseline correction (Figure 3.22), and because 

reproducibility at higher Kubelka-Munk intensities was lower, it followed that the 

reproducibility of Kubelka-Munk intensities was improved after baseline correction.  

However, as shown by Figure 3.25, intensity fluctuations in corrected Kubelka-Munk 

intensities are still evident.   
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Figure 3.25 Overlay of scaled and baseline-corrected VT-DRIFTS Kubelka-Munk 
format spectra a) complete spectra and b) expansion of the C-H stretching region. 

 

3.4 Comparison of Spectral Standard Deviations 

Figure 3.26 shows the standard deviations at various absorption peak maxima 

derived from measurements made at room temperature (black), variable temperature 

(gray), variable temperature after scaling (open triangles), and variable temperature 
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after scaling and baseline slope removal (open squares). Figure 3.27 shows plots of 

these standard deviations as a function of Kubelka-Munk peak intensity. 

 

Figure 3.26 Peak intensity standard deviations as a function of wavenumber: a) 
complete data sets and b) expanded scale. 
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Figure 3.27 Peak intensity standard deviation as a function of Kubelka-Munk 
intensity. 

 

Kubelka-Munk intensity was lowest for measurements made at ambient 

temperature and highest for uncorrected variable temperature measurements.  Peak 

maximum standard deviations increased with increasing peak intensities.  Note that 

scaling variable temperature spectra significantly decreased Kubelka-Munk peak 

intensities and standard deviations, but did not provide reproducibilities comparable to 

those obtained by ambient temperature measurements.  Baseline correction further 

improved reproducibility, but ambient temperature measurement reproducibility was 

still superior.   

A semi-quantitative comparison of the four sets of results can be provided by 

calculating the relative standard deviation of the measurements, which can be obtained 

from the slopes of standard deviation versus average peak intensity plots (Table 3.4). 
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Table 3.4 Comparison of the Relative Standard Deviations. 

Data set Slope ≈ RSD 

Ambient temperature 0.092 

Variable temperature 0.599 

Variable temperature – scaled 0.183 

Variable temperature – scaled and baseline 
corrected 0.181 

 

 

The relative standard deviation of variable temperature measurements was 6.5 times 

greater than for ambient temperature measurements.  Scaling sample single beam 

spectra lowered the RSD value to about twice the ambient temperature value.  Baseline 

correction of scaled spectra had minimal effect on RSD. Although post-collection data 

manipulation improved the quality of variable temperature spectra, elimination or 

minimization of temperature-induced spectral artifacts would be preferred. 

 

3.5 Effect of Sample Holder Heating on Baseline Slope 

For quantitative infrared analysis, spectral peak intensities should depend on the 

amount of specific analyte present in a sample.[8]  In VT-DRIFTS, sample heating can 

cause chemical structure changes, resulting in both positive and negative changes to 

spectral features.  As demonstrated here, baseline offsets and slopes adversely affect the 

quantitative accuracy of Kubelka-Munk spectra.  Therefore, when possible, VT-

DRIFTS experiments should be designed to avoid baseline artifacts.  When this is 

impossible, post-collection baseline correction techniques may be employed to 

minimize quantitative measurement inaccuracies.  With properly aligned optics, FTIR 

spectra exhibit baselines without offset or significant sloping.  However, heating 
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samples often results in curved or sloping baselines in spectra, and these artifacts 

become more severe at higher temperatures.  Because it can be difficult to correct 

curved spectrum baselines, it is imperative that precautions be taken to prevent their 

occurrence.  Thus, prevention of baseline variations should be a focus for VT-DRIFTS 

optimizations.   

Figure 3.28 shows an example of baseline non-linearity resulting from sample 

heating.  Single beam spectra for non-absorbing silver powder were measured at 

ambient temperature and at 200 °C.  The ratio of these single beam spectra represents 

the instrument baseline, and should appear as a horizontal line in the reflectance 

spectrum.  Instead, a sloping baseline was obtained in which the high wavenumber end 

of the spectrum exceeded 100% reflectance.  Baselines such as the one shown in Figure 

3.28 lead to large errors in Kubelka-Munk function representations of VT-DRIFTS 

spectra.  If sloping baselines cannot be avoided, methods must be developed for 

minimizing their slopes before converting to Kubelka-Munk format. 

 

Figure 3.28 Baseline non-linearity caused by sample holder heating. 

 

The infrared source emission spectrum, wavelength dependences of optical 

components (reflection and absorption), and the response function of the detector 
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determine the shape of FTIR single beam spectra.  Single beam spectrum intensity 

varies with wavenumber, but relative intensities at all wavenumbers should be 

maintained unless one of these instrument factors change.  VT-DRIFTS single beam 

spectrum emissivity decreases with sample heating due to detector saturation effects, 

but the shape of single beam spectra should not change.  Changes in single beam 

spectrum shapes result in reflectance spectrum baseline slopes.  Ideally, only sample 

absorptions should reduce reflectance values below 100%.  Unfortunately, subtle 

changes in single beam spectrum shapes are often observed in VT-DRIFTS that affect 

reflectance spectrum baselines and lead to inaccuracies in Kubelka-Munk spectra. 

 

3.5.1 Baseline Slope Characterizations 

The magnitudes of VT-DRIFTS baseline slopes were estimated by calculating 

differences in reflectances near 4000 cm-1 and 2000 cm-1.  These spectral locations were 

selected because few samples absorb at these wavenumbers and they are not impacted 

by variations in instrument purge (i.e. changes in CO2 and H2O vapor absorptions).   

Spectra were acquired for 10 hours with previously heated Ag powder in the 

sample holder.  The following heating program was implemented: ambient for one hour, 

then heating to 200 °C at 5 °C/min, held at 200 °C for 4 hours, and then cooling to 

ambient while continuing to collect spectra for another 4.5 hours.  Spectra collected in 

this manner provided information regarding fluctuations in baseline slopes at ambient 

temperature, baseline changes caused by sample heating, baseline fluctuations that 

occurred isothermally during sample heating, and trends in spectrum shape changes that 

occurred during cooling.  Reflectance spectra were obtained by dividing each 
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consecutively measured single beam spectrum by the first acquired spectrum, which 

was measured at ambient temperature.  Thus, the first “reflectance spectrum” was 

simply a 100% reflectance line with zero slope (and no noise) and zero difference 

between intensities at 4000 and 2000 cm-1. 

Figures 3.29 and 3.30 contain reflectance spectra overlays showing baseline 

slopes caused by sample holder heating and cooling.  In Figure 3.29, the darkest lines 

denote spectra obtained near the beginning of the heating program (i.e. near ambient 

temperature), and lighter lines represent spectra obtained at higher sample holder 

temperatures.  Spectra measured near ambient temperature did not exhibit significant 

deviations from 100% reflectance between 4000 and 650 cm-1.  Baselines in spectra 

collected at 200 °C were significantly tilted, with lower reflectance at low 

wavenumbers, which yielded positive calculated slopes.  Figure 3.30 is an overlay of 

reflectance spectra obtained while the sample cooled from 200 °C to ambient 

temperature.  The darkest lines represent spectra collected at 200 °C and lighter shade 

lines represent spectra acquired at lower temperatures.  As the sample holder cooled, 

baseline slopes decreased and approached initial ambient temperature values. 
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Figure 3.29 Baseline changes caused by sample heating. 
 

 

Figure 3.30 Baseline changes caused by sample cooling. 

 

Figure 3.31 shows reflectance spectrum baseline slope (solid line) as a function 

of time during the heating profile.  Measured sample holder temperatures (i.e. TPt) are 

represented in Figure 3.31 by the short dash line.  Zero slope is indicated by the long 

dash line. 
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Figure 3.31 Baseline slopes of reflectance spectra (solid line) and sample holder 
temperature (short dash line) as a function of time during the heating profile. 

 

The baseline slope plot consists of two components, a large increase with increasing 

sample holder temperature and a smaller oscillation superimposed on these changes.  

The initial baseline slope increase can be correlated with sample holder heating.  When 

cooling, baseline slopes returned to near ambient temperature values.  A delay in 

baseline slope increase was observed when the sample was initially heated and a similar 

delay in slope change was observed when the sample holder was cooled.  Specifically, 

the sample holder reached 200 °C after 96 min, but baseline slope continued to 

gradually increase until it stabilized at about 135 min.  The oscillation in baseline slope 

corresponded to about 1% cyclical changes and was detected throughout the heating and 

cooling process.  Because these regular oscillations in the baseline slope repeated at 

about 40 min intervals, block average smoothing resulted in a curve with these 

oscillations removed.  As shown in Figure 3.32, baseline slope initially increased from 
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0.8% near ambient temperature to 9.1% at 200 °C, then dropped to -0.8% when the 

sample holder cooled.   

 

Figure 3.32 Baseline slope changes after block average smoothing. 

 

Greater changes in intensity at higher wavenumbers (i.e. the shortest wavelengths) are 

consistent with variations in optical alignment, because interference for shorter 

wavelengths is most sensitive to small beam path length changes.  The delay in baseline 

slope increase with sample holder heating and baseline slope decrease with sample 

holder cooling suggests that alignment variations caused by temperature changes to 

optical system components continued after the sample holder had equilibrated at 200 

°C.  The temperature changes for various instrument components caused by sample 

holder heating, which were responsible for baseline slope variations, are described in 

Chapter 4.  
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4 Chapter 4:  Instrument Temperature Profiles  

 

 

To better understand the effects of sample heating on the FTIR optical system, 

type K thermocouples were placed at various locations within the instrument, and 

temperature measurements were simultaneously made by using an Agilent 34970A Data 

Acquisition / Data Logger Switch Unit while heating the VT-DRIFTS sample holder.  

Silver powder that had been previously heated in the DRIFTS apparatus was left in the 

sample holder as a representative sample surface.  Because the powder had been 

previously heated, it was more tightly packed into the sample holder, so there was 

minimal movement of the sample surface with successive heating ramps.  Temperature 

measurements were obtained at 10 second intervals. 

 

4.1 Thermocouple Calibration Procedure 

To assure that thermocouples were properly calibrated and yielded consistent 

and accurate temperature measurements, they were bundled together to minimize 

temperature differences before calibration.  Ice water and boiling water were used as 

temperature reference points, corresponding to 0 °C and 100 °C, respectively.  Readings 

were collected at each reference temperature at about 10 sec intervals until all 

thermocouple measurements stabilized.  Prior to calibration, all thermocouple 
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temperature readings were below ambient (by as much as 3 °C).  However, each 

thermocouple provided stable readings over the course of 5 minutes.  For each 

thermocouple, temperature variations were less than 0.1 °C at 100 °C and close to 0.05 

°C at 0 °C.  When temperature measurements from all thermocouples were statistically 

compared prior to calibration, standard deviations were about 1 °C at both 0 °C and 100 

°C.  After equilibration, the average temperature recorded over a 5 min interval for each 

thermocouple at 0 °C and at 100 °C was used to derive a calibration curve for that 

thermocouple.  Calibration curves obtained by this method were used to modify the 

Agilent data logger software to correct thermocouple readings.  After calibration, all 

temperature measurements were within 0.2 °C of reference temperatures, and standard 

deviations for all thermocouple readings were less than 0.03 °C. 

 

4.2 Sample Holder Temperature Variations 

Because infrared radiation reflects from the sample surface, front surface 

temperatures are most representative of the portion of the sample exposed to infrared 

radiation.  Unfortunately, placing a thermocouple at this location is not practical 

because errors can be introduced into spectroscopic measurements due to blocking of 

incident radiation by the thermocouple.  In addition, the thermocouple may move during 

heating either because of sample particle shifting or as a result of thermal expansion.  

Consequently, temperature-dependent random spectral variations that are unrelated to 

sample chemical composition changes may be caused by placing a thermocouple at the 

sample surface.  To avoid these problems, temperatures were measured at the bottom of 

the powdered sample.  A platinum foil was placed between the powdered sample and 
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the thermocouple so that the solid sample rested on top of the foil and a thermocouple 

was in contact with the bottom of the foil. 

Ideally, samples should heat uniformly and temperature measurements should 

accurately reflect sample surface temperatures.  Unfortunately, significant temperature 

variations were detected within the sample.  The thermocouple employed by the 

temperature controller feedback control system to generate heating ramps was in 

contact with the platinum foil at the bottom of the sample, which was about 1 mm 

below the sample surface.  Sample surface measurements indicated that surface 

temperatures differed from those at the Pt foil.  Front surface temperatures were 

typically lower and sample temperature gradients increased with increased sample 

temperature.   

To avoid potential spectral artifacts caused by placing a thermocouple at the 

sample surface, temperatures associated with specific VT-DRIFTS spectra were derived 

from Pt foil measurements (TPt) by means of calibration curves relating sample surface 

and Pt foil temperatures.  Experiments were performed to determine temperature 

measurement reproducibility, the magnitudes of temperature gradients between the top 

and bottom of the sample, and effects of various environmental conditions on sample 

temperature readings. 

To measure sample surface temperatures, a thermocouple was inserted through 

an opening at the bottom of the sample chamber and positioned so that it was in contact 

with the sample surface.  By introducing the thermocouple in this manner, the top 

portion of the DRIFTS environmental chamber could be removed without disturbing the 

thermocouple.  The thermocouple was sealed to the chamber by using high-temperature 
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cement.  The thermocouple wire was insulated with ceramic tubing and secured to the 

sample holder post to prevent movement.  The tip of the thermocouple was in contact 

with the sample surface at the center of the sample holder.  This thermocouple 

placement would not be desirable when making VT-DRIFTS measurements, but the 

purpose of these experiments was to measure sample surface temperatures.  

Experiments were conducted to evaluate the reproducibility of temperature 

measurements made both beneath the sample (TPt) and at the sample surface (Tsurf).   

 

4.2.1 Effects of Sample Holder He Purge Rates 

Temperatures were simultaneously measured beneath the sample and at the 

surface while heating the sample holder.  Temperatures measured at the Pt foil were 

used by the temperature controller to adjust heater power.  For heating ramps, TPt was 

held at room temperature for 2 min, increased to 300 °C at 5 °C/min, held at 300 °C for 

5 min, and then the sample was allowed to cool by turning off the heater power.  This 

heating profile was repeated while purging the sample compartment with 10 mL/min He 

and then with 100 mL/min He.  Heating profile measurements at each purge rate were 

repeated 3 times.  The sample temperature (TPt) exceeded 300 °C by 1 °C when the 5 

°C/min heating ramp was employed, causing a small aberration in temperature versus 

time plots near 57 min. 

Figure 4.1 shows an overlay of the average of three replicate Tsurf measurements 

made while purging at 10 mL/min (dash-dot line) and 100 mL/min (solid line) along 

with standard deviations calculated for the 3 replicate measurements made at each He 

flow rate.  The temperature versus time plots overlay very well, suggesting that 
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changing the He purge rate had minimal effect on sample surface temperatures.  

Although He purge rate changes did not significantly alter sample surface temperatures, 

measurement standard deviations were lower when purging at 100 mL/min (typically 

less than 0.05 °C) than when 10 mL/min (0.3 – 0.5 °C) was employed.  After power to 

the heater was turned off, standard deviations calculated for measurements made while 

using the 10 mL/min He purge were significantly greater than when the 100 mL/min He 

purge was employed.  Thus, although all standard deviations were less than 1 °C while 

heating, sample surface temperature measurement reproducibility was better when the 

100 mL/min He purge rate was employed. 

 

Figure 4.1 Sample surface temperatures and standard deviations for 3 replicate 
heating ramps with 10 (dash line) and 100 (solid line) mL/min He purge. 

 

Figure 4.2 shows an overlay of the averages of 3 heating profile TPt 

measurements as a function of time made with 10 and 100 mL/min He purge.  Standard 

deviations as a function of time for each set of 3 replicate measurements are also shown.  

Standard deviations were less than 0.5 °C with both He purge rates.  During cooling, the 
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standard deviation was greater when purging at 100 mL/min He, which was the 

opposite of the sample surface temperature trends. 

 

Figure 4.2 Temperature under the sample and standard deviations for 3 heating 
ramps with 10 (dash line) and 100 (solid line) mL/min He purge. 

 

High standard deviations near the beginning of heating ramps were the 

consequence of slightly different starting temperatures.  Sample surface temperatures 

were more reproducible with 100 mL/min He purge, and temperatures measured 

beneath the sample (TPt) were more reproducible for the 10 mL/min He purge.  These 

trends were exaggerated during cooling, when power to the heater was removed.  When 

purging at 100 mL/min He, the power provided to the heating element exhibited greater 

fluctuations.  This caused greater fluctuations in TPt.  Conversely, the sample surface 

was heated and cooled more reproducibly when the sample holder was purged with 100 

mL/min He, therefore, sample surface temperature reproducibility was better when 100 

mL/min He purge was employed compared to measurements with 10 mL/min He purge. 
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Figure 4.3 shows a comparison of TPt measurements (dotted line) and Tsurf 

measurements (solid line) during heating profiles.  These plots do not overlap.  Sample 

surface temperatures were consistently below Pt foil temperatures, and the difference 

between these temperatures increased with increased heating.  Because TPt and Tsurf 

measurements were reproducible for repeated heating profiles, it should be possible to 

predict Tsurf values from TPt measurements.  However, such predictions require that the 

correlation function between Tsurf and TPt be known.  By plotting Tsurf versus TPt, this 

correlation function can be determined by using best-fit linear regression.  It should be 

possible to employ this correlation equation to predict Tsurf based on TPt measurements. 

 

Figure 4.3 Correlation between temperature readings near the sample surface 
(Tsurf – black) and beneath the sample (TPt – gray). 

 

 

4.2.2 Effects of Sample Holder Heating Rates 

Because VT-DRIFTS measurements made by using different sample heating 

rates are often used to elucidate temperature-dependent sample structure changes, 
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correlations between Tsurf and TPt for a range of heating rates were examined.  In 

addition to 5 °C/min (Figure 4.3), Tsurf and TPt correlation functions were determined for 

0.5, 1.0, and 2.0 °C/min heating rates.  As previously described, heating profile 

experiments were performed by first measuring ambient sample temperatures for 2 min, 

followed by heating the sample to 300 °C (TPt) and then holding at 300 °C for 5 min.  

After a final 5 min isothermal period, the sample was allowed to cool by removing 

power to the heater.  Because the 5 °C/min measurements revealed no significant 

difference in the correlation function when purging at 10 or 100 mL/min He, 10 

mL/min He purge was employed for all heating rate experiments. 

Heating ramp starting temperatures varied because of different cooling periods 

between successive experiments.  In order to exclude successive measurement values 

with high standard deviations near ambient temperatures, correlation functions were 

derived from TPt measurements made between 35 and 300 °C.  Experiments were 

initiated by simultaneously executing the PC heating ramp program and manually 

starting the data logger.  Small differences in the times that heating ramps and 

temperature measurements were initiated likely contributed to TPt variations for values 

recorded at the same elapsed time for repeated heating ramps, but these contributions 

would be relatively constant.  In general, repeated measurement standard deviations 

{σ(TPt)} increased with increasing heating rate, whereas standard deviations for surface 

temperature measurements {σ(Tsurf)} did not exhibit a clear heating rate-dependent 

trend, and were ±0.11 °C on average with the highest standard deviation reaching ±0.17 

°C for the 1 °C/min heating ramp (Table 4.1). 
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Table 4.1 Temperature Standard Deviations for Various Heating Rates 

Heating rate σ (TPt) σ (Tsurf) 

0.5 °C/min ± 0.01 °C ± 0.08 °C 

1 °C/min ± 0.04 °C ± 0.17 °C 

2 °C/min ± 0.06 °C ± 0.10 °C 

5 °C/min ± 0.13 °C ± 0.10 °C 
 

 

Figures 4.4 and 4.5 illustrate the effects of sample heating rate on σ(TPt ) and 

σ(Tsurf).  In both figures, the darkest color plot corresponds to results obtained at the 

lowest heating rate (0.5 °C/min) and the lightest color corresponds to results obtained at 

the highest heating rate (5 °C/min).  Figure 4.4 shows that σ(TPt) values increased with 

increasing heating rate, but no significant change in σ(TPt) was observed with increasing 

sample temperature.  In contrast, Figure 4.5 shows that plots of σ(Tsurf) versus TPt 

generated from data acquired at different heating rates overlap.  These plots also exhibit 

slight increases in σ(Tsurf) with increasing temperature.  Note that the plots in Figures 

4.4 and 4.5 have different scales, and that σ(TPt) values were generally lower than 

σ(Tsurf) values. 
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Figure 4.4 TPt measurement standard deviations for various heating rates. 

 

 

Figure 4.5 Tsurf measurement standard deviations for various heating rates. 

 

Figure 4.6 shows an overlay of Tsurf versus TPt data for various heating rates 

(gray lines, left y-axis).  The plots overlay more closely at low temperatures and deviate 

with increasing temperature.  The temperature difference between Tsurf and TPt, caused 

by a temperature gradient across the sample, is represented by:  
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ΔTS = TPt – Tsurf                                                 (4.1) 

This maximum sample temperature difference (ΔTS) increased with increasing 

temperature at each heating rate. 

 

Figure 4.6 Correlations between Tsurf and TPt. 

 

Plots of Tsurf versus TPt (Figure 4.6, gray plots) are nearly linear.  However, 

slight deviations from linearity produce reproducible changes in maximum temperature 

difference plot slopes near 105 °C.  Above 105 °C, slopes of ΔTS versus TPt plots are 

similar for all heating rates.  Below 105 °C, slopes of these curves increase with 

increasing heating rate.  Notably, the change in the slope of the ΔTS versus TPt plots 

occurs near the boiling temperature of water. 

  Because inflection points indicating slope changes occur in TPt versus Tsurf 

curves near 105 °C, two linear regression equations were used to fit these curves, one 

for Tsurf values below 105 °C, and a second for measurements made above 105 °C.  Best 

fit regression equations describing the relationship ‘TPt = m × Tsurf + b’ are listed in 

Table 4.2. 
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Table 4.2 Best Fit Regression Equations Describing the Relationship ‘TPt = m × 
Tsurf + b.’ 

Heating 
Rate, 

°C/min 

For the data below TPt = 105 
°C 

For the data above TPt = 105 
°C 

0.5 y = 0.9398x + 2.257 y = 0.9512x + 0.9577 

1 y = 0.9358x + 2.2138 y = 0.9511x + 0.5724 

2 y = 0.9314x + 1.9564 y = 0.9509x – 0.0565 

5 y = 0.9167x + 2.3184 y = 0.9497x – 1.2594 
 

 

Slope values and intercept values were plotted as a function of heating rate.  In 

Figures 4.7 and 4.8, triangles correspond to the data obtained below 105 °C and 

asterisks represent data obtained above 105 °C.  Slope and intercept values follow 

opposite trends.  Below 105 °C, slopes of Tsurf versus TPt linear regressions decrease 

with increasing heating rate.  Above 105 °C, slopes are similar, regardless of the heating 

rate.  Intercept values, on the other hand, are comparable below 105 °C, but decrease 

with increasing heating rate above 105 °C. 
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Figure 4.7 Tsurf vs. TPt slopes versus heating rate. 
 

 

Figure 4.8 Tsurf vs. TPt intercepts versus heating rate. 
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The slope is a coefficient that correlates Tsurf with TPt.  Below 105 °C, this 

coefficient is greatest at the lowest heating rate (i.e. 0.5 °C/min) and gradually decreases 

with increasing heating rate.  Thus, Tsurf values more closely match TPt values when the 

sample is heated more slowly, and increasingly lag behind TPt values with higher 

heating rates.  Above 105 °C, slopes are comparable for all heating rates.  The average 

slope above 105 °C was 0.9507 ±0.0007, indicating that sample surface temperatures 

were consistently about 95% of TPt values. 

The linear regression intercept represents the initial difference between Tsurf and 

TPt.  All heating ramps started near ambient temperature.  Thus, for linear regressions 

derived from measurements below 105 °C, intercept values represent the temperature 

difference between the sample surface and Pt foil at ambient temperature.  The average 

intercept was 2.2 ±0.2 °C, indicating that initial sample surface temperatures were about 

2 °C above the Pt foil temperature.  This was likely the result of the infrared beam 

heating the sample surface and raising the temperature there compared to the 

temperature at the bottom of the sample.  For measurements above 105 °C, intercepts 

represent cumulative temperature differences resulting from the lag in Tsurf relative to 

TPt when the sample was heated.  Because the highest heating rate produced the greatest 

lag, the intercept value for the 5 °C/min heating rate was the most negative (-1.2594 

°C).  Conversely, the intercept was most positive (0.9577 °C) for measurements made 

while heating at 0.5 °C/min.  Because slopes were relatively constant above 105 °C, 

sample surface temperatures during 5 °C/min heating ramps were about 2 °C below 

those measured when a 0.5 °C/min heating rate was employed. 
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Temperature measurements made during heating profiles confirm the presence 

of a temperature gradient between the top and bottom of the powder sample.  This 

gradient intensifies with increasing temperature.  Gradient temperature variations 

depend on heating rate, but are reproducible, so that sample surface temperatures can be 

predicted based on TPt measurements.  Sample surface temperatures could be predicted 

to within ±0.06 °C by using dual linear regression equations to characterize the lower 

and higher temperature regions separately.  For all heating profiles, temperature 

differences across the sample were greatest between 35 and 105 °C.  Above 105 °C, 

sample surface temperatures were about 95% of Pt foil values, regardless of heating 

rate.  By using a 0.95 multiplier to convert TPt measurements to Tsurf values for the four 

different heating rates, Tsurf could be predicted with a maximum error of 1.95 °C 

(corresponding to 50 °C at 0.5 °C/min heating ramp) and with a standard deviation of 

±1.04 °C for the average of three replicate measurements.  Figures 4.9 and 4.10 show 

plots of ΔTerr versus TPt for the low and high temperature regions, respectively, obtained 

by using the dual linear regression method.  For TPt values above 105 °C, errors were 

relatively constant.  In fact, a linear regression equation of the form y = 0.95x + b was 

found to  predict Tsurf values above 105 °C to within ~ ±0.5 °C for each heating rate, 

provided that the b value was systematically decreased as the heating rate increased 

from 0.5 to 5 °C/min.  Below 105 °C, this approach was much less accurate.  For 

temperatures below 105 °C, the linear regression slope must be systematically 

decreased when heating rates increase from 0.5 to 5 °C/min. 
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Figure 4.9 ΔTerr versus TPt for the low temperature region. 
 

 

Figure 4.10 ΔTerr versus TPt for the high temperature region. 
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4.3 Temperature Changes Caused by Sample Heating 

4.3.1 Effects of Sample Holder He Purge Rates. 

To understand how temperatures at various locations near the sample holder 

vary when the sample is heated, thermocouples were placed near each ZnSe window 

location, on top of the sample chamber lid, and between the ellipsoid mirrors of the 

DRA, as shown in Figure 4.11. 

 

Figure 4.11 Thermocouple locations. 

 

For temperature measurements, ZnSe windows were replaced with aluminum 

discs of the same dimensions with thermocouples inserted through the middle and 

secured with high temperature resistant cement.  The aluminum disks were held in place 

by the compression nuts.  In this manner, temperatures were measured within 1 mm of 

the ZnSe window location inside the environmental chamber (labeled “Window 1” and 

“Window 2” in Figure 4.11).  Figure 4.11 shows the environmental chamber lid viewed 

from the back of the instrument.  Therefore, when viewed from the front, window 1 is 

on the left, and window 2 is on the right.  In figures 4.12 – 4.14 it can be seen that 

window temperatures were not the same.  Window 2 was hotter than window 1 because 
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part of the nichrome wire heating element was close to it, causing it to heat to higher 

temperature. 

To measure the temperature of the environmental chamber lid, a thermocouple 

was placed at the topmost point of the lid and secured with heat-resistant tape (labeled 

“Lid top” in Figure 4.11). 

To measure the temperature of the ellipsoid mirrors, a thermocouple was 

threaded through a piece of high-temperature-resistant tape so that the tip of the 

thermocouple was not touching any part of the instrument and measured the 

temperature of the atmosphere close to the ellipsoid mirrors (within less than 1 mm of 

the reflective surface of the ellipsoid mirrors).  All temperature measurements were 

correlated with TPt during VT-DRIFTS measurements. 

With Ag powder in the sample holder, the following heating program was 

implemented: ambient for 5 min, then heating to 300 °C at 5 °C/min, held at 300 °C for 

5 min, and then cooling to ambient after while continuing to monitor temperatures for 

40 min.  To test the effects of sample holder purge rate on instrument temperatures, 

sample holder purge was set to 10 mL/min and 100 mL/min, and experiment were 

repeated two times each to confirm reproducibility. The data presented here were 

collected with a fan secured to the instrument base in the front compartment to circulate 

CO2-free dry air.  Figure 4.12 shows an overlay of the instrument temperature profiles 

measured in two separate experiments while the 10 mL/min He purge was employed.  

Figure 4.13 shows an overlay of the same measurements made by using a 100 mL/min 

He purge.  In both plots the curves for repeated experiments overlay very well, 

indicating reproducibility of temperature trends. 
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Figure 4.12 Instrument temperature profiles with 10 mL/min He purge. 
 

 

Figure 4.13 Instrument temperature profiles with 100 mL/min He purge. 

 

A temperature gradient extending from the heater was observed, TPt was 

measured nearest the heater. The ZnSe window measurements were made less than 1 

inch from the heater and reached 105.42 – 148.35 °C when the sample was heated to 
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300 °C.  The top of the environmental chamber lid reached 74.26 – 85.77 °C, and the 

ellipsoid mirrors warmed from ambient to 36.66 – 40.00 °C during heating profiles. 

Results described in Chapter 3 indicate that sample holder He purge rate did not 

significantly alter Tsurf values. However, Figure 4.14 shows that temperatures at other 

locations were consistently greater when the higher He purge rate was employed.  

Figure 4.14 is an overlay of instrument temperature versus time plots obtained with 10 

and 100 mL/min He purge rates.  Black lines depict measurements made while purging 

at 10 mL/min He, and the gray lines represent the same measurements, but while 

purging at 100 mL/min He.  The higher He purge flow rate resulted in greater heating of 

the chamber lid and ellipsoid mirrors.  This was likely due to more efficient thermal 

conduction from the heater element to the environmental chamber lid when a higher 

purge flow rate was employed. 

Based on these results, 10 mL/min He purge would be preferred over 100 

mL/min He purge for VT-DRIFTS measurements because of reduced instrument 

component heating.  In addition to lower cost (for He), lower He purge rates would 

yield less wear on the instrument components.  Also, reduced heating of instrument 

optics should minimize temperature-dependent optical alignment variations, resulting in 

more accurate VT-DRIFTS measurements. 
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Figure 4.14 Comparison of the instrument temperature profiles obtained using 10 
and 100 mL/min He flow. 

 

 Note that temperature stabilization at the isothermal region evident in the TPt 

versus time plots near 60 min becomes less distinct for environmental chamber 

components and ellipsoid mirrors, which are located further from the heating source.  
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This confirms that these instrument components continue to increase in temperature 

even when the sample temperature attains isothermal equilibrium.  Continued heating of 

these components at sample isothermal temperatures contributes to optical alignment 

changes that may be responsible for the baseline slope change delays described in 

Chapter 3 (Figure 3.30).  

 

4.3.2 Correlations Between Spectral and Temperature Data 

To further investigate the nature of the temperature gradient that develops 

throughout the instrument when the sample is heated, thermocouples were placed near 

the interferometer (by the beamsplitter), on the DRA base, and on top of the sample 

chamber lid (as shown in Figure 4.11).  The thermocouple near the beamsplitter 

measured air temperature near the interferometer.  Thermocouples attached to the DRA 

and environmental chamber lid were in contact with the metal.  Thermocouples were 

secured in position by using heat-resistant tape. In addition, two thermocouples were 

placed outside the instrument to measure the room temperature.  All temperature 

measurements were compared with TPt, the VT-DRIFTS sample holder temperature. 

With Ag powder in the sample holder, the following heating program was 

implemented: ambient for 1 hour, then heating to 300 °C at 5 °C/min, isothermal at 300 

°C for 5 min, and then cooling to ambient temperature while continuing to monitor 

temperatures for a total of 1000 min.  In addition to temperature measurements, VT-

DRIFTS spectra were collected during the first 500 min.  During heating profile 

measurements, the sample chamber was purged with 10 mL/min He.  Results described 

here were obtained with a water-cooled heat sink mounted to the DRA.  This heat sink 
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was employed to minimize ellipsoid mirror heating, but did not have a significant effect 

on measured spectrum quality.  VT-DRIFTS heating profile measurements were 

repeated three times, yielding similar results. 

Figure 4.15 shows overlays of temperature versus time plots representing 

heating at various locations within the instrument.  Clearly, temperatures decreased at 

instrument locations further from the heat source.  When the sample temperature (TPt) 

was heated to 300 °C, the sample surface temperature was 285.39 °C, the environmental 

chamber lid was 152.48 °C, and the DRA base temperature reached 33.05 °C. 

Figure 4.16 shows an overlay of the interferometer and DRA base temperature 

versus time plots.  The temperature of the DRA base increased from 26.42 to 33.05 °C, 

and interferometer temperature changed from 28.93 to 29.87 °C (< 1 °C). Periodic 

oscillations are apparent in both plots. Also, the DRA base and interferometer 

maximum temperatures were reached at different elapsed times, with the interferometer 

temperature increase lagging the DRA base temperature.  The DRA base maximum 

temperature occurred slightly after the TPt maximum was reached (Figure 4.15).  In 

contrast, the interferometer maximum temperature occurred about an hour later.  

Temperature maxima and the elapsed times required to reach these temperatures at the 

various instrument locations are listed in Table 4.3.   
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Figure 4.15 Instrument location temperature profiles. 
 

 

Figure 4.16 DRA base and interferometer temperature profiles. 

 

Table 4.3 Instrument Location Maximum Temperatures and Elapsed Times. 

 T (start), °C T (max), °C Time, min 

TPt 26.30 300.50 116.05 

Tsurf 26.60 285.39 119.67 

T (Lid top) 26.42 152.48 119.67 

T (DRA base) 26.72 33.05 123.5 

T (Interferometer) 29.53 29.87 190.17 
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At the end of the heating ramp, the sample holder temperature (TPt) exceeded the 

isothermal setting by about 0.5 °C and then quickly equilibrated at 300 °C.  In contrast, 

the sample surface and environmental chamber lid reached their maximum temperatures 

near the end of the sample holder isothermal period at 300 °C. The DRA base reached 

its maximum temperature almost 4 min after sample holder cooling had begun, and the 

interferometer reached its maximum temperature 70.5 min after the start of the cooling 

phase.  Thus, instrument temperatures continue to change long after sample holder 

temperatures have changed.  These long-term temperature trends contribute to 

variations in optical alignment that affect measured spectra but are uncorrelated with 

temperature-dependent sample changes.  More specifically, these optical alignment 

variations likely contribute to spectrum baseline artifacts (section 3.5).  

Room temperature versus time plots derived from two separate thermocouples 

mounted outside the FTIR are shown in Figure 4.17.  Room temperature control was 

achieved by periodically blowing warm air into the space.  In Figure 4.17, room heating 

cycles are denoted by the repetitive room temperature spikes.  Interestingly, an 

interferometer temperature cycling is repeated on a time scale that is similar to the room 

temperature spikes, but out of phase with room temperature changes.  This phase 

difference was most likely due to the time required for interferometer heating after the 

increases in room air temperature.  Figure 4.18 shows that VT-DRIFTS spectrum 

baseline slope changes exhibited a pattern that was similar to that for the interferometer 

temperature variations.   In addition, baseline slope changes were in phase with 

interferometer temperature oscillations.  This suggests that room temperature 

fluctuations caused slight interferometer temperature oscillations, resulting in periodic 



 130 

optical alignment changes, which produced repetitive baseline slope artifacts in VT-

DRIFTS spectra (Figure 3.31). 

 

 

Figure 4.17 Correlation between interferometer and room temperatures. 
 

 

Figure 4.18 Correlation between baseline slope changes and interferometer 
temperature fluctuations. 

 

The strong correlation between spectrum baseline slope oscillations and 

interferometer temperature indicates that interferometer alignment is an important factor 

in temperature-induced spectral artifacts.  As described previously, larger changes at 
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higher wavenumbers are consistent with optical alignment effects, because interference 

for shorter wavelengths is more sensitive to beam path length changes.  At the 

interferometer, a λ/4 moving mirror translation causes a shift from brightness to 

darkness at the detector (as discussed in section 2.3.1).[1]  Over the 650 – 4000 cm-1 

range,  λ/4 distances are between 0.000385 and 0.0000625 cm.  These path length 

increments are within the range expected for optical component thermal expansion.   

 

4.4 Instrument Response to Temperature Manipulations 

Various methods were evaluated for minimizing instrument component heating, 

both due to VT-DRIFTS sample heating, and room temperature fluctuations.  Cooling 

of select instrument components during sample heating reduced sample temperature 

(TPt), requiring greater power to the heater to achieve desired temperatures.  Thermally 

insulating the instrument from the environment by covering it with a blanket was not 

effective, possibly because the instrument was under constant CO2-free dry air purge.  

Wrapping the CO2-free dry air purge tube with heating tape served to increase the 

temperature inside the FTIR, but this also did not eliminate thermal oscillations.  

Immersing this tube in a temperature controlled water bath was also ineffective, 

possibly because there was insufficient time for temperature equilibration as the gas 

passed through the cooled portion of the tube.  Incorporating insulation between the 

sample chamber and the DRA decreased the temperature change of the DRA during 

heating somewhat, but did not provide significant improvements to acquired VT-

DRIFTS spectra.  Incorporating a fan inside the sample compartment decreased noise in 

the temperature and the baseline slope oscillation patterns.  However, increased 
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circulation of hot air through the instrument caused the temperature in interferometer 

compartment to increase.  Considering that interferometer temperature changes of less 

than 1 °C can result in spectrum baseline artifacts (Figure 4.18), and that increased 

exposure of the detector to heat decreases signal intensity, the use of a fan to cool the 

sample chamber during spectral measurements is not recommended. 

In an attempt to decrease the thermal gradient between the sample and optical 

components, a water-cooled heat sink was fabricated and attached to the back of the 

DRA ellipsoid mirrors.  VT-DRIFTS measurements were made with the heat sink 

adjusted to ambient, 30, 50, and 80 °C.  It was found that maintaining the heat sink 

temperature near ambient yielded the best results.  Higher heat sink temperatures 

affected the thermal equilibrium of the instrument.  In general, modifying and 

controlling temperatures far from the sample holder had little impact on VT-DRIFTS 

measurements.  This makes sense, because the largest VT-DRIFTS thermal changes 

occur nearest the sample.  In fact, sample holder thermal expansion was found to be the 

most important factor for determining VT-DRIFTS spectral quality (Chapter 5). 
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5 Chapter 5: Effects of Sample Displacement on Spectral Features 

 

 

5.1 Optimal Alignment: Effect of Sample Height 

Prior to obtaining diffuse reflection spectra, instrument optics must be aligned to 

maximize single beam emissivity and to obtain accurate spectral features.  Proper 

optical alignment assures that infrared source radiation is focused on the sample.  For 

DRIFTS, proper alignment also requires that the amount of diffusely reflected radiation 

collected and delivered to the detector is maximized.  When compared to transmittance 

spectroscopy, diffuse reflection optical alignment is more critical, because additional 

mirrors are needed to focus radiation on the sample and collect diffusely scattered 

radiation.  The DRIFTS alignment procedure includes determination of the optimal 3-

dimensional position of the sample.  The best quality spectrum is typically obtained by 

an iterative approach in which all optical system components are sequentially adjusted 

to achieve the largest interferogram detector signal.  During this process, individual 

optical components are moved until any alignment change results in a decrease in 

interferogram signal.   

For the VT-DRIFTS apparatus used for studies described here, the horizontal 

sample holder position was optimized by attaching the sample chamber to a movable 

base plate and then moving the plate under the beam focusing optics until the largest 

detector signal was obtained.  After the optimum horizontal sample position was found, 
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the plate was secured in place by setscrews.  Next, the optimum sample height was 

determined by monitoring the interferogram signal while moving the sample holder up 

and down in small increments (e.g. thousandths of an inch).  Sample height was 

arbitrarily defined here as the distance from the bottom surface of the sample 

compartment to the top surface of the sample holder.  This distance was measured in 

inches by using a Vernier caliper.   

After attaching a metal ruler “extension arm” to a Vernier height gauge, sample 

holder height could be measured to the nearest 0.001 in and was varied between 2.550 

in and 2.600 in.  An air bubble level was placed on the sample holder base during 

adjustments to assure that height adjustments did not result in horizontal movements.  

The measurement system is shown in Figure 5.1. 

 

Figure 5.1 Vernier height gauge with extension arm and air bubble level. 

 

To move the sample holder, two height adjustment screws (located to the left 

and right of the sample post in Figure 5.1) were rotated and then fixed in place with set 
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screws after checking that the sample holder was still aligned horizontally (based on the 

air bubble level indicator).  Sample holder vertical positions were measured after each 

height adjustment by lowering the “extension arm” of the caliper to gently touch the top 

of the sample holder.  For accuracy, the height was determined 3 separate times by the 

Vernier caliper after each sample height adjustment.  Then, the environmental chamber 

lid and ellipsoid mirrors were secured in place, and the optics were aligned to attain the 

maximum interferogram signal. 

In order to determine the optimal sample height, the optics were realigned after 

each height adjustment to optimize spectrum shape and intensity.  Spectra collected at 

the optimal sample holder height yielded the greatest interferogram peak-to-peak (p2p) 

voltage, which corresponded to the highest single beam spectrum emissivity.  Also, 

spectral features were checked to assure that they most accurately matched those for the 

material contained in the sample holder during alignment, which was silica gel (SiO2). 

Figure 5.2 shows the dependence of p2p interferogram voltage on sample holder 

height.  The p2p voltage is directly proportional to the integrated intensity of the 

radiation striking the detector, and was used here as a measure of radiation transfer 

efficiency (i.e. from source to detector).  Measurements were made with silica in the 

sample holder, a DTGS detector with gain set to 1, and without purging the instrument 

between measurements.  Figure 5.2 shows interferogram signal variations resulting 

from moving the sample height from optimum, which was determined to be 2.581 in.  

Larger deviations from those shown in the graph yielded interferogram signals that were 

very small and insufficient to permit the instrument to initialize and provide a 

measurement.  Figure 5.2 shows that within a window of about ±0.003 in from the 
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optimal sample height, the instrument optics could be aligned to provide a consistently 

high spectrum quality.  However, larger deviations resulted in drastic interferogram 

voltage decreases of more than 50%.  The slight decrease in p2p voltage at 0.000 (i.e. 

optimum) sample height may have been caused by the fact that the infrared beam 

intensity was not uniform across the diameter of the incident beam, which resulted in a 

slight reduction in radiation intensity even though the optics were optimally adjusted.  It 

may also have been caused by changes in ambient water vapor and carbon dioxide 

concentrations, which were uncompensated during these measurements. 

 

Figure 5.2 Effect of sample height on signal intensity. 
 

Figure 5.2 shows that the vertical location of the sample is critical to signal 

intensity and spectrum quality, and if sample vertical movement occurs between 

measurements, such as due to thermal expansion during heating, spectrum quality will 

deteriorate.  The results shown in Figure 5.2 were obtained by aligning the optics after 
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each sample height change.  However, during VT-DRIFTS measurements, the optics 

would not be continually optimized.  Therefore, loss of spectral quality resulting from 

temperature-dependent sample holder expansion during VT-DRIFTS measurements 

would be expected to exceed that depicted in Figure 5.2.   

By comparing measurements made with and without the environmental chamber 

lid, it was found that the lid significantly decreased interferogram signal, but did not 

affect the optimal sample height location (Figure 5.3). 

 

Figure 5.3 Effects of sample height and environmental chamber lid. 

 

 

5.2 Eliciting Spectral Changes at Ambient Temperature 

VT-DRIFTS measurements typically exhibit decreased interferogram signal and 

sloping baselines in spectra obtained while heating the sample.  As shown in Figure 5.2, 

decreased interferogram signal occurs at ambient temperature when the sample is 
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moved away from the DRA focal point.  In addition, baseline slope can be introduced 

into spectra by changing the sample location.  Because sample height plays a major role 

in spectral quality, a device was built to facilitate sample height adjustments from 

outside the instrument, making it possible to change the sample height while collecting 

VT-DRIFTS spectra.  A one inch travel micrometer was fastened to a metal plate 

supporting the sample holder and environmental chamber so that the height of the entire 

sample chamber assembly could be adjusted from outside the instrument sample 

compartment.  The micrometer could be used to change the sample chamber height by a 

maximum of one inch, and measurements could be made to the nearest one thousandth 

of an inch.  A photograph of the micrometer attached to the sample holder base plate is 

shown in Figure 5.4. 

 

Figure 5.4 One inch travel micrometer attached to the sample holder base plate. 

 

By varying the height of the sample from slightly above optimum alignment to 

slightly below optimum alignment, it was found that baseline slope and interferogram 

signal intensity could be varied in a manner similar to that observed when the sample 

was heated. 
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Figure 5.5 shows overlays of representative single beam spectra collected with 

the sample holder lowered by 0.008 in ±0.003 in below the optimal position (gray), 

raised by 0.014 in ±0.005 in above the optimal position (black), and at the optimal 

position (Δh = 0) both before and after moving the sample out of alignment (dots).  For 

clarity, only 3 spectra for each height are shown.  Spectra collected at the optimum 

height prior to and following the height adjustments overlay very well, indicating that 

the method for adjusting sample height provided reproducible sample positions and thus 

reproducible spectra.  Moving the sample to 0.008 in ±0.003 in below and 0.014 in 

±0.005 in above the optimum height caused signal intensity to decrease by about 30%, 

as determined by ratioing sample and reference single beam spectrum intensities.  Note 

that below 1300 cm-1, the gray lines are above the black lines, and that above 1300 cm-1, 

the trend is reversed.  This denotes a change in single beam spectrum shape. 
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Figure 5.5 Single beam spectra measured at different sample holder heights: (a) 
optimum height (dots), (b) lowered by 0.008 ±0.003 in (gray), (c) raised by 0.014 

±0.005 in (black). 

 

By ratioing single beam spectra collected at varying sample heights to a 

reference single beam spectrum collected at optimum sample height, a series of 

reflectance spectra were obtained representing baseline changes (Figure 5.6).  

Reflectance decreased by about 30% when the sample holder was displaced vertically in 

either direction, and a difference in baseline slope is apparent when comparing spectra 

generated with single beam spectra measured when the sample height was below 

optimum (thick gray dashes) and above optimum (thin short black dashes).  Spectral 

features attributed to water vapor and CO2 fluctuations, which resulted from the lack of 
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adequate instrument purge during measurements, are the only absorbance features that 

appear in reflectance spectra.  In addition, small variations in the sample holder 3-

dimensional location, caused by the fact that the baseplate attached to the micrometer 

was slightly tilted from horizontal due to the weight of the sample holder, may have 

contributed to baseline artifacts. 

 

Figure 5.6 Reflectance spectra obtained at various sample holder heights: (a) 
optimum height, (b) -0.008 ±0.003 in, (c) +0.014 ±0.005 in. 

 

Baseline slope (in % reflectance) was estimated by subtracting the reflectance 

value at 2000 cm-1 from the reflectance value at 4000 cm-1.  Figure 5.7 represents these 

differences (triangles) as a function of Δh, the deviation from optimum sample height.  

Positive Δh values correspond to spectra collected when the sample was located above 

the optimum height and negative values were derived from measurements made when 

the sample was located below the optimum height.  The straight line through the data 

points represents the least squares fit to the data.  The best-fit line has a positive slope, 

indicating that with increasing sample height, single beam spectrum intensity shifts to 

higher wavenumbers. 
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Figure 5.7 Baseline slope variations of reflectance spectra as a function of sample 
height. 

 

Figure 5.7 shows that reflectance spectra baseline slopes can be introduced by 

isothermally moving the sample vertically.  Although the magnitude of the slope is 

similar regardless of the direction in which the sample is moved, the sign of the baseline 

slope depends on the direction that the sample was moved.  When sample height 

increased, baseline slope increased.  When the sample was lowered, the baseline slope 

decreased.  For a sample height change of about 0.01 in, a 30% decrease in reflectance 

was obtained along with a baseline deviation from horizontal on the order of 2%.  These 

findings are summarized in Table 5.1. 



 144 

Table 5.1 Effect of Sample Height on Reflectance Intensity and Baseline Slope. 

Δh from 
hoptimum, in 

Reflectance at 2000 
cm-1, % 

Baseline slope (difference between 
reflectance at 4000 and 2000cm-1), % 

0 101.1 ±0.7 0.4 ±0.5 

-0.008 
±0.003 68.7 ±0.7 -2.5 ±0.3 

+0.014 
±0.005 69.5 ±0.6 +1.7 ±0.2 

 

 

5.3 Sample Height Variations: Effect of the Environmental Chamber Lid 

When the sample is heated during VT-DRIFTS measurements, thermal 

expansion of both the sample holder and the environmental chamber occur.  The rate of 

expansion of the environmental chamber lid would be expected to be lower than the rate 

of expansion of the sample holder, due to a negative temperature gradient extending 

from the sample heater to the environmental chamber lid.  If the change in 

environmental chamber lid height with respect to the optimum sample alignment 

position is represented by Δhlid, this value will be positive when the lid is above the 

optimum alignment position and negative when it is below.  Because the sample holder 

will expand faster than the environmental chamber lid during VT-DRIFTS sample 

heating, Δhlid should decrease with increasing sample temperature.  In order to simulate 

the relative movement of the environmental chamber lid with respect to the sample 

holder at ambient temperature, modifications to the environmental chamber were 

required.  While keeping the sample holder at the same height, the lid was raised in 

small increments by inserting thin aluminum disks under the lid in three places, as 

shown in the Figure 5.8. 
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Figure 5.8 Environmental chamber base with aluminum disk spacers. 
 

The thickness of each disk was about 0.002 in ±0.001 in (determined by 

measuring the thickness of 5 disks with digital Vernier calipers).  However, the 

measured change in the vertical location of the environmental chamber lid was not 

found to be in increments of 0.002 in, but was slightly greater.  Thus, the surfaces of the 

disks and/or the chamber base may not have been completely flat. 

Figures 5.9a and 5.9b show single beam spectra obtained with the lid position at 

optimum alignment (i.e. Δhlid = 0.000 in, depicted by the lightest gray line) and spectra 

obtained after raising the environmental chamber lid by varying amounts (i.e. 

successively darker lines with the black line depicting the spectrum collected when Δhlid 

= 0.018 in).  Figure 5.9b shows the same data as shown in Figure 5.9a, but with an 

expanded wavenumber scale.  Single beam spectra overlays show that larger differences 

occur at higher wavenumbers.  Figure 5.9c shows overlays of reflectance spectra 

obtained by ratioing single beam spectra measured with various Δhlid environmental 

chamber lid heights to the initially measured single beam spectrum, which was 
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collected at the optimal lid height.  The overlay of reflectance spectra shows a trend of 

increasingly negative baseline slope with increasing Δhlid values. 

 

Figure 5.9 Effect of vertical displacement of the environmental chamber lid on a) 
single beam b) expanded scale single beam and c) reflectance spectra. 
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Although the data exhibits significant scatter, reflectance baseline sloping increases in 

magnitude when the environmental chamber lid is lifted above the optimal position 

relative to the sample surface (Figure 5.10).  This is consistent with the appearance of a 

positive reflectance spectrum baseline slope that increases with increasing sample 

temperature.  During heating, sample holder thermal expansion would move the sample 

surface closer to the environmental chamber lid.  Thus, thermal expansion of the sample 

holder and environmental chamber lid would produce the opposite of the trend shown in 

Figure 5.10. 

 

Figure 5.10 Reflectance baseline slope trend observed when the environmental 
chamber lid was lifted. 

 

 

5.4 Thermal Expansion-Related Spectral Changes 

Temperature measurements made by placing thermocouples throughout the 

diffuse reflection optical system confirmed that a large temperature gradient developed 

throughout the instrument, with the highest temperatures near the heater.  Changes in 
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the sample holder position relative to the environmental chamber lid can cause 

reflectance spectrum baseline slopes similar to those observed with VT-DRIFTS 

measurements.  To estimate the movement of the steel post due to thermal expansion, 

the temperature of the steel post was measured by using the Agilent Data Logger while 

the sample holder was heated with the following temperature program: hold for 10 min 

at ambient temperature, heat to 200 °C at 5 °C/min, hold for 10 min at 200 °C, heat to 

500 °C at 5 °C/min, hold for 1 min at 500 °C, allow to cool by removing power to the 

heater. 

Two thermocouples were placed on the metal sample holder to measure its 

temperature: one at the top, near the sample, and one at the environmental chamber 

base.  The thermocouples were electrically isolated from the heating coil to prevent 

short circuits.  Thermocouple placement is shown in the Figure 5.11 photograph.  The 

environmental chamber lid was placed over the sample holder and thermocouple wires 

so that He purge gas could be passed into the chamber at a rate of 10 mL/min to 

simulate VT-DRIFTS measurement conditions. 

 

Figure 5.11 Location of thermocouples measuring the steel post temperature 
during sample heating. 
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Temperature versus time plots obtained during the heating program are shown in 

Figure 5.12. 

 

Figure 5.12 Steel post and sample temperatures during heating. 

 

Initially, temperature readings at the bottom of the sample (TPt), the top of the 

sample holder, and at the environmental chamber base were similar.  The average 

temperature of the steel post was 25.41 ±0.40 °C at ambient temperature over the 10 

min isothermal period.  The temperature measured near the top of the steel post (thick 

solid black line) closely matched TPt (thin dash black line), which was expected due to 

the proximity of these thermocouples.  The steel post temperature near the 

environmental chamber base increased more slowly with time, because that location 

was farther from the heating source.  As a result, a temperature gradient developed 

between the top and bottom of the steel post employed as the sample holder.  During 

isothermal temperature periods, the temperature measured near the top of the steel post 
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was relatively constant, whereas the temperature near the bottom of the post continued 

to rise.  Thus, although thermocouples located near the sample indicated that the 

temperature was fairly constant, the temperature gradient along the length of the steel 

post continued to change during isothermal periods, suggesting that optical alignment 

may have continued to change.  When TPt was held at 200 °C, the temperature at the top 

of the steel post increased from 186.60 to 190.26 °C during the 10 min isothermal 

period, whereas the temperature near the bottom of the post increased from 74.39 to 

92.64 °C.  The continually changing steel post temperature gradient was likely 

responsible for spectral changes observed under isothermal conditions in spectra 

measured at elevated temperatures.  When the heating ramp began following the 

isothermal period at 200 °C, the temperature near the bottom of the steel post increased 

sharply for about 2 min (from 55 to 57 min) and then the rate of increase stabilized. 

When TPt reached 500 °C, the temperature near the bottom of the steel post was 

316.29 °C and then increased to 320.46 °C after 1 min.  Unfortunately, temperature data 

for the thermocouple placed near the top of the steel post could not be obtained above 

404.16 °C due to failure of the twisted wire thermocouple junction.  Apparently, 

thermal expansion caused the wires to move apart above 400 °C, making temperature 

measurements impossible.  However, as shown in Figure 5.12, when the temperature 

dropped below 400 °C, thermocouple readings returned, most likely because the twisted 

pair of wires touched once again.  TPt and the temperature recorded by the thermocouple 

placed near the top of the sample holder post were within 2 °C near 400 °C, indicating 

that the temperature at the top of the steel post and at the bottom of the sample were 

similar.  Therefore, to estimate the magnitude of linear thermal expansion of the steel 
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post at 500 °C, the temperature at the top of the steel post was assumed to be 

approximately equal to TPt .  The temperature of the steel post began to decrease 

immediately when the heater was turned off and the sample began to cool. 

The linear thermal expansion of the steel post can be estimated based on these 

measurements by averaging the temperatures at the top and bottom of the steel post.  

Although this assumes temperature gradient linearity, which may not occur, it provides 

a rough estimate of the magnitudes of the sample height increases at various TPt values.  

Table 5.2 lists selected sample post temperatures and associated average temperatures. 

Table 5.2 Sample Post Temperatures. 

Ramp program time 
coordinate, min TPt, °C Ttop of post, 

°C 
Tbottom of 

post, °C 
Tpost (Average) 

°C 

0.00 25.30 25.85 25.30 
25.41 ±0.40 

10.00 25.30 25.57 24.91 

45.00 200.00 186.60 74.39 130.50 

55.00 200.00 190.26 92.64 141.45 

115.00 500.00 ≈ 500.00 316.29 408.15 

116.00 500.00 ≈ 500.00 320.46 410.23 
 

 

 

5.4.1 Theoretical Expansion of Sample Support Post 

Using the expression αL = (1/L)(dL/dT), where αL is the linear thermal expansion 

coefficient, L is the length of the material, and dL/dT is the change in length per change 

in temperature, the linear expansion of the sample support post can be estimated.  

Assuming that the thermal expansion coefficient was independent of temperature, the 

expression simplifies to: 
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ΔT × αL = ΔL/L                                                   (5.1) 

The linear expansion coefficient of steel at 25 °C varies with composition, but αL (steel) 

= 13.0 × 10–6 °C–1 is a reasonable estimate.  “The Engineering Toolbox”[1]   

The height of the steel post was measured to be 1.30 in ±0.01 in (an average of 6 

measurements on different sides of the post). 

Initially, the average temperature of the steel post was 25.41 °C.  At the 

beginning of the 200 °C isothermal region, the average steel post temperature increased 

to 130.50 °C, and after holding at 200 °C for 10 min, the average steel post temperature 

was 141.45 °C.  Thus, at the beginning of the 200 °C isothermal region: 

ΔL/L (steel) = ΔT × αL = 13.0 × 10–6 °C–1 × (130.50 – 25.41) °C = 0.14 %     (5.2) 

∴ ΔL = (1.30 in ±0.01 in) × 0.14% = 0.0018 in                             (5.3) 

Also, after holding the sample at 200 °C for 10 min: 

 ΔL/L (steel) = 13.0 × 10–6 °C –1 × (141.45 – 25.41)°C = 0.15 %           (5.4) 

∴ ΔL = (1.30 in ±0.01 in) × 0.15% = 0.0020 in                               (5.5) 

Thus, when the sample holder reached 200 °C, the sample height was estimated to 

increase by 0.0018 in, and after 10 min at 200 °C, the sample height would be expected 

to increase by an additional 0.0002 in.   

 When TPt reached 500 °C, the temperature measured at the bottom of the steel 

post reached 316.29 °C (average temperature 408.15 °C) and then rose to 320.46 °C 

after 1 min (average temperature 410.23 °C).  Thus, when TPt reached 500 °C: 

ΔL/L (steel) = ΔT × αL = 13.0 × 10–6 °C–1 × (408.15 – 25.41) °C = 0.50%       (5.6) 

ΔL/L (steel) = ΔT × αL = 13.0 × 10–6 °C–1 × (410.23 – 25.41) °C = 0.50%       (5.7) 

∴ ΔL = (1.30 in ±0.01 in) × 0.50% = 0.0065 in                                 (5.8) 
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The value of ΔL would be expected to increase with time because the bottom of the 

sample holder post, and therefore the average steel post temperature, should gradually 

increase.   

Note that the thermal expansion coefficient is not rigorously constant and should 

have some temperature dependence, so rather than calculating ΔL/L, an appropriate 

function describing changes in length (also volume) should be integrated over the 

appropriate temperature range.  Still, ΔL/L calculations provide rough estimates of steel 

post thermal expansions.  The true expansion of the steel post may be even be greater 

than these estimates.  Considering that interferogram signal intensity and spectrum 

quality begin to degrade when the sample height is varied by ±0.003 in from optimum, 

sample vertical position changes of 0.0020 in or 0.0065 in would be expected to have a 

significant impact on VT-DRIFTS spectra.  It should be noted that the ±0.003 in 

tolerance value was obtained from measurements in which optical alignment was 

optimized after incremental sample height adjustments.  However, for VT-DRIFTS 

measurements, continuous optical alignment is not viable, so the sample height 

tolerance would be expected to be less than ±0.003 in.   

One solution to thermal expansion sample height changes would be to replace 

the steel sample holder post with one made from a material with a lower thermal 

expansion coefficient, like quartz.  At 25 °C αL for quartz is 0.55 × 10–6 /°C–1.[2]  

Consequently, the thermal expansion of a quartz sample holder would be much less than 

steel: 

αL (steel) / αL (quartz) = 13.0 × 10–6 °C–1/ 0.55 × 10–6 °C–1 = 23.6                 (5.9) 
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By using the same calculation method employed for the steel sample holder 

post, the linear thermal expansion of a quartz post would be ~ 8.46 × 10–5 in when TPt is 

200 °C and ~ 2.75 × 10–4 in when TPt reaches 500 °C.  These values are less than the 

±0.003 in estimated sample height tolerance for maintaining spectral quality.   

 

5.4.2 Comparison of Steel and Quartz Sample Support Posts 

A new sample holder was designed with the sample placed on top of a quartz 

support tube, with sample heating by using a cartridge heater inserted into a steel post 

that resided inside the quartz tube.  The quartz tube was made longer than the steel post 

containing the heater, so that the sample never contacted the heated steel post.  

Unfortunately, this new design did not permit permanent installation of a thermocouple 

for measuring sample temperatures.  To obtain sample temperature measurements, a 

thermocouple was inserted through an opening in the environmental chamber lid.  The 

cartridge heater was connected to a variac and heating was accomplished by adjusting 

the variac setting. 

Figure 5.13 shows photographs of the steel sample holder support post (a), the 

quartz tube sample support system (b), and the thermocouple in contact with the sample 

surface for the quartz support tube system as viewed through one of the environmental 

chamber lid windows (c). 
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Figure 5.13 (a) Steel and (b) quartz sample holder support systems and (c) 
thermocouple for the quartz tube sample support system. 

 

To compare results obtained with the quartz and steel sample support systems, 

samples in both arrangements were heated with a variac to similar temperatures.  For 

the steel post sample holder, sample surface temperatures were estimated from TPt 

readings by using a 0.95 multiplier when temperatures exceeded 35 °C (i.e. Tsurf = 

0.95TPt ).  With silica powder in the sample holder on top of the quartz tube, the 

optimum sample height was determined, and the DRA optics were aligned for 

maximum interferogram signal and best silica absorption spectrum quality.  After 

alignment, silver powder was loaded into the sample holder and then heated to various 

temperatures by adjusting the variac setting.  Due to the tight fit of the quartz sample 

support inside the environmental chamber lid, sample temperatures were kept below 

200 °C to avoid breaking the quartz tube.   

 Because silver powder does not undergo chemical changes below 500 °C, by 

comparing spectra at different temperatures, it was possible to characterize temperature-

induced changes to the measurement system.  To track temperature-dependent changes, 

single beam spectra were ratioed to a single beam spectrum acquired at ambient 

temperature, producing reflectance spectra with only baseline change information. 
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Figure 5.14a contains an overlay of single beam spectra collected with silver 

powder in the steel holder while heating the sample to 257 °C.  Figure 5.14b shows an 

overlay of single beam spectra measured in a similar manner while heating to 212 °C, 

but by using the quartz tube sample holder system.  Comparing the overlay plots in 

Figure 5.14 reveals that the temperature-dependent decrease in single beam intensity 

was less significant when quartz was employed. 
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Figure 5.14 Overlay of single beam spectra obtained with the a) steel and b) quartz 
support systems. 
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Reflectance spectra obtained by ratioing variable temperature single beam 

spectra to the initially acquired single beam spectrum (i.e. ambient temperature) are 

shown in Figure 5.15.  As expected, the decrease in reflectance was less significant 

when quartz was used, confirming the advantage of using a sample holder made of low 

thermal expansion material. 
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Figure 5.15 Overlay of reflectance spectra obtained with the a) steel and b) quartz 
support systems. 
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Although baseline shifts were less for the quartz tube compared to the steel post, 

reflectance values significantly decreased for both sample holder systems.  One cause 

for this baseline offset was the effect of unmodulated sample emission on the infrared 

detector.  Changes in alignment also appear to be a contributing factor because there are 

differences between the results obtained by using the two different sample supports.  

Figure 5.16 shows the trend in reflectance with temperature, specifically, reflectance 

values at 2000 cm-1.  Several measurement data sets collected by using the quartz 

sample support are represented by wireframe markers, whereas two sets of data 

collected with the steel support system are represented by filled markers (circles and 

triangles).   

 

Figure 5.16 Reflectance at 2000 cm–1 as a function of temperature for steel and 
quartz sample supports. 

 

For both sample holder systems, reflectance at 2000 cm-1 decreased with 

increasing temperature.  No significant differences in reflectance variations were 
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detected below 100 °C.  It is possible that the decline is signal intensity below 100 °C 

was primarily due to unmodulated sample emission effects, and not alignment changes.  

Above 100 °C, reflectance decreases were larger for the steel sample holder than for the 

quartz tube sample holder.  When the sample surface temperature reached 212 °C for 

the steel holder, reflectance was 60-65% of the ambient temperature value.  For the 

quartz holder at about the same temperature, reflectance was about 81% of the ambient 

temperature value. 

 By subtracting the reflectance value at 2000 cm-1 from the reflectance value at 

4000 cm-1, the magnitude of baseline slope was approximated.  Figure 5.17 compares 

trends in baseline slope variations for measurements made by using the steel and quartz 

sample holders. 

 

Figure 5.17 Baseline slope as a function of temperature for steel and quartz 
supports. 
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In general, baseline slopes increased gradually with increasing sample 

temperature because reflectance at higher wavenumbers was greater than reflectance at 

lower wavenumbers at higher temperatures.  However, this gradual trend is obscured by 

variations due to other factors.  When the sample (silver powder) was held at any 

temperature for a period of time, a cyclical pattern in baseline slope variation on the 

order of ±1.5% was observed. 

 

5.4.3 Sample Height Adjustment to Compensate for Thermal Expansion 

Using the micrometer sample height adjustment platform, the environmental 

chamber and sample holder assembly was moved vertically while the sample was held 

at elevated temperatures to compensate for spectral changes attributed to thermal 

expansion effects. 

 Figure 5.18 shows VT-DRIFTS results obtained when the steel sample holder 

was employed with Ag powder as the sample material.  Sample temperature was held at 

ambient temperature for 40 min, then by increasing the variac voltage to 10% (of 120 

V) for 100 min, the sample was heated to almost 150 °C.  By then adjusting the variac 

to 14%, the sample was heated to 257 °C over a period of 100 min, after which the 

sample was allowed to cool by removing power to the heater.  In Figure 5.18 sample 

surface temperature as a function of time is represented by the thin black line.   
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Figure 5.18 Baseline slopes (markers) at various sample heights (Δh) for the steel 
sample holder. 
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After the temperature stabilized near 147 °C, the sample chamber was incrementally 

moved vertically (Δh = 0.000 in, -0.010 in, -0.015 in, and +0.010 in).  When moving the 

sample, decreasing the height brought reflectance closer to 100% and increasing the 

height decreased reflectance intensity. Percent reflectance in Figure 5.18 is shown by 

the thick line. The reflectance spectrum baseline slope, depicted in Figure 5.18 by 

markers (triangles for Δh = 0.000 in, squares for Δh < 0, and circles for Δh > 0), 

generally correlates with the temperature curve, but baseline fluctuations obscure this 

correlation.  Possible effect of sample height changes on the baseline slope is also 

obscured by baseline fluctuations.  When the sample was returned to its initial height, 

reflectance intensity returned to its previous value (thick gray line) indicating 

reproducibility in sample height positioning.  Vertical displacement of the sample after 

the temperature stabilized near 257 °C showed the same results as at 147 °C. 

 Figure 5.19 shows results obtained when a similar experiment was conducted 

using the quartz tube sample holder system.  The sample was held at room temperature 

for 30 min, then heated by adjusting the variac to 30% (of 120 V).  After 60 min of 

heating, the sample reached 100 °C, where it was held for 2 hours before power to the 

heater was removed so that the sample cooled.  While the sample was held at ~100 °C, 

the sample height was incrementally varied.  Sample height was first decreased by 

0.005 in, then in increments of 0.001 in, it was further decreased  -0.011 in, and then 

returned to Δh = -0.005 in, followed by Δh = 0.000 in.  As shown in Figure 5.19, 

reflectance decreased to about 90% of the ambient temperature value when the sample 

was near 100 °C.  Decreasing the sample height caused  reflectance values to increase 

(to 97.5% of ambient temperature values).  Note that the most significant change in 
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reflectance corresponded to the initial movement from Δh = 0.000 in to -0.005 in, and 

very little change was observed when the sample was further moved from -0.005 in to -

0.011 in.  Bseline slope values (markers) decreased when the sample was lowered, but 

this change was obscured by the baseline oscillation (due to room temperature cycling).  

After cooling to ambient temperature, baseline slope values were somewhat greater than 

before heating, but lower than when the sample was held at 100 °C.  This may indicate 

a permanent change to sample scattering coefficient caused by heating.   
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Figure 5.19 Baseline slopes (markers) at various sample heights (Δh) for the quartz 
sample holder. 
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5.5 Optimum Throughput VT-DRIFTS Sample Holder 

VT-DRIFTS characterization studies (Chapter 3) indicate that thermal expansion 

of the sample holder affects alignment of the optical system when the sample is heated, 

which contributes to temperature-induced spectral artifacts.  In addition, the presence of 

the environmental chamber lid decreases interferogram signal 10-fold, which decreases 

spectral SNR.  When the sample holder is heated, a temperature gradient through the 

sample is formed.  Consequently, sample surface temperatures must be determined from 

a correlation function that relates Tsurf to TPt.  Based on these findings, a new VT-

DRIFTS sample holder design was developed to minimize inherent adverse effects.  In 

the new design, the sample was suspended from a quartz tube in a similar manner to 

that described in section 5.4.2 (Figure 5.13b).  However, the thermocouple employed 

for feedback temperature control was attached to the sample holder so that temperatures 

just below the sample surface could be measured, eliminating the need for a correlation 

function.  Unfortunately, with this thermocouple placement, the environmental chamber 

lid could not be attached.  Therefore, to minimize effects from sample oxidation and 

excessive DRA optics heating, VT-DRIFTS sample temperatures were limited to below 

200 °C for this sample holder design.  Eliminating the DRA environmental chamber lid 

significantly increased the interferogram voltage (Chapter 2) and yielded improved 

spectral SNR. Figure 5.20 shows photographs of the new quartz VT-DRIFTS sample 

holder. 
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Figure 5.20 New VT-DRIFTS sample holder viewed from (a) behind, (b) front, and 
(c) top. 

 

 To create the new sample holder, a nickel disk was spot welded to two steel 

wires, which rested on grooves in the top of the quartz support tube. These wires were 

spot welded to a metal ring that slid around the quartz tube and centered the sample.  

Two springs were attached to this ring and secured to the sample holder base to prevent 

movement. (Figure 5.20, a and b).  A ceramic ring about 2 mm in height with an inside 

diameter of 5 mm served as a cup to hold ~ 100 mg powder samples.  The ceramic ring 

snapped into a metal retaining ring that was spot welded to the nickel disk.  A 

thermocouple was passed through a small hole drilled in the side of the ceramic ring.  

The thermocouple wires that extended into the ceramic ring were placed so that the 

junction was located near the center and slightly below the top of the ring.  

 To test this new sample holder design, the experiments described in Chapter 3 

were repeated.  The same polystyrene film was placed in the infrared beam between 

mirror (7) and mirror (8) and secured in place by using magnets (Figure 3.1).  The film 

location was adjusted to achieve a maximum interferogram signal.  The KBr windows 
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used as heat barriers between the sample and interferometer compartments were 

removed to match the conditions employed for the measurements described in Chapter 

3. 

5.5.1 Reproducibility at Ambient Temperature 

To characterize the instrument performance in the absence of sample heating, 50 

spectra were successively collected at a rate of about 1 spectrum/min at ambient (i.e. 

room) temperature.  Figure 5.21 shows an overlay of 6 single beam spectra over the 

4000-650 cm-1 range collected in about 10 min increments (compare to Figure 3.4).  

Polystyrene absorption peaks are clearly visible, and spectra overlay very well, 

indicating high measurement reproducibility at ambient temperature.  The overlay plots 

appear to be more reproducible than those shown in Figure 3.4, which would be 

consistent with a greater SNR associated with the absence of the environmental 

chamber lid. 

 

Figure 5.21 Overlay of single beam spectra collected at ambient temperature. 
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 Because the environmental chamber lid was not used, interferogram voltage 

significantly increased, requiring the detector gain setting to be reduced from 4x to 2x.  

This resulted in a change of calculated single beam emissivity values.  Consequently, 

the single beam emissivity scale depicted in Figure 5.21 differed from the scale shown 

in Figure 3.4. 

Reflectance spectra were obtained by dividing polystyrene film single beam 

spectra by a reference background spectrum collected with the film removed and with 

Ag powder in the sample holder (Figure 5.22, compare to Figure 3.5). Because the 

cardboard sleeve holding the polystyrene film became the limiting aperture, reflectance 

spectra baselines were shifted below 100%.  Because of the increased interferogram 

signal for the reference single beam measurement, reflectance values were baseline 

shifted more for the new sample holder design (~ 30%) compared to measurements 

made with stainless steel sample holder and with the environmental chamber lid in 

place (10%). 

 

Figure 5.22 Overlay of reflectance spectra collected at ambient temperature. 
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The Kubelka-Munk spectra calculated from these reflectance spectra by using 

equation 1.33 are shown in Figure 5.23 (compare to Figure 3.6).  The larger sample and 

reference single beam intensity differences caused Kubelka-Munk maxima to be greater 

when the new sample holder was employed for DRIFTS measurements. 

 

Figure 5.23 Overlay of diffuse reflectance spectra collected at ambient 
temperature: a) complete spectra and b) expansion of the C-H stretching region 

 Figure 5.24 compares overlays of ambient temperature C-H stretching region 

spectra in emissivity, reflectance, and Kubelka-Munk formats.  This figure is analogous 
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to results shown in Figure 3.7.  A comparison of Figure 5.24 with Figure 3.7 reveals 

that reproducibility was improved with the new sample holder. 

 

Figure 5.24 Overlay of the same ambient temperature C-H stretching region of 
spectra in a) emissivity, b) reflectance, and c) Kubelka-Munk formats. 

 

Figure 5.25 compares selected absorption peak relative standard deviations 

calculated from 50 ambient temperature DRIFTS spectra obtained with the stainless 

steel and new sample holders.  Crosses represent RSD values derived from steel sample 

holder measurements and diamonds denote RSD values calculated from spectra 

obtained with the new sample holder design.  RSD values were lower for the new 

sample holder because of a greater SNR associated with the absence of the 

environmental chamber lid. 
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Figure 5.25 Relative standard deviations of ambient temperature Kubelka-Munk 
peak maxima obtained by using the stainless steel (S) and the new quartz (Q) 

sample holders. 
 

The relative standard deviation was largest for the strong absorption peak at 

2918.64 cm-1 in both cases.  According to equation 1.33, DRIFTS measurements are 

most accurate for weak absorbers [3, 4] because high absorption coefficients (k) result 

in near-zero diffuse reflection (R∞) values.  Thus, for stronger absorptions, SNR is 

lower, resulting in large fluctuations in Kubelka-Munk peak intensities.  Figure 5.26 

shows the variation in RSD as a function of wavenumber (solid line) and the average 

single beam spectrum (dash line) for the 50 ambient temperature DRIFTS spectra.  The 

RSD versus wavenumber plot exhibits a spike at the location corresponding to the 

highest absorption band maximum.  To avoid this dramatic loss in reproducibility for 

high absorption spectral features, DRIFTS samples are typically diluted in highly 

reflective matrices [3-6].   
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Figure 5.26 Average single beam spectrum and relative standard deviations at 
ambient temperature obtained with the new quartz sample holder. 

 

5.5.2 VT-DRIFTS Polystyrene Spectrum Variations 

After characterizing ambient temperature spectrum reproducibility, silver 

powder was heated in the new sample holder to 205.40 °C, measured near the sample 

surface.  While heating, 100 spectra were sequentially obtained at about 1 minute 

intervals.  A variac setting of about 50% was employed for heating. 

Figure 5.27 compares single beam spectra measured with the new and stainless 

steel sample holders while heating to comparable temperatures.  Polystyrene film 

absorptions were constant for all measurements, so single beam spectrum changes can 

be attributed to instrument variations that occurred while heating.  The impact of these 

variations was less for the new sample holder design. 
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Figure 5.27 Overlay of polystyrene single beam spectra measured during sample 
heating for the (a) new quartz and (b) stainless steel sample holders. 

 

Single beam spectra changes lead to “apparent” reflectance spectrum changes.  

Figure 5.28 shows overlays of polystyrene reflectance spectra obtained with the new 

quartz sample holder and with the stainless steel sample holder, calculated by ratioing 

single beam spectra to a reference background spectrum (Ag powder) collected at 

ambient temperature.  Reflectance became lower with increasing temperature in both 
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plots, but shifts were smaller for the new sample holder (~ 5%) compared to the 

stainless steel holder (~ 15%). 

 

Figure 5.28 Overlay of VT-DRIFTS polystyrene reflectance spectra measured 
while heating the (a) new quartz and (b) stainless steel sample holders. 

 

Conversion of reflectance spectra measured with the new quartz sample holder 

to Kubelka-Munk format resulted in the spectra shown in Figure 5.29.  For comparison, 

spectra measured at similar temperatures but obtained with the stainless steel sample 
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holder are shown in Figure 5.30.  Kubelka-Munk peak maxima for weaker absorbing 

peaks overlay better in spectra obtained with the new sample holder compared to 

measurements made with the stainless steel holder.  Figures 5.29b and 5.30b show 

Kubelka-Munk spectrum overlays over the C-H stretching region.   

 
Figure 5.29 Overlay of VT-DRIFTS results obtained with the new quartz sample 

holder: a) complete spectra and b) expansion of the C-H stretching region. 
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Figure 5.30 Overlay of VT-DRIFTS results obtained with the stainless steel sample 
holder: a) complete spectra and b) expansion of the C-H stretching region. 

 

Figure 5.31 represents a comparison of relative standard deviations calculated 

for selected Kubelka-Munk peak maxima.  Crosses represent RSD values derived from 

spectra measured with the stainless steel sample holder and diamonds represent RSD 

values calculated from spectra obtained with the new sample holder.  Reproducibility 

was significantly better for the new sample holder compared to the stainless steel 
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sample holder.  With the exception of the RSD values for the 2918.64 cm-1 absorption 

peak, reproducibility was between 6 and 7 times better for the new sample holder.   

 

Figure 5.31 Relative standard deviations of VT-DRIFTS Kubelka-Munk peak 
maxima obtained by using the steel sample holder (S) and the new quartz sample 

holder (Q). 
 

5.5.3 Effects of Single Beam Scaling 

To compensate for the single beam intensity decrease with increasing sample 

holder temperature, spectra obtained with the new quartz sample holder design were 

scaled by using the method described in section 3.3.2.  An overlay plot of the scaled 

single beam spectra is shown in Figure 5.32.  The overlay plots of the corresponding 

reflectance spectra obtained by ratioing scaled single beam spectra to a reference 

background spectrum (Ag powder) measured at ambient temperature are shown in 

Figure 5.33.  The Kubelka-Munk plots in Figure 5.34 were calculated from the 

reflectance spectra in Figure 5.33.  The variable temperature single beam and 

reflectance overlay plots suggest that spectra matched well after the scaling procedure, 

even approaching ambient temperature reproducibility.  However, there are some 
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fluctuations in both single beam and the reflectance spectra on either side of the 

wavenumber used for scaling (2107.80 cm-1), indicating baseline slope variations.  

 

Figure 5.32 Overlay of scaled VT-DRIFTS single beam spectra obtained by using 
the new quartz sample holder. 

 

 

Figure 5.33 Overlay of VT-DRIFTS reflectance spectra derived from scaled single 
beam spectra. 
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The variable temperature Kubelka-Munk spectra derived from scaled reflectance 

spectra also overlay well, with the exception of the highly absorbing peak at 2918.64 

cm-1.  Before scaling, the Kubelka-Munk intensity for the peak at 2918.64 cm-1 

approximately doubled, from 15.16 to 30.43 Kubelka-Munk units when the sample 

holder was heated from ambient temperature to 205.40 °C.  After scaling, Kubelka-

Munk intensity for this peak maximum increased from 15.16 to 28.12 as a result of 

sample holder heating.  Although improvement was made by scaling, reproducibility for 

this highly absorbing band maximum was still poor.  In contrast, Kubelka-Munk peak 

maxima at 3003.59, 3026.73, and 3061.50 cm-1 were relatively constant regardless of 

sample holder temperature, as shown by the overlay plot in Figure 5.34b. 
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Figure 5.34 Overlay of scaled VT-DRIFTS Kubelka-Munk spectra obtained by 
using the new quartz sample holder. 

 

 To quantitatively assess the measurement reproducibility improvement afforded 

by the new quartz sample holder compared to the stainless steel holder, RSD values for 

selected peak maxima were plotted as a function of wavenumber in Figure 5.35.  RSD 

values were lowest for peak maxima located near the wavenumber employed for scaling 

(i.e. 1601.98 and 1493.87 cm-1).  Relative standard deviations increased at lower 
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wavenumbers due to decreasing single beam intensity.  Near 3000 cm-1, RSD values 

tracked peak maxima trends.  For all of the peak maxima, RSD values derived from 

scaled spectra were lower for measurements made by using the new quartz sample 

holder. 

 

Figure 5.35 Relative standard deviations calculated for selected peak maxima in 
scaled VT-DRIFTS Kubelka-Munk format spectra obtained by using the stainless 

steel sample holder (S) and the new quartz sample holder (Q). 
 

5.5.4 Effects of Baseline Slope Correction 

To assess the impact of baseline slope on VT-DRIFTS RSD values, sloping 

lines were subtracted from scaled reflectance spectra by using the procedure outlined in 

section 3.3.3.  Scaled and baseline corrected spectra were then converted to Kubelka-

Munk format.  Although fluctuations in peak maxima were greatly reduced by using 

this method, ambient temperature spectrum reproducibility was still superior.  Figure 

5.36 shows an overlay of variable temperature single beam spectra obtained by 

converting scaled and baseline corrected reflectance spectra to single beam format by 

multiplying by the reference background spectrum (i.e. Ag powder at ambient 
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temperature).  These spectra overlay better than before baseline correction (compare to 

Figure 5.32). 

 

Figure 5.36 Overlay of scaled and baseline-corrected VT-DRIFTS polystyrene 
single beam spectra. 

 

Figure 5.37 shows an overlay of scaled and baseline corrected VT-DRIFTS 

reflectance spectra.  Like the corrected single beam spectra (Figure 5.36), these spectra 

overlay better than before baseline correction (compare to Figure 5.33).   
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Figure 5.37 Overlay of scaled and baseline-corrected VT-DRIFTS polystyrene 
reflectance spectra. 

 

Figure 5.38 shows Kubelka-Munk spectra derived from the reflectance spectra 

shown in Figure 5.37.  Comparing the spectra in Figure 5.38 with those in Figure 5.34 

reveals that peak maxima decreased after baseline correction.  Also, because 

reproducibility decreases with increasing Kubelka-Munk values, it follows that the 

reproducibility of Kubelka-Munk peak maxima improved after baseline correction.  

However, as shown in Figure 5.38, intensity fluctuations for the 2918.64 cm-1 high 

absorption peak were significant even after baseline correction. 
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Figure 5.38 Overlay of scaled and baseline corrected VT-DRIFTS Kubelka-Munk 
format spectra obtained by using the new quartz sample holder: a) complete 

spectra and b) expansion of the C-H stretching region. 
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Figure 5.39 Relative standard deviations for scaled and baseline corrected VT-
DRIFTS Kubelka-Munk peak maxima obtained by using the stainless steel sample 

holder (S) and with the new quartz sample holder (Q). 
 

 Relative standard deviations for scaled and baseline corrected spectra peak 

maxima were less than 0.05 Kubelka-Munk units for all except the 2918.64 cm-1 peak, 

as shown in Figure 5.39.  For peak maxima in spectra obtained by using the new quartz 

sample holder, RSD values ranged from comparable to about 8.5 times lower compared 

to spectra obtained by using the stainless steel holder.  The largest RSD values were 

associated with peaks located in low intensity regions of single beam spectra and the 

2918.64 cm-1 peak.  The relative standard deviation of the weak absorption at 1370.31 

cm-1 was larger than the RSD values for other peaks due its very low intensity.   

 

5.5.5 Comparison of Overall Spectral Standard Deviations 

Results described in this section confirm the improvements in measurement 

reproducibility that can be derived by using a quartz sample support to decrease thermal 
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expansion spectral artifacts, and from increased SNR that results from removing the 

environmental chamber lid.  Post-data collection scaling and baseline correction further 

reduced spectral artifacts.  Reproducibility was consistently poor for highly absorbing 

peak maxima, suggesting that samples should be diluted to avoid strong absorptions. 

Figure 5.40 shows plots of the standard deviations of selected Kubelka-Munk 

peak maxima as a function of intensity derived from spectra measured by using the 

stainless steel and new quartz sample holders.  The overall RSD of peak maxima can be 

approximated by best fit slopes for the lines depicted in Figure 5.40, because RSD is the 

ratio of the standard deviation to the mean.  These values are listed for both sample 

holders in Table 5.3.  Due to strong absorption, the peak at 2918.64 cm-1 was not 

included in these RSD calculations. 

In Figure 5.40, variable temperature results are indicated by grey circles and 

have the largest RSD values, whereas ambient temperature results, which are depicted 

by black diamonds, exhibit the lowest RSD values.  Scaled spectra resulted in larger 

Kubelka-Munk intensities than scaled and baseline corrected spectra.  Standard 

deviations for scaled and scaled and baseline corrected results obtained with the 

stainless steel sample holder were similar.  In contrast, baseline correction decreased 

peak maxima standard deviations compared to scaled only spectra when the new quartz 

sample holder was employed.  Kubelka-Munk peak maxima standard deviations derived 

from measurements made with the new quartz sample holder were significantly less (by 

~ 10x) than the corresponding results obtained by using the stainless steel sample 

holder.  However, although RSD values were significantly reduced by scaling and 
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baseline correction, ambient temperature measurements were consistently more 

reproducible than variable temperature measurements. 

Table 5.3 Comparison of Overall Relative Standard Deviations. 

Data set 
Slope ≈ RSD 

Steel sample holder New VT-DRIFTS sample 
holder (Quartz) 

Ambient temperature 0.0096 0.0055 

Variable temperature 0.7995 0.0746 

Variable temperature – 
scaled 0.0498 0.026 

Variable temperature – 
scaled and baseline 

corrected 
0.0913 0.0235 
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Figure 5.40 Peak maxima standard deviation as a function of Kubelka-Munk 
intensity for measurements made with the (a) stainless steel and (b) new quartz 

sample holders. 
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6 Chapter 6:  VT-DRIFTS Performance Characteristics 

 

 

6.1 Introduction 

Infrared spectroscopy has historically been an important analytical tool for the 

characterization of both organic and inorganic materials.  Infrared spectra contain 

absorbance bands that uniquely represent molecular vibrations.  Diffuse reflection 

infrared Fourier transform spectroscopy (DRIFTS) is particularly well suited for solid-

state sample characterizations.  Compared to film, pellet and mull techniques, DRIFTS 

is easier to implement and requires less sample preparation.  Whereas conventional 

transmission infrared spectroscopy intensities are dependent on path length, which is 

difficult to reproduce for solid samples, DRIFTS band intensities depend on scattering 

coefficient, which is predominantly determined by particle size.  DRIFTS is well suited 

for characterizing surface interactions between adsorbates and minerals.  Consequently, 

it is often employed for soil contaminant studies.[1-4]   

When using DRIFTS for adsorbate interaction studies, spectral subtractions are 

commonly employed to isolate selected infrared spectral features from large bulk 

sample absorbances.  This is typically accomplished by subtracting reference spectra 

representing the sample matrix from spectra obtained for the same material, but also 

containing substances of interest.  Often, pretreatment processes (e.g. extractions) are 

employed to remove these substances from the reference samples.  As pointed out by 
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Thomas and Kelley,[5]  careful reference and adsorbate spectrum measurements are 

critical for obtaining accurate difference spectra.  For this reason, they reportedly 

avoided studies with montmorillonites.  Unlike many other minerals, montmorillonite 

structures consist of a sandwich of two inorganic sheets around a variable thickness 

water layer.  In order to measure an appropriate reference spectrum, it is necessary to 

precisely control the water content, which is difficult to accomplish.  Thus, depending 

on environmental conditions, samples may contain different amounts of water and 

infrared spectra would therefore contain varying water absorbance contributions, which 

would be difficult to remove by using spectral subtractions. 

To avoid difference spectrum artifacts not associated with substances of interest, 

a sample perturbation analysis method can be employed.  This approach can be 

explained with the aid of the diagram shown in Figure 6.1.  At the top of the diagram 

(A), the species of interest is represented by X, which may also exist in charge carrying 

forms (Xn+ and Xn-), depending on its acid/base properties and local pH.  Each form 

may interact differently with its surroundings, contributing different absorbance features 

to measured infrared spectra.  The overlapping ellipses in Figure 6.1 represent X 

interactions with other organic substances (Org), water (H2O), cations (+), anions (-), 

and inorganic oxides (MaOb) that may be present in the sample.  The solid-state infrared 

spectrum measured for the system denoted in (A) will contain information regarding the 

vibrational modes of all constituents.  After heating the sample represented by (A) to 

remove water (i.e. the perturbation), the resulting spectrum will represent a slightly 

different solid-state configuration (B).  A difference spectrum computed by subtracting 

the infrared spectrum obtained for (A) from the spectrum measured for (B) will contain 
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spectral features representing the changes that occurred as a result of heating.  

Specifically, the difference spectrum will contain positive features representing 

vibrations formed after water removal (i.e. related to new interactions) and negative 

features corresponding to vibrational modes that were lost due to the configuration 

change.  The size of the spectral features in difference spectra will depend on the 

number of perturbed species and the absorptivities of the affected absorbance bands.  

Negative spectral features provide insight into the interactions between X and water in 

the initial configuration (A).  By continuing to heat the sample while measuring infrared 

spectra, the difference spectrum representing (C) – (B) sample configuration changes 

would contain negative features corresponding to vibrational modes associated with the 

dehydrated X molecule and its environment that were lost when it desorbed from the 

sample and the (D) – (B) difference spectrum would provide similar vibrational mode 

information, but for instances when X decomposed rather than desorbed.  Additional 

information regarding decomposition mechanisms may be obtained by determining the 

amounts and identities of decomposition products (Y and Z).  Figure 6.1 (A) potentially 

represents a very complicated system of simultaneous interactions.  For example, soils 

typically contain numerous organic molecules, cations, anions, and inorganic oxides in 

differing amounts.  Fortunately, appropriate sample composition simplifications can be 

made to design experiments that target specific molecular interactions.  For example, 

the VT-DRIFTS study described here is focused on characterizing specific interactions 

between benzoic acid adsorbates and montmorillonite clay. 
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Figure 6.1 Representation of the X local environment (A) before heating, (B) after 
dehydration, (C) after X desorption and (D) after X decomposition. 

  

 

6.2  Background – Benzoic Acid Interactions with Montmorillonite 

The Environmental Protection Agency has identified organic acids as a primary 

source of contamination.[6, 7]  Benzoic acid, which consists of an acid functionality 

attached to an aromatic ring, is the simplest aromatic acid.  It can inhibit bacterial and 

plant growth and is extensively used as a food preservative.[8]  In soils, it is typically 

adsorbed by the clay component.[9]  Consequently, benzoic acid interactions with clays 

have been extensively studied.[5, 6, 9-14]  These studies have primarily focused on 
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montmorillonites, because this type of clay is ubiquitous in soils.  Montmorillonite clays 

have a unique structure, consisting of two negatively charged oxide layers separated by 

an interlayer space containing exchangeable cations and water.[15]   

Interactions between benzoic acid and montmorillonite clays were previously 

studied by thermo-IR[10]  and thermogravimetry[12].  By using thermo-IR, Yariv et al. 

reported that the C=O stretching vibration frequency of benzoic acid adsorbed on 

montmorillonite clays depended on the cation present in the interlayer space and on the 

extent of clay dehydration.[10]  In a thermogravimetry study of benzoic acid – clay 

interactions, Lu et al. reported that the maximum rate of benzoic acid desorption from 

sodium montmorillonite occurred at 140 °C, which was significantly lower than from 

calcium montmorillonite (179 °C).[12]  They attributed the higher desorption 

temperature for the clay containing calcium to stronger interactions between calcium 

ions and benzoic acid molecules. 

To characterize benzoic acid – clay interactions in greater detail, in-situ analysis 

by using variable temperature diffuse reflection infrared Fourier transform spectroscopy 

(VT-DRIFTS) can be performed.[16, 17]  VT-DRIFTS provides a sensitive means for 

discerning subtle temperature-dependent structural changes in solid materials.  To 

obtain high quality VT-DRIFTS measurements, it is necessary to account for 

instrumental changes caused by heating the sample in addition to factors that must be 

considered when making isothermal DRIFTS measurements.[18-20]  The methodology 

employed for VT-DRIFTS is outlined here, along with examples of results obtained 

from analysis of a sample consisting of 2% (w/w) benzoic acid adsorbed on 

montmorillonite clay. 
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6.3 VT-DRIFTS Experimental Conditions 

Montmorillonite (K10) and benzoic acid were purchased from Sigma-Aldrich.  

Calcium chloride was purchased from Fischer Scientific.  Silver powder (100 mesh, 

99.95%) was purchased from Alfa Aesar.  Carbon tetrachloride was purchased from JT 

Baker Chemical Company.  All chemicals were used as received without additional 

purification.  Montmorillonite clay with predominately Ca2+ interlayer ions (CaMMT) 

was prepared by cation exchange with the metal chloride solution by following 

previously described procedures.[21, 22]   

The cation-exchanged clay was loaded with 2% (w/w) benzoic acid by incipient 

wetness.  Benzoic acid was dissolved in carbon tetrachloride, and the solution was 

mixed with the montmorillonite clay.  The mixture was stirred for 30 minutes at room 

temperature, then the solvent was removed by roto-evaporation for 90 minutes at room 

temperature.  Samples were prepared for VT-DRIFTS analysis by diluting with silver 

powder in a 5-95 ratio by weight (e.g. 5% (w/w)).  Silver powder diluent, which is 

highly scattering and inert for this application, was employed to eliminate spectral 

artifacts that appear in infrared spectra when neat samples are analyzed by DRIFTS 

(vide infra).  Approximately 15 mg samples were employed for VT-DRIFTS analysis.   

VT-DRIFTS measurements were made by using the apparatus described in 

Chapter 2.  A linear sample heating ramp and 10 mL/min helium purge were used for 

analysis.  The sample was heated at 5 °C/min beginning from ambient temperature.  

Infrared spectra were measured at 1 min (5 °C) intervals.  Reflectance spectra were 

computed by dividing successively acquired infrared single beam spectra by diluent (i.e. 
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silver powder) reference single beam spectra.  Reflectance spectra were baseline 

corrected prior to conversion to Kubelka-Munk format by following previously 

described procedures.[20] 

 

6.4 VT-DRIFTS Spectral Results 

DRIFTS measurements of neat calcium montmorillonite (CaMMT) exhibit 

artifacts caused by the Reststrahlen effect,[23]  resulting in loss of spectral features over 

the affected wavelength range.  Increased sample reflectance occurs near the intense 

1050 cm-1 inorganic oxide absorption band due to high sample refractive index, which 

results in an apparent loss of absorbance (i.e. an increase in reflectance).  As shown in 

Figure 6.2, this phenomenon results in a distorted reflectance spectrum when the neat 

clay is analyzed by DRIFTS.  Fortunately, as illustrated by the dashed line spectrum in 

Figure 6.2, sample dilution can reduce the sample refractive index and eliminate this 

artifact.  Thus, to avoid complications caused by Reststrahlen effects, the benzoic 

acid/CaMMT sample used for VT-DRIFTS studies was diluted in silver powder. 
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Figure 6.2 Reflectance spectra measured for neat (solid line) and 5% (w/w) clay 
diluted in silver powder (dashed line). 
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Figure 6.3 Overlay of VT-DRIFTS spectra obtained at different sample 
temperatures. 
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temperature-dependent functional group vibrational mode information regarding the 

inorganic oxide, interlayer water, and benzoic acid adsorbate sample components. 

Heating the benzoic acid/CaMMT sample resulted in characteristic temperature-

dependent functional group changes.  These changes were profiled by plotting selected 

VT-DRIFTS spectral region integrated areas as a function of temperature.  Three of 

these plots are shown in Figure 6.4.  The 2500-3650 cm-1 integrated area plot represents 

the loss of hydrogen bonded hydroxyl groups as a function of sample temperature.  The 

spectral intensity in this range is mainly representative of clay interlayer water content 

and the abrupt decrease upon heating denotes sample dehydration.  The 1650-1700 cm-1 

integrated area plot represents the loss of –C=O stretching vibration band intensity with 

increasing temperature.  This plot primarily depicts benzoic acid desorption.  The 3700-

3750 cm-1 spectral region represents weakly hydrogen bonded inorganic oxide hydroxyl 

groups.  Unlike the other profiles in Figure 6.4, the 3700-3750 cm-1 integrated area 

increases between 25 and 100 °C and then remains relatively constant until about 350 

°C, at which point a gradual decline in integrated area is observed. 
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Figure 6.4 VT-DRIFTS integrated area temperature profiles. 

 

Although the temperature profiles in Figure 6.4 show general trends in sample 
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expected, the difference spectrum contains negative features between 2800-3700 cm-1 

and at 1630 cm-1 associated with loss of hydrogen bonded –O-H stretching vibrations 

and H-O-H bending vibrations respectively, which, at these low temperatures, are 

indicative of clay interlayer water loss.  The positive band near 3750 cm-1 is associated 

with an increase in inorganic oxide hydroxyl group vibration frequency (i.e. a blue 

shift) due to loss of hydrogen bonding with water molecules.  Spectral features in the 

1200-800 cm-1 range reflect changes in inorganic oxide vibrations caused by water loss.  

The negative band at 1690 cm-1 in the difference spectrum can be assigned to the 

benzoic acid –C=O stretching vibration.  The presence of this band is surprising because 

it cannot be attributed to benzoic acid desorption, because that occurs at temperatures 

above 50 °C.[16]  Instead, this intensity decrease reflects a loss in –C=O stretching 

vibration band absorptivity caused by the loss of hydrogen bonding interactions 

between benzoic acid and clay interlayer water molecules. 

Figure 6.4 shows that loss of –C=O stretching vibration intensity occurs mainly 

over the 50-200 °C sample temperature range.  Figure 6.6 contains the 200 – 50 °C VT-

DRIFTS difference spectrum and an ambient temperature DRIFTS spectrum measured 

for a sample containing 5% (w/w) benzoic acid mixed with silver powder.  The 

difference spectrum in Figure 6.6 contains features primarily associated with the loss of 

benzoic acid.  Spectral features attributed to loss of hydrogen bonded hydroxyl groups 

and inorganic oxide vibration changes are also present in this difference spectrum.  In 

addition to the clearly visible negative band associated with loss of the benzoic acid –

C=O stretching vibration band, smaller negative peaks can be assigned to the benzoic 



 204 

acid aromatic ring (3077, 1606, and 1585 cm-1) and to the –C-O-H functional group 

(1498, 1450, and 1415 cm-1).   

 

Figure 6.5 Difference spectrum computed by subtracting the spectrum measured 
at 25 °C from the spectrum measured at 50 °C (top) and a clay reference spectrum 

(bottom). 
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Figure 6.6 Difference spectrum computed by subtracting the spectrum measured 
at 50 °C from the spectrum measured at 200 °C (top) and a benzoic acid reference 

spectrum (bottom). 

 

VT-DRIFTS spectral variations confirm that sample changes continued to occur 
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Figure 6.7 Difference spectrum computed by subtracting the spectrum measured 
at 200 °C from the spectrum measured at 500 °C (top) and the clay reference 

spectrum (bottom). 
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Taking into account dilution, the ~15 mg benzoic acid/CaMMT sample quantity 

employed for the spectral measurements described here contained about 735 µg of clay 

and 15 µg of benzoic acid.  Consequently, the relatively high signal-to-noise ratio for 

the 1650-1700 cm-1 integrated Kubelka-Munk function profile shown in Figure 6.4 

suggests that VT-DRIFTS analysis can facilitate detection of adsorbate losses in the 

high nanogram range that occur between successive infrared measurements (i.e. 5 °C 

sample temperature intervals).  This sensitivity may be improved by using slower 

heating ramp rates and increasing the number of signal averaged interferograms used to 

compute spectra.   

The study of the temperature-dependent interactions between benzoic acid and 

montmorillonite clay described here illustrates the power of using VT-DRIFTS 

measurements for characterizing molecular environments.  VT-DRIFTS spectra 

contained information regarding clay components (e.g. water and inorganic oxides) and 

specific benzoic acid functional groups (e.g. –C=O, -C-O-H, and C6H5 ring).  However, 

interpretation of VT-DRIFTS analysis results can be difficult, because changes to all 

sample constituents are simultaneously detected.  Overlapping positive and negative 

spectral features can occur, and intensity variations may be associated with changes in 

the number of absorbers, to changes in vibration band absorptivities, or to both. 

Comparing the negative –C=O stretching vibration bands in difference spectra 

shown in Figures 6.5 – 6.7 reveals that the frequency for this vibration band loss 

decreases with increasing temperature from 1690 cm-1 in the lowest temperature 

difference spectrum to 1670 cm-1 in the highest temperature difference spectrum.  This 

20 cm-1 red shift is indicative of increasing strengths of interactions between the 
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benzoic acid –C=O functionality and its surroundings.  This trend is reasonable because 

increasingly strong interactions require greater energies (i.e. temperatures) to disrupt 

them.   

By studying samples containing larger amounts of benzoic acid adsorbed on 

montmorillonite clays containing different interlayer cations, a more comprehensive 

VT-DRIFTS study in which multiple benzoic acid adsorption sites were characterized 

has been reported.[16]  Future VT-DRIFTS studies may include even more complicated 

solid state systems, such as soils containing multiple adsorbates.  In fact, VT-DRIFTS 

may become a particularly important tool for studying the transport and fate of soil 

contaminants, because few other analysis methods provide comparable sensitivity and 

specificity. 

 

6.6 Summary of Findings 

DRIFTS is a powerful method for analysis of powders and rough surfaces.  

Unfortunately, DRIFTS is also considered an “energy starved” technique, which 

therefore necessitates significant attention to sample measurement conditions.  To 

obtain high SNR spectra, the detector interferogram signal must be maximized.  This 

requires high infrared source radiance, high optical throughput, and highly reflective 

samples.[20, 24]  To achieve maximum optical throughput, the sample must be located 

at the infrared beam focal point, all optics must be properly aligned, and the FTIR must 

be purged with dry CO2 free air.  To eliminate spectral artifacts, samples should be 

diluted in a highly reflective, low absorbance matrix.  This is particularly important for 

measurements of high absorption spectral bands, because Kubelka-Munk intensity 
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reproducibility decreases significantly with increasing absorbtivity.  Powdered samples 

should contain small particles, because this maximizes the quantity of diffuse reflection. 

The detailed characterization of VT-DRIFTS described here identified two 

contributions to measured spectra that depend on sample temperature, but do not result 

from sample composition changes.   Changes in sample single beam emissivity result in 

Kubelka-Munk intensity errors.  The primary cause for sample single beam intensity 

variations was found to be detector saturation from unmodulated radiation emitted from 

heated samples.[20]  Temperature-dependent optical alignment variations produce 

baseline slopes in reflectance spectra.  This primarily results from sample holder and 

environmental chamber thermal expansion and the temperature sensitivity of the 

interferometer. 

Unmodulated infrared radiation from heated samples reduces interferogram 

voltages.[20]  As described in Chapter 3, this reduction in single beam emissivity 

results in Kubelka-Munk peak maxima increases that depend exponentially on 

absorptivity.  Post-data collection single beam spectrum scaling can be used to 

minimize these non-linear effects.  By scaling VT-DRIFTS single beam spectra to 

match ambient temperature emissivity, reflectance spectrum baseline offsets can be 

removed,[19] as described in section 3.3.3.  Removal of baseline offsets increases the 

accuracy of Kubelka-Munk spectral features, especially for highly absorbing bands. 

By monitoring temperatures at various locations within the FTIR (section 3.5.1), 

long term (~ 40 min) baseline slope oscillations were correlated with small 

interferometer temperature changes caused by room temperature fluctuations (section 

4.3.2).  These baseline slope oscillations were detected at ambient temperature as well 
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as for VT-DRIFTS measurements.  The extreme temperature sensitivity of the FTIR 

interferometer is evidenced by the fact that relatively small interferometer temperature 

variations cause these baseline oscillations.  To minimize reflectance spectrum baseline 

slopes attributed to the interferometer, room temperature should be precisely controlled, 

or, the interferometer should be thermally isolated from room air.  To eliminate 

reflectance spectrum baseline slopes that appear as a result of VT-DRIFTS sample 

heating, the interferometer compartment should be thermally isolated from the heated 

sample.  Without adequate thermal isolation of the interferometer, a systematic change 

in baseline slope appears in VT-DRIFTS spectra that persists even after heating power 

is removed.  This effect can be attributed to gradual temperature increases for 

instrument components.  Instrument component temperature changes depend on sample 

temperature and proximity to the sample.  Consequently, instrument component 

temperatures do not track with sample temperatures.  In fact, temperatures for some 

components continue to increase while the sample cools after heating.  Thus, sufficient 

time between VT-DRIFTS analyses is required to ensure that all components return to 

their initial temperatures.  The sample environmental chamber helium purge rate also 

affects instrument component temperatures.  Higher helium purge rates facilitate more 

efficient heat transfer to instrument components (Chapter 4).  Consequently, lower 

sample purge rates are recommended for VT-DRIFTS measurements to minimize 

optical component temperature increases. 

Trends in temperature- dependent baseline slope changes can be induced at 

ambient temperature by moving the sample up and down.  This suggests that optical 

throughput variations are caused by sample holder thermal expansion during VT-
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DRIFTS measurements.  Temperature-dependent sample and optical component 

movements can be minimized by using materials with low thermal expansion 

coefficients, such as quartz (Chapter 5).  In general, VT-DRIFTS baseline slope 

artifacts can be minimized by limiting optical component movements during sample 

heating. 

When VT-DRIFTS sample temperature exceeds about 200 °C infrared 

significant radiation emitted by the sample passes through the interferometer and 

becomes modulated.  This modulated sample emission is 180° out of phase with the 

modulated FTIR infrared source radiation, resulting in interferogram voltage reduction.  

When cube corner retroreflectors are employed in the interferometer, this effect can be 

eliminated by blocking one-half of the beam exiting the interferometer.  Unfortunately, 

this approach also reduces interferogram voltages. [25]  

Instrument temperature measurements confirm that a substantial temperature 

difference develops between the sample surface and the bottom of the sample, where 

the temperature control thermocouple is located.  Although sample surface temperatures 

can be estimated from temperature controller readings by using an appropriate 

correlation function, the best approach for measuring sample temperatures is to place 

the thermocouple just under the sample surface.  This results in accurate temperature 

measurements for the portion of the sample exposed to infrared radiation and avoids 

problems associated with radiation reflection by the thermocouple when it is placed on 

top of the sample (Chapter 4).  Interestingly, studies show that surface temperature 

measurement reproducibility is not significantly affected by sample purge rates. 
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As described in section 2.4, the DRA optical components and environmental 

chamber employed for VT-DRIFTS decreased the FTIR optical throughput.  

Eliminating the environmental chamber lid increases interferogram voltage by about a 

factor of 10, yielding improved SNR for spectra.  Although VT-DRIFTS measurements 

can be made without the environmental chamber, exceeding 200 °C is not 

recommended, because of potential sample oxidation and excessive optics heating at 

higher sample temperatures (section 5.5).   

The instrument characterization studies described here have led to a better 

understanding of the VT-DRIFTS technique and significant improvements in 

measurement SNR and reproducibility.  However, based on the thorough evaluation 

described here, additional improvements are possible.  For example, better sample 

heating methods that transfer a greater fraction of energy to the sample would 

minimizing heat transfer to the sample holder and environmental chamber.  This would 

reduce artifacts caused by thermal expansion of these components as well as reduce 

heating of the FTIR optical system.  The current VT-DRIFTS design can provide high 

nanogram detection limits (Chapter 6), which is remarkable for an infrared analysis 

technique.  By eliminating the environmental chamber lid, lower detection limits should 

be possible.  Although measurements without the environmental chamber lid should be 

limited to below 200 °C, this is a sufficient temperature range to study a wide variety of 

sample change mechanisms.  For example, interactions between molecules and water 

can be characterized by comparing spectra acquired before and after sample 

dehydration.  The VT-DRIFTS sample perturbation technique outlined here (Chapter 6) 
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can be used to study adsorbate-water interactions even in the presence of complicated 

matrices, like those found in soils. 
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7 Appendix A: Data Processing – File Types and Conversions 

 

Information presented here was adapted from the FIRST™ Macros Fourier 

Infrared Software Tools User’s Manual.[1]   

In WinFirst, interferogram data is saved in a file with the extension *.igm (for 

“interferogram”) or *.big (for “background interferogram”). 

The fast Fourier transform (FFT) algorithm is used to convert the interferogram 

into a single beam spectrum: *.sbm (for “sample single beam”) and *.bkg (for 

“background single beam”).  A detailed explanation of the FFT algorithm can be found 

in a number of references.[2] 

To summarize, an interferogram is converted into a single beam spectrum by the 

FFT algorithm: 

example.igm --- FFT --- example.sbm 

example.big --- FFT --- example.bkg 

 The single beam spectrum represents the intensity of radiation reaching the 

detector as a function of radiation frequency (Figs.  2 and 3).  A reflectance spectrum 

(for a diffuse reflection measurement) or a transmittance spectrum (for a transmission 

measurement) can be obtained by computing the ratio of the sample single beam 

spectrum (which lacks radiation that has been absorbed by the sample) to the 

background single beam spectrum (i.e. reference).  The file extension for this ratio is 

*.ras: 

example.sbm / example.bkg = example.ras 

example.sbm / reference.sbm = example.ras 
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 The transmittance (T) or, in the case of diffuse reflection, the reflection spectrum 

(*.ras) can be converted into an absorbance (A) spectrum (*.abs) via the Beer-Lambert 

law,[3]  which states that T = 10–A.  Thus, 

log (1/example.ras) = example.abs 

 However, whereas absorbance band intensities are proportional to the 

concentration of the species of interest in the case of transmittance measurements 

(according to Beer’s law, A = abC, where A is absorbance, a is molar absorptivity in 

L/(mol×cm), b is path length in cm, and C is concentration in mol/L[3]), for a reflection 

spectrum, absorbance increases exponentially with increasing concentration.  Therefore, 

a different mathematical operation is required to make band intensities directly 

proportional to the species concentration.  This transformation is known as the Kubelka-

Munk (K-M function), which converts *.ras files to *.drt files: 

K-M function (example.ras) = example.drt 
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8 Appendix B: Software 

 

B.1 Macro Programs 

After the sample is loaded, the instrument is purged, and the heating program is 

specified, the operator launches samcol_2.mac (Appendix B.2) from the computer.  On 

prompt, the operator specifies the data collection file name and the number of spectra to 

collect.  At this point, the computer takes over and controls the operation of the 

spectrometer and the temperature controller.  The macro samcol_2.mac creates a new 

data folder and files to store temperature and time information (\samtemps and 

\samtimes, respectively) and then calls the program avrg_pid.exe (Appendix B.3) to set 

the PID parameters (previously determined experimentally) on the temperature 

controller to optimize the power output for best correlation with the specified heating 

ramp.  Immediately after this, the macro signals the temperature controller via 

ramp_st.exe (Appendix B.4) to begin the pre-programmed heating ramp. 

After the heating program is initiated, the macro Samcol_2.mac starts a timer 

and records time zero to “\samtimes,” writes the current temperature into “\samtemps” 

by accessing the temperature controller (using the program rd_pv.exe provided in 

Appendix B.5), and then directs the FTIR spectrometer to begin scanning.  After the 

specified number of scans have been collected and signal averaged, the interferogram 

file is stored on the computer and another set of time and temperature values are 

recorded.  Thus, time and temperature measurements are recorded by the macro before 

and after each new spectrum is collected.  This loop is repeated n times (where n 

represents the number of spectra specified by the operator). 
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After data collection, the samcol_2.mac macro processes the files \samtimes and 

\samtemps by executing samdata.exe (Appendix B.6).  The “before and after” 

temperature and time values collected for each spectrum are averaged, respectively, to 

obtain a temperature and time for each spectrum.  The program records this information 

(spectrum number, average time, and average temperature for each scan) into a file 

named samdata.txt. 

Here is an example of samdata.txt content: 

1, 0.525000, 27.900002 

2, 1.533333, 33.700001 

3, 2.533333, 42.250000 

The fist column represents the spectrum number, the second represents the 

number of minutes elapsed from the start of the experiment, and the last column is the 

average temperature in °C during data collection.  To complete the process, the macro 

executes w_spid25.exe (Appendix B.7) to return the PID parameters and set-point value 

of the temperature controller back to ambient temperature settings. 

 

B.2 samcol_2.mac 

# samcol_2.mac = same as samcol.mac plus 
# automatically starts Ramp Program1 on Eurotherm TC, and adjusts PID 
 
let c 0 
let s s_0 
 
clrscr 
comment PROGRAM FOR COLLECTING VT-DRIFTS SAMPLE SPECTRA 
comment 
comment     USING EUROTHERM TEMPERATURE CONTROLLER 
label begin 
comment 
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comment Enter the sample data storage name 
enter a 
comment 
label getigms 
exist &a\s_1.igm 
if &z = 0 
goto igmask 
comment Sample spectra exist in &a directory 
ask Do you want to overwrite? (Y/N) 
goto askquit 
goto igmask2 
 
label askquit             
ask Do you want to quit? (Y/N) 
goto begin 
exit 
 
label igmask 
dos mkdir &a 
label igmask2 
comment 
comment Enter the number of sample spectra to collect 
enter R 
 
label start 
# comment Initalizing - - Please Wait 
mattscan parm=c:\first\macros\scanparm.dat actions=iq quiet=1 
comment SAMPLE SCAN TEMPERATURES > &a\samtemps 
comment SAMPLE SCAN TIMES (min) > &a\samtimes 
# mattscan parm=c:\first\macros\scanparm.dat actions=iq quiet=1 
 
# clrscr 
system avrg_pid.exe 
comment 
comment Press the ENTER key to start data acquisition 
enter e 
system ramp_st.exe 
 
timerStart 
label loop 
increment s 
increment c 
timerCheck 
let B &z 
system rd_pv.exe &a\samtemps 
# mattscan parm=c:\first\macros\scanparm.dat actions=iq quiet=1 
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mattscan parm=c:\first\macros\scanparm.dat actions=sq file=&a\&s irdatatype=igm 
quiet=1 
system rd_pv.exe &a\samtemps 
# 
timerCheck 
let A &z 
+ &A &B 
/ &z 120 
comment >> &a\samtimes 
comment &c , &z >> &a\samtimes 
if &c < &R 
goto loop 
system samdata.exe &a 
system w_spid25.exe 
comment 
 
 

B.3 avrg_pid.exe 

// Part of Samcol_2 macro, works with 
// Eurotherm Temperature Controller 
// 
// Program function:  
// Adjusts PID parameters to the average good values  
// determined experimentally for the range from 25C to 500C 
// (Pb = 2.6, ti = 0.6, td = 0.1) 
// 
// 9/7/12 DKM 
 
#include <bios.h> 
#include <conio.h> 
#include <ctype.h> 
#include <dos.h> 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 
 
#define COM1 0 
#define COM2 1 
#define DATA_READY 0x100 
#define STX 0x02 
#define ETX 0x03 
#define EOT 0x04 
#define ENQ 0x05 
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#define ACK 0x06 
#define NAK 0x15 
#define TRUE 1 
#define FALSE 0 
 
#define SETTINGS (0xE0 | 0x02 | 0x18 | 0x00) 
 
float timer(void); 
char mk_BCC_checksum(char *c_code); 
 
char *r_str; 
int status, n_retry = 0; 
 
int main (void) 
{ 
char *r_str, *send_str(), xx_strng[5], wt_xx[100], BCC; 
float xx_val; 
 
status = bioscom(0, SETTINGS, COM2); /* set serial port parameters */ 
 
// Set and send Proportional band Pb 
xx_val = 2.6; 
sprintf (xx_strng, "%1.3f", xx_val); 
sprintf (wt_xx, "XP%s%c", xx_strng, ETX); 
BCC = mk_BCC_checksum(wt_xx); 
sprintf (wt_xx, "%c0000%cXP%s%c%c", EOT, STX, xx_strng, ETX, BCC); 
r_str = send_str(wt_xx); 
printf ("\n Pb = %s", xx_strng); 
 
// Set and send Integral time ti 
xx_val = 0.6; 
sprintf (xx_strng, "%1.3f", xx_val); 
sprintf(wt_xx, "TI%s%c", xx_strng, ETX); 
BCC = mk_BCC_checksum(wt_xx); 
sprintf (wt_xx, "%c0000%cTI%s%c%c", EOT, STX, xx_strng, ETX, BCC); 
r_str = send_str(wt_xx); 
printf (" ti = %s\n", xx_strng); 
 
return 0; 
} 
 
// The following subroutine includes steps for troubleshooting  
// possible serial port communication errors 
 
char *send_str(char *code) 
{ 
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char c, in_mesg[100]; 
int i, j, in, out, status, DONE, SAVE; 
int count, reset; 
float start_time, cur_time; 
 
count = 0; 
reset = 0; 
 
com_loop:  
    if(count > 5 && reset < 2) 
 { 
 reset++; 
 count = 0; 
 printf ("\nCount > 10.  Resetting serial port parameters."); 
 status = bioscom(0, SETTINGS, COM2); /* set serial port parameters */ 
 } 
 
    if(count > 11) 
 { 
 printf ("\nTIMEOUT\n"); 
 printf ("\nstatus = %x", status); 
 printf ("\nsent string = %s", code); 
 printf ("\nsent string = "); 
 i = 0; 
 while((c = code[i++]) != '\0') 
  printf("%c", code[i]); 
 leave(); 
 } 
 
status = bioscom(3, 0, COM2); 
while ((status & DATA_READY) != 0) // clear out receive buffer 
 { 
 status = bioscom(2, 0, COM2); 
 } 
 
i = 0; 
while((c = code[i++]) != '\0') 
 { 
      status = bioscom(1, c, COM2); 
 } 
 
status = 0; 
j = 0; 
DONE = FALSE; 
SAVE = FALSE; 
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start_time = timer(); // used to determine timeout condition 
 
while((status & DATA_READY) == 0) // check for input data 
 { 
 status = bioscom(3, 0, COM2); 
 cur_time = timer(); 
 if ((cur_time - start_time) > 10) 
  { 
  count++; 
  n_retry++; 
   
  printf ("\nCP4 message sent to TC: %s", code); 
 printf ("\nCount: %d.  Retry No.  %d.  Status: %d", count, n_retry, status); 
  goto com_loop; // timeout - resend command 
  } 
 }  
 
while(!DONE) 
 { 
 status = bioscom(3, 0, COM2); 
 if(status & DATA_READY) 
 if((out = bioscom(2, 0, COM2) & 0x7f) != 0) 
   { 
   if((out & 0x7f) == ETX) 
    { 
    DONE = TRUE; 
    out = bioscom(2, 0, COM2); 
    break; 
    } 
   if(SAVE == TRUE) 
    in_mesg[j++] = out & 0x7f; 
   if((out & 0x7f) == 'V') 
    SAVE = TRUE; 
   if((out & 0x7f) == ACK) 
    { 
    DONE = TRUE; 
    } 
   } 
 if ((status & DATA_READY) == 0) 
  { 
  start_time = timer(); // used to determine timeout condition 
  while((status & DATA_READY) == 0)  // check for input data 
   { 
   status = bioscom(3, 0, COM2); 
   cur_time = timer(); 
   if ((cur_time - start_time) > 10) 
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    { 
    count++; 
    n_retry++; 
 printf ("\nCP6 no response from TC for more than 10sec"); 
 printf ("\nCount: %d.  Retry No.  %d.  Status: %d", count, n_retry, status); 
    goto com_loop; // timeout - resend command 
    } 
   } 
  } 
 } 
 
in_mesg[j] = '\0'; 
return(in_mesg); 
 
} 
 
char mk_BCC_checksum(char *c_code) 
{ 
int i; 
char BCC; 
 
    BCC = (c_code[0] ^ c_code[1]); 
    for (i = 2; c_code[i] != '\0'; i++) 
    { 
        BCC = (BCC ^ c_code[i]); 
    } 
 return(BCC); 
} 
 
float timer() 
{ 
    struct time t; 
    float time_sec; 
 
    gettime(&t); 
    time_sec = (float) t.ti_hour * 3600 + (float) t.ti_min * 60 + (float) t.ti_sec + (float) 
t.ti_hund / 100; 
    return(time_sec); 
} 
 
int leave (void) // Exit the program 
{ 
printf ("\nNumber of COM Retries = %d\n", n_retry); 
printf ("\npress any key to exit"); 
getch(); 
exit(1); // exit program 
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return; 
} 
 
 

B.4 ramp_st.exe 

 

// Eurotherm Temperature Controller 
// 
// Program function: Start the heating ramp program 
// 
// DKM 05/12 
 
#include <bios.h> 
#include <stdio.h> 
#include <conio.h> 
#include <ctype.h> 
 
#define COM1 0 
#define COM2 1 
#define DATA_READY 0x100 
#define STX 0x02 
#define ETX 0x03 
#define EOT 0x04 
#define ENQ 0x05 
#define ACK 0x06 
#define NAK 0x15 
#define TRUE 1 
#define FALSE 0 
 
#define SETTINGS (0xE0 | 0x02 | 0x18 | 0x00) 
 
int mk_BCC_checksum(char *c_code); 
int BCC; 
 
int main(void) 
{ 
char *r_str, rd_sl[100], wt_sl[100], wt_sl_BCC[100], *send_str(), sl_strng[5]; 
int status, sl_val; 
char BCC_ch; 
 
status = bioscom(0, SETTINGS, COM2); /* set serial port parameters */ 
 
sprintf (sl_strng, "0002"); 
    fflush (stdin); 
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// Calculate checksum (BCC) 
    sprintf(wt_sl_BCC, "OS>%s%c", sl_strng, ETX); 
    mk_BCC_checksum(wt_sl_BCC); 
    BCC_ch = toascii(BCC); 
 
// Send command to set the setpoint 
    sprintf(wt_sl, "%c0000%cOS>%s%c%c", EOT, STX, sl_strng, ETX, BCC_ch); 
    r_str = send_str(wt_sl); 
    printf("\n%s", r_str); 
 
return 0; 
} 
 
char *send_str(char *code) 
{ 
char c, in_mesg[100]; 
int i, j, in, out, status, DONE, SAVE; 
 
i = 0; 
while((c = code[i++]) != '\0') 
 { 
      status = bioscom(1, c, COM2); 
  } 
 
j = 0; 
DONE = FALSE; 
SAVE = FALSE; 
while(!DONE) 
 { 
 status = bioscom(3, 0, COM2); 
 if(status & DATA_READY) 
 if((out = bioscom(2, 0, COM2) & 0x7f) != 0) 
   { 
   if((out & 0x7f) == ETX) 
    { 
    DONE = TRUE; 
    out = bioscom(2, 0, COM2); 
    break; 
    } 
   if(SAVE == TRUE) 
    in_mesg[j++] = out & 0x7f; 
   if((out & 0x7f) == 'L') 
    SAVE = TRUE; 
   if((out & 0x7f) == ACK) 
    { 
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    DONE = TRUE; 
    } 
   } 
 } 
in_mesg[j] = '\0'; 
return(in_mesg); 
 
} 
 
int mk_BCC_checksum(char *c_code) 
{ 
int i; 
 
    BCC = (c_code[0] ^ c_code[1]); 
    for (i = 2; c_code[i] != '\0'; i++) 
    { 
        BCC = (BCC ^ c_code[i]); 
    } 
 
return 0; 
} 
 
 

B.5 rd_pv.exe 

// Read current temp (process value) from Eurotherm TC 
// Print value to screen & to file passed via argc 
 
#include <bios.h> 
#include <conio.h> 
#include <ctype.h> 
#include <dos.h> 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 
 
#define COM1 0 
#define COM2 1 
#define DATA_READY 0x100 
#define STX 0x02 
#define ETX 0x03 
#define EOT 0x04 
#define ENQ 0x05 
#define ACK 0x06 
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#define NAK 0x15 
#define TRUE 1 
#define FALSE 0 
 
#define SETTINGS (0xE0 | 0x02 | 0x18 | 0x00) 
 
int status, n_retry = 0; 
char filename[100]; 
float timer(void); 
 
main (argc, argv) 
int argc; 
char *argv[]; 
 
{ 
char *r_str, rd_pv[100], *send_str(); 
FILE *fp, *fopen(); 
 
strcpy(filename, argv[1]); 
fp = fopen(filename, "a+"); 
status = bioscom(0, SETTINGS, COM2); /* set serial port parameters */ 
sprintf(rd_pv, "%c0000PV%c", EOT, ENQ); 
r_str = send_str(rd_pv); 
printf("%s\n", r_str); 
fprintf(fp,"%s\n", r_str); 
fclose(fp); 
return 0; 
} 
 
// The following subroutine includes steps for troubleshooting  
// possible serial port communication errors 
 
char *send_str(char *code) 
{ 
char c, in_mesg[100]; 
int i, j, in, out, status, DONE, SAVE; 
int count, reset; 
float start_time, cur_time; 
 
count = 0; 
reset = 0; 
 
com_loop:  
    if(count > 5 && reset < 2) 
 { 
 reset++; 
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 count = 0; 
 printf ("\nCount > 10.  Resetting serial port parameters."); 
 status = bioscom(0, SETTINGS, COM2); /* set serial port parameters */ 
 } 
 
    if(count > 11) 
 { 
 printf ("\nTIMEOUT\n"); 
 printf ("\nstatus = %x", status); 
 printf ("\nsent string = %s", code); 
 printf ("\nsent string = "); 
 i = 0; 
 while((c = code[i++]) != '\0') 
  printf("%c", code[i]); 
 leave(); 
 } 
 
status = bioscom(3, 0, COM2); 
while ((status & DATA_READY) != 0) // clear out receive buffer 
 { 
 status = bioscom(2, 0, COM2); 
 } 
 
i = 0; 
while((c = code[i++]) != '\0') 
 { 
      status = bioscom(1, c, COM2); 
 } 
 
status = 0; 
j = 0; 
DONE = FALSE; 
SAVE = FALSE; 
 
start_time = timer(); // used to determine timeout condition 
 
while((status & DATA_READY) == 0) // check for input data 
 { 
 status = bioscom(3, 0, COM2); 
 cur_time = timer(); 
 if ((cur_time - start_time) > 10) 
  { 
  count++; 
  n_retry++;   
  printf ("\nCP4 message sent to TC: %s", code); 
 printf ("\nCount: %d.  Retry No.  %d.  Status: %d", count, n_retry, status); 
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  goto com_loop; // timeout - resend command 
  } 
 }  
 
while(!DONE) 
 { 
 status = bioscom(3, 0, COM2); 
 if(status & DATA_READY) 
 if((out = bioscom(2, 0, COM2) & 0x7f) != 0) 
   { 
   if((out & 0x7f) == ETX) 
    { 
    DONE = TRUE; 
    out = bioscom(2, 0, COM2); 
    break; 
    } 
   if(SAVE == TRUE) 
    in_mesg[j++] = out & 0x7f; 
   if((out & 0x7f) == 'V') 
    SAVE = TRUE; 
   if((out & 0x7f) == ACK) 
    { 
    DONE = TRUE; 
    } 
   } 
 if ((status & DATA_READY) == 0) 
  { 
  start_time = timer(); // used to determine timeout condition 
  while((status & DATA_READY) == 0)  // check for input data 
   { 
   status = bioscom(3, 0, COM2); 
   cur_time = timer(); 
   if ((cur_time - start_time) > 10) 
    { 
    count++; 
    n_retry++; 
 printf ("\nCP6 no response from TC for more than 10sec"); 
 printf ("\nCount: %d.  Retry No.  %d.  Status: %d", count, n_retry, status); 
    goto com_loop; // timeout - resend command 
    } 
   } 
  } 
 } 
in_mesg[j] = '\0'; 
return(in_mesg); 
} 
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float timer() 
{ 
    struct time t; 
    float time_sec; 
 
    gettime(&t); 
    time_sec = (float) t.ti_hour * 3600 + (float) t.ti_min * 60 + (float) t.ti_sec + (float) 
t.ti_hund / 100; 
    return(time_sec); 
} 
 
int leave (void) // Exit the program 
{ 
printf ("\nNumber of COM Retries = %d\n", n_retry); 
printf ("\npress any key to exit"); 
getch(); 
exit(1); // exit program 
return; 
} 
 
 

B.6 samdata.exe 

#include <stdio.h> 
#include <stdlib.h> 
 
main (argc, argv) 
int argc; 
char *argv[]; 
{ 
char c, str[100], dirname[100], timename[100], tempname[100], dataname[100]; 
int i, n, num; 
float stime, b_temp, e_temp, avetemp; 
FILE *time, *temp, *data, *s_temps, *fopen(); 
 
strcpy(dirname, argv[1]); 
strcpy(timename, dirname); 
strcpy(tempname, dirname); 
strcpy(dataname, dirname); 
strcpy(str, dirname); 
strcat(timename, "/REFTIMES"); 
strcat(tempname, "/REFTEMPS"); 
strcat(dataname, "/REFDATA.txt"); 
strcat(str, "/ra_temps.txt"); 
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time = fopen(timename, "rt"); 
temp = fopen(tempname, "rt"); 
data = fopen(dataname, "wt"); 
s_temps = fopen(str, "wt"); 
 
fscanf(time, "REFERENCE SCAN TIMES (min)\n\n"); 
fscanf(temp, "REFERENCE SCAN TEMPERATURES\n"); 
while (1==1) 
 { 
 if ((fscanf(time, "%d %f\n\n", &num, &stime)) != 2) 
  break; 
 fscanf(temp, "%f\n", &b_temp); 
 fscanf(temp, "%f\n", &e_temp); 
 avetemp = (b_temp + e_temp)/2; 
 fprintf(data, "%d, %f, %f\n", num, stime, avetemp); 
 fprintf(s_temps, "%f\n", avetemp); 
 printf("%d %f %f\n", num, stime, avetemp); 
 } 
fclose(data); 
fclose(s_temps); 
return; 
} 
 

B.7 w_spid25.exe 

 

// Works with 
// Eurotherm Temperature Controller 
// 
// Program function:  
// Sets the set-point to 22C (below 25) and adjusts PID parameters accordingly 
// 
// 9/7/12 DKM 
 
#include <bios.h> 
#include <conio.h> 
#include <ctype.h> 
#include <dos.h> 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 
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#define COM1 0 
#define COM2 1 
#define DATA_READY 0x100 
#define STX 0x02 
#define ETX 0x03 
#define EOT 0x04 
#define ENQ 0x05 
#define ACK 0x06 
#define NAK 0x15 
#define TRUE 1 
#define FALSE 0 
 
#define SETTINGS (0xE0 | 0x02 | 0x18 | 0x00) 
 
float timer(void); 
char mk_BCC_checksum(char *c_code); 
 
char *r_str; 
int status, n_retry = 0; 
 
int main (void) 
{ 
char *r_str, *send_str(), xx_strng[5], wt_xx[100], BCC; 
float PV, xx_val; 
 
status = bioscom(0, SETTINGS, COM2); /* set serial port parameters */ 
 
PV = 22.00;  // set temperature below 25C to ensure 0 power output 
 
// Calculate and send the appropriate Proportional band 
xx_val = -0.00000001*PV*PV*PV + .00002*PV*PV - 0.011*PV + 4.3414; 
sprintf (xx_strng, "%1.3f", xx_val); 
sprintf (wt_xx, "XP%s%c", xx_strng, ETX); 
BCC = mk_BCC_checksum(wt_xx); 
sprintf (wt_xx, "%c0000%cXP%s%c%c", EOT, STX, xx_strng, ETX, BCC); 
r_str = send_str(wt_xx); 
printf (" Pb = %s", xx_strng); 
 
// Calculate the appropriate Integral time ti and send 
xx_val = .000004*PV*PV - 0.0026*PV + .9099; 
sprintf (xx_strng, "%1.3f", xx_val); 
sprintf(wt_xx, "TI%s%c", xx_strng, ETX); 
BCC = mk_BCC_checksum(wt_xx); 
sprintf (wt_xx, "%c0000%cTI%s%c%c", EOT, STX, xx_strng, ETX, BCC); 
r_str = send_str(wt_xx); 
printf (" ti = %s\n", xx_strng); 
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// Set temperature to 22C 
sprintf (xx_strng, "%2.2f", PV); 
sprintf (wt_xx, "SL%s%c", xx_strng, ETX); 
BCC = mk_BCC_checksum(wt_xx); 
sprintf (wt_xx, "%c0000%cSL%s%c%c", EOT, STX, xx_strng, ETX, BCC); 
r_str = send_str(wt_xx); 
printf ("\nSetpoint: %s", xx_strng); 
 
return 0; 
} 
 
// The following subroutine includes steps for troubleshooting  
// possible serial port communication errors 
 
char *send_str(char *code) 
{ 
char c, in_mesg[100]; 
int i, j, in, out, status, DONE, SAVE; 
int count, reset; 
float start_time, cur_time; 
 
count = 0; 
reset = 0; 
 
com_loop:  
    if(count > 5 && reset < 2) 
 { 
 reset++; 
 count = 0; 
 printf ("\nCount > 10.  Resetting serial port parameters."); 
 status = bioscom(0, SETTINGS, COM2); /* set serial port parameters */ 
 } 
 
    if(count > 11) 
 { 
 printf ("\nTIMEOUT\n"); 
 printf ("\nstatus = %x", status); 
 printf ("\nsent string = %s", code); 
 printf ("\nsent string = "); 
 i = 0; 
 while((c = code[i++]) != '\0') 
  printf("%c", code[i]); 
 leave(); 
 } 
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status = bioscom(3, 0, COM2); 
while ((status & DATA_READY) != 0) // clear out receive buffer 
 { 
 status = bioscom(2, 0, COM2); 
 } 
i = 0; 
while((c = code[i++]) != '\0') 
 { 
      status = bioscom(1, c, COM2); 
 } 
status = 0; 
j = 0; 
DONE = FALSE; 
SAVE = FALSE; 
start_time = timer(); // used to determine timeout condition 
while((status & DATA_READY) == 0) // check for input data 
 { 
 status = bioscom(3, 0, COM2); 
 cur_time = timer(); 
 if ((cur_time - start_time) > 10) 
  { 
  count++; 
  n_retry++; 
  printf ("\nCP4 message sent to TC: %s", code); 
 printf ("\nCount: %d.  Retry No.  %d.  Status: %d", count, n_retry, status); 
  goto com_loop; // timeout - resend command 
  } 
 }  
 
while(!DONE) 
 { 
 status = bioscom(3, 0, COM2); 
 if(status & DATA_READY) 
 if((out = bioscom(2, 0, COM2) & 0x7f) != 0) 
   { 
   if((out & 0x7f) == ETX) 
    { 
    DONE = TRUE; 
    out = bioscom(2, 0, COM2); 
    break; 
    } 
   if(SAVE == TRUE) 
    in_mesg[j++] = out & 0x7f; 
   if((out & 0x7f) == 'V') 
    SAVE = TRUE; 
   if((out & 0x7f) == ACK) 
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    { 
    DONE = TRUE; 
    } 
   } 
 if ((status & DATA_READY) == 0) 
  { 
  start_time = timer(); // used to determine timeout condition 
  while((status & DATA_READY) == 0)  // check for input data 
   { 
   status = bioscom(3, 0, COM2); 
   cur_time = timer(); 
   if ((cur_time - start_time) > 10) 
    { 
    count++; 
    n_retry++; 
 printf ("\nCP6 no response from TC for more than 10sec"); 
 printf ("\nCount: %d.  Retry No.  %d.  Status: %d", count, n_retry, status); 
    goto com_loop; // timeout - resend command 
    } 
   } 
  } 
 } 
 
in_mesg[j] = '\0'; 
return(in_mesg); 
} 
char mk_BCC_checksum(char *c_code) 
{ 
int i; 
char BCC; 
    BCC = (c_code[0] ^ c_code[1]); 
    for (i = 2; c_code[i] != '\0'; i++) 
    { 
        BCC = (BCC ^ c_code[i]); 
    } 
return(BCC); 
} 
float timer() 
{ 
    struct time t; 
    float time_sec; 
    gettime(&t); 
    time_sec = (float) t.ti_hour * 3600 + (float) t.ti_min * 60 + (float) t.ti_sec + (float) 
t.ti_hund / 100; 
    return(time_sec); 
} 
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int leave (void) // Exit the program 
{ 
printf ("\nNumber of COM Retries = %d\n", n_retry); 
printf ("\npress any key to exit"); 
getch(); 
exit(1); // exit program 
return; 
} 
 
 

B.8 nproc2-1.mac 

let c 0 
clrscr 
 
comment PROGRAM FOR PROCESSING VT-DRIFTS SAMPLE SPECTRA 
comment References all data to s_1 in the Ref Data Folder 
comment 
comment Enter the directory name used for sample data storage 
enter a 
comment Enter the directory name used for reference data 
enter r 
comment 
 
dos mkdir &a\nproc2-1  
open 1 &a\sa_temps.txt 
open 2 &r\ra_temps.txt 
 
label loop 
eof 1 
if &z = 1 
goto end 
 
# This portion of the code can be unlocked to process Variable Temperature Data  
# by rationing to corresponding Variable Temperature References 
# instead of to a single reference spectrum collected at ambient 
# let t 0 
# let j 0 
# let s 0 
# input 1 t 
# rewind 2 
# let j 0 
# label iloop 
# eof 2 
# if &z = 1 
# goto end 



 240 

# input 2 s 
# increment j 
# if &s <= &t 
# goto iloop 
# decrement j 
# if &j <= 0 
# let j 1 
 
increment c 
exist &a\s_&c.igm 
if &z = 0 
goto end 
mattproc parms=c:\first\macros\procparm.dat s=&a\s_&c.igm r=&r\s_1.big 
load &a\s_&c.ras 
ras2abs 
# show 
save &a\nproc2-1\s_&c.abs 
goto loop 
label end 
close 1 
close 2 
dos del &a\*.ras 
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9 Appendix C: Dimensions of the Optical Components 

 

C.1 Losses at the transition from mirror (3) to the beamsplitter 

For the system under investigation, the diameter of the collimated beam is ~ 3 in 

(based on the dimensions of mirror (3)), and the diameter of the beamsplitter opening is 

~ 2.75 in.  Projected areas Ap of the beam before and after the beamsplitter can be 

determined from the equation 

Ap = A × cos(θ)                                               (C.1.1) 

where A is the area viewed from normal, Ap is the projected area, and θ is the angle 

between the line of observation and the normal.[4] 

For mirror (3), width d1 = 3.3125 in, height d2 = 2.375 in, and θ = 45°.  Cross-

sectional area of the beam projected from mirror (3) onto the beamsplitter is estimated 

to be: 

Ap M3 = π r1 r2 cos(θ) = 6.179 in2 × cos(θ) = 4.369 in2                (C.1.2) 

For the beamsplitter (4a), diameter = 2.75 in, θ = 45°.  Surface area of the 

beamsplitter is estimated to be 

A4a = π r2 = 5.940 in2                                          (C.1.3) 

The area projected by the beamsplitter towards mirror (3) is less because the 

beamsplitter is positioned at a 45° angle relative to the incident beam, and is estimated 

to be: 

Ap 4a = A4a cos(θ) = 4.200 in2                                      (C.1.4) 

The maximum fraction of radiation transferred from mirror (3) to the beamsplitter is 

estimated by: 
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Ap 4a / Ap M3 = 4.200 in2 / 4.369 in2 = 0.9600 = 96.00%                  (C.1.5) 

Thus, only ~ 96% of the beam from mirror (3) enters the interferometer (4) due to the 

limiting diameter of the beamsplitter. 

 

C.2 Geometrical factors between the interferometer and mirror (5) 

The diameter of the apertures connecting the front and rear instrument 

compartments is ~ 3.00 in.  The area of the apertures viewed from normal is  

πr2 = 7.07 in. 

For mirror (5), width d1 = 4.125 in, height d2 = 3.00 in, and θ = 45°.  The 

projected area of mirror (5) from the beamsplitter is estimated to be: 

Ap M5 = π r1 r2 cos(θ) = 9.72 in2 × cos(θ) = 6.87 in                      (C.2.1) 

 The projected area of the mirrors far exceeds the projected area of the collimated 

beam from (4), which is limited by the beamsplitter diameter: Ap 4a = 4.20 in2. 

 

C.3 Focal length and solid angle of mirrors (5) and (7) 

Because (5) and (7) are F/1 mirrors, for each the focal length f equals the 

effective diameter D.  Because the beam is reflected at a 45° in the horizontal plane, D 

= width of (5) = width of (7) = 4.125 in.  The location of the 45° off-axis focal point of 

(5) and (7) can be calculated using the Pythagorean theorem: 

l = (2f2)1/2 = (2 × 4.132)1/2 = 5.83 in                                 (C.3.1) 

The solid angle Ω of the beam from (5) is calculated by 

ΩM5 = Ap / l2 = 4.20 in2 / (5.83 in)2 = 0.124 sr                         (C.3.2) 
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C.4 Geometrical factors between mirror (7) and the detector 

 Radiation incident to mirror (5) is a collimated beam with a cross-sectional 

diameter ~ 4.20 in (determined by the beamsplitter diameter).  Mirrors (5) and (7) are 

positioned so that they share a focal point, which means that the beam reflected from 

mirror (5) onto (7) has the same projected area and becomes collimated by mirror (7) 

after reflection. 

 Thus, the projected area of the beam traveling from (7) to the detector is ~ 4.20 

in2, and therefore it is not obstructed by the aperture between the front and rear of the 

instrument. 

For mirror (8), width d1 = 3.31875 in, height d2 = 2.50 in, and θ = 45°.  The area 

of mirror (8) viewed from (7) is estimated by: 

Ap M8 = π r1 r2 cos(θ) = 6.26 in2 × cos(θ) = 4.43 in2                      (C.4.1) 

Thus, mirror (8) does not restrict the beam reflected to the detector. 

 

C.5 Geometrical factors between mirrors (5) and (6-1) 

The area of the mirror (6-1) A(6-1) ≈ 1 in × 1 in = 1 in2, θ = 45°.  The distance 

from (5) to (6-1) is l = 4.40 in.  The 45° off-axis focal point of (5) lies behind (6-1) at a 

distance of: 

5.83 in – 4.40 in = 1.43 in                                         (C.5.1) 

The projected area Ap subtended by the solid angle ΩM5 at l = 1.43 in from the off-axis 

focal point of (5) is: 

Ap = ΩM5 × l2 = 0.124 sr × (1.43 in)2 = 0.254 in2                     (C.5.2) 

The area of mirror (6-1) viewed from the off-axis focal point of mirror (5) is: 
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Ap M(6-1) = A × cos(θ) = 1 in2 × cos (45°) = 0.707 in2                 (C.5.3) 

Thus, mirror (6-1) is large enough to capture the solid angle from mirror (5) ΩM5 = 

0.124 sr, as determined in Appendix C.3. 

 

C.6 Geometrical factors between mirrors (6-1), (6-2), and (6-3) 

The area of mirror (6-2) A(6-2) ≈ 1 in × 2 in = 2 in2, θ = 45°.  The distance from 

(6-1) to (6-2) is ~ 3.66 in.  This means that the focal point is between (6-1) and (6-2).  

The distance from the focal point to (6-2) is 3.66 in – 1.43 in = 1.23 in, which is smaller 

than the distance from (6-1) to the focal point.  This means that the beam projected onto 

(6-2) is smaller than the area projected onto (6-1), and the solid angle is conserved.  No 

losses are expected at mirror (6-2) due to the dimensions of the mirror. 

After mirror (6-2), the beam irradiates the ellipsoid mirror (6-3).  The distance 

between (6-2) and (6-3) is ~ 6.625 in, and from the focal point to (6-3) the distance is ~ 

8.85 in.  The ΩM5 is conserved, and the area of the beam projected onto (6-3) is Ap = 

ΩM5 × (8.85 in)2 = 0.124 sr × (8.85 in)2 = 9.71 in2.  It is difficult to determine precisely 

whether the ellipsoid mirror is large enough to capture the entire beam, but it seems 

reasonable to expect that the DRA was designed to capture the entire beam.  Assuming 

that the beam has a circular projected area, the projected diameter of the beam at (6-3) 

is ~ D = ((Ap × 4)/π)1/2 = 3.52 in, which is smaller than the apparent diameter of mirror 

(6-3). 
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10 Appendix D: scale.mac 

int choice 
int done 
done = 0 
while (done == 0) 
{ 
choice = menu "drt;abs;ras;bkg;big;sbm;igm" 
if(choice == 1) 
 e = ".drt" 
else if (choice == 2) 
 e = ".abs" 
else if (choice == 3) 
 e = ".ras" 
else if (choice == 4) 
 e = ".bkg" 
else if (choice == 5) 
 e = ".big" 
else if (choice == 6) 
 e = ".sbm" 
else if (choice == 7) 
 e = ".igm" 
done = 1 
} 
enter w "Enter wavenumber to use for scaling" 
enter n "Enter number of files to scale" 
 
dos mkdir "scaled" 
fopen 1 "scaled\info.txt" 
 
c = 1 
f = buildstring "s_" c e 
exist f 
if (z == 0) 
 exit 
load f 
v = value w 
fprint 1 "Spectra scaled to value of y at" w "cm-1 in" f 
fprint 1 "At" w "cm-1, y =" v 
 
for c = 1 to n step 1 
    begin 
 f = buildstring "s_" c e 
 h = buildstring "scaled\s_" c e 
 load f 
 value w 
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 g = v/z 
 scale g 
 save h 
    end 
fclose 1 
closeallwindows 

  



 247 

 
11 Appendix E: Baseline Offset.  slope.mac 

int choice 
int done 
float slope 
slope = 0 
done = 0 
while (done == 0) 
{ 
choice = menu "drt;abs;ras;bkg;big;sbm;igm" 
if(choice == 1) 
 e = ".drt" 
else if (choice == 2) 
 e = ".abs" 
else if (choice == 3) 
 e = ".ras" 
else if (choice == 4) 
 e = ".bkg" 
else if (choice == 5) 
 e = ".big" 
else if (choice == 6) 
 e = ".sbm" 
else if (choice == 7) 
 e = ".igm" 
done = 1 
} 
if (stringcompare e ".big" || stringcompare e ".igm") 
 { 
 enter a "Enter starting (smaller) data point" 
 enter b "Enter ending (larger) data point" 
 } 
else 
 { 
 enter a "Enter starting (smaller) wavenumber" 
 enter b "Enter ending (larger) wavenumber" 
 } 
c = 1 
f = buildstring "s_" c e 
exist f 
if (z == 0) 
 exit 
n = 1 
while (z == 1) 
 { 
 increment n 
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 f = buildstring "s_" n e 
 exist f 
 } 
n = n - 1 
s = 1 
i = buildstring a b ".txt" 
fopen 1 i 
fprint 1 e "slope calculated between" a "and" b 
for c = 1 to n step 1 
    begin 
 closeallwindows 
 slope = 0 
 g = buildstring "s_" c e 
 load g 
 verbose "on"  
 value a 
 v = z 
 value b 
 w = z - v 
 slope = w/(b - a) 
 verbose "off" 
 fprint 1 c slope 
    end 
fclose 1 
closeallwindows 
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