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BRAUER GROUPS OF H-DIMODULE ALGEBRAS
AND TRUNCATED POWER SERIES HOPF ALGEBRAS
BY: RICHARD B. TAN

MAJOR PROFESSOR: ROBERT A. MORRIS

The Brauver group of H-dimodule algebras, BD(R,H), consists of
equivalence classes of H-Azumaya algebras; where H is a Hopf -algebra
over a commutative ring R, and an H-dimodule algebra A is defined to
be H-Azumaya if certain maps (analogous to the usual map A ® A —> End(A))
are isomorphisms. It is shown that if R is a separably closed field of
characteristic p and H is a truncated power series Hopf algebra then
a necessary and sufficient condition for an H-Azumaya algebra A to
be R-Azumaya (the usual Azumaya R-algebra) is that it be semisimple.
An example is given to show that semisimplicity is necessary for this
to be true.

BDo(R,H) is the subset of BD(R,H) coﬁsisting of only those H-Azumaya
algebras that are already R-Azumaya. If each element [A] in BD((R,H)
has the property that A = End(V) as an H-module algebra for some finitely
generated projective H-module V, then BDo(R,H) is a subgroup of BD(R,H)..
For the truncated power series Hopf algebra,ap = k[x]/(xpj, with x
primitive, BDo(R,apJ = R* when R is a perféct field of characteristic

p and has trivial Brauer group.
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INTRODUCTION

The Brauer group, B(k), is the abelian group of similarity
classes of central si;ple algebras over a field k. It is a significant
invariant of the field k and holds an important place in the theory
of algebras over a field. Its definition was generalized to an
arsitrary commutative ring with identity by Azumaya [A] and Auslander
and Goldman [AG].

In 1963 while looking for invariants in the theory of quadratic
forms over a field, Wall [W] found that the graded Brauer group of
2-graded algebras gives a better connection to quadratic-form theory
than the ordinary Brauer group. This theory was then generalized
to the commutative ring case by Bass [B] and Small [Si, S2].

Wall considered gradings by the group of order 2, so a natural
generalization was to extend this to other groups. Knus [K] and
Childs, Garfinkel and Crzech [CGO] considered algebras graded by an
arbitrary finite abelian group G. They introcduced a Brauer group of
graded Azumaya algebras, B¢(R,G), for G a finite abelian group, R
a commutative ring with units group U(R), and ¢ : G X G — U(R)

a fixed bimultiplicative map. When G = C2, the cyciic group of
order 2, and ¢ is nontrivial, B¢(R,G) is the Brauer-Wall group
introduced by Wall.

Another generalization of the Brauer group was developed by
Frohlich and Wall [FW]. This is the equivariant Brauer group which
involves algebras on which a group acts.

In [L,], Long introduced BD(R,G), the Brauer group of algebras
graded by an arbitrary group G and also acted on by G so that the

action preserves the grading. In [L2], he further extended this to
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BD(R,H) by replacing G with an arbitrary commutative and cocommutative
Hopf algebra H over a ring R. This coincides with the former Brauer
group in [L;] if we let H = R[G], the group algebra of G over R.

Long then computed BD(R,G) for a cyclic grcup of prime order cver

an algebraically closed field.

Orzech [0] and Beattie [Be] then extended Long's computations
by relaxing the conditions that R be an algebraically closed
field, and that G be cyclic of prime order.

None of the above works consider H-Azumaya algebras for any
Hopf algebra H other than the group algebra. In this paper we
extend the study of H-Azumaya algebras into domains where H is
not necessarily the group algebra.

BD(R,H), the Brauer group of H-dimodule algebras, consists of
equivalence classes of H-Azumaya algebras; where an H-dimodule algebra
A is defined to be H-Azumaya if certain maps (analogous to the usual
map A ® A — End(A)) are isomorphisms. BDo(R,H) is a subset of
BD(R,H) consisting of only those H-Azumaya algebras that are
already R-Azumaya (the usual Azumaya algebras). Long in [L2] has shown
that BD(K,H) = BDo(K,H) for H = K[Cp], where Cp is the cyclic group
of order p and k is an algebraically closed field of characteristic
p. This implies that any H-Azumaya algebra is already R-Azumaya.

In Chapter I we introduce the truncated power series Hopf algebras,
which include group algebras as special cases. We then show that
not all H-Azumaya algebras are R-Azumaya when H is a truncated
power series Hopf algebra, and we give a necessary and sufficient
condition for this to be true. Long's result is then a special

case of our theorem.
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BDo(R,H) is not necessarily a subgroup of BD(R,H). In Chapter II
we give a sufficient condition for BDo(R,H) to be a group and
extend Long's computation of BDo(R,H) to H = ap, a truncated power
series Hopf algebra not equal to a group algebra. We find that
for an appropriate field BDo(R,ap) = R*, the multiplicative group
of R. Finally, we list some open questions raised by the work

in this paper.



CHAPTER 0O

PRELIMINARIES

This chapter contains basic definitions and results of Hopf
algebras and H-dimodule algebras, leading to the definition of

BD(R,H), the Brauer group of H-dimodule algebras.

1. General Conventions

Throughout this paper, R is a commutative ring with identity.
Each ®, Hom, etc. is taken over R, and each map is R-linear unless
otherwise stated. All algebras and modules are understood to be
R-algebras and R-modules.

B(R) is the usual Brauer group of R. Central separable algebras
are called R~-Azumaya algebras. H denotes a Hopf algebra over R and

Cn is the cyclic group of order n.

2. Coalgebras, Bialgebras and Hopf Algebfas

Definition 0.1.

A coalgebra C over R is an R-module C together with the maps:

coproduct or diagonalization A : C->C®GC,

counit or augmentation €: C*R,

so that the following diagrams commute:

Coassociativity Left and Right Counit

¢ L, cec R3C=C=C®R

113 lA@I and @I \J{ / I8¢
190

C®¥C — C®CsC cecC
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We introduce the Sweedler I notation, which is an important
tool for coalgebra manipulation. We write A(h) = (g)hlehz, and
note that I is a dummy, serving merely to remind us that A(h) is a
sum of elements of the form h;®h,. The symbols h; and hz do not
denote particular elements, but are merely placeholders.

I notation can be used to convey precisely the information in
commutative diagrams. Thus, A : C - C® C is coassociative iff

E' A(cy®cy = (E) c1®A(cz2) for all ceC, and € : C + R is a counit

iff T €(cijca=c= I cie(cy).
c) (c)

Definition 0.2,

A bialgebra B is an R-module that is simultaneously an R-algebra

under

mul tiplication -8’ B®B -+ B, .

unit IB: R »> B,
and a coalgebra under A and €, such that A and € are algebra maps.

Definition 0.3.

A Hopf algebra H is a bialgebra H equipped with a map, the

antipode, S : H = H such that [ﬁ h;S(hz) = e(h) = (Z S(hy)hz for
) h)
all heH.

Definition 0.4.

A Hopf algebra is commutative if the multiplication is commutative and

cocommutative if the diagonalization is commutative, i.e. (ﬁ h)&h; =
)

I ha®hy.
(h)



Remark 0.5.

If the Hopf algebra H is finitely generated projective as an
R-module, then so is its dual H* = Hom(H,R). The structure maps of

H* are given as follows:

.H,:H*®H*=(H® H)*__AL>H*
.~ *E* *

IH* t R=R* — H

A . * -* * o~ * *

H*,H——)(H®H) =~ H*® H

*

ST H* JL; R* —» R

S,,, : H* 35 He

H* °

where, if £ : X + Y is a morphism of R-modules then f* : Y* » X* is
the map given by <f*(y*),x> = <y*,f(x)>. Thus, for example,
<h;**h2*, h> = <h;*®h2*, A(h)> and <A(h*), h;®h2> = <h*, hj;<hz>.
For more details of Hopf algebras and I notation formalisms, see

[Swy, Sw:].

3. Examples of Hopf algebras

We give two important examples of Hopf algebras.

Example 0.6.

A classical example of a Hopf algebra is the group algebra,
H=R[G], where G is any group. This has the coalgebra structure given
by A(g) = g®g, €(g) = 1 and S(g) = g~} for geG.

An element g in an arbitrary Hopf algebra which satisfies

A(g) = g® and €(g) = 1 is said to be group-like.

An important special group algebra for us will be the following:



Example 0.7.

H = R[Cp], where R is a ring of characteristic p. As algebras,
R[Cp] = R[x]/(xp-l) = R[y]/(yp), where y = x-1. The coalgebra
structure maps are defined by Ax = x@& and hence Ay = y®y + y®l +
18y; €(x) = 1 and hence €(y) = 0, with S(x) = x'l. The dual
H* = k[z]/(z?-z), where <zi, xj> = ji, has the coalgebra structures
given by Az = 2Q1 + 18z, €(z) = 0 and S(z) = -z. These structures
coincide with the dual structures given in Remark 0.5. 1In an

arbitrary Hopf algebra, an element z that satisfies Az = 2®g + g®z

(with g group-like) and £(z) = 0 is said to be primitive with

respect to g or g-primitive. If g =1 we simply say z is primitive.

Of prime importance to us is the following:

Example 0.8.

H = ap. This is the Hopf algebra H = R[x]/(xp) with R a ring
of characteristic p. H has the coalgebra structure given by
Ax = x®1 + 1®x, €(x) = 0 and S(x) = -x. The dual H* = R[z]/(zp),

where <z,x> =1 and <zl, x)> = j!6i 5 has the coalgebra structure
 J

given by Az = 281 + 1@z, €(z) = 0 and S(z) = -z. Thus H = H* as

a Hopf algebra. We note that <1, 2z, . . . ,zp'1> is the dual basis

1 p-1
..,WX >,

See [P,, Beispiele 4.1] for more details of the above examples.

to <1, x, .

4., H-modules, H-comodules and H-dimodules

Definition 0.9.
An R-module M is a (left) H-module if there is an R-linear

map — He M — M, (written simply — if the meaning is
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clear) such that the following diagrams commute.
(i) HO®H®M -—-—9 HO® M

1®-~l l -
H®M ————9

1,81
(ii) ROM —s I@M

M

We say that H acts on M by — .

Note that (i) says (g*h)—m = g (h— m) and (ii)
IH(’r)--s m = rm for all g, heH, meM and reR. Thus the diagrammatic
definition above coincides with the elementary definition of a module.
The virtue of this approach is that it leads readily into the defini-
tion of one of the principal objects of study, the comodules, by

dualizing or reversing the arrows in the above diagrams.

Example 0.10.

Any R-module M can be made into an H-module trivially by defining
h—=m = ¢(h)m and IH(r)m = rm.

If M and N are H-modules then M ® N and Hom(M,N) are also H-modules
with H-actions given by h—= (m®n) = (ﬁ)(hl-h m)@(hz— n), and
th — f)(m) = ﬁ hl——bN [f(S(hz)——-sM m] respectively, where heH, meM,
neN and feHom(MfN; [L2, Proposition 1.4].

We now turn to the dual concept of H-comodules.

Definition 0.11.
An R-module M is a (right) H-comodule if there is a map Xy M— M®H

(written simple x if there is no confusion) so that the following



diagrams commute.

Moy 12 M ®H® H

(ii) M —Xo5 M®H

-

M®R

We write x(m) = I mo®m;, with meeM, m; €H. Thus condition
(m)

(ii) says (Z)mos(m) = m. YXiscalled the coaction of H on M.
m I

Example 0.12.

We can make any R-module M into an H-comodule by defining
Xx(m) = mgl. This is the trivial H-comodule structure on M.

Recall that if H is a finitely generated projective Hopf
algebra then H* is also a Hopf algebra. Itis often more convenient
to study the H*-module structure rather thaﬁ the H-comodule structure.
This is done as follows: for h*eH* and meM, where M is an H-comodule
with x(m) = I mo®m, define the H*-action on M (denoted by the down-
ward — ) bim;*——v m = (ﬁ)mo<h*, m;>. This makes M into an H*-module.
Conversely, if M is an H*-module, then M can be made into an H-comodule
[P1, Proposition 1]. Furthermore, if M and N are H-comodules then

M3N and Hom(M,N) are H*-modules and hence H-comodules, provided H is

finitely generated projective.

“Definition 0.13.
Let H be a commutative and cocommutative Hopf algebra. An R-

module M is an H-dimodule if M is an H-module and an H-comodule
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such that the following diagram commutes.

-
H®M — M

!

HeMeH =21, MoH

In symbols this says:

z (h—me®h —m); = Z (h — mp) m.
(h — m) (m)
Let H be also finitely generated projective. Then an H-dimodule
M is both an H-module and an H*-module. The commutative diagram

above then becomes

———
HOM — M
£ —

H*GH@M-—I—-)H*®M

where f : H*®H3M L‘M? HRH*&M -1®__,’ HBM with T : HOH* ——ey H*3H,

the Twist map, i.e. T(h&h*) = h*dh.

In symbols this says h — (h* — m) = h* — (h —™ n)
for any heH and h*eH*, i.e. the. actions — and —» commute.
Thus, when H is finitely generated projective, M is an H-dimodule

iff it is an H® H*-module iff it is an H-H*-bimodule.

5. H-module, H-comodule and H-dimodule algebras

Definition 0.14.
Amap £ : M — N, where M and N are H-modules, is an H-module

map if the following diagram commutes.
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HeM —2£ 5 HeN

oo b

M -———jl—é N

In symbols, this says h -—éNf(m) = f(h ——hM m.
We record this standard definition here in diagrammatic form,

in order to readily obtain its dual form subsequently.

Definition 0.15.

A is an H-module algebra if A is an R-algebra and an H-module

so that the structure maps Ly¢ R—> Aand Al ARA — A are
H-module maps.
These conditions say that h- 1A = e(h)-lA and h— (a-*b) =

(ﬁ)(hl—a a)°(hz— b) for a, beA and heH.

Note that if H = R[G], G is a group, and A is an H-module
algebra, then the above conditions say that g — 1A = 1A and
g — (a*b) = (g — a)+(g — b) for geG; thus g acts on A as an

automorphism.

Example 0.16.

If M is an H-module then End (M) is an H-module algebra
[L2, Proposition 1.8].

Let H be cocommutative. If A and B are H-module algebras then
so are A®B and A’, the opposite algebra to A [L,, Proposition 1.7].

We also have the following dual concepts.

Definition 0.16.
If M and N are H-comodules and feHom(M,N) then f is said to be

an H-comodule map if the following diagram commutes.
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M '———£-—+ N

o b

Mo 2L 3 NeH

This says that T f(mo) my = L £(m)e®f(m);.
(m) (£(m))

Definition 0.17.

A is anH-comodule algebra if it is an R-algebra and an H-comodule

so that the structure maps 1A :R— A and a MRA — A are
H-comodule maps.
In symbols these conditions become x(lA) = lA‘@ 1H and

(ab) = L agbe®ab:.
Xx(ab) (a)t) obo¥a1b)

Example 0.18.

Any Hopf algebra H is an H-comodule algebra, by letting
X = A, the diagonal map.

Let H be commutative. If A and B are H-comodule algebras then
so are A%B arnd A°.

If H is finitely generated projective, and M,N are H-comodules
and hence H*-modules, then a map f : M —» N is an H-comodule map
iff it is an H*-module map [L., Proposition 2.3, (iii)]. . Furthermore,

A is a right H-comodule algebra iff it is a left H*-module algebra.

Definition 0.19.
Let M and N be H-dimodules. Then a map £ : M — N is an H-dimodule

map if it is both an H-module map and H-comodule map.

Definition 0.20

Let H be commutative and cocommutative. An R-algebra A is an
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H-dimodule algebra if it is simultaneously an H-dimodule, H-module

algebra and H-comodule algebra.

Example 0.21.
If M is an H-dimodule then End(M) is an H-dimodule algebra

[L2, Proposition 3.6].
If A and B are H-dimodule algebras, so are A® and AGB {L2, Theorem

3.3].

6. The Brauer Group of H-dimodule algebras

Let A and B be H-dimodule algebras. Then A®B is an H-dimodule
algebra with the usual structures. We can put a new multiplication

on A®B as follows:

18xz@Iel I818— , &I ——
ASBRAB —=—> AGBGHBASE ——————> ASBM® ——>
A" B

ARARBRB > acs.

Definition 0.22.

The Smash product of A and B, denoted by A#B, is defined to be

the H-dimodule A®B with the above multiplication. In symbols,
(a#b)(ctd) = (%)a*(b;-—» c)#boed.

Note that the multiplication in A#B depends only on the comodule
structure on B and the module structure of A (and the algebra
structure on A and B).

With the structure described above A#B is an H-dimodule algebra

with the H-action inherited from the R-module AGB.

Definition 0.23.

Let A be an H-dimodule algebra. Then A is defined as the H-dimodule
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A with multiplication given by a'b = (Z) {a1——> b)*ag with H-action
a

inherited from A.

A is an H-dimodule algebra [L, Proposition 3.5].

Definition 0.24.
Let A be an H-dimodule algebra, finitely generated projective and

faithful over R. We define two maps

F : AHA — End(A)
and

G : AHA — End(A)°,
by

F (afb = I a*(bi— c)*b

(a#b) (c) (b)a(a c)+bo

and

G (a#b)(c) = I (c1— a)eco*b.

(c)

F and G are H-dimodule algebra maps [L,, Proposition 4.1].

We now come to the concept of H-Azumaya algebra.

Definition 0.25.
If A is an H-dimodule algebra which is finitely generated
projective and faithful over R, such that F and G as defined above

are isomorphisms, then A is said to be H-Azumaya.

ExamEIe 0.26.

(i) If M is an H-dimodule finitely generated projective and
faithful over R, then End (M) is an H-Azumaya algebra.

(ii) If A and B are H-Azumaya so are A#¥B and A [L2, Theorem 4.3].

We are now ready to define the concept of the Brauer group of

H-dimodule algebras,
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Definition 0.27.

Let A and B be H-Azumaya. Then A and B are Brauer Equivalent,

denoted by A~ B, if there exist H-dimodules M,N so that A # End(M) =
B # End(N) as H-dimodule algebras.

n is an equivalence relation which respects the operation #,

Definition 0.Z8.

The Brauer group of H-dimodule algebras, BD(R,H), is the group of

Brauer equivalence classes with multiplication induced by # and

inverse induced by — .

Remark

By giving trivial H-module and H-comodule structures to an R-
algebra A, we can make A into an H-dimodule algebra. We then
have A =A%, A # B = A®B, etc. and B(R) can be embedded as a
subgroup of BD(R,H).

If we put the trivial H-comodule structure on an H-module
algebra A, then A becomes an H-dimodule algebra. The equivalence
classes of such H-Azumaya algebras form a group BM(R,H), which can
be embedded in BD(R,H). Similarly, we can form a subgroup BC(R,H)
of BD(R,H), consisting of equivalence classes of H-Azumaya algebras
with trivial H-module structures. Furthermore, B(R) can also be
embedded in both BM(R,H) and BC(R,H).

Let H = R[G], where G is a finite abelian group. Then an
H-dimodule is a G-graded module with a grade-preserving G-action.
Furthermore, let § be a bimultiplicative map, ¢ : GxG — U(R), where
U(R) is the group of units of R. We can then define the group

B¢(R,G), (see [K] and [CGO]), and embed it as a subgroup of
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BD(R,R[G] for all ¢ [L;, Theorem 1.6]. B(R) is also a subgroup

of B¢(R,G). Childs in [C] has shown that under certain conditions,
BD(R,R[G]) = B¢(R,GxG) for some ¢.



H-AZUMAYA ALGEBRAS OF TRUNCATED POWER SERIES

HOPF ALGEBRAS

- Elements of BD(R,H), the H-Azumaya algebras, are different
types of objects than the ordinary R-Azumaya algebras. However,
under certain conditions, H-Azumaya algebras are R-Azumaya. This
in no way implies that BD(R,H) = B(R), since the equivalence
classes and multiplications are not the same. Furthermore, there
may be R-Azumaya algebras that have non-trivial H-actions or H-
coactions, so they would not be in the image of B(R) embedded in
BD(R,H). In order to study when an H-Azumaya algebra is R-Azumaya
the appropriate object to consider is not B(R) but BDo(R,H), the
principal object of study in this paper.

Throughout this chapter, we assume that H is a commutative and
cocommutative Hopf algebra, finitely generated projective and
faithful over R.

We begin with the definition of BDy(R,H).

1. BDo(R,H)

Definition 1.1.

BDo(R,H) = {[A]eBD(R,H) : A is R-Azumayal.

Thus BDg(R,H) consists of classes of H-Azumaya algebras such that
there is at least one R-Azumaya algebra in each class. We now show
that this means every member of the equivalence class must also be

R-Azumaya.
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Proposition 1.2.
Let [A]eBDg(R,H) and Bef{A]. Then B is R-Azumaya.

Proof

Be[A] implies B v A, and by definition there exist H-dimodules
M and N such that A # End(M) = B # End(N) as H-dimodule algebras.

By Long's Prbposition 3.10 [L2], we know that if C is an H-dimodule

[}

algebra and V an H-dimodule then C # End(V) C ®End(V) as

it

H-dimodule algebras. So we have B # End(N) B ® End(N) = A ® End(N)
as H-dimodule algebras. Now, A ® End(N) is R-Azumaya since both
A and End(N) are. Thus B @ End(N) is also R-Azumaya and so must
be B, since tensor components of R-Azumaya algebra must also be
R-Azumaya [0S, Ex. 2.15(a)]./

Long in [Lz] has shown that BD(K,H) = BDo(K,H) for H = K[CP] and
K an algebraically closed field of characteristic p. This implies
that any H-Azumaya algebra is already R-Azumaya. This is not true

in general, but under extra conditions it is the case for truncated

power series Hopf algebras.

2. Truncated Power Series Hopf Algebras

Definition 1.3.

A truncated power series Hopf algebra is the algebra

H=R[x:, ..., xn]/(xfl, . e ey xin), where ss is a positive
integer for each i, with some coalgebra structure imposed on it.

As any H-comodule is equivalent to an H*-modnle, it is essential
to study the structure of H* for a truncated power series Hopf

algebra. We first need a definition.
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Definition 1.4.

A sequence of elements of a coalgebra over R, {do, d1, . . ., dy},

i
is a sequence of divided powers of length n if Adj = -Zodjeﬂi-j
J:
and €(d;) = &g ; for all i.
We note that in the above definition, if R is a field and d¢# O,

the augmentation condition follows from (e®I)A = I.

Propesition 1.5.

If H is & truncated power series Hopf algebra then H* is

generated as an algebra by sequences of divided powers.

Proof

See [MP, Theorem 5 and Lemma 6]./

Remark
We note that if a truncated power series Hopf algebra is an
algebra over a field of characteristic p, then s; = pti for each 1i.
Further, both K[Cp] and ap are truncated power series Hopf algebras.
Their duals are generated as algebras by {1,z}, a sequence of divided

powers of length 2, since Az = 18z + 28l (See Examples 0.7 and 0.8).

Definition 1.6.
Let A and C be.algebras over R. Then a sequence of maps

{do, d1, . . ., d,} from A to C is a higher derivation from A to

Cif for 0 <j <n,

i
(ii) di(ab) = jEO dj(a)-di_j(b).
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n is called the degree of the higher derivation.
Thus, a derivation is just a higher derivation of degree

1, {do=1 ,d}, so that d(1) = 0 and d(ab) = a-d(b) + d(a)eb.

Proposition 1.7.

Let {do, d1, . . ., d;} be a sequence of divided powers in a
Hopf algebra H. Then {do, d1, . . ., dn} is a higher derivation on

any H-module algebra A into itself.

Proof
By definition of H-module algebra, we have h— (ab) =

£ (h1— a)(h2—= b) for alla, beA with Ah = I h®h;. But
h) i (h) i
My = j§0 deﬂi_j, so we have di(ab) = dj- (ab) = jZO (dj-é a)-(di_j-> b)./

3. When is an H-Azumaya algebra R-Azumaya?

We answer the above question for truncated power series Hopf

algebras in this section. Some preliminaries are required.

Progosition 1.8.
Let A be an H-comodule. If h*— a = 0 for all h* € IL =

{h* € H* : <h*, 1> = 0}, then y(a) = a®l.

Proof

Let <1, h;, . . ., hm> be a projective basis for H. Also let
x(a) = ap®l + a8+ . . . + amshm. Then, by definition,
h*~ a = ag<h*,1>+a3,<h*, >+ ., . ., + am<h*,hm>.

Set h* = hi*, the dual to hi’ for i > 0. Then h* — a = ai<h*,hi> = a,.
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Now, h* € 1 , so by assumption a; = 0 for i > 0. Thus x(a) =

ap®. By counitary property, we have

a =ape(l) +ae(h) + . . . * ame(hm)
305(1) = a9,

so x(a) = a ®1./

Proposition 1.9.
Let A = Ap QAI ... 9 Ar’ where each Ai is an R-algebra

generated by a central orthogonal idempotent e- Suppose d is a
derivation on A, i.e. d(ab) = ad(b) + d(a)b for all a, beA. Then

d(ei) = 0 for all i.

Proof
T
Let d(e.) = I a..e., with a,.cA.. Now
(64) j=1 1373’ 13773 i
d(eiJ = d(eiei) since e, is idempotent,
= eid(ei) + d(ei)ei
(. &
= e, a..e.) + a..e.)e.
i%5=11j J) j=1 1J J) i
= a,.e; + a i€ as e; 1is central orthogonal,
= (ag; * 3550
This implies that aij = 0 for all j # i. Furthermore, ag; *ta; T ayg

SO a;; = 0 also. Thus d(ei) = 0 for all i./

. Proposition 1.10.

Let A be as in Proposition 1.9. Further, let {dg =1, dy, . . ., d_}
be a sequence of higher derivations on A. Then dj(ei) = 0 for

all i if j > 0.
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Proof
We proceed by induction on j. If j =1 then d; is just a
derivation so dl(ei) = 0 by Proposition 1.9. Suppose dj(ei) =0
for j > 0. Then dj+1(ei) = dj+1(eiei)
i*l

Td (e.)d .
pog T 1 T-]

(=;)

e3djap(eg) + dyy(e5)ey, by
the induction hypothesis. The same argument leading to Proposition

1.9 now shows dj+1(ei) = 0./

Theorem 1.11.
Let R be a separably closed field of characteristic p and H a
truncated power series Hopf algebra. Suppose A is a semisimple

H-Azumaya algebra. Then A is R-Azumaya.

Proof

A is a semisimple algebra over a separably closed field R,
so that A=Ay @&. . . $Ar where each Ai is an R-algebra generated
by a central orthogonal idempotent ;. By Proposition 1.5, H* is
generated as an algebra by sequences of divided powers. Each sequence
is a higher derivation on A by Proposition 1.7, and Proposition 1.10
now implies that dj(ei) = 0 for all dj # 1. It then follows from
Proposition 1.8 that x(ei) = ef&l for each i. Now, A is H-Azumaya,
so that both maps F : A# A — End(A) and G : A # A - End(A)°

in Definition 0.24 are isomorphisms. We have

FI#EE(C) = 1,+(Qy = c)e; for all ceA

ce.
i
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and Fei#i'(c) ei-(l-é c¢)1 for all CFA
= e.C
i
= ce. Since e. is central.
i i
Thus, Fy,= = F 7, so that I#Ei = ei#T since F is an isomorphism.
i i

Hence e; = A-IA for some AeR. Being an idempotent e, must be 1A
for all i. So there could only be one matrix ring A = Ap, and

A=R which is R-Azumaya.//

4. Group Algebras

We now apply Theorem 1.11 to group algebras and obtain Long's
result as a special case.
The assunption that A be semisimple is necessary in general,

but for grour algebras we obtain this as a consequence of the following:.

Proposition 1.12,
If R is a field and H = R[G], then any H-Azumaya algebra is

semisimple.

Proof

This is Long's Theorem 1.9 [Li]./

Theorem 1.13.

Let G = C,®. . .GDCS , where s; = pti with t. a positive integer.
1 n
Let H = R[G] with R a separably closed field of characteristic p.

Then BD(R,H) = BDo(R,H).
Proof
H=R[G] = R[x1, . .., x J/(xi-1, . . ., xin_l,

Rlys, « - -y /O oo o, ¥

n

where Ys xi-l.
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Thus H is a truncated power series Hopf algebra. Proposition 1.12
guarantees that the hypothesis of Theorem 1.11 is satisfied.//

The above theorem generalizes Long's Proposition 5.2 [L2] for
G = Cp and Beattie's Lemma 4.3 [Be] where G = Cpn.

We remark here that the above theorem does not imply that
BD(R,H) = B(R), since the equivalence classes and multiplication
in BD(R,H) are not the ordinary ones in B(R). In fact, Long has

computed that BDo(R,H) = Cp— for H = R[CP] and R is an algebraically

1
closed field of characteristic p [Lz, Theorem 5.8], and it is well

known that B(R) = 0.

S. Examgle

We now give an example to show that semisimplicity is necessary

in the hypothesis of Theorem 1.11.

Example 1.14.

Let R be a field of characteristic p and H = ap, as in Example
0.8. Also, let the algebra be A = R[a]/(ap). Make A into an
H-dimodule by defining the action on A by x — a = nan°1 and the
coaction by x(an) = (a®1 + Bax)n. Then x = behaves like a
defivative, so that the usual differential rule, (xn°xm) —a' =
N a (xm--A ar) holds; hence A is an H-module. The coaction
x(a) = a®1 + 19x induces an H*-action by z — a = a<z,1> + 1<z,x> =1,
This extends to z — a" = nan'l, another derivative, and by
similar argument A is an H*-module, hence an H-comodule. Both the

actions x = and z —» commute so A is an H-dimodule. For A to be

an H-module algebra, we check the two conditions of Definition 0.15.
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Recall that €(x) = 0 and Ax = x&1 + ®x, so that x - 1A =0 =

n+m
X —a

e(x)-lA and x - (an-am)

(n+m) xn+m-1

(x = an)(l - am) + (1 = an)(x - am).
A is therefore an H-module algebra, and similarly an H*-module algebra,

hence an H-comodule algebra.

To see that A is H-Azumaya we need the following propositions.

Proposition 1.15.

Let A be a finitely generated projective algebra over a connected
ting R with rank r and projective basis <ag, . . . , ar_1>. Then

End(A) = A,Fp ®. . . ®A,F_ ., where Ag = {azeEnd(A) : aeA and

L 2 r-1
az(x) = ax for xeA} consists of left multiplications and FieEnd(A)

such that F.(a_) = 6. _.
it™m i,n

Proof

This is a known and easy linear algebra computation. We only
r-1
note here that if feEnd(A) then £ = I f(a_) oF../
i=0 ng’ 1l

Proposition 1.16.
Let A = R[a]/(ap) and x = a" = na™?! as in Example 1.14. Then

the Fi's in Proposition 1.15 can be generated by x = .

Proof

We construct our Fi's inductively, starting with F Define

p-1°

Foop = (P /-1t
Then Fp_l(an) = (xp'1 = a"y/(pp-1!
21 if n = p-1
0 otherwise
=4

n,p-1°
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Now, (P2 = a")/(p-2)t = 0 if n < p-2
=1 if n = p-2
= (p-1)a if n = p-1.

- - -2
So we define Fp_z & (xp — )/(p-2)! - (p-l)azon_l. Then

n _ . _
Fp_z(a ) = 6n,p-2' Continue the process to get Fp-3’ « « « 5 Foulf

The above two propositions say that End(A) is generated as an

algebra by left multiplications, ag, and a derivation, x = . We

use this result to show that F and G are isomorphisms, hence A is

H-Azumaya.

Proposition 1.17.

F:A#A > End(A) is an isomorphism.

Proof

Recall that Fa#s-(c) = (E)a-(bl—a c)bg. We check F on algebra

generators a#l and l#a,

Fa#I-(c) = a*(l - ¢)°1 = ac, for all ceA. Thus,

Faff = a, the left multiplication. Now,

_(c) =1+(1= c)ea + le(x=> ¢c)°1

Fl#a

=ca+x = ¢
= ac + X = ¢ since A is commutative.

Therefore F1#5-= ag +x — , so that

= X -

F S

143 - a#l - % ) :
But a, and x — generate End(A), hence the image of F contains
generators of End(A). Thus F is surjective and by counting

dimensions, F must be an isomorphism.//
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Proposition 1.18.

G: A# A—> End(A)? is an isomorphism.

Proof

Recall that Gi#b(c) = g)(cl—é a)ecg*b. We again check G on

(

generators 1#a and af#l.

Gy, () (EJ (c1—= 1)ecoca

L €(cy)eco*a since c;—=> 1 = e(clj’lA
(c)

cea by counitary property

= ac.

1#

Thus G- a = 3 the left multiplication. Now G§#1(C) = (E)(cl-a a)ecoel.
We look at the module generators <1, a, . ... , aP 1>, so let
c=a", 0 <n <p. Then
n . . '
z (’.’)an'l ® x', so that
i=0 \*
n

Xc) = (")

n) (x'= a)ea™te1

150 (i

n
Gy (@)

(1> a)-a" +(r11) (x= ev.)an_1 as x> a =0 fori > 1.

n n-1
a*a + nelea

az(an).+ x = a".

Thus 65#1

-G

ag +x - , and so
Cz1 i#a

As before, G is an isomorphism.//

=3, +x = -a =x-= = Gi#l-i#a’

We have shown that A is an H-Azumaya algebra. This H-Azumaya
algebra is commutative and local, thus cannot be R-Azumaya nor semi-
simple. In general, then, BD(R,H) # BDg(R,H) for truncated power
series Hopf algebras.

As a final theorem we have the following corollary to Theorem 1.11.
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Theorem 1.19.

Let R be a separably closed field of characteristic p and H a
truncated power series Hopf algebra. Let A be an H-Azumaya algebra.

Then a necessary and sufficient condition for A to be R-Azumaya is

that it be semisimple.

Proof

Theorem 1.11 provides one condition. For the other, suppose

A is R-Azumaya. Then A is central simple, hence semisimple.//



.CHAPTER 11

-A COMPUTATION OF BDg (R,H)

In this chapter we compute BDo(R,H) for H = ap. Throughout
H denotes a commutative, cocommutative Hopf algebra, finitely
generated projective and faithful over R. All R-modules are

also finitely generated projective and faithful over R.

1. When BDo(R,H) is a subgroup.

BDo(R,H), the subset of BD(R,H) consisting of only R-Azumaya
algebras, in general is not a subgroup of BD(R,H). Orzech has

given the following example:

Example 2.1 [0, Example 2.10].

Let R be a ring such that 2 is a unit, and H = R[G] where
G = C2xCz, the Klein four group. Let A = Mp(R), the ring of
2 x 2 matrices over R. Then with appropriate action and coaction,
A is H-Azumaya and in fact R-Azumaya, so A is in BDg(R,H). Its
inverse A, however, is commutative and thus not central, so that A
is not in BDg(R,H). Hence BDy(R,H) is not a subgroup of BD(R,H).

However, we do have the following result.

Theorem 2.2,
Suppose each element [A] in BDo(R,H) is such that A = End(V)
as an H-module algebra for some finitely generated projective H-

module V. Then BDo(R,H) is a subgroup of BD(R,H).

Remark
We mean by the above hypothesis that A is an H-module algebra

and that there exists an H-module V such that A = End(V), where the
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structure on V induces the original structure on A. The hypothesis

also implies that A = End(V) as an R-algebra for some R-module V,

i.e. B(R) = 0. However, B(R) = 0 is not a sufficient condition.

When B(R) 0, we do have A = End(V) for some R-modulé vV if

[A]JeB(R); and we can put a trivial H-action on A to make End(V)
an H-module algebra, but not all [A] in BDg¢(R,H) are trivial H-modules.

We need the following proposition.

Proposition 2.3.
Let M be an H-module and B an H-dimodule algebra. Then

End(M) # B ~ End(M) ® B as an H-module algebra.

Proof

This is just Long's Proposition 3.7 [L»] specialized down to an
H-module. The first part of his proof does not require M to be an
H-dimodule so that the same proof goes through. We only record here
the maps for later reference. The map ¢ : End(M) # B —» End(M) ® B
given by ¢ (f#b) = (g)f'fﬁ?b is an isomorphism of H-module algebras,
where f, € End(M) is defined by fh(m) = h = m. The inverse of ¢

h

is given by ¢ ' : End(M) ® B - End(M) # B, ¢ 1(f®b) = I fef

Proof of Theorem 2.2:

(i) Let [A] and [B] be in BDo(R,H). Then by assumption, A = End(M) and
B = End(N) as H-module algebras for some H-modules M and N. Recall
that the multiplication in A # B depends only on the comodule structure

on B, the module structure on A and the algebra structures on A and B.
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n

Thus A # B =~ End(M) # B as .an H-module algebra

[}

End(M) @B by Proposition 2.3

R

End(M) @ End(N) by assumpticn on B

R

End(M ® N),
which is an R-Azumaya algebra.
Therefore [A # B]eBDo(R,H).
(ii) Let [A)eBDo(R,H) and A = End(M) as an H-module algebra.
Then, by definition of an H-Azumaya algebra we have End(A) = A#A

A # A as an H-module
algebra

1

as an H-dimodule aigebra. Thus, in particular End(A)

1]

End(M)® A by
Proposition 2.3. Hence End(M) ® A is R-Azumaya and so each tensor
component must also be R-Azumaya. BDg(R,H) is therefore closed under

# and — , thus a subgroup of BD(R,H)./

2. BDg(R,H) for H = a,

We now show that for H = Ops BDo(R,H) is indeed a subgroup of
BD(R,H) for anlappropriate R. This is done by showing that for each
[A]€BDo(R,H), A = End(V) as an H-module algebra for some H-module V.
We then apply Theorem 2.2 to get the result.

For the rest of this chapter H = Ops and R is a ring of
characteristic p. X and 2 are the generators for H = %y and H*

respectively, as in Example 0.8.

We first need to develop some machinery.

Definition 2.4.
A derivation d on algebra A is Inner if there is a b in A such

that d(a) = ba - ab for all a in A.
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»Proggsition 2.5

If an algebra A is separable then any derivation on A is inner.

Proof

See [0S, Proposition 4.11]./

Proposition 2.6

Let [A]eBDo(R,ap). Then there are non-zero elements c and u
in A such that x = a =ua - auand z — a = ca - ac for all a in
A. Furthermore, z —» u=cu - uc = alA and cp = ac, uP = au where

o and o are in R.
» Go u

Proof

The generators x and z are primitives, so they act on A as
derivations, by Proposition 1.6. By the above proposition, x and
2 are inner, so0 there exist c and u in A éuch that x = a = ua - au and
2 —» a = ca - ac for all a in A.

A is an H-dimodule, so the actions commute, i.e., z —» (x = a) =
X = (z— a) for all a in A; or z — (ua-au) = x = (ca-ac). Therefore
c(ua-au) - (ua-au)c = u(ca-ac) - (ca-ac)u, so that (cu-uc)a = a(cu-uc)
for all a in A. Thus cu-uc must be in the center of A, i.e., cu-uc =
aeR, as claimed.

Now, by a straightforward but tedious induction we have

Z ( 1) (p) WP Taul

upa - au

s
x> 2a= [ (-l)r(s) us” raur, so that xP = a
=0 r

0, since xP = 0.
Therefore, uPa = au® for all a in A, hence uP is in the center of

A and thus uP =uu£R. A similar computation holds for c, so that

P = cacR.#
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The elements u and ¢ in A in the above proposition are hardly
unique. In fact, there are as many u's and c's as there are ring

elements, as the next proposition shows.

Proposition 2.7
Let amap d : A —» A be given by d(a) = va - au for all a

in A, where A is a central R-algebra and ueA. Then d(a)

= wa - aw
for some w in A iff w = o + u for some & in R.
Proof
Suppose there is another w in A such that d(a) = ua - au =
wa - aw for all a in A. Then (w - u)a = a(w - u), so (w - u) is

a central element and w - u=a for some o in R. Thus w = a + u.

Conversely, if w = o + u foraeR, then u = w - a so that

d(a) = ua - au

(w-a)a - a(w

@)

wa - aw for all a in A./

We now introduce some notations.

Definition 2.8

i = {ueA : x = a = ua for all a in A}

and CA 2 {ceA : z — a =ca - ac for all a in A}.

Let [A]EBDo(R,ap). Set U

Even though there are many possible choices for u and c,
2 —» u =cu - uc is always the same for uEUA and csCA. Since this
will assume a significant role later on we record this observation

as the following:

Pronosition 2.9

Z—>U=¢CU-uc = a'lA for uE:UA and ceCA.
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Proof

By Proposition 2.6, there is at least one u and a ¢ such that

Z— U=cCu-uc= asl,. Let uel, and ceC,. Then from Proposition
27u=A+uand ¢ =T+ ¢ for some A and T in R. We have
2 - u=cu-uc

=(t+c)(A+u) - (A +u)(t +c)

= a-lA.ﬂ

We sharpen Proposition 2.6 slightly for our need.

Proposition 2.10

Let [A]EBDO(R,ap) where R is a ring of characteristic p such that
every pth-root of each of its elements is in R. Then there are non-
zero u and ¢ in A such that x » a =ua - au and z — a = ¢ca - ac,

where cp =0 = up.

Proof

Proposition 2.6 already provides us with u and c such that
u = o, and cP = ac. If o, =0-= ac, we are done. If not, then
pick U = u + \ where A=(-au)1/p. Then ueU,. Now W = (uaanP =
w4 )P a, -9, = 0, as required. Similarly, we can pick
| (-ac)llp.//

We will use the notation R = Rl/p to denote that R contains

C=¢C+ T where 1

every pth-root of each of its elements.

We are now ready to make A into End(V) as an H-module algebra.

Proposition 2.11
Let [A]eBDo(R,H), H = ap, B(R) = 0 and R a ring of characteristic p
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such that R = Rl/p. Then A = End(V) as.an H-module algebra for some

finitely generated H-module V.

Proof

The ordinary Brauer group B(R) = 0 implies A = End(V) as an
R-algebra for some R-module V. We now make V into an H-module.
Define x — v = u(v) where uEUA, veV and x is the generator of H.
Now, extend this over H by xi-b v = ui(v). Note that by Proposition

xP. Also, define oo = v = av

2.10 we can pick u so that uP =0
for aeR.

It is easily seen that this gives V an H-action.

We now show that the above constructior: induces a structure on
A = End (V) that coincides with the original'structure on A. Recall
from section 0.4 that if V is an H-module then End (V) is also an
H-module by the following action,

(h = 2a)(v) = (}z:)hl - [a(S(h2)—= V)]

for acEnd(V), heH and veV.

Thus, (x—= a)(v) S x = [a(S(1)=> v] +1 = [a(S(x)— v)]

x = [a(l=v)] +1 = [a(-x = v)]

x = a(v) - g(x-é v)

ula(v)] - afu(v)], by construction

(ua - au)(v)

(x— a)(v), the original structure.//

Corollarz 2.12

Suppose we have the same assumptions as Proposition 2.11. Then

A = End(v) as an H-comodule algebra for some H-comodule V.
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This is equivalent to giving V an H*-action. So, define
zZ - Vv =c(v), a - v = av, where ceCA, veV and aeR. The same
argument as Proposition 2.11 now yields the original H-comodule

structure on A, because up is self dual.//

Proposition 2.13

Suppose we have the same assumptions as Proposition 2.11. Then

A = End(V) as an H-dimodule algebra for some H-dimodule V iff cu = uc,

where ueUA and cevA.

Proof
By Proposition 2.11 and Corollary 2.12, V is an H-module and
H*-module (hence H-comodule). For V to be an H-dimodule, we need

to show that the actions x and z do commute.

Now, x = (z - v) = x = ¢c(v)
= ufe(v)]
= uc(v),
and z - (x > vVv) = z — u(v)
= cu(v).

Thus V is an H-dimodule iff uc = cu./

Theorem 2.14
Let H = ap and B(R) = 0 where R is a ring of characteristic p

and R = Rl/p. Then BDo(R,H) is a subgroup of BD(R,H).

Proof
By Proposition 2.11, if [A]eBDo(R,H) then A = End(V) as an H-

module algebra for H-module V. Theorem 2.2 now yields the conclusion.//
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3. Grade of A® B.

For each [A]eBDo(R,ap), Proposition 2.9 provides us with a
unique a€R such that z —- u = cu - uc = a-IA. This unique a is
called the Grade of A.

We now show that the grade of A is never 1. Two auxiliary

results are first needed.

Proposition 2.15

Let [A]eBDo(R,ap), X ->a=ua -auand z —» a = ca - ac for

all a in A. Then

(1) xk-sun=Oandzk—,cn=0,0<k<pfora11n.

(4i) x> c = 0 and zX > u = 0 if k > 1.

n n n n-1
uc -cu -nac R

(iii) x = ¢

n n n n-l
Z—UuU =Cu =-Uuc = non for all n.

(iv) xk—’- uted = ui(xk-\ cJ)

1.J

zk—-; u (zk—; ui) cJ

(v) zk-; (xm—> uicj) = (zk—; ui) (xm-\ cj).

Proof
(i) and (ii) are just trivial consequences of x =~ u = 0,
Z—>c=0and cu - uc = a. (iii) follows because x and z are

both primitives so they behave like derivations.
k -
r (-nF (:) ukToylcd T
=0

. k .
ule £ (-1)F (k) uk-r.CJur
=0

(iv) xk—\ ute?

T
= ul(xk - c1).

2" — 1is similarly easy.
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k—,- [ui-(xm—> cj)], from part (iv).

) -jacJ'l, so x> ¢J contains only c's and no u's,

) zk - (xm - uch) =z
Now x = ¢

Thus zk - [ui-(xm-b cj)] = (zk—, ui) (xm-é cj), by part (iv) again./

Promsition 2.16

Let ue:UA and ceCA. Then x(c) = ¢ ®1 and x(u) = u®1 + a®x,

where X : A = A ®H is the comodule map and o is the grade of A.

Proof

By Proposition 2.15 (i), zk —~c =0 for k > 0. Hence h* - c =0
for all h*el'\', the augmentation ideal. Now Proposition 1.8 gives
x(c) = ¢ ®1. For the second part, let x(u) = ug®1 + ... + up_l®xp.
Then h* — u =< h*, 1> ug + . . . +<h*, £l uP-l for h*cH*,
so that zk - u=uy. Proposition 2.15 (ii) gives zk —u=20

for k >1, so that u, = 0 for k >1. Now, u; =z —su=cu-uc =a

k
and Ug =1 — u =u. Thus X(u) = Wl + o®x, as claimed.//

Proposition 2.17
Let [A)leBDg (R,ap). Then the grade of A is never 1.

Proof
We need to show that z - u =cu - uc # 1. A is H-Azumaya, so
by definition, F : A # A - End(A) given by Foap(£) = I a*(br1=> £)°bo,
(b)

for a, b, feA, is an isomorphism of H-dimodule algebras. Now,

Fl#-d-(f) 1(1=> f)u + 1 (x> f)» by Proposition 2.16,

fu + a(x—> f)

uf - (x> f) + a(x=> f) since x = f = uf - fu

uf + (a - 1)(x- £),
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so that (a - })(x = f) = Fl#'ﬁ' (f) - uf. But Fu#T (f) = u(l=> £f)1 = uf,
hence (a - 1})ix = f) = Fl#if (f) - Fu#T (f). Suppose a = 1. Then

0=F (f)y - Fu#T (f), so u#l = 1l#u, since F is an isomorphism.

1#u
Thus u = A-IA for some AeR, by the Lemma of faithfully flat descent.

But then 1 =a =2 - u=cu- uc
= ¢cA - Ac
=0’

a contradiction. Hence a # 1./

We proceed on the computation of the grade of A® B.

Proposition 2.18

Let [A], [B]sBDo(R,ap). Suppose uE Then u = u®l + 18w

Up o B

where ue:UA and wsUB.

Proof

Recall from section 0.4 that

h = (agb) = (E) (hy— a)®(h2— b), so that
X = (a®) = (x— a)®(1— b) + (1= a)®(x~> b), acA and beB
= (ua-au)d®b + a®(wb - bw) , ue:UA and weUB
= ua®b - au®b + agwb - agxbw
= (ual + lew) (agb) - (agb) (usl + lgw)
= u(agb) - (agb)u.
Thus u = ugl + lgw is in Upzp -/

Proposition 2.19
Let [A], [B]EBDo(R,ap) where A is of gra{de a and B is of grade B.

Then A ® B is of grade a + B.
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Proof

We have only to compute z — u, for EEUA@B. Now, u = udl + l@w
from the previous proposition and x(u) = u®l + o®x and x(w) = wdl + B®x
from Proposition 2.16. Also, recall that x(a®b) = (a§(b)(ao®bo) a by,
aoEA, boeB, aj, bieH. Thus x(u) = (uS1)d1 + (oB1)8x + (18wW)®1l + (1®B)dx,
so that z —.u = o®1 + 188 = (a + B) (181)

= (o + 8)'1A®B.//

4, Grade of A # B

The next few results examine the grade of an H-Azumaya algebra

in BDo(R,ap) under various algebra homomorphisms.

Proposition 2.20
Let [A], [B]eBDo(R,ap). Suppose ¢ : A — B is an epimorphism

of H-module algebras. Then cp(u)e:UB if ueUA.

Proof
Since ¢ is an epimorphism, any element in B can be written
as $(a) for some a in A.
So x = ¢(a) = ¢(x~ a), (¢ is an H-module map)
= ¢(ua - au)
=¢e(a) - ¢(a)pu).
‘Thus ¢(u)€UB.ﬂ

Corollary 2.21
Let [A], [B]eBDo(R,ap). Suppose ¢ : A —> B is an emimorphism

of H*-module algebras. Then ¢(c)ECB if ceCA.
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Proof

Same as Proposition 2.20./

Proposition 2.22
Let [A], [B]eBDo(R,ap). Suppose ¢ : A = B is an isomorphism

of H-module and H*-module algebras. Then A and B must be of the

same grade.

Proof

Suppose A is of grade o, i.e. z — u = a-lA for ueUA.

Let weU,. Then z —» w = z — ¢${(u) by Proposition 2.20

B
¢(z=-» u) (¢ is H*-module map)

¢(asl,)
= a-lB.
Thus ¢ preserves grade.//

We now compute the grade of A # B.

Proposition 2.23
Let [A], [B]eBDo(R,ap), B(R) =0 and R = Rllp. Suppose WbUA#B'

Then w = (1 - B)* (u#1) + 1#w, where usUA, weUB and B is the grade of
B.
Proof

A = End(V) as an H-module algebra for some H-module V, by

Proposition 2.11. Furthermore, from Proposition 2.3, there is an
isomorphism ¢ : End(V) # B = End(y) ® B of -H-module algebras,

and the inverse of ¢, ¢~} = y, is given by Y(fgb) = I fofg oy ) #bos
(b) (b1)

where f, f €End (V) and x(b) = (E)bo&bl.

S(b;)
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Let w EUA#B' Then w = x(u) for some uEUAGB’ since Y is an H-module

algebra isomorphism (Proposition 2.20). Now, by Proposition 2.18

u = u®l + 1®w, where uEUA and weUB.

Y(udl + 16w)

So, w = (u)

#1 + 1ef_ . #w + 1f. . #B,

= ufg iy, s(1) S(x)

where fheEnd(V)zA is defined by fh(v) = h -» v for veV. Now,

fs(l)(v) =S5(l) > v=1=ayv, so that £ =1, Also,

S(1)
-x => v = -u(v), (by Proposition 2.11), so

fS(x)(VJ =8(x) > v

fS(x) = -u, Thus,

w = Y(u)

uel#l + le1#w + 1le(-u)#B

[}

ufl + léw - B(ukl).

(1-8) (u#l) + 1éw.//

Proposition 2.24
Let [A], [B]eBDo(R,ap), B(R) = 0 and R = Rl/p. Suppose A is of

grade a and B is of grade B. Then A # B is of grade a + B - aB.

Proof

We compute z — u for GEUA#B' By the previous proposition,
u = (1-B)(ufl) + 1#w for ueU, and wel,. Now, A # B = A ®B as H-
modules, and x : A # B> A # B ® H depends only on the R-module

structure of A # B.

So, x(u) = (1-B)x{udl) + x(Bw)

(1-8) (uD1®] + o®1¥x) + IPWRl + 1383,

Hence, z — u (1-B)(o®1) + 1®8

(@ - aB + B)(181)

(a - aB + B)(1#1).

Thus A # B is of grade a + 8 ~ aB./
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Remark

We note that A ® B and A # B have different grades, so that
Proposition 2.22 does not apply here. This is due to the fact that
¢ : End(V) # B - End(V) ® B (where A=End(V)), as given in Propo-
sition 2.3, is only an H-module algebra map. It does not preserve

the H-comodule structure, hence cannot be an H*-module map.

S. BDo(R,aP).

We are now ready to characterize BDo(R,ap). Following Long,

we say that A is of Type 1 - o if [A]eBDo(R,ap) is of grade .

Theorem 2.25
Let R = RI/p and B(R) = 0. Then the Type map, T : BDO(R,up) - R¥*,
given by T([A]) = 1 - @, where a is the grade of A and R* is the

multiplicative group of R, is a group monomorphism.

Proof

We have seen that the grade of A is never 1, so the type of A
is never 0 and we are in the right range.
(i) T is well-defined, for let [A]V[B] in BDo(Rzap). Then by
definition, there exist H-dimodules M and N such that A # End(M) =
B # End(N) as H-dimodule algebras. By Proposition 2.22, they must
have the same grade. Now, M and N are H-dimodules, so it follows
from Proposition 2.13 that End (M) and End(N) must be of grade O.
Thus A # End(M) has grade a + 0 - a*0 = o and B # End(N) has grade
B+ 0~ B0 =B, Since they must be the same we have a = B and

so T([A]) = T([B]).
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(ii) T is a -group homomorphism, since

T([A]#[B]) = T([A#B])
= l-(ax + B - aB)
= (1 -a):(1-8)
= 1([A])-T([B]).

(iii) T is a monomorphism, for suppose T([A]) = 1. Then the grade
of A must be 0, by the definition of T; so that z —-» u=cu - uc = 0
for ueUA and ceCA. It follows from Proposition 2.13 again that we
must have A = End(V) as an H-dimodule algebra for some H-dimodule V.
Let M be any H-dimodule, then as H-dimodule algebras, we have
A # End(M) = End(V) # End(M)
= End(V&) (by Long Cor. 3.8 [L2]). This means that

[A] ~ [0] in BDo(R,ap)-//

The rest of this section is devoted to showing that T is in

fact onto, by comnstructing an appropriate H-Azumaya algebra for each

type in R*,

Construction 2.26

Let acR, where R is a connected ring. We set V = R[y]/(yp).
Define u : V = V by u(v) = yev, the left multiplication. Then
ueEnd(V). Also, definec : V - V by c(yn) = nayn'l, for v = yn,
i.e. a derivation and a left a-multiplication. Then ceEnd(V) too.
Now, let Aa = End(V), so that Aa is R-Azumaya.

We now make Aa into an H-dimodule algebra.

Lemma 2.27

If ¢ and u are as defined in Construction 2.26, then cu -~ uc =
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Proof
Let v=y" 0 <n < p. Then
n
culy"j-uc(y")

n+l
cly

(cu - uc)(v)

)-u(noy™ )

(n+1) ayn - nuyn

n
asy

a.v’

so that cu - uc = a on v and by linearity, on all of V.//

Lemma 2.28

Aa is an H-module and an H-comodule,

Proof

Define the action, = : H® Aa - A& by x> a = ua -~ au. This
s

makes A into an H-module. Note that x°-> a = I (-1)r(i) uw¥ Tau’
=0

for 0 < s < p. Also, define — : H*® Aawé Aa by z - a = ca - ac.
Then AOl is also an H*-module, so an H-comodule.//

*
If we now define — :H®V-—)Vand7V:H ® V>V by

\

x= V= u(v) and z— ,,V = c(v) respectively, then by a similar

v \'
argument as in Proposition 2.11, V is an H-module and H-comodule.
The above definitions on V also induce structures on Aa = End (V)

that coincide with the original structures. Furthermore, V is an

H-dimodule iffa= 0 by Proposition 2.13.

Proposition 2,29

Aa is an H-dimodule.



- 46 -

Proof

We only need to show that the actions x~> and z— commute. Now,
X~=>2z —»>a3a-2—Xx=>a

X = (ca - ac) - zZ —» (ua - au)

]

u(ca - ac) - (ca - ac) u - c(ua - au) + (ua - au)c

(uc - cu)a + a(cu - uc)

(-a)a + a(a) since cu - uc = a

0, sox=>z—a=2—Xx = a./

Lemma 2.30

Aa is an H-module algebra.

Proof
We need to show
(i) h =~ 1, = ¢€(h)l, for all heH.
A s A
5 (-I)r(s)us-r-l-ur,-if s # 0,
=0 T

s
Now, x™ — 1A

[
[ T(s
ue z (-1
r=0( ) r)

use0 = 0.

Also, e(xs) =0 if s # 0.

- S - - = [ .
If s = 0 then x™ = 1A =1 = 1A 1A e(l) lA’
S

s
SO X' 1A = g(x )-lA for 0 < s < p.

(ii) h = (ab) = (E)(h;-ﬁ a)(ho=> b) for a, b in A.

Now, x— (ab) = uab - abu

and (‘z‘.)(x;--s a)(x2= b) (1= a)(x=b) + (x> a)(1=> b)
X

a(ub - bu) + (ua - au)b

-abu + uab.//
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Corollary 2.31

Aa is an H-comodule algebra.

Proof
This is equivalent to checking if A is an H*-module algebra

and a similar argument as above will work.//

Proposition 2.32

Aa is an H-dimodule algebra.

Aa is already an H-dimodule and the previous two lemmas make
it into an H-module and an H-comodule algebra.//

We remark that V is an H-dimodule if£ a = 0. But Aa is an
H-dimodule algebra regardless of a.

We now turn to the structures of Aa and End(Aa).

ProRosition 2.33

(1) Aa = End(V) is generated as an R-algebra by c and u
if a # 0, where ¢ and u are as in Construction 2.26.

(ii) End(Aa) is generated as an R-algebra by x>, z— , cy and
u, if a # 0, where cz(a) = ca and uz(a) = ua (for aeA) are the

left multiplications.

Proof

We only sketch a proof here. Recall from Chapter I, Proposition
1.15, that if A is an algebra with dimension r, then End(A) =
AIFo D, . . Q)AEFr-l’ where A£ is the subalgebra generated by

left-multiplication and F.eEnd(A) such that F.(a_) = §. _ for
i i*n i,n
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a basis element a. Furthermore, Proposition 1,15 shows that for
that particular A, Fi's are generated by the derivation x-> . So
End(A) is generated by left-multiplications and derivation. Now,
for AQ = End(V), u behaves as a left-multiplication and c as an
a-derivation, by construction. So, if a # 0, by a similar proof
as Proposition 1.16, ¢ and U do generate End(V). A similar but
more lengthy proof also works for End(Au), except there the left-
multiplications are generated by . and Ugs and the derivations are
generated by x> and z— ./

Finally, we show that Aa is in fact H-Azumaya. It is already
an H-dimodule algebra, so that we have only to show that the maps
F:A # K& - End(A ) and G : K& #A - End(AaJ° are isomorphisms

of H-dimodule algebras.

Proposition 2.34
F:A # K& -> End(A,) given by F_,(f) = (g)a-(bl—é f)>bo where
a, b, by, feAOl and b; €H, is an isomorphism of H-dimodule algebras,

ifa#0, a#1 and R is a connected ring.

Proof
F is already an H-dimodule algebra map by Long's Proposition
4.1 [L2], so we have only to show it is onto. It is sufficient to

use a dimension argument, since R is connected.

(i) Fa#T{f) a* (1> f)-1 where a, feA,

asf

ag(f),

so Fa#T = a,, and we can generate all the left-multiplications.
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(ii) We now show that x-= and z-» can also be generated.

1e(l=> f)eu + 1+(x> f)a since x(u) = u®l + adx

FlagH)

fu + a(x—=> f)

uf - x=> £ + a(x— f) since x> f = uf - fu,

uf + (a - 1) (x= £).

Thus, (o - 1)(x— f) = Fl#ﬁcf) - Fugi(f), since

FQ#T{f) = uf by Part (i) above. Now a # 1, so x= f can be
generated.

Finally, FI#E{f) = 1(1— f)c since x(c) = c®&

= fec,

so z— f = cf - fc

[}

Fc#'i-(f) - Fl#-c—(f) .
Now, Up, Cgpp X and z-» are the generators of End(Aa), by Proposition

2.33. We have generated them so F must be onto, hence an isomorphism./

Proposition 2.35

Suppose R is a connected ring and o # 0, o # 1. Then
Y LI
G: Aa # An S End(Aa) given by
Gi#b(f) = (%)(flua a)*foeb is an isomorphism of H-dimodule

algebras.

Proof
By a similar but longer and more tedious computation as in

Proposition 2.34, we can show that Gu#T{f) = uz(f), Gc#I'- I#E{fj =

Q1 -a)(z— f£), Gu# _ l#ﬁ(f) = x-> f and Cz(f) =z2— f + Gl#E(f)'

1
Thus, we can generate all the generators of End(Aa) so that G is

onto and hence an isomorphism./
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We can now characterize BDo(R,ap) completely.

Theorem 2.36

Let R be a field of characteristic p such that R = Rl/p

and B(R) = 0. Then the type map T : BDo(R,ap) —> R* given by

T([A]) =1 - a, a the grade of A, is a group isomorphism.

Proof

T is already a group monomorphism, by Theorem 2.25. If
a # 0 and o # 1, then the previous construction yields an H-Azumaya
algebra of the appropriate type. If a = 0 then by Lemma 2.27
cu-uc=20, soV= R[y]/(yp) is an H-dimodule by the remark after
Lemma 2.28. But then Aa = End(V) must be H-Azumaya, by Long's

Theorem 4.3, [L2]. Thus T is onto.//

6. Concluding Remarks

In this last section, we give a few directions in which the
results in this chapter could be pursued. We first recast Theorem 2.36
into a form that we can generalize. Scme preliminary results are

needed.

Proposition 2,37

Let H = ap. Then the only group-like element in H is 1 and

primitives are of the form ax with acR.

Proof

(i) 1 is group-like since Al = 1¥1, If n > 0, then

n . .

n i, n- . .

A(x') = Ix "1 5o xn cannot be group-like. It remains to check
i=

acR. But Aa = A(a*l) = a(Al)

a(lRN) £ Py, ifa £1,
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so 1 is the only group-like.

(ii) Any x" with n > 1 cannot be a primitive. That leaves

ax with acR. Now, A(ox) = a(Ax)
= a(I®x + x®1)
= I®ax + ax®l,

so that ax is a primitive./

Definition 2.38
Let C and D be coalgebras. Then a coalgebramap f : C > D
is a map that satisfies (ﬁ%f)AC = ADf and € = eDf.

We note that this is just a dual definition of an algebra map.

Definition 2.39

Let A and B be bialgebras. Then a bialgebra map £ : A > B is a

map that is both an algebra and a coalgebra map.

Proposition 2.40
Let £ : C > C be a coalgebra map. Then f carries group-like

to group-like and primitive to primitive.

Proof
This is a standard and easy computation.//

We are now ready to characterize R*.

Proposition 2.41
R* = Autbialg(ap) as a group, where Autbialg(ap) denotes the

group of bialgebra automorphisms of ap.
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Proof

Let ¢eAutbia1g(ap). Then ¢ must preserve group-likes and
primitives, by the previous proposition. The only group-like is
1 and the primitives are ax, acR. We look at the generator x of ap.
x is primitive so ¢(x) = ax, a # 0 (since ¢ is 1-1). Thus each
¢ is associated with a unique a and we write ¢ = ¢a. Define
T : R* > Autbialg(ap) by t(a) = %1. Then t(aB) = ¢a8 = ¢a-¢8=
t(a)*t(B), so T is a group homomorphism. If tT(a) = Id then
a =1, thus T is 1-1. It is clearly onto, hence T is a group
isomorphism./

We restate Theorem 2.36 in its new form.

Theorem 2.42
Let R be a connected ring of characteristic p such that R = Rl/p

and B(R) = 0. Then BDo(R,ap) o Autbialg(ap) as a group.

Remark 2.43

A very nice result would be to generalize the above theorem to
any truncated power series Hopf algebra H and get BDg(R,H) =~ Autbialg(H).
To this end, there are such objects as inner higher derivations (see
[RS]), that reduce down to the 6rdinary inner derivations, but they
are much harder to deal with, We also have to show first that

BDo(R,H) is actually a subgroup.

Remark 2.44
Orzech in [0, Theorem 4.4] has shown that BD,(R,G) = B(R)® Aut(G),
if G is a finite abelian group of exponent m and either G is cyclic

of prime order p or [G:1] is a unit in R, where R is a connected and
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separably closed ring of characteristic p that contains a primitive
m-th root of 1 satisfying Pic_(R) = 0 and H'(G,U(R)) = 0.

Now, Aut(G) = Autbialg(R[G]), so when B(R) = 0 this is the
same result for H = R[G] that we have obtained for H = ap in
Theorem 2.42. We could pursue this direction by relaxing the
condition B(R) = 0 and show that BDo(R,H) = B(R) & Autbialg(H)
for H = ap and may be a truncated power series Hopf algebra for

an appropriate R.

Remark 2.45

Let H = ap. Then Example 1.14 shows tnat there is an H-Azumaya
algebra that is not R-Azumaya, so that BD(R.H)#BDy(R.H). It would be
nice to compute BD(R,H) for H = ap and some:specific R. In this
direction Long in [L;, Theorem 2.7] has shown that if R is a separably
closed field of characteristic not dividing n then BD(R,Cn)=:D, where

D is the Dihecral group of order 2(n-1).
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