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Abstract 

The behavioral change of soil, either mechanical or hydraulic, can be attributed to 

moisture changes. The soil layer above the groundwater table is often subjected to 

moisture variations due to weather changes or water table fluctuations. The soil 

moisture content associated with the degree of saturation are used to categorize the 

soil mechanics and hydraulics into saturated and unsaturated conditions. While 

common, considering soil to be saturated as a simplifying assumption in the design of 

many important geotechnical applications involving unsaturated soils is often not 

appropriate. In some geotechnical challenges, such as slope stability, soil-geosynthetic 

material interfaces, and soil-pile interaction, the application of unsaturated soil 

mechanics and hydraulics increases understanding of the problem and enhances our 

ability due to address moisture changes over the service life. In this study, three distinct 

moisture-dependent geotechnical subjects were investigated to enhance understanding 

of moisture variations in unsaturated soil engineering applications. The subjects include: 

1) development and impact of desiccation cracks on unsaturated seepage and stability 

of slopes, 2) interface behavior between unsaturated soil and geomembranes, 3) and 

lateral load behavior of piles in unsaturated soil.  

 The stability of slopes has been widely studied using a variety of methods to 

evaluate the slope performance during and after construction. However, limited 

research has been conducted to employ unsaturated seepage analysis considering 

desiccation cracks in the evaluation of slope stability. In this research, a slope located in 

Chickasha, Oklahoma was instrumented to monitor local weather data and soil moisture 
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changes over time. Laboratory testing was conducted to determine unsaturated and 

saturated soil shear strength, soil water characteristic curves, tensile strength of soil and 

moisture flow properties. Two newly developed apparatuses: one for measuring the soil 

tensile strength during desiccation and one to examine formation of crack depths during 

desiccation were employed. A simple analytical model was developed for predicting 

desiccation crack depth and compared with the results of a numerical model using a 

finite element program. The results of tensile strength measurements were used for the 

analytical and numerical predictions of desiccation crack depth. The observations of 

desiccation crack depth developed in the proposed experimental set-up were used to 

verify the analytical and numerical results. Following verification, slope stability analysis 

was conducted using results of unsaturated seepage analysis considering a cracked 

layer. The results of slope stability analyses showed that the increase of permeability in 

a cracked layer and the loss of soil suction and cohesion during wetting were important 

triggering mechanisms for shallow slope failures.  

 Saturated interface shear strength variables between soil and geosynthetics 

have been extensively measured experimentally and predicted numerically using 

simplified constitutive models, but limited investigations were carried out to capture 

the clayey soil-geosynthetics material interface behavior under unsaturated conditions. 

Research in Part 2 was conducted to investigate the shearing behavior and develop a 

preliminary constitutive model for unsaturated clayey soil-geomembrane interfaces. 

Interface shear tests were carried out on clayey soil-geomembrane interfaces involving 

two types of geomembranes, smooth and textured HDPE. A series of suction-controlled 
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direct shear tests and saturated direct shear tests were conducted on the clayey soil to 

compare with the interface test results. A constitutive model was used to simulate the 

mechanical behavior observed in the experimental results. The experimental results 

showed that the unsaturated shear strength of soil-geomembrane interfaces was lower 

than the soil shear strength and lowest for the smooth geomembrane-soil interface. The 

constitutive models modified in this study were able to capture the experimental results 

through the back calculated parameters. 

The design of piles in Integral Abutment Bridges (IABs) without considering the 

moisture changes of soil interacting with piles may adversely impact the bridge 

performance. In Part 3, the impact of variable soil saturation on the lateral load behavior 

of integral abutment piles was explored. Prediction of the soil moisture variations was 

conducted using a 2-D unsaturated seepage model with an atmospheric boundary 

condition based on climate predictions through the end of the century. A calibration 

technique in order to forecast the future weather was developed using the historical 

weather data. Forecasted weather information was used in the unsaturated seepage 

modeling to predict future moisture content variations and the associated matric 

suction profiles surrounding abutment piles. A range of matric suction based on the 

predicted moisture content profiles was employed in a numerical model to study the 

lateral load behavior of abutment piles subjected to temperature changes. The results 

indicated that the performance of piles interacting with unsaturated soil can be 

problematic under certain conditions.



 

1 
 

CHAPTER 1: Introduction 

Moisture changes, due to climate conditions or ground water fluctuations in 

unsaturated soils, lead to changes in soil hydraulic and mechanical behavior. This 

behavioral variation not only affects the performance of soil in earth structures, such as 

embankments, and earth dams, but also impacts structures interacting with soil, such 

as geomembrane liners and piles in bridge approach embankments. Research reported 

in this dissertation focused on three important geotechnical problems related to 

moisture and suction change in unsaturated soil: Part 1) development and impact of 

desiccation cracks on unsaturated soils; Part 2) interface behavior between unsaturated 

soil and geomembranes and Part 3) lateral load behavior of piles in unsaturated soil. All 

three of the topics explore the impact of changing moisture and suction on the 

mechanical behavior of the soil. Parts 1 and 3 also examine the flow of moisture due to 

weather changes in unsaturated soil engineering applications.  

1.1 Overview Part 1: Development and impact of desiccation cracks on 
unsaturated soils 

Frequent occurrence of failures in natural and man-made roadway cuts and 

embankments such as those observed along roadways in Idabel and Chickasha, 

Oklahoma, is a major issue for the Oklahoma Department of Transportation (ODOT). 

This type of failure is often preceded by periods of drying and formation of desiccation 

cracks followed by significant precipitation events.  Formation and propagation of 

desiccation cracks play a crucial role in the stability of slopes by impacting mechanical 

and hydraulic soil properties in upper layers of the slope. Desiccation cracks allow water 
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to rapidly infiltrate the soil layers, and lead to slope failure by changing the pore water 

pressures as well as shear strength. 

In the majority of slopes located in Oklahoma, the soil mass is in an unsaturated 

state within the active zone; the active zone is defined as the depth of soil over which 

moisture content fluctuates due to seasonal weather. During periods of prolonged 

drying, soil suction can increase in the active zone and form desiccation cracks. The 

increased hydraulic conductivity of soil, due to the presence of desiccation cracks, allows 

water to penetrate the soil layers easily and quickly, reducing the soil suction and shear 

strength. It is thus important to consider the influence of desiccation cracks on the 

stability of slopes formed of unsaturated cohesive soil. Research in this dissertation has 

focused on a method for predicting desiccation crack depths in unsaturated soil, a 

method for modeling unsaturated seepage in soil with desiccation cracks, and 

recommendations for modeling slope stability in slopes with desiccation cracks. 

1.2 Overview Part 2: Interface behavior between unsaturated soil and 
geomembranes  

The stability of geomembrane-soil interfaces is important to consider in the design of 

liner systems subjected to shear forces. A composite geomembrane liner on a landfill 

slope can be an ideal example. The interface behavior between geomembrane and soil 

are influenced by type of geomembrane, soil type, shear displacement rate, soil 

moisture content, and soil density. Generally, the soil begins to interact with 

geomembrane in an unsaturated condition, implying that relevant interface strength 

models should consider soil suction. Over time, the soil in contact with the 

geomembrane may become saturated depending on the geologic setting and 
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characteristics of the containment system. Thus, research reported herein involved an 

experimental study of geomembrane-soil interface behavior using a direct shear device 

developed for unsaturated soils. The study examines interface behavior under 

unsaturated and saturated conditions as well as the influence of shearing rate.   

1.3 Overview Part 3: Modeling lateral load behavior of piles in unsaturated soil 
due to seasonal moisture content changes 

Piles that support Integral Abutment Bridges (IABs) experience significant lateral loading 

due to variations in daily and seasonal bridge temperatures. Bending stresses at the top 

of pile can be significant when the soil surrounding the pile is relatively stiff. The increase 

of such stresses can reduce the axial capacity of a pile by creating a plastic hinge. Thus, 

it is important to consider the system flexibility in modeling the pile response. The pile 

and surrounding soil stiffness are principal parameters that determine the system 

flexibility. Based on classical unsaturated soil mechanics, it is known that unsaturated 

soil, with less than 100% degree of saturation, has a stiffness more than soil with a fully 

saturated condition. Since soil surrounding abutment piles in embankments may 

experience changes in degree of saturation over time, it will experience variations in soil 

stiffness. Therefore, the long-term effect of moisture changes on soil-pile interaction 

needs to be further investigated considering expected weather conditions. Research 

presented in this dissertation builds on a previous study at the University of Oklahoma 

(OU) that examined performance of piles in Integral Abutment Bridges (IABs) under 

thermal loading (e.g. I-44 Bridge in Oklahoma). This study showed that bending 

moments at shallow depths may exceed the yielding bending moment of piles when the 

soil stiffness is excessive. This observation was analyzed and simulated numerically at 
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OU without considering the soil moisture changes. The current study utilizes projected 

weather parameters to predict expected moisture changes in soil surrounding piles 

using unsaturated seepage modeling, and then utilizes modified p-y curves for piles in 

unsaturated soils to examine the impact of variable moisture conditions on lateral load 

behavior. 

1.4 Summary of research contributions 

The research makes important contributions to the state of knowledge in the field of 

geotechnical engineering as follows: 

1. A novel approach for predicting desiccation crack depth in compacted clayey 

soils is developed and partially validated. This novel approach utilizes a newly derived 

analytical equation that relates the suction change to tensile failure and cracking in soil. 

When combined with actual or expected variations in suction within the active zone of 

a soil profile, it is possible to predict the depth of desiccation cracking. Heretofore, no 

such model existed for predicting desiccation crack depths in unsaturated compacted 

soils. The model has numerous potential applications in unsaturated geotechnics, 

including those described subsequently.  

2. A method for simulating the impact of desiccation cracks on unsaturated 

seepage was developed and partially validated. While some work has been done in this 

area, the author’s approach is unique and offers a simple, yet powerful method for 

considering desiccation cracks in unsaturated seepage models for certain applications. 

The author’s approach utilizes an equivalent permeability for the cracked layer, based 
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on comparisons of numerical modeling of unsaturated flow in cracked layers and non-

cracked layers with equivalent permeability.  

3. A method for analyzing stability of slopes with desiccation cracks is 

demonstrated and partially validated. This method builds on the contributions of 1 and 

2 above, and offers a new approach to stability modeling considering the unsaturated 

character of slopes. 

4. There is a dearth of experimental data involving suction-controlled interface 

testing with soil and geomembranes published in the literature. The experiments 

conducted during this research provide such data and recommendations for developing 

constitutive models for unsaturated soil-geomembrane behavior for both smooth and 

textured geomembranes. 

5. A method for assembling weather data based on climate projections for a 

region was developed for input into unsaturated seepage modeling. Output from the 

unsaturated seepage modeling is being used to examine the variations in soil moisture 

content and suction over time, which is indirectly used to develop p-y curves for lateral 

loading analysis of abutment piles. In this way, the abutment pile behavior can be 

examined based on future climate scenarios. To the author’s knowledge, such a study 

has not been undertaken. The importance of understanding unsaturated soil behavior 

in dealing with the abovementioned applications is illustrated in the following sections. 

1.5 Objectives and Scopes of Research 

Changes in hydraulic and mechanical behavior of soil in under the influence of weather 

conditions, can lead to instability of earth structures such as slopes. The presence of 
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cracks due to the desiccation process can exacerbate the instability of slopes. To better 

understand the impact of desiccation cracks on the slope stability the following scope 

of work was accomplished: 

 Developed an analytical method to predict the desiccation crack depth for a 

compacted clay. 

 Developed a methodology to quantify the water flow through a compacted clay 

layer having desiccation cracks using unsaturated seepage analysis. 

 Analyzed the seepage and stability of a slope modeled with cracked and intact 

layers distinguished using the desiccation crack depth computation.  

Variations in saturation of soil in the interface or contact zone between soil and 

geomembrane can lead to changes the shearing behavior of the interface. To study the 

influence of water on the interface behavior, which manifests as either positive or 

negative pore water pressure, the following scope of work was completed:  

 Modified/developed a constitutive model to predict the unsaturated shearing 

and volume change behavior of the contact zone or interface between soil and 

geomembrane. 

 Conducted experimental interface direct shear tests with suction control on 

unsaturated contact zone between soil and geomembrane, determined 

parameters required for the proposed models, and compared experimental and 

model results. 
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Lateral load behavior of piles in Integral Abutment Bridges (IABs) can change under 

unsaturated conditions of soil surrounding piles. To investigate the impact of changing 

moisture conditions on IABs, the following scope of work was completed:  

 Developed a methodology to predict weather input parameters for future 

weather events based on historical weather data and climate prediction models.   

 Predicted soil moisture changes numerically around an IAB pile based on 

historical and future climate changes.  

 Evaluated the performance of an IAB pile, taking into account the soil moisture 

changes. 

1.6 Outline of dissertation 

The dissertation is divided into 5 chapters with three main subjects. In Chapter 1, the 

introduction and scope of the three main subjects was presented. In Chapter 2, the 

impact of desiccation cracks on the slope stability analysis as a first subject is discussed. 

Chapter 3 discusses the unsaturated and saturated shearing behavior of interfaces 

(textured geomembrane-clayey soil, smooth geomembrane-clayey soil, and clayey soil-

soil interfaces) as the second subject. In Chapter 4, the third subject of the dissertation, 

which is the pile-soil interaction under temporal variations of temperature and moisture 

content, is presented. Finally, Chapter 5 presents the conclusions and recommendations 

relevant to all three subjects.  

 
 
 
 
 
 



 

8 
 

CHAPTER 2: Development and impact of desiccation cracks on unsaturated soils 

2.1 Background 

Dealing with desiccation cracks due to soil shrinkage creates substantial challenges in 

various types of geotechnical projects, such as landfills, earth-dams, slopes, liners, and 

pavements. Loss of water from a soil mass, due to evaporation, results in soil shrinkage. 

The internal or external restraints against the soil shrinkage create desiccation cracks 

and potential flow paths within soil mass.  

In order to capture the desiccation cracking development, there are a variety of 

techniques from simple to advanced employed using image processing (e.g. Miller et al. 

1998, Vogel et al. 2005(a) and (b)). Application of image processing techniques were 

shown to be efficient in detecting the geometric and morphologic parameters of cracks, 

such as crack width, length, area, angle, and their distribution characteristics. 

The crack intensity factor (CIF) was introduced by Miller et al. (1998) as a 

descriptor of the extent of surficial cracking. CIF was defined as the time-variable ratio 

of the surface crack area to the total surface area of the clay. They analyzed soil moisture 

suction and crack propagation for three distinct periods of wetting and drying. The first 

period, termed compaction-dry, corresponds to the time between the completion of 

compaction to fully dry conditions. Rainfall was then applied to the dry soil. The period 

between the fully dry condition and infiltration of the ponded water from the simulated 

rainfall was termed the dry-wet period. The soil tank was sealed with a glass cover 

during the infiltration phase to prevent evaporation of moisture. The last period of a 

cycle was the wet-dry period. The cover was removed at the beginning of the wet-dry 
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period, which began with the end of the second period and terminated with the 

development of fully dry conditions. The observed maximum crack widths for the 

compaction-dry and wet-dry periods were 5.0 mm and 9.5 mm, respectively. The crack 

pattern during the wet-dry period was polygonal as opposed to the linear nature of the 

cracks that developed during the compaction-dry period. 

Stirk (1954) studied the effect of cracking and increasing the rate of water entry 

into fine-grained soil. The results indicated that the effect of cracking on the soil 

hydraulic conductivity at a relatively high level of water content (the wilting point) was 

not considerable. Experimental study of desiccation cracking and development of a 

simple theory to explain development of desiccation cracks was conducted by Corte and 

Higashi (1964). The laboratory tests were carried out by using slurry and loosely 

compacted soils on a wooden plate with the length to width ratio of 1.4 and thickness 

of 70 mm. It was observed that the cracks were arranged in an orthogonal and 

sequential manner with the primary cracks forming several cells in the specimen. The 

tests conducted by them also illustrated that the mean cell area increases as the 

thickness increases and that lower soil density would lead to lower mean cell area.  

The non-capillary flow through the continuous holes or cracks was modeled 

numerically by Edwards et al. (1979). They proposed a two-dimensional model which 

allows for vertical infiltration from the soil surface and for lateral infiltration from a 

vertical hole after excess precipitation on the surface runs into the opening. In the 

model, the effect of water capillarity on the infiltration into macro-pores was not taken 

into account. However, the geometry and number of cracks per unit surface area were 
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considered. They found that the macro-pores can lead to significantly different 

infiltration rates and patterns of soil moisture in the soil matrix when the heavy rainfall 

or irrigation occurs. Hoogmoed and Bouma (1980) simulated a two-dimensional 

infiltration into a cracked unsaturated clay soil considering the vertical infiltration on the 

upper soil surface, the downward flow into the crack, and the horizontal infiltration from 

the crack into the soil. The simulated results showed that the flow of free water along 

the macro-pores or cracks into the soil matrix with high moisture content was faster 

than that of soil with lower moisture content. 

Morris et al. (1992) developed the mechanics of cracking after reviewing the 

morphology of cracks in the field. They proposed three different solutions based on the 

elastic theory, transition between tensile and shear strength, and linear elastic fracture 

mechanics. To develop all three solutions, they considered that the soil subjected to 

desiccation cracking is initially saturated and essentially normally consolidated, and that 

under unsaturated conditions the soil behavior is governed by two stress variables (i.e. 

matric suction and net normal stress variables). These initial conditions were consistent 

with the nature of mine tailing they were investigating. They concluded that in addition 

to soil suction, soil properties such as compression modulus, Poisson’s ratio, shear 

strength, tensile strength, and specific surface energy are factors that affect desiccation 

crack development in soil. In addition, of the three solutions they proposed, they found 

that the methods based on the elastic theory and tension-shear strength gave the most 

favorable predictions of desiccation crack depth compared to their limited empirical 

observations. 
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Konrad and Ayad (1997) proposed a model to predict the average crack spacing 

for slurries, consolidated natural soil, and compacted clays undergoing desiccation 

based on linear elastic fracture mechanics theory. A trapezoidal distribution of total 

horizontal tensile stress with a maximum value equal to tensile strength at the ground 

surface and minimum value at the ultimate crack depth was assumed to model crack 

propagation. The model was verified by Ayad et al. (1997) using the field data and soil 

properties, such as soil-water characteristic curve, tensile strength, and the fracture 

toughness measured from the intact clay. Chertkov and Ravina (1999) proposed a model 

for analyzing the geometrical characteristics of vertical and horizontal shrinkage cracks 

based on the model of multiple cracking and fragmentation originally developed for 

rocks. The model was able to estimate the width and volume of vertical cracks in clay 

soils.  Water table depth, thickness of intensive cracking layer, and linear shrinkage of 

soil were parameters required to predict the characteristics of vertical cracks.  

Studies of desiccation cracks from lab scale to field scale have received attention 

from numerous researchers; however, a few studies have been conducted to explore 

the effect of desiccation cracks on the slope stability. For example, Zhang et al. (2012) 

employed a centrifuge model to examine the stability of cracked slopes under rainfall 

conditions. The effect of cracks on the failure of the slopes due to rainfall events was 

analyzed based on suction and deformation measurements of the slope, which were 

recorded during the tests. A vertical and inclined crack with a certain width and depth 

was determined to investigate the effect of different positions of cracks. They have 

concluded that the displacement of the slope had a direct relationship with the rainfall 
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penetration. It was shown that both horizontal and vertical displacements increased as 

the rainfall increased. The inclined crack induced a larger displacement of the slope than 

the vertical crack near the slope surface. 

The cracked slope stability was also investigated by considering the effects of 

crack location and depth, and rainfall intensity in the study conducted by Wang et al., 

(2011). The properties of a single crack including the saturated and unsaturated 

hydraulic conductivity were taken into account as specific material properties. The 

Seep/W program was used in the pore water pressure analysis, and the Slope/W was 

employed in the slope stability analysis.  A theoretical method proposed by Wang (2011) 

was used to produce the SWCC and permeability function for a rough crack having 

random aperture distributions. The shear strength of a crack was assumed to be zero 

and the volume change of the crack upon drying and wetting were not considered during 

the numerical analysis. The effect of crack location on the slope stability was studied by 

considering a deep crack located on the crest and the middle of the slope separately. It 

was observed that a crack located in the middle of the slope affects the slope stability 

analysis more than other crack locations.  

To characterize the strength and time rate aspects of shallow slide failures, 

Aubeny and Lytton (2004) proposed two models of slope failure for high plasticity clays, 

a stability model and a moisture diffusion model, respectively. They concluded that a 

destabilizing hydraulic gradient in the slopes due to increase of pore water pressure over 

many years of infiltration is the reason for slope failure. Their field observations 

indicated that there are no large strains that result in a degradation of effective friction 
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angle from peak to residual value for the slopes.  However, the destabilizing hydraulic 

gradient was sufficient to produce shear failure considering peak strengths for normally 

consolidated soil conditions.  

2.2 Modeling and predicting desiccation crack depth in unsaturated soil 

Development of a vertical desiccation crack in soil due to drying is a hydro-mechanical 

phenomenon. Hydraulic and mechanical properties of soil change while crack depth is 

developed gradually. In this section, an analytical model is presented. The model was 

developed by employing the theory of elasticity and incorporating mechanical 

characteristics of soil, including tensile strength, elastic properties and change in 

suction. This simple analytical model can be used to predict desiccation crack depth if 

changes in suction can be predicted for a given soil profile. For comparison, a numerical 

model considering both mechanical and hydraulic properties of soil is employed to 

predict the desiccation crack depth. Finally, an experimental test is used to verify the 

analytical and numerical models.   

2.2.1 Analytical model for predicting crack depth 

The author and his colleagues (Miller et al., 2015) have developed a model based on the 

elastic theory for prediction of a desiccation crack depth in unsaturated compacted soil. 

Morris et al. (1992) developed a simple approach for predicting desiccation crack depth 

in mine tailings, which essentially were modeled as initially saturated normally 

consolidated soil. The basic elastic equation for the incremental horizontal strain in an 

unsaturated soil is (Fredlund and Rahardjo, 1993): 
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 (2-1) 

 

where, Δx = is taken as strain normal to the long axis of the crack prior to cracking;  

Δ(x- ua) is the change in net normal stress in the horizontal direction, ua is the air 

pressure, uw is water pressure, Δ(ua-uw) is the change in matric suction; and E and H are 

the elastic moduli with respect to net normal stress and suction, respectively. 

Incorporating the assumptions, Δx=0, Δx=Δy, and ua=0 the above equation is 

simplified to:  

 
 

 (2-2) 
 

The initial horizontal stress, xo is equal to Kovo=Kozc, and the final horizontal 

stress, xf, is assumed to be equal to the tensile strength of the soil, t; thus, x=t - 

Kozc. The initial vertical stress, zo is equal to vo=zc , and the final vertical stress, zf, 

can be assumed to be zero or equal to the initial one; thus, z=-zc , or zero. That is, 

there are two possible assumptions with respect to the change in vertical stress. If one 

assumes the crack formation occurs instantaneously, then the change in vertical stress 

is assumed to be zero at the point of crack initiation. However, if the crack is assumed 

to develop gradually, then the vertical stress at the bottom of the crack would be zero. 

Both assumptions are explored in this research.  

The vertical total stress is vo;  is the total unit weight; zc is the depth of cracking; 

and Ko is the ratio of the horizontal to vertical total stress before desiccation. 
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Substituting these expressions into above equation leads to an expression for the 

change in suction: 

      (2-3) 

 

 (2-4) 

 

Using either of these equations, depending on the assumption employed regarding 

change in vertical stress at the point of cracking, one can predict the depth of cracking, 

zc, associated with a given change in matric suction provided the other parameters can 

be reasonably estimated. Thus, if the variation in matric suction is known or can be 

predicted for an actual soil profile during drying, the depth of cracking can be 

predicted using the above equations. 

2.2.2 Numerical model for predicting crack depth 

Numerical modelling was used to predict depth of cracking in unsaturated soil based on 

tensile stress variations due to drying on the ground surface. Temporal variations of 

suction in a soil profile can be modeled using a hydro-mechanical finite element 

program called Code Bright (DIT-UPC, 2015). By manipulating the drying boundary 

conditions at the ground surface, the change of suction with time at different depths 

predicted by the model can be adjusted to match an actual suction profile obtained by 

field measurements or a laboratory bench scale model. Then the tensile stress variations 

predicted by the model are compared to the actual tensile strength of the soil and crack 

 
  cz

toc
wa zif

HE

Kz
uu 







/

)1()]1([

 
  0

/

)1()1(



 z

toc
wa if

HE

Kz
uu 





 

16 
 

depth is assumed to correspond to the depth where the predicted tensile stress exceeds 

the tensile strength.  

For this research, suction changes with depth were obtained in the field based 

on moisture probe measurements at a test site located in Chickasha, Oklahoma. In 

addition, a laboratory desiccation model experiment was constructed to observe crack 

depths in a soil bed with moisture sensor measurements. As mentioned before, to form 

a crack in the soil bed, shrinkage needs to be restrained and tensile stress due to change 

of water content must exceed the tensile strength of the soil. Using Code Bright, a three-

dimensional model resembling the experimental test was simulated with appropriate 

boundary conditions. Note, a 2-D model would be sufficient to model this problem 

assuming the soil in the box was under plane strain condition. However, for this test 

apparatus, the 3-D model was simple to develop within Code Bright and so was utilized. 

The bottom of the model was constrained in the vertical and the horizontal direction. 

The two sides of the model were just constrained in the horizontal direction. The top of 

model was subjected to suction changes without any prescribed displacement. For the 

simple elastic behavior modeled in this problem, the Code Bright program employs 

simple linear elastic equations that account for changes in mean net stress, suction and 

temperature. For example, the following equation is used to compute the volumetric 

strain as a function of mean net stress, suction, and temperature changes, 

  

 (2-5) 
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where: P  is mean net stress; (𝑃𝑔 − 𝑃𝑙) is suction; T is temperature and it is assumed 

that ΔT is equal to zero. K ,
SK , and

TK are bulk moduli with respect to mean net stress, 

suction, and temperature changes, respectively. 

Intrinsic permeability was calculated from the following equation, 

 

                          (2-6) 
 

where: k is coefficient of permeability measured in the laboratory and μ, ρ, and g are 

dynamic viscosity of water, density of water, and acceleration due to gravity, 

respectively. 

2.2.3 Tensile strength of a compacted soil  

As mentioned in the previous sections, the tensile strength of soil is one of the 

substantial parameters to predict the crack depth of a compacted soil during desiccation 

for both the analytical and numerical methods. A series of tensile strength tests on the 

soil used for the crack depth prediction in the laboratory condition was conducted using 

a novel apparatus developed by Varsei et al. (2016) at OU to measure the tensile 

strength of compacted soil beds while drying. As shown in Figure 2.1(a), the desiccation 

test apparatus was a 25 cm × 30 cm rectangular shaped box with two separate halves. 

One half was fixed and there were some ball bearings under the other half to reduce the 

friction between the box and the surface below it.  There were two load cells attached 

to the box, where the two halves joined to measure the tensile force generated in the 

specimen while it was drying. The load cells have a range up to 445 N, a resolution of 

0.044 N, and a full scale accuracy of 0.03 % (± 0.13 N). There was a small gap between 
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the two halves of the box, which allowed the tension in the soil to be transmitted to the 

load cells on either side. Screws were installed in the two end walls of the box 

perpendicular to the wide direction to provide a constraining condition for soil coupled 

with them. This condition prevented the soil at the boundaries from pulling away from 

the ends during shrinkage and caused the desiccation crack to form at the mid-section 

of the box, where the maximum tensile stress was expected to occur. Figure 2.1(b) 

shows a picture of the bench scale set-up including the desiccation box, overhead 

camera and a digital scale. The digital camera was able to monitor the formation of 

desiccation crack and loss of moisture measured using the digital scale at the given time 

intervals. The digital scale had a capacity of 8100 g, readability of 0.1 g, and accuracy of 

± 0.3 g.  

Unlike previous methods, the newly developed device presented and used in this 

study provides a condition to measure the tensile strength of soil during the desiccation 

process. This condition resembles the natural process in drying soil, where tensile 

stresses develop with decreasing water content, and cracks develop at a water content 

lower than the initial water content. 
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Figure 2.1. Newly developed desiccation box (a) and test set-up (b) (from Varsei et al. 2016) 

 

The soil used for the tensile strength tests was from the CS2780 borrow source and had 

an optimum moisture content (OMC) of 14.9%, maximum dry unit weight of 18.8 kN/m3, 

liquid limit of 39%, plasticity index of 17%, and 95.2% of fines. The specimens were 

prepared at three initial conditions of moisture content including OMC, +2% wet of 

OMC, and -2% dry of OMC and placed in the moisture room for 24 hours to promote 

uniform distribution of water within the soil. The specimens were compacted at 95% 

maximum dry unit weight. The tensile force evolution during the desiccation process 

was recorded as shown in Figure 2.2. The tensile strength was calculated using the peak 

value of tensile force divided by the effective cross sectional area, which was assumed 

to be a product of the width of the box (25 cm) and the initial thickness of the specimen 

(1.25 cm). The tensile strength of the compacted soil at three different initial conditions 

is shown in Figure 2.3. 
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Figure 2.2. Tensile force changes during desiccation process 

 

 
Figure 2.3. Uniaxial tensile strength (tu) values at different initial water contents  

 

Stress conditions in the soil bed approximate a uniaxial stress condition whereby 

the major principal total stress at failure is zero and the minor principal stress is equal 

to the uniaxial tensile strength (tu), as shown in Figure 2.3. To estimate the tensile 
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strength corresponding to isotropic loading (t), the expression shown in Figure 2.4 can 

be used if the effective stress friction angle of the soil () is known, given as: 

                                                               
                                                                                                 (2-7) 

 

For estimating crack depth, the tensile strength corresponding to isotropic loading was 

computed using Equation 2-7. 

 

Figure 2.4. Tensile strength for uniaxial and isotropic loading defined relative to Mohr-
Coulomb failure envelope 

 
 

2.2.4 Comparison of analytical and numerical results with experimental data 

The analytical model can be partially validated from comparison to the numerical model 

described above. The validation and calibration of the numerical approach can be 
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achieved by comparison to empirical data collected from actual experiments. For this 

purpose, an experimental test was designed in order to monitor and record the changes 

of suction associated with crack depth development in a clayey soil. A box with 570 x 

895 x 100 mm length, height, and width was fabricated to monitor the desiccation crack 

depth. The material used for the front and back sheet of the box was made of plexiglass 

acrylic to observe the desiccation cracks propagation within the depth of the compacted 

soil. Two sides of the box were made of the wood. Wood screws were installed 

horizontally into the soil at regular vertical intervals along each side of the box to 

constrain the horizontal shrinkage. Five volumetric water content sensors (Decagon EC-

5 soil moisture sensors) connected to a data logger and laptop were installed at different 

depths of soil to record moisture changes during drying. The EC-5 sensor measures 

volumetric water content through the dielectric constant of the media using the 

capacitance/frequency domain technology. A schematic set-up is shown in Figure 2.5. 

The test soil for this experiment was the same soil used for the tensile strength testing 

described previously. It was compacted at 95% maximum dry unit weight and 2% wet of 

optimum moisture content (+2% OMC). To avoid the moisture loss during the sample 

compaction, the prototype preparation was conducted in the moisture room as shown 

in Figures 2.6(a) and (b). Wood stiffeners and clips were employed to control the 

buckling deformation of plexiglass sheets during the compaction and desiccation 

process as shown in Figure 2.6(c). A summary of soil parameters and properties used for 

the analytical and numerical methods to compare with the experimental test is shown 

in Tables 2.1 and 2.2. 
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Figure 2.5. Schematic drawing of desiccation test box for crack depth prediction showing 
approximate location of moisture sensors 

 

  
 

Figure 2.6. Preparation process of sample for crack depth prediction (a) empty box, (b) 
compaction process, and (c) completed stage before desiccation process  
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For the analytical method, Equations 2.3 and 2.4 indicate the dependency of crack depth 

on the suction change and soil properties. Upper and lower bound predictions of the 

crack depth and suction change were derived using the range of both estimated and 

measured parameters summarized in Table 2.1. The ranges for Poisson’s ratio, the 

coefficient of earth pressure at rest, and the ratio of elastic moduli with respect to net 

normal stress and suction, were estimated using ± 25% of the basic values used by 

Morris (1992) and suggested by Fredlund and Rahardjo (1993). 

Table 2.1. Analytical parameters and assumptions 

Parameter Value Determined by: 
 (kN/m3) 20.9 measurement 

ν 0.26-0.44 estimation 

E/H 0.23-0.38 estimation 

Ko 0.50-0.88 estimation 

ɸ’ 34 measurement 

t (kPa) -33 measurement 

 

To estimate the cracking depth using the analytical equations, Equation 2.3 or 2.4 is 

selected to calculate the suction that will produce cracking as a function of depth and 

this linear relationship is plotted as suction change (abscissa) versus depth (ordinate), 

as shown in Figures 2.8 and 2.9 for Equations 2.3 and 2.4 using the average parameters 

in Table 2.1. On top of this, the actual measured suction profile is plotted, also shown in 

Figures 2.8 and 2.9, and the intersection of the analytically predicted cracking suction 

with the actual measured suction profile represents the depth of cracking.  

Using the analytical method, a range of cracking depths was calculated based on 

Equations 2.3 and 2.4 and the range of parameters shown in Table 2.1. The suction 

variation curve was derived from monitoring the volumetric water content change and 
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using the soil water characteristic curve (SWCC) as shown in Figures 2.7(a) to (c). The 

locations of sensors were 0.04, 0.22, 0.42, 0.59, and 0.84 m from top of the box, 

respectively. Figure 2.7(a) shows that the desiccation rate in upper layer was higher than 

other layers at early stages of desiccation and then leveled off at later stages. When the 

test was ended, essentially all of the sensors indicated a constant volumetric water 

content and this corresponded to the end of crack propagation. Thus, the suction profile 

at the end of the test is used to predict crack depth. The range of cracking suction 

predicted by Equations 2.3 and 2.4 is represented by the black lines and shaded area in 

Figures 2.8 and 2.9, respectively, for the desiccation box test. The intersection of the 

experimentally determined suction in the desiccation box indicated by the blue symbols 

and line with the analytically predicting cracking suction represents the estimated 

cracking depth. As shown in Figures 2.8 and 2.9, the predicted range of cracking depths 

are 55 to 62 cm and 53 to 59 cm for Equations 2.3 and 2.4, respectively. For comparison, 

the actual desiccation crack depths at the desiccation box was measured to be close to 

42 cm depth as shown in Figure 2.11. 

In the numerical method, the suction variations were based on the measured 

and estimated parameters in Table 2.2. The gray symbols and line indicated in Figures 

2.8 and 2.9 are the predicted changes in suction based on the calibrated numerical 

model shown in Figure 2.10. The calibrated suction changes were obtained after 

applying a suction change of 12 MPa for 120 days on the boundary surface located on 

the top of the model. The calibrated suction values reasonably match the experimentally 

determined suction values below a depth of 0.4 m as shown in Figures 2.10 (a) & (b). 
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However, the predicted suction values above 0.4 m don’t agree well with measured 

values. Since the critical cracking suction is relatively low and occurs at depths greater 

than 0.4 m, the objective was to produce the best match for the greater depths. More 

refinement in the approach to calibration may result in a better match for values above 

0.4 m. The resulting tensile stress distribution predicted in the soil profile using the 

numerical model is shown in Figure 2.12. The crack depth can be estimated using the 

numerical modeling results by comparing predicted tensile stress to the measured 

tensile strength of soil as shown in Figure 2.12.  
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Figure 2.7. Volume water content changes during desiccation in the desiccation box (a), 
suction changes of test soil (b) and Soil Water Characteristic Curve (SWCC) of test soil (c) 
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Figure 2.8. Suction changes versus depth of cracking according to equation 2.3  
 

 
Figure 2.9. Suction changes versus depth of cracking according to equation 2.4  

 
Table 2.2. Numerical parameters and assumptions  

Parameter Value Determined by: 

Young modulus (MPa) 𝐸 10 measurement 

Poisson’s ratio ν 0.35 estimation 

Swelling coefficient for changes in suction (Mpa-1) 𝑎𝑠 0.01 measurement 

Porosity n 0.35 measurement 

Intrinsic permeability (m2) κ  7.82e-15 measurement 
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Figure 2.10. Calibrated suction changes through the depth of test soil using the numerical 
model, 0-12 MPa (a), 0-400 kPa, (b) color contours (c)  
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Figure 2.11. Desiccation crack depth measurement in the desiccation box, top view (a) side 

view (b) 
 

 
 
 

(a) 

(b) 
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Figure 2.12. Tensile stress distribution curve (a) and color contours along soil profile using 

the numerical model (b) 
 
 

The results of the numerical modeling suggest that the crack depth is around 40 cm 

based on the calibrated suction profile. For the same suction profile (gray line) in Figures 

2.8 and 2.9, the analytical method indicates an average crack depth of about 57.5 cm as 

indicated by the intersection of the shaded boundary and gray trend line. Generally 

speaking, both the analytical and numerical model predictions of desiccation crack 

depth compared favorably to the observed crack depth in the desiccation box 

experiment.   

 

2.5 Modeling the impact of desiccation cracks on unsaturated seepage of soil 
layer 

The hydraulic behavior of a cracked soil is different from that of an intact soil. An 

unsaturated permeability function and water retention curve are required for the 

seepage analysis of an unsaturated soil mass. The discrete cracks model and the 
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equivalent permeability method for the cracked soil layer are employed to investigate 

the impact of desiccation cracks on unsaturated seepage analysis of a compacted clayey 

soil. Results of these two methods are compared and calibration procedures are 

suggested for using the equivalent permeability approach. The two methods are 

described below. 

2.5.1 Modeling discrete cracks 

To simulate a single crack or multiple cracks in a desiccated soil layer a finite element 

technique was proposed using the SVFLUX finite element program developed by Soil- 

Vision Systems Ltd. (2012). The proposed technique is based on the fragmentation of 

the finite element mesh (i.e. intact soil) and the insertion of additional elements (i.e. 

single cracks) between the finite element mesh. The intact soil properties in terms of 

the permeability function and water retention curve required for the seepage analysis 

are obtained based on the standard test methods and the relevant relationships. The 

soil water characteristic curve (SWCC) and the saturated permeability are the 

parameters required to form the unsaturated permeability function. The SWCC used for 

the seepage modeling was obtained from chilled mirror and axis translation methods. 

The permeability function and water retention curve required for the seepage analysis 

for the additional elements or single cracks were determined based on the procedure 

described below. 

The SWCC for a single crack was estimated according to the air-entry value using 

the capillary theory as follows: 

 (2-8) 
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where, Ts is surface tension of water, R1 is the width of a single crack, and R2 is assumed 

to be infinity. By knowing the air-entry value and assuming a nearly vertical slope from 

saturated volumetric water content to residual one (Wang and Narasimhan, 1985), 

SWCC of a single crack can be plotted as shown in Figure 2.13. The saturated 

permeability of a single crack was estimated from the following equation based on 

Barton’s law.  

𝑘 = 𝑒2 𝜌𝑔

12𝜇
            (2-9) 

where: e is the hydraulic width of the crack (the hydraulic aperture), μ, ρ, and g are 

dynamic viscosity of water, density of water, and acceleration due to gravity, 

respectively. The hydraulic aperture (e) has an experimental relationship with the 

mechanical aperture (E) and the joint roughness coefficient (JRC) as follows: 

𝑒 = (𝐽𝑅𝐶2.5)/(
𝐸

𝑒
)2             (2-10) 

Note that the equation is just valid for 𝐸 ≥ 𝑒  and the units for “E” and “e” are 

micrometer. JRC is a measure of surface roughness with ranges between zero to 20. The 

smooth planar surfaces have a JRC value of zero while apertures with the extremely 

rough surfaces have a JRC value of 20 (Barton et al. 1985). By assuming JRC equal to 5 

and unity for the mechanical aperture to hydraulic aperture ratio (E/e), the saturated 

permeability coefficient for a single crack in this study was obtained equal to 2.6x10-4 

m/s. The estimated single crack permeability appeared reasonable compared with that 

developed in another study (e.g. Khandelwal 2011). The saturated permeability for the 

intact soil was assumed to be 1.44x10-8 m/s, which was the average permeability 
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determined from lab testing for the soil used in the slope stability analysis. The Leong 

and Rahardjo (1997) and van Genuchten (1980) estimation methods available in SVFLUX 

were used to develop the permeability function based on the saturated permeability 

and SWCCs (Figure 2.13) for a single crack and intact soil, respectively, as shown in Figure 

2.14. 

 

Figure 2.13. Soil Water Characteristic Curve (SWCC) for single crack and intact soil 
 

 
Figure 2.14. Hydraulic conductivity function for single crack and intact soil 
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A series of finite element models with single cracks was used to evaluate the 

hydraulic properties of cracked soil using the proposed method. A temporal change of 

pore water pressure from negative value (unsaturated or initial condition) to zero value 

(saturated condition) for a given time was used as a climate boundary condition on the 

top of the model. The numerical simulations were designed to have a different number 

of cracks distributed in a cracked layer. The cracked layer was placed on the top of the 

intact layer to calculate the water seepage through the depth of the intact and cracked 

layers. The entire width and height of the cracked soil layer were 3 m and 1 m, 

respectively. The width and height of the single cracks were 0.001 m (1 mm) and 1 m, 

respectively. Ratios of crack spacing to crack depth equal to 1, 0.5, and 0.25 were chosen 

as alternatives for the parametric study. Figures 2.15(a) to (c) show the geometry of 

models for the seepage analysis.  
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Figure 2.15. Geometry of a cracked soil considering single cracks with a ratio of crack spacing 

to crack height equal to (a) 1, (b) 0.5, (c) 0.25  

 

2.5.2 Modeling using the equivalent hydraulic conductivity approach 

To avoid a time-consuming procedure of finite element modeling with discrete cracks in 

the mesh, the use of an equivalent coefficient of permeability was proposed (Fredlund 

et al. 2010) based on the concept of water flow parallel to the soil layers. It was assumed 

that the cracked layer includes an intact soil and multiple cracks, which were parallel to 

each other. If the permeability and thickness of each layer were specified, then the 

equivalent permeability would be obtained from the following equation. 

 in in cr cr
eq

in cr
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            (2-11) 

 



 

38 
 

where, (kcr, dcr) and (kin, din) are coefficient of permeability and thickness of single cracks 

and intact soil, respectively. The development of this equation assumes the flow of 

water is parallel to the cracks. 

The above saturated equivalent permeability associated with a combined SWCC 

proposed by Fredlund et al. (2010) was employed to develop a permeability function for 

the cracked layer as shown in Figure 2.16. Thus, the problem illustrated in Figure 2.17 

can be modeled using the equivalent permeability approach by replacing the layer with 

discrete cracks with a layer having an equivalent permeability that accounts for the 

cracks. The equivalent permeabilities were obtained as 2.75x10-7, 5.35x10-7, and 1x10-6 

m/s corresponding to the ratios of crack spacing to depth of 1, 0.5, and 0.25, 

respectively. The two methods can then be compared and analyzed for different 

boundary and soil conditions. Further, a method for calibrating and refining the 

equivalent permeability method can be developed based on the comparison of results 

of the two methods. 

 
Figure 2.16. Hydraulic conductivity function for a cracked layer  
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Figure 2.17. Geometry of a cracked soil considering equivalent layer 

 

2.5.3 Comparison of discrete crack and equivalent layer modeling results 

A transient seepage analysis was conducted by applying a sudden increase of pore water 

pressure from minus 200 kPa (assumed initial condition of the model) to a saturated 

condition or zero water pressure on the surface of a cracked layer and the water 

seepage within the depth of model was modeled for ten days. The results of seepage 

analysis within the depth of the model after ten days are shown in Figures 2.18, 2.19 

and 2.20 for different crack spacing to depth ratios. In these figures, the pore water 

pressure contours on the left represent the discrete crack model while the contours on 

the right represent the equivalent cracked layer model. The blue and brown contours 

represent positive and negative pore water pressures, respectively. The graphical results 

in the figures compare the pore water pressure distribution through the depth of the 

model. The results show that the pore water pressure changes beneath the single cracks 
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were greater than beneath the intact layers, as expected. This difference reduced as the 

crack spacing to depth ratios decreased as seen when comparing the pore water 

pressure plots of Figures 2.18, 2.19 and 2.20. By comparing the results, it is seen that 

the pore water pressure changes obtained from discrete crack model and the equivalent 

cracked model are in better agreement when the crack spacing to depth ratio decreases.  

In addition to the crack spacing to depth ratio, it was desired to evaluate the 

influence of the crack width in the discrete crack model, as well as the ratio of the 

permeabilities between: 1) a crack and intact soil in the discrete crack model, and 2) the 

equivalent cracked layer and the intact soil layer in the equivalent cracked model. The 

effect of crack width on the amount of water flow at the interface is shown in Figure 

2.21. An increase of 11% to 38% for water flow can be seen due to a change of crack 

width from 1 to 10 mm. In Figure 2.22 the effect of elapsed time of infiltration and ratio 

of cracked to intact soil permeability on the pore water pressures for a point close to 

the interface between cracked and uncracked layers is shown. This point was located at 

10 cm below the interface between cracked and intact layers. 

 The time to reach saturation at point near the interface between the cracked 

and uncracked zones was investigated for different ratios of cracked to intact 

permeability for the condition where the ground surface was maintained in a saturated 

state (pore water pressure set equal to zero). For this purpose, single cracks with a width 

of 1 mm and a crack spacing equal to the crack depth (ratio=1) were used. As expected, 

the rate to reach saturation near the interface was faster when the equivalent 

permeability method was compared to the single crack method as shown in Figures 2.22 
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and 2.23. At low ratios (e.g. 1.8 for the equivalent permeability model and 181 for the 

discrete crack model), the pore water pressure increased with increasing elapsed time 

from unsaturated condition. However, for the discrete crack model, the unsaturated 

condition (negative pore water pressure) existed even after 40 days. The saturated 

condition (close to zero pore water pressure) at a point located at 10 cm below the 

interface between the cracked and intact layers occurred after 10 days when the 

permeability ratio was 10,000 as shown in Figure 2.22. It can also be seen that even the 

high ratios were not effective for wetting the interface between the cracked and intact 

layers at the short-elapsed times (e.g. 1 and 2 days). For the equivalent permeability 

model as shown in Figure 2.23, the ratio above 100 was enough to reach a saturated 

condition or zero pore water pressure at the interface located at the given point. 

According to this transient seepage analysis, the computed permeability ratios equal to 

181 and 181x103 for the equivalent permeability model and the discrete crack model, 

respectively, were the best estimates to reach the saturated condition beneath the 

interface layer. 
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Figure 2.18. Pore water pressure distribution within cracked and intact layers (ratio of crack 
spacing to crack depth=1) for Discrete crack model (a), Equivalent layer model (b), and both 

models (c)  
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Figure 2.19. Pore water pressure distribution within cracked and intact layers (ratio of crack 

spacing to crack depth=0.5) for Discrete crack model (a), Equivalent layer model (b), and 
both models (c) 

 
 
 
 
 



 

44 
 

 

 
 

Figure 2.20. Pore water pressure distribution within cracked and intact layers (ratio of crack 
spacing to crack depth=0.25) for Discrete crack model (a), Equivalent layer model (b), and 

both models (c) 
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Figure 2.21. Effect of crack width on flow of water at interface between cracked and intact 

layers  
 
  
 

 
Figure 2.22. Effect of ratio of single crack to intact soil permeability on pore water pressures 

at a point located at 10 cm below the interface at different elapsed time 
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Figure 2.23. Effect of ratio of equivalent cracked layer to intact soil permeability on pore 

water pressures at a point located at 10 cm below the interface between cracked and intact 
layers at different elapsed time 
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2.6 Impact of desiccation cracks on unsaturated seepage and stability of slope 

2.6.1 Site selection and soil physical properties 

The shallow slope analyzed in this research was located in Chickasha, Oklahoma and was 

the focus of extensive monitoring for a period about two years. This slope was part of a 

roadway embankment that had recurring shallow failures. The bedrock geology of this 

region was classified as middle Permian age and mostly consists of red-brown silty shale 

with some fine-grained sandstone, and the overlying soil was primarily medium to highly 

plastic clay. The test soil used for the analysis possessed a liquid limit (LL) of 38%, plastic 

limit (PL) of 20%, plasticity index (PI) of 18%, and 89% of fines. From a standard 

compaction test, the maximum dry unit weight was 17.3 kN/m3 and optimum water 

content was 18.0 %. The specific gravity of soil solids was 2.75. 

2.6.2 Mechanical and hydraulic properties of soil 

Mechanical and hydraulic tests were conducted to obtain strength parameters and 

permeability values to employ in slope stability analyses. Shear strength of soil in 

saturated and unsaturated conditions are required to analyze the stability of the slope. 

Crack depths were predicted using the method described previously. The saturated 

permeability was determined by laboratory testing and was used to estimate the 

unsaturated hydraulic conductivity function for unsaturated seepage analysis.   

2.6.2.1 Unsaturated/saturated shear strength testing  

A series of saturated and unsaturated tests on the soil resembling the initial field 

condition were conducted using the modified and conventional direct shear 

apparatuses for the slope stability analysis. The direct shear apparatus modified by 
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Hamid (2005) at OU was used to conduct unsaturated shear tests. The conventional 

small-scale direct shear device was used for measuring the saturated shear strength 

parameters. The results of unsaturated and saturated shear tests are shown in Figures 

2.24 and 2.25. 

 
Figure 2.24. Shear strength evolution under different net normal stresses and matric 

suctions  
 

 
Figure 2.25. Shear strength evolution under different matric suctions and net normal 

stresses  
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2.6.2.2 Saturated hydraulic conductivity testing 

To determine the saturated hydraulic conductivity of the soil under study, Shelby tube 

samples were tested as well as remolded samples prepared at maximum dry unit weight 

with optimum water content. The standard test method for measurement of hydraulic 

conductivity of saturated materials with a flexible wall permeameter was used as 

described in ASTM D5084-10. 

Permeability test results are summarized in Table 2.3. 

Table 2.3. Summary of saturated hydraulic conductivity values 

Depth 

(cm) 
ɣd 

(kN/m3) 

Effective Confining 
Stress  
(kPa) 

Hydraulic 
Gradient 

Saturated Hydraulic 
Conductivity 

(cm/sec) 

35-65 14.3 35 21.5 2.82e-6 

65-120 15.6 35 22.3 8.50e-7 

Compacted 17.3 35 13.3 6.42e-7 

 

2.6.3 Unsaturated seepage analysis considering a cracked layer 

Unsaturated seepage analysis was implemented using an atmospheric loading condition 

on the ground surface of the Chickasha slope. The initial condition of the slope in terms 

of soil moisture content was similar to the initial readings from three volumetric 

moisture content sensors located at depths of 0.3, 0.9, and 1.8 m from the ground 

surface. The moisture contents for the deeper layers were assumed to be close to 

saturated moisture content. The initial moisture distribution is shown in Figure 2.26 

based on the volumetric water content, which is the product of gravimetric water 

content and dry unit weight of the soil layer. In order to examine the effect of 

desiccation cracking on the seepage of water, the slope was divided into two layers 

(cracked and intact) using the crack depth estimation. A cracked layer with a thickness 
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equal to the desiccation crack depth obtained from the analytical and numerical models 

(Appendix A) was specified on the upper part of the slope, which was extended from the 

crest to the toe of the slope. The rest of layers of the slope were specified as intact soil 

with original properties. An application of the discrete crack model and the equivalent 

permeability method for the cracked layer was examined in a seepage analysis of the 

Chickasha slope using the SVFLUX finite element program. A ratio of crack spacing to 

crack depth equal to 1 was assumed to consider the impact of desiccation cracks on the 

seepage analysis. This assumption was based on the crack pattern observed in the field 

by other researchers (Knight 1971 and Elias et al. 2001). The saturated permeability of 

the single crack and equivalent layer were assigned to be 2.6x10-3 and 2.6x10-6 m/s for 

the seepage analysis, respectively. These values were obtained based on the transient 

seepage analysis of the simple model discussed in section 2.5.3.  A real boundary 

condition including a combination of rainfall and evaporation was specified on the slope 

surface. Input data for the analysis was collected from the weather station installed at 

the Chickasha slope (from Aug. 2012 to Jun. 2014). The location of weather station was 

close to the crest of the slope. The captured data from the local weather station were 

supplemented, where data errors or missing data occurred, using nearby Oklahoma 

Mesonet data (Chickasha Station). Input weather data are shown in Figures 2.27 and 

2.28. The potential evaporation (PE) and actual evaporation (AE) were used based on 

the Penman (1948) and Wilson-Penman (1994) equations to determine net infiltration 

at the boundary under atmospheric loading. The net solar radiation required for the 
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equations was obtained from the total radiation, which was already collected from the 

weather station, according to the equation proposed by Irmak et al. (2003).  

The actual and predicted moisture variations at the depth closest to the ground 

surface (e.g. 0.3 m) show greater fluctuations than the deeper layers as shown in Figure 

2.29. This is consistent with the expectation that the surface layers are more influenced 

by the seasonal climate than the deeper layers.  

As shown in Figure 2.29, including the influence of cracks in the unsaturated 

seepage model, as opposed to assuming an intact surface layer, resulted in more rapid 

wetting of the soil and larger predicted moisture contents. Modeling the cracked layer 

with a higher equivalent permeability resulted in larger predicted moisture contents 

that were generally closer to the field values, compared to using the intact permeability, 

but did not capture the fluctuations observed in the field.  The predicted moisture 

contents for the slope modeled with a set of single cracks was closest to those based on 

field measurements and better captured the fluctuations seen in the field values. This 

suggests that including discretely modeled cracks in an unsaturated seepage analysis 

can provide a realistic approach to estimating variations in moisture contents over time. 
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Figure 2.26. Initial volumetric moisture content distribution and geometry of Chickasha slope  

 

 

 

Figure 2.27. Rainfall data for Chickasha slope 
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Figure 2.28. Evaporation data from Aug. 2012 to Jun. 2014, (a) relative humidity, (b) average 
air temperature, (c) total solar radiation, (d) wind speed 
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Figure 2.29. Measured and Predicted Soil Moisture Changes for Intact and Cracked Slope at 

Three Different Depths (a) 0.3 m, (b) 0.90 m, and (c) 1.80 m 

2.6.4 Unsaturated slope stability analysis considering a cracked layer 

Slope stability analysis was performed through the limit equilibrium method using the 

SVSLOPE program developed by SoilVision Systems Ltd. (2012). The results of slope 
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stability analysis using SVSLOPE provided a factor of safety based on the force or 

moment equilibrium on the slip surface. The factor of safety for slope stability analysis 

is defined as the ratio of the soil shear strength to the shear stress generated on the slip 

surface. 

Pore water pressures predicted via unsaturated seepage analysis based on 

discrete cracks and equivalent layer models, as described above using weather data, 

were used in the slope stability analyses. Both positive and negative (suction) pore 

pressures were predicted, depending on seasonal weather variations, and included in 

the slope stability analysis. The effect of desiccation cracking on shear strength was 

simulated in the slope stability analysis by assuming the effective stress cohesion 

intercept of the cracked soil was zero. It has been suggested that shear strength of soil 

subjected to cycles of drying and wetting is simulated by normally consolidated 

conditions (Kayyal and Wright 1991) with zero cohesion.   

The mechanical properties of the soil layers used for the slope and the geometry 

obtained from an optical survey measurement taken at the site are shown in Figure 2.30. 
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Figure 2.30. Geometry and mechanical properties of Chickasha embankment (slope) 
 

The two variables that were varied in the analysis were the pore pressure distributions 

corresponding to the transient seepage analysis and the effective stress cohesion 

intercept (c).  

Analyses were run using c as determined from the laboratory direct shear tests 

and with c equal to zero for the near surface soils in the analysis of both the cracked 

and uncracked slopes. To investigate the effect of only pore pressure distributions on 

the slope stability analyses the same strength parameters were used in both cracked 

and uncracked near surface soil layers.    

The temporal variations of factor of safety for the intact slope and cracked slope 

using the two methods, including equivalent and discrete cracks method of unsaturated 

seepage modeling, are shown in Figure 2.31. The factor of safety for the slope where 

unsaturated seepage analysis was modeled without cracks, is shown for comparison. In 

Figure 2.31, the minimum factor of safety was achieved when the pore pressures in the 

slope were predicted using the equivalent permeability model for the cracked layer. 
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Temporal variations of factor of safety indicate that stability analysis of a cracked slope 

with the concept of equivalent layer can result in the critical condition for the slope, 

which is the sliding failure of slope based on the field observations. 

 

 

Figure 2.31. Factor of Safety for intact slope, slope with discrete cracks, and slope with an 
equivalent cracked layer 

 
Figures 2.32 to 2.34 show the critical factors of safety at the same slip surfaces, which 

touched the bottom of the cracked layer in the slope. The minimum amount of factor of 

safety was for the slope modeled with the equivalent layer as shown in Figure 2.34. A 

summary of slope stability analysis using the calculation of the critical factor of safety is 

shown in Table 2.4. The effect of pore water pressure distribution with and without 

effective cohesion intercept for the upper layer on the slope stability analysis indicated 

that the slope failure considering both two variables (e.g. pore water pressure 
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distribution and effective cohesion intercept) was more likely to happen during the 

service life of the slope. 

 

Figure 2.32. Critical Factor of Safety using circular slip surface for intact slope 
 

 

Figure 2.33. Critical Factor of Safety using circular slip surface for cracked slope (discrete 
crack model)  
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Figure 2.34. Critical Factor of Safety using circular slip surface for cracked slope (equivalent 
layer model) 

 

 

Table 2.4. Summary of slope stability analysis 

 
Slope seepage 

model 

Factor of Safety 

Cracked layer with 
Cohesion  

Cracked layer without 
Cohesion 

No crack 4.1 3.3 

Discrete Cracks 2.4 1.9 

Equivalent Layer 1.7 0.84 
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CHAPTER 3: Interface behavior between unsaturated soil and geomembranes 

3.1 Background 

Due to being relatively impermeable, geomembranes are employed in a variety of 

environmental, geotechnical, hydraulic, transportation, and private development 

projects such as dams, landfills, reservoirs, etc. Geomembranes at the best level of their 

performance divide soil layers into two separate parts with different moisture contents 

to prevent liquid or gas flow from top layer to the underlying soil. Shear strength 

parameters such as friction angle and cohesion of the interface between geomembrane 

and soil are needed to assess the stability of facilities involving such a material. Failures 

occurred in landfills across the world studied by Mitchell et al. (1990), and Koerner and 

Soong (2000), illustrated the importance of interface mechanical behavior on stability. 

The studies conducted indicated that the low friction angle between the geomembrane 

and soil, as compared to internal friction angle of soil, was one of the triggering causes 

of the failures. Landfill failure occurred in Kettleman City, California included a lateral 

displacement and vertical settlement of up to 10.7 m and 4.3 m, respectively. The most 

critical interface characteristics among the multilayers system of liners were recognized 

between high-density polyethylene (HDPE) geomembrane and geonet, HDPE 

geomembrane and geotextile, and HDPE geomembrane and saturated compacted clay. 

The type of surface failure for the landfills lined with geomembrane studied by Koerner 

and Soong (2000) were translational above or below the geomembrane and the main 

triggering mechanism of the failures were attributed to an excess pore water pressure 

generated at interface between the geomembrane and the underlying clayey soil. Thus, 



 

61 
 

it is crucial to understand and assess the interface shear strength parameters between 

the geomembrane and soil at different conditions using proper testing programs.  

A common testing program to obtain the interface shear strength parameters 

is conducted using pull out, direct shear, and ring shear or rotational shear apparatuses. 

These devices vary from the geometry and boundary conditions to the load application. 

A pull-out machine is a large direct shear box, which used to measure a peak and 

residual shear strength of interfaces by applying a relatively large horizontal 

displacement. A direct shear device is a standard machine introduced by ASTM D5321-

02 and D6243-06, to assess the frictional behavior of interfaces between soil-

geosynthetics or geosynthetic-geosynthetic, respectively. A rotational shear device 

provides a relatively large displacement without the need of a directional reversal. In 

addition to these common devices a circular arc test developed by developed by 

Ghiassian et al. (1997), which is based on a variation of tension created on a circular arc 

of geosynthetic installed over soil in the presence of dead load on two ends.  

Interface mechanisms that produce shearing resistance between 

geomembrane and soil include: sliding, adhesion, rolling of soil particles, interlocking 

of soil particles and geomembrane surface, plowing of soil particles into geomembrane 

surface, negative pore water pressure or suction in the interface (Jogi, 2005). Normal 

stress, compaction conditions, consolidation, shear displacement rate, type of 

geomembrane, soil particle shape and property, and testing set-up are testing 

parameters that influence these shearing resistance mechanisms. Previous interface 

test results showed that a non-linear relationship existed between the interface shear 
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strength and normal stress for a wide range of normal stress.  Dilation or expansion 

developed at the interfaces during shearing at lower normal stresses was cited as a 

reason for increases in the interface friction angle by Koutsourais et al. (1991). Thus, 

the range of normal stress used to obtain the interface friction angle must correspond 

with the field application. For example, an interface friction angle for a cap or landfill 

cover would be certainly different from the landfill base liner due to the various amount 

of normal stresses. Swan et al. (1991) showed the effect of compaction conditions in 

terms of dry unit weight and moisture content on the interface behavior of smooth 

geomembrane and clayey soil. They concluded that the increase of dry unit weight and 

water content can lead to increase of the friction angle and peak shear strength of 

interface. Seed and Boulanger (1991) also indicated that minor changes in dry unit 

weight and water content can lead to increase of two times or more for interface 

friction angle between smooth geomembrane and as-compacted clay liner. The effect 

of rate of shear displacement on the interface shear strength was studied by Fishman 

and Pal (1994). They concluded that a smooth geomembrane-clayey soil interface peak 

shear strength was not influenced by the rate of displacement. In contrast, a textured 

geomembrane-clayey soil interface was sensitive to the rate of shear displacement, 

which included a range from 12.7 mm/min to 0.005 mm/min. The high rate of 

displacement caused an increase in the observed cohesion for the interface between 

textured geomembrane and clayey soil.  

The shearing process immediately after applying the normal stress simulates a 

fast loading condition insufficient for dissipation of excess pore water pressures and an 
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undrained-unconsolidated condition can occur. The investigation conducted by Gomez 

and Filz (1999) on the interface between smooth geomembrane and compacted clayey 

soil showed that the interface shear strength can increase due to the consolidation of 

the clay layer.  

Koerner et al. (1986) collected a dataset based on interface shear strength 

between different types of geomembranes and cohesive soils. The cohesive soils were 

at degrees of saturation less than 100% and sheared in a drained condition without any 

control in pore water pressure. The interface friction and adhesion between the 

geomembranes and soils were less than those that exist between soil particles. 

However, geomembranes with soft or very hard surfaces indicated higher shear 

parameters due to change of shear plane from the geomembrane-soil interface to the 

soil-soil interface. 

The effect of plasticity index on the shear strength of clayey soil and interfaces 

between soil and geomembrane (Textured and smooth PVC) was studied by Ling et al. 

(2001). The soils were prepared under as-compacted conditions and were similar to the 

field condition at the beginning of the test. Results were inconclusive in that they 

showed an increase in friction angle followed by a decrease with increasing plasticity 

index whereas the cohesion intercept increased with increasing of plasticity index.  

The shear strength parameters of clay-smooth and textured HDPE interfaces 

were investigated by Fishman and Pal (1994). Clayey samples were prepared at partially 

saturated conditions and sheared without any control in pore water pressure during the 

shearing process. Tests indicated that the geomembrane-clay interface shear strengths 
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in unsaturated conditions could increase compared to those at the saturated conditions 

during shearing. 

Monteiro et al. (2013) employed smooth and textured geomembranes to study 

their interface behavior with sandy soil at different degrees of saturation. They showed 

that the effect of the degree of saturation on the interface friction angles was small or 

negligible. As expected, the friction angle between the textured geomembrane and the 

sandy soil was higher compared to the smooth geomembrane interface. 

Interface shear tests on smooth geomembrane-soil interfaces were performed 

by Fleming et al. (2006) using a modified direct shear apparatus installed with a 

miniature pore pressure transducer (PPT). Using the PPT, pore water pressure changes 

close to geomembrane-soil interface were measured during the shearing process, thus 

making it possible to analyze test results in terms of effective stresses. Since the 

miniature pore water pressure transducer was able to capture the suction at a low range 

(up to 30 kPa), a sandy soil having low suction was used. At lower normal effective 

stresses, however, it was possible to predict interface shear strength values using 

unsaturated soil mechanics concepts and matric suction measured in the vicinity of the 

geomembrane–soil interface during the shearing process. At high normal stresses, the 

use of unsaturated soil mechanics concepts resulted in calculated shear strength values 

that were significantly lower than the measured values. 

An examination of the change in surface roughness of the geomembrane 

surface strongly indicated that at higher normal stresses, the failure mechanism 

changed from pure sliding to a combination of sliding and plowing (Fleming et al. 2006). 
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It appeared that soil particles embedded partially into the geomembrane surface 

plowed trenches in the surface of the geomembrane during shear displacement under 

higher normal stress. As a result, additional shear strength was mobilized at the 

interface in addition to that mobilized by frictional sliding.  

To better interpret the experimental results of soil-geomembrane interface, it is 

necessary to establish a constitutive model. Gilbert and Byrne (1996) used a linear 

relationship between shear stress and shear displacement in order to quantify the 

magnitude and rate of strain-softening for selected containment system interfaces such 

as geomembrane-clay soil, geomembrane-geotextile interfaces.  

Reddy et al. (1996) used a hyperbolic model proposed by Clough and Duncan 

(1969) to predict the geomembrane-geotextile interface behavior. The relationship 

between shear stress and relative shear displacement at the interface was nonlinear and 

stress dependent. Esterhuizen et al. (2001) developed a constitutive model based on 

displacement-softening and work-softening models. The above-mentioned models 

were used to assess the clay-geomembrane interface behavior at constant and 

increasing normal stresses during shearing, respectively.  

Hu and Pu (2003, 2004) proposed two constitutive models to assess the 

mechanical behavior of a rough interface such as hardening, softening, and shear 

dilatancy with nine and ten parameters, respectively. Seo et al. (2004) proposed two 

constitutive models for pre-peak and post-peak behavior of a geomembrane-geotextile 

interface. The first was the combined model, which was a modified displacement-

softening model proposed by Esterhuizen et al. (2001); the second was a Disturbed State 
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Concept (DSC) model, which takes into account the disturbance of a material subjected 

to a force using a disturbance function coupling the initial relative intact state and the 

fully adjusted state of a material.   

Zhou and Lu (2009) proposed a 2-D constitutive model based on the generalized 

potential theory. The strain-softening and dilation of interface in the model was 

considered and verified using sand-rigid materials interface results. Anubhav and 

Basudhar (2010) used a non-linear constitutive model to predict the interface behavior 

between soil and woven geotextile. The model was able to capture the interface shear 

strength parameters over the complete stress-displacement ranges. Back analysis from 

the experimental tests was used to develop the simplified model.  

In addition to the material models, many researchers have created models to 

address specific boundary value problems of interest to geotechnical engineers. For 

example, Wu and Shu (2012) proposed a method based on a combination of the limit 

equilibrium method and numerical analysis to model the stability of an earth dam 

considering the geomembrane and soil interaction. They have found that the interface 

shear strength, the deformation of dam, and relative shear displacement are the main 

factors in impacting the factor of safety.  

A model of progressive failure for typical municipal solid waste liners was used 

by Filz et al. (2001) in finite element analysis and the results were compared to those 

from the limit equilibrium method, which is not able to consider the progressive failure. 

The parametric studies of seven different cases indicated that an increase of about 10 
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% from the residual to peak shear strength would be a safe margin for designing 

municipal solid waste liners. 

It is clear from the preceding literature review that significant work has focused 

on soil-geomembrane interface behavior. However, to truly understand the mechanical 

behavior of this interface, the constitutive behavior, i.e. shearing behavior, must be 

examined under controlled stress conditions in the unsaturated state. In this way, the 

important of net normal stress and matric suction can be appreciated, and constitutive 

models of the behavior under varying states of saturation can be developed. The work 

described in this chapter begins to fill in this gap in knowledge by providing an 

experimental data set from suction controlled testing of unsaturated soil-geomembrane 

interfaces. In addition, a constitutive model developed for unsaturated soil-interfaces is 

evaluated using these data. 

3.2 Unsaturated Geomembrane-Soil Interface testing 

3.2.1 Material and Sample Preparation 

The modified direct shear apparatus developed by Hamid (2005) was used to conduct 

the unsaturated shear interface tests. A medium plastic soil, obtained from the 

Chickasha, Oklahoma embankment described previously, was selected as a test 

specimen.  The Chickasha soil had a liquid limit, LL=38%, plastic limit, PL=20%, plasticity 

index, PI=18%, and 89.4% fines (49.4% silt and 40% clay). This soil was selected because 

it has been the focus of significant study at OU and it has characteristics that are 

consistent with those required for a compacted clay liner (Koerner and Daniel 1997). 

Often, compacted clay liners are placed above in contact with geomembranes to 
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produce a composite liner for retaining waste and leachate in sanitary and hazardous 

waste landfills.  

The maximum dry unit weight measured by a standard proctor test was 17.3 

kN/m3 and optimum moisture content (OMC) was 18%. The specimens for interface 

tests were prepared at 95% of maximum dry unit weight and 3% wet of optimum 

moisture content. These compaction criteria are consistent with specifications for 

compacted clay liners. The specimens were placed in a humid room for 24 hours to 

have a specimen with uniformly distributed moisture. 

Two high density polyethylene (HDPE) geomembranes with different surface 

roughness were selected for interface tests with soil. Geomembranes with textured 

and smooth surfaces were cut circularly in the machine direction (MD) from the roll 

donated by GSE Company as shown in Figure 3.1. 

 
Figure 3.1. Textured geomembrane cut and rolled (a) and smooth geomembrane cut and 

rolled (b) 
 

The mechanical specifications of geomembranes are shown in Table 3.1. The 

circular specimens were glued to a steel plate with an adequate thickness to fill the 
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lower half of the shear apparatus and the upper half was filled with prepared soil 

compacted to the target dry unit weight. Soil was placed in three lifts inside the upper 

half the shear box and compacted using a tamping rod to achieve the target density 

(volume based compaction). 

The roughness of the geomembranes was characterized using the surface 

roughness definition proposed by Uesugi and Kishida (1986), and was employed for the 

geomembrane’s surfaces as follows: 

𝑅𝑛 =
𝑅𝑚𝑎𝑥

𝐷50
⁄                        (3.1) 

Where, 𝑅𝑚𝑎𝑥 is the maximum peak to valley height, and 𝐷50 is the grain size diameter 

corresponding to fifty percent finer. The maximum peak to valley height for smooth 

geomembrane was assumed to be 0.0045 mm, which was compatible with that 

measured by Dove et al. (1996) using tapping mode atomic force microscopy. They have 

obtained mean value and standard deviation for a surface of smooth HDPE 

geomembrane at a scale comparable to fine-grained soil particles. The maximum value 

was calculated using the following equation: 

𝑅𝑚𝑎𝑥 = 𝑅𝑎 − 2𝑅𝑞                       (3.2) 

Where, 𝑅𝑎 is the mean value, which was 0.005 mm, and 𝑅𝑞 is the standard deviation, 

which was 2e-4 mm. 𝑅𝑚𝑎𝑥 for the textured geomembrane was approximated by 

measuring the geomembrane peak-valley distance using a caliper, which was 0.45 mm. 
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Table 3.1. Properties of the smooth and textured geomembranes  
used in the interface shear tests 

Property Test Method 
Geomembrane 

Smooth Textured 

Thickness (mm) ASTM D5994 
1.00 

nominal 
1.00 

nominal 

Density (g/cm3) ASTM D1505 0.94 0.94 

Carbon Black content (%) ASTM D1603/4218 2-3 2-3 

Elongation at break (%) ASTM D6693 700 100 

Tensile Strength at break 
(N/mm) 

ASTM D6693 27 10 

Tear resistance (N) ASTM D1004 125 125 

Puncture resistance (N) ASTM D4833 320 267 

 

3.2.2 Unsaturated geomembrane and soil interface testing procedure 

The assembled shear box containing the interface test specimen was installed in the 

Direct Shear Test (DST) air pressure chamber. A sketch of the DST chamber containing 

the test specimen is shown in Figure 3.2 (after Khoury et al. 2011). A high air entry 

porous disc (HAEPD) saturated with de-aired water was installed on top of the 

specimen. Drainage lines connected to the pore water pressure controller and the 

diffused air volume indicator (DAVI) were attached to the inlet and outlet ports of the 

HAEPD, respectively. A seating load of 10 kPa was applied to the specimen in order to 

minimize movement of upper half of the shear box due to making the required gap 

between the upper and the lower halves of the shear box before the shearing process. 

A gap equal to 10-20 times of D50 of the soil was created approximately 30 minutes 

after placing the seating load. The DST air pressure chamber is isolated from outside 

using a lid equipped with 16 screws. 
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Pore water pressure is controlled through the inlet port of the saturated HAEPD 

installed on the top of the specimen. Air pressure is controlled through the inlet port in 

the lid of the chamber.  The difference between pore water and air pressure is adjusted 

using the digital and manual regulators to reach the target suction value. 

 

Figure 3.2. Schematic cross section of the test chamber and shear box (from Khoury et al. 
2011) 

 

An equilibrium state is required before starting the final consolidation. The 

equilibrium state is defined when the amount of vertical displacement of the specimen 

and the volume of water exiting from the specimen after apply the suction reach a 

constant value, indicating there is a negligible amount of change in total volume of the 

specimen and water volume. After reaching equilibrium, a gradual increase of vertical 

stress, using the increments of 10 kPa every 30 minutes, was applied on the top of the 

specimen until the target value of net normal stress was achieved. The end of 

consolidation is defined as the time when there is negligible change in volume of soil 

after reaching the target net normal stress. 
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The target values of suction according to test matrix shown in Table 3.2 were 

obtained through applying a constant pore water pressure of 40 kPa, and air pressures 

of 240 and 440 kPa for the target suction values of 200 and 400 kPa, respectively. The 

effect of strain rate on the shear behavior was investigated by comparing results of 

selected tests conducted at two different displacement rates. The displacement rates 

selected were based on results reported in the literature for direct shear testing of fine-

grained cohesive soils. The effect of strain rate on the shear strength behavior was 

examined only for 200 kPa suction.  

Table 3.2. Test matrix of unsaturated geomembrane-soil interface tests 

Geomembrane-
Test 

Net normal 
stress 
(kPa) 

Suction 
(kPa) 

Displacement 
rate 

(mm/min) 

Textured-1 25 200 5e-3 

Textured-2 50 200 5e-3 

Textured-3 75 200 5e-3 

Smooth-1 25 200 5e-3 

Smooth-2 50 200 5e-3 

Smooth-3 75 200 5e-3 

Textured-4 25 200 5e-4 

Textured-5 50 200 5e-4 

Textured-6 75 200 5e-4 

Smooth-4 25 200 5e-4 

Smooth-5 50 200 5e-4 

Smooth-6 75 200 5e-4 

Textured-7 25 400 5e-4 

Textured-8 50 400 5e-4 

Textured-9 75 400 5e-4 

Smooth-7 25 400 5e-4 

Smooth-8 50 400 5e-4 

Smooth-9 75 400 5e-4 
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3.3 Saturated geomembrane-soil interface testing  

3.3.1 Material and sample preparation  

A conventional small direct shear device with the same shear box shape as that used 

for the unsaturated condition was employed to conduct the saturated interface shear 

tests. The specimens for saturated testing were prepared in the same manner as 

unsaturated specimens.  

3.3.2 Saturated geomembrane-soil interface testing procedure  

A seating load of 10 kPa was applied to the specimen to keep the position of soil while 

making the required gap before the shearing process. The specimen within the shear 

box was submerged in water for 24 hours and then a target value of normal stress 

according to the test matrix shown in Table 3.3 was applied to the specimen for 24 

hours. The vertical displacements during the saturation and consolidation conditions 

indicated that the elapsed time for each phase (saturation and consolidation) were 

adequate to reach the equilibrium states. The shearing phase was started after making 

a required gap, which was similar to the unsaturated interface shear test.  

Table 3.3. Test matrix of saturated soil-geomembrane interface tests 

Geomembrane-Test 
Net normal stress 

(kPa) 
Displacement rate 

(mm/min) 

Textured-1 25 5e-4 

Textured-2 50 5e-4 

Textured-3 75 5e-4 

Smooth-4 25 5e-4 

Smooth-5 50 5e-4 

Smooth-6 75 5e-4 
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3.4 Saturated and unsaturated soil-soil interface testing  

A series of modified and conventional direct shear tests on soil only was conducted to 

compare the results with interface shear tests between the soil and geomembrane at 

the same stress conditions. To keep the consistency, the soil specimens were prepared 

in a manner similar to the interface tests. A summary of the test matrix is shown in 

Table 3.4 for saturated and unsaturated soil-soil direct shear tests. A difference 

between soil-soil direct shear tests and geomembrane-soil interface tests is that in the 

case of soil-soil DSTs, pore water pressure drainage lines connect to the HAEPD is the 

pedestal of the top cap. Also, both the lower and upper half of the shear boxes were 

filled with the compacted soil for soil-soil DSTs. 

Table 3.4. Test matrix of saturated and unsaturated soil-soil direct shear tests   

Condition-Test 
Net normal stress 

(kPa) 
Suction 

(kPa) 
Displacement 

rate (mm/min) 

Saturated-1 25 0 5e-4 

Saturated-2 50 0 5e-4 

Saturated-3 75 0 5e-4 

Unsaturated-1 25 200 5e-4 

Unsaturated-2 50 200 5e-4 

Unsaturated-3 75 200 5e-4 

Unsaturated-4 25 400 5e-4 

Unsaturated-5 50 400 5e-4 

Unsaturated-6 75 400 5e-4 
 
 

3.5 Results of unsaturated geomembrane-soil interface tests 

This section presents the results of interface tests under unsaturated conditions in a 

modified direct shear box. The effect of net normal stress (n-ua), suction (ua-uw), rate 

of displacement, and roughness on the horizontal stress-displacement and volumetric 

behavior of unsaturated interfaces are discussed. 
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3.5.1 Effect of net normal stress 

A series of net normal stresses including 12.5, 25, 50, and 75 kPa was selected to 

investigate the effect of net normal stress on the shear strength and volumetric behavior 

of interfaces, which are presented in this section. Interface test results are plotted in the 

form of shear stress and vertical displacement evolution during shearing and in the form 

of water and specimen volume changes during shearing. The results presented in this 

section correspond to a matric suction of 200 kPa and a displacement rate of 0.005 

mm/min.   

3.5.1.1 Effect of net normal stress on textured interface behavior 

According to Figures 3.3 and 3.4, the peak shear stress and residual stress of the 

interface between textured geomembrane and test soil showed an increase with 

increase in net normal stress. Dilation, or increase in volume during shearing, was more 

pronounced at lower net normal stresses. The specimens subjected to lower net normal 

stresses (e.g. 12.5 and 25 kPa) experienced more strain-softening behavior compared to 

higher net normal stresses (e.g. 50 and 75 kPa). The peak shear stress reached after low 

amount of shear displacement equal to approximately 1 mm especially for low range of 

net normal stress. The residual shear stress condition appeared as a flat line after 

approximately 3 up to 4 mm displacement in the shear stress-horizontal displacement 

curves and the dilation process was stopped. 

During shear process, a small volume of water tended to be drained out from 

the soil specimen even during dilation. The tendency of water drainage was lower when 

the dilation was higher as shown in Figure 3.5. It is believed that disruption of the air-
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water interface (i.e. menisci) among the soil particles tends to increase the pore water 

pressure as the soil dilates and this tends to a decrease the suction and thus, water must 

drain as pressure control system maintains constant suction (drained test). 

 

Figure 3.3. Shear stress changes during shearing at different net normal stresses for a matric 
suction of 200 kPa for textured geomembrane interface  
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Figure 3.4. Vertical displacement versus horizontal displacement at different net normal 
stresses for a matric suction of 200 kPa for textured geomembrane interface 

 
 

 
Figure 3.5. Water volume change versus horizontal displacement at different net normal 

stresses for textured geomembrane interface 
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3.5.1.2 Effect of net normal stress on smooth interface behavior 

According to Figures 3.6 and 3.7, the peak shear stress and residual shear stress of the 

interface between smooth geomembrane and test soil increased with increase in net 

normal stress. Samples showed a strain-softening behavior during the shearing process. 

Observations from the vertical displacement versus horizontal displacement curves 

indicate that a small amount of dilation occurred at the beginning of shearing followed 

by contraction. The curves are somewhat irregular, but it is clear the amount of 

contraction tended to be greater as net normal stress (e.g. 75 kPa) increased. The shear 

stress reached a peak value at very low horizontal displacement equal to approximately 

0.5 mm during the shearing process. The post-peak shear stress occurred after 

approximately after 4 mm for all specimens subjected to different net normal stresses. 

As opposed to the rough interface tests, the unsaturated smooth interface tests 

indicated a similarity to some extent to expected volume changes for drained saturated 

soils, as shown in Figure 3.8. In the saturated condition during shearing, dilation points 

out a tendency for the development of matric suction, thus water tends to enter the soil 

specimen to maintain constant pore water pressure. In contrast with dilation, 

contraction indicates a tendency for generation of positive pore water pressure, thus 

water tends to exit from the specimen during shearing to maintain constant pore water 

pressure. 
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Figure 3.6. Shear stress changes during shearing at different net normal stresses for a matric 

suction of 200 kPa for smooth geomembrane interface  

 
Figure 3.7. Vertical displacement versus horizontal displacement at different net normal 

stresses for a matric suction of 200 kPa for smooth geomembrane interface 
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Figure 3.8. Water volume change versus horizontal displacement at different net normal 
stresses for a matric suction of 200 kPa for smooth geomembrane interface  

 

3.6 Effect of shear displacement rate 

The effect of different rates of displacement (e.g. 0.005 and 0.0005 mm/min) on the 

shear strength and volumetric behavior of soil and interfaces was investigated in this 

section. Interface and soil test results are plotted in the form of shear stress and vertical 

displacement evolution during shearing as shown in Figures 3.9 to 3.14. The results 

presented in this section represent a matric suction of 200 kPa and different net normal 

stresses of 25, 50, and 75 kPa. 

 3.6.1 Effect of rate of shear displacement on textured interface behavior 

According to Figures 3.9 and 3.10, the peak shear stress at the interface between 

textured geomembrane and test soil showed a decrease with increasing rate of shear 

displacement. The shear stress increased less and exhibited lower stiffness for the 

interfaces subjected to low rate of shear displacement (0.0005 mm/min), compared to 



 

81 
 

those obtained from the high shear displacement rate (0.005 mm/min). The dilatancy 

of the tests conducted at the high shear displacement rate was also more pronounced 

than the ones conducted at the low shear displacement rate. The variation of peak shear 

strength and net normal stress indicated that cohesion intercept and friction angle of 

the low shear displacement tests were considerably less than those obtained from the 

high shear displacement tests as shown in Figure 3.11. 

 
Figure 3.9. Shear stress changes during shearing at different strain rates for textured 

geomembrane-soil interface for a matric suction of 200 kPa  
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Figure 3.10. Vertical displacement versus horizontal displacement at different strain rates for 
textured geomembrane-soil interface  

 

 
Figure 3.11. Extended Mohr-Coulomb envelope during a constant suction test at different 

displacement rates for textured geomembrane-soil interface for a matric suction of 200 kPa  
 

3.6.2 Effect of rate of displacement on smooth interface behavior 

According to Figures 3.12 and 3.13, the effect of shear displacement rate on the peak 

shear stress was not as apparent for the interface between smooth geomembrane and 
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test soil. The strain-softening behavior for the samples subjected to the low shear 

displacement rate (0.0005 mm/min) was slightly more pronounced than those at the 

high shear displacement rate (0.005 mm/min). The shear stress reached almost the 

same peak value for both rates but the slope of variations was steeper for the high 

displacement rate compared to the low displacement rate. However, the vertical 

displacement during the shearing process shows that tendency for dilation was lower 

when the shear displacement rate decreased. As shown in Figure 3.14, there was no 

considerable change in the variation of peak shear stress against net normal stress for 

the selected displacement rates. 

 
Figure 3.12. Shear stress changes during shearing at different strain rates for smooth 

geomembrane-soil interface for a matric suction of 200 kPa 
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Figure 3.13. Vertical displacement versus horizontal displacement at different strain rates for 

smooth geomembrane-soil interface for a matric suction of 200 kPa 
   

 

 
Figure 3.14. Extended Mohr-Coulomb envelope during a constant suction test at different 

displacement rates for smooth geomembrane-soil interface for a matric suction of 200 kPa  
 

3.7 Effect of suction 

Matric suction values of 200 and 400 kPa was selected to investigate the effect of suction 

on the shear strength and volumetric behavior of soil and interfaces, which are 
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presented in this chapter. Interface test results are plotted in the form of shear stress 

and vertical displacement evolution during shearing as shown in Figures 3.15 to 3.16. 

Results presented in this section were recorded under constant net normal stress (e.g. 

50 kPa) using a displacement rate equal to 0.0005 mm/min. 

3.7.1 Effect of suction on textured interface behavior 

The variations of shear stress during the shearing process for interface between 

textured geomembrane and test soil under constant net normal stress are shown in 

Figure 3.15. The peak shear stress increased with increase of matric suction. A tendency 

to have a strain softening behavior was more pronounced in samples subjected to high 

suction. The samples experienced a contraction up to a horizontal displacement, in 

which the peak shear stress occurred and then dilated. The tendency for dilation was 

more pronounced for the samples under greater suction as shown in Figure 3.16.   

 
Figure 3.15. Shear stress changes during shearing at different suction for textured 

geomembrane-soil interface at net normal stress of 50 kPa 
 



 

86 
 

 
Figure 3.16. Vertical displacement versus horizontal displacement at different suction for 

textured geomembrane-soil interface at net normal stress of 50 kPa  
 
 

3.7.2 Effect of suction on smooth interface behavior 

In Accordance with Figures 3.17 and 3.18, the effect of matric suction on the smooth 

geomembrane and test soil interface was similar to that observed in textured interface 

shear tests. One difference was the peak shear stress was reached at a horizontal 

displacement of approximately 0.5 mm, which is about half of horizontal displacement 

experienced in textured interface shear tests. The tendency for contraction was more 

pronounced for the samples under lower suction compared to textured geomembrane-

soil interface tests.  
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Figure 3.17. Shear stress changes during shearing at different suction for smooth 

geomembrane-soil interface for a net normal stress of 50 kPa  

 

 
Figure 3.18. Vertical displacement versus horizontal displacement at different suction for 

textured geomembrane-soil interface  
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3.8 Results of saturated interface behavior 

This section presents the results of interface tests under saturated conditions conducted 

using a conventional direct shear box. The effect of normal stress on shear stress-

displacement and volumetric behavior of saturated interfaces are discussed.  

3.8.1 Effect of normal stress on saturated textured interface behavior 

The peak shear stress of the interface between textured geomembrane and test soil 

indicated an increase with increase in normal stress as shown in Figure 3.19. The 

contraction behavior of the specimen under higher normal stress was more noticeable 

during shearing as shown in Figure 3.20. 

 

 
Figure 3.19. Shear stress changes during shearing at different normal stresses for textured 

geomembrane-soil interface under saturated conditions  
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Figure 3.20. Vertical displacement versus horizontal displacement at different normal 

stresses for textured geomembrane-soil interface under saturated conditions  
 

3.8.2 Effect of normal stress on saturated smooth interface behavior 

The peak shear stress of the interface between smooth geomembrane and test soil 

occurred at the early stages of shearing and increased with increase of normal stress as 

shown in Figure 3.21. According to Figure 3.22, the volumetric behavior of smooth 

interface was analogous to that of the textured interface. 
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Figure 3.21. Shear stress changes during shearing at different normal stresses for smooth 

geomembrane-soil interface under saturated conditions 
 

 
Figure 3.22. Vertical displacement versus horizontal displacement at different normal 

stresses for smooth geomembrane-soil interface under saturated conditions  
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3.9 Unsaturated/saturated soil direct shear test results 

This section presents results of direct shear tests for soil specimens under both 

saturated and unsaturated conditions. The shear stress-displacement and volumetric 

behavior of the soil specimen under a suction of 200 kPa and zero kPa (or saturated 

condition) are discussed.  

3.9.1 Unsaturated soil direct shear test results 

The shear stress during soil direct shear testing reached a maximum value at a larger 

displacement than the textured and smooth interfaces for similar net normal stress, as 

seen when comparing Figure 3.23 to 3.3 and 3.6. Similar to unsaturated smooth and 

textured interface tests, the peak shear stress increased with increase of net normal 

stress. The dilation shown in Figure 3.24 was more pronounced when the results were 

compared to those from smooth and textured interface tests. 

 
Figure 3.23. Shear stress changes during shearing at different net normal stresses and 

suction=200 kPa for soil direct shear tests  
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Figure 3.24. Vertical displacement versus horizontal displacement at different net normal 

stresses and suction=200 kPa for soil direct shear tests  

3.9.2 Saturated soil direct shear test results 

The peak shear stress was reached at relatively small displacements during shearing for 

saturated soil-soil direct shear tests. The peak shear stress increased with increasing 

normal stress as shown in Figure 3.25. As shown in Figure 3.26, the volumetric behavior 

transitioned from dilation to contraction normal stress increased.   



 

93 
 

 
Figure 3.25. Shear stress changes during shearing at different net normal stresses and under 

saturated condition for soil direct shear tests 

 

 

Figure 3.26. Vertical displacement versus horizontal displacement at different net normal 
stresses and under saturated condition for soil direct shear tests 

 

3.10 Interface strength model for unsaturated conditions 

An extended Mohr-Coulomb failure criterion is used to predict the shear strength of the 

interface between soil and geomembrane under the unsaturated conditions. Shear 
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strength variations with respect to net normal stress and suction are predicted using 

some parameters obtained from the experimental tests. A constitutive model based on 

elastoplastic behavior of interfaces is employed to predict the shear strength and 

volumetric behavior of the interface between geomembrane and soil under constant 

net normal stress and suction.   

3.10.1 Extended Mohr-Coulomb criterion of unsaturated soil and interfaces 

The Mohr-Coulomb failure criterion can be extended for both unsaturated soils and 

interfaces. Fredlund and Rahardjo (1993) proposed an equation following the Mohr-

Coulomb failure criterion using as stress state variables; the matric suction and net 

normal stress, to predict the shear strength of soils under unsaturated conditions. An 

effective cohesion is substituted by an apparent cohesion into the conventional failure 

envelope equation. A normal stress is substituted by a net normal stress into this 

equation. The unsaturated shear strength equation is presented as follows:  

 ( u ) tan (u u ) tan b

a a wc                        (3.3)           

where, c’ is effective cohesion, ’ is effective friction angle with respect to net normal 

stress, b is friction angle with respect to matric suction, ( -ua) is net normal stress,  

(ua-uw) is matric suction, and is shear strength of soil.   

Miller and Hamid (2009) proposed a modified form of Equation 4.3 for interface 

shear strength between steel and soil under unsaturated conditions, as follows, 

𝜏 = c′′ + (σ − ua)tanδ′ + (ua − uw)tanδb                              (3.4) 

where,  is the friction angle with respect to net normal stress, b is friction angle with 

respect to matric suction and c is the effective adhesion intercept of the interface. 
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The failure envelopes are plotted in Figures 3.27 to 3.32 in the net normal stress-

shear strength and matric suction-shear strength planes for soil, soil-smooth 

geomembrane, and soil-textured geomembrane interfaces. In Figures 3.27, 3.29, and 

3.31, the slope of the failure envelope in the matric suction-shear strength plane yields 

the angle of internal friction with respect to suction for the interfaces and soil. The 

nearly parallel failure envelopes from the experimental results indicate that the average 

slope can be an adequate representation of angle of internal friction with respect to 

suction for the interfaces and soil.  In Figures 3.28, 3.30, and 3.32, the slope of the failure 

envelope in the net normal stress-shear strength plane yields the effective friction angle 

with respect to net normal stress for the interfaces. These failure envelopes were nearly 

parallel and the effective friction angles were determined as the average of the slopes 

for the interfaces and soil. The intercept of failure envelopes in the net normal stress-

shear strength plane at zero matric suction were used to determine the effective 

adhesion intercept of the interfaces and soil. These shear strength parameters for soil 

and interfaces are summarized in Tables 3.5 and 3.6. 
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Figure 3.27. Failure envelope projections of unsaturated textured geomembrane-soil 
interface on suction-shear strength plane  

 

Figure 3.28. Failure envelope projections of unsaturated textured geomembrane-soil 
interface on net normal stress-shear strength plane  
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Figure 3.29. Failure envelope projections of unsaturated smooth geomembrane-soil 
interface on suction-shear strength plane  

 

 
Figure 3.30. Failure envelope projections of unsaturated smooth geomembrane-soil 

interface on net normal stress-shear strength plane 
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Figure 3.31. Failure envelope projections of for unsaturated soil on suction-shear strength 

plane 
 

 

Figure 3.32. Failure envelope projections of unsaturated soil on net normal stress-shear 
strength plane 

 

Table 3.5. Unsaturated shear strength parameters (c, ’,b) for soil 

Material c’ (kPa) ’ (deg.) b (deg.) 

Soil 0.3 28.8 9.8 
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Table 3.6. Unsaturated interface shear strength parameters (c’’, δ′, δb)  
for soil-geomembrane interface 

Interface Type c’’ (kPa) ’ (deg.) b(deg.) 

Textured Geomembrane-Soil 4.5 23.4 2.4 

Smooth Geomembrane-Soil 1.1 18.6 1.2 

 

 

3.10.2 General elastoplastic constitutive model  

A constitutive model modified by Hamid (2005) was selected to capture the shear 

strength and volumetric behavior of the unsaturated interface between soil and 

geomembrane. The proposed model is based on the elastoplastic theory and takes into 

account non-associativeness and strain-softening behavior of interfaces. The 

incremental constitutive equations were derived based on the flow rule and the 

consistency condition.  

A computer code written in MATLAB by Hamid (2005) was modified for the back 

prediction of test results using the elastoplastic model. The resulting equations are 

expressed by:  

{d} = [Cep] {d}                     (3.5) 

where {d} = vector of incremental stresses and [Cep] = elasto-plastic constitutive matrix. 

The vector {d} represents increments of relative shear and normal displacements. The 

incremental form of the elasto-plastic stress-strain relation in the above equation can 

be written as, 

{d} = ([Ce] - [Cp]) {d}             (3.6) 
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where: [Ce] = is an elastic form of constitutive matrix and related to normal and shear 

stiffness of the interface. [Cp] is a plastic form of constitutive matrix and related to yield 

(F) and potential (Q ) and hardening (H) functions, which are defined using some 

experimental parameters as follows, 

 

    (3.7) 

 

 (3.8) 

 

 (3.9) 

 

 

where:     = yield function,    = shear strength,                         = net normal stress,          = 

bonding stress, which is the increase in the strength of the unsaturated interface with 

the increase in suction defined as                                                       ; the plot of )(sR versus 

)( wa uu  gives the slope )(s and intercept 
* . However, in this study and due to the 

observation that interface shear strength increased linearly with suction, )(sR was 

defined as a linear function of suction as 21))(()(   nwa RuussR  ; For each 

interface,  
* is plotted versus       (defined in Equation 4.1) which provides parameters

1 (slope) and 2  (intercept). A material parameter or s) that defines the limiting 

state of stress is calculated as follows:  
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                                                                               (3.10) 

 

where, p = peak shear strength, the intercept and slope of               versus Rn yield the 

material constants         and       , respectively.  

A non-associative flow rule is adopted in the model to correlate the volume 

change behavior and loading. Parameter s) is a hardening parameter that defines the 

evolution of the yield surface during deformation.  Dependency of parameters on matric 

suction is indicated by “s” and “n” is a phase change parameter related to a state of 

stress at which the material passes through a state of zero volume change. 

  (3.11) 

 (3.12) 
 
 
Parameters a, b, and        are functions of           and roughness ratio     .                                                                              

 , ;      , and      are the plastic displacements normal and 

tangential to the shearing surface, respectively, and       is a value of        when shear 

stress reaches its peak value. 

By modifying the growth function, s) in the yield surface, a potential function 

(    ) is proposed as follows:  

 (3.13) 

 

 (3.14) 

Where, and  is a material parameter (non-associative parameter) related to the 

normalized roughness, net normal stress, and suction. 
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D is a damage function,            and       are values of          at the phase change point and 

the initiation of the non-associativeness, defined as                                        

, respectively. 

                        , where       and     are the peak and residual shear stresses, respectively. 

The residual shear stress is related to      through the model parameter      as follows: 

                                                              , where         and        are the intercept and slope of 

the plot of      versus    . The determination and meaning of the model parameters are 

presented in the following sections. 

3.10.2.1 Ultimate or failure parameter 

The ultimate parameter or s) is a ratio of the peak shear strength of unsaturated 

interface to the sum of two stresses including the net normal stress and the bonding 

stress, which is the peak shear strength of interface with respect to suction. The 

variation of the root square of the ultimate parameter versus surface roughness 

determines two parameters of the model (p1 and p2), which are slope and intercept of 

the line shown in Figure 3.33. 
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Figure 3.33. Typical plot for determination of factors for ultimate parameter  

 
 

3.10.2.2 Bonding stress 

The bonding stress or         is a portion of interface peak shear strength, which is a 

function of matric suction. The linear variation of the bonding stress versus suction for 

different interfaces shown in Figure 3.34 provides two parameters, which are the 

intercept,
* , and the slope, )(s  , of the line.  The variation of the intercept versus the 

surface roughness gives two parameters of the model ( 1 and 2 ), which are the slope 

and the intercept of the line shown in Figure 3.35. 
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Figure 3.34. Typical plot for determination of factor for bonding stress 

 

 
Figure 3.35. Typical plot for determination of factors  and  2 for bonding stress 

 

3.10.2.3 Phase change parameter 

The phase change parameter or “n” is used to transition the vertical displacement from 

contraction to dilation during the shearing phase. The phase change parameter is 

obtained from the following equation, which is a modified form of equation proposed 

by Wathugala (1990).  
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𝛄𝐥
𝟏/𝟐

𝛄(𝐬)𝟏/𝟐
= [

(𝐧−𝟐)

𝐧
]

𝟏/𝟐
      (3-15) 

Where, 𝛾(𝑠)1/2 is the slope of the ultimate state, and 𝛾𝑙
1/2 is the slope of the line 

connecting the crest of all the yield surfaces. 

 

3.10.2.4 Hardening parameters 

ξD1
∗  , ξD2

∗  ,a, and “b” are the hardening parameters, which are obtained from the slope 

and the intercept of the lines shown in Figures 3.36 and 3.37. The experiments showed 

that the accumulation of plastic tangential displacement is the function of suction and 

surface roughness and it can be expressed as the following relationship:  

𝛏𝐃
∗ = 𝛏𝐃𝟏

∗ + 𝛏𝐃𝟐
∗ [𝑹𝒏 +

𝑹(𝒔)

𝑷𝒂
]         (3-16) 

 
Figure 3.36. Typical Plot for determination of factors for hardening parameter from the 

experimental results  
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Figure 3.37. Typical plot for determination of “a” and “b” as hardening parameters from 

rough interface test results 
 

3.10.2.5 Non-associative parameter 

The non-associative parameter or  is obtained from the procedure described by 

Navayogarajah (1990) and is determined using the following equation and Figure 3.38. 

𝜅 = −[𝛾(𝑠)]−
1

2 ∗ (
𝑑𝑣𝑝

𝑑𝑢𝑝)            (3.17) 

 
Figure 3.38. Typical plot for determination of κ for suction of 200 kPa for rough interface 
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3.10.2.6 Residual parameter 

Experimental results indicated that the residual shear stress was dependent on suction 

and net normal stress, therefore, the residual parameter,, is expressed based on the 

following relationship: 

𝝁𝟎 =
𝝉𝒓

[𝝈𝒏𝒆𝒕+𝑹(𝒔)]
= 𝝁𝟎𝟏 + 𝝁𝟎𝟐𝑹𝒏                                   (3.18) 

 

Where, 𝜇01 and 𝜇02 are the slope and the intercept of the line shown in Figure 3.39. 
 

 
Figure 3.39. Typical plot for determination of residual parameters 

3.10.3 Application of the constitutive model to the unsaturated soil-textured 
geomembrane interface test results 

The model parameters for the textured geomembrane-soil interface were obtained 

based on the procedure discussed in the previous section. A Summary of the constitutive 

model parameters is shown in Table 3.7. 
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Table 3.7. Model Parameters for the unsaturated textured geomembrane-soil Interface 

Parameter Value 

                               (mm) 0.51 

                               (mm) 0.007 

 0.41 

 0.001 

           n 2.1 

 2.6 

 -0.028 

 0.26 

 0.002 

        )(1 s  -0.1 

       )(2 s  10 

   a 60 

   b 4 

  nK (kPa) 365 

  sK (kPa) 35 

 

Figures 3.40(a)and 3.41(a) indicate a comparison between the predicted and measured 

results of shear stress () versus horizontal shear displacement (u) for the textured 

geomembrane-soil interface conducted in this study subjected to different suction and 

net normal stress values. The comparison revealed that the model was capable of 

capturing the behavior of the unsaturated textured geomembrane-soil interface with 

reasonable accuracy. The following observations were made with respect to the model 

results: 

1. The peak shear strength of textured geomembrane-soil interface increased 

with suction and net normal stress. However, the slope of predicted shear stress 

curves was observed to be different from the corresponding results of the 

experimental tests. 

2. Strain softening was more pronounced at higher suction and lower net 

normal stress values. 
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Figures 3.40(b) and 3.41(b) show the predicted and measured results of vertical 

displacement versus horizontal shear displacement (u) for different suction and net 

normal stresses. Important volume change behavior of unsaturated textured 

geomembrane-soil interfaces was captured using this model: 

1. Unsaturated textured geomembrane-soil interface predictions generally 

followed the overall trend (mostly dilation) of volume change behavior. 

However, in most cases experimental results showed a slight amount of 

compression following dilation that the model did not capture well. 

2. Specimens did not show any dilation in saturated conditions for both 

predicted and measured results. 
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Figure 3.40. A Comparison of Experimental and Predicted Results for Textured 
geomembrane and soil Interface Shear Test at Suction=200 kPa, shear strength behavior (a) 

and volumetric behavior (b). 
 
 
 

(a) 

(b) 
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Figure 3.41. A comparison of experimental and predicted results for textured geomembrane 

and soil interface shear test at net normal stress=50 kPa, shear strength behavior (a) and 
volumetric behavior (b). 

 

 

(a) 

(b) 
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3.10.4 Application of the constitutive model to the unsaturated soil-smooth 
geomembrane interface test results 

The model parameters for the smooth geomembrane-soil interface were obtained 

based on the procedure discussed in the previous section. A Summary of the constitutive 

model parameters is shown in Table 3.8. 

Table 3.8. Model Parameters for the unsaturated textured geomembrane-soil Interface  

Parameter Value 

                            (mm) 0.51 

                             (mm) 0.007 

 0.32 

 0.001 

      n 2.1 

 0.01 

 -0.028 

 0.26 

 0.002 

    )(1 s  -0.05 

    )(2 s  5 

a 60 

b 4 

   nK (kPa) 365 

   sK (kPa) 35 

 

Figures 3.42(a)and 3.43(a) indicate a comparison between the predicted and measured 

results of shear stress () versus horizontal shear displacement (u) for the smooth 

geomembrane-soil interface conducted in this study subjected to different suction and 

net normal stress values. The comparison revealed that the model was capable of 

capturing the behavior of the unsaturated smooth geomembrane-soil interface with 

reasonable accuracy. The following observations were made: 

1. The peak shear strength of smooth geomembrane-soil interface increased 

with suction and net normal stress.  
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2. Strain softening was more pronounced at higher suction and higher net 

normal stress values. 

Figures 3.42(b) and 3.43(b) show the predicted and measured results of vertical 

displacement versus horizontal shear displacement (u) for different suction and net 

normal stresses. Important volume change behavior of unsaturated smooth 

geomembrane-soil interfaces was captured using this model: 

1. Unsaturated smooth geomembrane-soil interface predictions generally 

followed the overall trend of volume change behavior. However, in most cases 

experimental results showed a slight amount of dilation following compression 

that the model did not capture. 

2. Specimens did not show significant dilation for both experimental and 

computational results. 
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Figure 3.42. A comparison of experimental and predicted results for smooth geomembrane 
and soil interface shear test at suction=200 kPa, shear strength behavior (a) and volumetric 

behavior (b). 
 

 

(a) 

(b) 
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Figure 3.43. A comparison of experimental and predicted results for smooth geomembrane 

and soil interface shear test at net normal stress=50 kPa, shear strength behavior (a) and 
volumetric behavior (b).  

 
 
 
 
 

 

 

(a) 

(b) 
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CHAPTER 4: Modeling lateral load behavior of piles in unsaturated soil due to 
seasonal moisture content changes 

4.1 Background 

Piles are the component of an integral abutment bridge (IABs) that transfers 

superstructure loads to resistant layers of soil and/or rock. Unlike conventional bridges, 

IABs are a special type of bridge, which transfer thermally induced lateral loads directly 

from superstructure to substructure due to the elimination of expansion joints within 

the bridge deck or between superstructure and abutment. As shown in the sketch of an 

IAB in Figure 4.1, bridge girders are embedded within the concrete of the abutment and 

as the structure is heated and cooled the abutment must move outward and inward, 

respectively, to accommodate the expansion and contraction of the bridge. This creates 

a daily and seasonal cyclic loading sequence on the piles and soil in contact with the 

piles and abutment. The stiffness of the abutment backfill and soil surrounding the piles, 

in addition to the bending stiffness of the piles, is critically important to the lateral load 

behavior of the piles and bridge system. Ideally, the system should be relatively flexible 

to accommodate thermal expansion without producing excessive stresses in the piles 

and bridge structure. The research presented in this chapter focuses on the impact of 

the soil stiffness on the lateral load behavior of the piles. In particular, the soil moisture 

conditions have an important influence on the soil stiffness because the soil matric 

suction will increase or decrease in response to decreasing or increasing moisture 

content.  

As shown in Figure 4.1, generally, components of IABs include deck, abutments, 

piles, soil behind abutments, and soil surrounding piles, which interact with each other 
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during loading over the service life of the bridge. In addition to vertical loads, such as 

self-weight and traffic loads, the horizontal loads due to temperature changes are also 

governing factors in designing an integral bridge. Deformation of a bridge abutment due 

to thermal loading appears in different forms, including lateral translation and rotation 

of the abutment. 

 

Figure 4.1. A sketch of Integral Abutment Bridge (IAB)  
(from Muraleetharan and Miller 2015) 

 

A summarized survey conducted by Kirupakaran (2013) showed that the design 

and construction of IABs were varied from state to state in the USA. According to this 

study, piles were commonly installed either oriented for weak axis bending or strong 

axis bending. The pile-abutment connections in IABs were either free, fixed, or partially 

restrained against rotational movements due to lateral loadings. The length of bridges, 

depending on the materials used, were variable from 121.9 m and 282.5 m for steel 

girder and concrete girder bridges, respectively. 

Ng et al. (1998) recognized the movement of an integral abutment as 

translational, rotational, and bending deflections. Abutment translation is mobilized as 
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a relative displacement at the top and base of abutment, and rotational deflection 

occurs at the base of abutment. The abutment bending appears as different tangents 

along the height of abutment.  Expansion and contraction of integral bridge decks due 

to thermal loading are accommodated by backfill-abutment and foundation soil-pile 

interactions. The earth pressure behind the backfill and around the piles can build up 

due to deck expansion or reduce by deck contraction (Arsoy et al. 2004). 

Soil-pile interaction analysis in saturated conditions has been investigated by 

numerus researchers. A few numerical and experimental studies have been conducted 

in unsaturated soil-pile interaction analysis (Mokwa et al. 2000, Georgiadis et al. 2003, 

Weaver and Grandi 2009, and Hamilton 2014). A common method for analyzing lateral 

load behavior of piles involves a finite difference solution of the equation for bending of 

a vertical beam embedded in soil analogous to the beam on elastic foundation problem, 

also known as a “Winkler” foundation. As illustrated in the sketch of Figure 4.2, the soil 

interaction with the pile occurs at nodal points and is represented by a non-linear spring, 

where the behavior of the spring is defined by a load (p)-displacement (y) response 

curve, i.e., a p-y curve. The p-y curve depends on soil properties and can be modified to 

account for variations in soil matric suction. A computer program called “LPILE” was 

used to conduct the single pile lateral load analysis presented in this dissertation. LPILE 

is available from Ensoft, Inc. and has become an industry standard in geotechnical 

engineering for single pile lateral load analysis. 
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Figure 4.2. A sketch of Winkler springs (p-y curves) for pile-soil interaction models 

 
The p-y curve for c-φ soil proposed by Evans and Duncan (1982) and as 

incorporated in LPILE consists of combining soil resistance from the Reese et al. (1974) 

sand p-y curve and Matlock (1970) clay p-y curve. The early portion of the p-y curve is 

obtained by the soil modulus at small displacements. The soil modulus is the product of 

the modulus coefficient, k, and the depth below the ground surface. The modulus 

coefficient for sand and clay are based on friction angle and cohesion, respectively. To 

draw a p-y curve using this method, two restricted points on the displacement axis are 

defined in which the peak soil resistance and the residual soil resistance take place. The 

displacement coordinates of y=b/60 and y=3b/80 (b= foundation diameter) are where 

the peak and residual soil resistance occur, respectively. It is also assumed that the soil 

resistance decreases from the peak to the residual linearly. 

Mokwa et al. (2000) proposed the following equation using a cubic parabola: 
 

p = 0.5pult [
y

Aϵ50D
]

0.33

                                        (4-1) 

 
where p is the soil resistance, pult is the ultimate resistance, y is the lateral foundation 

displacement at a particular depth, A is an empirical coefficient, 50 is the strain at 50 % 
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of the ultimate soil strength obtained from a triaxial shear test, and D is the foundation 

diameter. The ultimate soil resistance, pult, is calculated using Brinch-Hansen’s theory 

(1961) and modified based on results from full-scale tests. The equation of pult is as 

follows: 

pult = MγmDzKq + McDKc                                (4-2) 

 

where M is an empirical modification factor = 0.85, m is the soil moist unit weight, D is 

the foundation diameter, z is the depth below the ground surface, Kq is a coefficient for 

the frictional component of the soil resistance, c is the soil cohesion and Kc is a 

coefficient for the cohesive component of the soil resistance. Five load tests conducted 

on relatively short drilled shaft foundations embedded in unsaturated silty (ML and MH) 

and clayey (CL and CH) soils were used to back-calculate the parameters required for 

the above equations.  

The influence of partial saturation on the axial capacity of a pile was studied by 

Georgiadis et al. (2003) in which they determined that the load capacity (ultimate pile 

load) increased as the degree of saturation decreases. The analysis also showed an 

excessive settlement due to collapse exhibited by the unsaturated soil under the tip of 

the pile. This settlement was perhaps attributed to wetting-induced collapse behavior 

of unsaturated soils (Miller et al. 2001). It was important to note that this settlement 

could not be recognized with saturated finite element analysis (Georgiadis et al. 2003). 

Weaver and Grandi (2009) used a finite element program to compare the lateral 

resistance via deformation curves (p-y curves) with those obtained by Evans and Duncan 

(1982), and Mokwa et al. (2000). The apparent cohesion was used instead of the drained 
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cohesion using the concept of unsaturated soil mechanics. The method proposed by 

Evans and Duncan (1982), which was included in the computer program LPILE (2004) 

presented some parameters to capture a p-y curve associated with cohesion and friction 

angle. The soil moduli used for finite element analysis were obtained using the modulus 

coefficient, k, which was identical to the “k” proposed by Evans and Duncan (1982) in 

LPILE.  The modulus coefficient for unsaturated soil was considered as a combination of 

the modulus coefficient for cohesive and cohesionless soil. They have found that lateral 

pile design in a saturated condition would not be conservative as it is in the other soil-

structure interaction problems. The unsaturated lateral pile deformations were 

significantly smaller than those captured from a saturated condition, resulting in higher 

bending moments in pile.   

Hamilton (2014) used a concept of suction stress to obtain the effective stress 

required for capturing the p-y curve. Suction stress concept proposed by Lu et al. (2010) 

is an extension of Bishop’s equation for the effective stress that uses the suction stress 

characteristic curve (SSCC). This curve only requires two controlling parameters: the 

inverse of the air entry value and pore size spectrum number. The degree of saturation 

was assumed to be constant through the soil layer. It was concluded that the least 

amount of deformation occurred in the middle range of saturation because of greater 

effective stress. 

4.2 Historical and future weather data collection 

Historical weather data can be obtained in Oklahoma from Mesonet stations or weather 

stations installed at research sites. The Historical weather data measured through 
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equipment installed in weather stations include: precipitation, air temperature, relative 

humidity, total solar radiation, and wind speed. As a case study, the historical weather 

data were collected from a station close to an IAB site under study (I-44 Bridge in 

Oklahoma). Among the above-mentioned data from the weather station only 

precipitation and air temperature on a monthly basis are available from climate 

projections of future weather. The projected weather data can be downloaded from the 

U.S. Geological Survey (USGS) using the National Climate Change Viewer (NCCV). The 

monthly average air temperature and precipitation data from 1950 to 2099, shown in 

Figures 4.3 and 4.4, were obtained for a location in Comanche county, OK, where the I-

44 Bridge is located. 

 
Figure 4.3. Average air temperature from 1950-2099 available in Comanche county, OK (data 

obtained from USGS via the National Climate Change Viewer) 
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Figure 4.4. Average precipitation from 1950-2099 available in Comanche county, OK (data 

obtained from USGS via the National Climate Change Viewer)  

 
In addition to precipitation data, the potential evaporation and transpiration are 

required to predict the moisture variations in foundation soil and abutment backfill 

material in a typical IAB. The potential evaporation can be determined in different ways 

including measured data, calculated with Penman’s equation (1948), calculated with 

Thornthwaite’s equation (1948), and calculated with Priestley-Taylor’s equation (1972).  

Among the above-mentioned equations, Thornthwaite’s equation (1948) is the 

only one that functions on a single parameter, the monthly air temperature and some 

empirical parameters as shown in Equation 6-3. Since available data for the future are 

limited to monthly maximum and minimum air temperature, Thornthwaite’s equation 

(1948) was selected as the method to predict the moisture changes for the current 

research. The equation is,  

PET=1.6 𝐿𝑑 (
10𝑇

𝐼
)

𝑎

                  (4-3) 
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where: PET is the monthly potential evapotranspiration (cm), 𝐿𝑑 is the daytime length 

or time from sunrise to sunset in multiples of 12 hours, T is the monthly mean air 

temperature(°C),  

 

a = 6.75 x 10−7 𝐼3 - 7.71 x 10−5 𝐼2+ 0.01791𝐼1 + 0.49239, 

 
and I is the annual heat index, which is computed from the monthly heat indices. 
 

I = ∑ 𝑖𝑗
12
𝑗=1 ,     𝑖𝑗 = (

𝑇𝑗

5
)

1.514

             (4-4) 

 
𝑇𝑗 is the mean air temperature in °C for month j for j = 1 to 12. 
 

To compare and partially validate the results obtained using Thornthwaite’s 

method (1948), Penman’s method (1948) having more variables, such as relative 

humidity, solar radiation, and wind speed as well as air temperature was used to 

calculate the potential evaporation using historical data and compared to Thornthwaite 

based predictions. The Penman model predicts potential evaporation as shown in the 

following equation, 

 

PE= 
𝛤𝑄𝑛+𝜂𝐸𝑎

𝛤+𝜂
                             (4-5) 

 
where: PE is potential evaporation in m/day, 𝐸𝑎 is flux, which is calculated in m/day 

using Equation 6-6, 𝑄𝑛 is net radiation at the water surface in m/day, 𝛤 is slope of 

saturation vapor pressure vs. temperature curve in kPa/°C, 𝜂 is the psychrometric 

constant equal to 0.06733 kPa/°C. 

 

𝐸𝑎 = 0.35(1+0.146 𝑊𝑤) 𝐶𝑓𝑢𝑣0(1-ℎ𝑟)                   (4-6) 
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where: 𝑊𝑤 is wind speed in km/hr, 𝐶𝑓= conversion factor, 𝑢𝑣0 is saturated vapor 

pressure in the mean air temperature with the units of kPa, and ℎ𝑟 is relative humidity 

in the air above the ground. 

Evaporation associated with transpiration, which is a process of water migration 

through a plant results in evapotranspiration. The amount of water is controlled by 

transpiration through parameters such as bare soil potential evaporation, leaf-area 

index (LAI), plant limiting function (PLF), which is related to soil suction, and the root 

zone profile. Since these parameters were not routinely available for the sites 

considered, some assumptions were used to incorporate them in the numerical 

modeling. 

There is an atmospheric moisture flux balance that must be satisfied at the 

ground surface when calculating actual evaporation. The water on the ground surface 

either infiltrates the soil (or runs off) or rises to the sky through the process called actual 

evaporation. Actual evaporation used in an atmospheric moisture flux balance for 

Thornthwaite (1948) method was assumed to be equal to potential evaporation, which 

is a maximum amount of evaporation. In contrast, a modified Wilson-Penman’s method 

(1994) was used for calculation of actual evaporation in Penman’s method (1948). 

4.3 Predicting soil moisture changes using unsaturated seepage modeling 

SVFLUX, developed by SoilVision Systems Ltd. (2012), is a finite element program used 

to model transient flow of water, heat, and vapor in unsaturated soil. The program has 

been built around fundamental equations governing the exchange of water between 

the soil and atmosphere at the ground surface (e.g. Penman 1948, Wilson et al. 1994) 
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and it can account for variations in the soil state (dry, frozen, saturated, unsaturated), 

soil type, soil temperature, extent, and type of vegetative cover among other things. 

Basically, the user is required to input a number of different parameters that 

govern the movement and storage of water (in liquid and vapor forms) within a soil 

profile as well as information about the type and temporal variation of vegetative cover 

at the site. In addition, the initial soil moisture conditions in the profile are required. The 

output generated from the program provides predicted moisture (and suction) profiles 

as a function of time.  

The parameters required for the analysis using the program are divided into four 

categories: precipitation data, evaporation data, vegetation data, and soil data. As for 

the output, the programs are used to provide variations in volumetric water content 

over time at specific depths in the soil profiles. A geometry similar to the southern 

embankment for the I-44 Bridge adopted for the purpose of seepage modeling is shown 

in Figure 4.5 including the soil foundation and backfill. While this 2-D representation of 

the embankment and abutment does not capture the three-dimensional features of the 

pavement and sloped vegetated embankment surfaces next to the pavement, it 

provides a starting point for examining unsaturated seepage in the embankment and 

backfill behind the abutment. In the model, the ground surface behind the abutment to 

the left side of pile axis in Figure 4.5 was treated as the flux boundary that was subjected 

to atmospheric conditions based on real local weather data. 
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Figure 4.5. Geometry and initial condition of south abutment of I-44 Bridge 
 

Historical weather data available from the Mesonet for 1994 to 2001 (7 years) at 

Comanche county, Medicine park, OK, which was close to the I-44 bridge was 

downloaded, to use as the atmospheric loading on the ground surface. As a starting 

point, the boundary condition on the sloped ground surface located at the right side of 

pile axis, under the bridge, was assumed to be impermeable. However, as this surface 

was under shaded condition due to the bridge deck location a modified atmospheric 

loading can be defined in the parametric study. The soil water characteristic curve 

(SWCC) was assumed using Zapata’s model (1999), which was based on the grain size 

distribution (percent of passing #200) and plasticity index (PI) as shown in Figure 4.6 for 

clayey layer. 
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Figure 4.6. Soil Water Characteristic curve (SWCC) for clayey soil  

 
The saturated permeability of backfill, sandy, and clayey layers were assumed to 

be 1x10-6, 1x10-7, and 1x10-8 m/s, respectively. The assumptions were made based on 

the classification of soils as low and very low degrees of permeability (Terzaghi and Peck, 

1967). The infiltration and evaporation and transpiration components from the local 

weather station are shown in Figures 4.7, 4.8 and 4.9.  
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Figure 4.7. Daily Precipitation data from 1994 to 2001 (from Oklahoma Mesonet Station 

Medicine Park) 
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Figure 4.8. Daily Evaporation data from 1994 to 2001, (a) relative humidity, (b) average air 
temperature, (c) total solar radiation, (d) wind speed (from Oklahoma Mesonet Station 

Medicine Park) 
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Figure 4.9. Daily Transpiration data from 1994 to 2001, (a) leaf area index, (b) plant limiting 

function, (c) potential root uptake 
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While it is possible to utilize the Penman method for historical climate data 

obtained from weather stations, the projected future climate data is limited to 

temperature and rainfall and does not include relative humidity, solar radiation, and 

wind speed. Thus, only the Thornthwaite method can be applied for future years. To 

overcome this limitation, finding logical ways to use historical data sets to develop a 

calibration procedure between the Penman and Thornthwaite methods is a primary 

purpose of this research. 

4.4 Results and calibration of soil moisture prediction models 

The potential evapotranspiration obtained from Thornthwaite equation is calibrated 

against the results derived from Penman equation. To calibrate the equations, the slope 

of the regression between potential evapotranspiration derived from two methods was 

forced to pass through the origin for each month for the calibration period. This 

calibration procedure was discussed by Moeletsi et al. (2013). The calibration coefficient 

was then obtained by calculating the product of the slope of the regression lines (forced 

to pass at 0, 0) and the original coefficient. 

𝐶𝑇 = 𝑆𝑙𝑜𝑝𝑒×1.6                           (4-7) 

Where, CT is a new constant for the Thornthwaite equation, which is substituted for the 

constant number or 1.6 used in the equation. A monthly potential evapotranspiration 

estimated from two methods before calibration is shown in Figure 4.10 using the 

historical dataset from 1994 to 2001.  
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Figure 4.10. Thornthwaite potential evapotranspiration and Penman potential 

evapotranspiration from 1994-2001   
 

The Thornthwaite potential evapotranspiration (TPET) calibrated with the slopes 

calculated from each month as shown in Figures 4.11 and 4.12 indicates a good 

agreement with Penman potential evapotranspiration (PPET) as shown in Figure 4.13. 

The actual evapotranspiration, which is a modified potential evapotranspiration, 

is required to contribute to the net infiltration as a soil-atmosphere boundary condition. 

Wilson-penman (1994) equation was used for modifying Penman potential 

evapotranspiration. A method using transpiration (vegetation) parameters was 

proposed by the author of this research to calibrate the Thornthwaite actual 

evapotranspiration (TAET) with the Penman actual evapotranspiration (PAET). Three 

different Leaf Area Index (LAI) curves were designated as variables to obtain the actual 

evapotranspiration from the Thornthwaite potential evapotranspiration as shown in 

Figure 4.14. Three calibrated curves of the TAET resulted from three different LAI 
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alternatives are shown in Figure 4.15 and compared with the PAET. According to Figure 

4.16, the results of pore water pressure changes around the pile head using the 

proposed method indicates that the Leaf Area Index can be a reasonable variable to 

calibrate the Thornthwaite actual evapotranspiration with the Penman actual 

evapotranspiration. 

  

 

Figure 4.11. Calibration factor for monthly Thornthwaite potential evapotranspiration 
(m/month) from (a) January to (f) June 
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Figure 4.12. Calibration factor for monthly Thornthwaite potential evapotranspiration 
(m/month) from (g) July to (l) December  
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Figure 4.13. Calibrated Thornthwaite potential evapotranspiration and Penman potential 

evapotranspiration from 1994-2001 
 

 
Figure 4.14. Leaf Area Index at different trials  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

8/
19

/9
3

3/
7/

94

9/
23

/9
4

4/
11

/9
5

10
/2

8/
95

5/
15

/9
6

12
/1

/9
6

6/
19

/9
7

1/
5/

98

7/
24

/9
8

2/
9/

99

8/
28

/9
9

3/
15

/0
0

10
/1

/0
0

4/
19

/0
1

11
/5

/0
1

P
o

te
n

ti
al

 E
va

p
o

tr
an

sp
ir

at
io

n
 (

m
/m

o
n

th
)

Time (month)

Thornthwaite method-Calibrated

Penman method

0

0.5

1

1.5

2

2.5

3

3.5

8/
19

/9
3

3/
7/

94

9/
23

/9
4

4/
11

/9
5

10
/2

8/
95

5/
15

/9
6

12
/1

/9
6

6/
19

/9
7

1/
5/

98

7/
24

/9
8

2/
9/

99

8/
28

/9
9

3/
15

/0
0

10
/1

/0
0

4/
19

/0
1

11
/5

/0
1

Le
af

 A
re

a 
In

d
ex

 (
LA

I)

Time (day)

1st Trial
2nd Trial
3rd Trial



 

137 
 

 
Figure 4.15. Calibrated Thornthwaite actual evapotranspiration and Penman actual 

evapotranspiration from 1994-2001 
 

 
Figure 4.16. Pore water pressure change around soil surrounding pile head from 1994-2001 
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The pore water pressure variations shown in Figure 4.16 for the calibration 

period indicate that the calibrated method using the leaf area index is a reasonable 

method for adjustment of Thornthwaite method to match Penman method. Therefore, 

a pattern of leaf area index for 150 years from 1950 to 2099 analogous to the 3rd trial of 

calibration method was used to predict the pore water pressure changes at the top of 

the pile from past to future. It can be seen in Figure 4.17(a) that the negative pore water 

pressure (suction) increased with time and the calibrated suction were less than the 

original amounts of suction predicted with Thornthwaite method. In addition, it can be 

seen in Figure 4.17(b) that the maximum changes of the calibrated suction and the 

original one on the ground surface were 1,000 kPa and 35,000 kPa, respectively. These 

predictions based on the projected climate data shown in Figures 4.3 and 4.4 are 

consistent with the projected increases in temperature project during the 21st century 

under essentially constant project rainfall amounts for the same period as shown in 

Figures 4.3 and 4.4. While there is a great deal of uncertainty in climate projections, the 

preceding method provides a rational basis for examining the variations in soil moisture 

content, positive and negative pore water pressures, and hence soil stiffness resulting 

from different climate change scenarios. This allows for an analysis of changes in lateral 

loading behavior of the bridge abutment system due to projected variations in moisture 

conditions, as described in the next section.  
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Figure 4.17. (a) Suction predictions from 1950 until 2099 around soil surrounding pile head 
(b) Maximum suction profile in clayey soil layer 
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4.5 Numerical modeling of pile-soil interaction considering the soil moisture 
changes 

4.5.1 Finite difference method 

LPILE was utilized to investigate the pile-soil interaction in for abutment piles in soil 

under unsaturated conditions. Since LPILE was not designed for the unsaturated soil 

condition directly, the concept of apparent cohesion proposed by Fredlund and 

Rahardjo (1993) was used in LPILE model. Varying stiffness in soil around an abutment 

pile may result from changes in moisture content in the soil. To investigate the abutment 

pile behavior caused by soil moisture changes, the predicted suction corresponding to 

different moisture contents obtained from the unsaturated seepage analysis was used 

to determine the apparent cohesion used to define p-y curves in LPILE. Clayey soils are 

more vulnerable to the moisture change related property changes than sandy soils, so 

the second layer (clayey soil) of the south part of I-44 bridge was subjected to different 

suctions. The p-y curves were developed in LPILE using the equations proposed by Evans 

and Duncan (1982) and Mokwa et al. (2000) as shown in Figures 4.18 and 4.19. Both p-

y curves exhibited a similar linear trend at very low displacements. Softening and 

hardening behaviors were captured using the former and the latter equations. These 

behaviors were more pronounced while applying high suction in the relevant equations 

(e.g. ua-uw=1000 kPa). A simple linear extended Mohr-Coulomb failure model was used 

with these methods, and soil properties for the unsaturated clay were assumed based 

on experimental tests. For the purpose of developing p-y curves for the c- soil using 

the LPILE program, the effect of suction was incorporated into the cohesion intercept 

using the following equation: 
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c=c’+(ua-uw)tanb                     (4.8) 

where: c’ is the effective cohesion intercept, (ua-uw) is suction, and b is the friction angle 

with respect to suction. The geotechnical properties of the soil layers obtained from SPT 

and CPT correlations and laboratory testing and compatible with typical soil properties 

available in LPILE are listed in Table 4.1 (Reese et al. 1974, 1976; Detournay and Cheng 

1993). 

Table 4.1. Properties of typical soli layers 
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Figure 4.18. P-y curves obtained from Evans and Duncan (1982) equation 

 

 

Figure 4.19. P-y curves obtained from Mokwa et al. (2000) equation 
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4.5.2 Comparison of pile response using Evans and Duncan (1982) and Mokwa 
et al. (2000) p-y curve methods 

According to a study conducted by Kirupakaran (2013), the I-44 bridge deck was 

subjected to an average temperature variation of 95°F over a six-month period. 

Assuming the thermal deformation of the bridge was symmetric to the center of the 

bridge, the thermally induced deformation of the superstructure at the abutment due 

to the change in temperature of superstructure can be calculated by Equation 4.9. 

δ = α×∆T×L/2                            (4.9) 

where, α is the coefficient of thermal expansion, ∆T is the change in temperature and 

L is the total length of the bridge. Thermal expansion coefficient of the reinforced 

concrete superstructure was considered as 6.23x10−6 /° F. Therefore, thermally induced 

deformation of the superstructure based on Equation 6.8 at the abutment was 

considered as 0.019 m. The average movement of the superstructure based on crack 

meter readings was 0.022 m. Since the calculated superstructure movement was in the 

range of the measured reading from crack meter, thermally induced deformation at the 

abutment was assumed to be 0.022 m. The displacement of the abutment was directly 

applied as the boundary condition at the top of abutment in LPILE modeling. The 

connection between the top of the abutment and the bridge deck was assumed to be 

fixed. The boundary condition of having a displacement without any rotation at the top 

of the abutment was compatible with the performance of IABs both in practice and 

theory. The axial load on the pile due to the superstructure was considered as 136.6 kN. 
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The results of the LPILE analysis revealed that bending moments obtained using 

the Evans and Duncan (1982) model were less than those obtained using the Mokwa et 

al. (2000) model. This difference was more noticeable when the amount of suction was 

higher (e.g. 1000 kPa). Mokwa et al. (2000) proposed a displacement-resistance curve 

for soil under high suction, which resulted in a soil layer with high stiffness. The response 

of a pile in a soil with high stiffness results in higher bending moments as shown in 

Figures 4.20 and 4.21. The lateral deflections at the pile head showed that a soil layer 

with higher suction and stiffness provides greater resistance against to lateral 

displacement at the top of the pile, which resulted more abrupt curvature and greater 

bending moment. According to Figures 4.22 and 4.23, the bending moments obtained 

from the Mokwa et al. (2000) p-y curve equation were less than those calculated by the 

Evans and Duncan (1982) equation at lower suctions.  
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Figure 4.20. (a) Bending moment changes and (b) lateral deflection in the given abutment 

and pile using p-y curves from Evans and Duncan (1982) 
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Figure 4.21. (a) Bending moment changes and (b) lateral deflection in the given abutment 

and pile using p-y curves from Mokwa et al. (2000) 
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Figure 4.22. Bending moment variations in the given pile using (a) Evans and Duncan (1982) 

equation (b) Mokwa et al. (2000) equation 
 
 

 
Figure 4.23. Lateral deflection variations in the given pile using (a) Evans and Duncan (1982) 

equation (b) Mokwa et al. (2000) equation 
 

4.6 Parametric study of pile-soil interaction in IAB 

L-Pile was used to perform a parametric study to extend the results of the Oklahoma 

IAB to general IABs. The parameters effective in the analysis include; pile types (different 

HP sections), pile orientation (weak axis vs. strong axis bending); different embankment 

soil and foundation soil; various abutment backfill materials such as Expandable 

Polystyrene (EPS) blocks, Controlled Low Strength Material (CLSM) and compacted and 

non-compacted granular fill; and combination of EPS and granular backfill that can 
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prevent ratcheting effects in backfill mentioned earlier. CLSM is being used as abutment 

backfill in many of the ODOTs newer non-integral bridges, but the use of this stiff 

material is prohibited in IABs by other states such as Pennsylvania. While CLSM is 

beneficial in reducing settlement of bridge approach slabs, it may restrict the movement 

of the abutments in IABs. A combination of EPS and CLSM may provide an ideal backfill 

for IABs. 

4.6.1 Abutment pile type and orientation 

In this parametric study, the interaction of different piles, which are common in IABs 

across the country with the soil were investigated for the given temporal temperature 

and soil moisture changes assuming constant changes in suction for the clayey layer (e.g. 

1000 kPa). The sectional properties of the considered piles are as follows: 

Table 4.2. Properties of typical abutment piles  

Abutment 
Pile Type 

Bending 
Axis 

Elastic Section Modulus, 
 Sy(m3) 

Plastic Section Modulus,  
Zy(m3) 

HP 10x42 Weak 2.33x10-4 3.57x10-4 

Strong 7.11x10-4 7.92x10-4 

HP 12x53 Weak 3.46x10-4 5.28x10-4 

Strong 10.93x10-4 12.13x10-4 

HP 14x89 Weak 7.26x10-4 11.09x10-4 

Strong 21.47x10-4 23.93x10-4 

*Yield strength of steel, fy=0.276 GPa**Ultimate strength of steel, f=0.414 GPa 
 
HP 14x89 pile oriented in strong axis bending caused larger bending moments in the 

abutment piles than the other pile configurations considered in the modeling. The 

computed bending moment for HP 14x89 pile oriented in weak axis bending were larger 

than the bending moments for HP 10x42 pile oriented in both axes and HP 12x53 pile 

oriented in weak axis bending as shown in Figure 4.24 (a) and (b). 
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Figure 4.24. Bending moment variations for different pile configurations (a) in abutment pile 

(b) in pile surrounded by clay soil 

 
The orientation of HP piles with reference to the bridge longitudinal axis affected the 

thermally induced deformation in the abutment piles since the stiffness of the HP piles 

varies according to the bending axis. The orientation of weak axis bending helped to 

reduce the bending moment that occurs in the abutment piles. 
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4.6.2 Type of soil surrounding the abutment piles 

Varying stiffness in soil around a pile may result from changes in moisture content in the 

soil. To investigate the abutment pile behavior caused by soil moisture changes, the soil 

suction was estimated for different degrees of saturation. Clayey soils are more 

vulnerable to the moisture change than the sandy soils, so the second layer of the south 

abutment profile of I-44 bridge with different stiffness was considered in the parametric 

study. The different stiffness was defined using different friction angle with respect to 

constant suction (e.g. 1000 kPa). 

The bending moments generated at the abutment were more than those in the 

pile when the stiffness of soil surrounding the pile increased. According to Figure 4.25 

(a) and (b), soil with high friction angle with respect to suction, which is representative 

of a high clay-content layer, created the largest bending moment in the pile and 

abutment. Pre-drilled holes can be used as an alternative to improve the behavior of the 

abutment piles when a soil layer susceptible to pore water changes (e.g. clay soil) exist 

around the piles at shallow depth. 
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Figure 4.25. Variation in bending moments (a) in pile and abutment (b) in pile for different 
types of soil stiffness 

 

4.6.3 Type of backfill material  

To investigate the effect of backfill stiffness on the abutment pile behavior, extremely 

dense and loose sands were selected to see the behavior of the pile in comparison with 

the original backfill soil while the suction was constant in the clayey layer (e.g. 1000 kPa). 

According to Figure 4.26 (a) and (b), dense sand as a backfill material surrounding the 
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abutment created the largest bending moments in the abutment. The effect of backfill 

material on the pile below the abutment was negligible. 

 
Figure 4.26. Variation in bending moments for different types of backfill materials (a) in 

abutment and pile (b) in pile surrounded by clayey soil 
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CHAPTER 5: Conclusions and recommendations 

5.1 Summary: Impact of desiccation cracks on unsaturated soils 

An extensive field and laboratory investigation and a mechanical and a hydraulic 

modeling of a slope was conducted to understand the effect of desiccation cracks on the 

slope stability. The research involved installing weather monitoring stations and soil 

moisture sensors at a test site where shallow slope failures had occurred. Laboratory 

testing was conducted to determine soil shear strength, soil water characteristic curves, 

and moisture flow properties. A new apparatus for measuring the tensile strength of 

desiccating soil was used to obtain the tensile strength of test soil. A laboratory box was 

designed to monitor the suction changes and desiccation crack depth for a period of 

time while drying. A simple analytical model was developed for predicting desiccation 

crack depth and compared with results of a numerical model using a finite element 

program and experimental observations.  

The effect of spacing and width of desiccation cracks on the hydraulic 

conductivity of a cracked layer was investigated and compared with an enhanced or 

equivalent hydraulic conductivity model for a cracked layer using numerical modeling. 

In addition, numerical modeling was conducted using SVFLUX to predict moisture 

content changes in soil profiles using measured weather data as input for comparison 

to measured moisture contents during the monitoring period.  

Limit equilibrium slope stability analyses were conducted using the program 

SVSLOPE. The slope stability analysis involved first predicting pore water pressures using 

an unsaturated seepage program, SVFLUX, with weather data used for input. Three 
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unsaturated seepage analyses were conducted for the slope. In the first case, the 

hydraulic conductivity was assumed to be uniform throughout the slope while in the 

second and third cases, an upper layer of soil with a set of cracks and enhanced hydraulic 

conductivity was assumed, respectively. The thickness of this layer was assumed to 

correspond to roughly the bottom of the slope failure surface and consistent with the 

depth of desiccation cracking obtained from the analytical and numerical analyses. 

Stability analyses were then performed using the predicted pore pressure distributions. 

Following are some of the important conclusions and recommendations from this study.  

5.2 Conclusions: Impact of desiccation cracks on unsaturated soils 

1. A simple analytical model, based on linear elastic theory, for predicting depth of 

desiccation cracks in compacted clayey soil was developed. The model was used 

to predict the change in suction required to produce cracking as a function of 

depth. Predicted changes in suction necessary to produce cracking at a particular 

depth were compared to maximum changes in suction measured from moisture 

sensors in the laboratory desiccation box test. The cracking depth is assumed to 

be the depth where the trend of predicted cracking suction changes and the 

trend of measured suction changes meet. The tensile strength of soil was also 

used to calculate the cracking depth through the tensile stress distribution over 

depth predicting using the finite element model. The cracking depths obtained 

from the analytical and numerical analyses were in a good agreement with the 

laboratory observations of cracking depth.   
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2. The depth of desiccation cracks predicted for the Chickasha slope using the 

simplified models (analytical and numerical models) and accounting for some 

uncertainty in the model parameters was in the range of 1.9 to 2.1 m with the 

best estimate around 2.0 m from the analytical model and 1.75 m from the 

numerical model (Appendix A). These estimations were consistent with 

observations of moisture changes with depth and the estimated depth of the 

failure surface at the site. 

3. Tensile strength determined in the desiccation box was observed to generally 

increase with increasing initial water content. However, the study conducted by 

Varsei et al. (2016) showed that the tensile strength only increased up to a point 

where the water content was well beyond optimum and then it decreased with 

increasing water content. 

4. Two methods including an equivalent permeability and discrete cracks models 

were used to consider the effect of desiccation cracks in seepage analyses of a 

slope. The efficiency of these methods was investigated using a simple seepage 

model considering a set of single cracks with given ratios of crack spacing to crack 

depth and corresponding equivalent permeabilities. The discrete cracks and 

equivalent permeability methods in the simple model showed that the interface 

between the cracked and intact layers considering time became saturated 

relatively quickly when the permeability of cracked layer compared to intact 

layer was relatively high.  
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5. Unsaturated strength parameters, , b, and c determined with 

saturated/unsaturated direct shear testing of composite samples of compacted 

soil were 29.7o, 11.1o, and 7.6 kPa for the Chickasha slope.  

6. Results of flexible wall hydraulic conductivity tests on two thin walled tube 

samples and one compacted sample from each site provided a range of 

saturated hydraulic conductivity of 2.82x10-6 cm/sec to 6.2x10-7 cm/sec for the 

Chickasha slope. Average value was assumed to represent the intact saturated 

hydraulic conductivity for use in unsaturated seepage analyses. Unsaturated 

hydraulic conductivity functions were determined using soil water characteristic 

curves and saturated hydraulic conductivities. Hydraulic conductivities 

determined in this manner seemed to provide reasonable results from 

unsaturated seepage analyses.  

7. Trends of soil moisture variations observed with moisture sensors at the test site 

were predicted reasonably well using the software SVFLUX. However, 

predictions generally did not capture well the abrupt changes in moisture 

content recorded by the sensors for the intact slope. These abrupt changes occur 

mainly at the shallowest sensor location and may be partly the result of 

desiccation cracking that allows more rapid wetting and drying at the sensor 

location. Two proposed methods, especially the discrete cracks method for the 

modeling of desiccation cracks captured these abrupt changes of moisture 

contents at the upper layers of the slope when the ratio of crack spacing to crack 

depth was one. 
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8. Unsaturated seepage analyses using SVFLUX were performed using weather 

data as input to estimate worst case pore water pressure profiles in the slope. 

The pore pressure profiles were incorporated into a limit equilibrium slope 

stability analyses that used a linear unsaturated strength model. Unsaturated 

strength parameters presented previously were used. The analysis was run with 

and without considering the effective stress cohesion intercept, c, for the intact 

and cracked slope, respectively. The influence of desiccation cracks was modeled 

by incorporating an upper layer of soil having an enhanced hydraulic 

conductivity. The upper layer thickness was equal to the calculated desiccation 

crack depth. Three cases were analyzed: The first case represented a slope with 

no cracks and the saturated hydraulic conductivity was the average value 

measured in the laboratory; the second and third cases represented a slope with 

cracks and the saturated hydraulic conductivity of the upper or cracked layer was 

obtained from the equivalent permeability and discrete cracks methods. Results 

of the stability analyses for the slope indicated a significant reduction in factor 

of safety for shallow slope failure as the hydraulic conductivity of the surface 

layer increased. Results showed that the factor of safety approached less than 

one when the permeability of the cracked layer was obtained using the 

equivalent method and the effective cohesion intercept was zero for the cracked 

layer. The equivalent permeability for the cracked layer was two orders of 

magnitude greater than the permeability of the underlying soil.  
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5.3 Recommendations: Impact of desiccation cracks on unsaturated soils 

1. Unsaturated seepage prediction should be conducted using a reliable program 

and compared with related variations such as moisture contents at an 

instrumented site. The site should be equipped with proper instruments at a 

minimum of three different depths. 

2. The depth of the upper cracked layer should be estimated using the simplified 

analysis presented in this study and/or based on field observations. The 

simplified analysis of predicting crack depth will require an estimate of the 

suction profile expected in the slope under drying conditions. 

3. An upper layer of uniform thickness equal to the predicted depth of desiccation 

cracks with enhanced hydraulic conductivity at least two orders of magnitude 

greater than the permeability of intact soil, should be used in the unsaturated 

seepage model. If possible, the intact hydraulic conductivity should be based on 

flexible wall permeability tests conducted on thin-walled samples obtained from 

the slope site. 

4. The effect of desiccation cracks on the permeability of the cracked layer and 

suction changes can be examined using the desiccation box after wetting for a 

period of time. 

5. If possible, 3-D analysis for the seepage and slope stability should be conducted 

to compare with 2-D analysis conducted in this research. The effect of discrete 

cracks on the 3-D seepage analysis can be modeled as a network of single cracks 

with the equal spacing in two directions. 
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6. The effective stress cohesion intercept c should be assumed equal to zero in the 

upper layer of slope for slope stability analysis to gain a result close to reality. 

5.4 Summary: Unsaturated interface behavior between smooth or textured 
geomembranes and clayey soil 

 This study was carried out to investigate the shear response and preliminary 

constitutive modeling of unsaturated soil-geomembrane interfaces. Interface shear 

tests were carried out on unsaturated soil-geomembrane interfaces. Two types of 

geomembranes, smooth and textured HDPE, were involved in the interface shear tests. 

The interface shear tests were carried out at different suction (0 kPa, 200 kPa, and 400 

kPa) and net normal stress (12.5 kPa, 25 kPa, 50 kPa and 75 kPa) values. The effect of 

displacement rate on the interface shear strength was investigated using two values: 

0.0005 and 0.005 mm/min. A series of suction-controlled direct shear tests and 

saturated direct shear tests were carried out on the unsaturated clayey test soil to 

compare with the interface results. A constitutive model was used to simulate the 

mechanical behavior observed in the experimental results. Comparison with the 

experimental results presented in this study showed that the model is overall capable 

of reliably capturing the responses of unsaturated soil-geomembrane interfaces. Some 

of the conclusions of this study and recommendations for the future works are 

summarized below: 

5.5 Conclusions: Unsaturated interface behavior between smooth or textured 
geomembranes and clayey soil 

1. In general, the clayey soil-textured geomembrane interface exhibited higher 

amounts of dilation as compared to the clayey soil-smooth geomembrane 
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interface. Tendency for dilation was more pronounced when the displacement 

rate was high.  

2. In general, small decreases in water content in clayey soil-textured 

geomembrane and clayey soil-smooth specimens were detected during the 

shearing process. This behavior was attributed to the disruption of the air-water 

menisci between soil particles resulting in increase of pore water pressure (i.e. 

decrease in suction). 

3. Increasing net normal stress and suction in the soil-geomembrane interface tests 

resulted in an increase in the interface peak shear strength. The rate of increase 

was linear with respect to net normal stress and suction. 

4. Increase in shear strength parameters: effective adhesion intercept and 

interface friction angle was detected for the textured geomembrane-clayey soil 

when the shear rate was relatively high. The shear strength parameters for 

smooth geomembrane-clayey soil were not dependent on the displacement 

rates considered in this study. 

5. Increase in suction resulted in a reduction in the compression magnitude of 

vertical displacement and an increase in the dilation behavior for the interfaces. 

6. Increase in suction of the geomembrane-clayey soil interface tests resulted in an 

increase in the effective adhesion. The interface friction angle with respect to 

net normal stress remained essentially constant at greater suction values. The 

interface friction angle with respect to suction was almost constant when suction 

increased. 
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7. The shear strength of clayey soil-geomembranes was less than that of the clayey 

soil alone for the all tests conducted in this study. However, the effective 

intercept adhesion for clayey soil was less than that of the interfaces. 

8. The constitutive model was able to predict the peak shear strength responses of 

clayey soil-geomembrane interfaces subjected to different values of suction and 

net normal stress. In addition, the model trends of specimen volume change 

behavior in the interface shear tests were in a good agreement with the 

experimental results. 

5.6 Recommendations: Unsaturated interface behavior between smooth or 
textured geomembranes and clayey soil 

1. Study the effect of stress path through applying the net normal stress after the 

suction on the interface shear and volume change behavior. 

2. Apply a greater range of suctions in the interface tests to determine the linearity 

or non-linearity behavior of shear strength with respect to suction. 

3. Use the same direct shear device for the unsaturated and saturated conditions 

to reduce the systematic errors and the possible uncertainties. 

4. Employ the constitutive model parameters into a finite element program to 

develop boundary value problem solutions. For example, lateral load behavior 

of pile surrounded by unsaturated soil under cyclic temperature loading or 

seepage/slope stability analysis of slope covered by geomembrane under 

weather changes. 
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5.7 Summary: Modeling lateral load behavior of piles in unsaturated soil due to 
seasonal moisture content changes 

Research presented in this chapter explored the impact of variable soil saturation on the 

lateral load behavior of integral abutment piles. In particular, the research used 

unsaturated seepage modelling to predict the variations in soil moisture content using 

climate forecasts of weather through the end of this century. To do this, a technique for 

calibrating the future weather predictions was developed using historical weather data. 

Then, the calibrated weather information was used in the unsaturated seepage 

modeling to predict future moisture content variations and the associated matric 

suction profiles surrounding abutment piles. Next, techniques were used to incorporate 

matric suction into the lateral load analysis of abutment piles. In this way, the impact of 

suction variations over time on lateral load behavior of piles was investigated. Finally, a 

sensitivity analysis of other parameters affecting the lateral load behavior of integral 

abutment piles was conducted. The following sections present some conclusions and 

recommendations on lateral load analysis of integral abutment piles in unsaturated 

soils. 

5.8 Conclusions: Modeling lateral load behavior of piles in unsaturated soil due to 
seasonal moisture content changes 

1. Historical potential evapotranspiration obtained from Thornthwaite’s equation 

was calibrated using correction factors from each month with Penman’s 

equation. The correction factors were varied for each month. 

2. Actual evapotranspiration was modified by Leaf Area Index (LAI) for 

Thornthwaite method. Variations of LAI from 0.8 for first and last quarter of the 
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year and 2.6 for the rest of the year created reasonable calibrated results in 

comparison with Penman method.  

3. The maximum change of suction from past to future weather changes was less 

than 1000 kPa for the given example of soil surrounding the pile in IAB. 

4. The pile-soil interaction analysis for an IAB subjected to temperature and 

moisture variations indicated that the pile bending behavior during lateral 

loading was sensitive to suction changes of the foundation soil. The bending 

moment increased when the suction increased due to increase of soil stiffness. 

5. The parametric study showed that the pile orientations and soil foundation 

stiffness have a significant effect on the bending moment and lateral 

displacement behavior of abutment piles.  

 

5.9 Recommendations: Modeling lateral load behavior of piles in unsaturated soil 
due to seasonal moisture content changes 

1. The seepage analysis was conducted on the given Integral Abutment Bridge (IAB) 

located in Oklahoma. The change of location to apply other weather conditions 

would be useful to examine the effectiveness of the proposed method for the 

moisture content prediction.  

2. The seepage analysis is dependent on the soil properties and boundary 

conditions. A soil stratum from very low to low permeability or vice versa with 

different SWCCs can be added to the parametric study. 
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3. The boundary condition of abutment-pile and abutment-bridge deck can be 

varied from fixed, partially restrained, and free rotational and translational 

movements. 

4. The Winkler foundation finite difference solution incorporated in L-Pile for pile-

soil interaction analysis in unsaturated conditions can be compared with a 

continuum mechanics based solution such as found in the finite element 

program Code Bright, which is able to solve hydro-mechanical coupling 

problems. 

5. A pile group analysis considering suction changes of soil surrounding a pile 

group using 3-D seepage analysis needs to compare with a single pile analysis 

conducted in this research.    
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Appendix A: Crack depth estimation for Chickasha slope 

A summary of soil parameters and properties used for the analytical and numerical 

methods is shown in Tables A.1 and A.2. Initial lateral stresses are unknown; however, 

since compacted cohesive soils can experience lateral stress ratios approaching unity or 

greater (e.g. Duncan and Seed 1986) and the Chickasha soil was stiffer than the test soil, 

therefore a basic value of 1.0 was selected for the analytical model. The estimated 

ranges were based on ±25% of the basic values. The analytical and numerical results of 

desiccation crack depth are shown in Figure A.1 (a) and (b). 

 

Table A.1. Analytical parameters and assumptions for Chickasha soil 

Parameter Value Determined by: 

 (kN/m3) 20.4 measured 

ν 0.26-0.44 estimated 

E/H 0.23-0.38 estimated 

Ko 0.75-1.25 estimated 

ɸ’ 29.7 measured 

t (kPa) -27 measured  

 

 

Table A.2. Numerical parameters and assumptions for Chickasha soil  

Parameter Value Determined by: 

Young modulus (MPa) 𝐸 20 measured 

Poisson’s ratio ν 0.35 estimated 

Swelling coefficient for changes in suction (Mpa-1) 𝑎𝑠 0.005 measured 

Porosity n 0.35 measured 

Intrinsic permeability (m2) κ  2.82e-14 measured 
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Figure A.1. (a) Analytical results (b) numerical results for desiccation crack depth 
 

 

 

 

 

 

 

 

 

 

 

 

 


