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Abstract 

Recent studies have shown that analysis of the eye tracking data is a viable 

way to understand the cognitive decision making process of people undertaking 

visual search tasks. As a result, its becomes important to develop new methods for 

analyzing the eye tracking data obtained in such scenarios. Visualization of data is 

a crucial stage in the analysis process. The prevalent eye fixation data visualiza t ion 

processes suffer from mainly two kinds of limitations, firstly; they are not effic ient 

for large number of targets and secondly, they are unable to handle change in both 

the positions and the number of targets visible on the display.  Another major 

shortcoming of the present methods’ is the absence of quantitative metrics for 

advance analysis of the eye movement data.  

The present study tries to address the above mentioned limitations by 

adapting the directed weighted network (DWN) methodology and its associated 

centrality metrics to develop a new visualization and analysis tool. A pilot study 

which simulated the realistic air traffic control task environment was performed to 

demonstrate the developed methodology.  The results obtained are very promising, 

as the method was able to identify the important targets (aircraft) interrogated by 

the air traffic controller based on different time frames. The obtained result lays the 

first stepping stone in the development of an effective data visualization method 

and also quantitative metrics for analyzing complex eye movements for a mult i-

element tracking task. 
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Chapter 1: Introduction & Literature Review 

1.1 Eye tracking & its applications 

Previous researches have shown that eye tracking technology can be a very 

useful in understanding human cognitive process. Just and Carpenter (1976) in their 

work showed that, while performing a given task, there lies very high correlation 

in the cognitive process happening in our mind and the way we observe things 

during that task execution. In the last few years, with rapid technologica l 

advancement, eye tracking technology has become available to people outside the 

research labs in the market place also, as a result, this technology has been applied 

in many diverse domains.   

Aula, Majaranta, and Räihä (2005) had applied eye tracking data in 

evaluating the usability of websites. In the domain of driving the eye tracking 

technology has been applied to analyze driver’s scanning behavior (Underwood, 

Chapman, Brocklehurst, Underwood, & Crundall, 2003). Holland and 

Komogortsev (2011) showed that eye fixation strategy can be used in analyzing the 

pattern in which people perform a reading task. Kang and Landry (2014), Mandal, 

Kang and Milan (2016) have used the eye tracking research in the field of air traffic 

control. They tried to analyze the fixation strategy of air traffic controllers’ that 

happened during scanning the radar screen. Kang and Landry (2015) showed that 

the eye tracking technology can also be used to evaluate the human performance in 

tasks which involves tracking objects in a dynamic scenario.  
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While implementing the eye fixation research, after the eye fixation data (a 

pixel based vertical and horizontal co-ordinates of the eye fixation location) is 

collected, it is superimposed on the objects present on the visual display. Given the 

eye tracking data the main objective lies in understanding two things. Firstly, 

whether or not any fixation has occurred on the object of interest, present on the 

visual display, under consideration. Secondly, in what other the different objects 

are fixated upon. As a result, one of the basic but foundational step in the eye 

tracking research is the process of mapping eye fixations to object of interest 

present on the display. As per Poole, Ball, and Phillips (2005) one of the effic ient 

way for developing this mapping structure is to create an area of interest (AOI), a 

geometrical boundary, surrounding the object of interest on the visual display.  

 

1.2 Area of Interest (AOI) 

 One of the preliminary concept of AOI was demonstrated by creating a 

rectangular boundary around a collection of simple dots which are moving in time 

(Howe, Drew, Pinto, & Horowitz, 2011). For the analysis purpose the AOI can be 

used to replace the object of interest under consideration itself; in other words, eye 

fixations occurring within the AOI boundaries can be treated as eye fixations falling 

on the object under consideration. This concept of the application of AOI for 

replacing the object itself proves very efficient in scenarios where the objects have 

multiple moving elements; since considering each element separately for analysis 

makes it a very tedious job. Figure 1 represents the concept of an AOI, where the 
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black box surrounding all the individual orange dots represents an AOI and for 

analysis sake we can replace the individual orange dots present within the box using 

the black boundary of the box itself.  This approach becomes valid since the orange 

dots are very close to each other and as a result can be considered as a single object 

of interest. Apart from that they are also moving with respect to time. Thus 

considering the AOI proves to be more efficient in such scenario as far as the 

mapping of the eye fixations are concerned.  

 

 

Even though the concept of creating a rectangular boundary around the 

object of interest is quite easy to conceptualize, the difficulty arises when the 

objects of interest are moving with time, changes their shape with time and also 

consist of multiple elements.  

Figure 1: Example of an AOI 
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A practical task which involves the objects of interest having the above 

mentioned structural characteristics is the work of the air traffic controller (ATC) 

while managing the flow of the air traffic.  The ATCs have to detect and guide 

multiple aircraft (visible on their radar display) through their trajectories and they 

are also required to ensure that there is no possible conflict among the various 

aircrafts for safety reasons.  

 

1.3 Multi-element moving object 

Multi-element moving object literally means the object under consideration is 

made up of multiple individual elements are but moving together as a single entity 

(figure 2). Figure 2 shows a typical representation of an aircraft as visible on the 

ATC’s radar display. As we can see that the representation consists of various 

elements namely, data block (containing the information of the aircraft’s name, 

speed, altitude and destination), vector line (showing the direction in which the 

aircraft is moving), target location (aircraft’s positon co-ordinate on the display) 

and lastly the line joining the target and the data block.  The vector line length is 

proportional to the aircraft’s speed thus its length can vary with change in speed. 

The position of the data block can be changed by the ATC.   

 The aircraft shown in figure 2 can be represented with a simple 

representation as shown in figure 3. The figure 3 shows how the shape of the object 

can change with passage of time.  
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Figure 2: Multi element moving object 

Figure 3: Aircraft visualization on the ATC visual display 
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1.4 Dynamic and flexible AOI 

For the case of mutli-element moving objects many researchers have 

considered various types of AOIs, e.g.  a rectangular AOI to represent an aircraft 

(Kang & Bass, 2014), circular, triangular and rectangular AOIs to approximate an 

aircraft (Mandal & Kang, 2015). Both the researches have used AOIs which move 

along with the object of interest (dynamic AOIs) but they were fixed as far as their 

shape was concerned. Although creating a dynamic AOI and approximating the 

object of interest helps us in analyzing the eye fixations on moving multi-element 

objects, there are major obstacle in its practical implementation. The shape of the 

AOI is very much dependent on the shape of the object under consideration as a 

result a static AOI, in terms of shape, cannot address the issue of multi-element 

moving object where the shape of the objects can change drastically with time.   

Thus, we require to create an AOI which is both dynamic in nature and also is 

flexible in terms of the shape also.  

Figure 4 represents such a case where the AOI is both moving with time 

and also changing its shape as per the change in the object is representing. The 

orange border represents the AOI for the aircraft representation. In the figure the 

AOI is the convex hull of the co-ordinate points of the various element’s used to 

the represent the aircraft.  Once the mapping of the eye fixations is completed, the 

next step in the eye tracking research is the visualization of the obtained results.   
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1.5 Visualization of eye fixation data 

Visualization of eye tracking data plays a very important role in the field of 

eye tracking research. The visualization technique proves to be very helpful in 

understanding the spatio-temporal distribution of the eye fixation. Apart from 

that, on preliminary visual investigation (with very little or no computational cost 

involved), it also reveals various complex relationships existing within the data 

(Blascheck et al., 2014).   

Various kinds of visualization techniques have been developed so far; and they 

capture different attributes of the eye tracking data. All the prevalent visualiza t ion 

methods can be classified into three major classes namely, point based, AOI based 

and a combination of both (Blascheck et al., 2014).  

Figure 4: Multi element moving object with its AOI 
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The point based approaches visualizes the actual co-ordinate locations of the 

eye fixation points. As per Blascheck et al., (2014) the point based approaches can 

be further subdivided into three categories namely, temporal (Grindinger, 

Duchowski, & Sawyer, 2010), spatial(Goldberg & Helfman, 2010) and spatio-

temporal (Duchowski, Price, Meyer, & Orero, 2012).  

One of the techniques within the temporal point based approach is the timeline 

visualization (Grindinger et al., 2010); where the co-ordinate points of the eye 

fixations are represented on a two dimensional axis with one axis representing the 

change in time. Attention maps, a point based spatial visualization techniques, 

aggregates the eye fixations data over time to represents those areas of the display 

which have garnered comparatively more attention (Blignaut, 2010).  The 

technique of scanpath visualization falls under the third category of point based 

spatio-temporal visualization approach. In this technique, consequent eye fixat ions 

points (represented as circles, whose radius is proportional to the fixation duration) 

are connected with a line (saccade line), the direction of which shows the order of 

the fixation that’s has occurred (Lankford, 2000).  

The point based approaches have their own advantage by being computationa lly 

less expensive to implement but they are unable to handle scenario where the 

objects of interest are dynamic in nature and also change their shape and size with 

passage of time. Thus, they are not suitable for visualizing the eye fixation data 

obtained from such a scenario having mutli-element moving objects of interest. The 

AOI based approach is deemed more suitable for addressing the particular 
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challenges of having mutli-element moving objects scenarios (Kang & Landry, 

2015).  

The AOI based approaches mainly deal with the temporal aspects of the fixat ion 

over the AOIs (Kurzhals, Heimerl, & Weiskopf, 2014) or the relational aspect 

among AOIs (Mandal et al., 2016). The temporal AOI based visualiza t ion 

approaches (parallel scanpath plotting, AOI river plots) works similarly like their 

analogous counterparts in the point based category. In this approach also the time 

is represented on one of the two axes and the other axis shows how the AOIs are 

fixated upon at various intervals of time (Raiha, Aula, Majaranta, Rantala, & 

Koivunen, 2005). The temporal AOI based approach losses their efficiency when 

the number of AOIs increases to large values.  

The relational AOI based approaches mainly deals with visualizing the 

relationship that exists between the various AOIs being fixated upon.  This 

approach has two main categories namely, matrix based and graphical based. The 

matrix based approaches shows the AOI transition matrix depicting the order of 

movement of the eye fixation between various AOIs under consideration (Goldberg 

& Kotval, 1999). This approach also suffers from similar limitation as the temporal 

approaches do; since with large number of AOIs, the size of the transition matrix 

becomes very large, it becomes very complex to the understand the relationship 

among the AOI states with just naked eye investigation.  

The other approach within the domain of relational AOI based visualization is 

the graphical approach; where the node of the graph represents the AOIs and the 
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edges represents the transition of the eye fixation data (Tory, Atkins, Kirkpatrick, 

Nicolaou, & Yang (2005); Mandal et al., (2016)). The graphical approach has the 

capability to handle very large number of AOIs. Apart from that this approach can 

be utilized to represent various attributes of the eye fixation data (eye fixat ion 

duration on AOIs, transiting among AOIs, fixation number on AOIs, relative 

importance of AOIs) by utilizing the various structural attributes of a graph e.g. 

node size, node colour, edge thickness etc. The graphical approach also lets us 

develop advanced quantitative metrics, which is required to understand complex 

eye fixation strategies obtained from tasks which involve tracking dynamic mult i-

element moving objects.  

 

.  
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Chapter 2: Objective  

2.1 Objective  

 The objectives behind undertaking this research endeavor is three fold. The 

first objective is to develop a new analysis framework for the eye tracking data 

obtained in a multielement moving object tracking scenario.  

The second objective is to develop a new visualization technique for 

representing the eye fixation data obtained in the above mentioned scenario.  

Lastly the third objective is to develop advanced quantitative metric to 

further aid the analysis. The metrics thus developed will provide a quantitat ive 

framework which will help us in understanding the underlying cognitive process of 

the participant’s involved in the task; and also will proving a framework to compare 

the eye fixation strategy among various participant 
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Chapter 3: Methodology 

This chapter describes the methodology used to develop the directed 

weighted network (DWN) representation of the eye tracking data of the ATC, 

obtained from the simulation experiment performed at the FAA CAMI in OKC. 

Figure 5 represents the overall algorithmic flowchart, showing different steps, of 

the methodology used. The initial step consists of the simulation experiment, where 

we conduct a simulation experiment and obtain relevant data for the subsequently 

developing the module 1, module 2 and module 3 in the given order. The details of 

the various stages of the flowchart have been described in the following 

subsections.  

3.1 Simulation experiment 

3.1.1 Experimental setup & data collection 

The following section provides the details the of the experimental setup and 

the data collected from it.   

Participants: In total, eye tracking data of nine retired ATCs was collected. To test 

the proposed algorithm, as a pilot study, only one ATC’s eye tracking data was 

analyzed. The analysis of the eye tracking data of the other eight participants is still 

in progress. 

Apparatus: Hardware specifications: For displaying the simulated air traffic 

movement a 19.83 × 19.83-inch monitor (2048 × 2048-pixel active display area) 
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was used. For capturing the eye tracking data, FaceLab 5 eye tracker system 

(Ekstremmakina.com, 2016) with a sampling rate of 60Hz was used.  

Software specifications: Kongsberg-Gallium I- Sim software, interna lly 

developed and used by the Federal Aviation Administration (FAA), was used to 

generate aircraft traffic simulation scenario, whose refresh rate was 1 second. 

Eyeworks software (Eyetracking.com, 2016) was used to process the raw eye 

fixation data collected by FaceLab 5.  

Both the hardware and software were provided by the FAA Civil Aerospace 

Medical Institute (CAMI) in Oklahoma City. The data obtained from the 

experiment has been described in detail in subsequent subsections.  

Scenario: This consisted of a simulated air traffic scenario of 20 minutes in 

duration with 20 aircraft on average on the display screen. Figure 6 shows a 

snapshot of the scenario used for the experiment. The direction of the movement of 

the aircraft is shown in yellow dotted lines e.g. aircraft labeled as G is moving 

eastward, whereas aircraft named A is moving westward. The actual simula t ion 

video didn’t have these yellow letters and lines to maintain a high fidelity 

simulation scenario. 

Task: The task for the participants involved controlling the air traffic in a low 

altitude en-route airspace using a simulated ERAM system (also provided by FAA). 

In addition to the ATC there were two pseudo pilots also, who were involved in the 

experimental process. Their job was follow the instructions of the ATC (given 
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through voice commands) and do the necessary maneuvering of the aircrafts . 

Simulated radio connection was used to perform all the above mentioned 

communications among the ATC and the pseudo pilots.  

The data collection process involves collection of two data files namely, (1) 

Air traffic simulation data file and (2) Eye fixation data file. The following section 

provides detail description of these two data files.  
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Figure 5: Algorithmic flowchart for various modules generated from simulation 

experiment data 

Simulation experiment  

1. Air traffic simulation data file 

2. Eye tracking data file 

Module 1: AOI fixation sequence development  

1. AOI based fixation 

Module 2: AOI transition matrix development  

1. AOI transition matrix 

Module 3: AOI network visualization development 

 
1. DNW visualization 

2. Quantitative metrics 

Start 

End 

2. Cumulative Eye fixation time 
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3.1.2 Air traffic simulation data file  

The air traffic simulation data file consists of the relevant information w.r.t 

the different aircrafts visible on the radar screen during the experiment duration. 

Table 1 shows a sample of the Air traffic simulation data file. From the table we 

can see that the data file shows information w.r.t the aircraft coordinates for various 

time values, and other relevant details of the aircraft representation used for the 

simulation. In Table xx, the first two columns namely, scenario time and time of 

the day shows the time that has elapsed from the start of the experiment and the 

actual time of day, respectively. The third column represents the aircraft’s code 

Figure 6: A snapshot of the simulated scenario used in the experiment 
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name. The fourth column named “target” shows the horizontal (X Pos.) and vertical 

(Y Pos.) coordinates of the targets (aircraft in this case) in pixel format. The fifth 

column consist information w.r.t the “data block” (a rectangular block 

representation containing information about speed, altitude, destination of the 

corresponding aircraft. The data block information consists of two subparts, firstly 

top left corner coordinates of the data block and secondly the bottom right corner 

coordinates of the data block.  The last column provides the end position 

coordinates of the vector line in pixel unit.  

Table 1: A sample air traffic simulation data file  

Scenario 
time 

Time 
of the 
day 

Aircraft 
code 

Target 

Data Block location 
Vector line 
end points 

Top left 
Bottom 

right 

X 
Pos. 

Y 
Pos. 

X 
Pos. 

Y 
Pos. 

X 
Pos. 

Y 
Pos. 

X 
Pos. 

Y 
Pos. 

00:01:02 9:4:33 AWE7523 985 938 1045 920 1134 995 950 884 

00:01:02 9:4:33 DAL3618 545 1240 560 1280 631 1355 592 1248 

00:01:03 9:4:34 AWE7523 986 939 1045 920 1134 995 950 884 

00:01:03 9:4:34 DAL3618 545 1005 560 1280 631 1355 592 1248 

 

3.1.3 Eye fixation data file 

The eye fixation data file consists information w.r.t the spatial location 

(horizontal and vertical co-ordinate points) and the time duration of each of the eye 

fixations made by the ATC during the experiment. Table 2 represents a small 

snapshot of a sample eye fixation data file. The first column represents the 

horizontal axis (X Pos.) and second columns shows the vertical axis (Y Pos.) pixel-



18 
 

coordinates of the eye fixations. The third and fourth columns represents the start 

and stop time of an eye fixation respectively. The duration of the concerned eye 

fixation is shown in the fifth column. 

Table 2: A sample eye fixation data file  

X Pos.  
(pixels) 

Y Pos.  
(pixels) 

Start time 
(secs) 

Stop time 
(secs) 

Duration 
(secs) 

500 457 0.30 0.53 0.23 

440 358 0.60 0.85 0.25 

652 550 1.10 1.84 0.74 

829 924 2.12 4.28 2.16 

 

3.2 Module 1: AOI fixation sequence development 

After the two data files have been obtained the next stage is the development 

of Module 1.  Module 1 consists of the development of the AOI based fixat ion 

sequence.  The details regarding the development of this module has been already 

published in Kang et al., (2016); and this section briefly describes the same. Before 

the AOI fixation sequence can be developed, using the air traffic simulation data 

and the eye fixation data, few other things that needs to be considered are as 

follows: 

i. How to develop the AOIs for the aircraft’s present in the simula t ion 

scenarios?  

ii. How to take into account the accuracy issues of the eye tracker used in data 

collection? 
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Mandal & Kang, (2015) undertook a study exploring various different 

geometrical shapes acting as an AOI and its effect on the eye fixation data attributes 

(number of eye fixations, duration of eye fixations). The geometrical shapes 

considered by them was namely, circle, rectangle and triangle. Mandal & Kang, 

(2015) found no statistically significant difference, w.r.t the eye fixation data 

attributes, between the various geometric shapes. Although, one particular thing to 

notice was that the various different AOI shapes considered were insensitive to the 

changes in the shape of the aircraft’s. In other words, the AOI didn’t change shape 

with change in the shape of the AOIs because the size of AOIs considered were big 

enough to accommodate all shape variation of the aircraft’s (this is relevant only 

for the simulations scenario considered by Mandal & Kang, (2015)) without 

changing their own shape. In general, it is difficult to assess what all possible shape 

variations might occur w.r.t the aircraft’s during a real life setting, thus the approach 

where the AOIs remain fixed in the shape is not applicable for the present study. 

Therefore, to address the issue highlighted in (i), for the present study the shape of 

the AOI, named convex AOI, was developed by calculating the convex hull 

(Barber, et. al.; 1996) of the set of points representing the aircraft under 

consideration.   

Figure 7 represents a typical representation of an aircraft in the simula t ion 

scenario (represented in black). The figure also shows a tightly fitted convex hull 

AOI (shown in dotted green), called convex AOI henceforth, and also a loosely 

fitted convex AOI (shown in green). From the figure we can see that the loosely 
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fitted AOI has some gap from the actual boundary of the aircraft representation. 

Kang et al., (2016) has described this gap as the AOI gap tolerance value or AGT 

VALUES is short. The AGT VALUES was considered to address the issue 

highlighted in (ii). The FaceLab 5 eye tracker system that was used for the data 

collection (Ekstremmakina.com, 2016)  had a visual angle accuracy in the range of 

0.50-10. The size of the display, used for scenario representation, also contributes 

towards the accuracy of the eye tracker system; size of the display is inversely 

proportional to the accuracy of the eye tracking data thus obtained. Due to the 

accuracy issue, many of the eye fixation positions noted are not correct w.r.t their 

vertical and horizontal pixels’ co-ordinates.  

 

  

Figure 7: A sample aircraft representation with its convex hull AOI. 

Figure adapted from Kang et al., (2016). 
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The next step in the process of the AOI fixation sequence development is 

the mapping of the eye fixation data with AOIs. Kang et al., (2016) described this 

mapping process as function, called AM (AOI Mapping), mapping the elements of 

the eye tracking data set to the elements of the AOI set.  Mathematically it can be 

written as follows: 

AOIEAM :                                                                                          … (1) 

Where,  

AM is the AOI Mapping function,  

E is the eye fixation data set (domain of the AM function)  

AOI is the set of AOIs (range of the AM function).  

If an eye fixation falls within the boundary of an AOI then that particular 

eye fixation is mapped to that AOI. As we know, the AOIs under consideration are 

moving on the display, as result there can arises cases where an eye fixation falls 

within the overlapped region of the more than one AOI. Figure 8 represents the two 

different mapping scenarios. Figure 8 (a) represents the case where a given eye 

fixation falls within the boundary of only one AOI and figure 8 (b) shows the 

scenario where the given eye fixation falls in the overlapped region of many AOIs 

(three AOIs in this case).  Another scenario can also occur where the eye fixat ion 

doesn’t fall inside any AOI boundary; in that case it is mapped to a non AOI, in the 

present case the non AOI is shown by “-1”.   
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After each of the eye fixations made by the ATC is mapped to their 

corresponding AOI/AOIs we obtain the raw AOI fixation sequence. Before we start 

calculating the relevant eye tracking data metrics, we need to convert the raw AOI 

fixation into collapsed AOI fixation sequence data.  Table 3 shows a sample raw 

AOI fixation sequence and its corresponding collapsed version. The collapsed 

fixation is obtained by deleting the multiple consecutive occurrence of the same 

AOI in the raw fixation and replacing it by only a single instance of the AOI.  

Table 4 represents a sample collapsed AOI fixation sequence data. The first 

column named “In/Out flag” takes only binary values (either 0/1). O represents that 

the fixations/ fixations under consideration occurred outside any AOI boundary, 

whereas 1 means that the corresponding fixations occurred inside atleast one AOI 

boundary. The second column named “Eye fix. Index” shows the list of consecutive 

indexed eye fixation points that occurred either outside the AOI boundary or all 

together on the same AOI/ AOIs boundary. The third column named “# of eye fix.” 

counts the number of eye fixations present in the “Eye fix. Index” column of the 

same row. The fourth column “AOI name list” shows the AOI/ AOIs that has been 

mapped to the eye fixation/fixations shown in the column “Eye fix. Index”. The last 

column named “Eye fix. time duration (secs.)” represents the amount of total eye 

fixation duration that occurred on the mapped AOI/ AOIs.  
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(a) (b) 

Figure 8: Mapping of eye fixation with AOIs (a) Mapping with single AOI (b) 
Mapping with multiple AOIs 

 

Table 3: Example of raw and collapsed AOI fixation sequence 

Raw AOI fixation sequence Collapsed AOI fixation sequence 

AABBCB(A,D) ABCB(A,D) 

 

Table 4: Sample AOI fixation sequence output 

In/out 

flag 

Eye fix. 

Index 

# of eye 

fix. 

AOI 

name 

list 

Eye fix. time 

duration (secs.) 

1 1 1 A 0.2 

0 [2,3,4] 3 -1 1.2 

1 5 1 [H,I] 0.8 

1 [6,7] 2 G 0.5 

 

Kang et al., (2016) called the various rows of the “AOI name list” column 

(table 4) as the mapped AOI set (MA set); e.g. the MA set for the 1st row is 

MA1={A}, similarly, MA2={-1} and MA3={H,I}. Thus, we can see the cardinality 
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of MA set varies from   (for MA2= {-1}) to 2 (MA3={H,I}). Kang et al., (2016) 

studied the frequency distribution of the MA sets having various cardinalities for 

different levels of AGT values ranging from 5 to 100 pixels. The authors calculated 

the optimal value of the AGT using the following equation: 

]1|)([maxarg
}100,....,15,10,5{




ccfreqAGT
AGT

optimal       … (2) 

Where,  

c is the cardinality of the MA set. 

AGT is the AOI gap tolerance value used  

From the equation 2 we can see that the optimal AGT value is that particular 

AGT value where the frequency of the mapped AOI set, of cardinality 1, reaches 

its maximum. Figure 9 (a), (b) and (c) shows the variation of the frequency of the 

mapped set of various cardinalities for different values of the AGT for three 

different scenarios. The specific characteristics of the three scenarios are explained 

in detail in Kang et al., (2016) . As we can see from the figure that the maximum 

value of the frequency of the MA set, having c=1 for all the three scenarios, is 

reached around AGT value of approx. 40 pixels. Therefore, for the present study 

AGT value of 40 pixels has been used to develop the convex AOIs and 

subsequently the AOI fixation sequence.   
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(a) 

 

(b) 
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(c) 

 

Figure 9: Frequency distribution of mapped AOI set, of various cardinality, for 
different AGT values (a) scenario 1, (b) scenario 2, (c) scenario 3. Adapted from 

(Kang et al., 2016). 
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3.3 Module 2: AOI transition matrix development 

Once the AOI fixation sequence has been developed, the next step involves 

development of module 2, i.e. the development of the AOI transition matrix from 

the above mentioned sequence obtained as output from module 1. In order to 

understand the development of the AOI transition matrix in detail, let us consider a 

sample example of AOI fixation sequence: “AB(AC)DABDCA”.  In the given 

sample sequence, we can see that, the first fixation occurred on AOI named ‘A’ 

then ‘B’ then on both ‘A’ and ‘C’ simultaneously and then ‘D’, ‘A’, ‘B’, ‘D’, ‘C’ 

and lastly on ‘A’. The particular representation (“AC”) shows that the eye fixat ion 

has occurred on the overlapping region of AOI named ‘A’ & ‘C’. For the present 

research endeavor all such overlapping AOI cases (e.g. “AC”) are considered as 

separate transition states different from the elemental AOIs (e.g. “A” & “C”) 

contributing to the formation of the overlapped cases. Another point to be noted is 

that the transition matrix is developed from the AOI based sequence, which is again 

dependent on the eye fixation data.  The transition matrix resulting from this 

strategy and above mentioned example sequence is shown in Table 5.  

 

For the present case, as described in section 3.1.1, we have considered a 

simulated experimental scenario where the AOIs were moving on the display and 

their shape can also be changed by the onlooker; as a result of this dynamic nature 

of the AOIs very often situations can arise where various AOIs are overlapping 

with each other. Thus such a scenario, with various possible overlapping situations, 
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can give rise to a very large number of possible transition states.  For a general 

scenario, if we do not know the trajectories of these moving AOIs beforehand, it 

becomes computationally very expensive to take into account all possible transition 

states. Another point to be noted here is that even though there might be many 

possible situations of overlapping AOIs on the display but those states may not be 

fixated upon by the onlooker; as a result, these scenarios will not appear on the AOI 

based fixation sequence. Therefore, most of such states will have zero values 

associated with them in the transition matrix representation as a result these states 

will have no impact on the relevant metrics thus developed from the transition 

matrix. More importantly since our major purpose is to understand the cognitive 

strategy of the onlooker, rather enumerating all possible AOI states, it is more 

judicious to take into account only those states which are viewed or fixated upon 

by the onlooker. Thus, this approach of limiting the transition states to the states 

observed in the AOI based sequence reduces the computational cost involved in 

developing the transition matrix. In module 2 we also extract the cumulative eye 

fixation time spent on each of the transition AOI states.  
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Table 5: AOI transition matrix developed from the example AOI fixation 

sequence 

 
To 

A B C D A,C 

F
ro

m
 

A - 2 0 0 0 

B 0 - 0 1 1 

C 1 0 - 0 0 

D 1 0 1 - 0 

A,C 0 0 0 1 - 

 

3.4 Module 3: AOI network visualization development 

After the transition matrix has been developed the next step is the module  

3 which involves developing the network representation of the transition matrix 

data and subsequent quantitative metric development from the developed network.  

The following sections demonstrates bot these processes.   

3.4.1 DNW visualization 

The matrix structure as obtained in table 5 shows that we can represent it in 

the form of a Directed Weighted Network (DWN) in which the nodes of the 

network can represent the AOIs and the edges of the network can be used to 

represent the transition between the AOIs. If we consider two arbitrary nodes 

(AOIs) named ‘i’ and ‘j’ then we will construct an edge joining them if the 

transition value tij > 0, where tij is the cell value of the ith row and jth column in the 

transition matrix. The value of tij will represent the weight of the edge. The direction 

of the edge will be from the ‘From’ AOI state to the ‘To’ AOI state. The origin and 

the destination of any particular eye fixation transition is shown by the direction of 
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the edge that connects any two nodes. The edge weights represent the total number 

of transitions that occurred in that direction. Another important edge attribute, that 

is used to aid the visualization process, is its thickness. In the present study for any 

given edge’s, its thickness is made proportional to the number of transition that 

happened in that direction.   

The other important structural aspect of the network visualization process 

are the nodes and their associated attributes such as colour and size. In the present 

design methodology, the size of the node has been made proportional to the node 

weight and its colour is dependent on the amount of the cumulative eye fixat ion 

time that occurred on it. A node having larger cumulative eye fixation time value 

associated with it is represented in more reddish colour and vice-versa; whereas 

nodes with low values of cumulative eye fixation time on it are represented with 

more yellowish colour and vice-versa. Thus, in a given network the nodes having 

relatively high values of cumulative eye fixation time duration on them will have 

reddish colour and nodes having relatively small values will have yellowish colour .   

Figure 10 represents the DNW representation of the AOI transition matrix shown 

in table 5. From the figure we can see that the nodes having higher input/ output 

eye fixations (in any general setting the number of input and output eye fixat ions 

are same) are relatively bigger in size. The thickness of the edge is proportional to 

its respective weights, e.g. the thickness of the edge from node “A” to node “B” is 

more compared to the other edges in the network visualization.  From the figure 10 

we can also see that the nodes are given different colour. For the given figure we 
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can see that the node named ‘A’ (red in colour) has the highest cumulative eye 

fixation duration associated with it whereas the node named ‘C’ and ‘A,C’ (yellow 

in colour). have the lowest eye fixation duration associated with it. 

 

 

Figure 10: DNW representation of AOI transition matrix shown in table 5 

 

3.4.2 Quantitative metrics 

After the attributes of the structural components of the network (edges and 

nodes) visualization are fixed, the next step involves developing the quantitat ive 

metrics associated with the network topology.  This quantitative metrics will 

provide us with a framework to characterize the eye fixation strategy and 

subsequently the cognitive decision making strategy of the ATC. There a mainly 

three node level centrality metrics considered in this manuscript namely, Indegree, 

Closeness and Betweenness. All these above mentioned centrality metrics measures 
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how central (in other words important) a particular node is in the overall network 

topology. Higher the centrality metrics value indicated higher importance. Each of 

the three above mentioned centrality metrics measure centrality of a node from 

different functionality perspective. The details about the metrics and their 

calculation has been described in the subsequent sections.  

3.4.2.1 Indegree centrality 

Indegree centrality metric – Degree or degree centrality of a node has 

been traditionally defined as the number of direct connection a particular node has 

in the network (Freeman, 1978). For undirected networks we have only one degree 

measure of a node which is the number of edges connected to that node. Things get 

different when we have directed networks where we have two measures of degree 

namely, indegree (indegree centrality) and outdegree (out degree centrality). 

Indegree and outdegree in this case is the amount of incoming edges and the number 

of outgoing edges respectively from the node. Things get more complex in case of 

directed weighted network. In this case, apart from having directed edges we also 

have weights associated with the edges. Thus in such scenarios the indegree 

centrality for a given node in defined as the amount of incoming weights to the 

nodes from all other nodes in the network (Newman , 2004; Barrat et al., 2004). 

Similarly, the outdegree for a node is defined as the total amount of weights going 

out from the node to all other nodes in the network. In our case, the edge weights 

are the number of eye fixations in that direction, since we know that the amount of 

eye fixation going inside an AOI is same as the amount of eye fixations going out 
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of that AOI (unless the AOI is either the starting or the ending AOI in the given 

AOI fixation sequence), we have indegree equal to outdegree.  

For calculating the indegree in case of directed weighted network 

traditionally the following equation has been used (Newman, 2004; Opsahl, 2009): 






N

ij
j

jiwi
1

I )(CIndegree          … (3) 

Where, jiw is the weight of the edge from node “j” to node “i”.  

Since the sequence developed is a collapsed version of the raw fixations therefore, 

ij  . In other words, no self-loops are allowed in the DWN representation. 

Equation 3 suffers from the limitation that this measure only considers the weight 

of the edges (also called node strength) and it doesn’t take into account the number 

of edges. As argued by Opsahl et. al. (2010) that the original definition of the 

indegree metric by Freeman (1978)  considered the number of ties a node has in the 

network, whereas the measure generally used for weighted directed networks only 

considers the weights associated with the node but not the number of edges. From 

figure 11 we can see that for the same value of incoming weights for a particular 

node we can have various possible incoming edge combinations in the network 

topology. Therefore, there is need to consider a different degree centrality measure 

for directed weighted networks. Opsahl et al., (2010)  provides a generalized degree 

centrality formula which takes into account both the weights and the number of 

edges, which is as follows:  
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In the above formula “α” is the tuning parameter whose value ranges from 

0 to 1. The value of α determines the relative importance given to the edge weights 

and the edge numbers while calculating the degree centrality value. For the present 

study for simplicity sake we have used α=1. As a result, the value obtained from 

equations 3 and 4 are same; although in future different values of α can also be 

considered for different applications of the obtained results depending the context.  

For α=1, we have iiiI sskiC 
 1

)( .  For demonstration purpose 

Consider a sample AOI fixation sequence “ABACACADACDCDCAB” (for 

simplicity sake we have not considered an overlapping case). The corresponding 

DWN representation of the sequence is shown in figure 12. For example, for node 

“A” we have an edge with weight value one coming from “B”, edge with weight 

three coming from “C” and edge with weight one coming from “D”; therefore 

6132)(I  isAC . Thus applying the generalized formula shown in 
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equation 4 (for α =1) for the network shown in figure 12 we get the following 

indegree values for the nodes (Table 6).  

 

 

(a) 

 

(b) 

Figure 11: Example of different edge combination for the incoming weight for a 

node (a) node A has indegree centrality 7 and 3 incoming edges (b) node A has 
indegree centrality 7 and 2 incoming edges 
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Table 6: Indegree values for the nodes of the network shown in figure 12 for α=1 

Node Name Indegree 

A 5 

B 2 

C 5 

D 3 

 

3.4.2.1 Closeness centrality 

Closeness centrality metric: As we have seen that the indegree centrality 

only measures the number of direct connection a node has in the network but it 

doesn’t talk about how on average it impacts the other nodes or how close it is to 

all other nodes on average. The closer a node is to all other nodes in the network, 

3 

A 

D 

B 

C 

2 

1 

2 

2 

1 

3 

Figure 12: DWN representation of the example sequence 

1 
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the more importance it holds in the overall network topology and subsequently in 

the underlying cognitive strategy of the ATC. In the present study, we can have an 

AOI which have very high transition from a single AOI but not directly sharing any 

connection to other AOIs. As a result, for such a node it will have very high 

indegree value but it might not be very impactful to the overall network topology 

(thus overall cognitive strategy of the ATC) because it is isolated from all other 

nodes in the network. Thus we can see that only indegree centrality is not suffic ient 

to measure the importance of the node in the network obtained. Thus we need to 

have a metric which measure how close a node is to all other nodes, in other words 

how reachable are all the other nodes from the particular node under consideration. 

This closeness or reachability of a node is measured by closeness centrality metric. 

The node level closeness centrality for a particular node is defined as the inverse of 

the sum of its minimum distances from all other nodes in the network (Freeman, 

1978). Mathematically it is defined as follows: 



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min ),( is the sum of the minimum distances from node “i” to node “j” and 
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 Therefore, to find the minimum distance between two nodes first we need 

to define the concept of distance in a directed weighted network. If the edge weight 

in a directed graph is considered as the “cost” or the “resistance” to transverse that 

edge in that given direction the distance is equal to the edge weight; but if the edge 

weight represents the strength of the tie, then the distance in that direction can be 

considered as the inverse of the weight of the edge (Opsahl et. al., 2008). In the 

present case, the edge weight from node “i” to node “j” is equal to the number of 

eye fixation transitions from AOI “i” to AOI “j”. Therefore, the edge weight is a 

representation of the strength of the tie in the direction AOI “i” to AOI “j”, thus the 

distance from AOI “i” to AOI “j” is inverse of this weight. Mathematically, the 

distance from AOI “i” to AOI “j” can be written as follows:  

ijw
jid

1
),(             … (8) 

Where, ijw is the edge weight from node “i” to node “j”.  

For the present study the networks under consideration are directed in 

nature, therefore the distance from node “i” to node “j” is different from node the 

distance from node “j” to node “I”.  

In case of directed network data, it is often noticed that sometime there is 

no direct edge connecting two nodes, e.g. in figure 12 we cannot travel directly 

from node “B” to node “D”, but we need to traverse either from “B” to “A” then to 

“D” or either from “B” to “A” to “C” and then to “D”. In such cases the minimum 
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distance needs to calculated by taking into account the distance to all the 

intermediate nodes in the possible shortest route (which depends on the edge 

weights).  Mathematically it can be shown as follows (Opsahl, et. al., 2010):  


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min         … (9) 

Where, 

 k1, k2…kn are the intermediate nodes that needs to be crossed while travelling from 

node “i” to node “j”. 

nmkkw is the weight of the edge joining the nodes “km” and “kn”  

While calculating the shortest distance between nodes another very 

important point that needs to be taken into account is that for the present case the 

edge weights are representation of the strength of the ties between the nodes in that 

direction. As a result, higher the weight for a particular edge, lower is the distance 

between the nodes in that particular direction (equation 9). Thus, there can be many 

instances where the direct edge connecting two nodes may not be the shortest route 

between those two nodes, whereas an indirect route having intermediate nodes may 

turn out to be the shortest possible route. Figure 13 shows such an example, where 

the shortest route between node “A” to node “D” is not the direct edge having 

weight 1 but the route from node “A” to node “C” and then to node “D” (shown by 

the blue direction line).  
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Using equation 8 and 9, we get 

1
1

),( 
ADw

DAd  and 
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3

111
),( ),( 

CDAC ww
DCdCAd  

Thus, we get ),(),( ),( DAdDCdCAd   

Using equation 8 and 9, and taking note of the above mentioned point we 

get the following table that shows the distance between nodes in the sample network 

shown in figure 12.  

 

 

 

 

3 

C 

D 

A 

1 

2 

Figure 13:Example of shortest distance between two nodes. The shortest 

path from node “A” towards node “D” is shown using the blue curve.  
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Table 7: Minimum distance matrix of the sample network shown in figure 12 

From node 
To node 

A B C D 

A 0.00 0.50 0.33 0.83 

B 1.00 0.00 1.33 1.83 

C 0.33 0.83 0.00 0.50 

D 0.83 1.33 0.50 0.00 

 

From table 7 we get that the average distance between the nodes is 0.845 

(which is the average of the entries in table 7, neglecting the diagonal entries). We 

should note that it is difficult to define the physical interpretation of the average 

distance value thus obtained. To solve this issue Opsahl et al.,(2010) advocates the 

normalization of the weights of the given network by the average weight of the 

network. This normalization is to be done before calculating the distance between 

the nodes. Mathematically it is defined as follows: 
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Since, we are not taking into account the diagonal elements of the distance 

matrix therefore the denominator in equation 10 is N(N-1) = 4*(4-1) =12. For the 
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figure 12 the average weight is 1.25. After normalizing the weights, we obtained 

the following network shown in figure 14. After the weight normalization the 

subsequent distance matrix obtained is shown in table 8. Thus, the distance obtained 

after the normalized weights can used can be represented as follows; 

avg
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Where, 
normijw

k
,

1
  

From equation 12 we can see that the normalized distance between node “i” 

to node “j” can be interpreted as a scalar multiple of the average weight of the 

network. Now the normalized average distance among the nodes is equal to 1.058; 

which can be interpreted as 1.058 times the average weight of the network (Opsahl 

et al., 2010). After the distances have been calculated now we can proceed towards 

the calculation of the closeness value of the nodes in the network. For example, the 

closeness values for node “A” is as follows: 

48.0
04.142.0625.0

1
)(   


 ACAnodeofCloseness C

 

Table 9 shows the closeness values for all the nodes of the network shown in figure 

14.  
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Table 8: Distance between nodes after weights are normalized for the network 
shown in figure 14 

From 

node 

To node 

A B C D 

A - 0.63 0.42 1.04 

B 1.25 - 1.67 2.29 

C 0.42 1.04 - 0.63 

D 1.04 1.67 0.63 - 

 

Table 9: Closeness metric value for nodes of the network shown in figure 14 

Node name Closeness 

A 0.480 

B 0.192 

C 0.480 

D 0.300 

2.4 

A 

D 

B 

C 

1.6 

0.8 

1.6 

1.6 

0.8 

2.4 
0.8 

Figure 14: DNW representation of the sample sequence after weight 

normalization 
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3.4.2.1 Betweenness centrality 

Betweenness centrality metric: The above mentioned two centrality 

metrics namely, indegree and closeness measure the importance of a node by 

measuring the direct association of the node and how much it is reachable to all 

other nodes in the network respectively. As a result, nodes having very high amount 

of direct association with other nodes and nodes having very high reachability to 

other nodes will have high indegree and closeness value respectively; although we 

encounter some instances where a node which doesn’t have either of the above 

discussed properties but still plays an important role in the network dynamics just 

by being present on the critical path connecting two dis-connected group of nodes 

(figure 15). Because of this presence, every information transaction that happens 

between these two disjoint group of nodes passes through the specific node which 

connects these two group of nodes. As a result, this specific node becomes 

important from information transaction/ flow point of view. This importance of a 

node from the information transaction context point of view is captured by the 

betweenness centrality metric.  

In a given network, betweenness for an arbitrary node “i” is defined as the 

ratio of number of shortest path between any two random nodes passing through 

node “i” to the number of shortest path between those two random nodes concerned. 

Let jkg is the total number of shortest path between node “j” to “k” and the let )(ig jk  

be the number of those shortest path between node “j” to “k” that passes through 

node “i”; then the betweenness metric value of the node “i” is defined as ratio of 
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)(ig jk over jkg  summing over all possible combination of node “j” and node “k” in 

the network. Mathematically this can be written as follows (Opsahl et al., 2010): 





ikj jk

jk

B
g

ig
iCsBetweennes

)(
)(       … (13) 

Where,  

∑ represents summed over all possible combination of index “j” and index “k” 

For an example case lets calculate the betweenness value for node “A” for 

the sample network in figure 12. Table 10 represents all possible combination of 

starting and ending nodes for which the shortest paths needs to be calculated w.r.t 

the network topology shown in figure 12. From the figure we can see that shortest 

route between node “B” to node “C”, node “B” to node “D”, node “C” to node “B”, 

node “D” to node “B” all pass through node “A”. The other two combinations that 

doesn’t have node “A” as either the starting or the ending nodes are path from node 

“C” to node “D” and node “D” to node “C” and for these two combinations their 

shortest route doesn’t pass through node “A”. Therefore, using equation 13 and 

possible pair combination from table 10 we get the following values for node “A”: 
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Therefore, from equation 13 we get,  
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Table 11 represents the betweenness scores of all the nodes of the sample network 

shown in figure 12.  

 

 

Table 10: All possible combination of starting and ending nodes for which the 

shortest paths needs to be calculated for the network in figure 12 

From To 

 

From To 

A B C A 

A C C B 

A D C D 

B A D A 

B C D B 

B D D C 

 

 

A 
G1 

G2 

Figure 15: Example of a node lying on the critical path joining two otherwise 

dis-connected node groups. Node “A” is only connected to two important nodes 
belonging to group1 and group2 (shown in orange colour), as a result it lies on 

the critical path between the two groups.  
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Table 11: Betweenness value of the nodes of the network shown in figure 12 

Node name Betweenness 

A 4 

B 0 

C 4 

D 0 

 

 

 

 

 

 



48 
 

Chapter 4: Results 

This section describes the results obtained from the analysis of the data 

collected from the experiment performed at the FAA CAMI in OKC. The 

information presented in this section has already being published in Mandal, et. al., 

(2016). For demonstration purpose of the proposed algorithm the analysis of only 

one ATC’s eye tracking data has been provided as a pilot study.  

As mentioned in section titled “simulation experiment”, we know that the 

total experimental scenario duration was of 20 minutes. For analysis purpose the 

total duration was divided into 4 equal parts of 5 minutes each.  A detailed analysis 

of the first five-minute duration (starting from 0 minute and ending at 5 minute) has 

been explained in detail in the following section. A comparative analysis of the 

results obtained for this 5 minute duration and the total 20 minute has been done 

subsequently.  

4.1 Results: 0-5 minute duration 

Table 12 shows the various aircraft present in the 0-5 minutes’ duration and 

their respective AOI character names used for the analysis purpose. Table 13 shows 

a small sample of the AOI fixation sequence obtained for this duration of the 

simulation scenario.  The total cumulative eye fixation duration that happened on 

the various AOI combination during this duration is shown in figure 16. From the 

figure 16 we can see that highest duration of eye fixation occurred on AOI “H”. 

AOI “A”, “G” and “F” also received substantial eye fixation duration 

approximately in the range of 11-13 seconds. The next in the line is the AOI “E” 
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which is fixated upon for around 9 seconds approx.  Another important aspect to 

notice from the plot is that the eye fixation duration on the overlapped AOI states 

(e.g. “A,B”, “B,E” etc.) is very small in value. The possible reason for this might 

that the overlapping states occur for very short duration of time, as a result the ATC 

spends very short amount of time on these states. Unlike this, one overlapping AOI 

state named “H,I” have substantial eye fixation duration attributed to it. This result 

can be understood from the fact that one of the participating individual AOI states 

“H” in the overlapping state “H,I” has very large amount of eye fixation duration 

associated with it. Thus, it might be possible that the ATC controller was actually 

fixating upon on the AOI “H” but due to overlapping with AOI “I” the algorithm 

mapped those eye fixations and subsequently the fixation duration with the 

overlapped AOI state.  

Table 12: Aircraft's name and their corresponding AOI name. Table adapted from 

Mandal et al., (2016). 

Aircraft Name AOI Name 

AAL2892 A 

AAL631 B 

N421TA E 

SWA234 F 

SWA3698 G 

AWE7523 H 

DAL3618 I 

FDX3621 J 
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Table 13: Sample AOI fixation sequence for 0-5 minute duration 

In/out 

flag 
Eye fix. Index # of eye fix. 

AOI 

name list 

Eye fix. time 

duration (secs.) 

1 1 1 A 0.2 

0 [2,3,4] 3 -1 1.2 

1 5 1 [H,I] 0.8 

1 [6,7] 2 G 0.5 

 

 

Figure 16: Total cumulative eye fixation time on various AOIs for 0-5 minute 

duration. Figure adapted from Mandal et al., (2016). 

 

0 5 10 15

A

B

E

F

G

H

I

A;B

B;E

B;G

H;I

J;F

A;H;I;G

A;B;H;I;G

Total eye fixation duration on the AOIs (in secs.) 
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Figure 17 shows the DWN visualization of the AOI fixation sequence for 

0-5 minute time segment of the simulation scenario.  From the figure we can see 

that the most important AOI w.r.t the size of the node is AOI “A”, “G” and “I”. As 

far as the colour attribute of the nodes are concerned the AOI “A”, “G” and “H” are 

the most important. This information is also substantiated from the figure 16. For 

the case of AOI “I” it has large size but a more yellowish colour to it, signifying 

that the large number of eye fixation fixated upon it are of small duration only.  The 

small size and the red colour of the AOI “F” can be understood by the fact that the 

ATC has made few number fixations on AOI “F” but each fixations had long 

duration associated with it. AOI “E” has substantial eye fixation number and 

duration associated with it as evident from the slightly reddish colour and size of 

the node. As expected, all the overlapped AOI states are both small in size and 

yellow in colour, except AOI “H,I” whose reasoning has been explained above.  
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Figure 17: DWN visualization of the AOI fixation sequence data for 0-5 minute 

duration. Figure adapted from Mandal et al., (2016).  

 

Figure xx represents the indegree centrality metric values for the various 

AOI states present in the 0-5 minute duration. As expected from the DWN 

visualization in figure 17, the indegree plot (figure 18) also shows that the most 

important AOIs are “A”, “G” and “H”. The next set of AOI which have substantia l 

amount of eye fixations (as represented by the indegree value) are states namely, 

“B”, “E”, “I” and the overlapped AOI state “H,I”.  
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The closeness and betweenness centrality metrics are shown in figure 19 

and 20 respectively. Form the figure 19 we can see that the closeness metric also 

follows a similar profile like indegree metric value. This plot shows that AOI “A”, 

“G” and “H” are closer to all other nodes in the network compared to other given 

AOI states in the DWN visualization. This fact can be confirmed from the fact that 

most of the eye fixation transition from all other nodes happens to these nodes, as 

shown by the node large node size of these AOIs in the DWN visualization in figure 

17.   

Unlike closeness and indegree metric results, the plot for the betweenness 

metric value (which represents how important role a given node plays in the 

transmission of information, eye fixation transition in our case, between any two 

random nodes in the network) shows some interesting results.  Aircraft “A” has 

distinct large value of betweenness compared to other aircraft; which shows that it 

plays an important role while the ATC makes transition from one aircraft towards 

another. In other words, aircraft “A” plays as an information hub through which the 

information exchange, eye fixation transition in our case, between various aircraft 

happens. As expected all the overlapped AOI states have very low betweenness 

value. Aircraft “G” and “H” have similar betweenness centrality value of approx. 

50.  Thus, the betweenness metric values shows that in the overall scanning strategy 

of the ATC, the aircraft “A”, “G” and “H” plays very vital role as most of the 

shortest routes connecting various aircrafts passes mostly through these three 

aircrafts.  
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Figure 18:  Indegree centrality metric value for various AOIs for 0-5 minute 
duration. Figure adapted from Mandal et al., (2016). 

 

 

Figure 19: Closeness centrality metric value for various AOIs for 0-5 minute 
duration. Figure adapted from Mandal et al., (2016). 
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Figure 20: Betweenness centrality metric value for various AOIs for 0-5 minute 
duration. Figure adapted from Mandal et al., (2016). 

 

To understand the particular characteristic obtained in the DWN 

visualization and the centrality metric plots for the 0-5 minute duration of the 

scenario we need to carefully investigate the video recording for the same. Figure 

21 represents the snapshot of the video of the scenario for the 4th minute of the 

scenario under consideration. The figure shows the AOI names and also the 

direction in which the respective aircraft are moving. Three larger regions of 

interest in the snapshot are shown in red, blue and green boundaries. In the red 

region we can see that the aircraft with AOI name “A” and “G” are moving head-

on. Due to this a possible conflict situation may arise; as a result, the ATC has spent 

substantial amount of eye fixation duration on these two AOIs (as evident from 



56 
 

figure 16) and has made many transition movements between these two AOIs (as 

evident from the thick edge joining node A and G in figure 17).   

Another important region is the region in green boundary where aircraft 

with AOI name “H” and “I” are present. On careful investigation of the recorded 

video it is noticed that the aircraft “H” makes a direction change around the 4th 

minute and starts moving towards the line joining aircraft “A” and “G”.  As a result, 

the ATC spend substantial amount of time to investigate any possible future conflict 

situation. Another important thing is that aircraft “H” and “I” are moving one after 

the other with very high physical proximity with each other on the display; although 

this doesn’t give to any possible conflict situation due to difference in their flying 

altitude. These above two reasons must have contributed to that fact that aircraft 

“H” has high amount of eye fixation duration attributed to it. The unlikely increase 

in the eye fixation duration associated with the overlapped AOI state “H,I”, unlike 

other overlapped states, is mainly because of the contribution from the importance 

held by AOI “H”.  

The last major region to focus is shown in blue boundary. This region has 

aircraft with AOI names “A”, “B” and “E”. As we can see from the figure 21 that 

all these three aircraft are in close physical proximity w.r.t each other. Aircraft “A” 

and “B” are crossing each other although there is a huge altitude difference in them. 

As a result, there doesn’t arise any possible future conflict scenario among them. 

Once aircraft “B” moves past aircraft “A” there is no other aircraft in front of it, 

thus once the ATC is confirmed that there is no possible conflict between “A” and 
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“B” he/she cease to pay much attention to it, resulting in low eye fixation duration 

on “B”. Unlike this aircraft “E” is approaching towards “A” as visible form the 4th 

minute snapshot shown in figure 21. Apart from that during the time interval after 

the 4th minute, the trajectory of aircraft “E” crosses the trajectory of many other 

aircrafts such as “G”, “H and “I”. As a result, the ATC is subjected to divert his 

attention toward aircraft “E” which results in it having substantial eye fixat ion 

duration associated with (figure 16 and 17).  

Another important fact noticeable from the figure 17 is that aircraft F has 

very small node size unlike the other red coloured nodes in the network. A possible 

reason can be found after investigating the snapshot figure 21 where we can see 

that at the 4th minute the aircraft “F” has just entered the visual display and its speed 

vector is not yet displayed. As a result, after preliminary investigation of the 

information provided in the data block of the aircraft “F” for a certain amount of 

time the ATC doesn’t visit it anymore resulting into high eye fixation duration but 

low number of fixations associated with it. The low number of eye fixat ion 

transitions to the aircraft “F” from all other aircraft can be understood by the fact 

that it has very large lateral distance from other aircraft on the display. 
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Figure 21: Snapshot of the simulation scenario at 4th minute. Figure adapted 
from Mandal et al., (2016).  

 

4.2 Results: 0-20 minute duration 

Figure 22 represents the DWN visualization of the total 20 minutes duration 

of the simulation scenario under consideration. As we can see from the figure that 

the network has grown very complex in nature with many new nodes and as a result 

many new edges appearing. The nodes which have substantial number of fixat ions 

associated with them have been named for the ease of visualization purpose. For 

the similar reason the edge weights are also are not shown in the figure.    
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The most important fact visible from the figure 22 is that for the whole 20-

minute duration the important aircraft, w.r.t node size and node colour, are different 

as compared to the previous 0-5minute duration DWN visualization. The most 

important aircraft for the whole 20 minutes duration are aircraft “E”, “H” and “I”. 

On careful investigation of the recorded video of the scenario, it is noticed that 

aircraft “A” leaves the visible display at the 8th minute and similarly, aircraft “G” 

descends down to the airport at around the 14th minute. This is the reason why the 

two previously important aircraft ceases to hold crucial position in the overall 

scanning strategy of the ATC for the whole 20 minutes duration. Unlike these two 

aircrafts the aircraft “E”, “H” and “I” remains visible on the display area for the 

whole of 20 minutes duration, which explains why they become more important for 

the eye fixation strategy of the ATC.   

The new nodes appearing in the figure 22 can be explained by the fact that 

with passage of time many new aircraft appear on the display area, as a result giving 

rise to many new singular and also many overlapping AOI states which was 

previously not there for the 0-5 minute duration. Table 14 shows the cumula t ive 

eye fixation duration and also the various centrality metric values for the three most 

important aircraft for the 0-20 minute duration.  
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Figure 22: DWN visualization of the AOI fixation sequence data for 0-20 minute 
duration. Figure adapted from Mandal et al., (2016) 

 

Table 14: Centrality metric values for the 3 most important aircraft for 0-20 

minute duration. Table adapted from Mandal et al., (2016) 

AOI 

Total eye 

fixation 

time (s) 

Centrality metrics 

Indegree Closeness Betweenness 

E 19.485 33 0.0053 1810 

H 34.045 41 0.0054 2373 

I 29.614 31 0.0053 1240 
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Chapter 5: Discussions & Conclusion 

5.1 Discussions 

The prevalent eye fixation visualization techniques of can be classified into 

two main categories namely, point based and AOI based. The visualiza t ion 

techniques, in both the categories mainly deal with static scenarios or scenarios 

having static AOI locations. The other major limitation is that they are not equipped 

to handle scenarios where the number of AOI are changing with time. It is also very 

difficult to develop advanced quantitative metrics from these techniques, as a result 

they are not very efficient in scenarios where the objective is to understand complex 

eye tracking strategies and subsequently the underlying cognitive process of the 

onlooker.  

For the present study, the scenario under consideration was dynamic in 

nature, i.e. the aircraft were moving on the display. Apart from that, the number of 

aircraft were also changing with time. Given this scenario, our main objective is to 

understand the eye fixation strategy of the ATC. Due the above mentioned specific 

characters of the scenario under consideration the prevalent techniques don’t serve 

the intended objective very efficiently. Therefore, it is necessary to develop a new 

visualization methodology with can address these major limitation, i.e. which can 

handle dynamic AOIs, change in the number of AOIs and also is suitable enough 

for the development of advanced quantitative metrics.  

 The present paper demonstrates the development of a new visualiza t ion 

technique using the directed weighted network (DWN) approach. In the network 
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the nodes/ vertices represent the AOI of the aircraft’s, and the edges (which are 

directed and weighted) represents the eye fixation transition in a particular 

direction. The weight of the edges represents the amount of eye fixation transition 

that occurred in that direction. Apart from that, few visual attributes of the network 

structure have also been employed to make the visualization process more intuit ive. 

The size of the node has been made proportional to the amount of eye fixat ion 

happening on that particular node/ AOI. The colour of the node also depends on the 

amount of cumulative eye fixation time spent on the it. Higher the eye fixat ion 

duration more reddish in the colour of the node, and lower the amount of eye 

fixation time more yellowish is the colour of the node. The thickness of the edge is 

proportional to the weight of the edge.  

Thus we can see that with the application of the DWN representation 

enables us to visually represent the characteristics of eye fixations, such as number 

of fixations and their cumulative duration on each of the AOIs. Application of the 

visual attributes in the DNW representation lets us visually inspect which AOIs 

were more important than others (viewed more often than others) and also which 

are the AOIs among which very high amount of eye fixation transitions have 

happened. Apart from the visual attributes, the DNW visualization also helps us to 

in the development of advanced quantitative metrics (indegree, closeness, and 

betweenness centrality measures) which provides a quantitative framework to 

understand the relative importance of the AOIs in the overall fixation strategy of 

the onlooker. The framework thus provides a quantitative means to investigate the 
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underlying cognitive processes that formed such different networks topologies. The 

ability of extracting the quantitative framework from the DNW representation 

makes it a viable candidate towards the development of a methodology for 

comparisons of various eye fixation strategies also.  The DWN methodology also 

has the ability to address issues of dynamicity of the AOIs in terms of disconnected 

graphs or stochastic graphs. Therefore, this methodology can be further developed 

for addressing the issue of the spatio-temporal aspects of the eye fixation data. 

One important thing about the results obtained is that the important AOIs, 

in the eye fixation strategy, changes with change in the time segment used for 

analysis. This fact is visible from the results obtained for the 0-5 minute duration 

in comparison to the 0-20 minute duration of analysis. This difference of results 

obtained for different time segments shows that we also need to develop a guiding 

mechanism to determine the optimal time segments for analysis purpose.  

 

5.2 Conclusion 

The traditional methods of eye fixation visualization are not efficient to handle scenarios 

which have the dynamic AOIs and also whose numbers are changing with time.  They also 

lack the development of advanced quantitative metrics to analysis complex eye fixation 

strategies. Therefore, to address these limitations we have proposed a new methodology of 

using DWN visualization. This new visualization approach can effectively represent the 

important AOIs in the fixation strategy being employed, using only visual attributes. Many 

other attributes of the eye fixation data, e.g. eye fixation numbers, eye-fixation duration on 
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AOIs and direction of transitions, can also be represented using this framework. The 

proposed new method also provides a framework for the development of advanced 

quantitative metrics for the analysis of complex eye movement data. The quantitate metrics 

can be used to compare between two eye fixation strategies.  It is also noticed that the results 

obtained from the proposed methods is very much dependent on the time segment used for 

the analysis purpose because of the dynamic nature of the scenario considered for the 

experiment. Thus, we need to consider a guided mechanism to determine an optimal strategy 

to perform this time segment selection.   
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Chapter 6: Limitations & Future Work 

6.1 Limitations 

  Given the present form of the DWN algorithmic, one major limita t ion 

observed is that the results are every much effected by the time segment we choose 

for the analysis purpose. With change in the start and ending time of the analysis 

time segment the subsequently obtained values of the important aircraft in the AOI 

fixation sequence also change. Thus, an absence of a guided method to segment the 

time duration for analysis purpose is presently missing.  

Another major noticeable limitation of the DWN visualization process is 

that, given the network data it is not possible to extract the unique AOI fixat ion 

sequence from which the given network is developed from. Thus, the mapping 

function from the AOI fixation sequence set to the network visualization data set 

doesn’t have any inverse, since the reverse mapping doesn’t generate any unique 

AOI fixation sequence. 

We need to understand the fact that the given form of the DWN 

visualization is an abstract and a static form of representing the AOI fixat ion 

sequence which have both spatial and temporal attributes attached to it. Since we 

are using a static approach to visualize the AOI fixation sequence data, where the 

AOIs are changing their position and shape with time, it is not possible to represent 

the actual trajectories of the AOIs. DWN approach, being a static representation, 

also limits the possibility of representing the actual spatial distribution of the eye 
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fixation data. Although, the major objective being understanding the AOI fixat ion 

strategy the above mention limitation doesn’t have much adverse impact on the 

results obtained from the DWN approach.  

 

6.2 Future work 

As a part of the future work, we can consider addressing some of the above 

mentioned limitations of the present form of the proposed algorithm. For the present 

study, because of the dynamic nature of the simulation scenario new aircraft (as 

result the corresponding AOIs) can enter the display and already present aircraft 

can leave the display area with passage of time. As a result, the spatial location of 

the aircraft and the number of them visible on the display change with time. To 

represent the AOI fixation data on such a scenario the concept of dynamic graphs 

can be applied. instead of using a single graph representing the whole scenario we 

can consider using several graphs representing the changing dynamics of the AOI 

fixation sequence with the dimension of time attached to it. Another possibility for 

future endeavor is to analyses the AOI fixation sequence data using a network 

having stochastic attributes.  

 Apart from the network visualization approach, we can also consider 

analyzing the algebraic properties of the AOI transition matrix obtained from the 

AOI fixation sequence data.  The spectral analysis of the AOI transition matrix can 

help us to unearth the various inherent structural similarities or dissimilarit ies 
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existing among the various AOI fixation sequences, obtained from various ATC’s 

eye fixation data, which are otherwise not apparent from simple visual examina tion 

of the network visualization. This method will allow us to better characterize AOI 

fixation sequence data for obtained from experiments of long time duration.    

Another approach that can be applied for further analysis of the AOI 

fixation sequence data is to treat the eye fixation data as a random walk over a 

dynamic graph. In this case, the aircraft simulation scenario can be thought of as a 

completely connected dynamic graph and the eye fixation transition from one 

aircraft to another aircraft as a random walk process over the various nodes 

(aircraft) of the graph.  

 

  



68 
 

References 

Aula, A., Majaranta, P., & Räihä, K.-J. (2005). Eye-Tracking Reveals the 

Personal Styles for Search Result Evaluation. In INTERACT: IFIP 
International Conference on Human Computer Interaction (pp. 1058–1061). 
Rome, Italy. http://doi.org/10.1007/11555261_104 

Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm 

for convex hulls. ACM Transactions on Mathematical Software, 22(4), 469–
483. http://doi.org/10.1145/235815.235821 

Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The 

architecture of complex weighted networks. Proceedings of the National 
Academy of Sciences of the United States of America, 101(11), 3747–3752. 
http://doi.org/10.1073/pnas.0400087101 

Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., & Ertl, T. 
(2014). State-of-the-Art of Visualization for Eye Tracking Data. In 
Eurographics Conference on Visualization (EuroVis) (pp. 1–20). Swansea, 

UK. 

Blignaut, P. (2010). Visual span and other parameters for the generation of 
heatmaps. In Eye Tracking Research and Applications Symposium (ETRA) 

(pp. 125–128). Austin, Texas, USA. 
http://doi.org/10.1145/1743666.1743697 

Duchowski, A. T., Price, M. M., Meyer, M., & Orero, P. (2012). Aggregate gaze 
visualization with real-time heatmaps. In Proceedings of the Symposium on 

Eye Tracking Research and Applications - ETRA ’12 (Vol. 1, pp. 13–20). 
Santa Barbara, California. http://doi.org/10.1145/2168556.2168558 

Ekstremmakina.com. (2016). “faceLab 5-SeeingMachines.” Retrieved October 

18, 2016, from 
http://www.ekstremmakina.com/EKSTREM/product/facelab/index.html 

Eyetracking.com. (2016). “Powerful eye tracking software developed for 

researchers.” Retrieved October 16, 2016, from 
http://www.eyetracking.com/Software/EyeWorks 

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. 
Social Networks, 1(3), 215–239. http://doi.org/10.1016/0378-

8733(78)90021-7 

Goldberg, J. H., & Helfman, J. I. (2010). Scanpath clustering and aggregation. In 
Proceedings of the 2010 Symposium on Eye-Tracking Research & 

Applications - ETRA ’10 (pp. 227–234). Austin, Texas. 
http://doi.org/10.1145/1743666.1743721 



69 
 

Goldberg, J. H., & Kotval, X. (1999). Computer interface evaluation using eye 

movements : methods and constructs. International Journal of Industrial 
Ergonomics, 24(1999), 631–645. http://doi.org/10.1016/S0169-
8141(98)00068-7 

Grindinger, T., Duchowski, A. T., & Sawyer, M. (2010). Group-wise Similarity 

and Classification of Aggregate Scanpaths. In Eye Tracking Research & 
Applications (ETRA) Symposium (pp. 101–104). Austin, Texas. 

http://doi.org/10.1145/1743666.1743691 

Holland, C., & Komogortsev, O. V. (2011). Biometric identification via eye 
movement scanpaths in reading. In International Joint Conference on 

Biometrics, IJCB 2011 (pp. 1–8). Washington, DC, USA. 
http://doi.org/10.1109/IJCB.2011.6117536 

Howe, P. D. L., Drew, T., Pinto, Y., & Horowitz, T. S. (2011). Remapping 
attention in multiple object tracking. Vision Research, 51(5), 489–495. 

http://doi.org/10.1016/j.visres.2011.01.001 

Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. 
Cognitive Psychology, 8(4), 441–480. http://doi.org/10.1016/0010-

0285(76)90015-3 

Kang, Z., & Bass, E. J. (2014). Supporting the eye tracking analysis of multiple 
moving targets : Design concept and algorithm. In Proceedings of the IEEE 

International Conference on Systems, Man, and Cybernetics (SMC ’14) (pp. 
3184–3189). San Diego, CA, USA. 

Kang, Z., & Landry, S. J. (2014). Using Scanpaths as a Learning Method for a 
Conflict Detection Task of Multiple Target Tracking. Human Factors: The 

Journal of the Human Factors and Ergonomics Society, 56(6), 1150–1162. 
http://doi.org/10.1177/0018720814523066 

Kang, Z., & Landry, S. J. (2015). An Eye Movement Analysis Algorithm for a 

Multielement Target Tracking Task : Hierarchical Clustering. IEEE 
Transactions on Human-Machines Systems, 45(1), 13–24. 

Kang, Z., Mandal, S., Crutchfield, J., Millan, A., Manning, C. A., & McClung, S. 
(2016). Designs and algorithms to map eye tracking data with dynamic 

multi-element moving objects. Computational Intelligence and 
Neuroscience, 2016(1). 

Kurzhals, K., Heimerl, F., & Weiskopf, D. (2014). ISeeCube : Visual Analysis of 

Gaze Data for Video. Proceedings of the ETRA Conference, 43–50. 

Lankford, C. (2000). Gazetracker: software designed to facilitate eye movement 
analysis. Proceedings of the Symposium on Eye Tracking Research & 

Applications - ETRA ’00, 51–55. http://doi.org/10.1145/355017.355025 



70 
 

Mandal, S., & Kang, Z. (2015). Eye Tracking Analysis Using Differently Shaped 

Areas of Interest to Represent Multi-Element Moving Objects. In 
Proceedings of the Human Factors and Ergonomics Society 59th Annual 
Meeting (pp. 1515–1519). Los Angeles, California, USA. 

Mandal, S., Kang, Z., & Millan, A. (2016). Data Visualization of Complex Eye 

Movements Using Directed Weighted Networks : A Case Study on a Multi-
Element Target Tracking Task. In Proceedings of the Human Factors and 

Ergonomics Society 60th Annual Meeting (pp. 106–110). Washington, DC, 
USA. 

Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E - 

Statistical, Nonlinear, and Soft Matter Physics, 70(5 2), 1–9. 
http://doi.org/10.1103/PhysRevE.70.056131 

Opsahl, T. (2009). Structure and Evolution of Weighted Networks. Queen Mary 
College, University of London. 

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted 

networks: Generalizing degree and shortest paths. Social Networks, 32(3), 
245–251. http://doi.org/10.1016/j.socnet.2010.03.006 

Opsahl, T., Colizza, V., Panzarasa, P., & Ramasco, J. J. (2008). Prominence and 

control: The weighted rich-club effect. Physical Review Letters, 101(16). 
http://doi.org/10.1103/PhysRevLett.101.168702 

Poole, A., Ball, L. J., & Phillips, P. (2005). In search of salience: A response-time 

and eye-movement analysis of bookmark recognition. In Proceedings of 
People and Computers XVIII—Design for Life (pp. 363–378). London, UK. 
http://doi.org/10.1007/1-84628-062-1_23 

Raiha, K. J., Aula, A., Majaranta, P., Rantala, H., & Koivunen, K. (2005). Static 

visualization of temporal eye-tracking data. In Proceedings of Human-
Computer Interaction - Interact 2005, Proceedings (Vol. 3585, pp. 946–

949). Rome, Italy. http://doi.org/10.1007/11555261_76 

Tory, M., Atkins, M. S., Kirkpatrick, A. E., Nicolaou, M., & Yang, G. Z. (2005). 
Eyegaze analysis of displays with combined 2D and 3D views. In 
Proceedings of IEEE Visualization 2005 (pp. 519–526). Minneapolis, MN, 

USA. http://doi.org/10.1109/VIS.2005.37 

Underwood, G., Chapman, P., Brocklehurst, N., Underwood, J., & Crundall, D. 
(2003). Visual attention while driving: Sequences of eye fixations made by 

experienced and novice drivers. Ergonomics, 46(6), 629–646. 
http://doi.org/10.1080/0014013031000090116 

 


