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Abstract

Weather radar is a powerful tool for detecting hazardous weather that may impact

citizens. Among these dangerous weather phenomena, tornadoes have a high po-

tential for destruction of property and loss of life due to its rapid formation. It has

been observed that a tornado may produce a Tornadic Debris Signature (TDS) when

producing heavy damage. To get a better understanding of the TDS, a tornado simu-

lator was created by the Radar Innovations Laboratory where polarimetric variables

are simulated by simulating a tornado with hydrometeors and debris and simulating

a radar beam scanning said tornado. Scattering by hydrometeors is well known but

not for debris as it is random in orientation and shape. To obtain accurate polari-

metric products, accurate scattering from the debris is needed.

In order to provide the simulator with accurate scattering from debris, the Radar

Cross Section (RCS) from simple objects such as wooden boards and a leaf are

simulated using electromagnetic solvers. To validate the simulations, measurements

of the simulated debris are taken in an anechoic chamber and compared.

The radar simulator does not take multiple scattering into effect which may im-

pact the results of the polarimetric products. To explore the possibility of needing

multiple scattering in the tornado simulator, the multiple scattering by small cylin-

ders and plates is analyzed by using closed analytical solutions by using reaction

and reciprocity theorem on the cylinders and Physical Optics (PO) for the plates.

xii



Chapter 1

Introduction

With the recent advent of dual-polarization weather radars, a new wealth of infor-

mation is now available to researchers in comparison to the data provided by past

single-polarization radar systems. Single-polarization weather radars have three

useful output products, horizontal reflectivity factor ZH, which is determined by

measuring the strength of the returned signal, radial velocity Vr, which is deter-

mined by the Doppler shift in the radar echo return and shows the radial component

of the target’s velocity, and spectrum width σv which describes the dispersion speed

components in a resolution volume [1], [2]. These products are certainly useful to

roughly estimate precipitation rate and observe how fast storms move [1], [3], but

they do not provide any more useful information about the weather phenomena of

interest. Dual-polarization radars, on the other hand, have many other useful prod-

ucts thanks to polarization diversity such as horizontal reflectivity ZHH, vertical re-

flectivity ZVV, differential reflectivity ZDR, correlation coefficient ρHV, and specific

differential phase KDP. Both horizontal and vertical reflectivity factors show how

much backscattered power is received at the radar for each polarization, respectively

[1]–[3]:
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ZH/V = 10 log10

( zH/V

1mm6/m3

)
. (1.1)

where

zH/V =
1024ln(2)Prr

2λ2

π3Ptg2θφcτ |K|2l
. (1.2)

where Pr is the power received, r is the distance from the radar to the target, λ is

the wavelength, Pt is the power transmitted, g is the gain of the antenna, θ and φ are

the horizontal and vertical beamwidth, c is the speed of light, τ is the pulse length,

K is the complex index of refraction, and l is the attenuation.

Differential reflectivity is the logarithm of the ratio of ZHH over ZVV [1]–[3].

ZDR = 10log10

(zH

zV

)
. (1.3)

where zH is the horizontal reflectivity factor and zV is the vertical reflectivity factor

in linear units. A positive value of ZDR indicates stronger return from the horizon-

tal polarized signal and negative ZDR indicates a stronger return from the vertical

signal, providing information about the orientation of the targets. Correlation coef-

ficient tells us the behavior of the H and V pulses in a resolution volume [1]–[3].

The values of correlation coefficient are 1 for drizzle and rain, 0.8 for hail, and

lower for non-hydrometeor targets so it is very useful for determining whether the

scatterers within a resolution volume are hydrometeors or not.

ρHV =
〈SvvS

∗
hh〉

〈|Shh|2〉1/2〈|Svv|2〉1/2
. (1.4)

Specific differential phase tells us how much the phase from the horizontal sig-

nal lags/leads from the vertical signal as a function of range [1]–[3].
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KDP =
φDP(r2)− φDP(r2)

2(r2 − r1)
. (1.5)

where φDP is the differential phase

φDP = φHH − φVV. (1.6)

where φHH is the horizontal co-pol phase and φVV is the vertical co-pol phase.

It is dependent on scatterer shape and orientation and it is helpful for obtaining

accurate rainfall rates. With these extra polarimetric variables hydrometeor classi-

fication is possible, rainfall rates can be estimated with better accuracy, and non-

hydrometeors such as biota, clutter, and debris can also be identified [3], [4]. Each

precipitation type has a unique polarimetric signature thanks to their physical na-

ture. Raindrops are mostly spherical and become more oblate as they grow in size

due to drag and internal forces as they fall through the air [4]. They are charac-

terized by having high ρHV, higher ZH and ZDR as the drops grow larger [1]–[4].

Snowflakes come in different shapes in sizes from plate like structures to needles

so their radar characteristics range quite a bit [4]. Because the mechanisms that

create hydrometeors are very well known, the dual polarization products, such as

reflectivity, differential reflectivity, and correlation coefficient, are known and each

type of precipitation has a particular radar signature. In the case of tornadoes, how-

ever, not only are hydrometeors observed in the resolution volume but debris may

also be present as the tornado lifts objects into the air as it travels over and wreaks

destruction to vegetation and man-made structures. Debris lofted by the tornado,

on the other hand, is random in shape, the orientation is unknown, and the dielectric

properties are unknown so it is not known what to expect from the polarimetric vari-

ables for a tornado containing debris. The polarimetric signature that is observed

3



for a tornado containing debris is called the Tornadic Debris Signature (TDS). Stud-

ies have shown that low to negative ZDR and low ρHV around the vortex has been

commonly observed in the TDS [5]. Low ρhv happens at lower scan elevations and

increases at higher elevations while ZHH is highest on the lower elevations scans [5].

This is believed to be due to large number of debris being concentrated at the lowest

elevations as it’s being picked up by the tornadic winds and then having debris cen-

trifuge and fall out of the tornado at higher elevations. The large diversity of debris

shape, aspect ratio, and orientation of the debris contribute to this low ρHV present

in the TDS and because debris pieces may be larger than raindrops it contributes

to the observed high ZHH. If the debris’ orientation is randomly distributed, a near

zero average ZDR would be expected in the tornado but observations have shown

that negative ZDR is sometimes present in the TDS [5]. It is hypothesized that the

tornadic winds are responsible for a preferred vertical alignment within the debris

created by the aerodynamics and drag forces exerted on it. Another hypothesis is

that there may be mechanisms in the electromagnetic scattering generated by the

debris that may cause a negative ZDR return. To help explain the TDS phenomenon,

a computerized tornado simulator was created by the Advanced Radar Research

Center [6].
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Figure 1.1: A screenshot of the radar simulator. In this figure, the simulated space
can be seen with a simulated tornado. The white and blue dots are the injected
hydrometeors while the purple and green objects are simulated debris. A simu-
lated radar beam sweeps through the volume and records the polarimetric products
produced by the simulated tornado. [6].
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This simulator can be populated with hydrometeors, debris, and fed with wind

fields including multiple vortex tornadoes and obtain the computed polarimetric sig-

nals. It is important to note, however, that multiple scattering was not implemented

in the simulator and its importance will be discussed in later chapters.

An important parameter that the simulator uses is the Radar Cross Section

(RCS) of the objects in the simulation. The RCS of an object determines how

much power is scattered back to the radar and it depends on the frequency and po-

larization of the radar, the size, orientation, and electric properties of the target.

The scattering of raindrops has already been well described by using the T-Matrix

solution which is used for rotationally symmetric and dielectric bodies [3]. To com-

pute the scattering and RCS of debris, other methods must be employed due to their

random shapes.

The present thesis will explore the RCS of several common objects that are

thought to be lofted by tornadoes such as leaves from trees and wooden boards.

This enables the creation of an RCS library for the tornado simulator so that it may

populate the simulation space with debris and its appropriate RCS pattern. Figure

1.1 shows the how the RCS library is created and implemented. RCS measure-

ments of several pieces of debris are taken to obtain a base truth. Computational

RCS models of the measured debris are compared to the measurements to validate

the results while the analytical models are compared to the simulations to validate

approximations used to simplify the problem. After validation, the simulated RCS

patterns are exported into a file to be added to the RCS library for the tornado sim-

ulator.

The RCS of these objects are simulated by electromagnetic solvers HFSS and

FEKO and mathematically in MATLAB. These objects will remain simple shape-

wise because the mathematical complexity for the RCS of an object increases as the
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complexity of the object’s geometry increases. Moreover, simple shapes take less

time and computational resources when simulating in the electromagnetic solvers.

A tornado not always comes across man-made structures so the source of the TDS

from some cases comes from the local vegetation. Leaves are a common component

of vegetation in the mid-latitudes, leaves can create a TDS if enough are ingested

into the tornado [5]. Because leaves are relatively simple in shape and geometry its

scattering characteristics have been measured and modeled [7]. The leaf itself can

be modeled as a thin resistive sheet where its reflection coefficient and dielectric

constant is a function of gravimetric moisture content which is the amount of water

contained in the leaf [7], [8]. In this thesis leaves will be part of the modeled debris

which is a sum of the scattering by a thin dielectric sheet in addition to the scattering

by a dielectric cylinder which will act as the stem of the leaf. The stem is added to

ensure a more accurate representation of the leaf.

Measurements of the RCS of the objects used for simulation are taken at the lab-

oratory’s far field anechoic chamber to validate the simulated RCS of the objects. To

simplify matters in the tornado simulator, multiple scattering was not implemented

and only direct scattering was developed. Multiple scattering is a phenomenon that

happens in reality when multiple scatterers are present and evidence of that is in the

3 body scattering as seen with hail shafts [9]. Because of this, multiple scattering

can be important as it may have a significant contribution in the radar return signal.

For the last chapter of this thesis, first-order multiple scattering between pieces of

debris is explored and analyzed.

In chapter 2 the theory behind RCS is explored to give the reader more familiar-

ity with the definition of RCS and what it entails. Chapter 3 is concerned with the

simulations of the debris RCS patterns by using analytical and computational meth-

ods. Chapter 4 reveals the measurements of the simulated debris and are compared
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to validate the solutions from the simulations. In chapter 5, the first order multiple

scattering by simple objects is explored to determine if it is necessary to implement

in the tornado simulator. And in the last chapter, chapter 6, the conclusion and

future work for this thesis is presented.
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Chapter 2

Radar Cross Section Theory

2.1 Introduction

Radars were invented in the early 20th century. The term Radar was coined in the

1940’s during World War 2 as an acronym for RAdio Detection And Ranging and

what propelled its fast development was the need for detection and early warning

from enemy airplanes. What make radar systems attractive as a detection tool is

the advantage that they can observe and track targets from very large distances,

can still track and detect through clouds, and do not rely on daylight as an illu-

mination source so it can operate anytime. During their observations during the

war, operators worked on estimating the attenuation by clouds and precipitation,

strongly indicating that radars at the time detected weather echoes [1]. After the

war was over, military surplus was made available to civilians giving the scientific

community a chance to experiment with radars to detect weather echoes [2].

The modern weather radar used today in the United States is called the Weather

Surveillance Radar 1988 Doppler (WSR-88D). The dense network of weather radars

cover most of the mainland and are used to keep track of weather systems and help

meteorologists warn citizens when hazardous weather is imminent. The WSR-88D

operates at a frequency of 2.8 GHz which is located in the microwave range known
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as S-Band. At S-Band, attenuation of the electromagnetic wave as it propagates

through the air is low which means that the transmitted wave will lose little power

as it travels through the atmosphere, giving the radar the ability to detect echoes at

longer distances. Its native resolution is rather coarse, which is 1000 m in range

for reflectivity and 250 m for velocity and 1 degree in azimuth, but for surveillance

purposes it is sufficient [10].

For radars to detect a target, the target has to scatter some of the incident power

towards the radar. By deriving the radar range equation for a point target it becomes

easier to observe what parameters dictate the amount of powered received by the

radar. First it is assumed that an isotropic antenna radiates a transmitted power Pt.

As the antenna radiates power, the power density Si will decay as it travels through

space by a factor of 4πR2, where R is the range, so that [11]:

Si =
Pt

4πR2
. (2.1)

Antennas are not isotropic in practice and have a gain so a more realistic power

density would be to the gain of the transmit antenna Gt into the transmitted power:

Si =
PtGt

4πR2
. (2.2)

The power intercepted by the target will be the incident power density times the

echo area of the target σ:

Pi =
PtGtσ

4πR2
. (2.3)

The power density of the scattered wave Sr radiates in an isotropic manner so that:
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Sr =
PtGtσ

(4π)2R4
. (2.4)

The power at the receiver will depend on the effective area of the antenna Ae which

is:

Ae =
Grλ

2

4π
. (2.5)

where λ is the radar wavelength. By multiplying the scattered power density times

the effective area of the antenna, we get:

Pr =
PtGtGrλ

2σ

(4π)3R4
. (2.6)

Because the radar of interest is a monostatic radar, meaning that the transmit and

receive antenna are collocated, the gain is the same so the final form of the radar

equation is:

Pr =
PtG

2λ2σ

(4π)3R4
. (2.7)

The amount of power scattered is dictated by several parameters as seen from

the radar equation. Most of the parameters for the received power are fixed with the

exception of the range and a radar parameter called the echo area, or RCS, σ. It is

on this latter parameter, the RCS, that this thesis focuses on.

2.2 RCS Definition

Radar Cross Section is the amount of scattered power that a target reflects back at

the radar. The IEEE defines RCS as “a measure of reflective strength of a target
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defined as 4π times the ratio of the power per unit solid angle scattered in a spec-

ified direction to the power per unit area in a plane wave incident on the scatterer

from a specified direction” [11]. A more intuitive definition is that the RCS is the

ratio of the incident power density to the power density scattered by an object. It is

effectively the echo area of the target and dictates how much power it scatters back.

For defense applications this parameter is of utmost importance as it determines the

visibility of a target to a radar [12]. For weather radar applications however, it is

related to how much power the hydrometeors scatter back to the radar, yielding a

different reflectivity factor depending on the size and concentration of the hydrom-

eteors [1], [3].

The larger the RCS of an object is the more power it will scatter back to the

radar and it can be shown by looking back at the radar equation previously derived

and realize there is a direct relationship between power received and RCS. The

RCS of the target itself depends on many factors such as electrical size and material

properties as we will see later.

The WSR-88D is a monostatic radar, which means that the transmit and receive

antennas are collocated. The scattering detected by a monostatic radar system is

called backscattering, meaning that the illuminated target scatters energy back in the

direction of the incident wave. Bistatic radars, on the other hand, have the receive

and transmit antennas in different locations. Because the present thesis only deals

with the WSR-88D radar, only backscattering and monostatic RCS is explored.

The general equation for the RCS is [13]:

σ = lim
R→∞

4πR2 |Es|2

|Ei|2
. (2.8)

The RCS is the ratio of the scattered power density over the incident power density
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on the target. The strength of the scattered power from the target is related to the

frequency, which dictates the electrical size of the target, orientation, polarization,

and constitutive parameters of the target [11], [14], [15]. The electrical size of an

object relates to how big is the object physically compared to a wavelength of the

incident wave and it dictates where in the scattering regime it falls in as it will be

shown shortly. Constitutive parameters are the electric properties of the material,

such as permeability and permittivity. A metallic target will scatter more energy

while a dielectric target will generally scatter less energy due its lower reflection

coefficient and to losses in the material that converts part of the incident microwave

energy into heat. In the case of tornadic debris, vegetation is often lofted, so mois-

ture content in the vegetation will also play a role in the amount of scattered energy.

A freshly cut leaf will have more moisture than an old cut leaf that has dried up [7].

Man-made structures are made of diverse materials, from wood, to glass, to bricks,

which all have different constitutive parameters that are also frequency dependent

[16]. All of these factors have to be taken into account when calculating the scatter-

ing of random pieces of debris and it makes it an enormous challenge to calculate it

quickly when needed. An important factor that makes calculating debris scattering

more difficult than raindrop scattering is the fact that depending of the size of the

object it will fall in a different scattering regime which will change the mechanisms

behind the scattering. In the next section the scattering regimes will be explained.

2.3 Scattering Regimes

It was previously mentioned that the RCS depends on the electrical size of the

target, which itself depends on the wavelength of the transmitted wave. It would be

convenient if the RCS of a target was directly proportional to the wavelength, but
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that is not the case. There are three regimes that dictate the RCS of an object: The

Rayleigh region (low-frequency region), the Mie region (Resonant region), and the

Optical region (high-frequency region). To give a better picture of these regimes it

is convenient to study the RCS of a Perfectly Electric Conductive (PEC) sphere as

a function of the electrical size of the radius (ratio of radius to wavelength) since its

RCS is independent of aspect angle.

Figure 2.1: Normalized RCS of a sphere as a function of normalized circumference
showing the different scattering regimes. Scatterers may fall in the Rayleigh regime
(towards the left of the plot), Mie regime (towards the middle of the plot), or optical
regime (towards the right of the plot) [17].

In the Rayleigh regime the wavelength of the incident field is larger than any

dimension of the target (λ >> L). Because of this the phase variation that the tar-

get experiences is so small it’s almost negligible. This induces charges on opposite

sides of the target and creates a dipole moment. The strength of this dipole mo-
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ment will depend on the orientation and size of the object since dipole moment is a

function of charge and distance between charges [11], [12]. As seen in Figure 2.1,

this means that as the size of the sphere grows the more it will scatter as it creates

a stronger dipole moment. This goes on until the dimension of the object is com-

parable to the wavelength of the incident wave where it will transition to the Mie

regime.

Rain drop scattering falls in the Rayleigh regime, greatly simplifying the ana-

lytical solution for its RCS. Rain drops are modeled as spheroids since drops are

not perfectly spherical as they fall due to drag forces. The RCS of a drop is then the

RCS of a spheroid[4]:

σ = 4π|s(k̂s, k̂i)|2 (2.9)

which is directly related to the Rayleigh scattering by a spheroid [4]:

s(k̂s, k̂i) = k2a2b
εr − 1

3[1 + L(εr − 1)]
sinχês (2.10)

Where k is the wavenumber, a is the major axis length, b is the minor axis length, εr

is the dielectric constant of the spheroid, L is the shape factor, χ is the angle between

scattering direction and the incident wave polarization, ês is the scattered wave

polarization, and k̂s and k̂i are the scattering and incident direction respectively.

The tornado simulator computes the RCS of rain drops by using the above equations

which are not computationally intensive.

The derivation of the RCS for a sphere is a well-known solution where the

plane wave is transformed into spherical waves which involve Bessel and Hankel

functions. For the Rayleigh scattering, the full scattering equation for a sphere can

be simplified to come up with an easy formula. As the radius approaches zero, the
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RCS can be reduced to [13]:

σ ≈ 9λ2

4π
(βa)6. (2.11)

In the Mie region the size of the object is comparable to the incident wavelength

(λ ≈ L). In this case the phase of the incident wave changes considerably over the

extent of the target and the simplicity of the dipole moment induced on the target

is gone. Because of all these different charges induced on the body, the scattering

is now dictated by surface wave effects and optical mechanisms whose interactions

with each other will result in constructive/destructive interference making the RCS

fluctuate as the object increases in size [11].

The equation for Mie scattering by a sphere is the full equation for the scattering

of a sphere for all frequencies, but it is usually simplified for the Rayleigh and opti-

cal regime to make it easier to work with at those regimes. It has Hankel functions

which are not easy to calculate analytically unless a computer is used [13].

σ =
λ2

4π

∣∣∣∣ ∞∑
n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (βa)Ĥ

(2)
n (βa)

∣∣∣∣2. (2.12)

In the optical region, the target is a many times larger than the incident wave-

length (λ << L). At these high frequencies the small details in the target become

important and the scattering target will be treated as a collection of independent

scattering centers [11]. The overall RCS of the target will be an addition of the con-

tribution from all the scattering centers [11]. The RCS is independent of physical

size and it is only dictated by the orientation. In the case that the sphere is in the

optical region, the RCS of the sphere as the radius approaches infinity reduces to

[13]
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σ ≈ πa2. (2.13)

which is the physical area of the cross section of the sphere [13].

The scattering regimes were explored by using a sphere as a target, but it is

also valid for any target. Hydrometeors fall in the Rayleigh regime with the WSR-

88D frequency of 2.8 GHz keeping the scattering proportional to the hydrometeor’s

dimension. An exception to this are very large hailstones and tornadic debris. Tor-

nadic debris may fall into any of the regimes which adds a degree of complexity to

calculating its RCS especially for arbitrary shapes.

There are some simple shapes for who the RCS is well known and calcu-

lated mathematically, these are called canonical objects. Spheres, spheroids, plates,

cylinders, wires, and ogives are part of these canonical shapes. For the purpose of

this thesis we will focus on the RCS of spheres, plates, and cylinders which are

the shapes that are used for the simulation of debris. The sphere is used as a cali-

bration target for the anechoic chamber measurements, the cylinder is used as the

stem of the simulated leaf, and the plate is used as the body of the simulated leaf

and wooden targets. The cylinders and plates are also used as the targets for the

multiple scattering experiment in a later chapter.

2.4 Plate Scattering

Plates are a simple but important shape as they can be used to model planar sur-

faces for scattering problems. Normally solving for the induced currents in a body

involves using rigorous methods such as Method of Moments (MoM) or Finite El-

ement Method (FEM) which are only feasible to do through computers due to their

complexity. A method that is constantly used to calculate scattering from flat sur-
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faces is the Physical Optics (PO) approximation. The PO method approximates the

currents induced in the scattering body so that the scattered fields can be more eas-

ily calculated. It is most accurate when the body is smooth, electrically large, and

at specular directions. This method only approximates currents on the illuminated

surface and the current is zero in the shadow region.

Js ≈


2n̂×H Illuminated

0 Shadow Region
. (2.14)

The derivation for the PO scattering of a plate starts off with a plate placed in

the y− z plane. By approximating the surface current on the scatterer, the scattered

field is easily calculated using the vector potential integral equations for scattering

[13]

A =
µ

4π

∫∫
s

Js
e−jβR

R
ds

′ ≈ µe−jβR

4πR
N. (2.15)

where

N =

∫∫
s

Jse
−jβr′ cosψds

′
. (2.16)

which for rectangular coordinates the integral is expressed as [13]

N =

∫∫
s

(x̂Jx + ŷJy + ẑJz)e−jβr
′
cosψds

′
. (2.17)

These rectangular form integrals are useful but do not express the scattering in

terms of the polarizations θ (H) and φ (V); a rectangular to spherical transformation

is used to express the result of the integrals in spherical coordinates. By using

the rectangular to spherical coordinate transformation the rectangular coordinate
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current components are transformed to their spherical counterparts

Nθ =

∫∫
s

(Jx cos θ cosφ+ Jy cos θ sinφ− Jz sin θ)e−jβr
′
cosψds

′
. (2.18)

Nφ =

∫∫
s

(−Jx sinφ+ Jy cosφ)e−jβr
′
cosψds

′
. (2.19)

To solve for the scattered fields, the PO approximation is implemented. Once

the current is calculated the scattering integrals are used to solve for the far-field

scattered fields using the equations

Es
θ ≈ −

jβe−jβr

4πr
ηNθ = C

e−jβr

r

{
cos θs sinφs

[
sin(X)

X

][
sin(Y )

Y

]}
. (2.20)

Es
φ ≈ −

jβe−jβr

4πr
ηNφ = C

e−jβr

r

{
cosφs

[
sin(X)

X

][
sin(Y )

Y

]}
. (2.21)

where

X =
βa

2
sin θs cosφs (2.22)

Y =
βb

2
(sin θs sinφs − sin θi) (2.23)

and

C = −jηabβH0

2π
(2.24)
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The general equation for RCS (2.8) is used to compute the RCS of the plate, result-

ing in[13]

σ = 4π
ab

λ
(cos2 θs sin2 φs + cos2 φs)

[
sin(X)

X

]2[
sin(Y )

Y

]2
(2.25)

Notice that this RCS equation is used for both θ and φ polarizations so there is no

discernible difference, but by using dielectric plates, as seen in chapter 3, this is

corrected. These formulas are employed in the next chapter to calculate the RCS

from the body of a leaf in MATLAB.

2.5 Cylinder Scattering

Scattering by a cylinder at normal incidence has been a scattering problem that has

been solved long ago by Rayleigh [18]. For the purpose of this research, oblique in-

cidence scattering by a cylinder is needed to compute its 3D RCS pattern. Several

authors have solved this and proposed closed solutions [13], [19]. The formulas

used by [19] are modal solutions that will be implemented in the next chapter to

calculate the RCS of a thin cylinder. The RCS of a cylinder is derived by starting

with a cylinder aligned with the z axis occupying the space ρ ≤ a and an inci-

dent TM z wave in cylindrical coordinates by using an addition theorem for Bessel

functions [19]

Ei
z = E0 sin θ

∞∑
n=−∞

jnJn(λ2ρ)Fn. (2.26)

The scattered field by the cylinder is then

Es
z =

∞∑
n=−∞

asnH
(2)
n (λ2ρ)Fn. (2.27)
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The internal field in the cylinder is

Ez =
∞∑

n=−∞

anJn(λ1ρ)Fn. (2.28)

The components of the magnetic field are also expressed by the Bessel function

addition theorem

H i
z = 0. (2.29)

Hs
z =

∞∑
n=−∞

bsnH
(2)
n (λ2ρ)Fn. (2.30)

Hz =
∞∑

n=−∞

bnJn(λ1ρ)Fn. (2.31)

The variables asn and bsn are the magnitude coefficients of the TM and TE modes

respectively [19] and need to be found in order to solve for the scattering of the

cylinder. The coefficients are solved by matching the fields on the inside and outside

of the cylinder by using boundary conditions [19]. For this the φ component of the

fields are obtained from Maxwell’s equations [19]

Ei
φ =

∞∑
n=−∞

−hnE0 sin θjnJn(λ2ρ)Fn
ρλ22

. (2.32)

Es
φ =

∞∑
n=−∞

[
− hnasn

ρλ22
H(2)
n (λ2ρ) +

jµ2ωb
s
n

λ2
H(2)′

n (λ2ρ)

]
Fn. (2.33)

Eφ =
∞∑

n=−∞

[
− hnan

ρλ21
Jn(λ1ρ) +

jµ1ωbn
λ1

J
′

n(λ1ρ)

]
Fn. (2.34)

21



H i
φ =

∞∑
n=−∞

−jβ
2
2E0 sin θjnJ

′
n(λ2ρ)Fn

µ2ωλ2
. (2.35)

Hs
φ =

∞∑
n=−∞

[
− hnbsn

ρλ22
H(2)
n (λ2ρ)− jβ2

2a
s
n

µ2ωλ2
H(2)′

n (λ2ρ)

]
Fn. (2.36)

Hφ =
∞∑

n=−∞

[
− hnbn

ρλ21
Jn(λ1ρ)− jβ2

1an
µ1ωλ1

J
′

n(λ1ρ)

]
Fn. (2.37)

where h = β2cosθ and the (.)
′ on the Bessel and Hankel functions means a deriva-

tive [19]. The boundary conditions are written [19]


Ei
φ + Es

φ = Eφ at ρ = a

H i
z +Hs

z = Hz

. (2.38)


Ei
z + Es

z = Ez at ρ = a

H i
φ +Hs

φ = Hφ

. (2.39)

These equations are solved to give [19]

asn = E0 sin θjn

[
− Jn(v)

H
(2)′
n (v)

−
2j
(
H

(2)′
n (v)

vH
(2)
n (v)

− KJ
′
n(u)

uJn(u)

)
πv2[H

(2)
n (v)]2D

]
. (2.40)

bsn =
β2
ε2ω

E0 sin θjn
[

2

πv2

( 1

v2
− 1

u2

) n cos θ

H
(2)
n (v)D

]
. (2.41)

D =

(
H

(2)′
n (v)

vH
(2)
n (v)

− KJ
′
n(u)

uJn(u)

)(
H

(2)′
n (v)

vH
(2)
n (v)

− N2J
′
n(u)

KuJn(u)

)
−
(

1

v2
− 1

u2

)2

n2 cos2 θ.

(2.42)
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K =
ε1
ε2
. (2.43)

N2 =
β2
1

β2
2

=
ε1µ1

ε2µ2

. (2.44)

u = λ1a = (β2
1 − β2

2 cos2 θ)1/2a. (2.45)

v = λ2a = β2 sin θa. (2.46)

The scattering coefficients asn and bsn are of utmost importance as it will dictate the

scattering by a dielectric cylinder. Using the equations derived by [13] for the RCS

of a conducting cylinder by an oblique incidence plane wave, the scattering coeffi-

cients are plugged in and the RCS for a dielectric cylinder by an oblique incidence

plane wave is obtained.

σHH ≈
4l2

π

sin2 θs

sin θi

∣∣∣ ∞∑
n=0

εnan cos(nφ)
∣∣∣2{sin[βl

2
(cos θi + cos θs)]

βl
2

(cos θi + cos θs)

}2

. (2.47)

σV V ≈
4l2

π

sin2 θs

sin θi

∣∣∣ ∞∑
n=0

εnbn cos(nφ)
∣∣∣2{sin[βl

2
(cos θi + cos θs)]

βl
2

(cos θi + cos θs)

}2

. (2.48)

These scattering equations are used in the next chapter to simulate the stem of a leaf

in MATLAB.

23



2.6 Conclusion

The theory behind the scattering regimes and its impacts on the RCS of objects

has been explored. Hydrometeors fall in the Rayleigh regime making it easier to

compute their RCS. Debris may fall anywhere in the scattering regime making it

harder to simulate quickly without taking .

Analytical methods for the scattering of simple shapes are possible by using the

PO approximation on flat surfaces and modal analysis on cylinders. Additionally,

the scattering for a plate and a dielectric cylinder was presented and are used to-

gether in the next chapter to obtain the RCS of a leaf. And in general, the closed

solutions for the RCS of canonical objects can lead to more complex scatterers if

superposition is used to combine the RCS of several canonical objects.
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Chapter 3

Radar Cross Section Simulations

3.1 Introduction

In recent years, the calculation of the RCS of complex objects has been faster to

obtain thanks to the advance in computational power. It has opened the path for the

development of electromagnetic solvers to simulate a wide variety of electromag-

netic structures such as antennas and scattering targets.

An electromagnetic solver created by ANSYS, HFSS, uses FEM while FEKO

uses MoM and can also use PO and other schemes to solve for the scattered fields.

While not being an electromagnetic solver, MATLAB is a computational mathe-

matics program that is used to solve scientific and engineering problems. It can be

used to find the RCS of objects using the PO approximation due to its low complex-

ity and easy implementation. These software packages were used was to simulate

the RCS of the desired target and compare the results with each other to make sure

there is consistency between the results. To further confirm that the simulation’s

results are accurate, RCS measurements of the simulated targets are taken in an

anechoic chamber and then compared to the simulated results which will be shown

in the following chapter.

Because the dual polarization nature of weather radars, all simulations for all
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platforms will record the Horizontal polarization (HH), also called θ polarization,

and Vertical polarization (VV), also called φ polarization. Cross polarization, HV/VH

is recorded too. Since The following sections will show HH, VV, and HV RCS pat-

tern results from MATLAB, FEKO, and HFSS for the simulated debris.

3.2 Analytical Method in MATLAB

In MATLAB, a leaf is simulated to be used as a debris type in the tornado simulator.

To keep the math simple and make the simulation faster the PO approximation is

used. Like stated in the previous chapter, when using PO the result is most accu-

rate at specular directions and it becomes less accurate as we move away from the

specular direction, but overall it still remains a good approximation. The leaf was

simulated using a resistive sheet as a plate for the body of the leaf and a dielectric

thin cylinder for the stem. The RCS of the sheet and cylinder are calculated by

MATLAB functions separately. Once the RCS of both objects are computed, their

complex RCS are added together to obtain the total RCS of the simulated leaf.

To standardize the rotation and orientation of the leaf between the electromag-

netic area of this research and the aerodynamic part of the research, a coordinate

system and rotation scheme is defined for it. It is defined as an orthogonal local

coordinate system with unit vectors x− y− z where the object’s longest dimension

is directed along the y axis and the object’s face is normal to the z axis.

The rotation is done using Euler rotation through three rotation angles, α, β,

and γ. These three angles can represent the object in any orientation possible in

3D space and will rotate the coordinate system according to the right hand rule.

The α angle rotates the coordinate system around the z vector and transforms the

coordinate system into x′ − y′ − z′ . A β angle rotation will rotate the x′ − y′ − z′
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Figure 3.1: Orientation of the simulated leaf in global coordinates. For all simula-
tions, the leaf and other simulated debris have their longest dimension along the y
axis while their face is normal to the z axis.

coordinates around the y′ vector and a x′′ − y′′ − z′′ coordinate system is obtained.

And finally, a rotation of γ angle will rotate around the z′′ ending with the final

coordinate system x
′′′ − y

′′′ − z
′′′ . Figure 3.2 shows a clear picture of the Euler

rotations used for the coordinate system and the end result.
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Figure 3.2: Coordinate system rotation using Euler rotation. The angles α, β, and
γ control the rotation to achieve any orientation in 3D space. Angle α rotates the
coordinate system around the z axis. Next, the β angle rotates the coordinate system
around the y′ axis. And finally, the γ angle rotates the coordinate system around the
z′′ axis to finally obtain a x′′′ − y′′′ − z′′′ coordinate system [6].
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The transformation is done through a transformation matrix

T =


cosα cos β cos γ − sinα sin γ cosα cos β sin γ + sinα cos γ − cosα sin β

− sinα cos β cos γ − sinα sin γ − sinα cos β sin γ + sinα cos γ sinα sin β

sin β cos γ sin β sin γ cos β

 (3.1)

which is done by multiplying the transformation matrices of each individual rotation

in order

Tα =


cosα sinα 0

− sinα cosα 0

0 0 1

 (3.2)

Tβ =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 (3.3)

Tγ =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (3.4)

where Tα is the transformation matrix for the α angle rotation, Tβ is the transfor-

mation matrix for the β angle rotation, and Tγ is the transformation matrix for the

γ angle rotation.

All the following simulations in all platforms are done at 2.8 GHz which is

the WSR-88D’s operating frequency. The leaf is 6 cm wide, 8 cm long, and 0.5

mm thick while the stem is 12 cm long and has a radius of 1.5 mm. The dielectric

properties for the leaf were extracted from [7]. By using the gravimetric moisture of

the leaf, the dielectric constant and tangent loss can be calculated. It is important to
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Leaf Sylvester Pine
Dielectric Constant 34.558 2.314
Tangent Loss 0.357 0.247

Table 3.1: Dielectric properties for the scatterers to be modeled. The leaf’s dielec-
tric properties were obtained at 80% gravimetric moisture content at 25◦C while the
wood dielectric constants were for 13% gravimetric moisture content at 25◦C.

get the correct dielectric properties for the debris as this is an important parameter

that determines the scattering of a dielectric body. The formulas for the dielectric

properties of a leaf are [7]:

ε
′
= 3.95 exp 2.79Mg − 2.25. (3.5)

ε
′′

= 2.69 exp 2.15Mg − 2.68. (3.6)

where Mg is the gravimetric moisture. Fresh leaves are assumed to be swept into

a tornado so a gravimetric moisture content of 0.8 (80%) is used. This result in the

leaf having dielectric constant and tangent loss of 34.558 and 0.357 respectively

and will be used for all simulations of the leaf on all platforms.

The scattering for a resistive sheet provided by [7] will be used for the simula-

tions. The scattering by a resistive sheet will depend on its reflection coefficients

which are determined by [7]

ΓE = (1 +
2R

Z
cos θ0)

−1. (3.7)

ΓH = (1 +
2R

Z
sec θ0)

−1. (3.8)
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Z = 377. (3.9)

R =
jZ

κτ(ε− 1)
. (3.10)

τ = 0.032Mg2 + 0.091Mg + 0.075. (3.11)

where Z is the intrinsic impedance of free space, R is the resistivity of the dielectric

sheet, κ is the wavenumber, and τ is the thickness of the sheet in millimeters.

Using the PO approximation and the reflection coefficients (3.7), (3.8), the scat-

tering by a leaf is [7]:

σE = 4π
∣∣∣ab
λ

cos θ0ΓE
sinX

X

∣∣∣2. (3.12)

σH = 4π
∣∣∣ab
λ

cos θ0ΓH
sinX

X

∣∣∣2. (3.13)

where

X =
ka

2
(sin θ + sin θ0). (3.14)

where a and b are the width and length of the leaf respectively. Note that equations

(3.12) and (3.13) are very similar to the RCS of a PEC plate given in (2.25) except

for the fact that for the RCS of a dielectric plate, a reflection coefficient is added to

account for its dielectric properties. By adding the scattering of the resistive sheet

and the dielectric cylinder the total RCS for the simulated leaf is obtained. The

resulting RCS patterns are shown in the next following figures.
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Figure 3.3: RCS pattern of simulated leaf for HH-pol. Notice the contribution from
the cylinder’s end-caps, creating small lobes along the y axis. The polarization is
perpendicular to the cylinder and the side of the sheet, creating low scattering along
the y − z plane.
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Figure 3.4: RCS pattern of simulated leaf for VV-pol. Contribution from the cylin-
der’s end-caps can be seen again with the additional contribution along the y − z
plane from the leaf’s side and cylinder due to the polarization being parallel to the
leaf side.
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Figure 3.5: RCS pattern of simulated leaf for HV-pol. Some cross polarization
contribution can be seen here. As expected, cross polarization is larger a broadside.
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The results from the MATLAB simulations can be very intuitive if looked at

closely. The cylinder runs along the y axis and a couple of small lobes can be seen

at the y axis, indicating scattering due to the end-caps of the cylinder. As small as

the cylinder is, this shows that it still contributes to the overall RCS of the leaf. The

sheet may be thin but it has a larger contribution depending on the polarization of

the incident wave. For Figure 3.3 the polarization is perpendicular to the side of

the sheet, creating a very low RCS signature. On the other hand, in Figure 3.4, the

polarization is parallel to the side of the leaf and the cylinder producing a noticeable

contribution to the total RCS even if that dimension is very small compared to the

rest of the structure.

The PO approximation on PEC plates creates the same RCS pattern for both HH

and VV polarizations which would not be helpful for our case. Because the plates

have to be dielectric for the leaf, polarizations HH and VV are now discernible and

will produce the polarizations of interest, even cross polarization patterns HV as

seen in Figure 3.5. This means that the use of analytical models to create RCS

patterns quickly and effectively is achievable and can be used to create the RCS

library for the tornado simulator. It is, however, beneficial to compare the MATLAB

results with the electromagnetic solvers available to see how the analytical model

fares to full wave solvers.

3.3 FEKO Simulations

The second software package used for simulations was FEKO because of its easy

implementation. The setup is simple as only the target has to be drawn and no ad-

ditional structures, such as an Absorbing Boundary Condition (ABC), are needed.

By drawing a cuboid with the leaf’s dimension we obtain the leaf’s body. Drawing
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a cylinder with the appropriate dimensions give us the stem. Once the two objects

are drawn they are joined to make a single object. FEKO offers a wide library

of dielectric media but not the one we require for the leaf so the previously de-

rived constants are imported manually. A plane wave excitation is requested and

is swept from θ ∈ [0◦, 180◦] while φ is swept from φ ∈ [−180◦, 180◦] to obtain

measurements over spherical angles. To make the simulations faster and to reduce

computational costs the angle step for both phi and theta angles is 2 degrees giving

us a total of 16471 observation points. The solution scheme here is selected to be

PO to directly compare with the MATLAB results. Because FEKO uses a hybrid

MoM/PO solving technique, the object still has to be meshed as it is needed for

MoM solutions. A standard meshing is selected which means the object is seg-

mented in triangles that are λ/10 or larger for standard meshing settings [20]. Once

the meshing is done the setup is complete and the simulation is run. The results of

the simulation are plotted in 3D polar plots.
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Figure 3.6: RCS pattern of FEKO simulated leaf for HH-pol. The contributions
from the end-caps of the cylinder can be seen here just as seen in the MATLAB
simulations.
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Figure 3.7: RCS pattern of FEKO simulated leaf for VV-pol. The cylinder’s end-
cap contribution can be seen here as well. But notice that the cylinder’s and leaf’s
side contribution is not seen here around the y − z plane as seen in the MATLAB
simulation.
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Figure 3.8: RCS pattern of FEKO simulated leaf for HV-pol. A small cross polar-
ization contribution is shown.
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In Figure 3.6, the RCS pattern of the leaf using HH polarization can be seen. As

with the MATLAB simulations, the contribution from the cylinder’s endcaps can

be seen as the small lobes along the y axis, indicating that this small cylinder has

an impact on the overall RCS pattern. The pattern for VV polarization is similar

to MATLAB, but as seen in Figure 3.7, the contribution from the cylinder’s and

sheet’s side is not present, meaning that FEKO was not able to capture this effect.

As for the cross polarization pattern HV, as seen in Figure 3.8, is still present and

very similar to the result from MATLAB.

To compare the accuracy of the MATLAB simulations, they are plotted with the

FEKO simulations for comparison. The results agree very well except for a small

offset in magnitude. This may be due to the fact that the dielectric properties taken

from [7] are actually for measurements at 10 GHz. There is high confidence that

if dielectric properties for a leaf at 2.8 GHz are found it would match the FEKO

simulations very well.

40



Figure 3.9: RCS pattern of FEKO and MATLAB simulated leaf for HH-pol. The
RCS pattern shapes agree between MATLAB and FEKO but the magnitude of the
pattern is lower for MATLAB.
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Figure 3.10: RCS pattern of FEKO and MATLAB simulated leaf for VV-pol. Sim-
ilar to the previous figure, the pattern shapes between FEKO and MATLAB agree
but MATLAB produces a lower magnitude pattern.
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Another common type of debris that comes from man-made structures are wooden

boards from buildings such as houses. Three wooden boards of different size are

simulated as well as a large wooden sheet. The wooden objects simulated were

modeled to be like wooden boards that were available at the lab which were deter-

mined, through trial and error, to be made of Sylvester pine. The dielectric proper-

ties of the wooden objects were determined by [21] where the dielectric constant is

2.314 and the tangent loss is 0.247. The measurements of the dielectric properties

from [21] are for a gravimetric moisture content of 13% and at a temperature of

25◦C which is dry wood and considered acceptable for our simulations. The di-

mensions of the wooden targets are shown in Table 3.2. By using the same setup

as the one used for the leaf, the 3D RCS pattern is obtained for the wooden boards

and wooden sheet.

Length Width Thickness
Wood Board 1 0.2794 0.1397 0.01587
Wood Board 2 0.3683 0.0889 0.0381
Wood Board 3 0.3937 0.1397 0.0381
Wood Sheet 0.4572 0.4572 0.009525

Table 3.2: Dimensions for the wooden targets to be simulated and measured in
meters.
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Figure 3.11: RCS pattern of FEKO simulated wood board 1 for HH-pol. A large
peak is centered at broadside and it is stretched in the x axis due to the difference
in the ratio of dimensions along the length and width of the board.
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Figure 3.12: RCS pattern of FEKO simulated wood board 1 for VV-pol. The RCS
pattern is similar to that of the HH polarization.
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Figure 3.13: RCS pattern of FEKO simulated wood board 1 for HV-pol. A small
cross polarization contribution can be seen.
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Figure 3.14: RCS pattern of FEKO simulated wood board 2 for HH-pol. This
wooden board is thicker and shorter, creating an even more elongated RCS peak at
broadside along the x axis.
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Figure 3.15: RCS pattern of FEKO simulated wood board 2 for VV-pol. Now that
the polarization is parallel to the largest dimension of the target, the RCS pattern
near broadside becomes even more elongated and the RCS levels on the sides are
higher.
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Figure 3.16: RCS pattern of FEKO simulated wood board 2 for HV-pol. A small
cross polarization contribution is seen.
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Figure 3.17: RCS pattern of FEKO simulated wood board 3 for HH-pol. The peak
RCS level is slightly larger than that of wooden board 2 due to its slightly larger
dimensions.
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Figure 3.18: RCS pattern of FEKO simulated wood board 3 for VV-pol. RCS
pattern similar to that of the HH polarization.
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Figure 3.19: RCS pattern of FEKO simulated wood board 3 for HV-pol.
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Figure 3.20: RCS pattern of FEKO simulated wood sheet for HH-pol. This is the
largest target and it can be seen that it has the highest RCS, the most number of
lobes, and the most number of nulls.
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Figure 3.21: RCS pattern of FEKO simulated wood sheet for VV-pol. The RCS
pattern is almost identical to that of the HH polarization.
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Figure 3.22: RCS pattern of FEKO simulated wood sheet for HV-pol. A small
contribution from the cross polarization is seen here.
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Figure 3.11 shows the RCS pattern for the Wood board 1 with HH polarization.

The peak RCS level, located at broadside, is much higher than that of the leaf

due to its larger dimensions. More lobes and nulls can be seen too compared to

the leaf so the RCS will vary more with changing aspect angle. The RCS pattern

for VV polarization (Figure 3.12) is almost identical to the RCS pattern for HH

polarization. Figure 3.13 shows a small contribution from the cross polarization

measurement which may be negligible anywhere but broadside.

The simulations for the Wooden board 2 are next. Figure 3.14 shows the simu-

lated RCS pattern for the HH polarization. Compared to the leaf and Wood board 1,

the peak RCS is lower and the main lobe at broadside is elongated along the x axis

due to the larger difference between the length and width dimensions. The RCS for

the VV polarization, as seen in Figure 3.15, is very similar to the HH polarization

pattern, except that the elongation of the main lobe is even more pronounced due to

the fact that the polarization is aligned to the largest dimension of the wooden board.

The pattern for the HV polarization is seen in Figure 3.16 where its contribution is

negligible except at broadside.

The RCS patterns for the Wooden board 3 are analyzed next. Figure 3.17 shows

the HH polarization RCS pattern for Wooden board 3. It is fairly similar to the

RCS pattern of Wooden board 2 in terms of magnitude and overall pattern, but the

nulls near broadside are smaller. Figure 3.18 shows the pattern for VV polarization,

which is similar to the pattern for HH polarization with the exception of a larger

RCS along the x axis. And Figure 3.19 shows the cross polarization RCS pattern,

which is small across the entire RCS pattern.

The last wooden target is the Wood sheet, which is also the largest object simu-

lated. Figures 3.20 and 3.21 show the patterns for HH and VV polarization respec-

tively and they are both extremely similar due to the fact that the face is a square.
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The RCS peak is the largest of all objects which corresponds to the largest dimen-

sions of all the objects. It can also be seen that it has the largest number of nulls

and lobes which is characteristic as the target in question gets larger and approaches

the optical scattering regime. The HV polarization patern, shown in Figure 3.22, is

extremely small compared to the HH and VV polarizations.

Different wooden targets were simulated in FEKO. A couple of features can be

seen from these simulations. The peak RCS of the object increases as the dimen-

sions increase and is located broadside of the largest face. Even though the RCS

may be large at broadside, there are many nulls along the RCS pattern meaning that

the objects will have negligible RCS at certain angles regardless of size. The largest

object, the wooden sheet, has the largest peak RCS and also has the most number of

lobes and nulls. It is also important to note that the wooden targets do not produce a

significant cross polarization RCS signature shown in Figures 3.13, 3.16, 3.19, and

3.22.

3.4 HFSS Simulations

A second solver was used to corroborate simulation results. Unlike FEKO, HFSS

does require an ABC or a Perfectly Matched Layer (PML) to terminate the outgoing

radiation. The way to draw objects in HFSS is very similar to FEKO were a cuboid

and cylinder with the appropriate dimensions are joined together to get a single leaf.

To create the PML needed an airbox around the target needs to be drawn where its

dimensions have to be so that the sides are at least λ/4 away from the target [22].

If time and resources are important then this airbox must be as small as possible

following the λ/4 rule because as the airbox increases so will the simulation space

and it will take longer and require more computational resources to complete. Plane
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wave excitations are requested for a whole sphere with steps of 2 degrees. Just

like in FEKO the dielectric constants and loss tangents have to be imported. All

targets were originally intended to be simulated on HFSS, but the larger wooden

targets proved impossible to simulate due to the excessive memory and processing

requirements they needed.
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Figure 3.23: RCS pattern of HFSS simulated leaf for HH-pol. RCS pattern is sim-
ilar to that of MATLAB and FEKO for the same polarization, where the RCS con-
tribution by the cylinder’s end-caps can be seen along the y axis.
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Figure 3.24: RCS pattern of HFSS simulated leaf for VV-pol. Notice that te cylin-
der provides a contribution to the RCS when the polarization is parallel to it as
previously seen in the MATLAB simulation but was not present in the FEKO sim-
ulation.
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Figure 3.25: RCS pattern of HFSS simulated leaf for HV-pol. A small cross po-
larization contribution can be seen here and it is not entirely negligible at certain
angles near broadside.
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Figure 3.26: RCS pattern of HFSS simulated wood board 2 for HH-pol. RCS
pattern is almost identical to the FEKO RCS pattern.

62



Figure 3.27: RCS pattern of HFSS simulated wood board 2 for VV-pol. RCS pattern
is almost identical to the FEKO RCS pattern.

63



The leaf was simulated in HFSS. Figure 3.23 shows the RCS pattern for HH

polarization. This pattern resembles that of the MATLAB and FEKO simulations

well even in magnitude and it can be seen that it captures the effect of the cylinder’s

endcap by looking at the lobes along the y axis. Figure 3.24 shows the RCS pattern

for the VV polarization. It agrees well with the MATLAB simulation where the

side of the cylinder and sheet increase the RCS along the x axis but does not agree

as well with the FEKO simulation that didn’t capture this effect.

The Wooden board 2 was able to be simulated. In Figure 3.26 the RCS pattern

for the HH polarization is shown. Similar to the FEKO simulation, the largest lobes

are elongated because of the difference in the length and width dimensions. In

Figure 3.27, the RCS pattern for the VV polarization can be seen and is very similar

to that of the HH polarization with the exception that the lobes along he z axis

become elongated due to the polarization being parallel to the largest dimension of

the wooden board.

The HFSS simulations show very similar results compared to FEKO for the leaf

and wooden board 2. Even though all the objects were not able to be simulated in

HFSS, it provides answers in agreement with FEKO and shows that it can also be

used to create the RCS library if the FEKO software is not available to the reader.

3.5 Conclusion

The results provided here prove that an analytical solution of scattering can compare

with a simulation by electromagnetic solvers for simple shapes. Depending on the

needs and resources of research, analytical solutions may be used if accuracy can

be sacrificed and electromagnetic solvers may be used if time and resources are of

little concern. It is to be noted that there is a limit to electromagnetic solvers as it
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may not be able to perform the simulation if the object’s electrical size is too big as

seen with the HFSS simulations.

The analytical model of the leaf fared well when compared against the results

given from FEKO. This means that if the RCS of relatively simple objects is needed

quickly, analytical models in MATLAB are feasible. But if not available, electro-

magnetic solvers can be used to generate the RCS patterns, and as compared with

the leaf and the wooden board 2, FEKO and HFSS produce similar results making

them both viable.

FEKO was the only solver able to simulate all the proposed scatterers and the

results are turned into files that the tornado simulator can use to populate the simu-

lated space with scattering debris. In order to verify that the simulations match real

life observations, measurements of the wooden targets are obtained and shown in

the following chapter.
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Chapter 4

Radar Cross Section Measurements

4.1 Introduction

RCS measurements are important in industry and research. In the defense industry,

RCS measurements are used to look into the scattering of a new design, to diagnose

for places with high reflections, and to characterize potential targets for detection

that friendly radars might encounter. For scientists, RCS measurements may be

used to confirm theoretical results about scattering bodies, scattering mechanisms,

and to even make a database for targets of interest. RCS measurements are taken

in RCS measuring facilities which can be an outdoor or an indoor test range. Each

one of these test ranges has its own advantage and disadvantage. Outdoor ranges

are used when the target in question is large enough that it would require an incon-

veniently large and expensive indoor facility. Not only does a large object require

more room but it will also dictate the distance requirement between the source and

the target due to the far-field requirement. Having an outdoor test range means that

measurements are vulnerable to weather, such as rain, wind, and dust that can dis-

rupt measurements so fair days are required to make measurements [11], [23], [24].

Indoor test ranges, however, are impervious to inclement weather since measure-

ments are made inside a building in an anechoic chamber. Although convenient,
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anechoic chambers are costly and are relatively small so electrically large targets

cannot be measured accurately because they might fail far-field requirement. This

far-field requirement dictates that the test range, being indoors or outdoors, has to

be large enough so that the source and the target are separated enough that the in-

cident wave approximates a plane wave [7], [11], [13]. Literature suggests that the

minimum distance should be [7], [11], [13]:

r ≥ 2D2

λ
(4.1)

Where D is the largest dimension of the scatterer and λ is the wavelength of

the incident wave. This approximation yields at most a 22.5 degree error [7], [11],

[13]. This number is used as a rule of thumb but one that is used very often in

electromagnetic research. The largest dimension of the largest target is 18 inches,

or 45.72 cm, for the wooden sheet. At the operating frequency of 2.8 GHz the

wavelength λ is 10.71 cm so the far field distance is 390.35 cm or almost 4 meters.

the distance from the antennas to the target is 7 meters so the chambers are more

than adequate to measure the largest target this thesis deals with.

The RCS measurements of the simulated debris are taken at the Radar Innova-

tions Lab’s so they can be compared to their simulations. The facility’s anechoic

chamber has the instrumentation necessary to make RCS measurements such as a

network analyzer, azimuth rotating pedestal, transmitting rotating pedestal, S-band

antennas, motor controls, and computer. The chamber operates from 300 MHz to

10 GHz, making it a versatile measuring range.
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Figure 4.1: Inside the far-field anechoic chamber. The transmit and receive antennas
are located in the far right of the picture, while the target to be measured rests in the
pedestal on the left of the picture.

4.2 Monostatic vs Quasi-Monostatic Measurements

The antennas use for the measurements are two standard gain S-band horn antennas

by Nearfield Systems Inc. (NSI) model NSI-RF-SG284 mounted side by side. The

bracket used for mounting the antennas was machined in-house. The polarization

of the antennas once mounted is H-pol. Mounting the horn antennas side by side,

as seen in Figure 4.1, means that the measurements taken are not exactly monos-

tatic but quasi-monostatic, meaning that the transmit and receive antennas are not

collocated and create a small, but mostly negligible, bistatic angle [12]. Because

our system is a Continuous Wave (CW) system, a true monostatic configuration is

not possible so quasi-monostatic measurements are taken. To ensure that the quasi-

monostatic measurements are not too different from true monostatic measurements,

the RCS of a sphere is calculated in MATLAB in a monostatic and quasi-monostatic

environment and compared. For this the bistatic angle created by the horn antennas
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in the chamber is calculated. The distance separating the centers of the horn anten-

nas once they are mounted is measured and the distance between the phase center

and the target in the chamber is measured so that the quasi-monostatic angle can be

calculated.

(a) HH Polarization. (b) VV Polarization.

Figure 4.2: Difference between the monostatic and quasi-monostatic RCS configu-
ration of a sphere. While the VV polarization exhibits the largest difference, both
polarizations exhibit a negligible contribution from the quasi-monostatic configura-
tion.

It is seen in Figure 4.2 that the values for monostatic and quasi-monostatic do

vary, but so slightly that it is considered negligible so the measurements taken in

the chamber are, for all intents and purposes, monostatic measurements.

4.3 Calibration

Before making measurements of the targets in the chamber, a calibration must be

done. Calibration sets an absolute RCS that helps compute the losses in the measur-

ing system. Metallic spheres are used as calibration targets due to their RCS being

independent of aspect angle and is only dependent on frequency.

By taking a measurement of a calibration sphere in the chamber, we can com-

pare the measurement to a calculated RCS of the same sphere in MATLAB and
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Figure 4.3: 12 inch diameter calibration sphere. A metallic perfect sphere is used
here for chamber calibration procedures since its RCS is independent of aspect
angle.

effectively obtain the losses generated in the chamber and by the equipment and

cables that otherwise would be difficult to calculate.

(a) Measured and calculated RCS. (b) Difference of measured/calculated RCS.

Figure 4.4: Calibration by taking the difference between the measured and calcu-
lated RCS of a 12 inch diameter calibration sphere. The difference is the combined
effective loss from the chamber, cables, and instrumentation. This loss is added to
future measurements to obtain the target’s true RCS.

A 12 inch diameter calibrations sphere, as seen in Figure 4.3, is used for the

chamber calibration. A simulations of the RCS for a sphere of the same diameter is

ran in MATLAB, where the difference between the measurement and the simulation
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is considered the loss and it has to be added into the debris measurements and the

results can be seen in Figure 4.4. This figure also gives insight about the limitations

of absolute RCS measurements as it shows that the measurement of a perfect sphere

has errors within 0.5 to 1dB. This means that the measurements of the following

objects will also more than likely exhibit very small margin of error but will not

impact the results in a major way.

4.4 Chamber Characteristics

Pyramidal absorbers cover the walls, ceiling, and floor of the chamber to reduce

unwanted reflections, though it does not cancel them completely. To keep the noise

low in the measurements an IF bandwidth of 20 Hz was used. The bandwidth is

directly related to the noise energy in the signal and using a low IF bandwidth will

further reduce the noise contributed by the chamber and cables [25].

E2 = 4RkTB (4.2)

Where E is the noise voltage, R is the resistance, k is Boltzmann’s constant,

T is the absolute temperature, and B is the bandwidth. This shows that there is

a direct relationship between bandwidth and noise power so a lower IF bandwidth

results in less noise being introduced into the measurements. Unfortunately, there

is an inverse relationship between measurement time and IF bandwidth [25] so a

compromise is needed for a low noise and quick measurement. The 20 Hz IF band-

width was selected to meet this compromise. The target support that goes in the

chamber is important to take into account as it will create unwanted scattering. By

manipulating the shape and material properties of the support column the scatter-

ing produced by it can be minimized [11], [24]. A pylon is a very common support
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where the ogive cross section helps direct the scattering away from the receiver [11].

A support made from a dielectric material with low dielectric constant will still pro-

duce scattering but much lower than the target’s RCS [11]. Support columns made

from dielectric materials are not as structurally sound as metallic support columns

so heavier targets may not be supported by these dielectric material supports. The

targets used here are relatively light and can be supported by non-metallic materials.

The azimuth rotating positioner in the chamber has a large telescoping plastic

tube that uses pneumatics to raise the target into the main beam of the antennas. The

cross section of the plastic tube is rather large and do not wish to introduce this into

the main beam to avoid unwanted scattering. To mitigate this, a cardboard poster

tube with a much smaller cross section is used as a support column for the targets

and is mounted on top of the large plastic tube. This allows for the larger plastic

tube to be out of the main beam of the antennas and minimize any contribution to

the RCS measurements.

Because of the inability to use pulses and range gating in the chamber, another

method has to be used to ignore the scattering produced by the reflection of the

chamber itself since the absorbers will not attenuate the scattering completely. To

account for the chamber scattering, vector subtraction is performed between the

chamber scattering and target scattering. To do this, a measurement of the chamber

and the support column, without the target, is done and the I/Q data are recorded

and stored. Next, a measurement of the target is done and its I/Q data are stored.

To effectively remove the chamber’s signature, a vector subtraction is done from

the measurement of the target minus the measurement of the chamber. If the mea-

surements go on for more than a day, a measurement of the chamber has to be done

at the beginning of the next days as the variations in temperature and environment

may occur and will have an effect on the repeatability of the measurements as it can
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be seen in Figure 4.5.

(a) Measurements taken within a day. (b) Measurements taken a day apart.

Figure 4.5: RCS difference of 2 sphere measurements taken at different times.
Measurements taken within a day exhibit very little difference while measurements
taken a day apart have a much larger difference that may impact the overall result.

Measurements are taken for all targets for a full azimuth sweep (360 deg). Only

H-pol measurements are taken even though the ability to measure V-pol is available.

The reason for taking H-pol measurements is because single pol weather radars are

most commonly H pol. Something to note is that while the simulations can produce

a 3D RCS pattern, the chamber measurements are limited to an azimuth cut due to

the chamber only possessing an azimuth positioner and there is no other mechanism

to change the elevation angle. Although a measurement of a leaf of comparable

size to the previous simulations was planned, it was revealed during the ongoing

measurements that the chamber did not have the necessary sensitivity to accurately

measure such a small dielectric object. Agreement between simulations using PO

and chamber measurements of a leaf have been recorded [7] which gives the PO

simulations of the leaf high confidence.
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4.5 Results

In this section the results of the measurements of the wooden targets are shown

alongside a comparison between the chamber measurement and the FEKO simula-

tion.

Figure 4.6: Picture of Wood board 1 to be measured. Length: 0.2794 m. Width:
0.1397 m. Thickness: 0.01587 m.
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Figure 4.7: Comparison between measurement and FEKO simulation of wood
board 1. Agreement between measurement and simulation is excellent at and near
broadside with the larger discrepancies being around grazing angle.

Figure 4.8: Picture of Wood board 2 to be measured. Length: 0.3683 m. Width:
0.0889 m. Thickness: 0.0381 m.
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Figure 4.9: Comparison between measurement and FEKO simulation of wood
board 2. There is discrepancy in the magnitude between the measured and cal-
culated pattern throughout all angles. Misalignment of target to the main beam may
be the cause.

Figure 4.10: Picture of Wood board 3 to be measured. Length: 0.3937 m. Width:
0.1397. Thickness: 0.0381 m.
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Figure 4.11: Comparison between measurement and FEKO simulation of wood-
board 3. Magnitude discrepancies can be seen again between the measurement and
the simulation, thought to be from misalignment between target and antenna beam.
The patterns, however, are consistent between them.

Figure 4.12: Picture of Wood sheet to be measured. Length: 0.4572 m. Width:
0.4572. Thickness: 0.009525 m.
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Figure 4.13: Comparison between measurement and FEKO simulation of wood
sheet. Just like with Wood board 1, the patterns between the measurement and
simulation agree well throughout most angles except near grazing angle.
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The first target measured was Wooden board 1 as shown in Figure 4.6. Once the

measurement was taken, it was plotted alongside the FEKO simulation for compar-

ison. Figure 4.7 shows the plots from the measurements and FEKO. Both FEKO

and the simulations agree quite well especially at and around broadside and become

less agreeable near the grazing angle (90 degrees).

The second target is Wooden board 2 shown in Figure 4.8. The plot comparing

its measurement and FEKO simulation is shown in Figure 4.9. Here the discrepancy

between measurement and simulation is rather large despite the fact that the type of

wood is the same for all wooden targets. This may be attributed to misalignment of

the target to the antenna beam of the chamber.

Just like it happened in the measurement for Wooden board 2, Wooden board

3 (Figure 4.10) measurement’s suffers from apparent misalignment as seen in Fig-

ure 4.11. The general pattern between measurement and FEKO simulation is fairly

close but the magnitude offset is the biggest discrepancy seen that might be at-

tributed to poor alignment between target and antenna beam.

And finally, the Wood sheet (Figure 4.12) is measured and compared to FEKO

simulations. As shown in Figure 4.13, the agreement between measurement and

simulation is excellent except at grazing angle, just like in the case for Wooden

board 1.

Figure 4.7 and 4.13 show the best agreement between measurement and simu-

lation. This may be due to their larger sizes which is easier for the equipment to

detect. Wood board 2 (Figure 4.9) and 3 (Figure 4.11), however, show strong sim-

ilarities in the RCS pattern shape but the magnitudes are offset. The materials of

all the wooden structures are the same, which lead to believe that the smaller size

was to blame for this discrepancy. The size combined with its dielectric properties,

which make them reflect less power, might have put the target’s RCS signature very
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near the chamber’s noise floor. It may also be because the target may not have been

aligned correctly to the antenna beam. This shows that much care is needed if good

RCS measurements are wanted.

4.6 Conclusion

A twelve inch diameter sphere was used for the chamber calibration. This gives

us the total chamber of the losses and it has to be done daily if the measurements

require several days to complete. Even though the chamber has a quasi-monostatic

configuration, this creates a negligible contribution and a monostatic configuration

can be assumed.

The results of the FEKO simulations match the measurements taken of the

wooden targets. It is to be noted that Wooden board 1 and the Wood sheet have

a better match between measurements and simulations compared to the smaller

wooden targets Wooden board 2 and 3. This may be because the chamber’s ability

to accurately measure a target is inversely proportional to the target size since CW

configuration is used. Even though a low IF bandwidth is used to reduce the amount

of noise introduced in the measurements, a range gated system may perform much

better for the measurements of small targets. Nevertheless the agreement between

the simulations and measurements of the larger wooden targets results in high con-

fidence for the simulation results and that the RCS in the tornado simulator will be

depicted accurately.
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Chapter 5

Multiple Scattering

5.1 Introduction

An RCS library has been generated for the tornado simulator. With this RCS library,

TDS can be recreated in the tornado simulator and the results analyzed giving sci-

entists the ability to look into the mechanisms behind the TDS phenomena. The

total scattering from the debris in the simulation volume is the added scattering

from each individual scatterer using superposition. This, however, means that only

single reflection scattering takes place in the simulator, meaning there’s no electro-

magnetic interaction between the scatterers. On the other hand, multiple scattering

occurs when the scattered waves interact and reflect off the rest of the targets before

scattering back to the radar. In short, single scattering is when each target scatters

independently from the other targets, and multiple scattering is dependent on the

interaction between scatterers.

Because the complexity of multiple scattering of random targets is high, only

single scattering was implemented in the tornado simulator, meaning that the effects

of multiple scattering are not taken into account. Multiple scattering may be an

important factor for the radar return signal as it may create constructive/destructive

interference, depolarization, specular regions, etc. To explore whether multiple
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scattering is needed in the tornado simulator, an analytical method is implemented

to create multiple scattering between small cylinders and plates. Only first order

multiple scattering is explored here.

5.2 Cylinder Multiple Scattering

The first object used for multiple scattering analysis is the small cylinder which

yields a good starting point for creating the framework for multiple scattering.

Cylinders that are electrically small can be modeled as dipoles due to the Rayleigh

scattering mechanisms. Dipoles can be used as scatterers thanks to the scattering

relationship with antenna parameters [26], [27].

The overall process for the multiple scattering from cylinders ia as follows. An

incident wave is launched at the cylinders to be used as scatterers. The current in-

duced due to the incident field is calculated for each cylinder individually. Next,

the scattered field from one of the cylinders due to the induced current is calcu-

lated and treated as an incident wave for the rest of the cylinders is taken to be an

incident wave for the rest of the cylinders. The current induced by this secondary

incident wave is calculated and added to the original induced current. The process

is repeated until all the cylinders have had their scattered field contribute to the in-

duced currents. All the current contributions in each cylinder are added and their

total cylinder scattering fields calculated. The total cylinder scattered fields from

all the cylinders are added to obtain the total scattered field and the total RCS. The

theorems behind this model are explored next.

Using antenna theory, the far field radiated by a dipole with a linear current dis-

tribution of Io is acquired. To satisfy this linear current approximation, the dipole

must have a length of L ≤ λ/50 according to [28]. But since this is already an
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approximation slightly larger cylinders would still be valid if needed. Calculated

by using the operating wavelength we obtain a length of 1cm. The diameter for the

dipole is chosen to be 1 mm since the approximation holds true for thin dipoles.

For a single small dipole, the radiated field by a linear current is [28]:

Eθ ' jη
kI0le

−jβr

8πr
sin θ. (5.1)

where l is the length of the dipole I0 is a constant current due to the dimension of

the dipole.

Because multiple dipoles are simulated together, mutual impedance effects take

place and are taken into account. By evaluating small resonant scatterers, the mutual

impedance of two nearby loaded cylinders is derived by [29]:

Zm ≈
η

2π

[(kb)2

12
− j 3ln(2b/a)− 7

kb

]
. (5.2)

where a is the radius of the dipole and b is the length of the dipole. With the

mutual impedance known, the open-circuit voltage on the dipole is needed so that

the current can be solved for so that the scattered field can be known.

While the open-circuit voltage of a transmitting antenna can be readily com-

puted, the open-circuit voltage for a receiving antenna has to be calculated by other

means. The reciprocity theorem is employed as it can show the relationship between

its receiving characteristics to its transmit characteristics [30], [31]. The derivation

begins by using the reaction concept [30], [31] where two different source, Ja and

Jb, close to each other radiate fields Ea, Ha and Eb, Hb respectively. The reaction

between source Ja and fields Eb is:

〈Ja,Eb〉 =

∫
Ja(r) · Eb(r)dr. (5.3)
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A system is reciprocal if:

〈Ja,Eb〉 = 〈Jb,Ea〉 (5.4)

which holds true for passive antennas and is not true for active systems such as

phased array antennas. By using the reciprocity theorem and computing a Thevenin

equivalent, a derivation of the open-circuit voltage of an antenna results in [31]:

Voc =
1

I0

4πjrejβr

ωµ
Eincp̂Et(r) (5.5)

where Einc is the incident wave on the dipole and Et is the radiated field of the

dipole as a transmitting antenna. Using (5.1) as the transmitted field for (5.5), the

open-circuit voltage used for the simulations is:

Voc = −θ̂ ηkl
2ωµ

Einc sin θ (5.6)

The current induced on the dipole by the incident wave and with mutual coupling

taken into account is:

I0 =
Voc

Zm
(5.7)

where Zm is the mutual impedance shown in (5.2).

This multiple scattering model is implemented in MATLAB. The way it works

is a plane wave is launched at the targets, in this case dipoles. The current induced

on the dipoles due to the plane wave is calculated by finding the open circuit voltage

and dividing it by its impedance by using equations (5.6) for the open circuit voltage

and (5.7) for the mutual impedance. Once the current has been computed, a loop

begins were the scattered field due to the current induced by the plane wave is

calculated and used as an incident wave for the rest of the dipoles. The current
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on the dipoles is calculated due to the scattered field of the first dipole and stored.

Another cylinder is selected and the whole process is repeated until all the dipoles

contributed to the total current. All the currents induced in each dipole are added,

and the total scattered field is calculated by adding the scattered field from each

dipole.

To ensure that multiple scattering is effectively happening in the MATLAB sim-

ulations, the RCS of two colinear dipoles is taken as a function of dipole length and

distance from one another is shown. with no multiple scattering the scattering will

undergo constructive and destructive interference every time the dipole reaches a

multiple of λ/2 length or a multiple of λ/4 distance from the other dipole. With

multiple scattering however, there is a coupling effect on the dipoles and will con-

tribute to an increase of RCS in several positions.
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Figure 5.1: MATLAB RCS simulation of 2 cylinders with no multiple scattering
taken into account (3D view). The RCS changes as a function of distance but due
to the constructive/destructive interference at every time the dipoles are placed λ/4
or λ/2 distance apart. The RCS does increase as a function of size but this is to be
expected since larger objects create larger RCS levels.
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Figure 5.2: MATLAB RCS simulation of 2 cylinders with no multiple scattering
taken into account (2D view). Same as Figure 5.1 but in 2D for easier viewing.
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Figure 5.3: MATLAB RCS simulation of 2 cylinders with multiple scattering taken
into account (3D view). In this plot, the effects of multiple scattering can be seen
clearly for the RCS of the dipoles decreases as the distance between them increases.
This can be seen for larger dipoles and multiple scattering has little effect with
smaller dipoles.
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Figure 5.4: MATLAB RCS simulation of 2 cylinders with no multiple scattering
taken into account (2D view). Same as Figure 5.3 but in 2D for easier viewing.
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Figure 5.5: Difference between RCS simulation of 2 cylinders with and without
multiple scattering (3D view). Notice how the larger differences occur for larger
dipoles as the distance decreases between them.
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Figure 5.6: Difference between RCS simulation of 2 cylinders with and without
multiple scattering (2D view). Same as Figure 5.5 but in 2D for easier viewing.
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Figures 5.1 and 5.2 show the effects on the RCS of two cylinders as a function

of cylinder length and distance from one another without adding the effects pf mul-

tiple scattering. The figures show that the RCS on average increases as the length of

the cylinders increase as it would be expected from any target. The nulls that appear

as the cylinder changes in length is due to the fact that dipole, the object simulating

the cylinder, resonates at every λ/2 and has its poorest resonance at every λ. The

RCS, however, does not increase or decrease overall as a function of distance be-

tween the cylinders due to the fact that the RCS has been previously shown to be

independent of distance. The nulls and peaks, however, are a result of constructive

and destructive interference every time the dipoles reach a distance of λ/4 and λ/2.

The same setup is simulated with multiple scattering taken into account and is

shown in Figures 5.3 and 5.4. With multiple scattering, the RCS still increases with

increasing length but the RCS is higher than the no multiple scattering model when

the cylinders are larger than 25 cm and close together. This means that the contribu-

tion from multiple scattering increases the overall RCS of the two cylinders. Also

worth noting is that the distance between the dipoles now has an impact in the RCS.

The closer the dipoles are the higher the RCS. This is true since the scattered field

from each cylinder would be higher at closer distances, inducing a larger current on

each other.

And finally, the difference between the no multiple scattering added and multi-

ple scattering simulations are plotted in Figures 5.5 and 5.6. Here it is shown where

the effects of multiple scattering affect the results the most. As expected, the dif-

ference is largest when the cylinder are the longest and closest to each other and is

negligible the smaller and farther apart they are. A simple simulation is presented

of two aligned dipoles placed 50 cm apart. To compare the result obtained from the

MATLAB simulation, a FEKO simulation of the same configuration is plotted.
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Figure 5.7: Placement of simulated dipoles in a global coordinate system. The first
dipole is placed at the origin while the second dipole is placed 50 cm away in the
positive z axis.
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Figure 5.8: MATLAB and FEKO Scattering simulations from 2 dipoles placed 50
cm apart. The agreement between both simulations is excellent, meaning that the
MATLAB model is functional and accurate.
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The results agree very well between the MATLAB and FEKO simulations for

the simple case, confirming that the procedure for calculating the currents is work-

ing as seen in Figure 5.8. The patterns are almost exactly the same except for a

small shift in angle creating high confidence in the analytical model for multiple

scattering for cylinders.

A more complex configuration is simulated to confirm that the multiple scat-

tering simulation in MATLAB is working as intended, where two cylinders are

arbitrarily rotated and positioned in space. Both FEKO and MATLAB simulations

Figure 5.9: MATLAB and FEKO Scattering simulations from 2 arbitrarily rotated
and placed dipoles. There is good agreement at the larger lobes and large discrep-
ancies around the nulls.

agree with the exception of the nulls at the 90 and -90 degree mark. The pattern’s

several peaks have the same magnitude and occur at the same observation angle,
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making this a very agreeable result that the multiple scattering model does indeed

work. Even though the RCS of two small dipoles is very small, having larger and

more cylinders simulated may contribute to a more significant RCS.

The MATLAB script used for calculating the multiple scattering can be used

for any number of dipoles that is computationally feasible. In this case the largest

number of dipoles simulated has been 500. But the larger the number of cylinders

the longer the simulation takes and more memory it will use.

5.3 Plate Multiple Scattering

Multiple scattering by small cylinders has been analyzed in the previous section.

In this section multiple scattering by plates is explored. To calculate the multiple

scattering due to plates the PO approximation is used to calculate the scattered fields

which simplifies the problem and makes it possible to obtain an analytical solution.

The PO is most accurate for flat surfaces and using it for this analysis is a good fit

[32].

The approach here is similar to the one used with the cylinders, where the scat-

tered fields are calculated individually for each target from the incident wave and

the first order multiple scattering contribution from each plate is added to the total

scattered field. The scattering created by the plates is done by using equations (2.47)

and (2.48) for PEC plates and equations (3.12) and (3.13) for dielectric plates.

To observe the effects of multiple scattering on plates, a dihedral target is simu-

lated. A dihedral is chosen due to its strong return dominated by multiple reflections

when looking into the structure at a certain angle [33].
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Figure 5.10: Geometry of the simulated dihedral reflector. The first plate is placed
on the origin and rotated 90 degrees while the second plate is placed 3 cm along the
positive x axis and 3 cm along the negative z axis without rotating the plate.
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Figure 5.11: RCS pattern for the dihedral simulated in MATLAB and FEKO using
PO. The FEKO simulation using PO failed to capture the multiple scattering.

98



The simulation was carried out in MATLAB and in FEKO for comparison and

validation. In FEKO the PO solving scheme was selected to make a direct compar-

ison. However, as seen in Figure 5.11 there is no evidence of multiple scattering as

there are the patterns do not resemble results in [34] that use the PO approximation

on dihedrals. Literature suggests that FEKO’s PO solution should use multiple scat-

tering in the simulation [35] but that is not the case here. The default MoM scheme

was selected in FEKO to obtain the true result from the dihedral scattering.

Figure 5.12: RCS pattern for the dihedral simulated in MATLAB and FEKO using
MoM. Here FEKO did captur ethe multiple scattering effect while the MATLAB
result does not match it well. A small lobe is seen at 45 degrees but the magnitude
is too low.

A peak in RCS looking into the dihedral shows that multiple scattering is taken

into effect using the MoM solution. Comparing the MoM FEKO and MATLAB

simulations shows that the MATLAB simulation does not match the FEKO simula-
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tion. The PO approximation is best used in the far-field and the plates making up

the dihedral are close such that near-field and diffraction effects need to be taken

into account. This renders the MATLAB simulation very inaccurate. To create a

more accurate result, the plates are separated enough so that they are in the far-field

region from each other.

Figure 5.13: Geometry of the simulated separated dihedral reflector. The first plate
is rotated 90 degrees and placed 10 cm along the positive z axis. The second plate
is not rotated and placed 10 cm along the positive x axis.
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Figure 5.14: RCS pattern for the separated dihedral simulated in MATLAB. The
peak at 45 degrees agrees better than in Figure 5.12 but some discrepancies can still
be seen especially around the nulls.
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The previous plot shows better agreement, especially for the peak at 45◦ where

multiple scattering is strongest. The lobes around this peak are also very similar in

magnitude between the simulations, but the shape in general is still a bit off. It is

possible that diffraction effects are playing a roll in the scattering in the dihedral and

the PO would not take this into account unless explicitly added. The results from

the separated dihedral structure agree better than for the normal dihedral structure,

so it may be safe to say that near fields affect the results considerably if the plates

are too close to each other. This means that if the multiple scattering of debris needs

to be modeled accurately a restriction on the distance between debris needs to be

enacted so that they all end up on each other’s far-field.

5.4 Conclusion

An analytical solution for the multiple scattering of cylinders and plates was pre-

sented. The reaction concept, reciprocity theorem, and an application of a Thevenin

equivalency is used to calculate the induced current in a dipole and subsequently

obtaining the scattered fields. A FEKO simulation is used to compare the analyt-

ical solution and agree very well. The analytical solution is a powerful tool since

populating an electromagnetic solver with many targets is unfeasible and time con-

suming.

The multiple scattering between the cylinders was studied by plotting it as a

function of length and distance between two dipoles. It was observed that without

multiple scattering, the distance between dipoles had no effect on the overall RCS

and an increasing length of dipoles creates a larger RCS as expected. But with

multiple scattering enabled, it was seen that the overall RCS did in fact depend on

the distance between dipoles. This is especially true for larger dipoles as the overall
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RCS increased for larger dipoles as they were brought closer together.

By using the PO approximation on plates and finding the contributions due to

reflections, an analytical method for calculating the multiple scattering from plates

was created. The simulation of the dihedral did not agree very well with the ana-

lytical method except when the plates were separated enough. This may be due to

near-field interaction and possibly diffraction contributions. Nevertheless, contribu-

tion from the multiple scattering was indeed seen in the analytical model, providing

a good start towards achieving an accurate model for the multiple scattering for

plates.
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Chapter 6

Conclusion

The RCS of several targets thought to be common tornadic debris has been char-

acterized. By using electromagnetic solvers, the RCS of a leaf and several wooden

targets are turned into usable files so that the tornado simulator has access to a

small RCS library that will produce accurate RCS information. Measurements of

the wooden targets in an anechoic chamber confirm that the simulations are accu-

rate even though the smaller targets suffered from lack of sensitivity in the chamber

and produced less accurate measurements.

Multiple scattering using cylinders and plates using analytical solutions was

presented with the intention of determining if it is necessary to implement in the

tornado simulator for more accurate simulations. The multiple scattering by the

small cylinders was implemented by using the reciprocity theorem in MATLAB

and shown to make a difference in the scattering of two cylinders, provided that the

dipoles are large and close together. The scattering of the cylinders however was

limited to small cylinders that generate extremely low RCS. It did serve, however,

to establish a framework for the analytical solution for multiple scattering by simple

shapes. It also provides a faster way to compute multiple scattering since drawing

each individual target in an electromagnetic solver is time consuming and if too

many targets are used the solver may not be able to simulate it due to running out
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of memory.

Using this framework, the analytical solution for the multiple scattering of plates

was produced. By using the PO approximation, the scattering for the plates is

calculated and first order multiple scattering was achieved. A dihedral target made

of two plates was used to confirm the multiple scattering due to the target’s RCS

being dominated by multiple scattering between its sides.

Even though multiple scattering was introduced, a polarimetric analysis has yet

to be done to verify whether multiple scattering is an important and dominating

factor in the polarimetric products of a radar. As a best guess the multiple scattering

will have an effect on the radar return signal provided that the debris pieces are large

enough and close enough to each other, suggesting that multiple scattering will have

a larger probability of having an impact when the tornado is loaded with a larger

amount of debris.
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Appendix A

Derivations

A.1 Equivalence of Transmit and Receive Antennas

The reciprocity theorem was invoked in chapter 5 alongside a Thevenin equivalent
to solve for the open-circuit voltage of a dipole to be used as a scatterer. The entire
derivation of the open-circuit voltage is provided by [31] and is as follows.

Invoking the reaction concept shown in chapter 5(5.3) the current filament Ja is
aligned with the z-axis so that the reaction between Ja and Eb is

〈Ja,Eb〉 =

∫
Ja(r) · Eb(r)dr. (A.1)

=

∫
[−Iaẑδ(x)δ(y)] · Eb(r)dr. (A.2)

= −Ia
∫ z2

z1

ẑ · Eb(r)dz. (A.3)

= −Ia
∫ z2

z1

Eb(r)·dl. (A.4)

= IaVoc(a). (A.5)

Where Voc(a) is the open circuit voltage induced across the antenna a. Similarly
for antenna b the reaction is

〈Jb,Ea〉 = IbVoc(b). (A.6)

Using the reciprocity theorem

IaVoc(a) = IbVoc(b). (A.7)

Proving that the pattern for a receiving and transmitting antenna are equal.
To solve for the open-circuit voltage on a receiving antenna a Thevenin equiva-
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lent is used

Voc(a) =
1

I0

∫
Jb · Ea. (A.8)

the reciprocity theorem is applied to a third configuration

Ja = J0 + Ja,eq (A.9)

where Ja,eq is the equivalent current for antenna a with the excitation J0 The
reciprocity theorem requires that∫

Jb · Eadr =

∫
(J0 + Ja,eq)dr (A.10)

where Eb is the radiated field by the antenna b without antenna a present. Com-
bining all the previous equations results in

Voc(a) =
1

I0

∫
(J0 + Ja,eq) · Ebdr (A.11)

For an antenna with a small gap between the terminals, the above equation re-
duces to

Voc =
1

I0

∫
Jeq · Eincdr (A.12)

by ignoring the contribution from J0. To solve for the open circuit voltage, the
incident wave is assumed to be a plane wave

Einc = p̂Eince
−jβinc·r (A.13)

so that

Voc(a) =
1

I0

∫
Jeq · p̂Eince−jβ

inc·rdr (A.14)

Equation (A.14) is very similar to the radiation integral

E(r) = −jωµ(1− r̂r̂·)e
−jβr

4πr

∫
Jeq · p̂Eince−jβ

inc·rdr (A.15)

Equations (A.14) and (A.15) are related by

(1− r̂r̂·)
∫

Jeq(r′
)e−jβr̂·r

′

dr′
(A.16)

and can be shown that
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p̂ · (1− k̂inck̂inc·)
∫

Jeq(r)e−jβ
inc·rdr =

∫
p̂Jeq(r)e−jβ

inc·rdr (A.17)

Using this result to combine equations (A.14) and (A.15) leads to the usable
form of the open circuit voltage equation

Voc = p̂
1

I0

4πjrejβr

ωµ
Einc · Et(r) (A.18)
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Appendix B

Code

B.1 Leaf RCS

Main program and dielectric sheet and cylinder functions

Listing B.1: Leaf RCS calculation main script
for m = 1:numel(Alpha)

for n = 1:numel(Beta)
num = num+1;
alpha = m*pi/180;
beta = n*pi/180;
[Sx, Ssheet, Scyl, dB_sheet, dB_cyl, ang_sheet,

ang_cyl] = dielectric_sheet_rcs(2);
offset = zr_hat(2)*(cl-lh)/2;
S_cyl = S_cyl*exp(1i*2*k*offset);
S_leaf(m,n,:,:) = S_cyl + S_sheet;
r_hat(m,n,:) = zr_hat;
end

end
\newpage

Functions to compute the RCS of the dielectric sheet and
dielectric cylinder

\begin{lstlisting}[frame=single, caption=Dielectric sheet
RCS]

% Define transformation matrix between coordinate systems
.

% A vector p in the RADAR coordinate system is equal to
% P = Tp in the LOCAL coordinate system
ca = cos(alpha); cb = cos(beta); cg = cos(gamma);
sa = sin(alpha); sb = sin(beta); sg = sin(gamma);
T = [ ca*cb*cg-sa*sg ca*cb*sg+sa*cg -ca*sb; ... %

transformation matrix changed so that we have z-y’-z’’
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-sa*cb*cg-ca*sg -sa*cb*sg+ca*cg sa*sb; ...
sb*cg sb*sg cb ];

% Unit vectors for plotting the RADAR axes in the LOCAL
coordinate system:

u_hat = T*[1 0 0; ...
0 1 0; ...
0 0 1];

xr_hat = u_hat(:,1);
yr_hat = u_hat(:,2);
zr_hat = u_hat(:,3);
% Radar sits at z = R0, y = 0, x = 0, or at an angle in

the radar coordinate
% system of R = R0, theta = 0, phi = 0.
% In the Local system, the radar is at an angular

location that is in line
% with zr_hat, so that according to the target the angle

of incidence is
Theta0 = acos(zr_hat(2))*180/pi; %With respect to the

radar (y component of zr_hat)
Phi0 = atan2(zr_hat(1), zr_hat(3))*180/pi; %With respect

to the radar (x component of zr_hat, z component of
zr_hat)

% ***IMPORTANT NOTE***
% Here, Theta0 = angle from y axis in local coordinate

system and
% Phi0 = angle from z axis along z-y plane. These are NOT

the "normal"
% spherical coordinates. This is done to make the

calculations more simple
% for the sheet and cylinder below
%%%%%%%%%%%%%%%%%
%%% Sheet RCS %%%
%%%%%%%%%%%%%%%%%
% The angle of incidence from normal (with zero degrees

corresponding to the +Y half of the sphere) is:
ThetaNorm = acos(zr_hat(3))*180/pi; %Like phi in "normal"

spherical coordinates
Theta0S = acos(abs(zr_hat(3)))*180/pi; %(for sarabandi

paper we need just absolute angle from x axis
% The rotation angle can be found by projecting the

zr_hat vector onto
% the X-Y plane in the LOCAL coordinate system; what

results is that
% the counter-clockwise rotation angle of the sheet
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relative to the
% nominal problem setup that’s been solved and

demonstrated by Ye
% (based on the Sarabandi paper) is:
% PhiRot = atan2(xr_hat(2), xr_hat(3))*180/pi*sign(

xr_hat(1));

% The unit vector corresponding to the plane of incidence
as seen on the X-Y plane is

Denom = sqrt(zr_hat(1)ˆ2+zr_hat(2)ˆ2);
zt_hat(3) = 0;
if Denom == 0

zt_hat(1) = -1; % deals with a singularity condition
zt_hat(2) = 0;

else
zt_hat(1) = zr_hat(1)./Denom; %Vector magnitude junk

here
zt_hat(2) = zr_hat(2)./Denom;

end
% The unit vector in the direction of the parallel E

field vector for the
% equivalent rotated sheet problem is:
tm_hat = -zt_hat*cos(ThetaNorm*pi/180) + [0 0 1]*sin(

ThetaNorm*pi/180);

% The unit vector in the direction of the perpendicular E
field vector for the

% equivalent rotated sheet problem is:
te_hat = cross(zr_hat, tm_hat);
% Note: The angle of incidence for either polarization is

Theta0S from above
% Resistivity
R = -1i*Z0/(k*tau*(er-1)); % negative because of eˆjwt

convention
% Material properties
% Perpendicular reflection coefficient -- appears to be

reasonable
gammaE = 1./(1+(2*R/Z0)*cos(Theta0S*pi/180)); % using

same negative sign convention as Sarabandi
% Parallel reflection coefficient -- appears to be

reasonable
gammaH = 1./(1+(2*R/Z0)*sec(Theta0S*pi/180));

%Width and length projected onto radar coordinate system
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from original
Zw = k*lh*cos(Theta0*pi/180); %just changed the

varable name from Xw to Zw
Zl = k*lw*sin(Theta0*pi/180)*sin(Phi0*pi/180); %same

thing, from Xl to Zl
% "Tilted" circle: ellipse
% Note: sin(phi) here because unlike sarabandi’s paper (x

= 0) we have leaf at x = 0

Sx = 1i/(2*pi)*kˆ2*lh*lw*cos(Theta0S*pi/180)*sinc(Zw/pi)*
sinc(Zl/pi); %Radar cross section for the rectangular
sheet (probably scattering but could be power density)

% Remember: ThetaOS is from the z-axis in the yz plane
and PhiOS is

% from the
% "far-field amplitude" in sarabandi paper
% Se = -gammaE*S; % perpendicular
% Sh = -gammaH*S; % parallel
Se = -lambda/sqrt(pi)*gammaE*Sx; % perpendicular RCS (

complex amp)
Sh = -lambda/sqrt(pi)*gammaH*Sx; % parallel RCS (complex

amp)

%RCS for circular sheets may just replace Sx with Sxc

% Note: negative sign here fixes a sign problem in the
paper

%Sec = % perpendicular RCS (complex amp)
%Seh = % parallel RCS (complex amp)

% The two incident unit vectors are xr_hat for H and
yr_hat for V.

% The projection matrix from this basis to the Te (perp)
/ Tm (parallel) basis is:

% [Te] = [A B][H] = TP * [H]
% [Tm] = [C D][V] [V]
TP = [te_hat*xr_hat te_hat*yr_hat; tm_hat*xr_hat tm_hat*

yr_hat]; %changed, as now xr_hat is H-pol and yr-hat
is V-pol

% [Shh; Shv] = TPˆ(-1)*diag([RCSe RCSh])*TP*[1;0]
% [Svh; Svv] = TPˆ(-1)*diag([RCSe RCSh])*TP*[0;1]

S_sheet = TPˆ(-1)*diag([Se Sh])*TP;
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% [Se Sh] = cylinder_rcs(cd/2, cl, f, Theta0*pi/180);
[Se Sh] = dielectric_cylinder_rcs(cd/2, cl, er, f, Theta0

*pi/180); %Changes Se and Sh for cylinder measurements
% ***IMPORTANT REMINDER***
% Here, Theta0 = angle from y axis in local coordinate

system and
% Phi0 = angle from z axis along z-y plane. These are NOT

the "normal"
% spherical coordinates.
Theta0_hat = [cos(Theta0*pi/180)*sin(Phi0*pi/180) -sin(

Theta0*pi/180) cos(Theta0*pi/180)*cos(Phi0*pi/180)];
Phi0_hat = [cos(Phi0*pi/180) 0 -sin(Phi0*pi/180)];
TC = [Phi0_hat*xr_hat Phi0_hat*yr_hat; Theta0_hat*xr_hat

Theta0_hat*yr_hat];
S_cyl = TCˆ(-1)*diag([Se Sh])*TC;

dB_sheet = 20*log10(abs(S_sheet([1 4])));
dB_cyl = 20*log10(abs(S_cyl([1 4])));
ang_sheet = 180/pi*angle(S_sheet([1 4]));
ang_cyl = 180/pi*angle(S_cyl([1 4]));
Ssheet = S_sheet([1 4]);
Scyl = S_cyl([1 4]);

Listing B.2: Dielectric cylinder RCS
% compute the scattered fields for TM and TE incidence
for n = -nmode:nmode

% derivatives of Bessel function
jn_d = n*besselj(n,u)./(u) - besselj(n+1,u);

% derivatives of Hankel function
hn_d = 1.0/2*(besselh(n-1,2,v)-besselh(n+1,2,v));

D_TM = (hn_d./(v.*besselh(n,2,v))-K_tm*jn_d./(u.*besselj(n
,u)))...
.*(hn_d./(v.*besselh(n,2,v))-Nˆ2/K_tm*jn_d./(u.*besselj

(n,u)))...
-(1./v.ˆ2-1./u.ˆ2).ˆ2*nˆ2.*cti.ˆ2;

D_TE = (hn_d./(v.*besselh(n,2,v))-K_te*jn_d./(u.*besselj(n
,u)))...
.*(hn_d./(v.*besselh(n,2,v))-Nˆ2/K_te*jn_d./(u.*besselj

(n,u)))...
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-(1./v.ˆ2-1./u.ˆ2).ˆ2*nˆ2.*cti.ˆ2;

% This is an_s/(E0sin(theta))
an_spp_TM = 1jˆn.*(-besselj(n,v)./besselh(n,2,v)...
-2.*1j.*(hn_d./(v.*besselh(n,2,v))-K_tm*jn_d./(u.*besselj(

n,u)))...
./(pi*v.ˆ2.*besselh(n,2,v).ˆ2.*D_TM));

an_spp_TE = 1jˆn.*(-besselj(n,v)./besselh(n,2,v)...
-2.*1j.*(hn_d./(v.*besselh(n,2,v))-K_te*jn_d./(u.*besselj(

n,u)))...
./(pi*v.ˆ2.*besselh(n,2,v).ˆ2.*D_TE));

% This is bn_s/(E0sin(theta))
bn_spp_TM = (beta2/(u0*omega)).*(1j)ˆn.*(2./(pi*v.ˆ2)

.*(1./(u.ˆ2)-1./(v.ˆ2))*n.*cti./(besselh(n,2,v).ˆ2.*
D_TM)); %added (beta2/(ur_2*omega)) whish was on the
paper

bn_spp_TE = (beta2/(u0*omega)).*(1j)ˆn.*(2./(pi*v.ˆ2)
.*(1./(u.ˆ2)-1./(v.ˆ2))*n.*cti./(besselh(n,2,v).ˆ2.*
D_TE));

sum_tm_co_pol = sum_tm_co_pol + an_spp_TM*1iˆn;
sum_tm_cross_pol = sum_tm_cross_pol + bn_spp_TM*1iˆn;
sum_te_co_pol = sum_te_co_pol + an_spp_TE*1iˆn;
sum_te_cross_pol = sum_te_cross_pol + bn_spp_TE*1iˆn;

end

% calculate the RCS for E (perpendicular E) polarization and
H (parallel E) polarization

Sch = sum_tm_co_pol.*sqrt(4*1i*lˆ2/pi*sti).*sinc(beta2*l*cti
/pi); %Sch = sum_tm_co_pol.*sqrt(4*lˆ2/pi*sti).*sinc(
beta2*l*cti);

Sce = sum_te_co_pol.*sqrt(4*1i*lˆ2/pi*sti).*sinc(beta2*l*cti
/pi); %Sce = sum_te_co_pol.*sqrt(4*lˆ2/pi*sti).*sinc(
beta2*l*cti); %Sce = sum_te_co_pol.*sqrt(4*1i*lˆ2/pi*sti)
.*sinc(beta2*l*cti/pi);

Sch = Sch*exp(1i*pi/4); % This appears to give it the
correct phase relative to HFSS

Sce = -Sce*exp(1i*pi/4);
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B.2 Chamber Measurements RCS

The following code is used to plot the measured RCS and the FEKO RCS as well.
The parts of the script that are used for the sphere RCS calculations were obtained
from the digital content in[13] and modified to fit the needs of this thesis.

Listing B.3: RCS pattern of measured target and target simulated in FEKO
for n = 1:101

frequency = frequency + 0.006e9;
for k = 1:nTheta

[eTheta(k,:) a] = mie(radius, frequency, theta(k),
0.0, nMax);

[a ePhi(k,:)] = mie(radius, frequency, theta(k), pi/2,
nMax);

end

ePhii(n) = ePhi(end);
et(n) = (20*log10(abs(eTheta(end)))-20*log10(abs(eTheta(1))

));
ep(n) = (20*log10(abs(ePhi(end)))-20*log10(abs(ePhi(1))));

end
...
I = spherei - nospherei;
Q = sphereq - nosphereq;

S = (I.ˆ2)+(Q.ˆ2);
S = 10*log10(4*pi*S);
S = transpose(mean(S));
cal = s-S;
cal = cal.’;
cal = repmat(cal,361,1);
...
I = woodi - nowoodi;
Q = woodq - nowoodq;

s = (I.ˆ2)+(Q.ˆ2);
S = 10*log10(4*pi*s)+cal;
sphere = 10*log10(sqrt(spherei.ˆ2+sphereq.ˆ2));
nosphere = 10*log10(sqrt(nospherei.ˆ2+nosphereq.ˆ2));

[M,I] = max(S(:,34));
y1 = circshift(S(:,34),181-I);
phi = -180:1:180;
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figure(1)
plot(phi,y1,’k’)
title([’Measured RCS of 11x5.5x0.75 Inch Wooden Plank’])
xlim([-180 180])
set(gca,’XTick’,-180:45:180)
grid on
ylabel(’Radar Cross Section (dBsm)’)
xlabel(’Azimuth angle (Degree)’)
dim = [.2 .6 .3 .3];
legend(’2.9GHz’)
hold off
[M,I] = max(y1)
spheresweep = ’FEKODataSylvesterPine’;
A = xlsread(spheresweep);
wood = A(1:end,2);
diff = abs(y1-wood);

Listing B.4: Mie series to calculate the RCS of a sphere obtained from [13]
% compute spherical bessel, hankel functions
[J(mode)] = besselj(mode + 1/2, k*radius); J = J*s;
[H(mode)] = besselh(mode + 1/2, 2, k*radius); H = H*s;
[J2(mode)] = besselj(mode + 1/2 - 1, k*radius); J2 = J2*s;
[H2(mode)] = besselh(mode + 1/2 - 1, 2, k*radius); H2 = H2*s

;

% derivatives of spherical bessel and hankel functions
% Recurrence relationship, Abramowitz and Stegun Page 361
kaJ1P(mode) = (k*radius*J2 - mode .* J );
kaH1P(mode) = (k*radius*H2 - mode .* H );

% Ruck, et. al. (3.2-1)
An = -((i).ˆmode) .* ( J ./ H ) .* (2*mode + 1) ./ (mode.*(

mode + 1));

% Ruck, et. al. (3.2-2), using derivatives of bessel
functions

Bn = ((i).ˆ(mode+1)) .* (kaJ1P ./ kaH1P) .* (2*mode + 1) ./
(mode.*(mode + 1));

[esTheta esPhi] = mieScatteredField(An, Bn, theta, phi,
frequency);

return
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Listing B.5: Scattered fields from the Mie series obtained from [13]
% compute coefficients for scattered electric far field
for iMode = 1:length(An)

% derivative of associated Legendre Polynomial
if abs(cosTheta) < 0.999999

if iMode == 1
dp = cosTheta*plm(1)/sqrt(1.0 - cosTheta*cosTheta);

else
dp = (iMode*cosTheta*plm(iMode) - (iMode + 1)*plm(

iMode - 1))/sqrt(1.0 - cosTheta*cosTheta);
end

end

if abs(sinTheta) > 1.0e-6
term1 = An(iMode)*p/sinTheta;
term2 = Bn(iMode)*p/sinTheta;

end

if cosTheta > 0.999999
% Ruck, et. al. (3.1-12)
val = ((i)ˆ(iMode-1))*(iMode*(iMode+1)/2)*(An(iMode) -

i*Bn(iMode));
S1 = S1 + val;
S2 = S2 + val;

elseif cosTheta < -0.999999
% Ruck, et. al. (3.1-14)
val = ((-i)ˆ(iMode-1))*(iMode*(iMode+1)/2)*(An(iMode)

+ i*Bn(iMode));
S1 = S1 + val;
S2 = S2 - val;

else
% Ruck, et. al. (3.1-6)
S1 = S1 + ((i)ˆ(iMode+1))*(term1 - i*Bn(iMode)*dp);
% Ruck, et. al. (3.1-7)
S2 = S2 + ((i)ˆ(iMode+1))*(An(iMode)*dp - i*term2);

end

% recurrence relationship for next Associated Legendre
Polynomial

if iMode > 1
plm(iMode + 1) = (2.0*iMode + 1)*cosTheta*plm(iMode)/

iMode - (iMode + 1)*plm(iMode - 1)/iMode;
end
p = plm(iMode + 1);
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end

% complex-value scattered electric far field, Ruck, et. al.
(3.1-5)

esTheta = S1*cos(phi);
esPhi = -S2*sin(phi);

% normalize electric field so square of magnitude is RCS in
square meters

esTheta = esTheta*sqrt(4.0*pi)/k;
esPhi = esPhi*sqrt(4.0*pi)/k;

return

B.3 Cylinder Multiple Scattering

The following script is used to calculate the RCS of cylinders using multiple scat-
tering. It is set to randomly select the position and orientation but it was fixed for
the experiments done for this thesis.

Listing B.6: Multiple scattering script for small cylinders
for t = 1:length(el)

theta_ang_obs = ((t-1)*pi)/180; %Theta observation angle
sweep (0 to 360)

for n = 1:sctrs
ca = cos(alpha(n)); cb = cos(beta(n)); cg = cos(gamma)

; %Transformation Matrix stuff
sa = sin(alpha(n)); sb = sin(beta(n)); sg = sin(gamma)

; %
T = [ca*cb*cg-sa*sg -ca*cb*sg-sa*cg ca*sb; ... %

sa*cb*cg+ca*sg -sa*cb*sg+ca*cg sa*sb; ... %
-sb*cg sb*sg cb ]; %

u_hat = T*[1 0 0; ... %Rotated Unit Vectors
0 1 0; ... %
0 0 1]; %

xr_hat = u_hat(:,1); %X’ Unit Vector
yr_hat = u_hat(:,2); %Y’ Unit Vector
zr_hat = u_hat(:,3); %Z’ Unit Vector
K_hat = [-sin(theta_ang_obs) 0 -cos(theta_ang_obs)]; %

ncident wave unit vector
dotx = dot(-K_hat,xr_hat); %K and X’ dot product
doty = dot(-K_hat,yr_hat); %K and Y’ dot product
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dotz = dot(-K_hat,zr_hat); %K and Z’ dot product
theta_ang = acos(dotz); %Theta (Elevation) angle

between incident wave and rotated dipole
theta_angle_mult(n,t) = theta_ang; %Store previous

theta angle for multiple scattering implementation
phi_ang = atan2(doty,dotx); %Phi (azimuth) angle

between incident wave and rotaed dipole
theta_hat = [cos(theta_ang)*cos(phi_ang)... %Theta

unit vector for dipole on dipole coordinate system
cos(theta_ang)*sin(phi_ang)... %
-sin(theta_ang) ]; %

theta_hat_obs = [cos(theta_ang_obs)*cos(phi_ang_obs)
... %Theta unit vector for incident wave

cos(theta_ang_obs)*sin(phi_ang_obs)... %
-sin(theta_ang_obs) ]; %

theta_hat_obs_mult(:,t) = theta_hat_obs;
phi_hat = [-sin(phi_ang) cos(phi_ang) 0];
theta_hat_prime1 = T*theta_hat.’;
phi_hat_prime = T*phi_hat.’;
theta_prime_mult(:,n,t) = theta_hat_prime1;
R = 100; %Distance from

source to origin (meters)
Rt = dot(K_hat,pnts(:,n).’)+R; %Distance from

source to scatterer
Rr(n,t) = Rt;
V_oc = ((-1*eta*k*b*exp(1i*k*Rt))/(2*w*mu*Rt))*sin(

theta_ang)*dot(theta_hat_obs,theta_hat_prime1); %
Open circuit voltage on dipole

I_dipole = V_oc/Z; %Current induced on dipole
I_dipole_mult(t,n) = I_dipole_mult(t,n) + I_dipole;
E_dipole = ((1i*eta*k*I_dipole*b*exp(1i*k*Rt))/(8*pi*

Rt))*sin(theta_ang)... %ETheta field radiated by
dipole by induced current

*((dot(theta_hat_prime1.’,theta_hat_obs))ˆ2)*
theta_hat_obs; %

E_no_mul(:,t) = E_dipole.’ + E_no_mul(:,t);
dI_dipole = zeros(1,sctrs);
for m = 1:sctrs

r1 = pnts(1:3,n)-pnts(1:3,m);
dotx = dot(r1,xr_hat);
doty = dot(r1,yr_hat);
dotz = dot(r1,zr_hat);
theta1 = acos(dotz);
phi1 = atan2(doty,dotx);
m1 = sqrt(sum((r1).ˆ2));
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theta_hat = [cos(theta1)*cos(phi1) cos(theta1)*sin(
phi1) -sin(theta1)];

theta_hat_prime1 = T*theta_hat.’;
ca = cos(alpha(m)); cb = cos(beta(m)); cg = cos(

gamma);
sa = sin(alpha(m)); sb = sin(beta(m)); sg = sin(

gamma);
Tr = [ ca*cb*cg-sa*sg -ca*cb*sg-sa*cg ca*sb; ... %z

-y’-z’’ convention so far, might change
sa*cb*cg+ca*sg -sa*cb*sg+ca*cg sa*sb; ...
-sb*cg sb*sg cb ];

ur_hat = Tr*[1 0 0; ...
0 1 0; ...
0 0 1];

xrr_hat = ur_hat(:,1);
yrr_hat = ur_hat(:,2);
zrr_hat = ur_hat(:,3);
dotx = dot(-r1,xrr_hat);
doty = dot(-r1,yrr_hat);
dotz = dot(-r1,zrr_hat);
theta2 = acos(dotz);
phi2 = atan2(doty,dotx);
theta_hat = [cos(theta2)*cos(phi2) cos(theta2)*sin(

phi2) -sin(theta2)];
theta_hat_prime2 = Tr*theta_hat.’;
V_oc = ((-1i*(etaˆ2)*(kˆ2)*(bˆ2)*I_dipole*exp(-1i*k

*m1))/(16*pi*w*mu*m1))... %Open circuit voltage
induced on mth dipole

*sin(theta2)*sin(theta1)*dot(theta_hat_prime2,
theta_hat_prime1);

dI_dipole(m) = V_oc/Z; %Current induced on
mth dipole by nth dipole

end
dI_dipole(isnan(dI_dipole)) = 0;
I_dipole_mult(t,:) = I_dipole_mult(t,:) + dI_dipole; %

<------------------------------------------------
end
E_no_mul(:,t) = abs(dot(E_no_mul(:,t),conj(E_no_mul(:,t))

));
end
...
for t = 1:length(el)

for n = 1:sctrs
E_dipole = ((1i*eta*k*I_dipole_mult(t,n)*b*exp(1i*k*Rr

(n,t)))/(8*pi*Rr(n,t)))...
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*sin(theta_angle_mult(n,t))*(abs(dot(reshape(
theta_prime_mult(:,n,t),1,3),theta_hat_obs_mult
(:,t).’))ˆ2);

Etotal(:,t) = Etotal(:,t) + E_dipole*
theta_hat_obs_mult(:,t);

Ephase(:,t) = Ephase(:,t) + E_dipole*
theta_hat_obs_mult(:,t);

end
Es(t) = abs(dot(Etotal(:,t),conj(Etotal(:,t))));
phase(t) = angle((sqrt(sum(real(Ephase(:,t)).ˆ2))+1i*sqrt

(sum(imag(Ephase(:,t)).ˆ2)))/(exp(1i*k*R)/R))*(180/pi)
;

end
rcs_mult = 10*log10((4*pi*(Rˆ2)*(Es(:)))/(1/Rˆ2)).’;

B.4 Plate Multiple Scattering

The following script is used to compute the RCS of plates with multiple scattering.

Listing B.7: Multiple scattering script for plates
%%% Loop to obtain angles and distance from source to target

%%%
for m = 1:sctrs

for n = 1:length(theta_i)
ca = cos(alpha(m)); cb = cos(beta(m)); cg = cos(gamma(

m)); %Sines and Cosines for transformation matrix
sa = sin(alpha(m)); sb = sin(beta(m)); sg = sin(gamma(

m));
T_local = [ ca*cb*cg-sa*sg ca*cb*sg+sa*cg -ca*sb; ...

%Global vector transformed to local coordinates
-sa*cb*cg-ca*sg -sa*cb*sg+ca*cg sa*sb; ...
sb*cg sb*sg cb ];

K_hat = [-sin(theta_i(n)) 0 -cos(theta_i(n))]; %Unit
K vector from incident direction

R_hat_prime = T_local*K_hat.’; %R hat
vector transformed to local coordinates

dotx = dot(-R_hat_prime,X_hat); %Dot
product of R_hat’ and X_hat

doty = dot(-R_hat_prime,Y_hat); %Dot
product of R_hat’ and Y_hat

dotz = dot(-R_hat_prime,Z_hat); %Dot
product of R_hat’ and Z_hat

theta_ang(n,m) = acos(dotz); %Theta
angle between incident wave and n_hat
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phi_ang(n,m) = atan2(doty,dotx); %Phi
angle between incident wave and n_hat

Rt(n,m) = dot(K_hat,pnt(m,:))+R; %Range
from source to center of plate (R+R’)

end
end
...
%%% Loop to calculate Multiple Scattering Fields %%%
for n = 1:sctrs

for m = 1:sctrs
if n==m

else
%%%Secondary reflecting plate, m
ca = cos(alpha(m)); cb = cos(beta(m)); cg = cos(

gamma(m)); %Sines and Cosines for transformation
matrix

sa = sin(alpha(m)); sb = sin(beta(m)); sg = sin(
gamma(m));

T_local = [ ca*cb*cg-sa*sg ca*cb*sg+sa*cg -ca*sb;
... %Global vector transformed to local
coordinates

-sa*cb*cg-ca*sg -sa*cb*sg+ca*cg sa*sb; ...
sb*cg sb*sg cb ];

point = T_local*(pnt(m,:)-pnt(n,:)).’
mag_point = sqrt(sum(point.ˆ2));
Rr = sqrt(sum((pnt(m,:)-pnt(n,:)).ˆ2));
dotx = dot(-point./mag_point,X_hat);
doty = dot(-point./mag_point,Y_hat);
dotz = dot(-point./mag_point,Z_hat);
theta_ms = acos(dotz)
phi_ms = atan2(doty,dotx)

%%%Primary reflecting plate, n
ca = cos(alpha(n)); cb = cos(beta(n)); cg = cos(

gamma(n)); %Sines and Cosines for transformation
matrix

sa = sin(alpha(n)); sb = sin(beta(n)); sg = sin(
gamma(n));

T_local = [ ca*cb*cg-sa*sg ca*cb*sg+sa*cg -ca*sb;
... %Global vector transformed to local
coordinates

-sa*cb*cg-ca*sg -sa*cb*sg+ca*cg sa*sb; ...
sb*cg sb*sg cb ];

point = T_local*(pnt(n,:)-pnt(m,:)).’;

126



mag_point = sqrt(sum(point.ˆ2));
dotx = dot(-point./mag_point,X_hat);
doty = dot(-point./mag_point,Y_hat);
dotz = dot(-point./mag_point,Z_hat);
theta_is = acos(dotz)
phi_is = atan2(doty,dotx)

X = ((k*a)/2)*((sin(theta_s(:,n)).*cos(phi_s(:,n)))
+(sin(theta_i(:,n)).*cos(phi_i(:,n)))); %X
variable for sinc function

Y = ((k*b)/2)*((sin(theta_s(:,n)).*sin(phi_s(:,n)))
+(sin(theta_i(:,n)).*sin(phi_i(:,n)))); %Y
variable for sinc function

N_phi_i = (2*a*b)*(H_i).*...
((cos(theta_i(:,n)).*sin(phi_i(:,n)).*sin(phi_s

(:,n)))+(cos(theta_i(:,n)).*cos(phi_i(:,n)).*
cos(phi_s(:,n))))...

.*(sinc(X/pi)).*(sinc(Y/pi));

X = ((k*a)/2)*((-sin(theta_i(:,n)).*cos(phi_i(:,n))
)+(sin(theta_ms).*cos(phi_ms)));

Y = ((k*b)/2)*((-sin(theta_i(:,n)).*sin(phi_i(:,n))
)+(sin(theta_ms).*sin(phi_ms)));

H_ms = 1i*((a*b*k)/(2*pi*eta)).*(exp((-1i*k.*(Rr)))
/Rr).*...

((cos(theta_i(:,n)).*sin(phi_i(:,n)).*sin(
phi_ms))+(cos(theta_i(:,n)).*cos(phi_i(:,
n)).*cos(phi_ms)))...

.*(sinc(X/pi)).*(sinc(Y/pi));
H_ms_store(:,m) = H_ms;

X = ((k*a)/2)*((sin(theta_s(:,n)).*cos(phi_s(:,n)))
);

Y = ((k*b)/2)*((sin(theta_s(:,n)).*sin(phi_s(:,n)))
);

N_phi_ms = (2*a*b.*(H_ms))...
.*((cos(theta_is).*sin(phi_is).*sin(phi_s(:,n

)))+(cos(theta_is).*cos(phi_is).*cos(phi_s
(:,n))))...

.*(sinc(X/pi)).*(sinc(Y/pi));
Efb_phi(:,n) = (1i*k/(4*pi)).*(exp(-2i*k*Rt(:,n)))

.*(-eta.*N_phi_i);
Esb_phi(:,n) = (1i*k/(4*pi)).*(exp(-1i*k*Rt(:,n)))

.*(-eta.*N_phi_ms);

127



end
end

end
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