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Abstract

Predicting convective winds associated with mesoscale convective systems (MCSs)

remains a major challenge for operational severe weather forecasters. To as-

sess the performance of the Weather Research and Forecasting Model run by

the National Severe Storms Laboratory (NSSL-WRF) in forecasting severe wind-

producing MCSs between 2012 and 2014, a climatology of these MCSs was de-

veloped. Severe wind-producing MCSs were first manually identified by finding

swaths of severe wind reports caused by MCSs through inspection of radar reflec-

tivity structure to ensure organized convective mode. To objectively identify severe

wind-producing MCSs using an object-based approach, storm reports were filtered

based on nearby radar reflectivity. A variety of subsets of severe wind reports were

also used. Reports were converted to spatial probabilities via Gaussian smoothing

so that objects could be identified. Objects were identified using the Method for

Object-based Diagnostic Evaluation (MODE) by testing various minimum inten-

sity and area thresholds to determine which thresholds most accurately matched

the manually identified severe wind-producing MCSs. Objects identified based on

radar-filtered storm reports most accurately matched manually identified severe

wind-producing MCSs. This allowed for development of an object-based climatol-

ogy of severe wind-producing MCSs. This climatology shows a maximum of severe

wind-producing MCSs near the Ohio River Valley with another relative maximum

on the Georgia-Alabama border. All identified severe wind-producing MCSs oc-

curred east of the Rocky Mountains. Severe wind-producing MCSs occurred most

often in June and least often in November.
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Daily maximum 10 m wind forecasts for the 24 hours beginning at 12Z

(i.e., f12-f36) were generated from 0000 UTC NSSL-WRF hourly maximum 10 m

wind fields. The same smoothing and radar filtering (with simulated reflectivity)

that was applied to storm reports was also applied to various forecast daily max-

imum 10 m wind thresholds between 15 kt and 60 kt. The same intensity and

size thresholds were applied to both forecast and observation fields in identifying

objects. Forecasts were then verified both on a grid-point-by-grid-point basis, on

a grid-based basis using MODE, and on an object-matching basis using MODE.

Object-matching utilizes a fuzzy logic algorithm to match forecast and observed

objects. Grid-point verification yielded no useful results, with a high number of

false alarms dominating any signal. Across a range of wind speed thresholds, the

10 m wind field has a critical success index of around 0.07 when using grid-based

verification using MODE and around 0.15 when using MODE object-based veri-

fication. Lower wind speed thresholds over-forecast severe wind-producing MCSs

and approach a probability of detection (POD) near 100% for very low wind speed

thresholds. As wind speed thresholds increase, the POD decreases sharply with-

out much improvement in the false alarm ratio (FAR). For very high wind speed

thresholds, very few events are forecast, so both POD and FAR are low. Though

the lower thresholds have slightly lower CSIs than higher thresholds, the large in-

crease in POD with a small penalty in FAR suggests that the lower thresholds may

be of more utility to forecasters.
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Chapter 1

Introduction and Background

1.1 Motivation

Severe wind reports account for approximately half of all severe storm reports re-

ceived between 2012-14, and Brooks (2013) suggests that severe wind events will

increase as the Earth’s climate changes. However, forecasting for severe convec-

tive wind is a challenge for forecasters. As convection-allowing models (CAMs)

have become more prevalent, forecasters can see explicit model forecasts of thun-

derstorms. Though CAMs can provide information about convective mode (i.e.

linear, cellular, or clustered) (Weisman et al., 2008; Done et al., 2004), there have

been no studies performed to determine a CAM’s ability to forecast severe wind

events. To develop a new metric to forecast severe wind events, it is first necessary

to determine how well CAMs currently forecast severe wind events. To do this,

forecasts of 10-meter wind speeds will be verified against severe wind reports for

the 2012-14 period to determine CAMs’ ability to forecast severe wind-producing

mesoscale convective systems (MCSs). As part of the verification effort, a spatial

and temporal climatology of severe wind-producing MCSs will be developed and

used as verifying data. Object-based verification will be explored to determine its

utility with regard to severe wind-producing MCSs.
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1.2 Mesoscale Convective Systems

1.2.1 MCS Growth and Generation of Severe Wind

Houze (2004) defines a mesoscale convective system (MCS) as “a cumulonimbus

cloud system that produces a contiguous precipitation area ∼100 km or more in

at least one direction.” MCSs are also typically characterized by containing both

a convective region and a stratiform region. In the stratiform region, there is

usually descending air flowing towards the convective region (Houze, 2004). The

rear inflow is most common with leading-line/trailing-stratiform MCSs, and “often

takes a sudden plunge downward as it approaches the immediate rear of a region

of active convective cells” (Houze, 2004). The “sudden plunge” is responsible

for the severe winds associated with the convective region as low-θe air accelerates

towards the surface. That is, cold air descending through an unstable environment

accelerates until it reaches the ground. Schmidt and Cotton (1990) identify the

source of the rear inflow as a response to gravity waves initiated by heating in the

convective region. Cooling in the stratiform region due to melting, sublimation,

and evaporation also contribute to the rear inflow, but Yang and Houze (1995)

found that phase changes alone could not account for the strength of the strongest

rear inflows. Even though gravity waves account for much of the strength of the

rear inflow, Klimowski (1994) found that, even for strong MCSs, the rear inflow

is weak. MCSs cannot easily develop a strong rear inflow from the combined

effect of gravity waves and phase changes. If the MCS can develop vortices at the

ends of a linear feature (as in a bow echo), then the rear inflow will be reinforced,

especially at the apex of the bow (Skamarock et al., 1994). Skamarock et al. (1994)

attributes the vortex development at the ends of the convective line to the tilting

of horizontal vorticity into the vertical by the updraft along the convective line.

Skamarock also found that large MCSs can develop a mesoscale convective vortex
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(MCV), typically at the northern end of the convective line. In addition to the

bookend vortices demonstrated in Skamarock et al. (1994), Zhang and Gao (1989)

found that synoptic scale flow could also enhance the rear inflow.

Severe wind-producing MCSs have been examined (Cohen et al., 2007) on an

observational basis using soundings that sample the environment of mature MCSs.

Cohen et al. (2007) found that the best discriminators for distinguishing severe

wind-producing MCSs from non-severe MCSs were deep-layer wind shear and up-

per level winds. However, Cohen et al. (2007) only examined observed soundings

taken ahead of or within MCSs and not model forecasts of MCSs. No studies

have systematically examined model forecasts across several years in an attempt

at assessing model skill in forecasting severe wind-producing MCSs, as this study

will do.

As shown in Cohen et al. (2007) and Coniglio et al. (2007), forecasting for

MCSs is difficult, both when considering intensity and maintenance. Cohen et al.

(2007) showed that even the best discriminators between non-severe and severe

MCSs still do a relatively poor job of discriminating between the two. Coniglio

et al. (2007) developed a method to determine whether an in-progress MCS would

mature or weaken that takes into account deep-layer vertical wind shear, lapse

rates, convective available potential energy (CAPE), and wind speeds throughout

the troposphere. Though this method was initially developed using observations

from maturing and weakening MCS environments, it has been extended to use

model forecasts and model soundings. However, this method does not attempt to

determine whether an MCS will produce severe winds at the surface. The method

is most useful on the Day 1 convective outlook and watch timescales (typically 6

- ∼24 hours before an event), that is, from the morning of a potential event until

a few hours before the event occurs. The output of this method is conditional on

an MCS occurring, so even high confidence of MCS maturation is for naught if an

3



MCS does not move through the area. Coniglio et al. (2007) also notes that “these

concepts will likely work best on MCSs that develop and continually generate

strong cold pools away from the strong larger-scale forcing when the shear and

mean winds are substantial.” For MCSs that are maintained by other processes,

the method is less useful.

Though the current study does not focus explicitly on derechos, previous re-

search on derechos can provide insight on severe wind-producing MCSs. Derechos

are considered a subset of MCSs that produce extensive severe wind (Johns and

Hirt, 1987; Corfidi et al., 2016). Johns and Hirt (1987) defines derechos based

solely on severe wind reports: (a) there must be a concentrated area of reports

with major axis of at least 400 km, (b) there must be a chronological sequence

to the reports, (c) there must be at least three significant (>65 kt) wind reports

separated by at least 64 km, and (d) successive reports can be separated by no

more than three hours. Johns and Hirt (1987) also describe two types of derechos:

serial and progressive. Serial derechos form with a relatively small angle between

the squall line orientation and the mean wind direction, and the damage associated

with serial derechos is the result of bows embedded within the system. Progres-

sive derechos are oriented nearly perpendicular to the mean wind and are forward

propagating. Due to the difference in observed severity between the two different

types of derechos, Corfidi et al. (2016) has proposed a new definition of a derecho

that includes a requirement of “evidence of one or more sustained bow echoes with

mesoscale vortices and/or rear-inflow jets.” The proposed definition removes any

requirements of wind reports, but does require a nearly continuous damage swath

at least 100 km wide and 650 km long. By removing the explicit severe wind

report requirement, Corfidi et al. (2016) avoids issues associated with severe wind

reports that will be discussed in further sections. Corfidi et al. (2016) also restricts

derechos to more significant events, since mesoscale vortices and rear-inflow jets
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are associated with the strongest events. Miller and Johns (2000) found that the

most extreme winds associated with derechos are caused by supercells embedded

within the main line rather than with a larger-scale rear-inflow jet.

1.2.2 Previous MCS Climatologies

Gallus et al. (2008) found that, between April and August 2002, linear systems

accounted for 34% of the severe storm systems, but only 23% of the observed

storm systems. Bow echoes generated 18.56 non-significant severe wind reports

per case, and leading-line/trailing-stratiform systems generated 7.92 per case (it

was found that the pattern is similar for significant severe wind reports). Gallus

et al. (2008) suggests that the propensity for bow echoes and leading-line/trailing-

stratiform cases to produce severe wind is due to the presence of a rear-inflow jet.

The leading-line/trailing-stratiform systems likely do not produce as many severe

wind reports because there is not a bookend vortex on either end, so, based on

Skamarock et al. (1994), the rear inflow for leading-line/trailing-stratiform systems

is weaker than it is for bow echoes. For all linear systems, Gallus et al. (2008) found

that wind was the greatest threat.

Burke and Schultz (2004) examined bow echoes in the cold season (October -

April) between October 1997 and April 2001 and found 51 bow echoes associated

with at least one severe report (hail with diameter >0.75”, tornado, or wind speed

>50 kt). The first radar reflectivity echoes that would eventually become bow

echoes typically occurred in the afternoon, with bow echoes forming, on average,

seven hours later. The bow echoes typically dissipated two to three hours after

formation. The 51 bow echoes generated 899 severe wind reports, giving an average

of 17.6 severe wind reports per bow echo, which matches well with the 18.56 severe

wind reports per bow echo found by Gallus et al. (2008) in the warm season

of 2002. Of the 51 bow echoes, Burke and Schultz (2004) identified seven as
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meeting the Johns and Hirt (1987) definition of a derecho. Burke and Schultz

(2004) furthermore identified two bow echoes that generated 52 or more severe

wind reports, though not meeting the minimum criteria for a derecho. These

nine long-lived bow echoes “developed in strong forced, dynamic patterns with

moderate instability” (Burke and Schultz, 2004). Of the 51 bow echoes, 47 formed

in southwesterly flow at 500 hPa.

Smith et al. (2013) found that measured severe wind gusts associated with

quasi-linear convective systems (QLCS) were most common, relative to gusts asso-

ciated with supercells and disorganized convection, between November and April.

The most gusts associated with QLCSs occurred in June. Measured gusts from

QLCSs made up 42% of measured gusts. QLCS gusts occurred most often east of

the Rockies between the plains and the Ohio River Valley.

1.3 Convection-Allowing Model Verification

Efforts

Though there have been no efforts to verify 10 m wind speeds, Beck et al. (2014)

used the French Doppler radar network to develop three dimensional wind fields

to verify the 2.5-km French AROME model. The study, however, looked at winds

2 km above mean sea level to asses the model’s skill at forecasting orographic rain

events. Beck et al. (2014) found that the model forecast was skillful through its

entire 48 hour forecast period. Beck et al. (2014) found that as the boundary layer

approached the level at which the model was verified, the forecast got worse. This

suggests that the boundary layer is a source of error within the AROME model.

The Doppler wind retrieval method used in Beck et al. (2014) would be useful for

verifying upper-level winds within an MCS, provided that the wind retrieval can

be made with the WSR-88D network in the United States. Such a method cannot
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be employed to verify 10 m wind speeds, since 10 m above ground level is below

the level at which multiple Doppler analysis would be possible with the operational

WSR-88D network.

Other studies attempt to extract information from convection-allowing mod-

els (CAMs). Sobash et al. (2011) generated a probabilistic forecast based on the

hourly maximum of updraft helicity (Kain et al., 2008). Initially, the locations of

the updraft helicity maxima were compared to the locations of the severe storm

reports. This yielded poor results, since it was an attempt to have the model

correctly forecast the exact location of severe storm reports. Sobash et al. (2011)

notes that “point-by-point verification on a 4 km grid measures skill at predicting

a severe report within 2 km of a point, so the low scores should not be surpris-

ing.” Even with verification on an 80 km grid, forecast verification metrics were

low. Forecast updraft helicities from the NSSL-WRF model exceeding a thresh-

old were then converted to a probabilistic forecast using smoothing described in

Hitchens et al. (2013) on an 80-km grid. All severe storm reports (hail, wind, and

tornadoes) were put onto the same 80-km grid and a hindcast was generated again

using Hitchens et al. (2013). The probabilistic fields were verified using a receiver

operating characteristic (ROC) curve (Sobash et al., 2011). This found that the

higher thresholds performed better (that is, had a higher area under the ROC

curve) in distinguishing events from non-events. When comparing the forecasts on

a reliability diagram, Sobash et al. (2011) found that all thresholds were reliable

(that is, above the no-skill and climatology lines), but the lower thresholds tended

to overforecast and the higher thresholds tended to underforecast. When fractions

skill score (FSS) was used as a verification metric, Sobash et al. (2011) found that

lower thresholds performed better. These results suggest that verification results

can be dependent on the chosen verification metric.
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Brown et al. (2007) used the Method for Object-based Diagnostic Evaluation

(MODE) to verify model precipitation fields. MODE will be explained in more

detail in Section 2.1, but it essentially identifies objects in both the forecast and

observation field before attempting to match forecast and observed objects using a

fuzzy logic algorithm. Brown et al. (2007) verified 4 km rainfall forecasts generated

from a WRF model run at a 2 km grid spacing against Stage II precipitation

analysis. Brown et al. (2007) found that, for analysis of a single forecast, MODE

provides much more information on the forecast than other methods of verification.

Brown et al. (2007) also suggests that applying MODE to many forecasts can

provide a better picture of model performance. By examining severe wind events

occurring in 2012 - 2014, this study will provide a more complete picture of severe

wind forecasting performance by CAMs.

MODE was also used in Van der Plas et al. (2012) to verify simulated re-

flectivity from the Dutch 2.5-km HARMONIE model against observed composite

reflectivity over western Europe. Van der Plas et al. (2012) found that the many

degrees of freedom provided by MODE can result in substantial differences in ob-

ject identification. This study explores a few of the degrees of freedom offered in

MODE, especially in object detection. Van der Plas et al. (2012) also notes that

some of the object statistics may be more useful for model intercomparisons than

for a single model study.

Though not explored in this study, a version of MODE exists that is expanded

into a time domain (MODE-TD) and was used by (Clark et al., 2014) to verify

precipitation forecasts from a convection-allowing ensemble. This works similarly

to MODE, but it finds three-dimensional (two spatial dimensions and one time

dimension) objects and attempts to match forecast and observed objects. By

adding time, MODE-TD is able to account and quantify errors in time as well as

errors in space. MODE-TD was also used in Mittermaier and Bullock (2013) to

8



verify cloud-cover forecasts in the UK. MODE-TD allows for verification efforts

that track the cloudy areas through the verification period. Since this study is

more focused on model ability to highlight an area of potentially strong surface

winds, not necessarily getting the timing correct, MODE-TD was not used.
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Chapter 2

Data and Methodology

2.1 Method for Object-based Diagnostic

Evaluation

An object-based verification is chosen for this study because this study is verifying

a field forecast with sporadic point observations. While there are other methods to

verify a field forecast with point observations, exploring object-based verification

was felt to be worthwhile since no convection-allowing model verification has been

done with object-based verification at the Storm Prediction Center. Additionally,

object-based verification will allow for the development of a severe wind-producing

MCS climatology.

The Method for Object-based Diagnostic Evaluation (MODE) is an object-

based method for evaluating forecasts developed by the Developmental Testbed

Center and National Center for Atmospheric Research as part of their Model Eval-

uation Tools (Davis et al., 2006). MODE identifies objects by applying an areal

average within a user-defined radius. A user-defined intensity threshold is then

applied. After the thresholding, a user-defined minimum area may be applied,

with objects smaller than a certain area excluded. The resulting objects are then

used to mask the original, un-convolved data (Figure 2.1).
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Figure 2.1: MODE process for object identification: (a) original field, (b) con-

volved field, (c) mask generated by thresholding convolved field, (d) applying mask

to original field (Brown et al., 2007)

Once objects are identified in both the forecast and observation fields, objects

in the same field may be merged via a secondary thresholding process. A second

user-defined threshold is applied to the convolved field, and all objects within the

new mask are merged for the purposes of later computation.

Before matching is done between forecast and observed objects, grid-based

verification metrics are computed. That is, every grid square within both a forecast

and observation object is counted as a hit. Every grid square within a forecast

object but not an observed object is counted as a false alarm. Every grid square

within an observed object but not a forecast object is counted as a miss. Every

grid square in neither a forecast or observed object is counted as a correct null.

This tabulation allows for the computation of grid-based verification metrics using

the forecast and observed objects.

To match objects between the forecast and observed field, MODE uses a fuzzy

logic engine to generate an interest score between pairs of objects. Fuzzy logic

attempts to determine whether the forecast object and the observed object are the
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same event. This method attempts to remove the double-penalty for spatial errors

in which one missed forecast counts as both a miss and as a false alarm (Figure 2.2).

A fuzzy logic engine also allows for errors to be quantified. The fuzzy logic engine

in MODE computes an interest score to determine if two objects are matched.

Objects are matched if their interest score is above a user-defined theshold. The

formula to compute an interest score between 0 and 1, Ij, for any pair of objects,

j, is given by:

Ij =

M∑
i=1

ciwiFi,j

M∑
i=1

ciwi

, (2.1)

where Fi is the interest function for attribute i; wi is the weight assigned to at-

tribute i; and ci is the confidence that the interest function for attribute i is useful.

Attributes and default weights for each attribute are listed in Table 2.1. The

attributes are explained with Figure 2.3. The line marked (a) is the centroid dis-

tance. The boundary distance and convex hull distance are both zero, since the

objects overlap. The angle between the longest axes is labeled (b). The area ratio

is the ratio of the forecast and observed object areas and is approximately 1 here.

The intersection area ratio is the area of the hatched region of overlap between

the forecast and observation divided by the average area of the forecast and obser-

vation. The complexity ratio is the area of the object divided by the area of the

convex hull. The intensity ratio takes the ratio of the forecast and observation’s

70th percentile of intensity.
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Attribute Weight

Distance between centroids 2.0

Distance between boundaries 4.0

Distance between convex hulls 0.0

Angle difference between longest axes 1.0

Area Ratio 1.0

Intersection area ratio 2.0

Complexity ratio 0.0

Intensity ratio 0.0

Table 2.1: Attributes and default weights, wi, used to calculate interest scores.

Default interest functions for each attribute are shown in Figure 2.4. Confidence

values for all attributes except for angle difference and centroid distance are always

equal to one. For angle difference, differences become less meaningful for nearly

circular objects, as small changes in shape can cause large changes in the angle of

the longest axis. Thus the confidence of angle difference, c, is a function of aspect

ratio, r = length of minor axis
length of major axis

:

c =

[
(r − 1)2

r2 + 1

]0.3
, (2.2)

An interest score is calculated for each pair containing one forecast and one ob-

served object. Interest scores are not calculated if the centroid distance is greater

than a user-defined threshold, since objects that are very far apart are unlikely to

be matched. If the interest score is greater than a user-defined threshold (default

value of 0.7 used in this study), then the objects are considered matched. When

computing object-based verification metrics, matched objects count as a hit, un-

matched forecast objects count as false alarms, and unmatched observed objects

count as misses. Correct nulls do not exist using this approach.
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Figure 2.2: An illustration of multiple different kinds of error. (b), (c), and (e)

would all score the same using grid-based verification, while (f) would score the

best. A fuzzy logic engine allows (b) to score the best (Ahijevych et al., 2009).
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Figure 2.3: A diagram of MODE attributes. Consider a forecast in blue and

observations in orange.
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Figure 2.4: Default interest functions used in calculating interest scores based on

a 4 km grid.
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2.2 Severe Wind Reports

The National Weather Service defines severe wind as wind gusts greater than or

equal to 50 knots (25.7 m s−1, 58 mph). Severe wind reports accounted for 65%

of all severe local storm reports (hail with diameter >1”, wind speed >50 kts, or

a tornado) from 2012 through 2014. Local storm reports are collected by NWS

Weather Forecast Offices (WFOs) from 12Z on one day through 1159Z on the next

day (referred to as a convective day, hereafter all references to days are referring

to convective days). Depending on the time of year and region of the country,

this roughly corresponds to the 24-hour period beginning at or just before sunrise.

Sunrise is the approximate daily minimum of severe storm reports (Kelly et al.,

1985), so the number of events occurring across two convective days is minimized.

Wind reports are initially collected in the immediate aftermath of an event by

local NWS WFOs along with tornado and severe hail reports. The local WFO then

removes duplicate reports of the same event and reports that were unsubstanti-

ated and collects additional information about the event through storm surveys.

These reports are collected in NOAA’s Storm Data publication. There are several

minimum criteria for inclusion in Storm Data: damage greater than $500,000, at

least one significant report (wind speed greater than 65 kt or hail with diameter

greater than 2”), or any death or injury (Trapp et al., 2006). While the local

storm reports may include wind speed, there is no indication whether the speed

is measured or estimated. Storm Data reports include wind speed for all reports,

including whether the speed was measured or estimated. Since wind speeds are

often overestimated (Doswell et al., 2005), measured wind reports in Storm Data

are used as another potential way to identify severe wind-producing MCSs. Ad-

ditionally, Storm Data wind reports that meet or exceed the NWS’s significant

wind threshold of 65 kt (33.4 m s−1, 75 mph) are used as another potential way to

identify severe wind-producing MCSs.
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In addition to the magnitude overestimation issues shown in Doswell et al.

(2005), there are other issues with severe reports. As described in Doswell and

Burgess (1988), for a report to show up in the local storm report or Storm Data

databases, three things must happen: someone must observe the event, they must

recognize that the event meets the severe criteria, and they must report the event

to the relevant authority. This leads to potential population biases, since it is

less likely someone will observe the event if there is low population density except

for near roads (Weiss et al., 2002). Weiss also mentions diurnal biases, since it is

more difficult to observe events at night. Additionally, the use of wind damage

reports can introduce biases. As Trapp et al. (2006) notes, a report of “trees were

downed” could be “a few bent-over saplings, a large grove of snapped hardwood

trees with ∼0.5 m diameters, or something in between.” Trapp also notes that

report (either local storm report or Storm Data) concentration or counts do not

necessarily correlate with wind speed magnitude. An event that had only three

local storm reports resulted in $1 million in damages from 70 mph wind gusts,

while an event with 55 reports resulted in only $0.3 million in damages with less

significant damage than the other case (Trapp et al., 2006). The lack of correlation

between reports and monetary damages is not an issue for this study. The lack

of correlation between reports and wind magnitude is still an issue in this study,

but subsets of reports that are more directly correlated with wind speed will be

explored.

2.3 NSSL-WRF

The 10 m wind forecasts were generated from a 4-km grid spacing configuration of

the Weather Research and Forecasting model (WRF) run by the National Severe

Storms Laboratory (NSSL, the model is hereafter referred to as the NSSL-WRF)
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initialized at 00Z and run to 36 hours (until 12Z the next day). The NSSL-

WRF uses Mellor-Yamada-Janjić boundary layer and turbulence parameterization

(Mellor and Yamada, 1982), WRF Single-Moment 6-Class microphysics (Hong and

Lim, 2006), Rapid Radiative Transfer Model longwave radiation (Mlawer et al.,

1997), Dudhia (1989) shortwave radiation, Noah land surface model (Chen and

Dudhia, 2001). The NSSL-WRF has 35 vertical levels, a 24 second time step, and

uses NAM output interpolated to a 40-km grid for initial and boundary conditions.

Since 10 meters above ground level is well within the boundary layer, 10 m

winds will be directly affected by the boundary layer scheme. The MYJ scheme

is a local scheme that uses 1.5 order turbulence closure using turbulent kinetic

energy (Janjić, 1990). The TKE balance equation used is:

d

dt
(
q2

2
)− ∂

∂z
[lqSq(

∂

∂z
)
q2

2
] = Ps + Pb − ε, (2.3)

where q2

2
is turbulent kinetic energy and Ps, Pb, and ε are shear production, buoyant

production, and dissipation of turbulent kinetic energy, respectively. The produc-

tion terms, Ps, Pb, and ε, are computed by:

Ps = −wu∂U
∂z
− wv∂V

∂z
, (2.4)

Pb = βgwθv, (2.5)

ε = q3(B1l)
−1, (2.6)

where B1 is an empirical constant and u, v, and w are the zonal, meridional, and

vertical components of the wind, respectively. The covariances in Equations 2.4

and 2.5 are given by eddy diffusivity, with the eddy diffusivity coefficient a function

of the master length scale, l, TKE, wind shear, and atmospheric stability.

The master length scale, l, is given by:

l = l0κz(κz + l0)
−1, (2.7)

l0 = α[

∫ pS

pT

|z|q dp][
∫ pS

pT

q dp]−1, (2.8)
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where α is an empirical constant, κ is the von Karman constant, and pS and pT

are the pressures at the lowest and highest model levels, respectively.

For the surface layer, the MYJ scheme uses a method that performs similarly

to Monin-Obukhov similarity theory (Janjić, 1990). It is derived by assuming that

TKE production and dissipation are exactly balanced in the layer between the

surface and the lowest layer of the model. The resulting profile of meteorological

variables between z0, which is given over land as:

z0 = 0.1 + 0.00001Φs, (2.9)

where Φs is the surface geopotential, and the lowest model level is shown in Figure

2.5. Since the lowest model level is above 10 meters, 10 m wind speed is derived

based on this profile for u and v winds.

2.4 Event Identification

To use MODE to objectively verify model forecasts, it was first necessary to fig-

ure out how to best identify severe wind-producing MCSs that occurred during

2012-14. Initially, this was done manually using severe wind reports and radar

reflectivity, then the manually identified severe wind-producing MCSs were used

to determine the best objective approach to identify severe wind-producing MCSs

using MODE.

2.4.1 Manual Identification

Using the Storm Prediction Center’s Severe Weather Events Archive (Carbin et al.,

2016), events were identified in 2012-2014 if 15 or more local storm reports occurred

within 3 hours and 100 km of each other per mesoscale convective system (MCS)

criteria from Parker and Johnson (2000). This yielded 264 days on which severe

wind swaths occurred over the three-year period. These 264 days were examined
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Figure 2.5: Profile shape of meteorological variables between z0 and the lowest

model level, zLm. The height of the dynamical turbulence layer is zc, the roughness

height is z0. A, B, and C are constants. α is any meteorological variable and αs

is the value of α at the surface. (Janjić, 1990, Figure 4)
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further with the Severe Weather Events Archive to determine if the wind swaths

were co-located with organized convective structure in radar reflectivity that oc-

curred for at least three hours to identify severe wind-producing MCSs. The dates

and approximate centroids of the resulting 224 severe wind-producing MCSs were

recorded.

2.4.2 MODE Identification of Severe Wind Events

To identify a coherent damaging wind swath from severe wind-producing MCSs, it

was necessary to apply a spatial Gaussian kernel density estimation to the severe

wind reports. This was done using the practically perfect method described in

Hitchens et al. (2013) modified to be used on a 4-km grid. Hitchens et al. (2013)

used an 80 km grid with a 120 km Gaussian smoother. All grid squares containing

a report were assigned a value of 1 and the Gaussian smoother was applied to

produce a probabilistic field that should match what a Storm Prediction Center

forecaster would forecast given perfect foreknowledge of the day’s severe storm

reports. The modification to the practically perfect method was to put all severe

wind reports on a 4-km grid and assign a value of 1 to all grid squares within a 10

grid square (40 km) radius of a wind report. The same 120 km Gaussian smoother

was applied. All storm reports for 29 June 2012 are shown in Figure 2.6, and the

practically perfect hindcast for severe wind are shown in Figure 2.7.

Due to the potential issues with severe wind reports and to eliminate severe

wind reports not associated with MCSs, it was decided to use observed radar

reflectivity to eliminate reports not associated with large regions of organized con-

vection. Reports were discarded if they were not within 40 km of a contiguous

area of radar reflectivity greater than 35 dBZ covering 500 grid square (8000 km2

on a 4 km grid). The 35 dBZ radar reflectivity threshold was chosen to capture

convective radar echoes as in Mecikalski and Bedka (2006). The 40 km radius of
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Figure 2.6: All local storm reports for the 29 Jun 2012 convective day. Wind

reports are blue dots, and significant wind reports are black squares.

Figure 2.7: Practically perfect smoothing of unfiltered local storm reports for 29

June 2012.
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Figure 2.8: As in Figure 2.7, but for local storm reports filtered by radar reflectivity.

influence was chosen to account for wind reports caused by outflow boundaries

and gust fronts and to match Hitchens et al. (2013). The 8000 km2 minimum area

represents a circle with a ∼100 km diameter. This minimum area ensures that the

area of radar reflectivity is larger than 100 km in at least one direction to match

Parker and Johnson (2000). An example of the practically perfect hindcast for

severe wind reports filtered by radar reflectivity is shown in Figure 2.8. The three

areas of probabilities in Maine, South Dakota, and Kansas seen in Figure 2.7 were

eliminated in Figure 2.8 because the reports were not associated with an area of

reflectivity large enough to trigger the radar filter.

The practically perfect methodology was applied for each day in the study pe-

riod (2012 - 2014) to all local storm reports, local storm reports filtered by radar

reflectivity, Storm Data reports filtered by radar reflectivity, measured from Storm

Data, and significant reports from Storm Data. Severe wind objects were identi-

fied using MODE with various convolution and minimum area thresholds. MODE-

identified objects were then compared with manually identified severe wind-producing

MCSs.
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To determine which wind report subset and MODE parameters identified ob-

jects that best matched the manually identified severe wind-producing MCSs, the

centroids of MODE objects were compared to the manually identified severe MCS

centroids described in Section 2.4.1. MODE-identified objects within 2 degrees of

latitude and longitude of a manually identified object counted as a hit. Two de-

grees was chosen to account for errors in manually identified centroids and reports

early in or near the end of the MCS’s life cycle that may have been discarded

by the radar filter. Unmatched MODE-identified objects counted as a false alarm

and unmatched manually identified objects counted as a miss. Results from all

report types, convolution thresholds, and minimum area thresholds were plotted

on a performance diagram (Roebber, 2009) to determine which MODE parameters

and report filtering best identified objects that matched manually identified severe

wind-producing MCSs.

2.4.3 Climatology of Severe Wind-Producing MCSs

Once the wind report type and MODE parameters were found that best matched

the manually identified severe wind-producing MCSs, a spatial climatology was

developed using MODE-identified objects. Spatial seasonal climatologies were also

developed for December, January, and February (DJF); March, April, and May

(MAM); June, July, and August (JJA); and September, October, and November

(SON).

To develop a temporal climatology, the number of severe wind-producing MCSs

expected on a day, Cj, was calculated by:

Cj =

j+M∑
i=j−M

Ni

2M + 1
, (2.10)
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where j is the ordinal date (wrapping around 365 when necessary), M is either 15

(for monthly calculations) or 45 (for seasonal calculations), and Ni is the number

of severe wind-producing MCSs that occurred on ordinal date i.

2.5 Verification of NSSL-WRF

A 24-hour maximum 10 m wind field was created by taking the maximum of the

24 individual hourly maximum 10 m wind fields from forecast hours 12 through

36 (i.e. from 12Z to 12Z for a 00Z forecast, a convective day). A simulated radar

filter was applied that matches the observed reflectivity filter that was applied to

wind reports: areas of model forecast wind were discarded if they were not within

40 km of an area of 500 contiguous grid squares of simulated hourly maximum

reflectivity higher than 35 dBZ. An example of a forecast field both before and

after the application of the radar filter applied are shown in Figures 2.9 and 2.10,

respectively.

It was necessary to apply practically perfect smoothing to the forecast field so

that forecast and observed objects would have similar characteristics and could

be compared using MODE. To generate practically perfect fields, thresholds were

applied to the forecast field at various wind speeds between 15 and 60 kts (7.7 - 30.9

m s−1). Areas with forecast wind speeds higher than the threshold were assigned

a value of 1 and all other areas assigned a value of 0. The same practically perfect

smoothing was applied as was applied to the reports: 1) All grid squares within

40 km of an area of wind speeds above the threshold were given a value of 1 and

2) a 120 km Gaussian smoother was then applied to create a probabilistic field.

A selection of practically perfectly smoothed forecasts based on the filtered wind

field are shown for several wind speed thresholds in Figure 2.11.
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Figure 2.9: NSSL-WRF 10 m 24 hour maximum wind field without the radar filter.

Note the winds in the Rocky Mountains, western Kansas, and the panhandles of

Oklahoma and Texas.

Figure 2.10: NSSL-WRF 10 m 24 hourly maximum wind field with the radar filter

applied.

27



Figure 2.11: Practically perfect forecasts for (a) 20 kt, (b) 30 kt, (c) 40 kt, and

(d) 50 kt thresholds based on the reflectivity-filtered wind forecast in Figure 2.10.
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As discussed in Section 2.1, verification metrics were computed in two ways.

Additionally, to determine the utility of using MODE, traditional grid-point verifi-

cation statistics were computed. For this traditional grid-point verification, radar-

filtered local storm reports were plotted on a 4-km grid, and hits were counted if

the forecast wind speed exceeded a threshold in the same grid square as a report.

Misses were counted if the forecast wind speed exceeded a threshold, but there

was no wind report in the grid square. False alarms were counted if there was

a wind report in a grid square, but forecast wind speed did not exceed a thresh-

old. Correct nulls were counted if there was neither a wind report or wind speeds

exceeding a threshold in a grid square. Verification results are presented in a per-

formance diagram (Roebber, 2009). A performance diagram plots success rate on

the horizontal axis and false alarm rate on the vertical. Lines of constant bias are

straight lines that go through the origin with their slope equaling the bias. On

performance diagrams presented here, only the line of bias = 1 will be shown as a

dashed line. Lines of constant critical success index are curved. The relationships

between critical success index (CSI), bias, probability of detection (POD), and

success rate (SR) are:

POD =
hits

hits+misses
, (2.11)

SR = 1− false alarms

hits+ false alarms
(2.12)

CSI =
1

1
SR

+ 1
POD

− 1
, (2.13)

bias =
POD

SR
= tan θ, (2.14)

where θ is the angle between the horizontal axis and the bias line.
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Chapter 3

Observed Severe Wind-Producing MCSs

3.1 Comparison of Report Filtering

Results of event identification using all local storm reports are shown in Figure

3.1. As the minimum area threshold increases for a given convolution threshold,

both the probability of detection (POD) and false alarm rate (FAR) decrease.

This is because increasing the minimum area threshold results in the identification

of fewer objects, so fewer hits and fewer false alarms occur. As the convolution

threshold increases for a given minimum area threshold, FAR decreases. With

the smallest area threshold, increasing the convolution threshold initially increases

POD before decreasing. For larger minimum area thresholds, increasing the con-

volution threshold decreases the POD. The general trend of decreasing FAR and

POD with increasing convolution threshold is because increasing the convolution

threshold identifies smaller objects, which are then more likely to be excluded by

the minimum area threshold. The slight increase in POD with increasing con-

volution threshold at the smallest minimum area threshold is likely because the

centroids of the very large objects detected were more likely to be more than 2

degrees of latitude and longitude away from the manually identified centroids. The

maximum critical success index (CSI) is 0.43, and occurs with a bias near 1 for

45% and 3000 grid square (48000 km2) thresholds.
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Figure 3.1: Performance diagram showing results of object identification when us-

ing all local storm reports of wind. ‘gs’ are grid squares on a 4-km grid. A perfect

identification would be in the top right corner. Common intensity thresholds are

represented by the same color, and common minimum area thresholds are repre-

sented by the same shape. For object identification, the goal is to maximize CSI

and have bias be as near to 1 as possible.
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Figure 3.2: As in Figure 3.1, but for filtered local storm wind reports.

When using local storm wind reports filtered by radar reflectivity, CSI improves

when compared to unfiltered reports (Figure 3.2). The improvement mostly comes

via a reduction in FAR because there are fewer filtered reports, so there are fewer

objects identified when using filtered reports. The objects that are identified match

just as well with the manually identified objects as the objects identified using

unfiltered reports. Thus, the radar filtering performed as intended, by removing

wind reports and not detecting objects not associated with MCSs. As with the

unfiltered reports, increasing convolution and minimum area thresholds decrease

both POD and FAR. The maximum CSI, which again occurs when the bias is

nearly 1, is 0.53, with a 25% convolution threshold and a 3000 grid square (48000

km2) minimum area threshold.
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Since the local storm wind reports filtered by radar reflectivity performed better

than unfiltered local storm wind reports, Storm Data wind reports filtered using

observed radar reflectivity were compared with local storm wind reports filtered by

radar reflectivity. As can be seen in Figure 3.3, both local storm and Storm Data

wind reports have a bias near 1, but local storm wind reports have a slightly higher

CSI than Storm Data wind reports. Tables 3.1 and 3.2 show numbers of objects

correctly and incorrectly identified for Storm Data and local storm wind reports,

respectively. Since local storm wind reports and Storm Data wind reports should

be nearly identical, a Monte Carlo simulation was done to determine whether the

results produced by the two reports were statistically significantly different. A

Monte Carlo simulation randomly simulates the event many times to determine if

differences are significant or not.

The Monte Carlo simulation randomly simulated a 224 object forecast 1000

different times. The probability of a correct forecast and the probability of a false

alarm in the simulated forecasts was equal to the FAR and POD for Storm Data

wind reports. The number of times out of the 1000 simulated forecasts that the

simulated forecast had more hits or fewer false alarms than the local storm wind

reports was counted. The random forecast had more hits than the local storm

wind reports 18.2% of the time and had fewer false alarms than the local storm

wind reports 28.8% of the time. Neither of these approach the 95% threshold

necessary for the difference between Storm Data and local storm wind reports to

be statistically significant.
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Figure 3.3: Performance diagram comparing the results of Storm Data wind reports

and local storm wind reports (LSR).
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Manually Identified Yes Manually Identified No

MODE Identified Yes 147 72

MODE Identified No 77 Not counted

Table 3.1: Contingency table showing object identification results for Storm Data

wind reports.

Manually Identified Yes Manually Identified No

MODE Identified Yes 154 69

MODE Identified No 70 Not counted

Table 3.2: As in Table 3.1, but for local storm wind reports

Measured Storm Data wind reports, not filtered by radar, provide an alternate

way to avoid spurious wind damage reports that may not be associated with winds

above the severe wind threshold (50 kts, 58 mph, 25.7 m s−1). Results of object

identification using measured Storm Data wind reports are shown in Figure 3.4.

Though FAR is much lower than for filtered local storm wind reports, POD is also

significantly lower. Across all thresholds, CSI is much lower, with the maximum

CSI of 0.40 for the 15% and 3000 grid square thresholds. CSI is much lower because

there are fewer objects identified than with all or radar filtered storm reports.

Additionally, unlike the filtered local storm wind reports, the maximum CSI did

not occur with a bias near one. The poorer performance of measured Storm Data

wind reports is because measured reports account for only 2% of all wind reports

(Smith et al., 2013), so the magnitude of practically perfect probabilities is lower,

which means fewer objects are identified.

Significant Storm Data wind reports (wind speed ≥ 65 kts), not filtered by

radar, may provide an even better way to avoid spurious wind damage reports
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Figure 3.4: As in Figure 3.1, but for measured Storm Data wind reports.
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Figure 3.5: As in Figure 3.1, but for significant Storm Data wind reports.

because 65 kts is a more stringent condition than the 50 kt threshold for severe

wind. Results of object identification using Storm Data wind reports are shown

in Figure 3.5. POD and FAR are much lower then for both measured Storm Data

wind reports and filtered local storm wind reports. The maximum CSI is 0.18 with

the 15% and 1500 grid square (24000 km2) thresholds. The low CSI is a result

of significant Storm Data wind reports being a further subset of measured Storm

Data wind reports. This means the low practically perfect magnitudes and small

object drawbacks with measured Storm Data wind reports are exacerbated. In

fact, at the highest threshold (35% and 5000 grid squares), only two objects were

detected, and the most objects were detected at the lowest threshold: 15% and

1500 grid squares detected 99 objects.
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Figure 3.6: Observed severe wind-producing MCSs.

Based on these results, radar-filtered local storm wind reports with a 25%

convolution threshold and 3000 grid square minimum area threshold were used to

identify observed severe wind-producing MCSs.

3.2 2012-2014 MCS Occurrences

The locations of all MODE-identified severe wind-producing MCSs are shown in

Figure 3.6. The distribution of severe wind-producing MCSs is similar to that

shown in Smith et al. (2013). There are two maxima with more than 30 severe

wind-producing MCSs occurring over the three year period: one in the Ohio River

Valley in Kentucky and another in southwestern Georgia. There is also a rela-

tive maximum in eastern Pennsylvania. The prevalence of severe wind-producing

MCSs decreases towards the western Great Plains. The reason is likely twofold:

population is lower in the western Great Plains, so there are fewer possibilities

for severe winds to be reported, and there are fewer trees and structures to be

damaged, so there are fewer instances of wind damage.

38



(a) December, January, and February (b) March, April, and May

(c) June, July, and August (d) September, October, and November

Figure 3.7: As in Figure 3.6, broken down by season.

In Figure 3.7, the full-year climatology is broken down by seasons. The most

activity occurs in the summer (June, July, and August, Figure 3.7c), followed by

the spring (March, April, and May, Figure 3.7b). The fewest number of events

occur in the fall (September, October, and November, Figure 3.7d) and winter

(December, January, and February, Figure 3.7a). The maximum in Kentucky that

was seen in the full-year climatology can also be seen in the summer climatology.

Generally, the maximum moves to the north in the warm season and back to the

south in the cool season.

The number of severe wind-producing MCSs expected per day are shown in

Figure 3.8. As would be expected due to the seasonal climatologies showing more

severe wind-producing MCSs in the summer, the maximum occurs in the summer.

The 31 day window has an absolute maximum on 13 June, when 0.70 severe wind-

producing MCSs occurred per day. The 91 day window has an absolute maximum

on 14 June, when 0.48 severe wind-producing MCSs occurred per day. There are

several relative maxima with the 31 day window, though none are apparent in
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Figure 3.8: Running mean of severe wind-producing MCSs by date.

the 91 day window. This matches Smith et al. (2013), which found that wind

gusts associated with QLCSs occurred most often in June. Derechos occur most

frequently in May (Bentley and Sparks, 2003). Jirak et al. (2003) found that MCSs

in general (not restricted to severe wind-producing MCSs) have a maximum in July,

but that May and June also have a large number of MCSs. This suggests that a

change occurs between May and June that results in more severe wind-producing

MCSs, but no major change in the number of MCSs, though more research would

be needed to determine what causes the change.
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Chapter 4

Verification of 10 m Winds from NSSL-WRF for

Severe Wind Events

4.1 Results of Verification

NSSL-WRF 10 m wind forecasts will be verified using three methods: traditional

grid-point verification, grid-based verification using MODE, and object-based ver-

ification using MODE.

4.1.1 Traditional Grid-Point Verification

Verification was initially attempted by counting hits if 10 m winds above a thresh-

old were forecast in the same 4-km grid square as a severe wind report with no

smoothing on either field. False alarms were counted if forecast 10 m winds above

a threshold were forecast in a grid square that had no severe wind reports. Misses

were counted if forecast 10 m winds were below the threshold in a grid square that

had a severe wind report. As can be seen from Figure 4.1, verification using this

method provides no useful insight since the false alarm rate for all forecast thresh-

olds is near 1. This mirrors what was found in Sobash et al. (2011). Using this

method, critical success index is near 0 for all forecast thresholds. Since little to
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Figure 4.1: Traditional grid-point verification with no smoothing in either forecast

or observation fields for NSSL-WRF forecasts of 10 m winds compared to unfiltered

local storm reports from 2012 - 2014.

no information can be gleaned from traditional grid-point verification, verification

using MODE will be done in this study.

4.1.2 Grid-based Verification using MODE

The same 25% convolution and 3000 grid square minimum area thresholds that

best identified observed objects were also used to identify forecast objects. When

using MODE and considering a grid-based verification, CSI is below 0.10 for all

forecast thresholds (Figure 4.2). The maximum CSI of 0.075 occurs at a forecast
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Figure 4.2: As in Figure 4.1, except for grid-based verification of various forecast

thresholds using MODE. The 0.070 CSI contour is highlighted.

threshold of 45 kts. For forecast thresholds between 30 kts and 50 kts, the CSI

stays relatively close to 0.070 (highlighted in the figure). For low thresholds, the

forecast approaches “always yes.” That is, forecast objects cover nearly the entire

domain for every forecast. As the forecast threshold increases, POD decreases

dramatically, while FAR only decreases slightly. At the 45 kt threshold, the bias is

near 1, and as the forecast threshold increases above 45 kts, POD still decreases,

though less dramatically and FAR starts to decrease more rapidly. For the highest

threshold, 60 kts, POD is near 0.
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4.1.3 Object-based Verification using MODE

When considering object-based verification (Figure 4.3), the general trend is simi-

lar to that observed in the M ODE grid-based verification, though CSI is higher for

object-based verification. The maximum CSI of 0.16 occurs at a forecast threshold

of 50 kts, which is the severe wind threshold set by the NWS. The 50 kt forecast

threshold also produces the bias nearest to 1. Between the 35 kt and 50 kt thresh-

olds, CSI stays very close to 0.15 (highlighted in the figure). As was seen with

grid-based verification, forecasts are very low thresholds approach “always yes,”

though there is a lower FAR for object-based verification than for grid-based. For

the 3 lowest thresholds, POD is equal to 1. As the forecast threshold increases,

POD decreases dramatically, and FAR decreases slightly until the 45 kt threshold.

For thresholds above 45 kts, FAR decreases nearly as fast as POD. As in grid-

based verification, the highest threshold, 60 kts, has a POD near 0. The dramatic

decrease in POD without much decrease in FAR for thresholds between 35 kts and

45 kts suggests that 35 kts may be a more useful threshold to forecasters. The

slight decrease in FAR may not be worth the dramatic decrease in POD when

using a higher threshold. If the costs of a missed event are greater than the costs

of a false alarm, then choosing a lower threshold may be worth it.

4.2 Case Studies

To help better understand how MODE verifies NSSL-WRF forecasts, two cases

will be examined. Each is one of 13 days on which a 60 kt forecast object was

identified. In the first case, 24 July 2014, the forecast object went unmatched. In

the second case, 14 June 2014, the forecast object was matched to an observation

object.
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Figure 4.3: As in Figure 4.1, except for object-based verification of various forecast

thresholds using MODE. The 0.15 CSI contour is highlighted.
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4.2.1 24 July 2014

There were 7 days on which a 60 kt forecast was not matched with an observed

severe wind-producing MCS. One of the unmatched forecasts occurred on 24 July

2014, which was chosen for further analysis. There were two events to note on 24

July, one in the northern Great Plains and one in the Mid-Atlantic.

In the northern Great Plains, several thunderstorms formed near the Canadian

border by 2155Z (as indicated on radar in Figure 4.4a). The first reports associated

with these storms came in at 2215Z in Phillips County, Montana. The storms

moved into an area with 100mb MLCAPE of more than 3000 J kg−1, according

to the mesoanalysis available from Carbin et al. (2016). By 2355Z, the storms

had coalesced into a line (Figure 4.4b), though the area of contiguous reflectivity

above 35dBZ remained below 500 grid squares (8000 km2) so all reports associated

with this event were filtered out of the local storm wind reports. This event was

more of a discrete convective mode, with most of the wind reports coming from

supercells, compared to a more organized leading-line/trailing-stratiform MCS. In

that regard, the radar filtering worked as intended even though there was a cluster

of severe wind reports.

In the Mid-Atlantic, thunderstorms from the previous convective day were still

active and producing severe wind reports at 12Z. By 1255Z, the storms were be-

ginning to move off the coast (Figure 4.5a) and had ceased to produce severe wind

reports. New storms formed by 1955Z (Figure 4.5b) and the first severe wind

associated with the new convection was reported at 2014Z in Amelia County, Vir-

ginia. By 2155Z (Figure 4.5c), the storms had coalesced into a line and continued

to produce severe wind reports. The final wind report was received at 2355Z in

Randolph County, NC, and by then, the storm had nearly moved off the coast

(Figure 4.5d).

46



(a) 2255Z (b) 2355Z

Figure 4.4: Composite radar reflectivity for the 24 July 2014 convective day in the

northern Plains. The domain is from roughly the center of the Dakotas in the east

to the Idaho-Washington border in the west, and from about 300 km into Canada

in the north to the Wyoming-Utah border in the south.

(a) 1255Z (b) 1955Z

(c) 2155Z (d) 2355Z

Figure 4.5: Composite radar reflectivity for the 24 July 2014 convective day.
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Figure 4.6: All local storm reports for the 24 July 2014 convective day. Wind

reports are blue dots, and significant wind reports are black squares.

The practically perfect smoothed radar-filtered local storm reports (Figure 4.7)

identify a single object in the Mid Atlantic associated with the convection in the

area. The wind reports received in the northern Great Plains (Figure 4.6) were all

excluded because radar reflectivity did not meet MCS criteria in the area.

The NSSL-WRF was forecast strong winds in the northern Great Plains, with

forecast 10 m winds above 60 kts (Figure 4.8). In the Mid Atlantic, most the

strongest NSSL-WRF winds were off of the coast. The practically perfect smoothed

forecast (Figure 4.9) shows false alarms for the northern Great Plains in all fore-

cast thresholds. Winds only appear in the Mid Atlantic for the 30 kt and 40 kt

thresholds. The objects identified by MODE in both the forecast and observations

are shown in Figure 4.10. The “false alarm” in the northern Great Plains can be
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Figure 4.7: Practically perfect smoothed radar filtered local storm reports for 24

July 2014.

seen in all forecast thresholds. The only forecast object that matched with the

observed object was at the 30 kt threshold, with an interest score 0.902. Across

all four thresholds, there are examples of hits (the matched objects at 30 kts),

misses (the unmatched observation object at thresholds above 30 kt), and false

alarms (objects in the northern Great Plains at all forecast thresholds). Though it

resulted in a forecast miss, the radar filtering of storm reports works as intended

here. The radar filtering is employed to eliminate wind reports not associated with

an organized MCS, and it does so here, since the storms in the northern plains

remained discrete until late, and most reports were associated with the discrete

storms.

4.2.2 14 June 2014

In addition to the 7 unmatched 60 kt objects, there were 6 days on which a 60

kt forecast matched with an observed severe wind-producing MCS, and 14 June

2014 was chosen for further analysis. By 2255Z on 14 June (Figure 4.11a), storms
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Figure 4.8: NSSL-WRF 10 m 24 hour maximum wind field for 24 July 2014.

Figure 4.9: Pracitcally perfect smoothed forecasts for (a) 30 kt, (b) 40 kt, (c) 50

kt, and (d) 60 kt forecast thresholds for 24 July 2014 based on the forecast shown

in Figure 4.8.
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(a) 30 kts (b) 40 kts

(c) 50 kts (d) 60 kts

Figure 4.10: MODE-identified objects for 24 July 2014. The top panel of each

subfigure shows forecast objects filled with observed objects outlined. The bottom

panel shows the opposite: observed objects filled with forecast objects outlined.

Red fill indicated that the object was matched, while blue fill indicates an un-

matched object.
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(a) 2255Z on 14 June 2014. (b) 0355Z on 15 June 2014.

(c) 0555Z on 15 June 2014. (d) 0925Z on 15 June 2014.

Figure 4.11: Composite radar reflectivity for the 14 June 2014 convective day.

had initiated near Denver, CO and began to move to the east into an area with

100 millibar mixed layer convective available potential energy (100mb MLCAPE)

of 3000 Jkg−1 according the mesoanalysis available at Carbin et al. (2016). The

first wind report was received at 2350Z in Kit Carson County, CO with estimated

gusts between 60 and 70mph (52-61kts, 27-31ms−1). By 0355Z (Figure 4.11b), the

storms had merged with other storms in southern Nebraska and organized into a

quasi-linear convective system (QLCS), centered on the Kansas-Nebraska border.

By 0555Z (Figure 4.11c), the QLCS had evolved further into a bow echo with its

apex along the Kansas-Nebraska border. The final wind report was received at

0923Z on 15 June 2014 in Lee’s Summit County, MO and by 0925Z (Figure 4.11d)

the radar structure had nearly completely decayed.
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Figure 4.12: Practically perfect smoothed local storm reports filtered by radar

reflectivity for 14 June 2014.

The practically perfect smoothed local storm reports, when filtered by radar

reflectivity (Figure 4.12), identify a single object centered over northern Kansas

associated with the QLCS seen in radar reflectivity. Though not counted separately

when verifying, significant wind reports accounted for 31 of the 235 wind reports

received for the day (Figure 4.13). The majority of the significant wind reports

were associated with the severe wind-producing MCS.

The NSSL-WRF winds appeared to be in roughly the same area as the storm

reports, though there were some spurious winds in the panhandles of Texas and

Oklahoma that were not seen in the local storm reports (Figure 4.14). The prac-

tically perfect smoothed forecasts (Figure 4.15) show that the model forecasts too

broad of an area of winds below 50 kts, but the 50 kt and 60 kt forecasts appear

to cover mostly the correct area, though the probability magnitudes are far lower

than for the observations. The objects identified by MODE in both the forecast

and observations are shown in Figure 4.16. Subjectively, it appears that the 50 kt

forecast did best, with the 60 kt forecast underforecasting, and the other forecasts
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Figure 4.13: All local storm reports for the 14 June 2014 convective day. Wind

reports are blue dots, and significant reports are black squares.
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Figure 4.14: NSSL-WRF 10 m 24 hour maximum filtered by simulated reflectivity

wind field for 14 June 2014.

overforecasting, particularly the 30 kt forecast, which had two additional forecast

objects. The interest scores for the four thresholds presented (from lowest thresh-

old to highest) are: 0.8889, 0.9128, 0.9481, and 0.8817. If interest scores are taken

as a measure of forecast quality, the 50 kt forecast did best.
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Figure 4.15: Practically perfect smoothed forecasts for (a) 30 kt, (b) 40 kt, (c)

50 kt, and (d) 60 kt thresholds for 14 June 2014 based on the forecast shown in

Figure 4.14.
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(a) 30 kts (b) 40 kts

(c) 50 kts (d) 60 kts

Figure 4.16: MODE-identified objects for 14 June 2014.
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Chapter 5

Conclusions

A climatology of severe wind-producing MCSs in 2012 - 2014 was developed using

an object-based approach to identify severe wind-producing MCSs using severe

wind reports and observed radar reflectivity. To develop the climatology, MODE

was used to identify severe wind objects that were based on a practically perfect

hindcast of severe wind reports filtered by radar reflectivity. MODE identifies

objects using user-defined intensity and minimum area thresholds, then matches

forecast and observation objects using a fuzzy logic engine. Severe wind-producing

MCSs occurred most often in the Ohio River Valley, with a secondary maximum

in southwestern Georgia and southeastern Alabama. Temporally, severe wind-

producing MCSs occurred most often in the warm season with a peak in June.

This climatology is generally consistent with other climatologies of severe wind

reports and MCSs (e.g., Gallus et al., 2008; Burke and Schultz, 2004; Smith et al.,

2013).

To verify the NSSL-WRF, a 24-hour maximum 10 m wind field was generated

from forecast hours 12 - 36 of the 0000 UTC model run and filtered by simulated

reflectivity using the same parameters as were used to filter the wind reports.

Thresholds between 15 kt and 60 kt were examined in the forecast field, then the

forecast field was smoothed using the same parameters that were applied to create

the hindcast of the severe wind reports. MODE was again used to identify forecast
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objects that were matched to observed objects using a fuzzy logic engine. Veri-

fication metrics were computed several ways: traditional grid-point verification,

grid-based verification using MODE, and object-based verification using MODE.

Traditional grid-point verification provided little useful insight, but it justified the

use of an object-based approach to verify the forecast. Grid-based and object-based

verification using MODE both showed that the model had a relatively constant crit-

ical success index across a range of forecast wind speed thresholds. Object-based

verification using MODE yielded higher values of CSI than grid-based verifica-

tion using MODE. Additionally, though wind-speed forecasts at higher thresholds

yielded biases nearest to one and the highest CSIs, wind-speed forecasts at lower

thresholds with slightly lower CSIs might be more useful for forecasters since POD

is dramatically higher at lower thresholds without a large penalty in FAR. Using

a lower forecast wind-speed threshold captures more events (e.g. a 50 kt threshold

captures fewer events than a 35 kt threshold), and most of the additional events

captured are matched to an observed object.

When considering severe wind-producing MCSs, the NSSL-WRF overforecasts

at low wind speed thresholds and underforecasts at higher wind speed thresholds.

By filtering the model winds with simulated radar reflectivity, it was hoped that

model performance for MCSs would be maximized. Even though object-based

verification of severe MCS winds, as highlighted by the utility of CAM forecasts

over traditional grid-point verification approaches, there may room for developing

improved severe wind proxies from CAMs. Further research investigating fields in

addition to 10 m winds as potential severe wind proxies is ongoing. This work

provides baseline verification metrics for any potential new proxy. That is, a

new proxy would have to generate better verification scores than 10-meter wind

forecasts to show utility in forecasting severe wind-producing MCSs.
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