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Abstract 

Everyday tradeoff decisions are made where criteria must be compared, 

evaluated, and decided upon.  In real world applications, variables have an inherent 

amount of uncertainty that must be regarded when making a decision, especially when 

considering interval data alternatives. There exists a need to incorporate uncertainty into 

the decision-making process but there are few straightforward approaches to directly 

compare interval valued variables. In this thesis, an approach to compare non-

dominated interval valued alternatives is conducted using TOPSIS in order to determine 

the shortest path from source to sink in a construction network. 

 

Key Terms: Shortest Path, Multi-Criteria Decision Making, TOPSIS, Interval, Non-

dominated
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Chapter 1: Introduction 

Projects consist of three fundamental criteria: it must be completed on time or 

ahead of schedule, must be completed within or under budget, and must meet the 

requirements established by contract between the customer and contractor (Lester, 

2007).  To measure the aforementioned criteria, decision makers look at variables such 

as overall time to complete the project, cost of materials, project risk, and labor costs, to 

reference a few.   

In industry, trade-offs between variables occur on a daily basis and often involve 

balancing the cost and benefits of multiple criteria when making a decision. Rarely is it 

possible to find relationships where reducing a variable, like cost, will also reduce other 

variables, like overall completion time.  This results in alternatives that are inherently 

conflicting. The complex relationship between variables like cost and completion time 

significantly increases uncertainty that is within the system. In system planning and 

operation, uncertainty is often perceived as something purely negative, and considerable 

efforts and resources are spent to reduce uncertainties. In most situations, the underlying 

motivation is a desire to avoid unpleasant surprises, but the quest for certainty also has 

an intuitive appeal (Flage & Aven, 2009). 

Because of the complex nature of managing decisions concerning multiple 

criteria in conjunction with the complex motivations that drive decision to be made, 

numerous techniques have been developed to aid in the process of making an informed 

decision on how to move forward.  
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A source to sink shortest path network will be used to demonstrate a tangible 

comparison between multiobjective Pareto optimal interval valued alternatives with the 

end purpose of determining a preferred path though the network. 

  Optimal trade-offs can be found by projecting the points onto an objective 

space defined by the involved variables.  When considering two projected variables on 

an objective space, a line that is known as the Pareto front is formed. The Pareto front 

is the optimal solution where there can be no improvement towards minimizing one 

objective without undesirably affecting the other. It is important to note that the points 

above the Pareto front can improve both objectives by moving toward the frontier.  

Pareto optimal points have primarily been examined as discrete points, leaving a gap in 

research concerning interval valued alternative comparisons.  Additionally, there are 

very few approaches in which to compare interval data in a useful way.  Currently, 

interval valued comparison approaches under emphasize the best- and worst-case 

scenarios, which could become important is such scenarios are the basis of which 

decisions are being made (Barker and Rocco S, 2011). The usefulness of interval values 

in addressing uncertainty lowers whenever a comparison between the two ranges must 

be made as it is very difficult to do so in a clear, simple way, thus, leaving a gap in 

research for a straightforward comparison approach.   

1.1 Past Work 

Research that has been done in the area of Pareto-optimality analysis does not 

consider the Pareto frontier as more than discrete points on a line.  Directly addressing 

uncertainty when the distribution of the data is not known means that we can 
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overemphasize the mean value of the distribution and ignore what is happening in the 

tails. Therefore, “forcing” a distribution to fit the situation may do more harm than good 

in the decision making process (Huber 2010).  There is a substantial gap in research 

concerning comparing interval value Pareto-optimal alternatives, especially in the 

multicriteria arena. Additionally, common decision making guidelines, such as Laplace, 

min regret, and similar approaches are rarely utilized when considering interval valued 

data due to the complex nature of dealing with uncertainty when making an important 

data driven decision.   

1.2 Contribution 

The proposed case study in this thesis aims to aid current research concerning 

interval comparisons of Pareto optimal alternatives.  The incorporation of uncertainty in 

the multiobjective shortest path problem in conjunction with a ranking algorithm aims 

to decide which path through the network the decision maker should choose. 

Nondominated solutions are plotted so as to visually compare alternatives in a direct 

easy way. Furthermore, TOPSIS is utilized to demonstrate the preferred path through 

the construction network. 

1.3 Thesis Structure  

Chapter 2 explains the past work done in relevant areas of research as well as 

gives support to the methods that were used in the development and testing of the case 

scenarios.  Chapter 3 describes the methodology that was followed throughout the 

proposed comparisons. Chapter 4 explains the usage of the techniques that are being 

used to compare the data and describes the results of the case study.  Chapter 5 

demonstrates an analysis of the data as well as discusses the associated alternatives in 
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relation to the decision criteria. Chapter 6 discusses conclusions, possible areas of 

application, and suggested future work in the research area.   
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Chapter 2: Supporting Literature 

2.1 Shortest Path Networks 

 Shortest path problems have been studied intensively in literature with single-

objective shortest path problem being the most widely studied; however, it is often not 

sufficient to restrict oneself to only one objective when considering a real-world 

situation. Applications often indicate the necessity of taking two or more objectives into 

account, resulting in biobjective or multiple objective shortest path problems (Raith & 

Ehrgott, 2008).  There are two main approaches to solving biobjective shortest path 

problems (BSP): enumerative approaches such as label correcting and label setting, or 

ranking methods.  

Per Raith & Ehrgott (2008): in biobjective shortest path problems a node can 

have several labels, which do not dominate one another. The set of efficient solutions of 

the biobjective shortest path problems correspond to all labels at the target node after a 

labelling algorithm finishes. In label correcting and label setting methods, either one 

label at a certain node is extended by all arcs out of that node (label-selection) or all 

labels at a node are extended simultaneously (node-selection) (Cherkassky, Goldberg, & 

Radzik, 1996). Ranking methods are single-objective k-shortest path methods. Starting 

with the optimal value for one objective, the second-best solution, the third-best 

solution, etc. is obtained until the k-best solution is reached. For BSP, the process 

continues until it is guaranteed that all non-dominated points have been found (Raith & 

Ehrgott, 2008).  In this case study, a decision maker will use a multiobjective ranking 

algorithm on the shortest path through the construction network given: four criteria, 

their weights, and eight nondominated interval valued alternatives.   
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2.2 Pareto-Optimality 

When examining relationship between variables like time, cost, quality, and 

profit, there exists many inverse relationships where it is not possible to increase one 

variable without decreasing another.  Generally, real life situation has more than one 

objective to be minimized or maximized. In cases where all of the objective functions 

either increase or decrease, there exist no optimum; however, in regions where these 

same objective functions are competing or conflicting with each other, meaning that a 

small change un the independent variables will result not only in an increase of one 

objective, but also a decrease in others, an optimum can exist (Paláncz & Awange, 

2013).  Such regions are called feasible regions for optimal solutions.  A solution in this 

region is said to be a Pareto optimal solution if it is not dominated by any other solution 

in that region (Paláncz & Awange, 2013).  A solution is Pareto dominated if some other 

value can be increased without decreasing any other values in the solution space. For 

example, in the case of two criteria X and Y, we consider a point a to be superior to 

point b when the following are satisfied (Lewi, Van Hoof, & Boey, 1992): 

Xa > Xb and Ya > Yb or 

Xa > Xb and Ya = Yb or  

Xa = Xb and Ya > Yb 

When plotted in objective space, the nondominated vectors are collectively 

known as the Pareto front.  In order to view the different solutions, it is necessary to 

plot these alternatives in a design space that satisfies two objectives on a xy-plane.  The 

plotted points that exist within the boundaries but not including the boundary points are 

called the Pareto Set.  The set of solutions that make up the boundary of the plotted 
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alternatives are called the Pareto Frontier (Blasco, 2008; Van Veldhuizen, 2000).  It is 

important to note that the Pareto front does not realistically represent real-world 

problems as it is defined by an infinite number of points and has not yet incorporated 

uncertainty into the characterization of the situation. The search for all the solutions in 

the optimal Pareto set is so computationally and methodologically difficult that many 

methods frequently obtain the front by the use of approximation. Non-dominated 

solutions are identified during the process and approximated fronts are successively 

obtained (Pérez, Quintanilla, Lino, & Valls, 2014). Discrete approximations are usually 

compared in decision making situations due to the complex nature of continuous data 

and a lack of straightforward way to compare it consistently.   

There are several ways that a Pareto Set can be viewed, but they are most 

commonly shown as scatter diagrams, parallel coordinates, or noninferior solution 

spaces. Scatter diagrams are arranged in the form of an n x n matrix with dimensions of 

the data set represented by a single row and column.  Parallel coordinates plot a 

multidimensional point in a two-dimensional graph with each dimension of the original 

data translated to an x-coordinate in the two dimensional plot (Blasco et al., 2008).  In 

this case study, a plot of noninferior solutions will be graphed in order to allow the 

decision maker an easier way to characterize each alternative.   

The Pareto front will be shown in a graphical representation of the eight path 

alternatives using two variables, time and cost. The interval value data will be depicted 

as rectangles to accurately show the variable value ranges with each corner of the shape 

corresponding to its axes’ respective minimum and maximum.  The graphical 

representation will allow the decision maker to visually see the difference in both cost 
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and time for each alternative, thus allowing for an informed data driven decision. 

Additionally, because the rectangle shows the relationship between time and cost, it is 

possible to associate a risk with each alternative when using the mindset of a larger area 

of a rectangle directly correlating with a high-risk value and vice versa for the case of a 

smaller shape area correlating with a lower risk value.  Though the concept of risk will 

not be quantifiably compared, it is important to note the different range of values across 

both the variables and alternative paths. 

2.3 Interval Arithmetic 

Interval estimates (uncertainty intervals) are specified for unknown parameters 

and it is assumed that each parameter can take on any value from the corresponding 

uncertainty interval regardless of the values taken on by other parameters (Averbakh, 

2005). 

Interval arithmetic was originally devised to obtain upper and lower bounds to 

rounding errors in mathematical computations (Moore, 1966).  It has also been useful in 

representing uncertainty when dealing with exact parameters.  To define an interval 

number, there exists an ordered pair of real numbers, [a, b] with a ≤ b in addition to a 

set of real numbers x such that a ≤ x ≤ b (Moore, 1966).  For interval numbers M = [a, 

b] and N = [c, d], comprised of real numbers a, b, c, and d, then the following algebraic 

properties hold (Moore, 1966): 

𝑀 +𝑁 = [𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑], 

𝑀 −𝑁 = [𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐], 

𝑀 ∙ 𝑁 = [𝑎, 𝑏] ∙ [𝑐, 𝑑] = [min(𝑎 ∙ 𝑐, 𝑎 ∙ 𝑑, 𝑏 ∙ 𝑐, 𝑏 ∙ 𝑑) ,max(𝑎 ∙ 𝑐, 𝑎 ∙ 𝑑, 𝑏 ∙ 𝑐, 𝑏 ∙ 𝑑)], 

𝑀/𝑁 = [𝑎, 𝑏]/[𝑐, 𝑑] = [min(𝑎/𝑐, 𝑎/𝑑, 𝑏/𝑐, 𝑏/𝑑) ,max(𝑎/𝑐, 𝑎/𝑑, 𝑏/𝑐, 𝑏/𝑑)], 



9 

𝑤ℎ𝑒𝑟𝑒0 ∌ [c, d] 

𝑧 ∙ 𝑀 = 𝑧 ∙ [𝑎, 𝑏] = [𝑧 ∙ 𝑎, 𝑧 ∙ 𝑏] for real constant z ≥ 0 

The listed properties will be useful to reference when considering computations 

in subsequent chapters of this thesis, specifically the use of interval addition. 

2.4 Interval Comparisons  

When examined on a fundamental level, there exists two types of intervals, 

intervals that intersect and those that do not.  Narrow intervals occur when 

measurements of generic real-value quantities are sufficiently precise that the 

corresponding intervals avoid intersecting each other (Experimental uncertainty page 

23). It is difficult to compare intervals, but rules exist that describe when two intervals 

are equal. For two intervals, A = [a1, a2] and B = [b1, b2] are called equal, A =B, if a1 = 

b1 and a2 = b2.   

If the two intervals do not have the same values, then several other ways to 

approach the interval comparisons have been proposed, however, this case study does 

not aim to use interval comparisons to make a decision but utilize the multicriteria 

decision making tool, TOPSIS, to calculate a preferred path through the construction 

network.  It is important to note that interval uncertainty is present in the system. 

Therefore, solving the extreme case of pure intervals is a first step before considering 

more elaborate representations of uncertainty where both probability and intervals are 

combined (Fortin, Zieliski, Dubois, & Fargier, 2010). 

2.5 Multi-criteria decision analysis 

Multiple-criteria decision analysis (MCDA), otherwise referred to as multiple-

criteria decision making is a sub-discipline and full-grown branch of operations 
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research that is concerned with designing mathematical and computational tools to 

support the subjective evaluation of a finite number of decision alternatives under a 

finite number of performance criteria set by a single decision maker or group (Lootsma, 

1999).  Multi-criteria decision analysis (MCDA) provides a systematic methodology to 

combine inputs with cost/benefit information and stakeholder views to rank project 

alternatives. MCDA is used to discover and quantify decision maker and stakeholder 

considerations about various (mostly) non-monetary factors in order to compare 

alternative courses of action (Huang, Keisler, & Linkov, 2011). There are numerous 

approaches that all fall under the umbrella of MCDA, each involving different protocols 

for eliciting inputs, structures to represent them, algorithms to combine them, and 

processes to interpret and use formal results in actual advising or decision making 

context. In this case study TOPSIS will be utilized to demonstrate the shortest path 

through the network. 

2.6 TOPSIS 

The Technique for Order Preference by Similarity to an Ideal Solution 

(TOPSIS), is a distance based multicriteria decision making method that is used for 

determining alternatives (Cheng-Shiung, 2010).  TOPSIS is based on positive-ideal and 

negative-ideal solutions that are determined by calculating the distance of each scenario 

from the global best performing alternative and the global worst performing alternative 

(Hwang and Yoon, 1981).   

In the existing evaluation schemes based on the weighted sum of objectives 

technique, the fitness function of a solution is calculated regardless of the fitness of 

other members in the current population, while in evaluation based TOPSIS, the fitness 
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function of each solution is calculated based on the worst and the best values of each 

objective among all the members of the current population. Although, TOPSIS is 

dependent on the weight values given by the decision maker, its ability in distinguishing 

between solutions and ranking them is indisputable (Nourmohammadi and Zandieh, 

2011). The basic principle is that the chosen alternative should have the shortest 

distance from the positive ideal solution and the farthest distance from the negative 

ideal solution.  The procedure of TOPSIS can be expressed in the following series of 

steps (Yurdakul & Bankasi 2005): 

(1)  Calculate the normalized decision matrix. The normalized value nij is calculated as nij 

= 
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
2𝑚

𝑖=1
 for i = 1,..., m and j = 1,..., n. 

(2)  Calculate the weighted normalized decision matrix. The weighted normalized value 

vij is calculated as vij = winij for i = 1,..., m and j = 1,..., n where wi is the weight of the 

ith attribute or criterion, and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . These weights can be introduced by the 

decision maker.  

(3)  Determine the positive-ideal and negative-ideal solution  

 A+ ={(v1
+ ,v2

+ ,...,vn
+ )} ={(max vij |i ∈ O),(min vij |i ∈ I)} 

A− = {(v1
− ,v2

− ,...,vn
− )} = {(min vij |i ∈ O),(max vij |i ∈ I)}  

where O is associated with benefit criteria, and I is associated with cost criteria, if 

applicable. 

(4)  Calculate the separation measures, using the n-dimensional Euclidean distance. The 

separation of each alternative from the ideal solution is given as 

𝑑𝑗
+ = ∑(𝑣𝑖𝑗 − 𝑣𝑖

+)1/2
𝑛

𝑘=0

∀𝑗. 
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Similarly, the separation from the negative-ideal solution is given as 

𝑑𝑗
− = ∑(𝑣𝑖𝑗 − 𝑣𝑖

−)1/2
𝑛

𝑘=0

∀𝑗. 

(5)  Calculate the relative closeness to the ideal solution. The relative closeness of the 

alternative Aj with respect to A+ is defined as 𝑅𝑗 =
𝑑𝑗
−

𝑑𝑗
++𝑑𝑗

− for j =1, …, m. Since 𝑑𝑗
− ≥

0 and 𝑑𝑗
+ ≥ 0, then clearly 𝑅𝑗 ∈ [0, 1].  

(6)  Rank the preference order. For ranking alternatives using this index, the alternatives 

are ranked in decreasing order. The basic principle of the TOPSIS method is that the 

chosen alternative should have the ‘‘shortest distance’’ from the ideal solution and the 

‘‘farthest distance’’ from the negative-ideal solution.  
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Chapter 3: Methodology 

 Below is the process describing each step that will be needed to conduct the 

comparison of the interval data: 

1. List all time and cost values for each possible path through the network 

2. Using interval arithmetic, calculate the [min, max] intervals for both time 

and cost corresponding to each alternative 

3. Plot interval valued time and cost to visually inspect path data to ensure each 

is a non-dominated solution 

4. Apply a weighted multi criteria decision ranking technique (TOPSIS) to the 

data to determine the preferred path through the construction network  
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Chapter 4: Experimental Methodology 

This chapter will describe how the technique in chapter 3 was applied to the 

construction network in order to directly compare nondominated the interval 

alternatives.  First, the network that will serve as the foundation of the case study will 

be examined. Next the path alternatives will be plotted to allow for visual inspection. 

Finally, TOPSIS will be used to rank the paths to determine the preferred nondominated 

path. 

4.1 Examining the Network 

When considering the construction network there are many variables that can be 

considered, the cost of the overall project, the quality of the product, the time associated 

with project length, risk associated with the project, as well as many others.  In this case 

study, time and cost are being examined in the form of interval data with the following 

form: x = [x1, x2], with x1 having the value of the lowest possible time to complete the 

project and x2 representing the longest possible completion time.  The costs associated 

with each length of time is represented by the interval y = [y1, y2], with y1 representing 

the cost associated with the shortest possible time and y2 representing the longer time.   

In the following figure, the time associated with the path between the nodes are shown 

as [x1, x2]. The starting point (source) for all possibilities will always be node 1. 

Similarly, the endpoint (sink) for all possibilities will be node 7.     
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Figure 1: Network - Path Times Between Nodes 

As seen in the figure, there are multiple paths through the network, each of 

which has an associated [min time, max time]. The source of all paths is node 1 and the 

sink of all possible ways through the network is node 7. There are several assumptions 

that will be used that concern the various paths: the values associated with the paths 

between nodes are constant, it is not possible to go backwards in the network, allocating 

extra resources to an activity node will not decrease the completion time, and no 

activity nodes or linkages may be added to the existing network.  Figure 2 shows the 

costs between nodes associated with the network’s time values depicted in Figure 1. 
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Figure 2: Network: Path Cost Between Nodes 

 

As shown in Figure 1 and Figure 2, there are eight possible paths through the 

network, each of which has been assigned a number ranging from one to eight. Table 1 

shows the possible node paths through the network. 

 

Table 1: Possible Paths through the Network 
 

Path Nodes 

1 1, 4, 7 

2 1, 2, 5, 7 

3 1, 3, 4, 7 

4 1, 3, 4, 5, 7 

5 1, 3, 6, 7 

6 1, 4, 5, 7 

7 1, 4, 6, 7 

8 1, 3, 4, 6, 7 

  

Using interval addition, the minimum and maximum values of both time and 

cost for each alternative are listed in Table 2. This data will serve as the foundation of 
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the interval valued alternative comparison. To calculate the minimum and maximum 

values for the two variables, it was necessary to apply the interval addition method that 

was discussed in section 2.3 Interval Arithmetic. 

Table 2: Combined Time and Cost Values across Alternatives 

 

Construction Network 

Name Possible Paths Min Time Max Time Min Cost Max Cost 

1 1, 4, 7 7.0 17.5 16.00 26.00 

2 1, 2, 5, 7 5.5 18.5 16.50 24.50 

3 1, 3, 4, 7 7.0 19.5 16.00 33.00 

4 1, 3, 4, 5, 7 5.5 21.5 15.50 33.50 

5 1, 3, 6, 7 7.0 17.5 9.50 28.00 

6 1, 4, 5, 7 5.5 19.5 15.50 26.50 

7 1, 4, 6, 7 6.0 18.5 12.50 29.00 

8 1, 3, 4, 6, 7 6.0 20.5 12.50 36.00 

 

The data shown in Table 2 will be used to find the shortest path through the 

construction network. When inspecting the data in the table, it is difficult to directly see 

the differences between the paths. Section 4.2 will depict each alternative visually as to 

better compare the different node combinations. 

4.2 Visually Plotting Interval Alternatives 

In order to visually inspect the Pareto-front, two variables were considered for a 

construction network, time to complete the project, and overall cost. Time will be 

plotted on the x-axis and the cost of the project will be plotted on the y-axis.  Plots of 

the various scenarios show the variables as a rectangle with each corner representing the 

min or max time and cost values, as seen in the example Figure 1. 
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Figure 3: Plot of Path 1 

In path one, the minimum time to complete the path is shown by the lower left 

corner with an associated value of 7 days and a maximum value shown as the lower 

right corner of the rectangle with a value of 17.5 days. Similarly, the minimum cost 

value is associated with lower left corner with a value of $16 million and the upper left 

corner represents the maximum cost value associated with the scenario ($26 million).  

Each of the eight alternatives are similarly shown in the following plots. After each 

scenario is plotted on a xy plane, the alternatives are plotted together on an additional xy 

plane with the purpose of allowing for visual inspection of both time and cost values 

across the alternatives.  
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Figure 4: Plot of Path 2 

 

 

Figure 5: Plot of Path 3 
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Figure 6: Plot of Path 4 

Figure 7: Plot of Path 5 
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Figure 8: Plot of Path 6 

 

 

Figure 9: Plot of Path 7 
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Figure 10: Plot of Path 8 

 

Figure 11: Plot of All Paths Combined 
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When the eight alternatives are plotted, and compared to each other, there is no 

way to visually discern which option has the lowest risk (analogous to the smallest 

area). There are several possibilities that show a higher risk than others but it is not 

possible to make a decision on which alternatives outperform any others through pure 

visual inspection. The non-dominated solutions thus must be quantifiably compared in 

order to determine the preferred path through the network. 

4.3 TOPSIS 

Before TOPSIS can be applied the criteria that will be used to rank the path 

alternatives must first be defined.  For this case study, the criteria have been defined as 

the minimum completion time, minimum overall cost, maximum completion time, and 

maximum cost.  The criteria weights have been assigned as shown in Table 3. 

Table 3: TOPSIS Criteria Weight 

  

Criteria Weight 

Min Completion Time 0.25 

Min Cost 0.25 

Max Time 0.25 

Max Cost 0.25 

 

Before TOPSIS can rank the alternatives, the paths must be given a score based 

on the four criteria listed in Table 3. Scores were attributed to each path alternative 

based on where it fell in the ranking table shown in Table 4.   
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Table 4: Ranking Matrix 

Time Cost 

Min Value Max Value Min Value Max Value 

0 
10 

15 
10 

8 
10 

24 
10 

0.99 15.99 8.99 25.25 

1 
9 

16 
9 

9 
9 

25.26 
9 

1.99 16.99 9.99 26.51 

2 
8 

17 
8 

10 
8 

26.52 
8 

2.99 17.99 10.99 27.77 

3 
7 

18 
7 

11 
7 

27.78 
7 

3.99 18.99 11.99 29.03 

4 
6 

19 
6 

12 
6 

29.04 
6 

4.99 19.99 12.99 30.29 

5 
5 

20 
5 

13 
5 

30.3 
5 

5.99 20.99 13.99 31.55 

6 
4 

21 
4 

14 
4 

31.56 
4 

6.99 21.99 14.99 32.81 

7 
3 

22 
3 

15 
3 

32.82 
3 

7.99 22.99 15.99 34.07 

8 
2 

23 
2 

16 
2 

34.08 
2 

8.99 23.99 16.99 35.33 

9 
1 

24 
1 

17 
1 

35.34 
1 

100 100 100 100 

 

For this case study, the maximum value is the preferred, for this table that would 

be a value of 10.  For example purposes, if a value for an alternative fell between a 

minimum time values of 4.5, it would be scored as a 6. An example of a completely 

scored alternative is shown in Table 5 below.   
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Table 5: Criteria Scores 

      

Name Possible Path Min Time Max Time Min Cost Max Cost 

1 1, 4, 7 3 8 2 9 

2 1, 2, 5, 7 5 7 2 10 

3 1, 3, 4, 7 3 6 2 3 

4 1, 3, 4, 5, 7 5 4 3 3 

5 1, 3, 6, 7 3 8 9 7 

6 1, 4, 5, 7 5 6 3 9 

7 1, 4, 6, 7 4 7 6 7 

8 1, 3, 4, 6, 7 4 5 6 1 

 

Once an alternative was given a score, it was necessary to determine the 

attribute weight for each path. The attribute weight is calculated by summing the scores, 

for example Path 1 (node 1, 4, 7), across all alternatives and dividing the total by the 

number of scenarios as shown by the example below: 

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡(𝑃𝑎𝑡ℎ1) =
3 + 8 + 2 + 9

4
= 12.56980509 

Table 6 shows an example of a table with both path scores and calculated attribute 

weights.   

Table 6: Attribute Weights  

       

Name 
Possible 

Paths 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Attribute 

Weights 

1 1, 4, 7 3 8 2 9 12.56980509 

2 1, 2, 5, 7 5 7 2 10 13.34166406 

3 1, 3, 4, 7 3 6 2 3 7.615773106 

4 1, 3, 4, 5, 7 5 4 3 3 7.681145748 

5 1, 3, 6, 7 3 8 9 7 14.24780685 

6 1, 4, 5, 7 5 6 3 9 12.28820573 

7 1, 4, 6, 7 4 7 6 7 12.24744871 

8 1, 3, 4, 6, 7 4 5 6 1 8.831760866 
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Once the attribute weights have been calculated for all alternatives, the attribute 

weights for each node were used to finalize the Normalized Decision Matrix. Table 7 

shows an example of each criteria score divided by the calculated weights in Table 6.  

Table 7: Normalized Decision Matrix 
 

Name Possible Paths Min Time Max Time Min Cost Max Cost 

1 1, 4, 7 0.238667185 0.636445827 0.159111457 0.716001556 

2 1, 2, 5, 7 0.374765844 0.524672182 0.149906338 0.749531689 

3 1, 3, 4, 7 0.393919299 0.787838597 0.262612866 0.393919299 

4 1, 3, 4, 5, 7 0.650944555 0.520755644 0.390566733 0.390566733 

5 1, 3, 6, 7 0.210558722 0.561489925 0.631676166 0.491303684 

6 1, 4, 5, 7 0.406894229 0.488273075 0.244136538 0.732409613 

7 1, 4, 6, 7 0.326598632 0.571547607 0.489897949 0.571547607 

8 1, 3, 4, 6, 7 0.452910814 0.566138517 0.67936622 0.113227703 

 

After the Normalized Decision Matrix was established, TOPSIS requires each 

criteria weight to be multiplied to each path alternative. For example, in the case of Path 

1, the value shown in Table 7 for Min Time (0.238667185) is multiplied by the criteria 

weight established in Table 3 (0.25) to show the result of 0.059667.  Similar calculations 

were conducted across the other paths and criteria weights, as shown by Table 8. 

Table 8: Weighted Normalized Decision Matrix  

      

Name Possible Paths Min Time Max Time Min Cost Max Cost 

1 1, 4, 7 0.059667 0.159111 0.03978 0.179 

2 1, 2, 5, 7 0.093691 0.131168 0.03748 0.187383 

3 1, 3, 4, 7 0.09848 0.19696 0.06565 0.09848 

4 1, 3, 4, 5, 7 0.162736 0.130189 0.09764 0.097642 

5 1, 3, 6, 7 0.05264 0.140372 0.15792 0.122826 

6 1, 4, 5, 7 0.101724 0.122068 0.06103 0.183102 

7 1, 4, 6, 7 0.08165 0.142887 0.12247 0.142887 

8 1, 3, 4, 6, 7 0.113228 0.141535 0.16984 0.028307 
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Once the Weighted Normalized Decision Matrix has been established, it is 

necessary to find the maximum values for each path.  The maximum values will be used 

to find the distance from the positive ideal value (Ip) as shown by Table 11. Table 9 below 

shows the maximum value across the criteria for each path. Likewise, Table 10 depicts 

the minimum values for each possible path across the four criteria.  

Table 9: Max Value Across Criteria 
 

Name Possible Path Min Time Max Time Min Cost Max Cost Maximum 

1 1, 4, 7 0.05967 0.15911 0.03978 0.17900 0.17900 

2 1, 2, 5, 7 0.09369 0.13117 0.03748 0.18738 0.18738 

3 1, 3, 4, 7 0.09848 0.19696 0.06565 0.09848 0.19696 

4 1, 3, 4, 5, 7 0.16274 0.13019 0.09764 0.09764 0.16274 

5 1, 3, 6, 7 0.05264 0.14037 0.15792 0.12283 0.15792 

6 1, 4, 5, 7 0.10172 0.12207 0.06103 0.18310 0.18310 

7 1, 4, 6, 7 0.08165 0.14289 0.12247 0.14289 0.14289 

8 1, 3, 4, 6, 7 0.11323 0.14153 0.16984 0.02831 0.16984 

 

Table 10: Min Value Across Critiera 
 

Name Possible Paths Min Time Max Time Min Cost Max Cost Min 

1 1, 4, 7 0.05967 0.15911 0.03978 0.17900 0.03978 

2 1, 2, 5, 7 0.09369 0.13117 0.03748 0.18738 0.03748 

3 1, 3, 4, 7 0.09848 0.19696 0.06565 0.09848 0.06565 

4 1, 3, 4, 5, 7 0.16274 0.13019 0.09764 0.09764 0.09764 

5 1, 3, 6, 7 0.05264 0.14037 0.15792 0.12283 0.05264 

6 1, 4, 5, 7 0.10172 0.12207 0.06103 0.18310 0.06103 

7 1, 4, 6, 7 0.08165 0.14289 0.12247 0.14289 0.08165 

8 1, 3, 4, 6, 7 0.11323 0.14153 0.16984 0.02831 0.02831 

 

After establishing the maximum values, it is necessary to find the distance from 

the Positive Ideal Solution (Ip).  The equation below demonstrates the how the distance 

from the ideal solution was calculated (Yurdakul and Bankasi 2005). 
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𝑑𝑗
+ =∑ (𝑣𝑖𝑗 − 𝑣𝑖

+)1/2
𝑛

𝑘=0
∀𝑗.   

Table 11 shows the calculated values of the distance from the Positive Ideal 

Solution (Ip).  

Table 11: Distance from Positive Ideal 
 

Name Possible Path Min Time Max Time Min Cost Max Cost Dist from Ip 

1 1, 4, 7 0.01424 0.00040 0.01938 0.00000 0.18444 

2 1, 2, 5, 7 0.00878 0.00316 0.02247 0.00000 0.18550 

3 1, 3, 4, 7 0.00970 0.00000 0.01724 0.00970 0.19141 

4 1, 3, 4, 5, 7 0.00000 0.00106 0.00424 0.00424 0.09764 

5 1, 3, 6, 7 0.01108 0.00031 0.00000 0.00123 0.11235 

6 1, 4, 5, 7 0.00662 0.00373 0.01490 0.00000 0.15890 

7 1, 4, 6, 7 0.00375 0.00000 0.00042 0.00000 0.06455 

8 1, 3, 4, 6, 7 0.00321 0.00080 0.00000 0.02003 0.15504 

 

Similarly, distances from the Negative Ideal Solution (In) were calculated using the 

following equation: 

𝑑𝑗
− = ∑(𝑣𝑖𝑗 − 𝑣𝑖

−)1/2
𝑛

𝑘=0

∀𝑗. 

Table 12 demonstrates the calculated distance from the Negative Ideal Solution (In). 

Table 12: Distance from Negative Ideal Solution 
 

Name Possible Paths Min Time Max Time Min Cost Max Cost Dist from In 

1 1, 4, 7 0.00040 0.01424 0.00000 0.01938 0.18444 

2 1, 2, 5, 7 0.00316 0.00878 0.00000 0.02247 0.18550 

3 1, 3, 4, 7 0.00108 0.01724 0.00000 0.00108 0.13927 

4 1, 3, 4, 5, 7 0.00424 0.00106 0.00000 0.00000 0.07278 

5 1, 3, 6, 7 0.00000 0.00770 0.01108 0.00493 0.15397 

6 1, 4, 5, 7 0.00166 0.00373 0.00000 0.01490 0.14241 

7 1, 4, 6, 7 0.00000 0.00375 0.00167 0.00375 0.09574 

8 1, 3, 4, 6, 7 0.00721 0.01282 0.02003 0.00000 0.20016 
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Table 13: Positive and Negative Ideal Values 

   

Name Distance from Ip Distance from In 

1 0.18444 0.18444 

2 0.18549 0.18549 

3 0.19141 0.13927 

4 0.09764 0.07277 

5 0.11235 0.15397 

6 0.15889 0.14241 

7 0.06454 0.09574 

8 0.15504 0.20016 

 

Using the distances from the Positive and Negative Ideal Solutions, it is possible 

to calculate the final rankings of the eight path alternatives. Table 14 shows calculated 

values as well as the final rankings for the path alternatives based on the criteria weights 

listed in Table 3. 

 

Table 14: Distance Value and Index Value by Path through the Network 

      

Name Distance from Ip Distance from In Ip + In In / Ip + In Rank 

1 0.184442369 0.184442369 0.368884737 0.5 4 

2 0.185499629 0.185499629 0.370999258 0.5 4 

3 0.191410373 0.139271504 0.330681877 0.42116461 8 

4 0.097641683 0.072777814 0.170419497 0.427050983 7 

5 0.112352805 0.153970441 0.266323245 0.57813369 2 

6 0.158897276 0.14241298 0.301310256 0.472645644 6 

7 0.064549722 0.095742711 0.160292433 0.597300252 1 

8 0.155043418 0.200160192 0.35520361 0.563508327 3 

 

Now that the preferred path through the shortest path problem has been 

examined, other criteria weights should be looked at to see if the result holds true.  

Table 15 shows a change in criteria weights from all equal to 0.25 to an emphasis on the 

minimum completion time which now has a weight equal to 0.4, resulting in a weight of 
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0.1 on the maximum completion time. The remaining two criteria, min cost and max 

cost, correspond to the original weights of 0.25.   

Table 15: Emphasis on Minimum Completion Time 

    

Min Time Max Time Min Cost Max Cost 

0.4 0.1 0.25 0.25 

 
Table 16 shows the updated rankings that correspond to the new criteria weights listed 

in Table 15.   

Table 16: Rankings - Min Time Emphasis 

      

Dist from Ip Dist from In Ip + In In / Ip + In New Rank Original Rank 

0.199167571 0.15183 0.35100 0.43257 6 4 

0.205130816 0.18798 0.39311 0.47819 5 4 

0.134709137 0.09848 0.23319 0.42232 7 8 

0.310412519 0.21804 0.52845 0.41260 8 7 

0.130459589 0.12486 0.25532 0.48904 4 2 

0.182604411 0.17652 0.35912 0.49153 3 6 

0.088975652 0.13045 0.21942 0.59450 1 1 

0.197500406 0.21023 0.40774 0.51562 2 3 

 
Another crucial example of how critical criteria weights change the final 

rankings is when the criteria weights reflect an emphasis on maximum completion time. 

Table 17 shows the updated criteria weights that will be used in the TOPSIS 

calculations. 

Table 17: Criteria Weights - Max Time Emphasis 

    

Min Time Max Time Min Cost Max Cost 

0.1 0.4 0.25 0.25 

 
Table 18 clearly shows the difference in rankings when the New Rank and Old Rank 

columns are examined.  
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Table 18: Rankings - Max Time Emphasis 

      

Dist from Ip Dist from In Ip + In In / Ip + In New Rank Original Rank 

0.32416 0.27847 0.60263 0.46209 6 4 

0.24483 0.22845 0.47329 0.48269 4 4 

0.43037 0.28322 0.71359 0.39690 8 8 

0.21213 0.15042 0.36256 0.41490 7 7 

0.23713 0.26555 0.50268 0.52827 1 2 

0.20515 0.21119 0.41634 0.50726 2 6 

0.23878 0.24211 0.48089 0.50346 3 1 

0.27439 0.24410 0.51848 0.47079 5 3 

 

For comparison purposes, an emphasis will be put on both the remaining criteria 

in Tables 19 and 20. Table 19 corresponds to a higher weight associated with the 

minimum cost and Table 20 depicts the change of weight to the maximum cost criteria. 

Table 19: Rankings - Min Cost Emphasis 

      

Dist from Ip Dist from In Ip + In In / Ip + In New Rank Original Rank 

0.16328 0.10024 0.26352 0.38038 8 4 

0.09816 0.08020 0.17836 0.44967 6 4 

0.20730 0.18064 0.38794 0.46563 5 8 

0.12806 0.19321 0.32127 0.60140 1 7 

0.30668 0.22308 0.52976 0.42110 7 2 

0.05826 0.06157 0.11983 0.51384 2 6 

0.18748 0.16497 0.35246 0.46807 4 1 

0.33152 0.30848 0.64000 0.48200 3 3 
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Table 20: Rankings - Max Cost Emphasis 

      

Dist from Ip Dist from In Ip + In In / Ip + In New Rank Original Rank 

0.37520 0.30917 0.68437 0.45176 6 4 

0.38994 0.31751 0.70745 0.44881 7 4 

0.20097 0.22714 0.42811 0.53057 2 8 

0.12806 0.19321 0.32127 0.60140 1 7 

0.20405 0.16885 0.37290 0.45280 5 2 

0.37135 0.29603 0.66737 0.44357 8 6 

0.24742 0.20530 0.45272 0.45349 4 1 

0.12442 0.11996 0.24438 0.49088 3 3 

 
Table 21 shows a direct comparison of the ranking of the preferred paths across 

the changes heavier weight criteria scenarios. The column of Rank – All Equal represents 

the path ranking when the criteria are all 0.25. Min Time represents when it has a higher 

priority than Max Time with the criteria weights corresponding to 0.4 and 0.1 with the 

cost criteria both remaining equal to 0.25. The following columns depict the rankings 

when each subsequent criterion contains a higher weight value. 

Table 21: Rankings – Emphasized Criteria 

     

Rank - All 

Equal 

Rank - Min 

Time 

Rank - Max 

Time 

Rank - Min 

Cost 

Rank - Max 

Cost 

4 6 6 8 6 

4 5 4 6 7 

8 7 8 5 2 

7 8 7 1 1 

2 4 1 7 5 

6 3 2 2 8 

1 1 3 4 4 

3 2 5 3 3 
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Chapter 5: Analysis and Discussion 

Chapter 5 presents and discusses the results of the experimental testing that was 

previously outlined in Chapter 4. 

The first step in the analysis was to collect the interval values of maximum and 

minimum totals together in order to compare the alternatives.  Figures 3 – 10 show the 

ranges of both the time to complete the project and cost associated with each time as 

well as the congregation of all alternative on one xy-plane. Figure 11 shows the 

combination of all the alternatives congregated on one plot. The differences between the 

alternatives is not as clear as one might expected when directly compared visually, thus 

the data is shown to be nondominated.  Path data with higher differences will have 

larger areas, for example, path 1 contains a larger interval on both time and cost than 

Path 2, which can be seen when examining the difference in size on the plot. 

Alternatives with large differences in their time intervals will have wider shapes to 

demonstrate the characteristic, while paths with wide interval values when considering 

costs will have tall shapes associated on the xy-plane. The primary objective of the 

visual inspection attempts to demonstrate a need for more analysis before choosing an 

alternative. 

5.1 Visual Comparative Analysis 

When directly comparing the plots of the interval data, there is no solution that 

looks to be better than any other. There are either tradeoffs in the range of data or there 

is an extreme value contained within the path’s interval data. The decision on which 

path to select looks to depend upon the decision maker’s criteria. The decision maker 

has to weigh whether or not it is acceptable for the criteria to take on any of the 
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possibilities within the interval as each possibility has a likelihood to occur (Zieliński, 

2004). 

One interesting example where the decision maker might decide to pursue a 

high-risk path would be path 8, which has the widest values for both completion time 

and overall cost of [18,75] and [24, 81] respectively.  If the decision maker is prone to 

risk, he might choose to work with an option that contains both the lowest and highest 

possibilities within the data set.  A more conservative decision maker would consider 

alternatives with values closer together, which would represent an alternative that would 

minimize the possibility of deviation from the original decision.   

The listed scenarios each contain some degree of risk, either in the completion 

time, the cost, or both. For example, path 1 offers the possibility of completing the 

construction project in 53 days for $22 million dollar, which seems like an attractive 

option until the decision maker sees that this alternative could potentially last as long as 

75 days and cost up to $86 million.  The interval values associated across the path 

alternatives reinforce the notion that the decision maker would need to weigh the 

options carefully before deciding, especially when dealing with values that range from 

58.5 days to nearly 69.5 and costs from $38 million to $70 million.  Another interesting 

example is path 5, whose main risk is primarily located in the range of potential 

completion time values.  The wide possibilities associated with time range from 36.75 

to 62.25, but the cost of this alternative has a rather narrow range of $47 million to $59 

million. Making the decision on path 5 is less concerned with cost and more about the 

time values, however, the low difference in cost may make the risk worth it to the 

decision maker.  
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5.2 TOPSIS 

 Technique for order preference by similarity to ideal solution (TOPSIS) was 

utilized in the case study to determine the preferred path through the construction 

network based on the decision maker’s criteria weight inputs.  In this case study, 

TOPSIS allows for a quantitative method for ranking weighted criteria when 

considering a high quantity of data.  It is important to note that the criteria weights that 

were initially utilized were equal across the four criteria for the base case scenario but 

subsequent weight changes are both discussed in the results section and available for 

reference in Appendix A.  After examining the impact of changes to the criteria 

weights, it is necessary to use multiple runs to make a better-informed decision. 

 When looking at the original network data with each path’s corresponding 

TOPSIS ranking, it is interesting to note that both paths 1 and 2 have the same rank, 

however, Path 7 was ranked as the preferred path through the network from source to 

sink. When examining its inherent data, it does not have the lowest minimum time nor 

minimum cost but the interval maximum and minimum ranges are not the largest, 

corresponding to a range of 12.5 days and only $16.5 million.  

Table 22: Data with TOPSIS Rankings 

       

Name Possible Path. Min Time Max Time Min Cost Max Cost Rank 

1 1, 4, 7 7 17.5 16.00 26.00 4 

2 1, 2, 5, 7 5.5 18.5 16.50 24.50 4 

3 1, 3, 4, 7 7 19.5 16.00 33.00 8 

4 1, 3, 4, 5, 7 5.5 21.5 15.50 33.50 7 

5 1, 3, 6, 7 7 17.5 9.50 28.00 2 

6 1, 4, 5, 7 5.5 19.5 15.50 26.50 6 

7 1, 4, 6, 7 6 18.5 12.50 29.00 1 

8 1, 3, 4, 6, 7 6 20.5 12.50 36.00 3 
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It is important to note that had the weighted criteria been applied differently, the 

outcome would have reflected a different ranking outcome.  Table 23 shows the 

possible outcomes had the decision maker applied a heavier weight to one criteria over 

another. In this case study, the criteria weight all sum to 1 with the original TOPSIS 

weights corresponding to each criterion having values of 0.25.  Table 23 depicts the 

ranking changes had the minimum or maximum of each type of data, time and cost, 

been heavier weighted. For calculation purposes, the change in weights correspond to a 

higher weight of 0.40 for an emphasized criterion and 0.1 for its associated data.  The 

remaining criteria remained unchanged for this comparison. 

Table 23: Rankings - Emphasized Criteria 

       

Name Path 
Rank - 

All Equal 

Rank - 

Min Time 

Rank - 

Max Time 

Rank - 

Min Cost 

Rank - 

Max Cost 

1 1, 4, 7 4 6 6 8 6 

2 1, 2, 5, 7 4 5 4 6 7 

3 1, 3, 4, 7 8 7 8 5 2 

4 1, 3, 4, 5, 7 7 8 7 1 1 

5 1, 3, 6, 7 2 4 1 7 5 

6 1, 4, 5, 7 6 3 2 2 8 

7 1, 4, 6, 7 1 1 3 4 4 

8 1, 3, 4, 6, 7 3 2 5 3 3 

 

It is interesting to note the paths 1, 2 and 8 are never ranked as the preferred path 

through the network but correspond to rankings as high as 2 and as low as 8.  

Additionally, path 4, while ranked 1 for both Min Cost and Max Cost, ranked 7 and 8 

when considering time.   

The results from TOPSIS allows the decision maker to determine the preferred 

path through the network, a critical comparison that would have been difficult to 

determine through visual inspection alone when considering the volatility of the 
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rankings across the emphasized criteria. The previously mentioned ranking differences 

demonstrate the critical importance of incorporating multiple objective data when 

making a decision; thusly proving the need for more robust multi-objective comparison 

tools in industry. 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 

 The result and analyses in chapter 5 prove that the usage of Pareto optimal 

alternatives with a ranking algorithm can successfully be applied in a discrete multi-

criteria decision making situation even when interval data is present.  Also, it was noted 

that the decision maker’s emphasized criteria drastically affected the TOPSIS rankings 

and had the potential to change the preferred path through the construction network. 

The extreme changes in values across the criteria weights in the final comparison 

demonstrates that multiple scenarios should be considered when making a multicriteria 

decision. Specifically, when using TOPSIS, the implemented criteria weights need to be 

carefully examined and defined prior to using the algorithm to rank alternatives.  

After looking at final data, there were several assumptions that need to be 

reexamined in order to create a more robust data decision tool, specifically the notion 

that the values between the nodes are held constant.  In a real-world situation, the time 

between nodes would not be held constant but would rather evolve as the completion 

times finish.  The assumption that the overall completion time would not change would 

not hold true as project can finish ahead of schedule and behind schedule, but rarely 

exactly as initially planned.  In order to create a more useful version of the decision 

tool, a more robust problem needs to be examined. It might be interesting to recalculate 

the rakings of TOPSIS after a node completes its activity. The addition of actual 

completion time could have an effect on the path rankings.  Additionally, the 

assumption that allocating extra resources to an activity node would not reduce the 

completion time needs revisiting.  Depending on the decision maker’s more heavily 
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weighted criteria, whether it be time or cost, there are existing strategies that could be 

utilized to speed up or reduce overall completion time and cost.  The notion of project 

crashing could be added to this comparison to demonstrate a more interesting case 

study. 

6.2 Application 

 The primary object of the case study is to compare interval valued Pareto 

optimal alternatives that are measured using more than one objective in the context of 

determining the preferred path through a source to sink construction network.  The use 

of interval data permits for the incorporation of uncertainty in decision making 

situations, allowing for improved mathematical models and a better representation of 

real world problems in a research setting. This case study demonstrates the many 

considerations that need to be made when examining tradeoff relationships including 

criteria weights and their associated impacts on the multiobjective ranking algorithm. 

The described approach of interval valued nondominated alternatives allows the 

decision maker to direct compare traditionally undistinguishable alternatives.  

6.3 Future Work  

A need to find ways to incorporate uncertainty in the decision making process 

will always exist, especially when multicriteria decisions need to be made.  Proposed is 

a case study on an application of TOPSIS using non-dominated interval data. This case 

study can be expanded to include more than two variables to make models more robust 

and therefore more useful to the decision maker. Additionally, there exist opportunities 

to expand the field of study concerning Pareto optimal data comparisons that consider 

more elaborate representations of uncertainty where both stochastic and deterministic 
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models and data are included. Conclusively, a case study involving project crashing as 

well as an investigation of recalculating rankings as the project moves through the 

network remains to be evaluated.   
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Appendix A – TOPSIS Data 

      

Name 
Possible 

Path. 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

1 1, 4, 7 7 17.5 16.00 26.00 

2 1, 2, 5, 7 5.5 18.5 16.50 24.50 

3 1, 3, 4, 7 7 19.5 16.00 33.00 

4 1, 3, 4, 5, 7 5.5 21.5 15.50 33.50 

5 1, 3, 6, 7 7 17.5 9.50 28.00 

6 1, 4, 5, 7 5.5 19.5 15.50 26.50 

7 1, 4, 6, 7 6 18.5 12.50 29.00 

8 1, 3, 4, 6, 7 6 20.5 12.50 36.00 

 

 

 

Normalized Decision Matrix - Step 2 

Name Possible Path Min Time Max Time Min Cost Max Cost 

1 1, 4, 7 0.238667185 0.636445827 0.159111457 0.716001556 

2 1, 2, 5, 7 0.374765844 0.524672182 0.149906338 0.749531689 

3 1, 3, 4, 7 0.393919299 0.787838597 0.262612866 0.393919299 

4 1, 3, 4, 5, 7 0.650944555 0.520755644 0.390566733 0.390566733 

5 1, 3, 6, 7 0.210558722 0.561489925 0.631676166 0.491303684 

6 1, 4, 5, 7 0.406894229 0.488273075 0.244136538 0.732409613 

7 1, 4, 6, 7 0.326598632 0.571547607 0.489897949 0.571547607 

8 1, 3, 4, 6, 7 0.452910814 0.566138517 0.67936622 0.113227703 

 

Normalized Decision Matrix - Step 1 

Name 
Possible 

Path 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Attribute 

Weights 

1 1, 4, 7 3 8 2 9 12.56980 

2 1, 2, 5, 7 5 7 2 10 13.34166 

3 1, 3, 4, 7 3 6 2 3 7.615773 

4 1, 3, 4, 5, 7 5 4 3 3 7.681145 

5 1, 3, 6, 7 3 8 9 7 14.24780 

6 1, 4, 5, 7 5 6 3 9 12.28820 

7 1, 4, 6, 7 4 7 6 7 12.24744 

8 1, 3, 4, 6, 7 4 5 6 1 8.831760 
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Weighted Decision Matrix 

Name 
Possible 

Path 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

1 1, 4, 7 0.059667 0.159111 0.03978 0.179 

2 1, 2, 5, 7 0.093691 0.131168 0.03748 0.187383 

3 1, 3, 4, 7 0.09848 0.19696 0.06565 0.09848 

4 1, 3, 4, 5, 7 0.162736 0.130189 0.09764 0.097642 

5 1, 3, 6, 7 0.05264 0.140372 0.15792 0.122826 

6 1, 4, 5, 7 0.101724 0.122068 0.06103 0.183102 

7 1, 4, 6, 7 0.08165 0.142887 0.12247 0.142887 

8 1, 3, 4, 6, 7 0.113228 0.141535 0.16984 0.028307 

 

Weighted Standardized Decision Matrix – 0.25 All - Max 

Name Possible Path Min Time Max Time Min Cost Max Cost Max 

1 1, 4, 7 0.05967 0.15911 0.03978 0.17900 0.17900 

2 1, 2, 5, 7 0.09369 0.13117 0.03748 0.18738 0.18738 

3 1, 3, 4, 7 0.09848 0.19696 0.06565 0.09848 0.19696 

4 1, 3, 4, 5, 7 0.16274 0.13019 0.09764 0.09764 0.16274 

5 1, 3, 6, 7 0.05264 0.14037 0.15792 0.12283 0.15792 

6 1, 4, 5, 7 0.10172 0.12207 0.06103 0.18310 0.18310 

7 1, 4, 6, 7 0.08165 0.14289 0.12247 0.14289 0.14289 

8 1, 3, 4, 6, 7 0.11323 0.14153 0.16984 0.02831 0.16984 

 

Weighted Standardized Decision Matrix - 0.25 All - Min 

Name Possible Paths Min Time Max Time Min Cost Max Cost Min 

1 1, 4, 7 0.05967 0.15911 0.03978 0.17900 0.03978 

2 1, 2, 5, 7 0.09369 0.13117 0.03748 0.18738 0.03748 

3 1, 3, 4, 7 0.09848 0.19696 0.06565 0.09848 0.06565 

4 1, 3, 4, 5, 7 0.16274 0.13019 0.09764 0.09764 0.09764 

5 1, 3, 6, 7 0.05264 0.14037 0.15792 0.12283 0.05264 

6 1, 4, 5, 7 0.10172 0.12207 0.06103 0.18310 0.06103 

7 1, 4, 6, 7 0.08165 0.14289 0.12247 0.14289 0.08165 

8 1, 3, 4, 6, 7 0.11323 0.14153 0.16984 0.02831 0.02831 
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Positive and Negative Ideal Values – 0.25 All 

Name Possible Path Max Min 

1 1, 4, 7 0.179000389 0.039777864 

2 1, 2, 5, 7 0.187382922 0.037476584 

3 1, 3, 4, 7 0.196959649 0.065653216 

4 1, 3, 4, 5, 7 0.162736139 0.097641683 

5 1, 3, 6, 7 0.157919041 0.05263968 

6 1, 4, 5, 7 0.183102403 0.061034134 

7 1, 4, 6, 7 0.142886902 0.081649658 

8 1, 3, 4, 6, 7 0.169841555 0.028306926 

 

TOPSIS Rankings - 0.25 All 

Distance from Ip Distance from In Ip + In In / Ip + In Rank 

0.18444 0.18444 0.36888 0.50000 4 

0.18550 0.18550 0.37100 0.50000 4 

0.19141 0.13927 0.33068 0.42116 8 

0.09764 0.07278 0.17042 0.42705 7 

0.11235 0.15397 0.26632 0.57813 2 

0.15890 0.14241 0.30131 0.47265 6 

0.06455 0.09574 0.16029 0.59730 1 

0.15504 0.20016 0.35520 0.56351 3 

 

Weighted Decision Matrix - Min Time Emphasized 

Name Possible Path Min Time Max Time Min Cost Max Cost 

1 1, 4, 7 0.095467 0.063645 0.03978 0.179 

2 1, 2, 5, 7 0.149906 0.052467 0.03748 0.187383 

3 1, 3, 4, 7 0.157568 0.078784 0.06565 0.09848 

4 1, 3, 4, 5, 7 0.260378 0.052076 0.09764 0.097642 

5 1, 3, 6, 7 0.084223 0.056149 0.15792 0.122826 

6 1, 4, 5, 7 0.162758 0.048827 0.06103 0.183102 

7 1, 4, 6, 7 0.130639 0.057155 0.12247 0.142887 

8 1, 3, 4, 6, 7 0.181164 0.056614 0.16984 0.028307 
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Weighted Standardized Decision Matrix 

Name Possible Path Min Time Max Time Min Cost Max Cost Max 

1 1, 4, 7 0.09547 0.06364 0.03978 0.17900 0.17900 

2 1, 2, 5, 7 0.14991 0.05247 0.03748 0.18738 0.18738 

3 1, 3, 4, 7 0.15757 0.07878 0.06565 0.09848 0.15757 

4 1, 3, 4, 5, 7 0.26038 0.05208 0.09764 0.09764 0.26038 

5 1, 3, 6, 7 0.08422 0.05615 0.15792 0.12283 0.15792 

6 1, 4, 5, 7 0.16276 0.04883 0.06103 0.18310 0.18310 

7 1, 4, 6, 7 0.13064 0.05715 0.12247 0.14289 0.14289 

8 1, 3, 4, 6, 7 0.18116 0.05661 0.16984 0.02831 0.18116 

 

Distance from Positive Ideal Value 

Nam

e 

Possible 

Path 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

Ip 

1 1, 4, 7 0.00698 0.01331 0.01938 0.00000 0.19917 

2 1, 2, 5, 7 0.00140 0.01820 0.02247 0.00000 0.20513 

3 1, 3, 4, 7 0.00000 0.00621 0.00845 0.00349 0.13471 

4 1, 3, 4, 5, 7 0.00000 0.04339 0.02648 0.02648 0.31041 

5 1, 3, 6, 7 0.00543 0.01036 0.00000 0.00123 0.13046 

6 1, 4, 5, 7 0.00041 0.01803 0.01490 0.00000 0.18260 

7 1, 4, 6, 7 0.00015 0.00735 0.00042 0.00000 0.08898 

8 1, 3, 4, 6, 7 0.00000 0.01551 0.00013 0.02337 0.19750 

 

Distance from Negative Ideal Values 

Nam

e 

Possible 

Paths 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

In 

1 1, 4, 7 0.00310 0.00057 0.00000 0.01938 0.15183 

2 1, 2, 5, 7 0.01264 0.00022 0.00000 0.02247 0.18798 

3 1, 3, 4, 7 0.00845 0.00017 0.00000 0.00108 0.09848 

4 1, 3, 4, 5, 7 0.04339 0.00000 0.00208 0.00208 0.21804 

5 1, 3, 6, 7 0.00079 0.00000 0.01036 0.00445 0.12486 

6 1, 4, 5, 7 0.01298 0.00000 0.00015 0.01803 0.17652 

7 1, 4, 6, 7 0.00540 0.00000 0.00427 0.00735 0.13045 

8 1, 3, 4, 6, 7 0.02337 0.00080 0.02003 0.00000 0.21023 

 

 

 



47 

 

TOPSIS Rankings - Min Time Emphasized 

Name Distance from Ip Distance from In Ip + In In / Ip + In Rank 

1 0.19917 0.15183 0.35100 0.43257 6 

2 0.20513 0.18798 0.39311 0.47819 5 

3 0.13471 0.09848 0.23319 0.42232 7 

4 0.31041 0.21804 0.52845 0.41260 8 

5 0.13046 0.12486 0.25532 0.48904 4 

6 0.18260 0.17652 0.35912 0.49153 3 

7 0.08898 0.13045 0.21942 0.59450 1 

8 0.19750 0.21023 0.40774 0.51562 2 

 

Distance from Positive Ideal Value – Max Time Emphasized 

Nam

e 

Possible 

Path 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

Ip 

1 1, 4, 7 0.05323 0.00000 0.04614 0.00571 0.32416 

2 1, 2, 5, 7 0.02972 0.00000 0.02972 0.00051 0.24483 

3 1, 3, 4, 7 0.07603 0.00000 0.06224 0.04694 0.43037 

4 1, 3, 4, 5, 7 0.02051 0.00000 0.01225 0.01225 0.21213 

5 1, 3, 6, 7 0.04143 0.00000 0.00445 0.01036 0.23713 

6 1, 4, 5, 7 0.02391 0.00000 0.01803 0.00015 0.20515 

7 1, 4, 6, 7 0.03840 0.00000 0.01127 0.00735 0.23878 

8 1, 3, 4, 6, 7 0.03282 0.00000 0.00321 0.03926 0.27439 

 

Distance from Negative Ideal Values – Max Time Emphasized 

Nam

e 

Possible 

Paths 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

In 

1 1, 4, 7 0.00000 0.05323 0.00025 0.02407 0.27847 

2 1, 2, 5, 7 0.00000 0.02972 0.00000 0.02247 0.22845 

3 1, 3, 4, 7 0.00000 0.07603 0.00069 0.00349 0.28322 

4 1, 3, 4, 5, 7 0.00000 0.02051 0.00106 0.00106 0.15042 

5 1, 3, 6, 7 0.00000 0.04143 0.01873 0.01036 0.26555 

6 1, 4, 5, 7 0.00000 0.02391 0.00041 0.02028 0.21119 

7 1, 4, 6, 7 0.00000 0.03840 0.00807 0.01215 0.24211 

8 1, 3, 4, 6, 7 0.00029 0.03926 0.02003 0.00000 0.24410 
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TOPSIS Rankings - Max Time Emphasized 

Name Distance from Ip Distance from In Ip + In In / Ip + In Rank 

1 0.32416 0.27847 0.60263 0.46209 6 

2 0.24483 0.22845 0.47329 0.48269 4 

3 0.43037 0.28322 0.71359 0.39690 8 

4 0.21213 0.15042 0.36256 0.41490 7 

5 0.23713 0.26555 0.50268 0.52827 1 

6 0.20515 0.21119 0.41634 0.50726 2 

7 0.23878 0.24211 0.48089 0.50346 3 

8 0.27439 0.24410 0.51848 0.47079 5 

 

Distance from Positive Ideal Value - Min Cost Emphasized 

Nam

e 

Possible 

Path 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

Ip 

1 1, 4, 7 0.00989 0.00000 0.00911 0.00766 0.16328 

2 1, 2, 5, 7 0.00140 0.00000 0.00507 0.00316 0.09816 

3 1, 3, 4, 7 0.00970 0.00000 0.00845 0.02483 0.20730 

4 1, 3, 4, 5, 7 0.00000 0.00106 0.00004 0.01530 0.12806 

5 1, 3, 6, 7 0.04001 0.01261 0.00000 0.04143 0.30668 

6 1, 4, 5, 7 0.00041 0.00000 0.00060 0.00238 0.05826 

7 1, 4, 6, 7 0.01307 0.00282 0.00000 0.01927 0.18748 

8 1, 3, 4, 6, 7 0.02513 0.01696 0.00000 0.06782 0.33152 

 

Distance from Negative Ideal Values - Min Cost Emphasized 

Nam

e 

Possible 

Paths 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

In 

1 1, 4, 7 0.00000 0.00989 0.00002 0.00014 0.10024 

2 1, 2, 5, 7 0.00114 0.00507 0.00000 0.00022 0.08020 

3 1, 3, 4, 7 0.00349 0.02483 0.00431 0.00000 0.18064 

4 1, 3, 4, 5, 7 0.01530 0.00831 0.01373 0.00000 0.19321 

5 1, 3, 6, 7 0.00001 0.00833 0.04143 0.00000 0.22308 

6 1, 4, 5, 7 0.00081 0.00238 0.00060 0.00000 0.06157 

7 1, 4, 6, 7 0.00060 0.00735 0.01927 0.00000 0.16497 

8 1, 3, 4, 6, 7 0.01038 0.01696 0.06782 0.00000 0.30848 
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TOPSIS Rankings - Min Cost Emphasized 

Name Distance from Ip Distance from In Ip + In In / Ip + In Rank 

1 0.16328 0.10024 0.26352 0.38038 8 

2 0.09816 0.08020 0.17836 0.44967 6 

3 0.20730 0.18064 0.38794 0.46563 5 

4 0.12806 0.19321 0.32127 0.60140 1 

5 0.30668 0.22308 0.52976 0.42110 7 

6 0.05826 0.06157 0.11983 0.51384 2 

7 0.18748 0.16497 0.35246 0.46807 4 

8 0.33152 0.30848 0.64000 0.48200 3 

 

Distance from Positive Ideal Value - Max Cost Emphasized 

Nam

e 

Possible 

Path 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

Ip 

1 1, 4, 7 0.05141 0.01620 0.07316 0.00000 0.37520 

2 1, 2, 5, 7 0.04249 0.02844 0.08112 0.00000 0.38994 

3 1, 3, 4, 7 0.00970 0.00000 0.02914 0.00155 0.20097 

4 1, 3, 4, 5, 7 0.00000 0.00106 0.01530 0.00004 0.12806 

5 1, 3, 6, 7 0.02070 0.00315 0.01778 0.00000 0.20405 

6 1, 4, 5, 7 0.03657 0.02921 0.07212 0.00000 0.37135 

7 1, 4, 6, 7 0.02160 0.00735 0.03227 0.00000 0.24742 

8 1, 3, 4, 6, 7 0.00080 0.00000 0.00542 0.00926 0.12442 

 

Distance from Negative Ideal Values - Max Cost Emphasized 

Nam

e 

Possible 

Paths 

Min 

Time 

Max 

Time 

Min 

Cost 

Max 

Cost 

Distance from 

In 

1 1, 4, 7 0.00191 0.02051 0.00000 0.07316 0.30917 

2 1, 2, 5, 7 0.00619 0.01350 0.00000 0.08112 0.31751 

3 1, 3, 4, 7 0.00522 0.02914 0.00000 0.01724 0.22714 

4 1, 3, 4, 5, 7 0.01530 0.00831 0.00000 0.01373 0.19321 

5 1, 3, 6, 7 0.00000 0.00770 0.00011 0.02070 0.16885 

6 1, 4, 5, 7 0.00598 0.00954 0.00000 0.07212 0.29603 

7 1, 4, 6, 7 0.00107 0.00882 0.00000 0.03227 0.20530 

8 1, 3, 4, 6, 7 0.00462 0.00926 0.00051 0.00000 0.11996 
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TOPSIS Rankings - Max Cost Emphasized 

Name Distance from Ip Distance from In Ip + In In / Ip + In Rank 

1 0.37520 0.30917 0.68437 0.45176 6 

2 0.38994 0.31751 0.70745 0.44881 7 

3 0.20097 0.22714 0.42811 0.53057 2 

4 0.12806 0.19321 0.32127 0.60140 1 

5 0.20405 0.16885 0.37290 0.45280 5 

6 0.37135 0.29603 0.66737 0.44357 8 

7 0.24742 0.20530 0.45272 0.45349 4 

8 0.12442 0.11996 0.24438 0.49088 3 

 


