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Chapter 1- Introduction 

Species conservation is becoming increasingly important as the environmental 

impacts from growing human populations continue to reduce biodiversity at an 

alarming rate (Thomas et al 2004). To determine the best management plans for 

preserving biodiversity, biologists must understand the biology of rare species 

(Kunin and Gaston 1993). For the majority of rare plant species, the basic biological 

information that explains population growth and persistence is lacking (Schultz and 

Gerber 2002). Specifically, inadequate information about current population sizes, 

potential niche locations and requirements for survival at early life stages restrict 

management and conservation decisions and efforts. Current population sizes and the 

eminent threat of that population to succumb to potential extinction risks are used to 

determine species conservation rankings (Harmon and Braude 2010). Rare species 

have small populations that are susceptible to genetic drift and the loss of genetic 

diversity through environmental fluctuations (Thomas 1994).  

 

The international conservation rating provided by Global Trees for Alnus maritima 

(seaside alder) is ranked as endangered because populations are genetically distinct 

with low genetic diversity within each population and vulnerable to impacts from 

human development and climate change (Shaw et al. 2014).  Each population is 

faced with different potential threats and are given state level conservation ratings 

based on population size and risks that threaten the populations. The northern most 

population, Alnus maritima subsp. maritima, has a state conservation ranking of 
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critically imperiled (S1) in Maryland and imperiled status (S2) in Delaware (FWS). 

Current population size in Delmarva Peninsula is unknown but the population is 

predicted to decrease as sea levels begin to rise and urban development alters this 

fresh water system. Alnus maritima subsp. oklahomensis is similar to A. maritima 

subsp. maritima, in that the current population size is largely unknown and 

population threats vary from decreased water from aquifers to lack of new 

individuals establishing from seed, resulting in a state conservation ranking of 

imperiled (S2, Oklahoma Biological Survey 2014).   Lastly, Alnus maritima subsp. 

georgiensis has a state conservation ranking of critically imperiled (S1). Having a 

population size of a few hundred individuals, this population has a lack of genetic 

diversity and exposure to runoff from neighboring agricultural lands may negatively 

impact current habitat (Jones and Gibson 2011, Shaw et al. 2014). Because of the 

large spatial separation and the genetic identity of each subspecies, Shaw et al. 

(2014) suggest protecting all populations because of the potential for further decrease 

in genetic diversity due to anthropological development and climate change. 

Understanding the risks and limitations of each subspecies will help conservationists 

determine the most efficient way to preserve this species.  

 

 The studies in the following chapters examine population size and seedling 

establishment for conservation of the A. maritima subsp. oklahomensis population. 

Because the current population size for A. maritima in Oklahoma is unknown, the 

survey in Chapter 2 provides the first estimate of populations size for populations 

that had been sampled for genetic analysis (Jones and Gibson 2011, 2012). Also in 
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this chapter an estimate of A. maritima’s potential niche using species distribution 

models was developed. Conservationists often use species distribution models to 

determine the potential habitat suitability, areas for surveying, diversity hotspots and 

potential areas for mitigation. Species distribution models are widely used to make 

conservation decisions (Guisan and Zimmermann 2000).  

 

In chapter 3, the study investigates the lack of establishment of genetically new 

individuals at the seed and seedling life stages. Previous research found that A. 

maritima seeds have reduced total seed germination after seeds experienced -15°C 

and -20°C cold stratification in the laboratory (Schrader and Graves 2000a). 

However, these temperatures do not reflect natural temperatures, therefore, I 

evaluated how field stratification influenced seed germination totals and germination 

rate. If seeds are found to survive field stratification and germination occurs readily, 

then the seedling life stage potentially becomes the more important life stage 

hindering establishment. 

 

Also in chapter 3, another study evaluated how altering the biotic and abiotic 

environment through fire and clipping influenced survival and establishment of 

seaside alder. I hypothesized that seedlings would have increased growth and 

survival in plots that experienced burning and clipped than in control plots. Because 

seaside alder has relatively slow shoot growth under greenhouse conditions 

(Schrader and Graves 2000b, Schrader et al. 2006, Gibson et al. 2008), I predicted 
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that fire and clipping would reduce competition above ground, resulting in increased 

growth and survival in burn plots compared to control plots.   

 

Also in this chapter, this study examined the symbiotic relationship between A. 

martitima and their microbiome. For this study, individuals were inoculated with 

crushed nodule suspension then transplanted inoculated and reference plants into the 

field. I predicted that inoculated alders will have increased growth and survival 

compared to reference plants as seen in other greenhouse alder studies. I 

hypothesized the foliar nitrogen isotope signatures would be different between 

reference and inoculated individuals at the time of planting due to inoculated 

individuals having a different nitrogen source than reference plants. 

 

These studies provide insight into the limitations of A. maritima establishment at the 

seed and seedling life stage.  Further, they provide baseline population size data and 

potential areas for future population census studies. Through determining the factors 

limiting establishment and the population sizes of A. maritima, conservationists can 

make more informed management decisions which may lead to the successful 

preservation of this species.  
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Chapter 2- Population survey and species distribution models of the 

rare tree Alnus maritima in Oklahoma 

 

Cassie Ehardt-Kistenmacher, Department of Microbiology and Plant Biology, 

University of Oklahoma, Norman, OK 

 

J. Phil Gibson, Department of Microbiology and Plant Biology, University of 

Oklahoma, Norman, OK 

 

To be submitted to Castanea 

Abstract 

Climate change and increasing human impacts threaten rare, endemic plant 

populations through increased habitat fragmentation and loss of genetic diversity. 

Alnus maritima, the tree species with the most highly disjunct distribution in North 

America, is critically endangered in Oklahoma. It occurs in two Oklahoma counties, 

but there are no known estimates of population size or distribution within them. In 

this study, we provide the (i) first detailed estimates of current population size, (ii) 

determine areas with suitable habitat for future surveys or conservation efforts at 

state and local levels and (iii) identify environmental factors that determine A. 

maritima’s distribution in Oklahoma. We surveyed approximately 1.3 km2 in 

Johnston and Pontotoc counties and counted approximately 4,842 A. maritima 

individuals. Using MaxEnt, we evaluated habitat suitability for A. maritima based on 

occurrence records and geo-referenced environmental data at the state and local 
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extent. The most likely suitable habitat was identified in the southern portion of 

Oklahoma with isolated hotspots, mostly occurring along the current known 

populations. March maximum temperature and landcover were the most important 

environmental variables for the state and local models, respectively. These results 

provide essential baseline population estimates and identify target areas for future 

conservation efforts. The methods and results from this study can be used to identify 

suitable habitat locations and guide conservation planning for A. maritima in the 

Delmarva Peninsula and Georgia as well.  

 

Keywords: Alnus maritima, Betulaceae, distribution, MaxEnt, survey 

 

Introduction 

Species distribution and population size are two factors commonly used by biologists 

to determine extinction risk for a species (Rabinowitz 1981, Fiedler and Ahouse 

1992). Determining these two factors can be challenging because populations can be 

difficult to reach and surveying large amounts of land is time consuming and costly 

(Fiedler and Jain 1992). As a solution to these challenges, biologist have developed 

Species Distribution Models (SDM) that predict distributions and highlight potential 

areas for occurrence, preservation, reintroduction, and surveillance (Guisan and 

Zimmermann 2000, Kumar and Stohlgren 2009).  

 

Species Distribution Models associate environmental conditions with natural 

occurrence records, typically obtained from herbarium specimen and field surveys, 



	

	 	 9	

to predict probabilities of past, current, and future species distributions (Guisan and 

Zimmermann 2000). However, developing accurate models can be difficult because 

of geographical sampling bias that results from species occurrence records obtained 

from easily assessable locations or clustered survey locations (Ferrier et al. 2002; 

Engler et al. 2004). This problem is especially relevant for rare species which already 

have limited occurrence data. Therefore, conservation biologists have developed 

maximum entropy (MaxEnt) modeling methods to evaluate rare species’ 

distributions because it is effective at generating accurate distribution predictions 

even in instances with few or limited distribution records (Hernandez et al. 2006; 

Pearson et al. 2007). 

 

Alnus maritima (Marsh.) Muhl, ex Nutt (seaside alder, Betulaceae) is a rare, riparian 

tree species that is considered susceptible to extinction in the near future (Shaw et al. 

2014). Despite its name, seaside alder is highly dependent on freshwater, wetland 

environments, characteristically growing immediately adjacent to or in muddy, 

waterlogged soils of rivers, streams, and swamps where it occurs. It is also highly 

shade intolerance (Schrader et al. 2006). Alnus maritima populations occur in 

Delaware, Maryland, Georgia, and Oklahoma, giving it the most highly disjunct 

distribution of any tree species in North America (Little 1975, Stibolt 1981). The 

regional populations are recognized as separate subspecies (Schrader and Graves 

2002, 2004, Jones and Gibson 2011). Alnus maritima subsp. maritima, located in the 

Delmarva Peninsula of Delaware and Maryland, has a state conservation ranking of 

S2 indicating a risk of extinction, but remaining populations are under increasing 
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threat due to saltwater intrusion into their fresh water habitat (FWS, Shaw et al. 

2014). Alnus maritima subsp. georgiensis grows in a lone population containing a 

few hundred individuals in Drummond Swamp located on private land in northwest 

Georgia. This subspecies has a state conservation ranking of S1 denoting it is 

critically imperiled, due to small size and impacts of runoff from surrounding 

agricultural systems (Shaw et al. 2014). The third subspecies, Alnus maritima subsp. 

oklahomensis, grows in south central Oklahoma. It is also has a state conservation 

rank of S1 and is considered critically imperiled due to decreasing quality habitat 

(Shaw et al. 2014). All three regional populations are experiencing declining 

numbers due to succession and lack of recruitment into populations from seeds (Rice 

and Gibson 2009, Shaw et al. 2014). 

 

The absence of current A. maritima population size estimates in Oklahoma is a 

substantial challenge for conservation biologists trying to establish management 

plans for this species. To address this problem, we collected baseline data on the size 

of known Oklahoma populations by censusing numbers of trees on public and 

private lands. We combined these baseline data with geographic information 

obtained from herbarium specimens to build a MaxEnt distribution model to predict 

A. maritima subsp. oklahomensis’ potential distribution in Oklahoma based on key 

environmental variables to guide the development of a management plans for 

existing populations and identify other potential locations where there may be 

additional, currently unknown, individuals. 
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Methods 

Population survey.  We visually surveyed known occurrence locations for seaside 

alder in the United States Fish and Wildlife Service Blue River Public Hunting and 

Fishing Area, Pennington Creek at the Tishomingo National Fish Hatchery, 

Pennington Creek Crossing, and the Camp Simpson Boy Scout of America property 

located in Johnston and Pontotoc Counties (Figure 1). Population surveys were 

conducted by kayak and on foot along the bank on both sides of the streams and 

surrounding areas in the fall of 2011. Because Alnus maritima grows as a multi-

stemmed deciduous tree, we classified a single individual as several stems emerging 

from a common root clump.  

 

MaxEnt model study area.  We conducted MaxEnt distribution modeling at the state 

and local spatial extents to better identify ecological factors influencing seaside alder 

distribution and, consequently, increase overall prediction accuracy of the model 

(Turner 1989, Levin 1992, Wang et al. 2015). Oklahoma has three environmental 

gradients that are critical determinants of plant distributions (Brock et al. 1995, 

McPherson et al. 2007).  First, there is a gradual increase in average annual 

precipitation from the northwest with (mean annual precipitation 50.8 cm) to the 

southeast with a (mean annual precipitation 127 cm).  Second, average growth 

season length gradually decreases from southern Oklahoma (~220 days) to northern 

Oklahoma (~190 days). Third, there is an elevation gradient with the northwest 

region approximately 1,515 meters above sea level, while the southeast region is 110 

meters above sea level. The statewide extent covered the majority of Oklahoma, 
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excluding the xeric panhandle and far western portions of the state that do not 

contain the wetland environments required to support A. maritima populations 

(Figure 1). The local extent analysis included two counties, Johnston and Pontotoc, 

that are known locations for A. maritima presence, and the twelve counties 

(McClain, Garvin, Murray, Carter, Love, Marshall, Bryan, Atoka, Coal, Hughes, 

Seminole and Pottawatomie) that surround them (Figure 1). 

 

MaxEnt model occurrence data and environmental variables.  Eighteen unique 

occurrence records for A. maritima were obtained from the Oklahoma Natural 

Heritage Inventory database and Oklahoma Vascular Plants database for analysis in 

the MaxEnt (version 3.3.3) distribution model (https://www.cs.princeton.edu/~ 

schapire/maxent/; Phillips, et al. 2006). An additional eight occurrence records were 

added from population surveys.  

 

Environmental layers were chosen based on the current knowledge of A. maritima 

biology and were assembled using ESRI ArcGIS 10.3. Alnus maritima is a riparian 

species, therefore we used a stream shapefile from Oklahoma Water Resources 

Board (2011) with a 320-meter buffer zone around the streams to eliminate dry areas 

unlikely to support alders. Average water holding capacity of soil at 25 and 150 cm 

were obtained from SSURGO Downloader (Soil survey staff, ArcGIS 2014). 

Climatic conditions which often influence plant distributions such as average 

maximum and minimum temperature for January, March and July, were obtained 

from PRISM Climate Group (PRISM Climate Group 2013). Results from prior seed 
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germination studies indicated March temperature was important for seed germination 

(see Chapter 3).  January and July are the coldest and warmest months, respectively, 

representing the typical range of temperature for Oklahoma. Duration of greenness 

(length of photosynthetic activity) and time integrated normalized difference 

vegetation index (TIN) were obtained from USGS Remote Sensing Phenology 

(USGS 2015) and were used to determine differences in vegetation types.  Time 

integrated normalized difference vegetation index is the photosynthetic activity 

across the entire growth season.  National landcover data were acquired from the 

Multi-Resolution Land Classification Consortium (Homer et al. 2015) to exclude 

urban and xeric areas where A. maritima would not be found. Elevation data (30 m 

SRTM) were obtained from United States Geological Survey (USGS 2016) to derive 

slope and aspect using surface toolset in the Spatial Analyst extension in ArcGIS. All 

environmental variables were set to the same geographic extent and projection and 

resampled to 30-meter spatial resolution. Then raster files were converted to ASCII 

file type as specified for MaxEnt input (Phillips et al. 2006).  

 

We tested multicollinearity between environmental variables using ENMTools 

(Table 1, Warren et al. 2008, 2010). If two predictor variables had a correlation of 

r	≥ 0.70, one variable was removed. If multiple correlations for one variable were 

present, then the variable containing the largest number of correlations was retained 

and all correlated predictor variables were removed (Kramer-Schadt et al. 2013). The 

remaining variables were imported into MaxEnt.  
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MaxEnt species distribution model.  Because there are few known A. maritima 

populations, the MaxEnt species distribution model was used to predict suitable 

locations for occurrence.  MaxEnt determines distributions based on presence-only 

occurrence data and does not require confirmed absences, meaning biologist need 

only to provide locations where the species occurs, which is a major benefit for 

studying rare species located in inaccessible areas (Hernandez et al. 2006, 

Pearson et al. 2007). By eliminating the need for confirmed absence data, presence 

only models reduce additional surveying that is often strenuous and decrease the 

possibility of false absence data that can negatively influence the prediction of the 

model (Gu and Swihart 2004).  

MaxEnt estimates probability of occurrence as a function of the environmental 

predictors for each grid cell, creating a distribution based on maximum entropy.  

MaxEnt is effective for determining distributions of species with a small number (i.e. 

5-25) of occurrence samples (Stockwell and Peterson 2002; Elith and Leathwick 

2009; Wisz et al. 2008). However, small sample sizes and the potential of sampling 

bias can result in geographic clustering which can influence the predictive power of 

the distribution model (Fourcade et al. 2014). Therefore, to test for spatial 

autocorrelation, we used the Average Nearest Neighbor tool in ArcGIS 10.3 to test 

for clustering of the 26 occurrence samples and found them to be spatially correlated 

(p=0.003, z=-2.9897). To reduce clustering, occurrence data were resampled with a 

500 meter buffer which resulted in the removal of 5 occurrence samples due to 

reduce autocorrelation. Occurrence data were re-evaluated for clustering (p=0.13, 
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z=-1.5038). Occurrence data were then exported as .csv file and formatted according 

to MaxEnt requirements (Phillips et al. 2006).  

Environmental data for MaxEnt were characterized as either continuous or 

categorical data (Phillips et al. 2006, Phillips and Dudik 2008). Because of the lack 

of knowledge about specific environmental thresholds that influence A. maritima, 

only linear and quadratic features were selected to reduce over-parameterization of 

the model (Merow et al. 2013, van Proosdij et al. 2015). A cross-validation method 

was used to minimize the potential effect of bias sampling from the use of herbarium 

occurrence data (Andersen and Beauvais 2013, Merow et al. 2013).  Cross–

validation is a random sub-sampling technique where 80% of the data are used to fit 

the model and the remaining 20% evaluates the model (Merow et al. 2013). With a 

5-fold cross validation, data are split into 5 independent trials, then each trial 

undergoes cross validation to estimate error rate (Merow et al. 2013).   Accuracy of 

the model to predict probability of species occurrence was determined using Area 

under the Curve (AUC) by the Receiver Operating Characteristic.  This Receiver 

Operating Characteristic is the proportion of known occurrences predicted present 

(i.e., sensitivity) compared to proportion of known absences predicted present (1- 

specificity) (Peterson et al. 2008). In MaxEnt, absences are known as pseudo-

absences, generated by the model and are taken from randomly chosen background 

pixels (Phillips et al. 2006, Phillips and Dudik 2008). Because of the use of pseudo-

absences, this method is different from typical Receiver Operating Characteristic 

presence/absence comparisons resulting in a maximum AUC value less than one 
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(Wiley et al. 2003). The AUC is a value used to characterize model performance. 

AUC values >0.9 are deemed highly accurate, 0.7-0.9 moderate accuracy, and <0.7 

as poor accuracy (Hoffman et al. 2008). Jackknife analysis was preformed to 

determine the importance of each environmental factor (Elith et al. 2011, Yang et al. 

2013). MaxEnt model produces a habitat suitability value which is the probability of 

presence given that the occurrence locations have a probability of presence of 0.5 

(Elith et al. 2011).  In jackknife analysis, variables are run independently in the 

model to determine training gain and then compared to the model training gain when 

all variables are used to determine the contribution the variable.  If the training gain 

is high then the variable contributed strongly to the model (Elith et al. 2011, Yang et 

al. 2013).  

Results 

Population survey.  A total of 4,842 individuals were counted across the 4 survey 

locations (Table 2). Blue River Public Hunting and Fishing area was the largest area 

surveyed and had the largest population with 4,430 individuals.  Along Pennington 

Creek, there were two areas surveyed with 203 individuals near Pennington Creek 

Bridge and 59 individuals at the Tishomingo National Fish Hatchery. The Camp 

Simpson Boy Scout Property had one small population at the southern end of 

Delaware Creek Reservoir that contained 146 individuals.  

 

State MaxEnt model.  Habitat suitability for A. maritima generally increased from 

north to south, with the northern portion of the state having a habitat suitability of 
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less than 0.2 and the southern having areas with greater than 0.6 (Figure 2A). 

Overall, the distribution was fragmented with three noticeable areas located in south 

central Oklahoma where current seaside alder populations exist and two more 

isolated locations in southeastern and southwestern Oklahoma where habitat may be 

similar. The model predicted habitat suitability for A. maritima with a mean AUC of 

0.902	± 0.05 (average	± standard deviation, Figure 3A), indicating a robust, accurate 

model. Jackknife analysis identified March average maximum temperature and 

landcover as the two main factors influencing A. maritima distribution and provided 

the most information for the model with a training gain value of approximately 0.6 

(Figure 4A). In contrast, factors such as aspect and soil water holding capacity at 25 

cm had a training gain of zero and were not important to the model.   

 

Local MaxEnt model.  At the county level, the model identified high suitability for 

seaside alder in an area north of the current known distribution in Pontotoc County 

and to the southeast of current known distribution in Bryan and Atoka counties 

(Figure 2B). The mean AUC for the county level was 0.78	±	0.096, indicating 

moderate accuracy (Figure 3B). Jackknife results indicated landcover contributed the 

most to the model with a training gain value of 0.48 (Figure 4B). Soil particle size 

and soil water holding capacity at 150 cm were the second and third most important 

variables with approximate training gain values of 0.18 and 0.14, respectively. 

Aspect added zero gain to the model.    

 

Discussion 
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This study provides the first estimate of the current population size for A. maritima 

in Oklahoma. Our census determined there are approximately 4,650 individuals in 

locations surveyed, with the vast majority growing along the Blue River (Table 2). In 

addition to the visual count of population size, our MaxEnt models provide the first 

GIS-based spatial estimates of A. maritima distribution in Oklahoma. Alnus maritima 

distribution is hypothesized to have been widespread across eastern North America 

in the past (Stibolt 1981). However, the environmental data used in the state and 

local models presented in this study indicate that the distribution in Oklahoma was 

likely more restricted. The state-level MaxEnt model indicated that the most suitable 

areas for seaside alder were located in southern Oklahoma, predominantly in 

locations surrounding the known populations in south central Oklahoma (Figure 2A). 

These results were supported by local-level MaxEnt model that indicated areas of 

high suitability were just outside of the current known A. maritima populations 

(Figure 2B).  When we compared the local and state models, the predictions in 

habitat suitability are similar except that the local-level model shows higher habitat 

suitability values slightly to the north of the known populations and the state-level 

model has higher suitability values to the south of known populations (Figure 5). 

Although these models have differences in predicted habitat suitability, both models 

indicate a restricted range of environmental conditions where A. maritima could 

potentially grow in Oklahoma under current environmental conditions.  

 

Climate is considered to be the most influential variable affecting plant distributions 

at large extents (Cao and Tang 2014). Consistent with this, our results indicate that 
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March maximum temperature is an important determinant of A. maritima distribution 

in Oklahoma. However, March maximum temperature was highly correlated with 

January minimum and maximum temperature (Table 1), which suggests all three 

variables may be equally important. Between January and March, A. maritima seeds 

remain ungerminated in the seed bank until temperatures reach approximately 12°C 

(Ehardt et al. in preparation).   Therefore, these climate variables could indicators of 

potential for seed and seedling survival which are the limiting phase in the seaside 

alder lifecycle for establishment of a new individual (Rice and Gibson 2009, Ehardt 

et al. in preparation).  

 

Temperature variables were more useful in developing the state level model than for 

the local level model because there was very little variability in temperature. Instead, 

the local level model identified landcover as the most important variable in 

determining suitable habitat for A. maritima. The suitable landcover types identified 

by the local level model were forest and water areas, which coincide with current 

known seaside alder populations located along streams in riparian forested areas. 

This habitat is thought to be suitable because sunlight and water are sufficient to 

meet A. maritima photosynthetic demands (Schrader et al. 2006).  Alnus maritima is 

a small tree with no shade tolerance. Therefore, locations with high canopy height 

may be unsuitable areas for growth (Schrader et al. 2006).  This model could 

potentially be improved by including fine resolution imagery that can be used to 

evaluate differences in canopy height (Menges et al. 1999). Analyzing distribution at 
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a finer resolution can also identify other important biotic variables that could 

improve our understanding of the distribution of this rare species.  

 

The greatest challenge to seaside alder conservation is locating and maintaining 

remaining populations. Approximately 95% of Oklahoma land is privately owned 

(U.S. Fish and Wildlife Service 2016), therefore our survey area is restricted and 

further studies should explore for existing populations on private locations. Based on 

our census data and distribution models, there could be an additional 1,000 

individuals located on privately owned land. Our survey provides a valuable estimate 

of A. maritima population size in a protected, and minimal human influenced habitat. 

There are likely other A. maritima populations on private land that we were not able 

to survey.  Specifically, more individuals are likely to occur along Pennington Creek, 

which is indicated by herbarium records, however we were unable to access some of 

these areas due to restrictions from landowners.  Our population survey and MaxEnt 

models can fill in knowledge gaps about A. maritima through providing information 

about future survey locations and possible regeneration locations. The methods from 

this study should be conducted for Delaware, Georgia and Maryland populations to 

determine the current distribution of A. maritima and possibly to evaluate how the 

current human development of these locations could impact the distribution of the 

species.  
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Tables 

Table 1.  Correlation between environmental predictor variables used in species 

distribution model. March Min.:  average March minimum temperature, March 

Max.: average March maximum temperature, July Min.:  average July minimum 

temperature, July Max.: average July maximum temperature, January Min.:  average 

January minimum temperature, January Max.: average January maximum 

temperature, SWHC (25cm): average soil water holding capacity at 25 cm, TIN: 

time-integrated normalized difference vegetation index, SWHC (150cm): average 

soil water holding capacity at 150 cm 
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Table 2. Number of individuals counted in the area surveyed between northern and 

southern points for four locations: Blue River Public Fishing and Hunting Area, 

Pennington Creek Crossing, Pennington Creek at Tishomingo National Fish 

Hatchery and Boy Scout Camp Simpson. 
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Figure 1. State model extent includes beige, green and grey colored counties. Local 

model extent includes green and grey colored counties. Inset map shows Johnston 

and Pontotoc counties (grey) with streams (blue lines) and A. maritima occurrence 

locations (points). Oklahoma state boundary indicated by dotted line. 
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Figure 2. Habitat suitability values for Alnus maritima at the state (A) and local (B) 

spatial extent.   Habitat suitability value is the relative probability of presence with 

0.8-1 meaning a high relative probability and 0-0.2 meaning a low relative 

probability.  
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Figure 3.  Average receiver operator characteristic curve based on test data for the 

state (A) and local (B) spatial extent. Light grey line indicates mean ROC curve with 

standard deviation represented by dark grey shaded region. Black line represents a 

random prediction (i.e. AUC=0.5). 
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Figure 4. Jackknife results of environmental variable importance for the state (A) and 

local (B) spatial extent. Black bars represent contribution of only specified variable 

to the model. Light grey bar depicts model gain without specified variable. Bottom, 

medium grey bar is total model gain with all variables. 
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Figure 5. Difference between habitat suitability values for the local compared to state 

model for the local extent. Blue values indicate a higher suitability value predicted 

by the local model compared to the state model. Red values indicate a higher 

suitability value predicted by the state model. Yellow values indicate similarity 

between the two models.  Triangles represent occurrence locations.  
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Abstract 

Alnus maritima is a rare, riparian tree species showing no recruitment from seeds. 

We conducted three studies to identify factors potentially limiting establishment 

during seed and seedling stages. First, we studied the effect of field stratification to 

determine if low winter temperatures decrease seed viability or otherwise alter seed 

dormancy. Second, because A. maritima is an early successional species that requires 

high light environments, we investigated seedling establishment after burning or 

clipping vegetation at study sites. Third, we compared how presence or absence of 

the native root microbiome associated with A. maritima nodules influenced survival, 

growth, and establishment of seedlings. There were no differences in mean total seed 

germination between stratified seeds and non-stratified seeds, but longer periods of 
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stratification promoted earlier seed germination, indicating a non-deep physiological 

dormancy. Neither burning nor clipping influenced seedling growth or survival 

initially. However, seedling survival decreased in burned plots due to the release of 

an aggressively growing competitor.  Surprisingly, seedlings inoculated with the 

native microbiome had reduced survival compared to uninoculated individuals, and 

uninoculated individuals showed a decline in survivorship after natural inoculation in 

the field, suggesting that the microbiological “mutualists” may be a physiological 

stress on seedlings during establishment.  These results indicate that seedling 

survival and not seed viability is limiting establishment of this species.  

 

Keywords:  Betulaceae, carbon stress, conditional dormancy, disjunct distribution, 

nodule, stratification 

 

Introduction   

Seaside alder (Alnus maritima, Betulaceae) is an extremely rare, riparian species 

with a G3 global conservation status, indicating it is threatened and faces a risk of 

extinction throughout its range (Shaw et al. 2014). It has the most highly disjunct 

distribution of any tree species in North America (Little 1971). There are three 

regional populations in Maryland, Georgia, and Oklahoma (Figure 1A) that are 

remnants of a once larger distribution that retracted following the Pleistocene glacial 

period (Furlow 1979; Stibolt 1981, Schrader and Graves 2000a, 2002, 2004; Gibson 

et al. 2008; Jones and Gibson 2011). Alnus maritima subsp. maritima is scattered in 

small clusters along the Nanticoke River and Marshyhope Creek in the Delmarva 
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Peninsula and has a state conservation ranking of S3, indicating a moderate 

extinction risk (Maryland Department of Natural Resources 2016). The Georgia 

subspecies, A. maritima subsp. georgiensis, is a single population in Drummond 

Swamp located in Bartow County in northwest Georgia. This population is critically 

imperiled and has an S1-ranking indicating it faces a very high risk of extinction 

(World Conservation Monitoring Centre 1998; Chafin 2007). In Oklahoma, A. 

maritima subsp. oklahomensis grows in several small populations located along 

spring fed tributaries of the Blue River and Pennington Creek in Johnston and 

Pontotoc Counties. The Oklahoma subspecies is critically endangered with a high 

risk of extinction (state conservation status S1, Shaw et al. 2014).  

 

Despite production of numerous viable seeds, there is no establishment of new 

individuals from seed in any seaside alder population (Rice and Gibson 2009; J.P. 

Gibson and S.A. Rice personal observations). Consequently, vegetative root 

sprouting from established plants is the only means of adding “new” individuals to 

populations. This places the species at increased risk to not only lose unique, 

regional, genetic variation, but also extinction as adults die in the remaining 

populations. Successful conservation and management of rare plant species requires 

basic knowledge about seed dormancy and germination and seedling establishment 

ecology (Schemske et al. 1994; Primack and Drayton 1997; Kolb and Barsch 2010; 

Godefroid et al. 2011; Copete et al. 2015). Because the seed and seedling stages are 

common bottlenecks in the establishment of temperate, woody species in general, 

and are undoubtedly an issue for seaside alder in particular, we conducted a detailed 
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study of seed and seedling ecology to identify potential reasons for the absence of 

new individuals establishing from seed in this unique, riparian tree.  

 

Decreased seed viability and germination have been proposed as explanations for 

low seedling recruitment in seaside alder. Schrader and Graves (2000b), suggested 

that low winter temperatures kill seeds, thereby reducing seedling establishment. 

However, A. maritima may be similar to other alders and have either non-dormant or 

conditionally dormant seeds that would benefit from exposure to cold temperatures 

(Baskin and Baskin 2014). Conditional dormancy is a form of physiological 

dormancy in which seeds are dormant or have a narrow range of conditions within 

which germination can occur immediately after they mature. Exposure to specific 

environmental stimuli in the soil, such as moisture and temperatures between 0 and 

100C, cold stratify seeds and alter their physiological features causing either a shift 

from dormant to non-dormant or broaden the range of threshold conditions to initiate 

germination (Baskin and Baskin 1998, Allen et al. 2007, Baskin and Baskin 2014). 

Conditional dormancy has been identified in many weedy, and agricultural species 

(Bouwmeester and Karssen 1992; Baskin and Baskin 1998, 2000, 2014) but has not 

been thoroughly investigated for woody perennial species particularly in a 

conservation context (Baskin and Baskin 2014; Cao et al. 2014; Copete et al. 2015).  

 

Following germination, seedling establishment is shaped by the abiotic environment 

and interactions, particularly competition, with other species in the community 

(Helenurm 1998; Kolar and Lodge 2001). Like other alders, A. maritima has traits 
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characteristic of early successional, riparian species (Dellasala et al. 2004). Because 

human activities have altered natural disturbance regimes in riparian environments, 

there is decreased occurrence of open habitats with sufficiently high water and light 

necessary for growth of adult seaside alders and increased competition with later 

successional species (Folk et al. 2004; Schrader et al. 2006; Rice and Gibson 2009). 

Management strategies that simulate natural disturbances and reduce competition 

with later successional species have increased seedling survival of rare species in 

riparian systems and may be necessary for seaside alder seedlings (Whisenant 1999; 

Dwire and Kaufman 2003; Richardson et al. 2007; Arkle and Pilloid 2009; 

Godefroid et al. 2011).  

 

Competitive ability and establishment in nutrient-poor, riparian environments can be 

increased through mutualisms that form between alder roots and the soil microbiome 

(So et al. 2011; Kennedy et al. 2015).  Alnus species frequently form symbiotic 

relationships with arbuscular ectomycorrhizae (Molina et al. 1994; Kennedy and Hill 

2010; Kennedy et al. 2015) and nitrogen fixing bacteria in the genus Frankia 

(Tjepkema et al. 1986; Baker and Schwintzer 1990; Huss- Danell 1997; Dawson 

2008). Because alders often grow in low nutrient environments, associations with the 

root microbiome provide plants with essential limited nutrients and increase plant 

growth compared to individuals without the root symbionts (Bissonnette et al. 2014). 

For example, symbiotic Frankia that form nodules on Alnus roots can supply 70-

100% of the plant’s nitrogen (Hurd et al. 2001), and arbuscular ectomycorrhiza 
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provide phosphorus to plants in exchange for carbon and nitrogen (Arnebrant et al. 

1993; Huggins et al. 2014; Yamanaka et al. 2003).  

 

We conducted the study described here to identify factors inhibiting establishment of 

seaside alder individuals from seed on Oklahoma populations. We conducted a series 

of field-based experiments to specifically investigate i) the influence of the seed 

bank environment on seed dormancy and germination, ii) the impact of disturbance 

on seedling establishment, and iii) the effect of mutualistic relationships that develop 

between seaside alder roots and the soil microbiome. The germination study will 

clarify how cold stratification affects seed mortality, dormancy, and germination in 

seaside alder under in situ seedbank conditions. If Schrader and Graves’ (2000b) 

hypothesis is correct that exposure to low temperatures is causing high seed 

mortality and preventing establishment, then seeds overwintering under natural soil 

conditions will have lower germination than newly ripened seeds. However, if seeds 

are conditionally dormant, stratification in the soil seed bank should promote higher 

germination over a broader range of conditions than fresh seed (Baskin and Baskin 

1998; Benech-Arnold et al. 2000; Allen et al. 2007; Baskin and Baskin 2014). To 

investigate the role of disturbance on seedling establishment, we followed growth 

and survival of transplanted seedlings in undisturbed, burned, and clipped plots. 

Given the weak competitive ability and extreme shade intolerance of seaside alder 

(Schrader et al. 2006), reduction in competitors through clipping or fire should result 

in greater growth and higher survival of plants than in undisturbed conditions.  And 

lastly, we studied the role of associations between A. maritima and its root 
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microbiome by comparing how seedling survival, growth and leaf chemistry were 

affected by the presence or absence of the native, root microflora.  Because alders 

commonly form nodules and mycorrhizal associations, we predicted that seedlings 

inoculated with a nodule suspension prior to planting will have increased growth and 

survival compared to uninoculated individuals.  The results from these studies will 

not only provide insights on the reproductive ecology of seaside alder, but also 

identify factors limiting establishment of new trees that will assist in developing 

conservation and management strategies for this species. 

 

METHODS 

Seed Dormancy and Germination.  Similar to other alders, A. maritima is 

monoecious and produces unisexual catkins. However, unlike all other North 

American species, which are in the subgenus Alnus, seaside alder is the lone member 

of the subgenus Clethropsis to grow outside of Asia (Chen and Li 2004). Members 

of Clethropsis have a distinct reproductive phenology in which they flower in the fall 

while leaves are still present, mature embryos over winter, and retain seeds in catkins 

until they are released the following fall. Alders in subgenus Alnus flower before leaf 

flush in the spring and disperse seeds in the fall of the same year (Chen and Li 2004; 

Schrader and Graves 2002). We collected seeds for germination studies in October 

2012 at the Pennington Creek Crossing (34.322279, -96.705952), the Boy Scouts of 

America Camp Simpson on Delaware Creek (34.410707, -96.543099), and the 

United States Fish and Wildlife Service Blue River Public Fishing and Hunting Area 
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(34.323732, -96.593513) in Johnston County, OK (Figure 1B). Mature but unopened 

catkins were collected from twenty individuals in each population.   

 

Catkins were stored in envelopes and transported to the lab to manually extract 

seeds.  Seeds were pooled and sorted into 7.6 cm by 7.6 cm bridal veil bags with 

approximately 350 seeds per bag. Six bags were assigned to each treatment: non-

stratified (designated NS), 32-day stored seeds (designated 32D), 64-day stored 

seeds (designated 64D), 96-day stored seeds (designated 96D), 128-stored seeds 

(designated 128D), and 160-stored seeds (designated 160D). Seeds were buried at a 

depth of 20 cm at Tishomingo National Wildlife (TNWR), 15 miles south of the 

known A. maritima locations (Figure 1B). TNWR has a mean annual precipitation of 

98.7 cm and average 30 cm soil temperatures during winter and early spring is 

14.1°C for November, 8.9°C for December, 7.12°C for January, 8.0°C for February, 

11.8°C for March and 15.7°C for April (McPherson et al. 2007; Brock et al. 1995). 

 

Germination trials were conducted under temperature regimes mimicking increasing 

spring temperatures and decreasing fall temperatures to evaluate conditional 

dormancy states (Baskin and Baskin 2014). Germination under an increasing 

temperature regime will identify the low temperature threshold for germination and 

the decreasing temperature regime will indicate the high temperature threshold. 

Differences in germination thresholds between non-stratified and stratified seeds, 

therefore, indicate a change in conditional dormancy status of the seeds (Washitani 

1987; Batla and Benich Arnold 2003; Baskin and Baskin 2014). The increasing 
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temperature regime started at 4℃ and was increased by 4℃ every 4 days until 

reaching the maximum temperature of 32℃. Conversely, the decreasing temperature 

regime started at 32℃ and decreased 4℃ every 4 days until reaching 4℃ (Batla and 

Benich Arnold 2003; Washitani 1987). Germination trials were conducted in 

Precision Model 818 Low Temperature Illuminated Incubators (Thermo Electron 

Corporation, Marietta, OH) on a 12 hr. light/dark cycle.  

 

For the germination trials, six Petri dishes containing two pieces of Whatmanâ #1 9 

cm filter paper were prepared to test each stratification treatment.  Fifty seeds were 

placed in each Petri dish and moistened with 4 mL of deionized, distilled water. 

Three replicates were placed in the incubators under increasing temperature regime 

and three were placed in incubators under a decreasing temperature regime. During 

germination trials, seeds were monitored every 2 days for germination, indicated by 

the radicle protruding through the seed coat. At the end of each temperature regime, 

seeds were dissected and visually checked for white solid embryos, an indication of 

viability based off a previous tetrazolium test that revealed brown solid or white 

nonsolid embryos were not viable (Baskin and Baskin 1998; Schrader and Graves 

2000a,  2000b; P.J. Gibson and C. Ehardt-Kistenmacher unpublished). Germination 

trials using non-stratified seeds began on November 1, 2012.  Seeds for stratification 

treatments were buried November 2, 2012, and, a bag was retrieved from the storage 

location every 32 days to begin the next a germination trial. 
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We compared germination between stratified and non-stratified seeds using ANOVA 

with Tukey’s HSD post hoc test in R (R Core Team 2014).  Kaplan-Meier curves 

were used to graphically display differences in the proportion of seeds germinated 

between treatments. To compare germination rates, we used an Extended Cox 

Proportional Hazards Model with time independent heaviside functions in R (R Core 

Team 2014) to calculate Hazard Ratios (HR, Kleinbaum and Klein 2012; 

Kistenmacher and Gibson 2016). The HR is the ratio between the baseline treatment 

germination rate compared to the experimental treatment germination rate. The ratio 

of rates gives the conditional probability of an event occurring during a given time 

interval due to a treatment. For example, if stratified and non-stratified seeds both 

have one seed germinate over a given time interval, then HR = 1 indicating no 

difference in the likelihood of seed germination between the two groups. However, if 

20 seeds/time interval germinate from the stratified seeds and only one seed 

germinates from non-stratified seeds, then HR = 20 indicating the stratified seeds are 

20 times more likely to germinate than non-stratified seeds. The Cox Proportional 

Hazard Model assumption of parallelism was checked for crossing of the 

germination curves using a Kaplan-Meier curve analysis function Survfit in the R 

package “Survival”. If the model assumption for parallelism fails, then heaviside 

functions (Hv) were used to split data and compare between groups before and after 

the curves intersect. The output after Hv contains a before and after HR (Kleinbaum 

and Klein 2012). 
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Seedling establishment.   For both seedling establishment studies, ten catkins were 

collected from 25 individuals at the Blue River population, planted in flats 

containing Metro Mix potting soil, and grown under greenhouse conditions. Plants 

were watered daily and fertilized biweekly with Jack’s Professional® (20-20-20) 

Balanced Water Soluble Fertilizer until plants were used in disturbance or 

microbiome experiments.   

 

We conducted disturbance experiments on a 14 m X 28 m island in the Blue River at 

the Nature Conservancy’s Oka’ Yanahli Blue River Preserve (34.43852, -96.62781, 

Figure 1B & 1C). The island was divided into control, clipped and burned treatment 

zones with six 4m X 4m plots in each zone (Figure 1C).  In August 2013, vegetation 

in both the clipped and burned plots was clipped but not removed. Fuel load and fire 

intensity was increased in burned plots by scattering a hay bale over plots. On 

September 6th 2013, the Nature Conservancy burned the southern part of the island.  

A barrier fence was installed to prevent large herbivores from damaging the 

transplants. Ten-month-old seedlings were planted on September 15th 2013. They 

had an average height of 49.23 ±	17.85 cm (average	± standard deviation) and 

average stem diameter of 9.04 ±	5.12	mm.  We planted 8 seedlings in each plot 

yielding 48 seedlings per treatment and a total of 144 seedlings overall planted on 

the island. Seedlings were monitored for survival, root collar diameter, and height 

using digital calipers (Pittsburgh ®).  At planting, the soil volumetric water content 

(SVWC) was measured at 20 cm deep was measured using a HydroSense IIâ 
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(CS658 rods) from the east and west ends of each plot to account for differences in 

growth attributed to water availability.  

 

To evaluate how the microbiota associated with seaside alder roots influences 

establishment, 144 seedlings were raised for nine months under greenhouse 

conditions. After 7.5 months, seedlings were randomly assigned to uninoculated 

reference (i.e., control) and inoculation treatment groups. To prepare the inoculation 

suspension, nodules were collected from adult trees in the Blue River population and 

returned to the laboratory. Within 24 hours after collection, nodules were washed 

with distilled, deionized water, and then 3-5 nodules with associated root tissue were 

macerated in 15 mL distilled deionized water using a mortar and pestle (Rosbrook 

1990; Hurd et al. 2001). This process was repeated until 750 mL of nodule 

suspension was produced. In June 2013, seedlings were transplanted from flats into 

15.24 cm pots. During transplanting, plants in the inoculation treatment group 

received ten milliliters of crushed nodule suspension around the base of the plant and 

plants in the control group received 10 mL deionized water.  

 

In August 2013, the nine-month-old control and inoculated seedlings were planted 

on two adjacent islands in the Blue River at the Nature Conservancy Oka’ Yanahli 

Blue River Preserve (Figure 1C). These islands were selected because they contained 

no established tree vegetation and were of similar size (approximately 14m x 14m). 

Islands were cleared of herbaceous vegetation and seedlings were planted in late 

August 2013. Each island consisted of four 1.5 m by 3 m plots per treatment (Figure 



	

	 	 53	

1C). Nine seedlings were planted within each plot for a total of 36 seedlings per 

treatment on each island. As in the disturbance experiment, fencing was installed to 

exclude large herbivores. Height and root collar diameter measurements were 

conducted at planting and the following spring using digital calipers (Pittsburgh ®), 

May 2014. Seedlings were monitored for mortality events at 7, 14, 21, 30, 40, 270 

days after planting. 

 

To further evaluate the effect of the root microbiome on seedling growth and 

establishment, we analyzed leaf chemistry (%C, %N, C/N) and natural abundance of 

foliar carbon (d13C) and nitrogen isotopes (d15N). At each collection date, a lower, 

middle and upper canopy leaf was collected from 24 seedlings per treatment. Leaves 

for isotope analysis were collected before inoculation, a day before planting in the 

field, and at one week, four weeks and eight months after field planting. To keep 

carbon and nitrogen values stable, leaf samples were stored on ice during transport 

from the field site to the lab. In the lab, leaves were dried at 60°C for 3 days in a 

forced air oven (Shel Labâ), then ground to a fine powder using a Retsch MM200â 

grinder. For each sample, approximately 2mg of ground leaf material was weighed 

out using a Sartorius Microbalance (CPA2Pâ), and packaged in a 4 X 6 mm tin 

capsule. Samples were analyzed at the Purdue Stable Isotope Facility using a 

continuous flow EA-IRMS (Sercon 20-20, SerCon Ltd, Crewe, UK) with 

measurement precision of 0.2‰ for d13C and 0.3‰ for d15N.  Isotope ratios are 

expressed in conventional d notation and referenced to the PDB standard for d13C 

and the atmospheric standard for d15N. 
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A Cox Proportional Hazards Model was used to determine if there was a difference 

in seedling survival among disturbance treatments and between inoculated and 

uninoculated plants. A native vine species, Strophostyles helvola, spread rapidly and 

dominated plots approximately 225 days after planting. Because of this aggressive 

competitor, data for the disturbance study were divided into two time periods, prior 

(0-225 days) and post (225-440 days) S. helvola competition. Heaviside functions 

were then used to calculate hazard ratios prior to and after 225 days. To quantify 

seedling growth in both the disturbance and microbiome experiments, correlation 

analysis was used to determine the relationship between root collar diameter and 

height. A nonparametric ANCOVA was also conducted using sm.ancova function in 

the R package “sm” to evaluate the differences in growth (root collar diameter, 

height) with initial average volumetric water content per plot as a covariate for the 

disturbance and microbiome experiments. 

 

A nonlinear mixed-effects model was used in the microbiome study to compare the 

differences in foliar total nitrogen (% N), foliar total carbon (%C), 𝛿15N values, 𝛿13C 

values, and C/N ratio between inoculated and control plants. Leaf chemistry sample 

data were analyzed using the “nlme” package with multiple comparisons 

(“multcomp” package) with a Bonferroni correction in R.   

 

Results 
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Seed germination.  The highest mean final number of seeds that germinated under 

increasing temperatures occurred in 32D stratified seeds followed by the 64D seeds 

(Figure 2). Mean final number of seed germination declined as storage time 

increased resulting in the lowest mean final germination occurring in 128D seeds. 

Germination analysis could not be conducted on the 160D treatment because the 

majority of viable seeds germinated during storage, leaving insufficient seeds for 

germination trials. There was an overall significant difference in final mean 

germination among treatments (ANOVA, df=4, F=5.437, p=0.0137, Figure 2), but 

the only significant differences detected in post hoc pairwise analyses via Tukey’s 

HSD were between 32D seeds and seed in the 96D (p= 0.048) and 128D (p=0.01) 

treatments.  

 

Under the decreasing temperature regime, germination likewise declined with longer 

storage times (Figure 2). There was no difference in mean final number of seed 

germination between treatments in the decreasing temperatures (ANOVA, df=4, 

F=2.201, p=0.142).     

 

Under increasing temperatures, germination occurred between 8℃ to 24℃ (Figure 

3A). Seeds stratified for longer periods of time began germinating at lower 

temperatures. The 96D seeds had significantly higher HR than all other treatments, 

ranging from 2.4- 17 times more likely to germinate (Figure 4A). The 128D seeds 

had higher HR than the 64D, 32D and NS seeds. The 64D and 32D seeds had similar 

HR and both had higher HR than the NS seeds.  
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In the decreasing temperature regime, all germination occurred between 32℃ and 

28℃ (Figure 3B).  Field stratified seeds were more likely to initiate germination at 

32℃ compared to non-stratified seeds. The NS seeds had a significantly lower HR 

than all other treatments (Figure 4B). The 32D seeds had a lower HR than the 96D 

and 128D seeds but a similar HR to the 64D seeds. The 64D, 96D and 128D had no 

difference in HR.  

 

Seedling establishment and disturbance.   Seedlings from control, clipped and 

burned plots showed similar survival during first the 225 days, with only one 

individual dying in the burn plot (Figure 5).  At the final measurement (440 days), 

seedling survival in burn plots decreased to 80% in comparison to control and 

clipped plots where all seedlings survived. Burn plot seedlings had a significantly 

lower likelihood of survival compared to control and clipped plot seedlings 

(HR=1.82e+9, CI= 6.870e+8 - 4.849e+9, p=<0.001).   

 

Within the first 225 days (without competitor), there were no growth differences in 

seedling root collar diameter or height between the burn, clipped or control plots 

(non-parametric ANCOVA, p= 0.4242, p= 0.9423) when analyzed with SVWC. The 

average increase in growth of root collar diameter for seedlings in the burned plots 

and clipped plots was similar to the control plots (Table	1). Average change in 

height for seedlings from burn plots and clipped plots	was comparable to the control 

seedlings (Table 1). From 225-440 days (with competitor), there was no difference in 
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average height (p= 0.7473) and root collar diameter (p= 0.247) between control, clip 

and burn treatments in surviving seedlings. Burned plot seedlings had the smallest 

average increase in root collar diameter, followed by the clipped plot seedlings, 

while the control seedlings had the largest average increase in root collar diameter 

(Table 1).  However, seedlings in burned plots had the largest increase in average 

height, in comparison to seedlings from clipped plots and control plots (Table 1).  

 

Seedling establishment and root microbiome.  At the end of the experiment, the 

control plants had greater growth in root collar diameter than inoculated plants with 

SVWC included as a covariate (non-parametric ANCOVA, p= 0.0004, Figure 6A). 

Average height was not different between inoculated and control plants when 

analyzed with SVWC as a covariate (p = 0.3802, Figure 6B). Inoculated seedlings 

had significantly lower survival within the first 30 days after planting compared to 

control plants (HR=9.571, p=0.028, Figure 7A). However, 270 days after planting, 

there was no difference in survival between control and inoculated individuals (HR= 

1.403, p=0.403). 

 

Total foliar nitrogen (%N) was not significantly different between treatments. 

(F=0.864, p=0.49, Figure 7B), however, there was a significant difference in foliar 

𝛿15N (F=3.0265, p=0.025, Figure 7C).  Foliar 𝛿15N was similar prior to inoculation 

(z=0.03, p=1), but two months after inoculation, 𝛿15N content of control plants was 

significantly higher than in inoculated plants (z=3.481, p=0.023). After planting in 
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the field, foliar 𝛿15N of control and inoculated plants converged and were not 

different for the remainder of the experiment.   

 

Total foliar carbon was significantly different between treatments (F=15.47, 

p=0.001, Figure 7D).  Prior to inoculation, control plants had higher total carbon 

compared to the treatment plants (z=4.051, p=0.002). Prior to planting and seven 

days after planting, inoculated plants had higher carbon totals, however these were 

not significantly different (z= -3.095, p=0.088 and z= -3.118, p= 0.0819 

respectively). From 7 days to 32 days, control plants increased in total carbon from 

~44% to ~46% however inoculated plants stayed similar to the previous %C sample 

(~45%). Thirty-two days after planting and the following spring there were no 

differences in %C (z=2.108, p= 1 and z=2.33, p=0.88). Foliar 𝛿13C did not differ 

between treatments over the sampling periods (F= 1.7, p=0.159, Figure 7E).  There 

was no significant difference in C: N ratios between treatments over sampling time 

for the (F=108.3, p=<0.001, Figure 7F). 

 

Discussion  

The absence of seedling establishment in Alnus maritima is not due to high seed 

mortality or inhibited germination, but rather is likely due to poor competitive ability 

and, surprisingly, negative impacts of the root microbiome typically associated with 

alders. In contrast to results from Schrader and Graves (2000b), our germination 

studies showed no negative impacts of seeds experiencing low temperatures. This is 

not surprising given that their laboratory cold stratification experiments exposed 
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seeds to extreme cold temperatures not experienced in Oklahoma. Our in situ seed 

bank studies demonstrated that Alnus maritima seeds are capable of surviving soil 

temperatures experienced in the field. Furthermore, field stratification broadened the 

low and high temperature thresholds for germination indicating that that seeds 

possess non-deep conditional physiological dormancy that would promote spring 

germination (Baskin and Baskin 2014). Therefore, seed mortality in the seed bank 

and inhibited germination are not likely the factors limiting A. maritima 

establishment from seed in the field.  

 

Ecologically, seeds are viable after winter soil storage and will germinate in spring, 

similar to other fall seed dispersing temperate species. However, the early seedling 

life stage may be limiting the establishment of new individuals due to the inability of 

seedlings to deal with stress from above and below ground competition. Our field 

studies indicate that low seedling and sapling survival are likely the factors inhibiting 

establishment of new seaside alder individuals. Older seedling survival did not 

benefit from alteration of the above ground community via clipping or burning. 

However, survival was negatively influenced by a fast growing annual vine species, 

Strophostyles helvola, indicating seaside alder’s inability to compete with this 

species. Our study also found that seedlings without the microbial community had 

similar foliar nitrogen, increased total foliar carbon, increased root collar diameter 

and a greater chance of survival within the first 30 days after transplantation than 

plants with the microbiome, suggesting that seaside alder seedlings may be incapable 
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of continuing necessary growth and maintenance for survival while providing 

adequate carbon to root symbionts such as Frankia and mycorrhizae.  

 

Seed persistence and germination.   Field stratified seeds have similar germination 

totals as fresh seeds, which opposes previous suggestions that winter air 

temperatures reduce total germination percentages through seed death. Schrader and 

Graves (2000b) implemented cold stratification conditions consisting of a three day -

15 °C freeze, which is approximately -10 °C colder than Oklahoma’s average 

minimum air temperature (Brock et al. 1995; McPherson et al. 2007). In addition, 

seeds are potentially buffered from extreme air temperatures through dispersal into 

moist soil, which is often 1-3 °C warmer (Brock et al. 1995; McPherson et al. 2007; 

Fernández-Pascual et al. 2015).  Through burying seeds, our study more accurately 

represents the typical seed bank conditions and how the natural soil temperature and 

soil moisture conditions influence seed survival and germination. Our germination 

curves show that Alnus maritima seeds display a conditional dormancy (non deep 

physiological), where cold stratification results in a broadening of temperature 

thresholds, indicated by the lower temperature needed for germination in the seeds 

stratified for 96 and 128 days in the increasing temperature regime and the 

germination events at higher temperatures in the decreasing temperature regime 

(Baskin and Baskin 2004, 2014). 

 

Seedling establishment after disturbance.  After fire, alders are often among the first 

colonizers, because fire provides exposed substrates and high light environments for 
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alder establishment (Haeussler et al. 1990; Stickney 1990; Matthews 1992; Miller 

2000; Lantz et al. 2010). However, in the present study, there was no evidence for 

enhanced growth in height and root collar diameter in surviving individuals in 

burned or clipped plots. Additionally, seedlings in burned plots had reduced survival 

due to competition with Strophostyles helvola.  Burning initially altered the above 

ground community through reducing biomass of competitors, such as Equisetum.  

However, in late spring, seeds in the seed bank germinated, releasing the fast 

growing native herbaceous vine species, S. helvola, which grew on and over the high 

light requiring seedlings, eventually leading to mortality through shading out. 

Therefore, alteration of the above ground community through fire was not beneficial 

for establishment of A. maritima transplants.  

 

Seedling establishment with root symbionts. Many plant species form symbiotic 

relationships with bacteria and may require pre-planting inoculation for successful 

establishment (So et al. 2011).  Our study found no benefit from pre-inoculation with 

a nodule suspension. Total foliar N values were not different between inoculated and 

control seedlings throughout the experiment. There was a difference in isotope 

signatures of 𝛿15N in inoculated plants compared with control plants at planting, 

suggesting that nitrogen was acquired from differing sources (Shearer et al. 1978; 

Domenach et al. 1989; Kurdali et al. 1990; Boddey et al. 2000). However, further 

investigation is required to determine the amount of nitrogen derived from the soil 

versus a nitrogen fixating symbiont (Boddey et al. 2000). Therefore, we conclude 

that nitrogen demand in young seedlings may be small and there is no indication of 
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benefits from symbiotic nitrogen fixation. Conversely, there may be a negative 

impact on the inoculated plants, demonstrated through decreased survival and 

reduced root collar diameter growth after transplantation.  

 

 A greenhouse study by Laws and Graves (2005), found Alnus maritima seedlings 

grown with Frankia in soil without nitrogen addition formed the most nodules, but 

the seedlings had irregular shaped shoots and reduced greenness in the leaves.  

Reduced greenness in the leaves and irregular shaped shoots could be attributed to a 

diversion of carbon to high sink organs, such as root symbionts, instead of allocating 

carbon to leaves and stems for continued necessary maintenance and growth (Geiger 

and Servaites 1991). Our results suggest that after planting, inoculated plants divert 

carbon allocation to roots instead of leaves, indicated by the lack of change in total 

leaf carbon between Day 7 and Day 32 in comparison to control plants (Figure 7D). 

Total carbon values increased by 2% in control plants, and no control plants died in 

the first 50 days after planting. In contrast, total carbon of inoculated plants did not 

change, but survivorship decreased by approximately 10%.  This may be due to a 

large carbon sink from increased carbon consumption by symbionts such as Frankia 

and mycorrhizal fungi (Tjepkema et al. 1986; Smith and Read 2008). It has been 

estimated that approximately 30% of total carbon produced is allocated to root 

symbionts, Frankia and fungi, with 15% allotted to each (Kennedy et al. 2015). 

Alnus is known for forming isolated symbiosis networks, meaning fungi and Frankia 

are not interconnected with other surrounding tree species (Kennedy et al. 2015).   

This could result in a disadvantage for the seedling, bacteria and ECM fungus due to 
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the seedling being the only carbon source.  Photosynthetic rates in Alnus are 

comparable to other non-nitrogen fixing broad leaf tree species, but there is a higher 

demand on Alnus plants for carbon because of their root symbionts (Agren and 

Ingestad 1987; Koike 1990; Kennedy et al. 2015).  In addition, A. maritima has 

higher light requirements than other alders for growth and maintenance (Schrader et 

al. 2006).  

 

 Natural colonization of control plants by naturally occurring soil microbes did occur 

in the field, and similar to previous studies of other alders, formation of nodules and 

the fixation of nitrogen typically occurred around 2-3 weeks depending upon the 

species and environmental conditions (Huss-Danell 1978; Wall and Huss-Danell 

1997). Because of reduced survivorship of seedlings inoculated with the nodule 

microflora prior to planting and the occurrence of natural inoculation, we conclude 

that for management purposes pre-inoculation with nodule suspension is not 

necessary for successful transplantation of A. maritima seedlings. In nature, the 

mortality of young seedlings is potentially due to the physiological stress imposed by 

the microbiological community for carbohydrates when seedling nitrogen and 

phosphorus demand is low. 

 

Conservation.  Successful plant conservation efforts require information about the 

critical life stages of seed and seedling survival and establishment. Understanding 

how germination and dormancy impact A. maritima’s ability to re-establish is critical 

to maintaining the existing populations and potentially establishing new ones 
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(Schrader and Graves 2000b; Jones and Gibson 2012). With no genetically new 

individuals establishing through natural processes in the few, small, remaining 

populations, we recommend out-planting of older A. martima seedlings or saplings to 

increase the chance of establishment and minimize the potential for extinction of the 

Oklahoma subspecies. Seedlings or saplings should be planted in areas with limited 

competition for light resources from later successional species. If establishment from 

seeds is the objective, then other aspects of A. maritima’s ecology needs to be 

considered. Rice and Gibson (2009) observed that seedlings that had germinated in 

the field ultimately died because they were growing in shaded conditions, and 

Schrader et al. (2006) demonstrated that seedlings and adults have extremely low 

shade tolerance. Their findings combined with our results indicate that management 

strategies hoping to establish new individuals from seed should at least remove the 

canopy, reduce the presence of competitors, and create exposed, high light 

conditions required for A. maritima in its native riparian environments.   

 

The role of the soil microbiome in seaside alder conservation will require further 

study. If Frankia and its ectomycorrhizal species are a detrimental resource sink to 

seedlings, then their role in seedling establishment should be considered in any 

management plan. If soils where A. maritima currently grows have high Frankia 

populations, then sowing seeds in locations with existing seaside alders may not be a 

viable management option. As far as we know, the demand for carbon from the 

microbiological community associated with A. maritima seedlings has not been 

evaluated. A controlled study investigating the potential cost of inoculation with 
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Frankia and ECM fungi at early seedling stages (<9 months old) under different 

shading and nutrient conditions would indicate if seedlings are able to allocate 

carbon for growth and maintenance as well as support its symbionts. As pressures 

from climate change and the growing anthropological demands on the A. maritima 

habitat threaten the current adult populations existence, additional knowledge about 

its fundamental seed and seedling biology will be essential for conservation 

management plans.  
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Tables 

Table 1. Average change ±	standard deviation in root collar diameter and height for 

seedlings grown in control, clipped and burned plots without (0-225 days) 

competitor and with (225-440) competitor.  
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Figures 
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Figure 1. (A)Alnus maritima regional populations with Oklahoma, Georgia, 

Delaware and Maryland counties that contain individuals shaded grey. Black box 

indicating inset map B. (B) Seed collection sites at three extant Alnus maritima 

populations (*) along the Blue River, Delaware Creek and Pennington Creek in 

Oklahoma. Tishomingo National Wildlife Refuge (TNWR) is the location where 

seeds were buried for stratification. Oka’ Yanahli Blue River Preserve, represented 

by triangle and circle, is the location of seedling establishment experiments. Box 

surrounding Oka’ Yanahli Blue River Preserve indicates inset map C.  (C) Oka’ 

Yanahli Blue River Preserve has three islands were seedling establishment 

experiments were conducted. Representation of treatment plots with the northern 

island containing the disturbance experiment (control(A), clipped (B), and burned 

(C)). The two southern islands had control (R) and inoculated (I) seedlings used in 

the microbiome study. 
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Figure 2.  Mean final number of seed germination out of 50 seeds per replicate for 

non-stratified (NS), 32, 64, 96 and 128 day stratified seeds under increasing 

temperature regime (non-shaded bars) and decreasing temperature regime (shaded 

bars).Error Bars represent one standard deviation. Letters above columns distinguish 

significant differences (p<0.05) between treatments for increasing temperature 

regime (non-shaded bars). No significant difference was found for decreasing 

temperature regime (shaded bars). 
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Figure 3. Kaplan Meier Curve Analysis depicting germination proportion under 

increasing (A) or decreasing temperature regime (B) over time (days) with a 

secondary x-axis illustrating the change in temperature (0C). Points represent 

different storage treatments (Non-stratified, 32 days, 64 days, 96 days and 128 days). 

Error bars represent standard error.  
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Figure 4. Hazard ratios (filled square) from Cox Proportional Hazards Model for 

storage treatments (32D, 64D, 96D, 128D) compared to baseline treatment (italics) 

under increasing temperature regime (A) and decreasing temperature regime (B).  

Bars represent 95 % confidence intervals. Dotted vertical line represents baseline 

hazard rate (i.e. hazard rate=1). Significance indicated by * with p=0.05 (*), p=0.05-

0.001(**) and p<0.001 (***). 
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Figure 5.  Kaplan-Meier Curve Analysis showing percent survival of seedlings 

planted in control, clipped and burned plots with time (days) since planting. Dashed 

line represents standard error. The vertical dotted line illistrates presence of 

Strophostyles helvola in the burn treatment.   
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Figure 6. Average change in root collar diameter (A) and height (B) for control (solid 

line) and inoculated (dotted line) seedlings under different soil volumetric water 

content conditions. Shaded region illustrates the null hypothesis of equality for the 

nonparametric ANCOVA.  
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Figure 7. The change in (A) seedling survival proportion over time (days), (B) foliar 

nitrogen content (%), (C) foliar N15 isotope (𝛿15N), (D) foliar carbon content (%), 

(E) foliar C13 isotope (𝛿13C), and (F) C: N ratio for control (open circle) and 

inoculated individuals (shaded triangle) before and after planting (represented by 

dotted horizontal line). Error bars represent standard error. Asterisk (*) represents 

significance (p<0.05) and the cross (+) represents near significance (p<0.08). 
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Chapter 4- Summary 

Climate change and the growing anthropogenic demands on the Alnus maritima 

habitat increase extinction pressures on current adult populations. Therefore, 

knowledge about the species biology is essential for conservation management plans. 

This study has found approximately 4,800 individuals along Oklahoma tributaries. 

Based on census data collected thus far, I hypothesize that there are an additional 

1,000 individuals unaccounted for in the population. Although most of the areas 

surveyed were public conservation areas, conservationists should monitor population 

health and continue surveys of private land when accessible. However, if population 

size decreases, understanding how to re-establish seedlings will be a necessity for 

successful conservation management. This thesis provides insight into potential 

locations for seaside alder restoration and research projects that could be useful for 

understanding seedling re-establishment.  

 

The unique distribution of A. maritima is hypothesized to be the remnants of a once 

larger distribution that has receded to the remaining regional populations (Stibolt 

1981, Gibson et al 2008). Alnus maritima habitat requirements appear to be very 

broad because of the differences in conditions between the three regional populations 

and the hypothesized larger distribution (Stibolt 1981, Schrader and Graves 2002, 

Gibson et al. 2008). However, the two MaxEnt models provided in Chapter 2 suggest 

a restricted distribution in Oklahoma. For surveying and restoration projects, 

conservationists should focus on locations identified as having a high habitat 

suitability value for both the state and local models. If active management via 
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planting of seedlings is required in Oklahoma, conservationists should target areas of 

high habitat suitability within Pontotoc and Johnston counties. In addition, the 

methods from the models can be implemented for the Georgia and Delmarva 

populations to predict survey locations and potential areas for re-establishment 

projects.  

 

Because few seedlings are found living in nature (Rice and Gibson 2009), active 

management is recommended and will be necessary to increase the number of A. 

maritima individuals. There are two topics where research is needed for A. maritima 

active management plans. First, seeds may be a suitable option for active 

management because seeds are not limiting the establishment of seaside alder, as 

demonstrated in chapter 3. However, little information is known about the survival 

of freshly germinated seedlings. Therefore, future studies should evaluate optimal 

seed sowing techniques and monitor young seedlings for survival.  

 

Second, the third chapter shows that carbon demands were increased in the presence 

of a natural microbiological community which resulted in decreased growth and 

survival in 9-month old seedlings. As far as I know, the demand for carbon from the 

microbiological community associated with A. maritima seedlings has not been 

evaluated. However, recent studies in some legume species indicate that their 

microbiological community may be parasitic, exploiting this symbiotic relationship 

(Remigi et al. 2016).  Therefore, future studies should investigate the potential cost 

of inoculation with Frankia and ECM fungi at early seedling stages (<9 months old). 
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This would indicate if seedlings can adequately allocate carbon for growth and 

maintenance as well as to its symbionts. Currently, young seedlings are found 

growing under large adult trees where exposure to Frankia and shaded conditions 

will likely occur (personnel observation). Therefore, the interaction between growth 

conditions (i.e. shading) coupled with the presence of the microbiological 

community should be carefully evaluated. 

 

Few Alnus maritima subsp. oklahomensis adult individuals are being lost from the 

current populations, but without the addition of new individuals, the eventual loss 

will result in a decrease genetic diversity and ultimately population extinction. This 

threat is increased due to uncertainty associated with a changing climate and habitat 

quality. Therefore, I think that out-planting of A. maritima seedlings should be the 

primary goal of conservationists. Out-planting will not only increase the possibility 

of this species survival but will help preserve the riparian forest habitat that is also 

under pressure from growing anthropogenic demands.  
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