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Abstract 

In recent years, asphalt modifications have become increasingly popular in 

asphalt pavement construction. Also, in view of technical, environmental and economic 

benefits, the pavement industry is in favor of using high amounts of Reclaimed Asphalt 

Pavement (RAP) in asphalt mixes for pavement construction. Consequently, accurate 

rheological characterization of asphalt binders containing polymer modifiers and RAP 

binder is important because pavement performance is largely influenced by asphalt 

binder properties.  

A number of test methods have evolved over the last three decades for 

evaluating the rutting susceptibility of asphalt binders. The objective of the current 

study was to use a simple Dynamic Shear Rheometer-based (DSR) test method as an 

alternative to the Superpave® Performance Grade (PG) tests or “PG plus” tests to 

accurately evaluate high-temperature performance of asphalt binders. To achieve this 

objective, the rheological characteristics of asphalt binders were evaluated using the 

Multiple Stress Creep and Recovery (MSCR) and Superpave® test methods. For this 

purpose, polymer-modified binders were collected from different sources located in 

Oklahoma, New Mexico and Texas. Also, binders were extracted from two RAPs and 

blended with a commonly used PG 64-22 binder at selected rates, namely 0%, 25%, 

40% and 60% by the weight of the binder. Furthermore, four different asphalt mixes 

containing polymer-modified binders and different amounts of RAP were tested for 

rutting performance in the laboratory. The rutting parameter (|G*|/sinδ), fatigue 

parameter (|G*|.sinδ), viscosity, high- and low-temperature PG grades of all modified 

and unmodified binders were evaluated based on the Superpave® test methods. The 



xx 

 

MSCR tests were conducted to determine high-temperature MSCR grades and to 

evaluate the effects of the addition of polymer and RAP binder on non-recoverable 

creep compliance (Jnr) and %Recovery values of the binders.  

The polymer-modified binders were found to meet the Superpave® 

specifications and exhibited satisfactory rutting and fatigue resistance. The high- and 

low-temperature PG grades of the RAP binder blends were observed to increase with an 

increase in the RAP binder content. From the MSCR test results, the minimum 

%Recovery requirement based on the Jnr criteria suggested in AASHTO TP 70 was 

found to be appropriate for differentiating polymer-modified binders from non-polymer 

modified binders. Also, the addition of a higher stress level, such as 10 kPa to the 

MSCR test method, was found to help understand the nonlinear viscoelastic behavior of 

the polymer-modified binders. Furthermore, the Jnr value decreased and MSCR grades 

increased with an increase in the amount of RAP binder, which indicated an improved 

resistance to rutting for the RAP binder blends. The rutting and moisture susceptibilities 

of the asphalt mixes with high RAP content were found to be satisfactory from 

Hamburg Wheel Tracking (HWT) tests. A comparison of the Superpave®
, MSCR and 

HWT test results is also presented in the present study. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Asphalt mix is a viscoelastic material consisting of mineral aggregates and 

asphalt binder. Asphalt binder, a viscoelastic and thermoplastic material is responsible 

for the viscoelastic behavior of the mix (Anderson et al., 1994). Many aspects of 

pavement performance such as resistance to permanent deformation (rutting), low-

temperature cracking and fatigue life are known to be influenced significantly by the 

mechanical properties of the asphalt binder (Yildirim, 2007). The quest to improve 

binder characteristics and pavement performance has led to the evaluation, development 

and use of a wide range of asphalt binder modifiers such as Styrene-Butadiene-Styrene 

(SBS), Ethylene-Vinyl-Acetate (EVA), and plastics (Bahia et al., 2001). 

The penetration grading system was introduced by the Bureau of Public Roads 

in 1918 and the viscosity grading system was initiated by a number of state highway 

departments in the 1960s to characterize asphalt binders. These grading systems were 

empirical in nature and were not directly related to the pavement performance (Brown 

et al., 2009). In the early 1990’s, a new set of performance-based specifications and test 

methods, namely the Superpave® (Superior Performing Asphalt Pavements), was 

developed by the Strategic Highway Research Program (SHRP) for evaluating both 

asphalt binders and asphalt mixes. Although the goal of the program was to create 

specifications and test methods for all types of binders, the main focus of the SHRP 

asphalt research program was unmodified asphalt binders. In the Superpave® 

specifications, a Dynamic Shear Rheometer (DSR)-based test method (AASHTO T 315, 

2012) was introduced to evaluate binder characteristics at high and intermediate 
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temperatures. A new parameter called the rutting parameter (|G*|/sinδ), which can be 

obtained from a DSR test, was introduced to determine the high-temperature 

Performance Grade (PG) and rutting resistance of asphalt binder (Anderson et al., 

1994). Until now, the |G*|/sinδ has been widely used for the characterization of 

modified and unmodified binders with respect to their ability to resist rutting. 

Despite several advantages of the Superpave® specifications over other methods, 

there are concerns associated with the capability of this method for proper 

characterization of modified asphalt binders. Also, a poor correlation between the rate 

of accumulated strain in asphalt mixes and the rutting parameter, |G*|/sinδ, of asphalt 

binders measured at 10 rad/s, was reported by Bahia et al. (2001) in a study conducted 

for the National Cooperative Highway Research Program (NCHRP) project 9-10 (Bahia 

et al., 2000). The shortcomings of the Superpave® specifications in capturing the 

performance properties of modified asphalt binders have resulted in developing new test 

methods for modified binders. Consequently, a number of Departments of 

Transportation (DOTs) have started using different test methods such as elastic 

recovery (AASHTO T 301, 2013) and forced ductility (AASHTO T 300, 2011), in 

addition to the Superpave® tests. These tests are referred to as the Superpave® “PG 

Plus” tests. However, the empirical nature of these tests, variations in specifications 

used by the state DOTs and inability of empirical test methods in characterizing all 

modified binders adequately limit their use (Bahia et al., 2001; D’Angelo and Dongre, 

2004). In addition to the PG plus tests, a number of mechanistic test methods such as 

the Repeated Creep and Recovery Test (RCRT) (Bahia et al., 2001) and Multiple Stress 
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Creep and Recovery (MSCR) (D’Angelo et al., 2007) test have been proposed to 

address the abovementioned problems. 

The MSCR test was proposed to replace the Superpave® PG and PG plus tests in 

order to determine the high-temperature characteristics of modified asphalt binders. The 

advent of MSCR test greatly improved the characterization of rutting susceptibility of 

modified asphalt binders. This test is based on the RCRT test (Bahia et al., 2001) and 

was developed by the Federal Highway Administration (FHWA) (D’Angelo et al., 

2007). The current MSCR test method involves testing asphalt binders at two stress 

levels (0.1 and 3.2 kPa) and corresponding high environmental temperature of a given 

climatic region. The advantage of the MSCR test is the use of creep and recovery 

method that better represents the loading conditions in a real pavement (D’Angelo, 

2010). Many studies have reported good correlations between the non-recoverable creep 

compliance (Jnr) obtained from the MSCR test and the rutting measurements of asphalt 

pavements in the field (D’Angelo et al., 2007; D’Angelo, 2010; Zhang et al., 2015; 

Laukkanen et al., 2015). Despite the advantages of MSCR test method, there are still 

important concerns about the current test methods and analysis procedures. Some of the 

important concerns regarding the MSCR test method are listed below: 

(i) Stress level for MCSR test: The current MSCR test method involves testing 

asphalt binders at two specified stress levels, namely 0.1 and 3.2 kPa. These two 

stress levels are arbitrarily chosen and do not appear to have any clear 

relationships with the stresses a binder experiences in actual pavements. Unlike 

unmodified binders, polymer-modified binders are very sensitive to stress levels 

and they exhibit non-linear response. According to D’Angelo et al. (2006), the 
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evaluation of the non-linear viscoelastic properties of the binder is important 

because the rutting itself is a non-linear viscoelastic phenomenon. Also, the 

rutting performance of asphalt mixes is known to be highly dependent on the 

stress level. Furthermore, previous studies reported better correlations between 

mix performance data and MSCR test results at higher stress levels (Dreessen et 

al., 2009; Wasage et al., 2011). Therefore, it is important to determine the 

appropriate stress levels for the MSCR tests to characterize the non-linear 

viscoelastic properties of the polymer-modified binders. 

(ii) %Recovery requirement: One important parameter obtained from the MSCR test 

is MSCR percent recovery (%Recovery), as it represents the elastic behavior of 

the asphalt binder. The elasticity of a binder is generally evaluated using the 

polymer curve noted in the American Association of State Highway and 

Transportation Officials (AASHTO) TP 70 (2009) standard “Standard Method 

of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder 

Using a Dynamic Shear Rheometer (DSR).” The polymer curve is constructed 

by plotting the minimum %Recovery requirement for elastomeric modification 

of an asphalt binder with respect to non-recoverable creep compliance (Jnr) 

value. The %Recovery requirement for polymer-modified binders can vary 

significantly from one state to another. Therefore, it is important to evaluate the 

minimum %Recovery requirements for polymer-modified binders.  

(iii) Correlation of MSCR test results with mix performance results: A limited 

number of studies have been conducted to evaluate correlations of MSCR test 

results for laboratory produced and plant-produced mixes. Also, no previous 
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studies, thus far, has established any correlations between MSCR test results of 

binders and performance data of asphalt mixes commonly used in Oklahoma. In 

order to compare the effectiveness of the MSCR test method in evaluating the 

rutting resistance of Oklahoma asphalt binders, it is important to compare the 

binders’ properties with the performance of asphalt mixes available in this 

region. It is also important to understand the behavior of asphalt mixes 

containing high amount of RAP and their relations with the MSCR parameters. 

(iv) Characterization of RAP binder blends: In response to increasing demands for 

green paving materials for sustainable developments, the pavement industry is 

using RAP materials in pavement construction. The pavement industry is 

heavily in favor of using high amounts of RAP in asphalt mixes due to the 

associated technical and economic benefits. However, no previous studies, thus 

far, have evaluated the rheological properties of the high RAP binder blends 

using the MSCR method. The rheological characterizations of the RAP binder 

blends using the Superpave® and MSCR test methods are expected to generate 

important performance data, which will help understand the performance of 

asphalt mixes containing high amount of RAP. 

1.2 Research Objectives 

The specific objectives of this study were as follows: 

(i) Evaluating the MSCR parameters i.e., Jnr and MSCR %Recovery for polymer-

modified asphalt binders available in Oklahoma, New Mexico and Texas. 
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(ii) Characterizing the rheological properties of the polymer-modified binders using 

the MSCR test method. 

(iii) Assessing the effects of the addition of RAP binder on the properties of RAP 

binder blends using the Superpave® and MSCR test methods.  

(iv) Determining the relationship between the MSCR parameter (Jnr) and rutting 

performance of asphalt mixes containing polymer-modified binders and RAP. 

1.3 Significance of this Study 

The present study was pursued to generate useful test results of polymer-

modified binders and RAP binder blends available in Oklahoma as well as in New 

Mexico and Texas. The test results are expected to help in the implementation of the 

MSCR test methods by the DOTs of Oklahoma, New Mexico and Texas by replacing 

the time-consuming and costly “PG Plus” tests. The rutting performances of the 

polymer-modified binders are expected to be better understood by using the MSCR 

parameters. The Superpave® and MSCR grades of the RAP binder blends, determined 

in the present study, are expected to help pavement engineers in selecting the proper 

RAP content for asphalt mixes. In addition, the outcomes of this study are expected to 

help the pavement engineers gain an understanding on the effect of using high amounts 

of RAP on the rutting potential of asphalt mixes commonly used in Oklahoma. 
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1.4 Thesis Organization 

The presentation of the materials in this thesis is organized in the following 

order: 

Chapter 1: Introduction – This chapter includes a background on the 

conventional test methods available for characterizing asphalt binders. The background 

is followed by the research objectives, significance of the study, and thesis organization. 

Chapter 2: Literature Review – The first part of this chapter presents a summary 

of the literature review conducted with a focus on the rheological and mechanical 

properties of polymer-modified binders and RAP binder blends. This chapter also 

summarizes previous studies related to the conventional binder characterization 

methods and their limitations. A review of literature focusing on the development, 

advantages, implementation and interpretations of the MSCR test method is presented 

in the last part.  

Chapter 3: Materials and Methods – This chapter describes the selection, 

collection and preparation of polymer-modified binders and RAP binder blends and 

asphalt mixes. Descriptions of various test methods such as Superpave® tests, 

conventional and non-conventional MSCR tests and Hamburg Wheel Tracking (HWT) 

tests are also presented in this chapter.  

Chapter 4: Test Results of Asphalt Binders- Analyses of the Superpave® and 

MSCR test results conducted on polymer-modified binders and RAP binder blends are 

presented in this chapter. Also, comparisons between the Superpave® and MSCR test 

results, the applicability of the MSCR test methods to characterize polymer-modified 
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binders and RAP binder blends and effects of the addition of high amount of RAP are 

described in Chapter 4.  

Chapter 5: Test Results of Asphalt Mixes- The HWT test results conducted on 

the asphalt mixes containing polymer-modified binders and RAP are presented in this 

chapter. The relations of the HWT test with the Superpave® and MSCR test methods are 

also discussed in this chapter. 

Chapter 6: Conclusions and Recommendations– Important findings of this study 

and the recommendations based on these findings are presented in this chapter. The 

recommendations for future studies are also included in this chapter.  

The details of the abbreviations used in this thesis can be found in the Appendix 

A: List of Abbreviations. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Rheological and Mechanical Properties of Polymer-modified 

Binders 

Over the past three decades, the asphalt industry has used asphalt binder 

modification with polymers as an effective tool for producing mixes with better 

performance and improved service life. Continuously increasing traffic and axle load in 

recent years have led to the search for new types of asphalt binders with better 

performance (Maccarrone et al., 1995; Airey, 2002; Golalipour, 2011; Khadivar and 

Kavussi, 2013). For this reason, researchers have started to evaluate, develop and use a 

wide range of modifiers to improve characteristics of asphalt binders and enhance 

performance of asphalt pavements (Bahia et al., 2001; Golalipour, 2011; Khadivar and 

Kavussi, 2013).  

Several studies have been conducted to characterize the viscoelastic properties 

and to evaluate performance of polymer-modified asphalt binders (Collins et al., 1991; 

Sargand and Kim, 2001; Chen et al., 2002). Plastics, elastomers, fibers and additives are 

the four major groups of polymer used for the modification of asphalt binders.  In 

general, elastomers (75%) are known to be the most popular modifiers followed by 

plastomers (15%). Rubber, fibers and other polymer products are also used for asphalt 

binder modification, but to a limited degree (Diehl, 2000). 

Asphalt binder consists of three major fractions, namely asphaltenes, resins, and 

oils. According to Airey (2011), some portions of maltenes (consisting of resins and 

oils) can be absorbed by the polymer during mixing and experience swelling. Due to the 
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chemical dissimilarities of the binder and polymer, a two-phase structure (a “polymer-

rich phase" and an “asphaltene-rich phase”) can be observed in the blended binder at 

service temperature. The polymer-rich phase consists of all of the polymers added to the 

binder, while the “asphaltene-rich phase” contains all of the heavy fractions (i.e., 

asphaltenes). However, these two phases can exhibit properties that are different from 

those of the base binder.  Performance of blended binders is reported to be affected by 

the distribution, continuity and homogeneity of these phases. According to Airey (2003) 

and Elseifi et al. (2003), at sufficient high polymer concentrations, a continuous 

polymer-rich phase can be developed that would dominate performance of the binder. A 

dominating polymer-rich phase can make a binder soft, flexible, and elastic, whereas 

the asphaltene-rich phase can make it hard, brittle, and inelastic. Figure 2.1 shows a 

schematic of the colloidal structure of the binder and the effect of polymer modification. 

 
(a)     (b)  

Figure 2.1 Schematic of the colloidal structure of binder and the effect of polymer 

modification: (a) base binder; (b) polymer-modified binder (after Zhu et al., 

2014) 

Airey (2003) evaluated the effects of binder source, polymer content, binder–

polymer compatibility and aging on the rheological properties of the polymer-modified 
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binders. Significant improvements in the rheological properties of binders were 

observed due to SBS polymer modification from the penetration, softening point, elastic 

recovery and DSR test results. It was also reported that the nature of the network 

established within the binder due to polymer modification depends on the nature of the 

base binder, the nature and content of the polymer and the binder-polymer 

compatibility. Furthermore, the binder with a high polymer content was observed to 

exhibit a more viscous behavior than the elastic response after oxidative aging. 

Several studies have been conducted to determine the effect of modifiers on the 

rheological properties of asphalt binders and asphalt mixes (Read and Whiteoak, 2003; 

Airey, 2004). It has been observed that addition of polymers to asphalt binders helps 

mitigate major pavement distresses such as rutting at high temperature, low-temperature 

cracking, and fatigue cracking (Yildirim, 2007). 

The effects of aging and polymer content on the performance of the binders 

were investigated by Elseifi et al. (2003). The rheological and physical changes 

associated with the modification of two elastomeric polymers, namely SBS linear block 

copolymers and Styrene Ethylene Butylene Styrene (SEBS) linear block copolymers, 

were analyzed. The dynamic mechanical tests were performed using a DSR apparatus at 

temperatures ranging from 5° to 75 °C. The binders modified with both SBS and SBES 

were found to exhibit an increase in the rutting resistance at service temperatures above 

45 °C. A significant improvement in the fatigue resistance was observed for SBS-

modified binders at intermediate service temperatures. The low-temperature 

performance grade was found to remain unchanged after binder modification.  
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Kumar et al. (2010) studied the effect of addition of Crumb Rubber (CR), 

Ethylene Vinyl Acetate (EVA) and SBS modifiers to neat binder on its aging, 

temperature susceptibility and fatigue life. It was observed that the temperature 

susceptibility of the binder decreased as the modifier content increased. A SBS-

modified binder was found to exhibit a lower viscosity temperature susceptibility than 

EVA- and CR-modified binders. The EVA-modified binder was observed to show a 

higher rutting resistance value than SBS- and CR-modified binders, while adding each 

of the modifiers in the same amount. In addition, the SBS-modified binder exhibited 

maximum elastic recovery than the CR- and EVA-modified binders. The results of the 

Tensile Strength Ratio (TSR) of asphalt mixes exhibited that the asphalt mix containing 

EVA was more resistant to moisture-induced damage than any other modified binders. 

From wheel-tracking test results, the EVA- and SBS-modified asphalt mixes were 

found to exhibit a better resistance to rutting than mixes containing neat binder. 

The high-temperature rheological properties of SBS-, oxidized polyethylene-, 

propylene-maleic anhydride-, and recycled crumb rubber-modified binders with and 

without PPA were investigated by Xiao et al. (2014). It was observed that the rubber-

modified binder containing PPA showed greater viscosity than the binders modified 

using other compounds. The polymer-modified binders produced with oxidized 

polyethylene and propylene-maleic anhydride was found to exhibit the potential of 

reducing the energy demand during mixing and compaction of the mixes. The failure 

temperature and |G*|/sinδ of tested polymer-modified binders were found to be 

dependent on the binder source. Furthermore, from the phase angle results it was found 

that the polymer type had a significant effect on the viscoelastic characteristics of the 
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modified binders. Moreover, the results of viscometry, amplitude sweep, frequency 

sweep, creep and creep recovery, and relaxation spectrums of polymer-modified binders 

were found to get affected by polymer types, asphalt sources, and test temperatures. 

Rahi et al. (2014) evaluated the effectiveness of the Styrene-ethylene/propylene-

styrene (SEPS) modification of asphalt binders with respect to two different 

specification parameters, namely the |G*|/sinδ and the Zero Shear Viscosity (ZSV). The 

frequency sweep test was conducted at 40°, 50°, and 60 °C under controlled-strain 

conditions at frequencies between 0.1 and 100 Hz to determine the high-temperature 

characteristics of the asphalt binders. The results of the |G*|/sinδ and ZSV indicated that 

the rutting resistance of the asphalt binders increased constantly with an increase in 

SEPS concentration in asphalt binder. 

2.2 Rheological and Mechanical Properties of RAP Binder Blends 

The use of RAP has become an important part of the pavement construction 

practice in recent years due to environmental concerns, scarcity of high-quality 

aggregates and increased cost of virgin asphalt binder. The Annual Asphalt Pavement 

Industry Survey (2013) reported a significant growth in the use of RAP from 2009 to 

2012. It was also reported that the asphalt industry remained the country’s number-one 

recycler by reusing RAP at a rate of over 99 percent. More than 98 percent contractors 

were reported to use RAP in 2012. The amount of RAP used in asphalt mixes increased 

form 56 million tons in 2009 to 68.3 million tons in 2012. Approximately, 3.4 million 

tons of asphalt binder was conserved during 2012. The amount of savings in asphalt 

binder was estimated to worth over $2 billion (Hansen and Copeland, 2013). As the use 
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of RAP is increasing rapidly, it is important to evaluate the performance of asphalt 

mixes containing RAP. 

A number of studies have been conducted to evaluate performance of asphalt 

binders with the addition of different amounts of RAP binder (Daniel et al., 2010; Kim 

et al., 2009; Colbert and You, 2012). The high-temperature PG grades of the RAP 

binder blends were observed to increase or remain unchanged compared to that of the 

neat binder. However, the low-temperature PG grades of the RAP binder blends were 

found to remain the same or increase maximum by one grade compared to the 

unmodified binder (Daniel et al., 2010). 

Kim et al. (2009) investigated the rutting and fatigue performances of RAP 

binder- and SBS-modified binders. The rutting and fatigue parameters were found to 

increase with an increase in the amount of RAP binder. The indirect tensile strength of 

asphalt mixes containing RAP was also found to increase with an increase in RAP 

content. All mixes containing RAP showed relatively low creep compliance values. It 

was also reported that a mix containing RAP and SBS polymer may lead to a better 

resistance to fatigue cracking. 

Colbert and You (2012) studied the performance of the RAP binder blends using 

Superpave® binder characterization tests. Effects of short-term and long-term aging on 

the binders’ viscosity and stiffness were evaluated. A PG 58-28 binder was used as the 

neat binder to blend with different amounts of RAP binder, namely 50%, 70% and 

100% by weight of the binder. It was found from the Rotational Viscosity (RV) test 

results that the workability and pumping potential of the RAP binder blends reduced as 

the amount of RAP binder increased. Low-temperature frequency sweep tests were 
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conducted at six different frequencies: 0.01, 0.1, 1, 5, 10, and 25 Hz at reference 

temperatures of 13°, 28°, 40°, 58° and 70 °C to develop shear modulus master curves 

for the RAP binder blends. The results showed that the shear modulus of the binder 

blends increased with an increase in RAP binder in the blend. The shear moduli of the 

blended binders were observed to remain unchanged as the amount of RAP binder 

increased from 50% to 70%. Also, the shear moduli of the blended binders were found 

to increase significantly due to RTFO- and PAV-aging. 

The rutting susceptibility of asphalt binders and asphalt mixes containing 

different polymer modifiers and RAP binder from different sources was evaluated by 

Bernier et al. (2012). The rutting resistance of the asphalt mixes was determined from 

Asphalt Pavement Analyzer (APA) testing and was compared with the binder 

performance measured using MSCR and frequency sweep tests. The Fourier Transform 

Infrared Spectroscopy (FTIR) tests were also conducted to determine oxidation levels of 

different RAP binders. It was found that the binder from a basalt RAP source exhibited 

significantly higher |G*| values than any other binders at low frequencies. It was also 

observed that the addition of 10% RAP binder exhibited greater rutting resistance than 

other binder blends.  

2.3 Asphalt Mixes with High Amounts of RAP 

In view of the benefits associated with incorporating RAP in asphalt mixes, the 

paving industry is in favor of using higher amounts of RAP in asphalt pavement 

construction. However, concerns of state DOTs over the long-term effects of using high 

amounts of RAP on the performance of asphalt pavements have limited its use (Daniel 
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et al., 2010; Hossain et al., 2012; Boriack et al., 2014; Ghabchi et al., 2016). These 

concerns are mainly due to the lack of enough mechanistic performance data and proper 

specifications for mixes containing RAP (Hossain et al., 2012). The Oklahoma 

Department of Transportation (ODOT) specifications limit the maximum amount of 

binder replacement by RAP or Recycled Asphalt Shingles (RAS) for surface courses 

and other Superpave® mixes as 12% and 30%, respectively (ODOT, 2013). 

West et al. (2009) evaluated the performance of asphalt mixes containing 

moderate (i.e., 20%) and high (i.e., 45%) amounts of RAP under accelerated loading 

and determined the applicability of laboratory tests to predict field performance of 

asphalt mixes containing RAP. Test sections were constructed at the National Center for 

Asphalt Technology (NCAT) test track using a 50-mm thick surface course mix. The 

test sections constructed using asphalt mixes containing RAP were found to perform 

well for rutting under heavy loading conditions. It was also concluded from the indirect 

tensile strength test results that the use of RAP improved the tensile strength of asphalt 

mixes.  

A New Hampshire Department of Transportation (NHDOT) study examined the 

effect of high percentages of RAP binder on the properties of the binder blends. Tests 

were conducted on asphalt binders extracted from 28 different asphalt mixes to 

determine their PG grades and critical cracking temperatures. The high- and low-

temperature PG grades were observed to remain the same or increase by only one PG 

grade with the addition of different amounts of RAP binder. It was also observed that 

the high temperature PG grades for several RAP binder blends exhibited a grade bump 

with the addition of 20% RAP binder. The change in the failure temperature with 
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respect to the percent binder replacement was found to decrease as the amount of RAP 

binder increased in the RAP binder blends (Daniel et al., 2010). 

Another study conducted by Hong et al. (2010) evaluated the long-term 

performance of Hot Mix Asphalt (HMA) containing high percentages of RAP. For this 

purpose, FHWA’s Long-Term Pavement Performance (LTPP) test sections in Texas 

were investigated for transverse cracking, rut depth and ride quality over sixteen years. 

With regards to transverse cracking, it was observed that, using 35% RAP in the HMA 

led to faster pavement deterioration than that with only virgin materials. Also, the 

asphalt mix with 3% latex-modified binder was found to exhibit less transverse cracks 

than asphalt mixes containing RAP. However, the asphalt mixes with 35% RAP were 

found to be more rut resistant than the asphalt mixes with virgin binders. Furthermore, 

the addition of RAP to the asphalt mixes was found to have no significant effect on the 

ride quality. It was reported that the pavement with high RAP content (e.g., 35%) are 

expected to perform well during its life span. 

Ghabchi et al. (2014) evaluated the effect of addition of different amounts of 

RAP binder to virgin binders on the moisture-induced damage potential of the asphalt 

mixes using the Surface Free Energy (SFE) approach. For this purpose, two binders (a 

PG 64-22 and a PG 76-28) were blended with different amounts of RAP binder (0%, 

10%, 25% and 40%). A Dynamic Contact Angle (DCA) analyzer was used to determine 

the SFE components (non-polar, acid and base) of the binder blends.  It was found that, 

for both the binders, the addition of RAP binder increased the acid SFE components of 

the RAP binder blends, while the base SFE components remained almost unchanged. 

Also, the wettability, work of adhesion, work of debonding and energy parameters of 
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the RAP binder blends with six different types of aggregates were evaluated in that 

study. The wettability and the work of adhesion of the RAP binder blends over the 

aggregates were found to increase with an increase in the amount of RAP binder. 

However, the blending of RAP binder with the PG 64-22 binder was found to result in a 

higher work of adhesion. Evaluating the energy parameters of the asphalt aggregate 

system, it was observed that the moisture-induced damage potential of the both binders 

reduced with an increase in the RAP binder content.  

Sabouri et al. (2015) investigated the performance of the asphalt mixes 

containing RAP with respect to amount of RAP, total asphalt content and various base 

binders. The rutting performance of the asphalt mixes was evaluated with a permanent 

deformation model developed by Choi and Kim (2013). The Simplified Viscoelastic 

Continuum Damage (S-VECD) model was used to evaluate the fatigue properties of 

asphalt mixes. Nine laboratory-produced asphalt mixes were tested for this purpose. 

The Triaxial Stress Sweep test, Dynamic Modulus (DM) test and the Cyclic Direct 

Tension tests were also used to evaluate the rutting and fatigue properties of the asphalt 

mixes. The high- and low-temperature PG grades of the binder blends were found to 

increase with an increase in RAP binder. The use of soft binder with RAP in the asphalt 

mixes resulted in improved fatigue resistance without compromising the rutting 

resistance of the mixes. These researchers suggested to use either a soft base binder, 

maintain the optimum asphalt binder content or increase asphalt layer thickness while 

incorporating high amounts of RAP in asphalt mixes.  

In a recent study, Ghabchi et al. (2016) evaluated the effects of RAS and RAP 

on the fatigue cracking, low-temperature cracking and stiffness of HMA mixes. A 
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nation-wide survey was conducted among the DOTs to find out the major concerns of 

incorporating RAP and RAS in asphalt mixes. The fatigue cracking was found to be a 

major concern among all the state DOTs while using RAP and RAS. The resistance to 

fatigue cracking, low-temperature cracking and stiffness of the asphalt mixes containing 

different amounts of RAS (0 to 6%) and/or RAP (0 to 30%) with two types of binders 

(PG 64-22 and PG 70-28) were evaluated in the laboratory using Four-point Bending 

Beam Fatigue, DM test, Creep Compliance, and Indirect Tensile Strength tests. The 

maximum increase in the fatigue life was observed for the asphalt mixes with PG 64-22 

binder and 5% RAS and 5% RAP. Also, the dynamic moduli of the asphalt mixes were 

observed to increase with the addition of RAS and/or RAP indicating a better rutting 

performance of mixes. However, the low-temperature cracking potential of the asphalt 

mixes was found to increase with an increase in the RAP and RAS content in the mixes. 

 2.4 Conventional Asphalt Binder Test Methods 

2.4.1 Superpave® Performance Grade (PG) and Its Limitation 

Before implementation of the Superpave® system, characterization of asphalt 

binders was mainly based on empirical methods. Different empirical tests such as 

penetration, ductility, softening point and viscosity were used for the characterization of 

asphalt binders. These empirical tests were reported to have no direct correlations with 

the HMA pavement performance. Also, these tests were conducted at one standard 

temperature without considering binder properties at other temperatures pertaining to 

climatic conditions. Furthermore, there was no scope for testing binder properties at low 

temperatures to determine binders’ resistance to thermal cracking. To address these 
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limitations, the Superpave® PG system was developed to characterize asphalt binders 

based on their performance (McGennis, 1994). 

The DSR test, introduced by the Superpave®, is able to characterize the 

rheological properties of the asphalt binders. In the DSR test, a cylindrical binder 

sample of desired shape is sandwiched between two parallel plates (Figure 2.2). Torque 

is applied to the plate to create sinusoidal, oscillatory stresses or strains on the binder 

sample at required temperatures and loading frequencies. The DSR test is conducted at 

a relatively low stress level to ensure linear viscoelastic behavior of the asphalt binder 

(Delgadillo, 2006).  Figure 2.2 presents a schematic of the DSR test. The total 

dissipated energy can be calculated from the stress-strain curve of the DSR test using 

Equation (2.1). According to Anderson et al. (1994), the rutting can be related to the 

total dissipated energy keep from a DSR test. The term |G*|/sin δ was identified as the 

rutting parameter and was used to determine the high-temperature performance grade of 

the binder being tested (Bahia and Anderson, 1995).  

 

 

 

 

 

Figure 2.2 Schematic of DSR test setup (after Delgadillo, 2006) 
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where, 

Wi = Total dissipated energy, 

τ0 = Maximum applied stress, 

|G*| = Shear modulus of asphalt binder, and 

δ = Phase angle of asphalt binder. 

The NCHRP project 9-10 (2001), “Superpave® Protocols for Modified Binders,” 

was conducted to investigate the suitability of the test protocols proposed in the 

Superpave® specifications for characterizing modified asphalt binders. A wide range of 

commonly used modified asphalt binders were tested in that study. It was observed that 

the mechanical behavior of many modified binders could be highly non-linear and very 

sensitive to stress level, speed, and traffic volume. It was also reported that the 

simplifying assumptions used for the Superpave® test methods restricted their 

applicability for modified asphalt binders. The Superpave® test methods such as 

AASHTO T 315 (AASHTO, 2012) was found to be inadequate for measuring the non-

linear viscoelastic properties of polymer-modified binders. The correlation between 

rutting properties of asphalt mixes and the |G*|/sinδ of asphalt binders was found to be 

poor (with a coefficient of determination, R2, equal to 23.77%). It was concluded that 

the Superpave® specifications that were mainly developed for characterizing 

unmodified asphalt binders are inadequate for proper characterization of modified 

binders (Bahia et al., 2001). 
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2.4.2 Other Test Methods and Their Limitations 

Consequently, many researchers and DOTs started searching for additional test 

methods for characterizing polymer-modified binders. This quest resulted in the 

introduction of Superpave® “PG Plus” test methods such as ER (AASHTO T 301, 

2013), Tenacity (ASTM D 5801, 2012), and Forced Ductility (FD) (AASHTO T 300, 

2011) tests (Kamel et al., 2004). 

Shenoy (2001) proposed a refinement of the Superpave® high-temperature 

specification parameter using basic principles. A new high-temperature parameter 

called Shenoy’s parameter (|G*|/ (1-1/ (tanδ.sinδ)) was proposed to replace the 

|G*|/sinδ. It was proposed that the permanent deformation could be minimized by 

maximizing Shenoy’s parameter. Experimental data of some typically used binders with 

widely different rheological characteristics were used for the verification of the 

prediction. It was observed that the Shenoy’s parameter correlated well with actual 

experimental data more than the |G*|/sinδ, suggested by Superpave® specifications. 

Dongré and D'Angelo (2003) correlated high-temperature specification 

parameters obtained from different asphalt binder tests with the rutting performance 

data from an Accelerated Loading Facility (ALF) at the FHWA’s Turner-Fairbank 

Highway Research Center located in Virginia. The ZSV was determined using the 

Carreau model (Carreau et al., 1968) at different creep stress levels and by conducting 

multicycle creep-recovery test on the asphalt binders (Dongré and D'Angelo, 2003). The 

frequency sweep data at the high temperature PG grades were also used to obtain the 

ZSV values. Among these parameters, the ZSV determined from the Carreau model was 

found to exhibit a good correlation with the rutting performance of the asphalt mixes. 
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However, this method was found to be time-consuming. It was recommended that the 

ZSV determined from the single frequency sweep test can be used as a possible 

replacement of rutting parameter. 

Dongré et al. (2004) conducted another study to evaluate the adequacy of 

storage viscosity (η′) as a replacement for the Superpave® high-temperature rutting 

parameter (|G*|/sinδ). It was found that the accumulated strain, ZSV, and η′ showed 

reasonable correlations with rut depths measured in a HWT test. The η′ value was found 

to be the most promising binder parameter for characterizing the rutting resistance of 

asphalt mixes. The temperature at which η′ becomes equal to a viscosity of 220 Pascal-

seconds (Pa-s) was proposed as a new specification criterion. 

A study conducted by Virginia Department of Transportation (VDOT) identified 

the presence of polymer modifiers in binders by Fourier Transform Infrared (FTIR) 

Spectroscopy and Elastic Recovery (ER) techniques. It was found that both of these 

techniques were not capable of identifying polymers in modified binders (Diefenderfer, 

2006). 

Zoorob et al. (2012) investigated the effects of frequency sweep test on the 

penetration grade binders (40/50 and 20/30) and a SBS block copolymer-modified 

binder at different temperatures. The measured shear modulus (|G*|) and phase angle (δ) 

values were found to indicate the differences between the SBS-modified binder with 

other non-modified binders. A Low Shear Viscosity (LSV) temperature sweep test was 

also conducted to obtain Equi-Viscous Temperature (EVT) at 2 kPa-s viscosity. 

Frequency sweep tests conducted at EVT on SBS-modified binders showed that the 
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LSV concept was not applicable to modified binders in which no viscosity plateau can 

be obtained. 

The advantages and disadvantages of different test parameters namely, 

penetration, softening point, |G*|/sin δ, Shenoy’s parameter, zero-shear viscosity, 

storage viscosity (ή) and the Jnr were investigated by Domingos and Faxina (2015). A 

50/70 penetration grade asphalt binder was used as the base binder and to prepare 

crumb rubber-, SBS-, and Poly Ethylene (PE)-modified asphalt binders of similar high-

temperature PG grade (PG 76-XX). The rutting resistance of these binders were 

evaluated using different parameters at 64° and 70 °C. It was observed that the |G*|/sinδ 

exhibited more conservative results in predicting rutting susceptibility than the 

Shenoy’s parameter. Some similarities in the ranking of the asphalt binders’ 

susceptibility to rutting were observed while considering the |G*|/sinδ, Shenoy’s 

parameter and Jnr parameter. However, the creep and recovery test method was found to 

detect substantial differences among the rheological responses of the modified binders, 

which were not clearly observed in other test procedures. 

2.5 Multiple Stress Creep and Recovery (MSCR) Method  

2.5.1 Development of MSCR Test Method 

Outcomes of the NCHRP project 9-10 suggested that the repeated loading can 

be used for the characterization of the PMA binders (Bahia et al., 2000). Consequently, 

a new test method, called the Repeated Creep and Recovery Test (RCRT), was 

proposed by Bahia et al. (2000). The rate of permanent strain accumulation in the 

asphalt binder as a result of repeated loading was estimated by this test method. In this 
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method, a creep load of 0.3 kPa was applied for 1 second to the asphalt binder, followed 

by a recovery period of 9 seconds. The main drawback of the RCRT test method was its 

low stress level compared to the actual field conditions (D’Angelo et al., 2006).  

The stress dependency of binders in the RCRT and the relationship of this test 

method with the asphalt mixes’ performance were evaluated by Delgadillo et al. (2006). 

Different polymer-modified and aged asphalt binders were used to evaluate the non-

linearity of the RCRT test. Binders were tested at six different stress levels, namely 

0.025, 0.1, 0.4, 1.6, 6.4 and 10 kPa. The stress sensitivity of the RCRT test was found to 

vary with asphalt binder type, modification type and temperature. Also, the RCRT test 

was found to be more sensitive to stress level than the stress sweep test. Furthermore, 

the permanent deformation of the asphalt mixes was found to have a good correlation 

with the RCRT parameter. Moreover, it was observed that the behavior of the binder at 

a high stress level may be used as an indicator of the rutting resistance of the asphalt 

mixes. 

D’Angelo et al. (2006) evaluated the applicability of the RCRT method on 

modified binders as an alternative to Superpave® PG plus tests. A complete RCRT 

protocol was developed for testing asphalt binders. In that study, two stress levels (0.1 

and 3.2 kPa) were proposed for testing. Binders with less networked structure were 

found to exhibit an increase in compliance at 3.2 kPa stress level. It was also observed 

that the analysis of RCRT data can provide useful information on the polymer network 

within the binder. It was reported that a relationship existed between percent recovery 

values obtained from the RCRT and elastic recovery tests. Also, tests on the field cores 

indicated that unlike the elastic recovery test, the RCRT was capable of identifying the 
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presence of polymer(s) in a binder. A new parameter called non-recoverable creep 

compliance (Jnr) was introduced to determine the rutting potential of the polymer-

modified asphalt binders. 

A study conducted by D’Angelo (2010) evaluated the high-temperature rutting 

properties of both unmodified and polymer-modified asphalt binders. The outcomes of 

that study were used for the development of the MSCR test method. The relationship 

between the existing Superpave® grading and the Jnr parameter at 3.2 kPa stress level 

was evaluated using multiple unmodified and polymer-modified asphalt binders. 

Unmodified binders used in this study exhibited a linear behavior up to a stress level of 

3.2 kPa, whereas the polymer-modified binders showed a non-linear behavior at a low 

stress level. The two-phase nature of the polymer-modified binders was reported to be 

responsible for this phenomenon. Also, the variation of rutting with Jnr was exhibited 

using the results from other studies. A new high-temperature binder specification, based 

on MSCR test method, was proposed for asphalt binders as a replacement for grade 

bumping procedure. It was also observed that the stress dependency of polymer-

modified binders was affected by the stiffness of base binder, amount of polymer and 

extent of the polymer network in the binder. 

Reinke (2010) investigated the suitability of the Jnr parameter to predict the 

high-temperature performance of asphalt mixes. The Jnr values of all modified binders 

tested in that study were found to increase with an increase in the stress level. It was 

also found that the different polymer systems responded differently to the applied stress. 

It was concluded that an understanding of the stress sensitivity of the asphalt binders 

would be necessary to evaluate their rutting potential. It was also recommended that the 
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Jnr value of the binders be determined at the climatic temperature using a range of stress 

levels to evaluate their rutting resistance. 

Figure 2.3 presents a schematic of the MSCR test at 0.1 and 3.2 kPa stress levels 

(after D’Angelo and Dongre, 2009). The non-recoverable creep compliance is 

calculated by dividing the non-recoverable strain after each creep and recovery cycle 

with the corresponding applied stress. For example, the Jnr at 0.1 kPa is calculated by 

dividing the non-recoverable strain after each creep and recovery cycle by 0.1 kPa. 

Equations (2.2) and (2.3) present the calculation procedure for the Jnr at 0.1 kPa. The Jnr 

for 3.2 kPa stress level can be calculated using similar procedure (AASHTO TP 70, 

2013). 

 
(a) 

 
(b) 

Figure 2.3 Schematic of MSCR test method (a) strain vs time and (b) stress vs time 

(after D’angelo and Dongre, 2009) 
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where, 

10 0r    ,  

r   Strain at the end of the recovery portion of each cycle, and 

0   Initial strain at the beginning of the creep portion of each cycle. 

2.5.2 Studies Related to MSCR Test  

D’Angelo and Dongré (2009) evaluated the compatibility of the linear and radial 

SBS polymers with the binders using MSCR and ER test methods. It was found that the 

ER tests could not differentiate between different levels of polymer modifications, 

whereas the MSCR test was able to determine the extent of the polymer network in the 

binders. Also, the binder with radial SBS polymer was found to exhibit a higher 

recovery than the binder with linear SBS modification. Furthermore, the MSCR test 

results were verified with the fluorescence micrographs of the binders. It was found that 

the MSCR test was a convenient and less time-consuming test for optimum polymer-

modified binders. 

Tabatabaee and Tabatabaee (2010) evaluated the effectiveness of the current 

Superpave® specifications, time sweep and MSCR tests with respect to the performance 

of the asphalt mixes. A PG 58-22 binder was modified by adding 3%, 6%, 9%, 12%, 

and 15% ground crumb rubber using a laboratory scale mixer. The highly Crumb 
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Rubber-Modified (CRM) binders were observed to exhibit a better rut resistance from 

the MSCR results. It was observed that both MSCR and |G*|/sinδ parameters can be 

used in predicting permanent deformation behavior of asphalt binders modified with the 

CRM. 

Adorjányi, and Füleki (2011) studied the performances of different hard, 

polymer-modified and penetration grade (35/50, 50/70) binders typically used in 

Hungary using MSCR test. The MSCR tests were conducted on RTFO-aged binders at 

high temperature (60 °C) and three different stress levels, namely 0.1, 3.2, and 6.4 kPa. 

It was found that the average recoverable strains of the polymer-modified and hard 

binders were independent of the stress level. However, the binder with a higher 

penetration value exhibited a lower recoverable strain and higher stress sensitivity. 

Significant differences in the non-recoverable creep compliance values were also 

observed for the asphalt binders with the same penetration grade. A good correlation 

was found between the average recoverable strain and average non-recoverable 

compliance at all stress levels for tested binders.  

Wasage et al. (2011) investigated the results of the MSCR test for several 

conventional, polymer- and crumb rubber-modified asphalt binders to evaluate the 

suitability of Jnr as a new parameter for the prediction of rutting. Four different asphalt 

binders within same high-temperature PG grade were selected. Asphalt mixes were 

prepared using the same aggregate gradation, asphalt content and air voids. Relatively 

low recovery was observed for the conventional binder while polymer-modified binder 

showed a high recovery at all stress levels. The Jnr of polymer-modified binder was 

found to be weakly dependent on the stress up to a level of 12.8 kPa at a temperature of 
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40 °C. After that stress level, an increased stress dependency was observed with an 

increase in stress level. A stress of about 1 kPa at 40 °C was found as a common lower 

boundary of the linear viscoelastic behavior for all of the tested binders. The best 

correlation between the rut depth and the Jnr value was observed at a stress level of 12.8 

kPa. Also, a linear viscoelastic model was developed for MSCR test. The model was 

reported to be capable of describing the MSCR test for all binders. 

Shirodkar et al. (2012) studied the behavior of both in-house and industry-

produced polymer-modified binders by characterizing creep and recovery curves 

obtained from the MSCR test. A methodology was developed to determine the different 

components, such as linear viscoelastic, non-linear viscoelastic, and permanent strain 

from the creep and recovery curve. Cycle 6 of 0.1 kPa stress level and cycles 1, 6, and 

10 of 3.2 kPa stress level were used to determine the linear and non-linear viscoelastic 

parameters, respectively. It was found that the non-linear viscoelastic parameters and 

permanent strain were not affected by the cycles of the MSCR test but were influenced 

by the type of base binder. Also, the MSCR parameter, Jnr was found to be affected by 

the type of base binders and polymers. 

A study funded by the New Jersey Department of Transportation was conducted 

to verify the suitability of MSCR parameters as a standard measure to evaluate the 

performance of polymer-modified binders (Mehta et al., 2013). It was found that the 

MSCR test could be used as a replacement of more time intensive elastic recovery and 

force ductility tests. It was also reported that using the MSCR test resulted in a 

reduction of capital cost and expenses associated with characterization of asphalt 

binders. Furthermore, a database containing properties of asphalt binders and mixes 
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properties was developed to help engineers in selecting appropriate binders and mixes 

that can meet the required criteria in the specifications. A Jnr value of less than 0.5 kPa-1 

showed a better high-temperature performance. It was also reported that an MSCR 

%Recovery value greater than 40% at 3.2 kPa stress level might meet the elastic 

recovery requirements of the binder. It was further suggested that a low Jnr value with a 

high MSCR %Recovery and a high |G*|/sinδ value would ensure the binders’ capability 

to withstand heavy and extreme traffic loads. 

DuBois et al. (2014) conducted a study to establish correlations between the 

parameters from the MSCR test with the laboratory measured high-temperature 

properties of asphalt mixes. A total of ten different asphalt mixes were evaluated for 

this purpose. Binder of each mix was tested in accordance with the Superpave® and 

MSCR tests to measure |G*|/sinδ and Jnr. The Jnr values were found to correlate well 

with the rutting performance of asphalt mixes measured using a flow time test. It was 

also observed that the rutting resistance of the asphalt mixes improved as the Jnr value 

of the binder decreased. Asphalt binders were found to exhibit a better rutting 

performance as the Jnr values approached 0.5 kPa-1 or lower. Furthermore, the flow time 

result was found to exhibit poor correlations with the |G*|/sinδ and MSCR %Recovery. 

The high-temperature performance of highly modified asphalt binders was 

investigated by Mohseni and Azari (2014) using the Incremental Repeated Load 

Permanent Deformation (iRLPD) and the MSCR test method. The MSCR and iRLPD 

tests were conducted at PG, PG-6 °C and PG-12 °C temperatures. The iRLPD tests 

were performed at 1.0, 3.2, and 5.0 kPa shear stress levels, each consisting of 20 cycles. 

The relationship between the loading time and permanent strain was found to be linear 
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for neat binders, whereas it was observed to be highly non-linear for polymer-modified 

binders. It was also observed that the permanent strain of polymer-modified binders was 

time-dependent and the non-linearity of strain increased with the level of modification. 

A comparison of average recovery values between both tests showed that the MSCR 

%Recovery was significantly less than that of the iRLPD test. The variability of the 

MSCR test on highly modified binders was found to be dependent on the binder type. 

The MSCR, LTPPBind and iRLPD Traffic Models were developed to relate the 

binders’ test parameters to Equivalent Single Axle Load (ESAL). The iRLPD and 

LTPPBind estimated similar ESAL values for most of the modified binders, whereas 

the iRLPD and MSCR traffic estimates were found to be different for the modified 

binders. 

Domingos and Faxina (2014) evaluated the effect of longer creep-recovery times 

on the MSCR test parameters using a number of modified asphalt binders. A 50/70 

penetration grade binder which is equivalent to a PG 64-XX binder was used as a base 

binder to prepare PPA-, SBS- and SBS+PPA-modified binders. The modifier contents 

were selected to achieve a binder grade of PG 76-XX. Standard MSCR tests along with 

non-conventional tests were conducted at a creep and recovery times of 2 and 18 

seconds, respectively. It was found that the PPA-modified binders exhibited the highest 

%Recovery and the lowest Jnr values. However, the highest Jnr diff values were observed 

for the PPA-modified binder. It was also observed that an increase in creep-recovery 

time decreased the %Recovery and increased the non-recoverable compliance of all 

modified binders. The effect of an increase in both creep and recovery times was found 

to be more pronounced for SBS-modified binders. It was suggested that the addition of 
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PPA might be a good alternative to reduce the susceptibility to rutting at longer creep-

recovery times. 

Zhang et al. (2015) evaluated the MSCR and DSR test methods in characterizing 

the rutting properties of asphalt binders used in HMA mixes. A good correlation (R2 > 

0.75) was found between the Jnr values of binders and the rut depths of HMA obtained 

from a HWT test. Also, the rutting parameter, |G*|/sinδ, was found to exhibit a 

relatively poor correlation (R2 < 0.5) with the rut depths. This study showed that the 

MSCR test has potential to serve as a surrogate for the rutting parameter, |G*|/sinδ. 

A study was conducted by Hossain et al. (2015) to produce a MSCR database 

for different types of polymer-modified binders used in Oklahoma. Asphalt binders 

from different sources in Oklahoma were collected and tested at 64 °C and at 0.1 and 

3.2 kPa stress levels. The asphalt binders were then graded using the MSCR grading 

system. The results from the quadrant plot indicated that both supplier and user may not 

be at risk if they use PG 76-28 asphalt binders. It was also recommended that an MSCR 

%Recovery value of 50 % could be adopted for PG 70-28 binders without putting many 

suppliers at risk. Furthermore, the MSCR %Recovery was found to decrease with 

temperature but increase with aging. It was suggested that the MSCR test method could 

be adopted by ODOT in its quality assurance process to characterize the high-

temperature performance of asphalt binders. 

Stevens et al. (2015) developed a MSCR database for Arizona DOT to 

determine the impacts of changing the grading system from Superpave® to MSCR-

based system. The AASHTO T 350 (AASHTO, 2014) test method and AASHTO M 

332 (AASHTO, 2014) specification were followed for conducting the DSR and MSCR 
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tests, respectively.  The database of three separate groups (A, B, and C) of asphalt 

binders consisting of 375 individual asphalt binder samples were evaluated in this 

study. It was observed that although the binders used in Arizona were produced 

according to AASHTO M 320 (AASHTO, 2010) specification, they met the standard 

traffic requirements of the AASHTO M 332 (AASHTO, 2014). Adopting the MSCR 

specification for grading of asphalt binders was found to increase the number of asphalt 

binder grades used by Arizona DOT from 8 to 13.  

A study conducted by Yang and You (2015) used both DSR and MSCR tests to 

determine the high-temperature performance of bio-oil modified asphalt binders. A PG 

58-28 binder was blended with 5% and 10% of three types of bio-oils generated from 

waste woods, namely untreated bio-oil, treated bio-oil and polymer-modified bio-oil. 

From the DSR test results it was found that the addition of bio-oil to binder increased 

the |G*| value and reduced the phase angle. The rutting resistance of the binder was 

found to increase with the addition of bio-oil. A decrease in the Jnr value and an increase 

in the %Recovery were also observed with the addition of bio-oil to binder. The MSCR 

test results showed that the polymer-modified bio-oil performed worse than untreated 

and treated bio-oil-modified binders.  

The effect of stress level on the creep and recovery behavior of SBS- and PPA-

modified binders was investigated by Jafari et al. (2015). Asphalt binders of same 

continuous PG grade were selected as base binder and mixed with 2%, 4%, and 6% 

SBS and required amounts of PPA to achieve the same continuous high temperature PG 

grade. The MSCR tests were conducted at 55°, 70 °C and at the high temperature PG 

grade of each binder and at a stress level of 12.8 kPa in addition to the standard MSCR 
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procedure. It was found that the Jnr values at low stress levels (0.1 and 3.2 kPa) were 

almost independent of stress at any temperature indicating linear viscoelastic 

characteristics of asphalt binders. However, the stress sensitivity of the modified 

binders was observed to be more prominent at a high temperature and a high stress level 

(12.8 kPa). The SBS-modified binders were found to exhibit significantly less 

sensitivity to stress levels than the PPA-modified binders of the same PG grade. It was 

also observed that the asphalt binder modified with PPA exhibited a higher stress-

sensitivity than others. Furthermore, the PPA-modified binders exhibited much lower 

recovery values than the corresponding SBS-modified binders. It was recommended 

that a stress level higher than 3.2 kPa be used to evaluate the Jnr values of the SBS- and 

PPA-modified binders in the non-linear viscoelastic region. 

The creep-recovery behavior of various elastomer and/or wax modified binders 

was evaluated by Laukkanen et al. (2015). Different linear viscoelastic parameters, 

namely |G*|/sinδ, ZSV and LSV were calculated for tested asphalt binders. It was 

observed that, all the rutting parameters except |G*|/sinδ, ranked highly modified 

binders as the most rut resistant and unmodified binders as the most rut susceptible 

binders. From the MSCR ranking, it was found that the modified binders were much 

more rut resistant compared to the unmodified binders of same penetration grade. It was 

observed that the non-recoverable creep compliance at 3.2 kPa and the accumulated 

strain at the end of the MSCR test were able to predict binder’s contribution to rutting 

of asphalt mixes. Also, the relationships between these two parameters and rutting of 

asphalt mixes were found to be linear. It was reported that the highly modified binders, 
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especially those modified with wax, were more stress sensitive compared to unmodified 

and moderately modified binders. 

Saboo and Kumar (2016) evaluated the rutting performance of unmodified and 

polymer-modified asphalt binders using different rut prediction parameters and 

compared their results with the rutting performance of the associated asphalt mixes. 

Two viscosity graded binders and two polymer-modified binders (SBS- and EVA-

modified) were selected for that study. The temperature sweep test at 10 rad/s, steady-

shear viscosity test at a shear rate varying from 0.1 to 100 s−1 and MSCR test were 

conducted to evaluate various rutting susceptibility parameters. A laboratory wheel-

tracking device was used to measure the rutting performance of prepared HMA. From 

the binder tests results, it was found that the polymer-modified binders showed a better 

rutting performance than conventional binders. It was also observed that the rutting 

performance of the binders evaluated using different methods provided similar 

rankings. However, the amount by which one binder was superior to the other varied 

with the method. The MSCR test was found to be the more fundamental test method 

and was reported to provide more information about the viscoelastic nature of the 

asphalt binder than other test methods. 

2.6 Interpretation of MSCR Test Data  

2.6.1 Polymer Method 

A %Recovery vs. Jnr plot is a very useful tool for characterizing asphalt binders 

at high temperature. This plot is known as the “polymer method” of MSCR data 

analysis (Anderson, 2011). In the present study, the MSCR test data was analyzed using 
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the the polymer method. The MSCR parameters, namely Jnr and %Recovery obtained 

from the 3.2 kPa stress level at 64 °C, were plotted to characterize the binders by 

locating it on the polymer plot. The AASHTO TP 70 (AASHTO, 2013) provisional 

specification introduced a typical curve called the “MSCR curve” as a borderline 

between elastomeric polymer-modified and unmodified binders (Anderson, R. M., 

2011). The equation of the MSCR curve is given in Equation (4.4). 

                𝑦 = 29.37𝑥−0.2633                                                            (4.4) 

where, 

y = MSCR %Recovery at 3.2 kPa, and  

x = Non-recoverable creep compliance at 3.2 kPa. 

An asphalt binder can be defined as a highly elastic binder if the plot of the 

%Recovery vs. Jnr falls above the MSCR curve. This highly elastic binder can be 

modified with high amounts of elastomeric polymers. If the plot of %Recovery vs. Jnr 

falls below the MSCR curve, then it indicates that the binder will exhibit low elasticity. 

Such a binder is not expected to be modified with enough elastomeric polymers. Figure 

2.4 presents a typical plot of the polymer method. 
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Figure 2.4 Polymer method of MSCR analysis (after AASHTO TP 70, 2013) 

2.6.2 Stress Sensitivity 

Stress sensitivity (Jnr diff) is another important parameter that can be determined 

from the MSCR test results. A binder’s performance at a higher temperature or at a 

higher stress level than expected can be evaluated with the help of the stress sensitivity 

parameter (Hossain et al., 2015). In the MSCR test method, the Jnr diff is calculated based 

on the difference in Jnr values at two stress levels. According to the AASHTO MP 19 

(AASHTO, 2010), the increase in Jnr due to an increase in stress level from 0.1 kPa to 

3.2 kPa must be less than or equal to 75% of the Jnr at 0.1 kPa. The equation for 

calculating Jnr diff is given below:  

Jnr  diff =
J nr, 3.2 kPa−J nr, 0.1 kPa

J nr, 0.1 kPa
100 ≤ 75%                            (4.5) 

2.6.3 MSCR Grading 

The MSCR grading system can be used to characterize the performance of 

unmodified and polymer-modified binders.  The MSCR grade of a binder is calculated 
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based on the Jnr values at 3.2 kPa stress level. In this grading system, the Jnr values are 

used as an indicator of the level of traffic that a binder can sustain at a given 

temperature. Four traffic levels are considered in the Jnr-based grading system, namely 

Standard (S), Heavy (H), Very Heavy (V) and Extreme (E). For example, at 64 °C, the 

four MSCR grades are PG 64S-XX (Standard), PG 64H-XX (Heavy), PG 64V-XX 

(Very Heavy), and PG 64E-XX (Extreme). Table 2.1 presents the MSCR grading of 

binders according to the AASHTO MP 19 (AASHTO, 2010) provisional specification. 

Table 2.1 MSCR grades based on Jnr (AASHTO MP 19, 2010) 

Jnr (kPa-1) criteria MSCR Grading 

2.0 < Jnr ≤ 4.0 PG 64S-XX (S: Standard) 

1.0 <Jnr ≤ 2.0 PG 64H-XX (H: Heavy) 

0.5 <Jnr ≤ 1.0 PG 64V-XX (V: Very Heavy) 

Jnr ≤ 0.5 PG 64E- XX (E: Extreme) 

2.7 Implementation of MSCR Method 

Publications by the Asphalt Institute (AI) have identified the benefits of 

adopting the MSCR test method over the “PG Plus” tests. For example, the AI 

published an implementation document for the MSCR test, named “Implementation of 

the Multiple Stress Creep Recovery Test and Specification,” to help the asphalt industry 

with the implementation of the MSCR test method (AI, 2010). Although the ultimate 

goal of the AI was the full implementation of this relatively new binder specification, 

the Asphalt Institute Technical Advisory Committee recognized that many agencies 

might be uncomfortable in transitioning to a system that uses different grade names (AI, 
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2010). A number of meetings, presentations and webinars were conducted by the AI, 

FHWA, and state DOT engineers to facilitate implementation of the MSCR test method 

(Anderson, 2011; Gierhart, 2011; Anderson, 2012(a); Anderson, 2012(b); Horan, 2012; 

Karl Zipf, 2014; Anderson 2014; Anderson, 2015; Corun, 2015). A number of inter-

laboratory studies were also conducted by the AI to determine the precision of the 

AASHTO TP 70 (AASHTO, 2013) test method for the Southeastern Asphalt 

User/Producer Group (SEAUPG) and the North East Asphalt User Producer Group 

(NEAUPG). The Inter-Laboratory Study (ILS) by NEAUPG to evaluate the 

repeatability and reproducibility of the AASHTO TP 70 (AASHTO, 2013) test method 

involved twenty-eight laboratories located in the NEAUPG region. In addition to the 

2010 ILS, the NEAUPG also conducted a second ILS involving twenty-eight 

laboratories from users, producers and industry/academia (Anderson, 2013). In 2011, 

the SEAUPG conducted a similar study involving twenty-three laboratories located in 

the SEAUPG region (Anderson, 2012(c)). 

The implementation status of the MSCR test method of each state can be found 

in the AI’s interactive database (www.asphaltinstitute.org, 2016). A highlight of the 

status of implementation in Oklahoma, New Mexico and Texas DOTs is presented 

below (www.asphaltinstitute.org, 2016):  

The Oklahoma Department of Transportation (ODOT) is in the process of full 

implementation of the MSCR test method for all PG binders. The minimum MSCR 

%Recovery requirements for PG 70-28 OK, PG 76-28 OK, and PG 76E-28 binders 

have been set in the specifications. The Texas Department of Transportation (TxDOT) 

is in the process of setting minimum %Recovery requirements for different binders. The 

http://www.asphaltinstitute.org/
http://www.asphaltinstitute.org/
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TxDOT is planning to replace the elastic recovery with the MSCR %Recovery. 

Currently, the New Mexico Department of Transportation (NMDOT) is testing all 

binders under the MSCR specification. The NMDOT has been conducting MSCR tests 

for several years as a part of the Western Co-ops efforts with University of Wisconsin 

(www.asphaltinstitute.org, 2016).  

2.8 Hamburg Wheel Tracking Test 

In an attempt to identify the rutting potential of HMA mixes, many 

transportation agencies have started using Loaded Wheel Testers (LWT) as a 

supplement to their mix design procedure. It was found that the LWTs allow for an 

accelerated evaluation of rutting potential of the designed asphalt mixes. Several LWTs 

are currently being used in the United States, which include the following: Georgia 

Loaded Wheel Tester, Asphalt Pavement Analyzer (APA), Hamburg Wheel Tracking 

device (HWT), Laboratoire Central des Ponts et Chausées (French) Wheel Tracker, and 

Purdue University Laboratory Wheel Tracking Device (PURWheel) (Miller et al., 1995; 

Choubane et al., 2000; Cooley et al., 2000; Corte, 2001; Kandhal and Cooley, 2002). 

Results obtained from the wheel tracking devices were found to correlate well with the 

actual field performance when the loading and environmental conditions of a given 

location were considered (Miller et al., 1995; Cooley et al., 2000; Kandhal and Cooley, 

2002). 

The capability of the HWT test to determine the moisture sensitivity of asphalt 

mixes were evaluated by Lu and Harvey (2006). For this purpose, both laboratory test 

and field performance data were used on a large scale. Asphalt mixes were prepared 

http://www.asphaltinstitute.org/
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using two types of aggregates, two types of binders and three different additive 

contents. The HWT test was found to overestimate the performance of the asphalt mixes 

containing the conventional binders and underestimate the performance of mixes 

containing polymer-modified binders.  

Grebenschikov and Prozzi (2011) compared the rut depths obtained from the 

HWT test with the rut depths from the Mechanistic-Empirical Pavement Design Guide 

(MEPDG). The results of two types of asphalt mixes (Type C and Type D) from a 

previous TxDOT project were used for this purpose. Each mix was prepared using three 

aggregate gradation levels, namely fine, target and coarse and five binder contents. It 

was found that both the MEPDG and the HWT test ranked the mixes in the same order 

with respect to rutting. 

Walubita et al. (2012) evaluated three laboratory tests, namely the DM test, 

Repeated Load Permanent Deformation (RLPD) test, and HWT test, for characterizing 

the permanent deformation response of HMA mixes relative to the field performance 

under both conventional traffic loading and Accelerated Pavement Testing (APT). It 

was observed that all three test methods provided consistent results in terms of rutting 

behavior. Also, the Superpave® mixes generally was found to exhibit higher moduli 

values with greater rutting resistance potential than the conventional mixes. The HWT 

test was found to exhibit the best repeatability and the lowest variability in the test 

results, compared to the DM and RLPD tests. It was suggested to use the HWT test for 

routine stripping assessment and rutting performance prediction of HMA. 

Differences in rutting performance between laboratory and field compacted 

asphalt mixes were studied by Howard and Doyle (2013) using APA and HWT devices. 
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A total of 398 field cores and laboratory produced samples were tested in that study. No 

significant differences were observed between the rut depths of plant produced and 

laboratory produced mixes determined by APA rut tests. However, the rut depths of 

plant produced mixes obtained from the HWT test were observed to be higher than that 

of the laboratory produced mixes. Also, the rutting performance of laboratory produced 

mixes was found to decrease significantly with a reduction in mixing temperature.  

Sel et al. (2014) evaluated the effect of test temperature on the rut depths of 

asphalt mixes obtained from a HWT test. The Hamburg test database and Aggregate 

Quality Monitoring Program database of TxDOT were used for this purpose. Statistical 

analyses of the collected data showed that the binder grade influenced the HWT rut 

performance of asphalt mixes. Binders with a higher PG grade were found to 

accumulate less deformation than the binders with a lower PG grade. Significant 

differences in the performance were observed when the samples were tested at 40° and 

50 °C. The average deformation was found to exhibit an increasing trend in rutting with 

an increase in test temperature. 

2.9 X-ray Diffraction (XRD) Analysis of Asphalt Binder 

The knowledge of the type of molecular structure and the atomic arrangement 

present in asphalt is very important for proper characterization of asphalt binders 

(Halstead, 1984). The chemical composition of asphalt binders varies with the source of 

crude oil and the refining process. The physical properties of a particular asphalt binder 

depend on the amount and characteristics of asphaltenes, resins and oils (Halstead, 

1984). Asphalt binder is considered a colloidal or a micellar system where the colloids 
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or micelles are dispersed in an oily medium (Nellensteyn, 1928). According to Rostler 

(1979), the asphaltene fraction stays dispersed in asphalt binder and is responsible for 

its colloidal behavior. Generally, asphaltene consists of flat sheets of condensed 

aromatic systems which may be interconnected by sulfide, ether as aliphatic chains or 

naphthenic ring linkages. Gaps and holes in the aromatic system with heterocyclic 

atoms coordinated by transition metals such as vanadium (V), nickel (Ni) and iron (Fe) 

are most likely caused by free radical attack. The flat sheets of aromatic hydrocarbon 

generally stacked one above another (Yen, 1992).  

McNally (2011) reported the use of nuclear magnetic resonance spectroscopy, 

gel permeation chromatography, ultraviolet spectroscopy and gas chromatography-mass 

spectrometry among other methods for characterizing the asphalt fraction, as well as the 

structure of the asphalt binder. However, X-ray Diffraction (XRD) technique has shown 

potential for determining the molecular structure and crystallite parameters for different 

materials (Siddiqui et al., 2002). The XRD test has been used to determine the 

aromaticity and crystallite parameters of petroleum asphaltenes and petroleum resin by 

several researchers (Yen et al., 1961; Siddiqui et al., 2002). In a study conducted by 

Yen et al. (1961), different crystallite parameters such as layer diameter, inter-lamellar 

distance, and the height of the unit cell were calculated and their relationships to 

different physical and chemical properties were determined. The same analysis 

technique was also used to determine the aging characteristics of asphalt binders 

(Siddiqui et al., 2002). Significant differences in crystallite parameters and molecular 

structure were reported for unaged and aged asphalt binders. It was also reported by 

Siddiqui et al. (2002) that the major factors affecting the aging behavior were sources 
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and chemistry of the base asphalt binder. The XRD was reported to be an effective tool 

in evaluating the aging patterns of asphalt binder (Cardoso et al., 2009). It was found 

that the crystallinity of asphalt binder may increase due to the weather exposed aging. 

Cardoso et al. (2009) also concluded that the increased viscosity due to aging may be 

resulted from the increased crystallinity of the asphalt binder. The effect of using 

different XRD profile fitting functions (Pearson VII, Pseudo-Voigt, etc.) to determine 

the binder aromaticity and crystallite parameters were also studied by Gebresellasie et 

al. (2012). A study conducted by Ali et al.  (2015) reported semi-crystalline behavior of 

the asphalt binder in XRD analysis due to polymer modification. In that study, the XRD 

analysis technique used by other researchers for asphaltenes was adopted to characterize 

asphalt binders as asphaltenes act as a “bodying” fraction of the asphalt binder. In the 

present study, XRD technique was applied to characterize the polymer- and poly-

phosphoric acid-modified binders. The aging pattern of different types of binders was 

also investigated using XRD technique.  

2.10 Summary 

Polymer-modified binders have been reported to exhibit better rutting and 

fatigue performances in the pavement than the unmodified binders. The MSCR test 

method was developed by recognizing the limitations of traditional test methods to 

characterize polymer-modified binders. The current MSCR test method and 

specification are the results of a large number of laboratory and field investigations. The 

MSCR test method has been found to be capable of characterizing the rheological 

properties of binders modified with different types and amounts of polymers. Also, the 
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MSCR parameters have been found to better reflect field rutting performance than the 

Superpave® test method parameters. The scarcity and increased cost of the components 

of asphalt mixes has led to the incorporation of high amounts of RAP in asphalt mixes. 

The RAP binder blends have been reported to exhibit better rutting resistance than the 

unmodified binders. Also, the pavement sections with high RAP content have been 

found to perform well during their service life. Furthermore, the HWT test was reported 

to be appropriate for evaluating the rutting performance of asphalt mixes. The XRD test 

has been found to be capable of determining the molecular structure and the atomic 

arrangement of binders. 
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CHAPTER THREE: MATERIALS AND METHODS 

3.1 Introduction 

This chapter presents an overview of the material selection process, test 

matrices, and performance tests for both asphalt binders and asphalt mixes. The test 

matrices included testing polymer-modified binders, RAP binder blends and asphalt 

mixes containing polymer-modified binders and different RAP contents. The major 

tasks of this study are to: (i) collect unmodified and polymer-modified asphalt binders 

from different refineries in Oklahoma, New Mexico and Texas; (ii) extract binder from 

selected RAPs; (iii) prepare asphalt binder samples containing RAP binder; (iv) 

determine Superpave® performance grade (PG) of unmodified and polymer-modified 

binders; (v) perform MSCR tests on unmodified and polymer-modified binders and 

analyze the test results; (vi) collect plant produced asphalt mixes with different RAP 

contents; and (vii) perform HWT tests on collected mixes and analyze the test results. A 

flow chart of the work flow pursued for this study is given in Figure 3.1. 

 3.2 Material Collection and Sample Preparation 

3.2.1 Collection of Asphalt Binders 

As noted previously, some commonly used asphalt binders in Oklahoma, Texas 

and New Mexico were evaluated in this study. Asphalt binders were collected from 

seven different sources; four of these sources were located in Oklahoma, one in New 

Mexico and two in Texas. Since the main focus of this study was to evaluate the 

polymer-modified binders, PG 70-XX and PG 76-XX binders were collected from these 

sources. The type and amount of polymer modification were not shared by the suppliers 
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with the research team. An unmodified asphalt binder, PG 64-22, was also collected 

from an Oklahoma refinery for blending with the RAP binder. It is important to note 

that the PG grading system of the asphalt binder represents the maximum high and low 

temperatures it can sustain. For example, for a PG 64-22 binder, the number 64 

indicates that the binder can be used in areas where the maximum seven-day average 

pavement temperature could be as high as 64 °C. The number -22 means that the binder 

is capable of withstanding a temperature as low as -22 °C, without experiencing any 

low-temperature cracking (Brown et al., 2009). Table 3.1 presents the types and 

locations of the collected binders.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Work flow of the present study 
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Table 3.1 Sources and types of the binders collected for study 

Source Source locations Binder types 

S1 Oklahoma PG 64-22, PG 70-28, PG 76-28 

S2 Oklahoma PG 70-28, PG 76-28 

S3 Oklahoma PG 70-28, PG 76-28 

S4 Oklahoma PG 76-28 

S5 New Mexico PG 70-28, PG 76-28 

S6 Texas PG 70-28, PG 76-28 

S7 Texas PG 70-22 

 

3.2.2 Extraction of Binder from RAP 

Approximately 25 kg of fine RAP was collected from two local suppliers in 

Oklahoma for extraction of binder. The RAP samples were collected from two sources, 

namely Silver Star Construction Co., located in Moore, OK and Haskell Lemon 

Construction Co., located in Norman, OK. For convenience, these materials were 

designated as RAP1 and RAP2, respectively. The collected RAPs were shipped to 

Arkansas State University (ASU) for binder extraction. The binder recovery from RAP 

was performed using a Rotary Evaporator available at the ASU Materials Laboratory in 

accordance with the AASHTO T 319 (Standard Method of Test for Quantitative 

Extraction and Recovery of Binder from Asphalt Mixtures) method (AASHTO, 2015). 

Approximately 320 g of RAP1 and 258 g of RAP2 binders were obtained after 

extraction. The RAP binders were shipped back to the OU Asphalt Binder Laboratory.  
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3.2.3 RAP Binder Blends 

The RAP binders (RAP1 and RAP2) were blended with the unmodified PG 64-

22 binder at four different amounts, namely 0%, 25%, 40% and 60% (by weight of total 

binder). The blending of the PG 64-22 binder and RAP binders was performed using a 

hand mixing process. For this purpose, the PG 64-22 binder and the RAP binders were 

heated to 150 °C for an hour prior to blending. The required amount of RAP binder was 

then weighed and added to the unmodified binder. The binder blend was mixed for one 

minute at every 10 minutes for an hour to consistency. For future reference in this 

study, the 25%, 40% and 60% RAP1 binder blends are defined as PG 64-22-R1-25, PG 

64-22-R1-40 and PG 64-22-R1-60 binder, respectively. Similarly, PG 64-22-R2-25, PG 

64-22-R2-40 and PG 64-22-R2-60 are used to represent 25%, 40% and 60% RAP2 

binder blends, respectively.  

3.2.4 Collection of Asphalt Mixes 

Asphalt mixes containing polymer-modified binders and different amounts of 

RAP were selected to evaluate the rutting susceptibility of the asphalt mixes. For this 

purpose, asphalt mix design sheets required for the production of asphalt mixes were 

collected from Silver Star Construction Co. After evaluating these mix designs, a total 

of four asphalt mixes were selected for this study. Table 3.2 presents the properties of 

the selected asphalt mixes. Since the production of asphalt mixes with high RAP 

content (e.g., 35% RAP) is not very common in Oklahoma, the asphalt mixes with 

polymer-modified binder (MIX-1) and 25% RAP (MIX-2) were collected from the 

aforementioned asphalt plant, but those containing 35% RAP (MIX-3 and MIX-4) were 
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produced in the laboratory. For laboratory produced mixes, asphalt binders, RAP and 

aggregates were collected from the same plant to maintain consistency.  

Table 3.2 Properties of selected asphalt mixes 

Asphalt 

plant 
Mix ID Mix type 

Nominal 

maximum 

aggregate size 

NMAS (mm) 

Binder 

type 

RAP 

content 

(%) 

Silver Star 

Construction 

Co. (Moore, 

OK) 

MIX-1 S4 12.5 PG 76-28 0% 

MIX-2 S3 19 PG 64-22 25% 

MIX-3 S3 19 PG 64-22 35% 

MIX-4 S4 12.5 PG 64-22 35% 

3.3 Laboratory Testing 

3.3.1 Superpave® Grading of Asphalt Binders 

The polymer-modified binders and the RAP binder blends were evaluated using 

the Superpave® grading system. The Superpave® test methods consist of conducting 

DSR tests, Rotational Viscometer (RV) test, and Bending Beam Rheometer (BBR) test, 

in accordance with AASHTO M 320 (AASHTO, 2010). The test matrix used for this 

purpose is presented in Table 3.3.  

3.3.2 Short-term and Long-term Aging of Asphalt Binders 

The short-term aging of the asphalt binders was simulated in the laboratory by 

conducting Rolling Thin Film Oven (RTFO) tests according to the AASHTO T 240 

(AASHTO, 2013) test method (Standard Method of Test for Effect of Heat and Air on a 

Moving Film of Binder). The RTFO-aging simulates the oxidation and aging of asphalt 
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binders during mixing in the asphalt plant and compacting in the field. During RTFO-

aging, the oven temperature was kept constant at 163 °C and the air flow rate was 

maintained at 4 liters/minutes for 85 minutes.  

Table 3.3 Test matrix for Superpave® tests 

Test name 

and 

designation 

Test 

conditions 

Binders from Oklahoma 
Binders from 

outside of Oklahoma 

PG 64-XX 

from 

(S1) 

PG 70-

XX 

from 

(S1, S2, 

S3) 

PG 76-

XX from 

(S1, S2, 

S3, S4) 

PG 70-

XX from 

(S5, S6, 

S7) 

PG 76-

XX from 

(S5, S6) 

RAP blending 
 

RAP1 and 

RAP2  

(25%, 40% 

and 60%) 

No No No No 

Superpave® 

grade: 

AASHTO M 

320  

 
Yes Yes Yes Yes Yes 

RV: 

AASHTO T 

316  

Unaged From 135 °C to 180 °C @ 15 °C 

DSR: 

AASHTO T 

315  

Unaged 
@61 °C, 64 

°C, 67 °C 

@ 67 °C, 

70 °C, 

73 °C 

@73 °C, 

76 °C, 79 

°C 

@ 67 °C, 

70 °C, 73 

°C 

@73 °C, 

76 °C, 79 

°C 

RTFO-

aged 

PAV-aged 
@ 19 °C, 22 

°C, 25 °C 

@ 25 °C, 

28 °C, 

31 °C 

@25 °C, 

28 °C, 31 

°C 

@ 25 °C, 

28 °C, 31 

°C 

@25 °C, 

28 °C, 31 

°C 

RTFO: 

AASHTO T 

240  

 
Yes Yes Yes Yes Yes 

PAV: 

AASHTO R 

28  

 
Yes Yes Yes Yes Yes 

BBR: 

AASHTO T 

313  

PAV-aged 
@ -9 °C, 

 -12 °C 

@ -18 

°C, 

 -21 °C 

@ -18 

°C,  

-21 °C 

@ -18 

°C, 

 -21 °C 

@ -18 

°C, 

 -21 °C 
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The AASHTO R 28 (AASHTO, 2012) (Standard Practice for Accelerated Aging 

of Binder Using a Pressurized Aging Vessel) was followed to simulate long-term aging 

of asphalt binders in the field using a Pressure Aging Vessel (PAV). This aging is 

intended to simulate 5 to 10 years of service life in the field. The PAV-aging was 

conducted on binder residues obtained from the AASHTO T 240 (AASHTO, 2013) 

(RTFO) test method. The RTFO-aged binder samples were placed in stainless steel pans 

and were aged in a pre-heated vessel at 100 °C for 20 hours under an air pressure of 2.10 

MPa. 

3.3.3 Dynamic Shear Rheometer (DSR) Test 

The DSR test was conducted in accordance with the AASHTO T 315 

(AASHTO, 2012) (Standard Method of Test for Determination of Rutting and Fatigue 

Factors Using a Dynamic Shear Rheometer) test method. The DSR test was conducted 

in a thermally-controlled test chamber with a temperature tolerance of ±0.1 °C. It is an 

oscillatory test which is conducted at a loading frequency of 10 rad/s (AASHTO T 315, 

2012). For this purpose, unaged and RTFO-aged binder samples were prepared by using 

a silicon rubber mold having a diameter of 19 mm and a thickness of 1.5 mm. A mold 

with 8 mm diameter and 3 mm thickness was used to prepare PAV-aged binder samples 

for DSR testing. The unaged and RTFO-aged samples were tested using 25 mm 

diameter parallel plates with 1 mm gap, while PAV-aged samples were tested using 8 

mm diameter parallel plates with 2 mm gap. The DSR tests on unaged and RTFO-aged 

binders were conducted under three different temperatures, namely performance grade 

(PG), PG+3°, and PG-3 °C. The PAV-aged samples were tested under three different 
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temperatures, namely intermediate PG, intermediate PG+3°, and intermediate PG-3 °C. 

The shear modulus (|G*|) and phase angle (δ) were calculated using the software 

supplied by the instrument manufacturer. The rutting parameter (|G*|/sinδ) of unaged 

and RTFO-aged binders at high temperatures were determined. In addition, the fatigue 

parameter (|G*|.sinδ) for PAV-aged binders at intermediate temperatures were 

determined as well. Generally, a higher value of |G*|/sinδ is an indication of higher 

rutting resistance and a higher |G*|.sinδ value is an indicator of lower fatigue resistance 

(Bahia, and Anderson, 1995). The lowest temperature corresponding to a |G*|/sinδ 

value of 1.0 kPa for unaged or 2.20 kPa for RTFO-aged binders was considered as the 

continuous high PG temperature for the tested asphalt binders (AASHTO M 320, 2010). 

Figure 3.2 presents typical plots of DSR test results. 

 
(a) 

 
(b) 

Figure 3.2 Typical plots from DSR tests on asphalt binder samples: (a) |G*|/sinδ vs 

temperature; (b) |G*|.sinδ vs temperature  
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3.3.4 Rotational Viscosity (RV) Test 

The Rotational Viscosity (RV) tests were conducted on unaged asphalt binders 

using a Brookfield Rotational Viscometer. The AASHTO T 316 (AASHTO, 2013) 

(Standard Method of Test for Viscosity Determination of Binder Using Rotational 

Viscometer) test method was followed to conduct the RV tests.  The workability of the 

asphalt binders during mixing and compaction in the field was evaluated using this test 

method. Approximately 10 g of asphalt binder sample is needed for conducting a RV 

test. For this purpose, a standard cylindrical spindle was submerged in the liquid asphalt 

binder and was rotated at a constant speed of 20 revolutions/minute (rpm). The torque 

required for the spindle to maintain a constant rotational speed of 20 rpm was measured 

and reported as the rotational viscosity. In this study, the rotational viscosities of the 

binders were determined at 135°, 150°, 165° and 180 °C. Figure 3.3 presents a typical 

plot of RV test results. 

 

Figure 3.3 A typical plot of the RV test conducted on asphalt binder sample 
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3.3.5 Bending Beam Rheometer (BBR) Test 

The AASHTO T 313 (AASHTO, 2013) (Standard Method of Test for 

Determining the Flexural Creep Stiffness of Binder Using the Bending Beam 

Rheometer) test method was followed to conduct the BBR test on asphalt binders. The 

BBR test was performed on the PAV-aged asphalt binders to determine their resistance 

to thermal cracking at low temperature. An Asphalt beam sample having a length of 127 

mm, width 12.7 mm, and thickness 6.35 mm was prepared for this test. The sample was 

subjected to a constant load of 980 ± 50 mN applied at the mid-span of the beam for 

240 seconds. The stiffness, S60 (maximum bending stress divided by the maximum 

strain), and the rate of stress relaxation, m60 (slope of stiffness versus time), were 

calculated for specified loading times (t) of 8, 15, 30, 60, 120, and 240 seconds. The 

values of the stiffness and the rate of stress relaxation at t = 60 seconds were used to 

quantify the thermal cracking resistance of the binders. The continuous low-temperature 

PG grade of the binders were determined based on the results from the BBR tests, 

following the Superpave® specifications (AASHTO M 320, 2010). The highest 

temperature corresponding to an m60 of 0.30 or a S60 of 300MPa was reported as the 

low temperature PG grade. Figure 3.4 presents typical plots of BBR test on asphalt 

binder. 
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(a) 

 

(b) 

Figure 3.4 Typical plots from BBR test on asphalt binder sample: (a) m60 vs 

temperature: (b) S60 vs temperature 

3.3.6 Multiple Stress Creep and Recovery (MSCR) Test 

The MSCR tests were conducted on asphalt binders, following both 

“conventional” and “non-conventional” procedures. The “conventional” method refers 

to the MSCR test performed using the AASHTO TP 70 procedure (AASHTO, 2013) 

(Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Binder 

Using a Dynamic Shear Rheometer) at a high environmental temperature. The high 
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environmental temperature of Oklahoma (64 °C), as noted by Hossain et al. (2015), was 

used in this study.  

The “non-conventional” MSCR test method refers to conducting the MSCR tests 

at a higher stress level (10 kPa) and at high temperatures (70° and 76 °C) to characterize 

the non-linear viscoelastic properties of polymer-modified binders and RAP binder 

blends (Gollalipour, 2011). Each stress level consists of ten loading-unloading cycles. 

Each cycle consists of a one-second creep loading and a nine-second recovery period. 

The non-recoverable creep compliance (Jnr) and the %Recovery were calculated from 

the MSCR test results. Figure 3.5 shows a typical plot of MSCR test conducted on 

asphalt binder. The test matrix for MSCR test followed in this study is presented in 

Table 3.4. The MSCR parameters of the binders were determined using both 

conventional and non-conventional MSCR test methods.  

 

Figure 3.5 Example of stress response of a binder in MSCR test 
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Table 3.4 Test matrix for MSCR test 

Test name 

and 

designation 

Test 

conditions 

Binders from Oklahoma 
Binders from 

outside Oklahoma 

PG 64-

XX from 

(S1) 

PG 70-XX 

from 

(S1, S2, 

S3) 

PG 76-

XX from 

(S1, S2, 

S3, S4) 

PG 70-

XX from 

(S5, S6, 

S7) 

PG 76-

XX 

from 

(S5, S6) 

MSCR: 

conventional 

AASHTO TP 

70 (AASHTO, 

2013) 

RTFO-

aged 
0.1 kPa and 3.2 kPa @ 64 °C 

MSCR: 

Non-

conventional 

RTFO-

aged 

10 kPa @ 64 °C, 70 °C and 76 °C 

0.1 kPa, 3.2 kPa @ 70 °C,76 °C 

 

3.3.7 Hamburg Wheel Tracking (HWT) Test 

The HWT tests were conducted on samples of asphalt mixes collected and 

produced for this study, in accordance with the AASHTO T 324 (AASHTO, 2014), to 

determine their rutting susceptibility and moisture-induced damage potential.  Samples 

for the HWT test were prepared in the laboratory by using a Superpave® gyratory 

compactor. The diameter and height of the compacted samples were 150 mm and 60 

mm, respectively. The bulk specific gravity values (Gmb) of the compacted cylindrical 

samples were determined in accordance with the AASHTO T 269 (Standard Method of 

Test for Percent Air Voids in Compacted Dense and Open Asphalt Mixtures) test 

method (AASHTO, 2014). The compacted samples with an air void of 7 ± 0.5% were 

selected for conducting HWT tests. In this method, two cylindrical samples were cut to 
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a desired shape to place them in the plastic molds and mounting tray. The mounting tray 

was then placed in the HWT machine for testing. In this study, the HWT tests were 

conducted at 50 °C with a wheel pass frequency of 52 passes/minute and a wheel load 

of 705 N. The average linear speed of the wheel was approximately 1.1 km/h and 

traveling approximately 230 mm (9.05 in.) before reversing the movement direction. 

The test was automatically terminated after reaching a maximum rut depth of 20 mm or 

20,000 wheel passes, whichever reached first. Deformations were measured along the 

length of the wheel path at 11 equally-spaced points. The rut depth at the mid-point of 

the sample was considered for further analysis. From the HWT test result, the post-

compaction consolidation, creep slope, stripping slope, and stripping inflection point 

were determined. Figure 3.6 shows a typical plot of a HWT test. Important parameters 

such as the post-compaction consolidation, creep slope, stripping slope and stripping 

inflection point are noted in Figure 3.6. Table 3.5 presents the test matrix for the HWT 

test. Two sets of samples were tested for each mix type to ensure repeatability. 

 

Figure 3.6 A typical plot of HWT rut depths vs. number of wheel passes (After 

www.pavemetinteractive.com ) 
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Table 3.5 HWT test matrix 

Mix 

ID 
Mix type 

Binder 

type 

RAP 

content 

(%) 

Sample 

dimensions  

No. of 

samples 

Test 

temperature 

(°C) 

Failure 

criteria 

MIX-1 S4 PG 76-28  0% 

Diameter: 

150 mm 

Height: 60 

mm 

2 50 
Max. rut 

depth 20 

mm or 

20,000 

wheel 

passes 

MIX-2 S3 PG 64-22  25% 2 50 

MIX-3 S3 PG 64-22  35% 2 50 

MIX-4 S4 PG 64-22  35% 2 50 

3.3.8 X-ray Diffraction (XRD) Test 

The XRD technique has been used by several researchers to characterize 

properties and molecular structure of asphalt binders (Yen et al., 1961; Siddiqui et al., 

2002). In the present study, the molecular structure, aromatic and crystalline properties 

of an unmodified, a polymer- and a poly-phosphoric acid-modified binders were 

determined using the XRD technique. The specific objectives of the XRD analyses were 

to evaluate the effects of short-term and long-term aging on the molecular structure and 

rheological properties of unmodified, polymer- and poly-phosphoric acid-modified 

binders. For this purpose, two types of asphalt binders, namely PG 58-28 (a non- 

modified binder), PG 76-28 (a polymer-modified binder), and a 105% poly-phosphoric 

acid-modified asphalt binders were tested in an XRD. Asphalt binders and 105% PPA 

were collected from local suppliers in Oklahoma. The 105% PPA was added by mixing 

2% PPA (by weight of asphalt binder) with the asphalt binder using a high shear mixer 

at a speed of 550 rpm for 1 hour at 155 °C. For this purpose, the PG 58-28 asphalt 
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binder was heated in an oven to 155 °C. Then the PPA was weighed and added to 

asphalt binder and mixed in the shear mixer.  

The XRD samples were prepared by putting a thin deposit of asphalt binder onto 

glass slides and cooled under room temperature. A total of nine samples of unmodified, 

polymer- and poly-phosphoric acid-modified binders, under three aging conditions 

(unaged, RTFO-aged and PAV-aged), were prepared and tested using the XRD method. 

Figure 3.7 presents an asphalt binder sample prepared for the XRD testing. The XRD 

tests were conducted using a Rigaku Ultima IV diffractometer by applying 

monochromatic Cu-Kα radiation (40 kV and 44 mA). The scan range (2θ) varied 

between 2° and 70° at a scan rate of 0.002° (2θ) per second and detector count time of 2 

seconds/step. The XRD spectra were then analyzed using the MDI Jade 2010 software 

suite. The profile fitting for the XRD spectra was performed using the Pearson VII 

(fixed background) model. The peaks, 2θ, area of the peaks and full width at half-

maximum (FWHM) were determined from the XRD profile fitted curve.  

 

Figure 3.7 Asphalt binder sample for XRD test 

The typical XRD patterns and different crystallite parameters of binders are 

illustrated in Figures 3.8 and 3.9. The aromaticity (fa) and crystallite parameters of the 
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binders were calculated using Equations (3.1) to (3.5), as noted below (Siddiqui et al., 

2002).  

 a

A(graphene)
f =

A graphene +A(γ)
                                                 (3.1) 

where, A is the area under the corresponding peaks. The fa is not a true 

representation of the aromaticity as it does not include all the aromatic carbon of binder. 

The layer distance, dm, between aromatic sheets is given by  

m

λ
d =

2 sinθ
  (3.2) 

where, 

λ = the wavelength of the Cu Kα radiation, and 

θ = Bragg angle of graphene band. 

The inter-chain layer distance, dγ, is given by 

γ

5λ
d =

8 sinθ
                     (3.3) 

where,  

θ = Bragg angle of γ band. 

The average height of the stack of aromatic sheets perpendicular to the plane of 

the sheet is obtained from Equation (3.4):   

c

1
2

0.45
L =

B
            (3.4)  

where,  

1
2

B = Full width of the graphene band at half maximum.  
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The number of aromatic sheet in a stack cluster is given by Equation (3.5):  

c

m

L
M=( )+1

d
  (3.5) 

 

Figure 3.8 Schematic XRD pattern (after Siddiqui et al., 2002) 

 

Figure 3.9 Different crystallite parameters from cross section of asphaltene model (after 

Siddiqui et al., 2002) 
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3.4 Comparative Analysis of the Superpave®, MSCR and 

HWT Test Results 

In order to compare the results of the Superpave® and MSCR tests for evaluating 

the rutting resistance of an asphalt mix, the HWT rut results were used as a benchmark 

of the rutting performance. For this purpose, the |G*|/sinδ parameter obtained from the 

DSR test and the Jnr parameter obtained from the MSCR tests conducted under different 

temperatures and different stress levels were used for the comparative analyses. An 

attempt was made to find out a parameter that best predict the rutting performance of 

the asphalt mixes. Also, a one-to-one comparative assessment of the DSR and MSCR 

test methods was conducted in this study. Some testing aspects such as test 

repeatability, variability of results, and advantages and limitations of the test methods 

were also assessed.  
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CHAPTER FOUR: TEST RESULTS OF ASPHALT BINDERS 

4.1 Introduction 

This chapter presents the Superpave® and MSCR test results conducted on 

polymer-modified binders and RAP binder blends. A comprehensive analysis of the 

Superpave® and MSCR test results is also presented. Furthermore, the suitability of both 

methods for characterizing the polymer-modified binders and RAP binder blends was 

evaluated.  

4.2 Superpave® Test Results 

4.2.1 Polymer-modified Asphalt Binders 

4.2.1.1 DSR test results 

Figures 4.1 (a) and 4.1 (b) present the variation of |G*| values of the polymer-

modified PG 70-XX and PG 76-XX binders, respectively, at different temperatures. The 

DSR test on unaged and RTFO-aged binders were conducted at their corresponding 

high performance grade (PG), PG+3° and PG–3 °C temperatures. From Figures 4.1 (a) 

and 4.1 (b), it was observed that the |G*| values decreased with an increase in 

temperature for all aging conditions and binder types. For example, the |G*| value of the 

unaged S1 PG 70-28 binder was found to be 1.34 kPa at 67 °C, where S1 indicates 

Source 1. The |G*| values for the same binder were 1.08 kPa (19% reduction) and 0.89 

kPa (34% reduction) at 70 °C and 73 °C, respectively. In the case of the PG 76-XX 

binders, a similar trend of reducing |G*| with increasing temperature was observed. 

Also, the RTFO-aged binders exhibited a similar reducing trend of |G*| with 
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temperatures although the |G*| values measured for the RTFO-aged binders were found 

to be higher than unaged binders, as expected. The |G*| value of the RTFO-aged S1 PG 

70-28 binder was found to increase by approximately 91% of that for the unaged binder 

at high PG temperature (70 °C). Therefore, it can be concluded that the shear modulus 

as well as the stiffness of the asphalt binder are expected to increase with aging. 

Furthermore, the |G*| values for the PG 70-XX binders were found to vary from 1.08 to 

1.70 kPa under unaged condition and from 1.91 to 4.72 kPa under RTFO-aged 

condition at high PG temperature (70 °C). The S7 PG 70-22 binder, where S7 indicates 

Source 7, was found to exhibit the highest |G*| values under both unaged and RTFO-

aged conditions among all of the PG 70-XX binders. For the PG 76-XX binders, the 

|G*| values varied from 0.92 to 1.42 kPa under unaged conditions and from 1.86 to 2.97 

kPa under RTFO-aged conditions at 76 °C. 

As shown in Figures 4.2 (a) and 4.2 (b), the phase angles of the PG 70-XX and 

PG 76-XX binders, respectively, were found to increase with an increase in 

temperature. The phase angles measured for the unaged S1 PG 70-28 at 67°, 70° and 73 

°C were found to be 54.83°, 54.87° and 54.90°. However, the level of increase was not 

the same for all binders. Also, from Figures 4.2 (a) and 4.2 (b), the phase angles of the 

PG 70-XX and PG 76-XX binders were found to reduce with aging. For example, the 

phase angle measured for the RTFO-aged S1 PG 70-28 binder was found to be 52.03° at 

70 °C, which is 5% lower than that of the unaged S1 PG 70-28 binder at the same 

temperature. Thus, it can be concluded that, asphalt binders become stiffer with aging, 

as reported by other researchers (Lu and Isacsson, 1997; Tarefder and Yousefi, 2015).  
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(a) 

 

(b) 

Figure 4.1 Variation of |G*| with temperature for unaged and RTFO-aged conditions: 

(a) PG 70-XX binders; (b) PG 76-XX binders 

The phase angles of the PG 70-XX binders were found to vary from 54.87° to 

75.20° under unaged conditions, and from 52.03° to 69.73° under RTFO-aged 

conditions at a high PG temperature (70 °C). The S7 PG 70-22 binder was found to 

exhibit the highest and the S1 PG 70-28 binder exhibited the lowest phase angle values 
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among all of the tested PG 70-XX binders under both aging conditions. For the PG 76-

XX binders at 76 °C, the phase angle values were observed to vary from 47.47° to 

68.83° under unaged conditions and from 45.17° to 59.17° under RTFO-aged 

conditions. 

 

(a) 

 

(b) 

Figure 4.2 Variation of phase angle with temperature for unaged and RTFO-aged 

conditions: (a) PG 70-XX binders; (b) PG 76-XX binders 
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Figures 4.3 (a) and 4.3 (b) present the variations of rutting parameters for the PG 

70-XX and PG 76-XX binders at their corresponding high PG, PG+3° and PG-3 °C 

temperatures, respectively. It was observed that the |G*|/sinδ value decreased with an 

increase in testing temperature for all aging conditions and binder types. From Figures 

4.3 (a), the |G*|/sinδ values of the unaged S1 PG 70-28 binder at 67 °C was found to be 

1.63 kPa. However, the |G*|/sinδ values were 1.32 kPa (19% reduction) and 1.08 kPa 

(38% reduction) at 70° and 73 °C temperatures, respectively. Generally, a higher value 

of |G*|/sinδ is an indicator of a higher rutting resistance (Bahia, and Anderson, 1995). 

According to the Superpave® binder specifications, the |G*|/sinδ values of the binder 

under unaged and RTFO-aged conditions should be greater than 1.0 and 2.2 kPa at high 

PG temperature, respectively. All tested binders were found to meet these Superpave® 

specifications requirements under unaged and RTFO-aged conditions. The |G*|/sinδ 

values for the unaged PG 70-XX binders were found to vary from 1.24 to 1.76 kPa. For 

the same binders (PG 70-XX) under RTFO-aged condition, the |G*|/sinδ values varied 

from 2.42 to 5.03 kPa at high PG temperature (70 °C). The S7 PG 70-22 binder was 

found to exhibit the highest and the S1 PG 70-28 binder showed the lowest |G*|/sinδ 

values under RTFO-aged condition, among all of the tested PG 70-XX binders. Also, all 

of the polymer-modified PG 76-XX binders were found to meet the Superpave® 

specifications requirement of rutting parameter at high PG temperature. For the PG 76-

XX binders at 76 °C, the |G*|/sinδ values were found to vary from 1.08 to 1.58 kPa 

under unaged condition and from 2.57 to 3.90 kPa under RTFO-aged condition. Among 

all of the PG 76-XX binders tested in this study, the S4 PG 76-28 binder was found to 

exhibit the highest and the S1 PG 76-28 binder exhibited the lowest |G*|/sinδ values 
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under RTFO-aged condition. Therefore, the polymer-modified S7 PG 70-22 and S4 PG 

76-28 binders, are expected to exhibit relatively better rutting resistance than the PG 70-

XX and PG 76-XX binders, respectively, when used in a mix. An improvement in the 

rutting resistance of polymer-modified binders was also reported by others (e.g., Lu and 

Isacsson, 1997; Elseifi et al. (2003); DuBois et al. (2014); Xiao et al. (2014); Domingos 

and Faxina, 2016). According to Airey (2003), the rheological characteristics of the 

polymer-modified binders are functions of the combined effects of the composition of 

the binder and polymer and the amount of polymer used in the binder. It was also 

observed that the binders modified with highly elastomeric polymer, such as SBS 

exhibited a better rutting performance at high temperatures due to the formation of a 

continuous polymer network when dissolved/dispersed in the binder (Lu and Isacsson, 

1997; Airey, 2003). 

Figures 4.4 (a) and 4.4 (b) present the variation of fatigue parameter (|G*|.sinδ) 

with temperature for the PAV-aged PG 70-XX and PG 76-XX binders, respectively. A 

lower value of fatigue parameter is an indicator of a higher fatigue resistance (Bahia and 

Anderson, 1995). The Superpave® binder specifications require that the |G*|/sinδ value 

of the PAV-aged binders be less than 5,000 kPa at intermediate PG temperature. From 

Figures 4.4 (a) and 4.4 (b), the |G*|.sinδ values were found to decrease with an increase 

in temperature. For example, from Figure 4.4 (a), the average |G*|.sinδ for the S1 PG 

70-28 binder at 22 °C was observed as 2,330 kPa. However, at 25 °C and 28 °C, the 

average |G*|.sinδ values were 1,743 kPa (25% reduction) and 1,123 kPa (52% 

reduction), respectively. Also, the |G*|.sinδ values for the PG 70-28 binders collected 

from S1, S2, S3, S4, S5, and S6 sources were found to vary between 1,217 and 1,900 
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kPa at 25 °C.  The |G*|.sinδ values for the S7 PG 70-22 binder was measured as 2,370 

kPa at 28 °C.  

 
(a)  

 
(b) 

Figure 4.3 Variation of |G*|/sinδ with temperature for unaged and RTFO-aged 

conditions: (a) PG 70-XX binders; (b) PG 76-XX binders 

Therefore, the S7 PG 70-22 binder was found to exhibit the highest and the S1 

PG 70-28 binder was found to show the lowest |G*|.sinδ values among all of the PG 70-
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XX binders at their corresponding intermediate temperatures. This indicates that the S1 

PG 70-28 binder is expected to have a better fatigue performance than the other PG 70-

XX binders. Also, the |G*|.sinδ value of the PG 76-XX binders were found to vary from 

910 to 1,250 kPa at 28 °C. Among the tested PG 70-XX binders, the S4 PG 76-28 

binder was found to exhibit the lowest |G*|/sinδ value at intermediate temperature. The 

results indicate that the S4 PG 76-28 binder is expected to provide a better fatigue 

resistance when used in a mix. All the PG 70-XX and 76-XX binders were found to 

satisfy the Superpave® specifications requirement of the fatigue parameter. 

 
(a) 

 
(b) 

Figure 4.4 Variation of |G*|.sinδ with temperature for PAV-aged condition: (a) PG 70-

XX binders; (b) PG 76-XX binders 
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4.2.1.2 RV test results 

Figures 4.5 (a) and 4.5 (b) present the results of the rotational viscosity test 

conducted on the unaged PG 70-XX and PG 76-XX binders, respectively. From Figures 

4.5 (a) and 4.5 (b), it is evident that the viscosity of all tested binders reduced with 

increasing test temperatures. For example, the viscosity of the S1 PG 70-28 binder was 

found to be 3213 mPa-s at 135 °C, and it decreased to 1487 mPa-s (54% reduction), 

812.5 mPa-s (75% reduction) and 475 mPa-s (85% reduction) at 150°, 165° and 180 °C, 

respectively. Also, comparing Figures 4.5 (a) and 4.5 (b) reveals that, except binders 

from S3 source, the viscosities of the PG 76-XX binders are higher than those measured 

for the PG 70-XX binders from identical sources, as expected. For example, the 

viscosity of the S1 PG 76-28 binder at 135 °C was found to be 83% higher than that of 

the S1 PG 70-28 binder at the same temperature. Furthermore, the viscosities of the PG 

70-XX binders were found to vary from 1163 to 3213 mPa-s at 135 °C, while the S1 PG 

70-28 binder exhibited the highest and both the S5 PG 70-28 and S7 PG 70-22 binders 

exhibited the lowest viscosity values. Therefore, it can be concluded that the S1 PG 70-

28 and S1 PG 76-28 binders are expected to require more compaction efforts in the field 

among other tested binders when used in a mix. These observations were found to be 

consistent with the findings reported in previous studies (Lu and Isacsson, 1997; Airey, 

2003). Also, a number of studies have reported that the viscosities of the modified 

binders are influenced by the polymer structure and binder source (Lu and Isacsson, 

1997; Airey, 2003; Xiao et al. (2014)). As reported by Lu and Isacsson (1997), the 

relatively high viscosity observed for the polymer-modified binders are resulted from a 

strong interaction between the polymer particles in the binder.  
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(a) 

 

(b) 

Figure 4.5 Variation of viscosity with temperature for unaged condition: (a) PG 70-XX 

binders; (b) PG 76-XX binders 
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4.2.1.3 BBR test results 

Figures 4.6 (a) and 4.6 (b) present the m60 values and Figures 4.7 (a) and 4.7 (b) 

present the S60 values measured from BBR tests conducted on the PAV-aged PG 70-XX 

and PAV-aged PG 76-XX binders, respectively. From Figures 4.6 and 4.7, it can be 

observed that the m60 values reduced and the S60 values increased with a reduction in 

testing temperatures. For example, the m60 value of the S1 PG 70-28 binder was found 

to be 0.332 at -18 °C, while it decreased to 0.323 at -21 °C. The S60 values of the same 

binder were observed to increase from 131.4 MPa to 192.10 MPa when the temperature 

changed from -18° to -21 °C. According to the Superpave® binder specifications, the 

m60 values should be greater than 0.3 and the S60 values should be less than 300 MPa at 

low PG temperature. All of the tested binders were found to meet the Superpave® 

specifications requirement at low PG temperature. The improved low-temperature 

rheological properties of the modified binders were also reported by Lu and Isacsson 

(1997). It was reported that, at low temperature, polymer-modified binders exhibited a 

lower complex modulus and a lower reduction rate in phase angle with temperature than 

unmodified binders. This, in turn, helps to improve the low-temperature rheological 

properties of polymer-modified binders.  
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(a) 

 

(b) 

Figure 4.6 Variation of m60 with temperature for PAV-aged condition: (a) PG 70-XX 

binders; (b) PG 76-XX binders 
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(a) 

 

(b) 

Figure 4.7 Variation of S60 with temperature for PAV-aged condition: (a) PG 70-XX 

binders; (b) PG 76-XX binders 

4.2.1.4 Superpave® PG grading 

The continuous high- and low-temperature PG grades of all of the binders were 

determined based on the results of the DSR and BBR tests, respectively. According to 

the Superpave® specifications, the temperature corresponding to a |G*|/sinδ value of 1.0 

kPa for unaged or 2.20 kPa for RTFO-aged asphalt binders (whichever is the lowest) 

was considered as the continuous high-temperature PG grade. From the BBR test 
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results, the temperature corresponding to an m60 value of 0.30 or a S60 value of 300 MPa 

(whichever is the highest) was considered as the low PG temperature. Tables 4.1 and 

4.2 present the continuous high- and low- temperature PG grades of the tested binders. 

Figures 4.8 (a) and 4.8 (b) show graphical representations of the continuous PG grades 

of the PG 70-XX and PG 76-XX binders, respectively. From Figures 4.8 (a) and 4.8 (b), 

it can be observed that the label used by the manufacturer meets the minimum 

specifications requirements to be graded as advertised. For instance, the continuous PG 

temperature of the S1 PG 70-28 binder was found to be PG 71-36.  

 
(a) 

 
(b) 

Figure 4.8 Superpave® PG grading of binders: (a) PG 70-XX; (b) PG 76-XX 
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Table 4.1 Continuous high-temperature PG grades of PG 70-XX and PG 76-XX binders 

Source 
Binder 

Type 

Aging 

Condition 

Temp. 

(°C) 

|G*|/sinδ 

(kPa) 

Superpave® 

requirement 

|G*|/sinδ 

(kPa) 

PG 

Temp. 

(°C) 

Continuous 

high-

temperature 

PG 

S1 

PG 70-

28 

Unaged 

67 1.63 

1 73.8 

PG 71 

70 1.32 

73 1.08 

RTFO-aged 

67 3.01 

2.2 71.5 70 2.42 

73 1.96 

PG 76-

28 

Unaged 

73 1.90 

1 82.4 

PG 78 

76 1.58 

79 1.33 

RTFO-aged 

73 3.11 

2.2 78.5 76 2.57 

79 2.15 

S2 

PG 70-

28 

Unaged 

67 2.46 

1 73.6 

PG 73 

70 1.60 

73 1.23 

RTFO-aged 

67 4.64 

2.2 74.1 70 3.43 

73 2.67 

PG 76-

28 

Unaged 

73 1.84 

1 80.6 

PG 78 

76 1.52 

79 1.17 

RTFO-aged 

73 3.55 

2.2 78.7 76 2.80 

79 2.14 

S3 

PG 70-

28 

Unaged 

67 2.16 

1 76 

PG 74 

70 1.73 

73 1.40 

RTFO-aged 

67 4.00 

2.2 74.4 70 3.20 

73 2.58 

PG 76-

28 

Unaged 

73 1.80 

1 83.3 

PG 79 

76 1.56 

79 1.34 

RTFO-aged 

73 3.41 

2.2 79 76 2.75 

79 2.22 

S4 
PG 76-

28 

Unaged 

73 1.34 

1 77.2 

PG 77 

76 1.08 

79 0.87 

RTFO-aged 

73 4.65 

2.2 83.4 76 3.90 

79 3.24 
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Table 4.1(continue) Continuous high-temperature PG grades of PG 70-XX and PG 76-

XX binders  

Source 
Binder 

Type 

Aging 

Condition 

Temp. 

(°C) 

|G*|/sinδ 

(kPa) 

Superpave® 

requirement 

|G*|/sinδ 

(kPa) 

PG 

Temp. 

(°C) 

Continuous 

high-

temperature 

PG 

S5 

PG 70-

28 

Unaged 

67 1.72 

1 72.2 

PG 72 

70 1.25 

73 0.93 

RTFO-

aged 

67 5.22 

2.2 75 70 3.97 

73 3.00 

PG 76-

28 

Unaged 

73 1.56 

1 77.7 

PG 77 

76 1.16 

79 0.86 

RTFO-

aged 

73 4.57 

2.2 81 76 3.60 

79 2.82 

S6 

PG 70-

28 

Unaged 

67 1.65 

1 72.3 

PG 72 

70 1.24 

73 0.94 

RTFO-

aged 

67 3.79 

2.2 72.8 70 2.88 

73 2.18 

PG 76-

28 

Unaged 

73 2.04 

1 80.4 

PG 79 

76 1.56 

79 1.22 

RTFO-

aged 

73 4.20 

2.2 79.8 76 3.22 

79 2.47 

S7 
PG 70-

22 

Unaged 

67 2.46 

1 74.1 

PG 74 

70 1.76 

73 1.27 

RTFO-

aged 

67 7.19 

2.2 74.9 70 5.03 

73 3.53 
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Table 4.2 Continuous low-temperature PG grades of PG 70-XX and PG 76-XX binders 

Source  
Binder 

type 

BBR 

parameters 

Temperature 

(°C) 
Superpave® 

specification 

 requirement 

Temp. 

(°C) 

Temp. 

 – 10 (°C) 

Continuous 

low-

temperature 

PG grade -18 -21 

S1 

PG 70-

28 

m60 0.332 0.323 0.3 -29.22 -39.22 
PG XX-36 

S60 (kPa) 131.1 190.68 300 -26.5 -36.5 

PG 76-

28 

m60 0.339 0.328 0.3 -28.58 -38.58 

PG XX-34 
S60 (kPa) 136.77 209.67 300 -24.72 -34.72 

S2 

PG 70-

28 

m60 0.354 0.321 0.3 -23.16 -33.16 

PG XX-29 
S60 (kPa) 237.46 334.58 300 -19.93 -29.93 

PG 76-

28 

m60 0.35 0.33 0.3 -24.33 -34.33 

PG XX-30 
S60 (kPa) 221.74 310.99 300 -20.68 -30.68 

S3 

PG 70-

28 

m60 0.344 0.33 0.3 -26.84 -36.84 

PG XX-33 
S60 (kPa) 181.71 246.93 300 -23.44 -33.44 

PG 76-

28 

m60 0.359 0.34 0.3 -27.1 -37.1 

PG XX-34 
S60 (kPa) 147.26 212.81 300 -24.83 -34.83 

S4 
PG 76-

28 

m60 0.342 0.328 0.3 -27.33 -37.33 

PG XX-37 
S60 (kPa) 87.25 133.47 300 -31.81 -41.81 

S5 

PG 70-

28 

m60 0.361 0.348 0.3 -32.59 -42.59 

PG XX-37 
S60 (kPa) 116.6 175.22 300 -27.39 -37.39 

PG 76-

28 

m60 0.372 0.339 0.3 -24.6 -34.6 

PG XX-34 
S60 (kPa) 98.3 139.28 300 -32.77 -42.77 

S6 

PG 70-

28 

m60 0.364 0.337 0.3 -24.93 -34.93 

PG XX-34 
S60 (kPa) 84.98 144 300 -28.93 -38.93 

PG 76-

28 

m60 0.379 0.337 0.3 -23.57 -33.57 

PG XX-33 
S60 (kPa) 63.36 109.51 300 -33.38 -43.38 

S7 
PG 70-

22a 

m60 0.322 0.305 0.3 -16.00 -26.00 

PG XX-26 
S60 (kPa) 111.38 146.85 300 -27.95 -37.95 

a 
S7 PG 70-22 was tested at -12° and -15 °C as per specification requirement. 
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4.2.2 RAP Binder Blends 

The effect of the addition of different amounts of RAP binder to the neat binder 

was evaluated using the Superpave® test method. The Superpave® test results of PG 64-

22, PG 64-22-R1-25, PG 64-22-R1-40, PG 64-22-R2-25, PG 64-22-R2-40 binders were 

adopted from a previous project performed by the OU research team. 

4.2.2.1 DSR test results 

Figure 4.9 presents the variation of the |G*| with temperature for unaged and 

RTFO-aged RAP binder blends. From Figure 4.9, it can be found that the addition of 

RAP binder increased the |G*| value of the PG 64-22 binder, as expected. For example, 

the |G*| values of the unaged PG 64-22 binder at 61° and 64 °C were found to be 2.39 

and 1.70 kPa, respectively. However, the |G*| values of the PG 64-22-R1-25 binder at 

61° and 64 °C were found to be 4.28 and 2.80 kPa, respectively. Also, the PG 64-22-

R1-40 and PG 64-22-R1-60 binders were found to exhibit an increasing trend of |G*| 

values with an increase in RAP1 binder. Furthermore, a similar trend of increasing |G*| 

values with increased amount of RAP binder was observed for the RAP2 binder blends. 

These results indicate that the shear modulus as well as the stiffness of the PG 64-22 

binder are expected to increase with an increase in the amount of RAP binder 

irrespective of the RAP source (Colbert and You, 2012; Bernier et al., 2012; Hossain et 

al., 2013) 

Figure 4.10 presents the variation of δ values of the RAP binder blends with 

temperature. From Figure 4.10, it can be observed that the phase angles of the PG 64-22 

binder exhibited a reducing trend with an increase in the amount of RAP binder for both 
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RAP sources. For example, the phase angle of the unaged PG 64-22 binder was found 

to be 84.63° at 64 °C, whereas the same for the PG 64-22-R2-25 and PG 64-22-R2-40 

binders were 84.00° and 79.50° at 64 °C at the same temperature, respectively. 

Therefore, it can be concluded that addition of RAP binder is expected to reduce the 

phase angle and change the viscoelastic properties of asphalt binders. Hossain et al. 

(2013) reported a similar increasing trend of |G*| and a reducing trend of δ values with 

an increase in the amount of RAP in the binder blends. The oxidative hardening 

experienced by the RAP binder throughout its service life was reported to be the reason 

of such observations.  

 

Figure 4.9 Variation of |G*| with temperature for unaged and RTFO-aged conditions 

and 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends 
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Figure 4.10 Variation of phase angle with temperature for unaged and RTFO-aged 

conditions and 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends 

Figure 4.11 presents the effect of blending RAP1 and RAP2 binders on the 

|G*|/sinδ, under unaged and RTFO-aged conditions and at different temperatures. As 

mentioned earlier, a higher |G*|/sinδ value is an indicator of a higher rutting resistance 

(Bahia and Anderson, 1995). The |G*|/sinδ values were found to increase with the 

blending of RAP binder to the PG 64-22 binder. For example, the |G*|/sinδ values of the 

PG 64-22-R1-25 and PG 64-22-R1-40 binders were found to be 2.82 and 3.81 kPa at 64 

°C.  These values were approximately 65% and 125% higher than the |G*|/sinδ of 

unaged PG 64-22 binder, respectively. A similar increase in the |G*|/sinδ values was 

also observed for RAP2 binder blends. However, the level of increase in the |G*|/sinδ 

with addition of RAP binder was found to be dependent on the RAP sources. Therefore, 

the RAP binder blends are expected to exhibit a higher rutting resistance than those 
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without any RAP binder, as reported by other researchers (Bernier et al., 2012; Colbert 

and You, 2012; Hossain et al., 2013). 

 

Figure 4.11 Variation of |G*|/sinδ with temperature for unaged and RTFO-aged 

conditions and 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends 

4.2.2.2 RV test results 

Rotational viscosity test results of the RAP binder blends are presented in Figure 

4.12. From Figure 4.12, it can be seen that the viscosities of the RAP binder blends are 

higher than that of the neat PG 64-22 binder. This is due to the fact that the RAP binder 

experienced oxidative hardening and aging throughout its service life (Hossain et al., 

2013). The viscosities of the PG 64-22 binder exhibited a continuous increasing trend 

with an increase in the amount of RAP binder. For example, the viscosity of the PG 64-

22 binder was found to be 518.75 mPa-s at 135 °C and it increased to 1,054.5 mPa-s 

(103% increase) and 1237 mPa-s (138% increase) for the PG 64-22-R1-25 and PG 64-
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22-R1-40 binders, respectively. However, the PG 64-22-R1-60 binder was observed to 

exhibit a lower viscosity than those of the PG 64-22-R1-25 and PG 64-22-R1-40 

binders. With the addition of RAP2 binder to the neat binder, the viscosity follows a 

similar increasing trend, as observed for RAP1binder blends. The viscosity values were 

approximately 25%, 105% and 153% higher than that of the neat binder for PG 64-22-

R2-25, PG 64-22-R2-40 and PG 64-22-R2-60 binders. This indicates that the RAP 

binder blends are expected to result in a reduced workability, when used in a mix. 

Colbert and You (2012) also reported that the amount of RAP binder added to the neat 

binder had an effect on the viscosity and pumping ability of associated asphalt mixes. It 

was also reported that the workability and the pumping potential based on viscosity of 

the binder significantly reduced as the amount of RAP binder increased. 

 

Figure 4.12 Variation of viscosity with temperature for unaged condition and 0%, 25%, 

40% and 60% RAP1 and RAP2 binder blends 

 



88 

 

4.2.2.3 BBR test results 

For an improved resistance to low-temperature cracking, binders should not be 

too stiff at low temperatures and need to have the ability to relax of built-up stresses in a 

reasonable amount of time (Bahia and Anderson, 1995). Figures 4.13 and 4.14 present 

the m60 and the S60 values measured by conducting the BBR tests on RAP binder 

blends. From Figures 4.13 and 4.14, it was observed that the m60 values reduced and the 

S60 values increased with the addition of RAP1 and RAP2 binder to the PG 64-22 

binder. For example, the m60 value for neat binder was found to be 0.329 at -12 °C. It 

reduced to 0.315, 0.299 and 0.302 for the PG 64-22-R2-25, PG 64-22-R2-40 and PG 

64-22-R2-60 binders, respectively, at the same testing temperature. Also, the S60 values 

of the neat binder were found to increase from 127.24 MPa to 142.24, 155.67 and 

196.10 MPa for the PG 64-22-R2-25, PG 64-22-R2-40 and PG 64-22-R2-60 binders, 

respectively, at -12 °C. Similar trends of variation in m60 and S60 values were observed 

for RAP1 binder blends except for the PG 64-22-R1-60 binder. It is suspected that some 

anomalies related to operator, machine or a combination of both had some roles behind 

such discrepancies in the test results for the PG 64-22-R1-60 binder. As the stiffness of 

the binder increased and the stress relaxation factor reduced with the addition of RAP 

binder, the binder blends are expected to exhibit a higher susceptibility to low-

temperature cracking. These observations comply with the findings of an earlier study 

conducted by Daniel et al. (2010). 
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Figure 4.13 Variation of m60 with temperature for PAV-aged condition and 0%, 25%, 

40% and 60% RAP1 and RAP2 binder blends 

 

Figure 4.14 Variation of S60 with temperature for PAV-aged condition and 0%, 25%, 

40% and 60% RAP1 and RAP2 binder blends 

4.2.2.4 Superpave® PG grading 

The continuous PG grades of the RAP binder blends were determined based on 

the DSR and BBR test results in accordance with the Superpave® specifications. Tables 

4.3, 4.4 and Figure 4.15 present the continuous high-and low-temperature PG grades of 
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the RAP binder blends. It can be observed that the high-temperature PG grade increased 

with an increase in the RAP binder. As seen in Figure 4.15, the high-temperature PG 

grade of neat binder changes from PG 66 to PG 67, PG 76 and PG 77 with the addition 

of 25%, 40% and 60% RAP1 binder, respectively. Also, the high-temperature PG 

grades were found to be PG 69, PG 71 and PG 82 for the PG 64-22-R2-25, PG 64-22-

R2-40 and PG 64-22-R2-60 binders, respectively. Therefore, the change in the high-

temperature PG grades was found to be insignificant for the PG 64-22-R1-25 and PG 

64-22-R2-25 binders. However, the addition of 40% and 60% RAP1 binders to the neat 

binder resulted in a bump of about two PG grades. Also, the high-temperature PG 

grades were observed to be one and three grades higher than that of neat binder for the 

PG 64-22-R2-40 and PG 64-22-R2-60 binders, respectively. Furthermore, it was found 

that the continuous low-temperature PG grade of the PG 64-22 binder increased from 

PG -26 to PG -22 and PG -8 (three PG grade reduction) with the addition of 25% and 

40% RAP1 binder. The PG grade of the PG 64-22-R1-60 binder was found not to 

follow this trend as a new batch of neat binder was used for blending. The low-

temperature PG grades of the PG 64-22-R2-25, PG 64-22-R2-40 and PG 64-22-R2-60 

binders were found to be PG -25, PG -21 and PG -22, respectively. Therefore, only one 

grade increase in the low-temperature PG grade was observed due to the addition of 

60% RAP2 binder to the PG 64-22 binder. Overall, these results indicate that the 

addition of RAP binder to neat binder is expected to decrease the rutting susceptibility 

of the binder blends and increase the possibility of low-temperature cracking of the 

binder, when used in a mix (Daniel et al., 2010; Bernier et al., 2012; Hossain et al., 

2013). 
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Table 4.3 Continuous high-temperature PG grades of 0%, 25%, 40% and 60% RAP1 

and RAP2 binder blends 

Binder 

type 

RAP 

type 

RAP 

binder 

(%) 

Aging 

condition 

Temp. 

(°C) 

|G*|/sinδ 

(kPa) 

Superpave® 

requirement 

|G*|/sinδ 

(kPa) 

Temp. 

(°C) 

Continuous 

high- temp. 

PG grade 

PG 64-

22 
  0 

Unaged 

61 2.16 

1 66.7 

PG 66 

64 1.47 

67 1.00 

RTFO- 

aged 

61 7.88 

2.2 69.6 64 5.38 

67 3.66 

PG 64-

22 

RAP

1 
25 

Unaged 

61 4.31 

1 67.7 

PG 67 

64 2.82 

67 9.52 

RTFO- 

aged 

61 19.57 

2.2 73.6 64 21.40 

67 15.40 

PG 64-

22 

RAP

1 
40 

Unaged 

67 5.77 

1 76.0 

PG 76 

70 3.81 

73 2.78 

RTFO- 

aged 

67 22.50 

2.2 77.1 70 15.67 

73 10.73 

PG 64-

22 

RAP

1 
60 

Unaged 

73 1.64 

1 77.25 

PG 77 

76 1.12 

79 0.79 

RTFO- 

aged 

73 4.00 

2.2 77.81 76 2.71 

79 1.85 

PG 64-

22 

RAP

2 
25 

Unaged 

64 2.53 

1 69.26 

PG 69 

67 1.66 

70 1.15 

RTFO- 

aged 

64 8.38 

2.2 71.65 67 5.64 

70 3.66 

PG 64-

22 

RAP

2 
40 

Unaged 

64 6.49 

1 71.35 

PG 71 

67 4.25 

70 2.82 

RTFO- 

aged 

64 16.60 

2.2 72.89 67 10.75 

70 7.27 

PG 64-

22 

RAP

2 
60 

Unaged 

76 2.19 

1 82.21 

PG 82 

79 1.53 

82 1.08 

RTFO- 

aged 

76 5.02 

2.2 82.2 79 3.45 

82 2.39 
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Table 4.4 Continuous low-temperature PG grades of 0%, 25%, 40% and 60% RAP1 and 

RAP2 binder blends 

Binder 

Type 

RAP 

type 

RAP 

binder 

(%) 

BBR parameters 

Standard 

specifica-

tion 

Temp. 

(°C) 

Temp. 

– 10 

(°C) 

Continuous 

low-temp. 

PG grade 

      
Temp. 

(°C) 
-12 -15         

PG 64-

22 
  0 

m60 0.329 0.309 0.3 -16.4 -26.4 

PG XX-26 
S60 

(kPa) 
127.24 184.19 300 -21.1 -31.1 

PG 64-

22 

RAP

1 
40 

Temp. 

(°C) 
-12 -18       

PG XX-8 m60 0.268 0.254 0.3 1.8 -8.17 

S60 

(kPa) 
151.27 280.92 300 -18.9 -28.9 

PG 64-

22 

RAP

1 
60 

Temp. 

(°C) 
-6 -12       

PG XX-27 
m60 0.346 0.322 0.3 -17.7 -27.7 

S60 

(kPa) 
66.6 136.47 300 -25.6 -35.6 

PG 64-

22 

RAP

2 
25 

Temp. 

(°C) 
-12 -18       

PG XX-25 m60 0.315 0.287 0.3 -15.1 -25.1 

S60 

(kPa) 
142.24 260.51 300 -20 -30 

PG 64-

22 

RAP

2 
40 

 Temp. 

(°C) 
-12 -18       

PG XX-21 
m60 0.299 0.274 0.3 -11.7 -21.7 

S60 

(kPa) 
155.67 300.56 300 -18 -28 

PG 64-

22 

RAP

2 
60 

Temp. 

(°C) 
-6 -12       

PG XX-22 m60 0.328 0.302 0.3 -12.4 -22.4 

S60 

(kPa) 
98.6 196.1 300 -18.4 -28.4 
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Figure 4.15 Superpave® PG grading of 0%, 25%, 40% and 60% RAP1 and RAP2 

binder blends 

4.3 MSCR Test Results 

4.3.1  Polymer-modified Binders 

The MSCR tests on the RTFO-aged polymer-modified PG 70-XX and PG 76-XX 

asphalt binder samples were conducted at a temperature of 64 °C. Pertinent results of the 

Jnr (0.1 kPa), Jnr (3.2 kPa), Jnr diff, R100 and R3200 values, as well as the Rdiff of the PG 70-

XX and PG 76-XX binders, are presented in Table 4.5.  The term “R100” denotes the 

MSCR %Recovery at 0.1 kPa, whereas Jnr (0.1 kPa) refers to the non-recoverable creep 

compliance obtained from the MSCR test at 0.1 kPa. The Jnr diff refers to the percent 

difference in Jnr values as the stress level changes from 0.1 kPa to 3.2 kPa. 

4.3.1.1 Non-recoverable creep compliance (Jnr) 

The results of the Jnr values of the PG 70-XX and PG 76-XX binders at 0.1 and 

3.2 kPa stress levels and 64 °C are presented in Figures 4.16 (a) and 4.16 (b). Generally, 
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a lower Jnr value for binder represents a higher rutting resistance when used in a mix 

(D’Angelo, 2010). From Figures 4.16 (a) and 4.16 (b), relatively low Jnr values were 

observed for both PG 70-XX and PG 76-XX binders and they fell below 0.5 kPa-1. For 

both PG 70-XX and PG 76-XX binders, it can be observed that the Jnr value measured 

at 3.2 kPa stress level was unchanged or higher compared to that measured at 0.1 kPa 

stress level. For example, the Jnr for the S5 PG 70-28 binder was found to increase from 

0.25 to 0.33 kPa-1 when the stress level increased from 0.1 to 3.2 kPa. However, the Jnr 

value of the S1 PG 76-28 remained unchanged with a change in the stress level.  

Table 4.5 MSCR test results for PG 70-XX and PG 76-XX binders at 64 °C 

Binder 

Type 

  

Temp 

(°C) 

Jnr 

(0.1 

kPa) 

kPa-1 

Jnr 

(3.2 

kPa) 

kPa-1 

  

Jnr 

diff 

(0.1-

3.2) 

Stress 

sensitivity 

(Meets 

AASTHO 

MP 19) 

R100 

(%) 

  

R3200 

(%) 

  

Rdiff 

(0.1-

3.2) 

%Recovery 

(Meets 

AASTHO 

TP 70) 

MSCR 

grade 

S1 PG 

70-28 
64 0.05 0.04 -8.95 Yes 96.15 95.8 0.36 Yes 

PG 64E-

XX 

S1 PG 

76-28 
64 0.02 0.02 -6.30 Yes 97.29 97.24 0.05 Yes 

PG 64E-

XX 

S2 PG 

70-28 
64 0.19 0.19 2.10 Yes 77.79 77.4 0.44 Yes 

PG 64E-

XX 

S2 PG 

76-28 
64 0.06 0.06 -1.65 Yes 89.56 89.8 -0.32 Yes 

PG 64E-

XX 

S3 PG 

70-28 
64 0.06 0.05 -5.75 Yes 94.05 94 0.05 Yes 

PG 64E-

XX 

S3 PG 

76-28 
64 0.06 0.06 1.94 Yes 91.89 91.9 -0.05 Yes 

PG 64E-

XX 

S4 PG 

76-28 
64 0.03 0.03 -2.35 Yes 94.71 94.45 0.28 Yes 

PG 64E-

XX 

S5 PG 

70-28 
64 0.25 0.33 31.89 Yes 71.41 63.8 10.60 Yes 

PG 64E-

XX 

S5 PG 

76-28 
64 0.08 0.10 28.03 Yes 81.84 76.4 6.63 Yes 

PG 64E-

XX 

S6 PG 

70-28 
64 0.33 0.43 28.66 Yes 71.31 64.68 9.29 Yes 

PG 64E-

XX 

S6 PG 

76-28 
64 0.11 0.14 30.02 Yes 80.32 75.74 5.69 Yes 

PG 64E-

XX 

S7 PG 

70-22 
64 0.36 0.47 31.21 Yes 42.77 30.27 29.22 No 

PG 64E-

XX 
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Therefore, selecting the right stress level of the MSCR test is important to 

predict the rutting susceptibility of the binder with respect to the Jnr value. Furthermore, 

from Figures 4.16 (a) and 4.16 (b), variations in Jnr values can be observed for the 

binders of same PG grade but different sources. For example, the PG 70-XX binders 

were found to exhibit Jnr values ranging from 0.05 kPa-1 (S1 PG 70-28) to 0.36 (S7 PG 

70-22) at 0.1 kPa and from 0.04 kPa-1 (S1 PG 70-28) to 0.47 (S7 PG 70-22) at 3.2 kPa 

stress levels. Also, the Jnr values for the PG 76-XX binders were observed to vary from 

0.02 kPa-1 (S1 PG 76-28) to 0.11 (S6 PG 76-28) at 0.1 kPa and from 0.02kPa-1 (S1 PG 

76-28) to 0.14 (S6 PG 76-28) at 3.2 kPa stress levels. Thus, it can be concluded that, the 

Jnr values as well as the rutting performance of the binders can vary although they have 

the same Superpave® PG grade. These observations were found to be consistent with 

the findings of the other studies (e.g., Jafari et al., 2015; Domingos and Faxina, 2016). 

4.3.1.2 MSCR %Recovery 

Figures 4.17 (a) and 4.17 (b) present the %Recovery values of the PG 70-XX 

and PG 76-XX binders from MSCR tests conducted at a temperature of 64 °C. 

According to D’Angelo (2010), the %Recovery value obtained from the MSCR test at 

high temperatures can be used to evaluate the rutting performance of a pavement. This 

parameter can also provide useful information regarding the reaction of base binder 

with polymer and formation of the polymer network (D’Angelo, 2010). The %Recovery 

value measured at the 3.2 kPa stress level was found to be unchanged or lower than that 

measured at the 0.1 kPa stress level for both polymer-modified binders. For example, 

the S1 PG 70-28 binder was found to exhibit an insignificant reduction (0.36% 
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difference) in the %Recovery with an increase in the stress level from 0.1 kPa to 3.2 

kPa. A reason for such a low reduction in the %Recovery may be attributed to the linear 

viscoelastic behavior of the binder at both stress levels. Another reason can be the 

shortness of the rest period in the test procedure, which may cause the binder not to 

have enough time to fully recover at the end of loading and unloading cycles at 0.1 kPa 

stress level (Delgadillo et al., 2012; D’Angelo et al., 2007).  

 

(a) 

 

(b) 

Figure 4.16 Effect of source on Jnr values at 64 °C: (a) PG 70-XX binders; (b) PG 76-

XX binders  
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However, the %Recovery value of the S7 PG 70-22 binder was found to reduce 

by approximately 29.22% when the stress level increased from 0.1 to 3.2 kPa. Also, 

from Figures 4.17 (a) and 4.17 (b), relatively high %Recovery values were observed for 

both PG 70-XX and PG 76-XX binders from all sources except for the S7 PG 70-22. 

D’Angelo (2010) reported that a high %Recovery value obtained from an MSCR test 

can be used as an indication of strong polymer network in the binder at the 

corresponding high temperature. D’Angelo (2010) also tested the PPA-, SBS linear 

polymer- and SBS radial polymer-modified binders under fluorescence micrographs to 

establish relationship between %Recovery and polymer network. The polymers in the 

binders with low %Recovery were found to simply float in the asphalt. On the other 

hand, the binders with a high %Recovery were found to exhibit a strong polymer 

network with a leathery look indicating extensive cross-linking and well-dispersed 

concentrations of polymers (D’Angelo, 2010). Therefore, it can be concluded that all 

the PG 70-XX and PG 76-XX binders except S7 PG 70-22 are expected to have a strong 

polymer network at 64 °C. Furthermore, similar to Jnr values, binders with the same PG 

grade were found to exhibit variations in %Recovery values. For example, the 

%Recovery of PG 70-XX binders were found to vary from 96.15% (S1 PG 70-28) to 

42.77% (S7 PG 70-22) at 0.1 kPa and from 95.8% (S1 PG 70-28) to 30.27% (S7 PG 70-

22) at 3.2 kPa stress levels. The %Recovery values for the tested PG 76-XX binders 

were observed to be as high as 97.24% for the S1 PG 76-28 binder and as low as 

75.74% for the S6 PG 76-28 binder at 3.2 kPa stress level. Therefore, in spite of having 

the same PG grade, the %Recovery values at certain stress levels and temperatures can 

vary depending on the viscoelastic behavior of a particular binder and binder source. 
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These observations support the findings of other studies (e.g., D’Angelo, 2010; Jafari et 

al., 2015; Stevens, 2015; Domingos and Faxina, 2016). 

 

(a) 

 

(b) 

Figure 4.17 Effect of Source on %Recovery values at 64 °C: (a) PG 70-XX binders; (b) 

PG 76-XX binders  
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4.3.1.3 Stress sensitivity 

Table 4.5 presents the percentage difference in Jnr values (Jnr diff) while the stress 

level changes from 0.1 kPa to 3.2 kPa at 64 °C. From Table 4.5 it can be observed that 

all of the polymer-modified binders met the minimum stress sensitivity requirement (Jnr 

diff <75%) proposed by the AASHTO MP 19 (AASHTO, 2010) specification. The 

maximum increase in Jnr values for the PG 70-XX and PG 76-XX binders were found to 

be 31.89% and 28.03%, respectively. Therefore, it can be concluded that the tested 

polymer-modified binders were not overly stress sensitive. This means that the binders 

are expected not to undergo high amount of strain when subjected to unexpected heavy 

loads or unusually high temperatures. Figures 4.18 (a) and 4.18 (b) show the variation 

of Jnr diff with Rdiff values for the tested polymer-modified binders. These plots provide 

an insight on the trend of changes in Jnr with %Recovery values when subjected to a 

high stress level. From Figures 4.18 (a) and 4.18 (b), it can be observed that the rate of 

increase in %Recovery of the PG 70-XX binder has a relatively good correlation with 

the rate of increase in Jnr value. Comparatively, the PG 76-XX binder did not exhibit a 

good correlation. Therefore, it can be concluded that the changes in %Recovery of the 

PG 76-XX binders are expected to be less sensitive to the change in stress level than 

that of the Jnr value. 
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(a) 

 

(b) 

Figure 4.18 Variation of Jnr diff with Rdiff at 64 °C: (a) PG 70-XX binder; (b) PG 76-XX 

binder  

4.3.1.4 Polymer method 

The analysis of the results of the MSCR tests conducted on the PG 70-XX and 

PG 76-XX binders using polymer curve are presented in Figures 4.19 (a) and 4.19 (b), 
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respectively. In these figures, the %Recovery values at the 3.2 kPa stress level and 64 

°C temperature were plotted against the corresponding Jnr values. From Figure 4.19 (a), 

all the PG 70-XX binders were found to meet the %Recovery requirement proposed by 

the AASHTO TP 70 (AASHTO, 2013) specification, except the S7 PG 70-22 binder. 

The %Recovery of S7 PG 70-22 binder was found to fall below the MSCR curve, which 

means either the binder was not modified with elastomeric modifiers or the 

modification level was low. As evident from Figure 4.19 (b), the data points for the PG 

76-XX binders were found to be clustered above the MSCR curve. These results 

indicate that the PG 76-XX binders were modified with elastomeric polymers. No 

conclusive comment could be made on the effect of a particular polymer on the 

performance properties of the asphalt binder as the types and the amounts of polymers 

used by the refineries were unavailable. 

4.3.1.5 MSCR grading system 

The MSCR grades of the PG 70-XX and PG 76-XX binders were determined 

according to the AASHTO MP 19 (AASHTO, 2010) specification and are presented in 

Table 4.5 and Figures 4.19 (a) and 4.19 (b). From Table 4.5, it is evident that the grades 

of all of the tested PG 70-XX and PG 76-XX binders were found to be PG 64E-XX. 

This means that the tested PG 70-XX and PG 76-XX binders can sustain extreme traffic 

level at 64 °C without significant permanent deformation, when used in a mix. The 

results of the MSCR binder grade indicates that the tested polymer-modified binders are 

expected to exhibit high rutting resistance at 64 °C temperature and at extreme level of 

traffic, when used in a mix (Hossain et al., 2015). 
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(a) 

 

(b) 

Figure 4.19 Polymer curve analysis at 64 °C and 3.2 kPa stress level: (a) PG 70-XX 

binders; (b) PG 76-XX binders 

4.3.1.6 Effect of increased stress level 

In addition to the stress levels recommended by AASHTO TP 70 (AASHTO, 

2013), the MSCR tests were also conducted at the 10 kPa stress level in order to 



103 

 

determine the stress sensitivity and non-linearity of the polymer-modified binders. 

Table 4.6 presents the results of the MSCR tests conducted at three different stress 

levels, namely 0.1, 3.2 and 10 kPa, at 64 °C. 

Table 4.6 MSCR test results for PG 70-XX and PG 76-XX binders at 64 °C and 0.1, 3.2 

and 10 kPa 

Binder 

Type 

  

Temp 

(°C) 

Jnr 

(0.1 

kPa) 

kPa-1 

Jnr 

(3.2 

kPa) 

kPa-1 

  

Jnr 

(10 

kPa) 

kPa-1 

  

Jnr diff 

(0.1-

3.2) 

  

Jnr diff 

(3.2-

10) 

  

R100 

(%) 

  

R3200 

(%) 

  

R10000 

(%) 

  

Rdiff 

(0.1-

3.2) 

Rdiff 

(3.2-

10) 

S1 PG 

70-28 
64 0.05 0.04 0.07 -8.95 67.34 96.15 95.8 91.14 0.36 4.864 

S1 PG 

76-28 
64 0.02 0.02 0.02 -6.3 -1.98 97.29 97.24 96.57 0.05 0.69 

S2 PG 

70-28 
64 0.19 0.19 0.35 2.1 82.67 77.79 77.4 58.34 0.44 24.66 

S2 PG 

76-28 
64 0.06 0.06 0.07 -1.65 3.61 89.56 89.8 88.41 -0.32 1.59 

S3 PG 

70-28 
64 0.06 0.05 0.06 -5.75 17.24 94.05 94 91.21 0.05 2.97 

S3 PG 

76-28 
64 0.06 0.06 0.06 1.94 -3.87 91.89 91.9 91.13 -0.05 0.87 

S4 PG 

76-28 
64 0.03 0.03 0.03 -2.35 16.97 94.71 94.45 92.177 0.28 2.40 

S5 PG 

70-28 
64 0.25 0.33 0.51 31.89 54.46 71.41 63.8 47.92 10.6 24.93 

S5 PG 

76-28 
64 0.08 0.1 0.28 28.03 180.16 81.84 76.4 49.55 6.63 35.16 

S6 PG 

70-28 
64 0.33 0.43 0.85 28.66 101.01 71.31 64.68 34.56 9.29 46.57 

S6 PG 

76-28 
64 0.11 0.14 0.21 30.02 45.73 80.32 75.74 65.78 5.69 13.15 

S7 PG 

70-22 
64 0.36 0.47 0.68 31.21 44.57 42.77 30.27 17.28 29.22 42.92 

Figures 4.20 (a) and 4.20 (b) show the changes in Jnr values with stress levels at 

64 °C. According to Golalipour (2011), the use of increased stress levels can help to 
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differentiate the rutting performance of the binders and identify the performance of the 

binders when used in a mix. For example, the Jnr values of the PG 70-XX binders were 

observed to remain unchanged with an increase in the stress level from 0.1 to 3.2 kPa. 

However, significant changes in the Jnr values were observed for most of the PG 70-XX 

binders while increasing the stress level from 3.2 to 10 kPa. According to Golalipour 

(2011), this rapid changing in Jnr value can be used as an indicator of non-linear 

behavior of asphalt binder. Therefore, it can be concluded that the PG 70-XX binders 

started exhibiting non-linear viscoelastic behavior at the 10 kPa stress level. The 

transition between linear and non-linear viscoelastic region of the tested binders are 

expected to lie at a stress level between 3.2 and 10 kPa. However, the variation in the Jnr 

values of the PG 70-XX binders from S1 and S2 sources were found to be insignificant 

at different stress levels. From Figure 4.20 (b), it can be observed that four out of six 

sources of the tested PG 76-XX binders were found not to exhibit any significant 

change in Jnr values with an increase in stress level from 3.2 to 10 kPa. This indicates 

that the stress sensitivities of the binders were relatively low when they were tested at 

stress levels up to 10 kPa. Therefore, the PG 76-XX binders were observed to behave as 

a linear viscoelastic material upto the 10 kPa stress level. However, the PG 76-XX 

binders from S5 and S6 sources exhibited a relatively high amount of change (55% for 

S5 and 180% for S6) in Jnr with an increase in the stress level from 3.2 to 10 kPa. This 

means that the binders from S5 and S6 sources became overly stress sensitive with an 

increase in stress level. The high non-linearity of these binders might result in poor 

performance when subjected to high stress levels in pavements (Golalipour, 2011). 



105 

 

 

(a) 

 

(b) 

Figure 4.20 Change in Jnr value with stress levels at 64 °C: (a) PG 70-XX binders; (b) 

PG76-XX binders  

The variation in %Recovery of the PG 70-XX and PG 76-XX binders at 64 °C 

with an increase in the stress levels is presented in Figures 4.21 (a) and 4.21 (b). As can 

be seen in Figure 4.21 (a), the %Recovery values of the PG 70-XX binders from S1 and 

S2 sources remained unchanged with an increase in stress level. However, significant 

changes in the %Recovery values were observed for the PG 70-XX binders from other 

sources (Source S3, S4, S5 and S6). Also, a sharp reduction in the %Recovery value 
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was observed only for the S5 PG 76-28 and S6 PG 76-28 binders with an increasing 

stress level. Furthermore, the %Recovery of the PG 76-28 binders from other sources 

(S1, S2, S3 and S4) was found to exhibit a relatively low stress sensitivity. Similar to 

the Jnr parameter, the binders with highly non-linear behavior are expected to exhibit a 

high amount of reduction in %Recovery when the stress level increased from 3.2 to 10 

kPa.  

 

(a) 

 

(b) 

Figure 4.21 Change in %Recovery with stress levels at 64 °C: (a) PG 70-XX binders; 

(b) PG 76-XX binders  
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Figures 4.22 (a) and 4.22 (b) show variations of the Jnr diff and %Rdiff values with 

a change in stress level for polymer-modified binders. The Jnr diff and %Rdiff between 10 

kPa and 3.2 kPa stress levels were found to be higher than those between 3.2 kPa and 

0.1 kPa stress levels. This indicates that the tested binders became more sensitive to 

stress level with an increase in the stress level from 3.2 to 10 kPa. Also, the PG 70-XX 

binders were observed to become more stress sensitive than the PG 76-XX binders, 

except the S5 PG 76-28 binder. The high polymer modification used for the production 

of PG 76-XX binder are believed to be responsible for a lower stress sensitivity of 

binders. Therefore, conducting the MSCR test at a stress level higher than 3.2 kPa will 

help to understand the stress sensitivity and non-linearity of polymer-modified binders. 

Golalipour (2011) suggested to use 10 kPa as an additional stress level for MSCR 

testing of polymer-modified binders to obtain a wider spectrum of binder behavior 

under different stress levels.  

 

(a)                                                               (b) 

Figure 4.22 Plot of Jnr diff and Rdiff with increasing stress levels at 64 °C: (a) PG 70-XX 

binders; (b) PG 76-XX binders  
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4.3.1.7 Effect of higher temperatures 

The temperature sensitivity of the Jnr and %Recovery parameter of the PG 70-

XX and PG 76-XX binders were evaluated by conducting MSCR tests at temperatures 

higher than 64 °C. Specifically, the PG 70-XX binders were tested at 70° C and the PG 

76-XX binders were tested at 70° and 76 °C. Figures 4.23 (a) and 4.23 (b) present the 

variation of Jnr with temperature for the PG 70-XX binders and Figures 4.24 (a) and 

4.24 (b) present the variation of Jnr with temperature for the PG 76-XX binders at 0.1 

and 3.2 kPa stress levels, respectively. From Figures 4.23 and 4.24, it is evident that the 

Jnr values of the polymer-modified binders depend on the temperature. The Jnr values of 

both the binders were found to increase with an increase in temperature. For example, 

the Jnr value of the S6 PG 70-28 at 0.1 kPa stress level was found to increase from 0.33 

to 0.73 kPa-1 when the temperature increased from 64° to 70 °C. The effect of the 

temperature change on the Jnr value was found to be more pronounced at 76 °C for PG 

76-XX binders. A similar increasing trend of the Jnr with an increase in the temperature 

was observed by other researchers (Mehta et al., 2013; Zhang et al., 2015; Jafari et al., 

2015; Stevens et al., 2015). Also, from Figures 4.23 and 4.24, the differences between 

the Jnr values at 0.1 and 3.2 kPa stress levels were more significant at higher 

temperatures. Furthermore, the difference between Jnr values of asphalt binders of the 

same PG grade became more significant with an increase in temperature. For example, 

the Jnr values of the PG 76-XX binders from different sources were found to vary 

significantly from each other at 76 °C than that at 64° and 70 °C. According to Zhang et 

al. (2015), the temperature sensitivity of the Jnr parameter can be correlated with the 
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temperature sensitivity of rutting. Therefore, binders are expected to exhibit lower 

rutting resistance at higher temperature and vice versa.  

 

(a) 

 

(b) 

Figure 4.23 Changes in Jnr values with temperature for PG 70-XX binders: (a) 0.1 kPa 

stress level; (b) 3.2 kPa stress level 
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(a) 

 

(b) 

Figure 4.24 Changes in Jnr values with temperature for PG 76-XX binders: (a) 0.1 kPa 

stress level; (b) 3.2 kPa stress level 

The variations in %Recovery with temperature are presented in Figures 4.25 (a) 

and 4.25 (b) for the PG 70-XX binders and in Figures 4.26 (a) and 4.26 (b) for the PG 

76-XX binders at 0.1 and 3.2 kPa stress levels, respectively. Similar to Jnr parameter, 

the %Recovery was found to exhibit temperature sensitivity for the both the PG 70-XX 

and PG 76-XX binders. The %Recovery was found to reduce with an increase in 
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temperature for all of the tested binders. At 0.1 kPa stress level, the %Recovery of the 

S6 PG 70-28 binder was found to be 71.3% at 64 °C whereas it reduced to 66.5% at 70 

°C. Previous studies have reported a similar temperature sensitivity of %Recovery of 

polymer-modified binders (Mehta et al., 2013; Jafari et al., 2015; Stevens et al., 2015).  

 

(a) 

 

(b) 

Figure 4.25 Changes in %Recovery with temperature for PG 70-XX binders: (a) 0.1 kPa 

stress level; (b) 3.2 kPa stress level 
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(a) 

 

(b) 

Figure 4.26 Changes in %Recovery with temperature for PG 76-XX binders: (a) 0.1 kPa 

stress level; (b) 3.2 kPa stress level 

The polymer curve analyses of the PG 70-XX and PG 76-XX binders at higher 

temperature are presented in Figures 4.27 (a) and 4.27 (b). In Figure 4.27 (a), the Jnr 

values of the PG 70-XX binders at 64° and 70 °C are plotted against the corresponding 

%Recovery values. Likewise, in Figure 4.27 (b), the Jnr values of the PG 76-XX binders 

at 64°, 70° and 76 °C are plotted against the corresponding %Recovery values. As the 
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Jnr values of the PG 70-XX binders increased with an increase in the temperature from 

64° to 70°, the MSCR grades of the binders were found to reduce. For example, the 

MSCR grade of the S6 PG 70-28 binder was observed to be PG 64E-28 whereas the 

same binder at 70 °C was found to reduce to PG 70H-28. This indicates that the binder 

can sustain extreme level of traffic at 64 °C but only heavy level of traffic at 70 °C, 

when used in an asphalt mixes. Therefore, the effect of an increase in temperature 

should be taken into account properly as the same binder can be graded differently at 

different temperatures. Stevens at al. (2015) reported that the effect of a single standard 

temperature drop (6 °C) might be equivalent to a single level increase in the traffic 

grade. However, the %Recovery requirement of all the PG 70-XX binders were found 

to meet the AASHTO TP 70 (AASHTO, 2013) criterion, except the S7 PG 70-22 

binder. Although the PG 76-XX binders exhibited an increase in Jnr value with an 

increase in temperature, the effect of temperature change on MSCR grades was not 

significant. All of the PG 76-XX binders were found to meet the requirement of 

sustaining extreme traffic level at 64° and 70 °C. At 76 °C, only the PG 76-28 binders 

from S5 and S6 sources showed a reduced MSCR grade of PG 76H-28. Therefore, the 

PG 76-XX binders are expected to exhibit less temperature sensitivity than the PG 70-

XX binders, as expected. 
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(a) 

 

(b) 

Figure 4.27 Polymer curve analyses at higher temperatures and 3.2 kPa stress level: (a) 

PG 70-XX binders; (b) PG 76-XX binders 
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4.3.1.8 Combined effect of increased stress level and higher temperature 

Figures 4.28 and 4.29 present the variation in the MSCR parameters of the PG 

70-XX and PG 76-XX binders at different stress levels and temperatures higher than the 

standard procedure. As seen in Figure 4.28, the Jnr values were found to be almost 

independent of the stress levels up to 3.2 kPa, even at 70 °C for the PG 70-XX and at 76 

°C for PG 76-XX binders. It is evident that at the first two stress levels, all the polymer-

modified binders having the same continuous PG grade behaved very similarly. 

However, with an increase in the stress level to 10 kPa, the stress sensitivities of the PG 

70-XX binders became clearer and the differences between the binders from different 

sources became prominent. However, at the 10 kPa stress level and higher temperature, 

the resistance to deformation of some of the binders dramatically decreased, which can 

be detected by a sharp increase in the Jnr values (Figure 4.28). Jafari et al (2015) 

reported that this kind of sharp increase in the Jnr value might be resulted from the 

damage of the binder structure. Furthermore, the non-linear behavior of polymer-

modified binders from different sources can be better understood from the combined 

effect of a higher testing temperature and a higher stress level. As suggested by 

previous studies, an additional stress level higher than 3.2 kPa, such as 10 kPa for 

MSCR testing, may be helpful to characterize the non-linear behavior of the binder as 

well as the rutting resistance of the polymer-modified binders (Golalipour, 2011; Jafari 

et al., 2015).  
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(a) 

 

(b) 

 

(c) 

Figure 4.28 Changes in Jnr values with stress level: (a) PG 70-XX binders at 70 °C; (b) 

PG 76-XX binders at 70 °C; (c) PG 76-XX binders at 76 °C 

3.20 
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(a) 

 

(b) 

 

(c) 

Figure 4.29 Changes in %Recovery with stress levels: (a) PG 70-XX binders at 70 °C; 

(b) PG 76-XX binders at 70 °C; (c) PG 76-XX binders at 76 °C 
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4.3.2  RAP Binder Blends 

The effect of the addition of RAP binders to the neat binder was evaluated using 

the MSCR test method. The MSCR tests were conducted on RTFO-aged binders’ samples 

at 64 °C. Results of the Jnr (0.1 kPa), Jnr (3.2 kPa), Jnr diff, R100 and R3200 values and Rdiff 

of the blended binders are presented in Table 4.7.  The definition of the terms used in the 

table was presented in the Section 4.3.1.  

Table 4.7 MSCR test results of 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends 

Binder 

type 

  

Temp 

(°C) 

Jnr 

(0.1 

kPa) 

kPa-1 

Jnr 

(3.2 

kPa) 

kPa-1 

  

Jnr diff 

(0.1-

3.2) 

Stress 

sensitivity 

(meets 

AASTHO 

MP 19) 

R100 

(%) 

  

R3200 

(%) 

  

Rdiff 

(0.1-

3.2) 

%Recovery 

(meets 

AASTHO 

TP 70) 

MSCR 

grade 

PG 64-

22 
64 1.46 1.80 23.13 Yes 16.44 3.60 78.05 No 

PG 64H-

XX 

PG 64-

22-R1-

25 

64 1.55 1.77 14.73 Yes 10.55 2.77 73.69 No 
PG 64H-

XX 

PG 64-

22-R1-

40 

64 0.99 1.14 15.25 Yes 15.22 5.61 63.13 No 
PG 64H-

XX 

PG 64-

22-R1-

60 

64 0.38 0.43 12.68 Yes 26.01 16.33 37.21 No 
PG 64E-

XX 

PG 64-

22-R2-

25 

64 1.17 1.35 15.35 Yes 13.43 4.53 66.25 No 
PG 64H-

XX 

PG 64-

22-R2-

40 

64 0.63 0.71 14.00 Yes 19.86 10.36 47.82 No 
PG 64V-

XX 

PG 64-

22-R2-

60 

64 0.19 0.20 7.02 Yes 31.29 26.26 16.06 No 
PG 64E-

XX 
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4.3.2.1 Non-recoverable creep compliance (Jnr) 

The Jnr values measured for the RAP binder blends at the 0.1 kPa and 3.2 kPa 

stress levels at 64 °C are presented in Figure 4.30. As noted earlier, binder with a low Jnr 

value is expected to result in a mix with better rutting resistance. From Figure 4.30, it 

was observed that the Jnr value increased with an increase in the stress level from 0.1 to 

3.2 kPa. For example, the Jnr value measured for the PG 64-22 binder was found to 

increase from 1.46 to 1.80 kPa-1 when the stress level changed from 0.1 to 3.2 kPa. 

Also, from Figure 4.30, the Jnr values were observed to reduce with an increase in RAP 

binder content in the binder blends. As seen in Figure 4.30, the Jnr values of the PG 64-

22 binder at the 3.2 kPa stress level was found to be 1.80 kPa-1. It reduced to 1.77, 1.14 

and 0.43 kPa-1 after incorporating 25%, 40% and 60% RAP1 binder, respectively. A 

similar reducing trend with an increase in RAP binder content was observed for RAP2 

binder blends, as well. The PG 64-22-R2-25, PG 64-22-R2-40 and PG 64-22-R2-60 

binders were found to exhibit Jnr values of 1.35, 0.71 and 0.20 kPa-1 at the 3.2 kPa stress 

level, respectively. As the Jnr values exhibited a reducing trend with increasing RAP 

binder, the binder blends are expected to exhibit a higher rutting resistance than the neat 

binders. 
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Figure 4.30 Jnr values of 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends  

at 64 °C 

4.3.2.2 MSCR %Recovery 

Figure 4.31 presents the %Recovery values obtained from MSCR tests 

conducted on RAP binder blends at 64 °C. Relatively low %Recovery values were 

observed as the binders were not polymer-modified. As expected, the %Recovery 

values at the 3.2 kPa stress level were found to be lower than that measured at the 0.1 

kPa stress level for all of the RAP binder blends. Also, from Figure 4.31, it was found 

that the %Recovery values reduced due to the addition of 25% RAP1 binder to the 

blend. However, for the PG 64-22-R1-40 and PG 64-22-R1-60 binders, the %Recovery 

showed an increasing trend with an increase in RAP binder content. A similar 

increasing trend of %Recovery was also observed for RAP2 binder blends. Therefore, it 

can be concluded that the asphalt mixes produced with binder containing high RAP 

binder content are expected to exhibit a higher %Recovery at certain stress levels and 

temperatures than neat binders.  
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Figure 4.31 %Recovery values of 0%, 25%, 40% and 60% RAP1 and RAP2 binder 

blends at 64 °C 

4.3.1.3 Stress sensitivity 

Figures 4.32 and 4.33 present the Jnr diff and Rdiff for RAP binder blends while 

the stress level changed from 0.1 kPa to 3.2 kPa at 64 °C. It can be observed from 

Figure 4.32 that the Jnr diff values for all the RAP binder blends met the AASHTO MP 

19 (AASHTO, 2010) stress sensitivity criterion (Jnr diff <75%). The maximum Jnr diff 

value was observed for the neat PG 64-22 binder (23.13%). The Jnr diff values of the 

RAP binder blends were found to exhibit a reducing trend with an increase in the RAP 

binder. From Figure 4.32, the Jnr diff values were found to reduce to 14.73%, 15.25% and 

12.68% with the addition of 25%, 40% and 60% RAP1 binder, respectively. The RAP2 

binder blends also exhibited a sharp reducing trend with an increase in RAP binder 

content. The Jnr diff values for the PG 64-22-R2-25, PG 64-22-R2-40 and PG 64-22-R2-

60 binders were observed to be 15.35%, 14.01% and 7.02%, respectively. Furthermore, 

from Figure 4.33, the Rdiff values of the RAP binder blends exhibited a similar reducing 
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trend as observed for Jnr diff with an increase in RAP binder content. The Rdiff values 

were found to decrease from 78.05% to 73.70%, 63.13% and 37.21% for the PG 64-22-

R1-25, PG 64-22-R1-40 and PG 64-22-R1-60 binders, respectively. Therefore, it can be 

concluded that both MSCR parameters, namely Jnr and %Recovery became less 

sensitive to stress level with an increase in the RAP binder to the binder blend.   

 

Figure 4.32 Jnr diff values of 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends  

at 64 °C 

 

Figure 4.33 Rdiff values of 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends  

        at 64 °C 
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4.3.2.4 Polymer method 

The MSCR results, analyzed using polymer curve, for RAP binder blends are 

presented in Figure 4.34. From Figure 4.34, it can be seen that the data points for the 

RAP binder blends clustered below the MSCR curve. This means that, these binders did 

not meet the %Recovery requirement proposed by AASHTO TP 70 (AASHTO, 2013). 

A low %Recovery was expected, as both the neat binder and RAP binders were not 

polymer-modified. The RAP binder blends are expected to perform better in rutting as 

the Jnr value reduced and %Recovery increased with an increase in the RAP binder 

content.   

 

Figure 4.34 Polymer curve analysis for 0%, 25%, 40% and 60% RAP1 and RAP2 

binder blends at 64 °C and 3.2 kPa stress level 

4.3.2.5 MSCR grading system 

Table 4.7 and Figure 4.54 present the MSCR grading of the RAP binder blends 

determined according to the AASHTO MP 19 (AASHTO, 2010) specification. The 
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MSCR grade of the PG 64-22 binders was found to be PG 64H-XX. It means that the 

binder will be able to sustain heavy level of traffic at 64 °C without undergoing 

significant rutting, when used in asphalt mixes. Also, the equivalent MSCR grade of the 

PG 64-22-R1-25, PG 64-22-R1-40 binders were observed to be PG 64H-XX, the same 

grade as the neat binder. However, the MSCR grade of the PG 64-22-R1-60 binder was 

found to be PG 64E-XX, which is expected to sustain extreme level of traffic without 

exhibiting significant permanent deformation. The equivalent MSCR grades of the PG 

64-22-R2-25, PG 64-22-R2-40 and PG 64-22-R2-60 binders were found to be PG 64H-

XX, PG 64V-XX and PG 64E-XX, respectively. These results indicate that the MSCR 

grade of the neat binder is expected to increase with an increase in the amount of RAP 

binder in the blend.  

4.3.2.6 Effect of increased stress level 

The stress sensitivity of the RAP binder blends was determined at a higher stress 

level (10 kPa), in addition to the recommended stress levels in AASHTO TP 70 

(AASHTO, 2013). Table 4.8 presents the MSCR test results conducted on the RAP 

binder blends at three different stress levels and at 64 °C. 

Figures 4.35 and 4.36 show the changes in Jnr and %Recovery values with an 

increase in the stress level at 64 °C. The Jnr value for the neat PG 64-22 binder was 

observed to increase significantly with a change in the stress level from 3.2 to 10 kPa. 

Approximately 46% increase in Jnr value was observed when the stress level changed 

from 3.2 to 10 kPa. Also, a similar increase in Jnr value was observed for the other RAP 

binder blends. Therefore, it can be concluded that, the Jnr parameter of the RAP binder 
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blends exhibited a higher stress sensitivity at 10 kPa stress levels than that at 0.1 and 3.2 

kPa stress levels. Furthermore, the %Recovery of the RAP binder blends was found to 

exhibit sharp decrease with an increase in stress level from 3.2 to 10 kPa. As seen in 

Figure 4.36, the %Recovery value of the PG 64-22-R1-25 binder at 0.1, 3.2 and 10 kPa 

stress levels were 10.55%, 2.78%, and 0.17%, respectively. This indicates that the 

MSCR parameters of the RAP binder blends became overly stress sensitive with an 

increase in stress level.  

Table 4.8 MSCR test results of 0%, 25%, 40% and 60% RAP1 and RAP2 binder blends 

at 64 °C and 0.1, 3.2 and 10 kPa 

Binder 

type 

  

Temp 

(°C) 

Jnr 

(0.1 

kPa) 

kPa-1 

Jnr 

(3.2 

kPa) 

kPa-1 

  

Jnr 

(10 

kPa) 

kPa-1 

  

Jnr 

diff 

(0.1-

3.2) 

  

Jnr diff 

(3.2-

10) 

  

R100 

(%) 

  

R3200 

(%) 

  

R10000 

(%) 

  

Rdiff 

(0.1-

3.2) 

Rdiff 

(3.2-

10) 

PG 64-

22 
64 1.46 1.79 2.63 23.13 46.54 16.44 3.61 -0.34 78.05 109.30 

PG 64-

22-R1-25 
64 1.55 1.77 2.16 14.73 22.21 10.55 2.78 0.17 73.69 94.02 

PG 64-

22-R1-40 
64 0.99 1.14 1.40 15.25 22.96 15.22 5.62 1.28 63.13 77.23 

PG 64-

22-R1-60 
64 0.38 0.43 0.54 12.68 26.97 26.01 16.33 5.44 37.21 66.6 

PG 64-

22-R2-25 
64 1.17 1.35 1.63 15.35 20.98 13.43 4.53 0.89 66.25 80.15 

PG 64-

22-R2-40 
64 0.63 0.71 0.87 14.01 22.28 19.86 10.36 3.19 47.82 69.15 

PG 64-

22-R2-60 
64 0.19 0.20 0.25 7.02 20.82 31.29 26.26 14.15 16.06 46.09 
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Figure 4.35 Changes in Jnr values with stress levels for 0%, 25%, 40% and 60% RAP1 

and RAP2 binder blends at 64 °C 

 

Figure 4.36 Changes in %Recovery values with stress levels for 0%, 25%, 40% and 

60% RAP1 and RAP2 binder blends at 64 °C 

Figures 4.37 and 4.38 present changes in the Jnr diff and %Rdiff values with a 

change in stress level for RAP binder blends, respectively. The Jnr diff and %Rdiff 

between 10 kPa and 3.2 kPa stress levels were found to be higher than those between 

3.2 kPa and 0.1 kPa stress levels. This means that the RAP binder blends became more 
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sensitive to stress levels, when the stress level changed from 3.2 to 10 kPa. Also, the 

neat binder was observed to exhibit higher stress sensitivity than the RAP binder blends.  

 

Figure 4.37 Variation in Jnr diff with stress levels for 0%, 25%, 40% and 60% RAP1 and 

RAP2 binder blends at 64 °C 

 

Figure 4.38 Variation in Rdiff with stress levels for 0%, 25%, 40% and 60% RAP1 and 

RAP2 binder blends at 64 °C 
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4.3.2.7 Effect of higher temperatures 

In order to evaluate the temperature sensitivity of the MSCR parameters, the 

RAP binder blends were tested at temperatures (70° and 76 °C) higher than 64 °C. 

Figures 4.39 and 4.40 present the variation of Jnr and %Recovery values with 

temperature at 0.1 and 3.2 kPa stress levels, respectively. From Figure 4.39, it can be 

observed that the Jnr values exhibited an increasing trend with an increase in 

temperature. For example, the Jnr value of the PG 64-22-R1-25 binder at 3.2 kPa stress 

level was found to increase from 1.77 kPa-1 to 4.21 and 9.53 kPa-1 when the temperature 

increased from 64° to 70° and 76 °C, respectively. Also, from Figure 4.40, it is evident 

that the %Recovery reduced with an increase in temperature for all of the RAP binder 

blends. Furthermore, at 3.2 kPa stress level, the %Recovery for the PG 64-22-R1-25 

binder was found to be 2.78% at 64 °C, whereas it reduced to 0.15% and -1.9% at 70° 

and 76 °C, respectively. The negative %Recovery implies that the binder underwent 

continuous deformation even after the removal of the load. Jafari et al. (2015) reported 

that the negative recovery can result from a combination of high stress level and high 

temperature, if it caused the binders to enter the tertiary flow level. It can be interpreted 

that the structure of the binder might be damaged at this temperature. Figure 4.41 

presents the polymer curve analysis of RAP binder blends at 70° and 76 °C. From 

Figure 4.41, it can be observed that the MSCR grade of the binder reduced with an 

increase in temperature. For example, the MSCR grade of the PG 64-22-R1-60 binder 

was found to reduce from extreme to very heavy when the temperature increased from 

64° to 70 °C. This means that the RAP binder blends are expected to become more 

susceptible to rutting with an increase in temperature. 
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(a) 

 

(b) 

Figure 4.39 Changes in Jnr values with an increase in temperature for 25%, 40% and 

60% RAP1 and RAP2 binder blends: (a) 0.1 kPa stress level; (b) 3.2 kPa 

stress level  
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(a) 

 

(b) 

Figure 4.40 Changes in %Recovery values with an increase in temperature for 25%, 

40% and 60% RAP1 and RAP2 binder blends: (a) 0.1 kPa stress level; (b) 

3.2 kPa stress level 
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Figure 4.41 Polymer curve analysis for 0%, 25%, 40% and 60% RAP1 and RAP2 

binder blends at different temperatures and 3.2 kPa stress level 

4.3.2.8 Combined effect of increased stress level and higher temperature 

Figures 4.42 and 4.43 present the changes in the MSCR parameters for RAP 

binder blends at higher stress levels and at higher temperatures than those used in 

conventional testing. As seen from Figures 4.42 and 4.43, the Jnr values increased and 

%Recovery values reduced with an increase in temperatures and stress levels. Also, at 

70° and 76 °C, the stress sensitivities of the MSCR parameters of RAP binder blends 

became prominent with an increase in the stress level from 3.2 to 10 kPa. Except for the 

PG 64-22-R2-60 binder, all of the RAP binder blends exhibited a sharp reduction in 

%Recovery values at 76 °C temperature and 10 kPa stress level. Therefore, the non-
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linear behavior of the RAP binder blends became clearer at higher temperature and 

higher stress levels. This finding is expected to help understand the rutting behavior of 

the RAP binder blends, since the rutting itself is known to be a non-linear viscoelastic 

phenomenon observed in asphalt mixes.  

 

(a) 

 

(b) 

Figure 4.42 Changes in Jnr values with stress level for 25%, 40% and 60% RAP1 and 

RAP2 binder blends at 70° and 76 °C 
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(a) 

 

(b) 

Figure 4.43 Changes in %Recovery values with stress level for 25%, 40% and 60% 

RAP1 and RAP2 binder blends at 70° and 76 °C 
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4.4 Comparison of DSR and MSCR Test Results 

4.4.1 Ranking of Binders 

 4.4.1.1 Polymer-modified binders 

Tables 4.9 and 4.10 present the ranking of the polymer-modified binders based 

on their rutting performance determined from the DSR and MSCR tests. The binders 

were ranked based on the |G*|/sinδ value at corresponding high temperature. A lower 

|G*|/sinδ value was considered to be associated with less resistant to rut in this ranking 

system. Also, the Jnr values from MSCR test at different temperatures and stress levels 

were used to rank the binders. A binder exhibiting the lowest Jnr value was considered 

to exhibit highest rut resistant behavior and vice versa. From Tables 4.9 and 4.10, the 

DSR and MSCR test methods were observed to rank the polymer-modified binders 

differently. For example, the S1 PG 70-28 binder was ranked the lowest rut resistant 

binder according to the DSR test results among all the PG 70-XX binders. However, the 

same binder ranked differently (highest resistance to rutting), based on the Jnr values. 

The ranks of the S2 PG 70-28, S2 PG 76-28 and S6 PG 70-28 binders were found to be 

similar for both ranking systems. Similar differences in ranking of binders by different 

test methods were reported by Zhang at al. (2015). The variations in sensitivity of the 

|G*|/sinδ and Jnr to binders’ viscoelastic properties are assumed to be a primary reason 

for such differences in binders’ ranking. Previous studies have reported better 

correlations between Jnr values and field rutting performance than the |G*|/sinδ values 

of asphalt binders (Bahia et al., 2001; DuBois et al., 2014; Zhang at al., 2015). 

Therefore, the MSCR-based ranking of binders is expected to predict the rutting 
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resistance better than the DSR-based ranking. However, no significant differences were 

observed in the MSCR-based ranking at different temperatures and stress levels. 

Therefore, the MSCR results at 64 °C and 0.1 or 3.2 kPa can be used for ranking and 

selection of asphalt binders with respect to their rutting resistance using the MSCR 

method. 

Table 4.9 Ranking of PG 70-XX binders with respect to rut performance 

Binder 
DSR ranking 

based on |G*|/sinδ 

MSCR ranking based on Jnr 

64 °C 70 °C 

0.1 kPa 3.2 kPa 0.1 kPa 3.2 kPa 

S1 PG 70-28 6 1 1 1 1 

S2 PG 70-28 3 3 3 3 3 

S3 PG 70-28 4 2 2 2 2 

S5 PG 70-28 2 4 4 4 4 

S6 PG 70-28 5 5 5 5 5 

S7 PG 70-22 1 6 6 6 6 

Table 4.10 Ranking of PG 76-XX binders with respect to rut performance 

Binder 

DSR 

ranking 

based on 

|G*|/sinδ 

MSCR ranking based on Jnr 

64 °C 70 °C 76 °C 

0.1 kPa 3.2 kPa 0.1 kPa 3.2 kPa 0.1 kPa 3.2 kPa 

S1 PG 76-28 6 1 1 1 1 1 1 

S2 PG 76-28 4 4 4 4 4 4 4 

S3 PG 76-28 5 3 3 3 3 3 3 

S4 PG 76-28 1 2 2 2 2 2 2 

S5 PG 76-28 2 5 5 6 5 6 6 

S6 PG 76-28 3 6 6 5 6 5 5 

4.4.1.2 RAP binder blends 

The ranking of the RAP binder blends based on the DSR and MSCR test results 

is presented in Table 4.11.  The |G*|/sinδ values of the RAP binder blends at 64 °C were 

used to rank their rutting performance. Also, the Jnr values of the RAP binder blends at 
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different temperatures and stress levels were used in this ranking. Similar to polymer-

modified binders, the |G*|/sinδ and Jnr values ranked the binders differently. Based on 

the |G*|/sinδ results, the PG 64-22 binder ranked poorly with the lowest resistance to 

rutting. The same method ranked the PG 64-22-R1-40 binder superior, with the highest 

resistance to rutting. The PG 64-22-R2-60 binder and the neat binder were ranked as the 

binders with the highest and the lowest resistance to rutting based on the Jnr value at 64 

°C and 3.2 kPa stress level, respectively. Based on these findings, it was concluded that 

the MSCR test results at 64 °C and 0.1 or 3.2 kPa stress levels can be used to rank 

binders effectively for their resistance to rutting.  

Table 4.11 Ranking of the RAP binder blends with respect to rut performance 

Binder 

DSR 

ranking 

based on 

|G*|/sinδ 

MSCR ranking based on Jnr 

64 °C 70 °C 76 °C 

0.1 

kPa 

3.2 

kPa 

0.1 

kPa 

3.2 

kPa 

0.1 

kPa 

3.2 

kPa 

PG 64-22 7 6 7 - - - - 

PG 64-22-R1-25 3 7 6 6 6 6 6 

PG 64-22-R1-40 1 4 4 4 4 4 4 

PG 64-22-R1-60 4 2 2 2 2 2 2 

PG 64-22-R2-25 5 5 5 5 5 5 5 

PG 64-22-R2-40 6 3 3 3 3 3 3 

PG 64-22-R2-60 2 1 1 1 1 1 1 

4.4.2 Repeatability of Test Results 

Tables 4.12 and 4.13 present the coefficient of variation (COV) for the results 

obtained from the DSR and MSCR tests conducted on the PG 70-XX and PG 76-XX 

binders, respectively. The COV values of the DSR tests were calculated based on the 

|G*|/sinδ values measured for three binder samples at their corresponding PG 

temperature. The COV values reported for the MSCR test at each stress level and 
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testing temperature were calculated based on the Jnr values measured for three binder 

samples. The MSCR test was found to exhibit higher COV values than the DSR test for 

both binder types. The COV values of the DSR test were found to vary between 0.89% 

and 6.54%, whereas those for the MSCR test varied from 0.08% to 27.25%.  Therefore, 

it can be concluded that the MSCR test is expected to exhibit higher variability than the 

DSR test. Gollalipour (2011) also reported significantly higher variability of MSCR test 

parameters compared to the Superpave® parameters for the same binder. 

Table 4.12 Coefficient of variation of the DSR and MSCR test of PG 70-XX binders 

Binder 

Coefficient 

of Variation 

of DSR Test 

Coefficient of Variation of MSCR Test 

64 °C 70 °C 

0.1 kPa 3.2 kPa 0.1 kPa 3.2 kPa 

S1 PG 70-28 3.21 6.24 6.44 4.39 4.56 

S2 PG 70-28 0.89 3.03 2.80 21.85 9.06 

S3 PG 70-28 1.95 1.95 1.92 3.56 3.60 

S5 PG 70-28 1.00 2.35 3.41 5.89 6.31 

S6 PG 70-28 2.79 2.33 4.16 0.26 0.36 

S7 PG 70-22 1.82 19.07 14.26 27.25 17.86 

 

Table 4.13 Coefficient of variation of the DSR and MSCR test of PG 76-XX binders 

Binder 

Coefficient of 

variation of 

DSR test 

Coefficient of variation of MSCR test 

64 °C 70 °C 76 °C 

0.1 

kPa 

3.2 

kPa 

0.1 

kPa 

3.2 

kPa 

0.1 

kPa 

3.2 

kPa 

S1 PG 76-28 2.05 4.09 25.89 16.18 14.19 11.44 0.08 

S2 PG 76-28 1.55 4.06 3.56 4.45 3.26 2.44 3.95 

S3 PG 76-28 1.37 2.35 1.35 3.80 5.32 3.63 5.20 

S4 PG 76-28 1.28 5.17 5.10 4.80 4.63 2.88 2.64 

S5 PG 76-28 6.54 8.31 12.93 17.44 17.69 6.90 6.70 

S6 PG 76-28 5.38 9.08 6.99 3.35 4.42 5.58 1.72 
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4.4.3  Subjective Comparison of DSR and MSCR Test Methods 

A subjective comparison of DSR and MSCR test methods is presented in Table 

4.14. This comparison is expected to help understand the suitability of the MSCR test in 

practice. 

Table 4.14 Subjective comparison of the DSR and MSCR tests 

DSR test MSCR test 

Simple test method Simple DSR -based test method 

Time consuming Relatively less time consuming 

Covers linear viscoelastic properties of 

the binders 

Can be used to determine non-linear 

viscoelastic properties by adjusting 

stress level and temperature. 

High repeatability and less variability Higher variability than DSR test 

Provides complex shear modulus and 

phase angle of binder 

Determine non-recoverable creep 

compliance and %recovery of binders. 

Cannot differentiate between polymer 

and non-polymer modified binders. 

Differentiate between polymer and non-

polymer-modified binders. 

4.5 X-ray Diffraction (XRD) Test Results 

The XRD spectra for the unaged, RTFO-aged, and PAV-aged samples of PG 58-

28, PG 76-28, and PG 58-28 + 2% PPA binders are presented in Figures 4.44 (a), 4.44 

(b), and 4.44 (c), respectively. The γ band, graphene (002), (10) and (11) bands are the 

four peaks generally observed after spectral analysis. The molecular structure of asphalt 

is the source of scattering the X-rays. The γ peak arises from X-rays scattered by 
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aliphatic chains or condensed saturated rings. The graphene (002) band originates from 

the diffraction of X-rays from the stacks of aromatic molecules. The (10) and (11) 

bands are the first and the second nearest neighbors in the ring compounds and come 

from the reflections of the in-plane structure of the aromatics (Siddiqui et al., 2002).  

From Figures 4.44 (a), 4.44 (b), and 4.44 (c), it can be observed that, in general, the 

patterns of the fresh and aged binders are very similar and each contains the γ and 

graphene layer stacking peak and the (10) peak. The combined peak of γ and graphene 

(002) bands are observed between 2 to 30°.  The (10) band is also observed at 2θ angle 

of 35° to 50°. However, since the test was limited to 2θ = 70°, the (11) band is missing 

from the XRD profiles. Profile fitting of the XRD spectra using the Pearson VII model 

was done to determine the peaks, 2θ, FWHM, peaks areas, and other parameters, 

including aromaticity and crystalline parameters. These parameters are discussed next. 

4.5.1 Aromaticity and Crystallite Parameters of PG 58-28 Binder 

The aromaticity and different crystallite parameters for unaged, RTFO-aged, and 

PAV-aged PG 58-28 binders are presented in Table 4.15. The aromaticity (fa) of the PG 

58-28 binder is determined by calculating the areas of the γ and the (002)-graphene 

peaks from the profile-fitted curves. The XRD test results (Table 4.15) indicated that 

the unaged PG 58-28 binder had a fa value of 0.84, which reduced to 0.79 after RTFO-

aging and then increased to 0.83 after PAV-aging of the binder. This observation was 

found to be consistent with the findings of the previous studies (Siddiqui et al., 2002). 

According to Siddiqui et al. (2002), a reduction in fa as a result of short-term aging is 

due to the hydrogenation of aromatic rings. The fa results indicated that the binder lost 
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its aromatic character after short-term aging, but it was able to regain some after long-

term aging. Moreover, Siddiqui et al. (2002) suggested that the change in the reactive 

portion of the aromatic ring may be responsible for the change in aromaticity at 

different aging conditions. The layer distance between aromatic sheets (dm) was found 

to decrease from 4.64 Å for an unaged binder to 4.59 Å in the short-term aged binder 

and then increase to 4.66 Å for the long-term aged binder. This indicated a compaction 

of aromatic ring as a result of short-term aging. However, it was found that the dm 

increased due to long-term aging.  

The distance between the saturated portions of the molecule known as inter-

chain layer distance (dγ) was found to decrease after short-term aging, but increase due 

to long-term aging of the binder. The unaged PG 58-28 binder possessed a dγ value of 

7.81 Å, which was found to reduce to 7.39 Å for the RTFO-aged binder and then 

increase to 4.83 Å for the PAV-aged binder. The height of the aromatic sheets (Lc) was 

found to decrease from 10.23 Å in the unaged binder to 8.41 Å in the RTFO-aged 

binder and then increase to 10.16 Å in the PAV-aged binder (Table 4.15). Siddiqui et al. 

(2002) suggested that this phenomenon can be seen if the aromatic ring system was not 

compact because of loose stacking due to oxidative aging. The number of aromatic 

sheets in stacked cluster, M, also exhibits a reduction due to short-term aging and then 

increase due to long-term aging. From Table 4.15, the M value was found to decrease 

from 3.20 in the unaged binder to 2.83 in the RTFO-aged binder and then increase to 

3.20 in the PAV-aged binder. The M values also indicated that the compactness of 

aromatic sheet increased with short-term aging and then decreased with long-term 

aging. 
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(a) 

 
(b) 

 
(c) 

Figure 4.44 XRD patterns of unaged, RTFO-aged and PAV-aged binders: (a) PG 58-28 

binder; (b) PG 76-28 binder; (c) PG 58-28 binder with 2% PPA 
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4.5.2 Aromaticity and Crystallite Parameters of PG 76-28 Binder 

Table 4.15 also presents the aromaticity and crystallite parameters for the PG 

76-28 binder. According to Table 4.15, the fa values of the unaged binder decreased 

consistently with aging. For example, the unaged PG 76-28 binder had a fa value of 

0.91, which decreased substantially to 0.88 and 0.87 with RTFO- and PAV-aging, 

respectively. These results indicated that the breaking of aromatic rings in a polymer-

modified binder continues with aging. It was also observed that the dm of the unaged 

binder decreased from 4.78 Å to 4.68 Å with short-term aging and remained almost 

unchanged (4.69 Å) with long-term aging. According to Table 4.15, aging also 

decreased the dγ of polymer-modified binders. For example, the PG 76-28 binder 

exhibited a dγ value of 9.58 Å that reduced to 8.56 Å for the both RTFO- and PAV-aged 

binders. Also, the Lc decreased substantially with aging. The Lc value varied from 14.01 

Å for the unaged binder to 11.84 Å and 12.03 Å for RTFO-aged and PAV-aged binders, 

respectively. This indicated that the aromatic ring system became compact with aging. 

The M value was also found to decrease with aging. By evaluating all the aromaticity 

and crystallite parameters for the PG 76-28 binder, it can be observed that the 

differences in parameters between RTFO-aged and PAV-aged binder were negligible. 

Therefore, it can be concluded that for the tested polymer-modified binders, major 

changes in molecular structure took place during short-term aging, and the changes 

were negligible during PAV-aging. 
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Table 4.15 Aromaticity and crystallite parameters of binders 

Aging 

condition 
fa dm (Å) dγ (Å) Lc (Å) M 

PG 58-28 

Unaged 0.84 4.64 7.81 10.23 3.20 

RTFO-aged 0.79 4.59 7.39 8.41 2.83 

PAV-aged 0.83 4.66 8.25 10.16 3.18 

PG 76-28 

Unaged 0.91 4.78 9.58 14.06 3.94 

RTFO-aged 0.88 4.68 8.57 11.84 3.53 

PAV-aged 0.87 4.69 8.56 12.03 3.57 

PG 58-28 + 2% PPA 

Unaged 0.57 4.62 7.46 7.65 2.66 

RTFO-aged 0.53 4.34 6.71 5.42 2.25 

PAV-aged 0.53 4.34 6.66 5.20 2.20 

4.5.3 Aromaticity and Crystallite Parameters of PG 58-28 + 2% PPA Binder 

From Table 4.15, it was observed that the fa value of the unaged PG 58-28 + 2% 

PPA binder was greater than that of RTFO- and PAV-aged binder. After short term-

aging, the fa value decreased from 0.57 to 0.53 and remained unchanged due to long 

term-aging. The dm was also found to exhibit a similar trend as observed in case of 

aromaticity. The dγ and Lc values of the unaged PG 58-28 + 2% PPA binder were also 

found to decrease with aging. The M value for the PG 58-28 + 2% PPA binder was also 

found to decrease significantly with aging. Considering all the parameters, it can be 

concluded that the major changes in molecular structure occurred during RTFO-aging. 

Further, changes in molecular structure due to PAV-aging were insignificant.  
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4.5.4 Effect of PPA and Polymer Modification on Aromaticity and Crystallite 

Parameters 

The effect of adding PPA and polymer to the binder can be determined by 

comparing different aromaticity and crystallite parameters. From Figure 4.45, it is 

evident that the asphalt binder lost its aromatic character to some extent upon the 

addition of PPA for all aging conditions. From Figure 4.45, it can be observed that the fa 

value of the PG 58-28 binder decreased from 0.84 to 0.57 as a result of the addition of 

PPA. This was attributed to the reaction of PPA with the asphalt compounds, which 

may cause a deterioration of aromatic rings and thus reduced aromaticity may happen. 

This phenomenon can be explained with the mechanism proposed by Masson et al. 

(2009): PPA is known to react with the functional group with high dielectric constant 

present in the asphalt binder. Strongly acidic PPA reacts with asphalt binder’s weak 

base to form ionic pairs and replaces weak acids such as phenols during the reactions. A 

decrease in the molecular mass of the PPA-modified binder may be resulted from the 

loss of hydrogen bonds and release of alkylated phenol from a larger aromatic structure. 

Also, the disintegration of asphaltene may be responsible for the lower molecular 

weight asphalt compounds and change in morphology. In the present study, the decrease 

in aromaticity due to PPA modification may be a result of this reduction in molecular 

weight and change in morphology. The dm was also found to decrease with PPA 

modification. Although the unmodified and the PPA-modified PG 58-28 binder showed 

very similar dm values under unaged condition, significant differences in dm values were 

observed due to RTFO- and PAV-aging. Another important observation was the 

compaction of aromatic ring of PPA-modified binder as a result of both short-term and 
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long-term aging. However, aromatic ring compactness of the unmodified PG 58-28 

binder was observed only for the short-term aged binder. The dγ was also found to 

reduce with the addition of PPA. The dγ values of the PG 58-28 + 2% PPA binder were 

4.5%, 9.2%, and 19.3% lower than the corresponding values of the PG 58-28 binder 

under unaged, RTFO-aged, and PAV-aged conditions, respectively. The Lc values also 

exhibited a similar decreasing trend with PPA addition. Therefore, it is seen that the 

aromatic rings became more compacted with the addition of PPA. This effect was found 

to be more significant with aging. As noted earlier, addition of PPA results in an 

increase in the |G*| and a decrease in the phase angle values of the PG 58-28 binder. 

According to Masson et al. (2009), with the release of smaller molecules, a contracted 

phase of covalently bonded large molecules with restricted motion may be observed 

upon the addition of PPA in the binder. They also concluded that this increase in stiffer 

phase may increase the high temperature performance grade of a binder. This 

phenomenon explains the increase in |G*| as well as rutting parameter with the addition 

of PPA observed in this study. However, no clear correlation was observed between the 

crystallite parameters and |G*|.  

The increase in viscosity of the PPA-modified binder may be a result of the 

compacting of aromatic rings with PPA modification. According to Peterson (2009), 

binders with highly condensed ring systems and chemical functional groups may be 

highly polar or polarizable which interact strongly with each other. This interaction 

between molecules can influence the flow behavior as well as viscosity. Therefore, it 

can be assumed that the compacting of aromatic rings with PPA modification may be 

responsible for the increased viscosity of the binder. Also, it was found that for the 
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PPA-modified binder, the difference in aromaticity and crystallite parameters was 

negligible between RTFO- and PAV-aging. This phenomenon may explain the 

improved fatigue parameter for PPA-modified binders when compared with the 

unmodified binder. However, further studies are needed to prove this hypothesis. 

From Figure 4.45, it is clear that the polymer-modified binder showed a higher 

aromaticity than the unmodified PG 58-28 binder. This may be due to the formation of 

aromatic rings or splitting of aliphatic groupings during polymer modification. Also, the 

dm for the PG 76-28 binder was higher than the unmodified binder. Addition of polymer 

may be resulted in an increase in the binder volume by absorbing maltenes fractions, 

which is responsible for the increase in the dm value. The Lc value of the unmodified 

binder was found to increase from 10.23 to 14.06 Å with polymer modification. The 

same trend was observed for the M value. The polymer-modified binder also exhibited 

compacting of aromatic rings with aging. However, the change in the molecular 

structure remained almost unchanged after RTFO-aging. These observations may be 

used to explain the improved rutting and fatigue parameter for polymer modified 

binder, as discussed in the case of the PPA-modified binder (Ali et al., 2016). Soenen 

and Redelius (2014) reported that the binders with the compacted ring system, resulted 

from the interactions of aromatic molecules, are expected to exhibit reduced mobility 

and increased elasticity. Therefore, the compacted aromatic ring systems of PPA- and 

polymer-modified binders are expected to exhibit higher elasticity than the neat binder. 
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Figure 4.45 Comparisons of rheological, aromaticity and crystallite parameters for PG 

58-28, PG 58-28 + 2% PPA and PG 76-28 
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4.6 Summary 

The results of the Superpave® and MSCR tests conducted on the polymer-

modified binders and RAP binder blends are presented in this chapter. Although all of 

the polymer-modified binders were observed to meet the continuous high- and low-

temperature PG grade specification requirements as labeled by the manufacturers, 

significant differences in the rheological properties determined by the MSCR test were 

observed for binders with the same PG grade. Based on the MSCR test results, the 

polymer-modified binders were observed to exhibit relatively low Jnr and high 

%Recovery values. This indicates a better rutting resistance of the binder when used in 

an asphalt mix. Also, the non-conventional MSCR tests conducted on the polymer-

modified binders at higher stress levels and temperatures provided a better 

understanding of the non-linear behavior of the binders. Furthermore, the Superpave® 

and MSCR tests were found to help understand the improvement in the rutting 

performance of the binder blends containing RAP binder. The DSR and MSCR test 

methods were found to rank the rutting performance of both polymer-modified binders 

and those containing RAP binder differently. The MSCR-based ranking was found to 

correlate better with the field rutting performance. Moreover, the XRD analyses 

provided an insight of the molecular structure of the unmodified, polymer-modified and 

PPA-modified binders. 
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CHAPTER FIVE: TEST RESULTS OF ASPHALT MIXES 

5.1 Introduction 

As discussed in Chapter 3, a total of four asphalt mixes, namely MIX-1, MIX-2, 

MIX-3 and MIX-4 containing polymer-modified binders and RAP, were prepared in 

this study for testing. This chapter presents the rutting and moisture susceptibility 

evaluation of the asphalt mixes using a HWT device. A comparative analysis of these 

Superpave® and MSCR test methods in light of the HWT rut data is discussed as well. 

5.2 Volumetric Properties of Asphalt Mixes 

Among the four asphalt mixes, two mixes (MIX-1 and MIX-2) were collected 

from a local plant and the other two mixes (MIX-3 and MIX-4) were prepared in the 

laboratory. The mix designs for all the mixes were provided by Silver Star Construction 

Co.  The laboratory produced mixes were prepared by mixing different percentages of 

virgin aggregates, virgin binder, and RAP, as recommended in the mix design reports. 

The prepared asphalt mixes were then used to prepare cylindrical samples using a 

Superpave® Gyratory Compactor (SGC) in accordance with the AASHTO T 312 

(AASHTO, 2015) test method. Four specimens with air voids of 7.0±0.5% were 

prepared for each mix type. The specimens were tested in a HWT device. 

The MIX-1 specimens were prepared from a S4 mix, which composed of 42% 

of 5/8″ chips, 18% of 3/16″ screenings, 25% of manufactured sand and 15% of fine 

sand with a nominal maximum aggregate size (NMAS) of 12.5 mm. The design asphalt 

binder content of these specimens was 4.8%. The volumetric properties of the MIX-1 
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specimens satisfied the ODOT mix design requirements (ODOT, 2012). Tables 5.1 and 

5.2 summarize the aggregates gradation and volumetric properties of MIX-1. 

The MIX-2 specimens were prepared from a S3 mix, with a NMAS of 19 mm. 

This mix contained 25% RAP. The specimens were composed of 10% of 1″ rock, 27% 

of 5/8″ chips, 12% of screenings, 15% of manufactured sand and 11% of fine sand. The 

design asphalt binder content and the amount of binder replacement by RAP were 4.4% 

and 31.8%, respectively. A summary of the aggregates’ gradation and volumetric 

properties of MIX-2 is presented in Tables 5.3 and 5.4. 

The MIX-3 specimens were prepared from a S3 mix with a NMAS of 19 mm. 

This mix contained 35% RAP. The specimens were composed of 10% of 1″ rocks, 27% 

of 5/8″ chips, 19% of screening and 9% of manufactured sand. The design asphalt 

binder content and the amount of binder replacement by RAP were 4.5% and 44.4%, 

respectively. A summary of the aggregates’ gradation and volumetric properties of 

MIX-3 is presented in Tables 5.5 and 5.6. 

The MIX-4 specimens were prepared from a S4 mix with a NMAS of 12.5 mm. 

This mix contained 35% RAP. The specimens were composed of 10% and 20% of 5/8″ 

chips from two different sources, 26% of manufactured sand 9% of fine sand. The 

design asphalt binder content and the amount of binder replacement by RAP were 4.8% 

and 41.7%, respectively. A summary of the aggregates’ gradation and volumetric 

properties of the MIX-4 specimens is presented in Tables 5.7 and 5.8. 
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Table 5.1 Summary of aggregates’ gradation of MIX-1 

Blended material % of each aggregate  

5/8" Chips 42  

3/16" Screens 18  

Man. Sand 25  

Sand 15  
   

 Gradation (sieve size, mm) %Passing   Required* 

19 100 100 

12.5 97 90-100 

9.5 90 ≤ 90 

4.75 68 - 

2.36 45 34-58 

1.18 33 - 

0.6 26 - 

0.3 18 - 

0.15 7 - 

0.075 3.7 2-10 

* ODOT specification (ODOT, 2012) 

Table 5.2 Summary of aggregate properties and volumetric properties of MIX-1 

Volumetric and aggregate properties Values Required* 

Gmm 2.492  

Gse 2.691  

Gsb 2.671  

Gb 1.01  

Virgin Binder Type PG 76-28  

Total Binder content (%) 4.8  

Virgin Binder Content (%) 4.8  

Pba 0.28  

VMA (%) 14.7 min. 14.5 

VFA (%) 72.8 72-77 

DP 0.8 0.6-1.6 

LA Abrasion (%) 24 max. 40 

Micro Deval (%) 9.7  max. 25 

Sand Equivalent (%) 93 min 50 

Fractured Faces 100/100 min. 98/95 

Tensile Strength Ratio 0.85 min. 0.8 

Permeability (10-5 cm/s) 2 max. 12.5 

* ODOT specification (ODOT, 2012) 
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Table 5.3 Summary of aggregates’ gradation of MIX-2 

Blended material % of each aggregate  

1" Rock 10  

5/8" Chips 27  

3/16" Screens 12  

Man. Sand 15  

Sand 11  

Fine RAP 25  
   

Gradation (sieve size, mm) %Passing Required* 

25 100 100 

19 98 90-100 

12.5 88 ≤ 90 

9.5 75 - 

4.75 60 - 

2.36 45 31-49 

1.18 34 - 

0.6 27 - 

0.3 18 - 

0.15 9 - 

0.075 5.3 2-8 

* ODOT specification (ODOT, 2012) 

Table 5.4 Summary of aggregate properties and volumetric properties of MIX-2 

Volumetric and aggregate Properties Values Required* 

Gmm 2.528  

Gse 2.716  

Gsb 2.686  

Gb 1.01  

Virgin Binder Type PG 64-22  

Total Binder content (%) 4.4  

Virgin Binder Content (%) 3  

Pba 0.42  

VMA (%) 13.5 min. 13.5 

VFA (%) 71.38 70-75 

DP 1.4 0.6-1.6 

LA Abrasion (%) 24 max. 40 

Micro Deval (%) 9.7  

Sand Equivalent (%) 79 min 40 

Fractured Faces 100/100 min. 85/80 

Tensile Strength Ratio 0.83 min. 0.8 

Permeability (10-5 cm/s) 0.2 max. 12.5 

* ODOT specification (ODOT, 2012) 
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Table 5.5 Summary of aggregates’ gradation of MIX-3 

Blended material 
% of each 

aggregate 
 

1" Rock 10  

5/8" Chips 27  

Man. Sand 19  

Sand 9  

Fine RAP 35  

   

Gradation (sieve size, mm) %Passing Required* 

25 100 100 

19 96 90-100 

12.5 85 ≤ 90 

9.5 72 - 

4.75 55 - 

2.36 40 31-49 

1.18 31 - 

0.6 25 - 

0.3 18 - 

0.15 9 - 

0.075 5.4 2-8 

* ODOT specification (ODOT, 2012) 

Table 5.6 Summary of aggregate properties and volumetric properties of MIX-3 

Volumetric and aggregate properties Values Required* 

Gmm 2.556  

Gse 2.754  

Gsb 2.707  

Gb 1.01  

Virgin Binder Type PG 64-22  

Total Binder content (%) 4.5  

Virgin Binder Content (%) 2.5  

Pba 0.64  

VMA (%) 13.5 min. 13.5 

VFA (%) 69.9 70-75 

DP 1.4 0.6-1.6 

LA Abrasion (%) 24 max. 40 

Micro Deval (%) 9.7 - 

Sand Equivalent (%) 87 min 40 

Fractured Faces 100/100 min. 85/80 

Tensile Strength Ratio 0.86 min. 0.8 

Permeability (10-5 cm/s) 5.5 max. 12.5 

* ODOT specification (ODOT, 2012) 
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Table 5.7 Summary of aggregates’ gradation of MIX-4 

Blended material % of each aggregate  

5/8" Chips 10  

5/8" Chips 20  

Man. Sand 26  

Sand 9  

Fine RAP 35  

   

Gradation (sieve size, mm) %Passing Required* 

19 100 100 

12.5 95 90-100 

9.5 83 ≤ 90 

4.75 62 - 

2.36 44 34-58 

1.18 33 - 

0.6 26 - 

0.3 19 - 

0.15 9 - 

0.075 5.4 2-10 

* ODOT specification (ODOT, 2012) 

Table 5.8 Summary of aggregate properties and volumetric properties of MIX-4 

Volumetric and aggregate properties Values Required* 

Gmm 2.516  

Gse 2.72  

Gsb 2.691  

Gb 1.01  

Virgin Binder Type PG 64-22  

Total Binder content (%) 4.8  

Virgin Binder Content (%) 2.8  

Pba 0.4  

VMA (%) 14.7 min. 14.5 

VFA (%) 72.1 72-77 

DP 1.2 0.6-1.6 

LA Abrasion (%) 24 max. 40 

Micro Deval (%) 9.7 - 

Sand Equivalent (%) 88 min. 40 

Fractured Faces 100/100 min. 85/80 

Tensile Strength Ratio 0.84 min. 0.8 

Permeability (10-5 cm/s) 2.5 max. 12.5 

* ODOT specification (ODOT, 2012) 
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5.3 Hamburg Wheel Tracking (HWT) Test Results 

All the mix samples were tested at 50 ºC using a HWT device under wet 

condition in accordance with the AASHTO T 324 test method (AASHTO, 2014). 

Samples were tested up to 20,000 wheel passes or 20 mm rut depth, whichever reached 

first. The rut depths at 11 points on the specimen along the wheel-path were recorded 

automatically for each wheel pass and were saved in a Microsoft ACCESS database. 

The rut depths at the mid-point of the specimen (Point No. 6) were considered for 

analysis. The rut depths obtained from two sets of tests conducted on the same asphalt 

mix were averaged and used for further evaluation. It was observed that the moving 

steel wheels of the HWT device vibrate vertically on the rough specimen surface which 

introduces noise into the rut depth readings. The moving averages of the rut depth 

readings along the time axis were taken to remove this noise. Lu and Harvey (2006) 

used the following Equations (4.1), (4.2) and (4.3) to calculate the moving averages of 

the HWT test results. 

1 2 3 20.40 0.25 0.15 0.10 0.10t t t t t td d d d d d          (1 5)t       (4.1) 

5 4 3 2 1

1 2 3 4 5

0.05 0.05 0.075 0.075 0.15

0.20 0.15 0.075 0.075 0.05 0.05

t t t t t t

t t t t t t

d d d d d d

d d d d d d

    

    

    

     
 (5< t <19,995)   (4.2) 

1 2 3 40.40 0.25 0.15 0.10 0.10t t t t t td d d d d d         (19,995 20,000)t     (4.3) 

The important performance parameters, namely post compaction deformation, 

creep slope, stripping slope, and stripping inflection point were determined from the 

HWT test results. The post compaction deformation observed instantaneously just after 

starting the test simulates the densification of asphalt mix owing to initial trafficking. 

Yildirim and Kennedy (2002) used the rut depth at 1,000 wheel passes as the post-
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compaction point.  The linear region of the rut progression curve after post compaction 

point is called creep region which represents rutting due to plastic flow. The creep slope 

is defined as the rut depth per wheel pass in the creep region. The stripping inflection 

point is used to characterize the moisture-induced damage of the asphalt mix. The 

stripping slope was obtained by drawing lines between the stripping inflection point and 

the final wheel pass. In this study, the creep and stripping slopes were defined as the 

number of passes per unit of rut depth for convenience.  

5.4  Evaluation of Rutting and Resistance to Moisture-induced 

Damage of the Mixes 

Figure 5.1 presents the average rut depth with respect to wheel passes for all of 

the asphalt mix specimens. Rut depths at 1,000, 5,000, 10,000, 15,000, and 20,000 

passes for all four mix specimens are presented in Table 5.9. The performance 

parameters were determined from HWT curves and are presented in Table 5.10. From 

Figure 5.1, it was observed that the rut depths at 20,000 passes for all four mix 

specimens were less than 10 mm. However, only the MIX-1 specimens, which 

contained polymer-modified PG 76-28 binder, exhibited moisture-induced damage. 

None of the other three mixes containing RAP were found to exhibit moisture-induced 

damage during the test, since no stripping inflection points were observed.  

The MIX-1 and MIX-4 specimens can be compared to examine the effects of 

polymer-modified binder and high RAP content on rut performance. From Figure 5.1 

(a) and Table 5.9, it is evident that, although both the MIX-1 and MIX-4 specimens 

were S4 mixes with a NMAS = 12.5 mm, the MIX-4 specimens containing PG 64-22 
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and 35% RAP exhibited a lower rut depth compared to the MIX-1 specimens, which 

contained PG 76-28 binder without any RAP. The rut depths for the MIX-1 and MIX-4 

specimens after 20,000 wheel passes were found to be 6.63 and 1.77 mm, respectively. 

Also, the creep slopes for the MIX-1 and MIX-4 specimens were found to be 5,458 and 

28,986 passes/mm, respectively. Furthermore, the MIX-1 specimens exhibited a 

stripping inflection point at 16,100 passes with a stripping slope of 2,952 passes/mm. 

Therefore, it can be concluded that MIX-1, which contained polymer-modified PG 76-

28 binder, is expected to exhibit higher rutting and moisture-induced damage than MIX-

3, which contained PG 64-22 binder and 35% RAP. 

The effect of incorporating high amount of RAP in the mix on rutting 

performance can be evaluated by comparing the results of the HWT tests conducted on 

the MIX-2 and MIX-3 specimens. From Figure 5.1 (b) and Table 5.9, it can be observed 

that the average rut depth for the MIX-2 specimens, which contained 25% RAP, was 

higher than those measured for the MIX-3 specimens, which contained 35% RAP. The 

post compaction deformations for the MIX-2 and MIX-3 specimens were found to be 

1.49 and 0.89 mm, respectively. Also, the creep slopes for the MIX-2 and MIX-3 

specimens were found to be 9,948 and 18,770 passes/mm, respectively. These results 

indicate that an asphalt mix containing high RAP content is expected to exhibit a higher 

rutting resistance. These observations agree with the findings reported by others (Hong 

et al., 2010; Hossain et al., 2013; Boriack et al., 2014; Ghabchi et al., 2016). 

The effect of aggregate gradation on the rut performance of asphalt mixes was 

evaluated using the HWT test results of the MIX-3 and MIX-4 specimens. From Table 

5.9, the average rut depth measured for the MIX-3 (S3 mix) specimens was 1.95 mm, 
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which was higher than the average rut depth measured (1.77 mm) for the MIX-4 (S4 

mix) specimens. The creep slopes for the MIX-3 and MIX-4 specimens were found to 

be 18,770 and 28,986 passes/mm, respectively. This means that the S4 mix tested in this 

study is expected to perform better than the S3 mix in terms of rutting resistance. 

 

(a) 

 

(b) 

Figure 5.1 HWT test results of the asphalt mixes: (a) NMAS= 12.5 mm;  

     (b) NMAS= 19 mm 
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Table 5.9 Rut depths of asphalt mix specimens at different number of wheel passes 

MIX ID 
Wheel passes 

1000 5000 10000 15000 20000 

MIX-1 2.22 3.54 4.3 5.13 6.63 

MIX-2 1.49 2.27 2.85 3.24 3.64 

MIX-3 0.81 1.10 1.41 1.64 1.95 

MIX-4 0.97 1.34 1.53 1.67 1.77 

 

Table 5.10 Performance parameters of asphalt mix specimens obtained from the HWT 

tests  

MIX 

ID 

HWT indices 

Post-

compaction 

(mm) 

Creep 

slope 

(mm/Pass) 

Creep slope 

(Passes/mm) 

Stripping 

inflection 

point 

Stripping 

slope 

(mm/Pass) 

Stripping 

slope 

(Passes/mm) 

MIX-1 2.22 0.00018 5458 16100 0.00034 2952 

MIX-2 1.49 0.00010 9948 N/A N/A N/A 

MIX-3 0.81 0.00005 18770 N/A N/A N/A 

MIX-4 0.97 0.00003 28986 N/A N/A N/A 

5.5 Comparison of HWT, DSR and MSCR Test Results 

Table 5.11 presents a comparison of the HWT, DSR, and MSCR test results. 

The amount of binder replacement by RAP for each mix, as mentioned in Section 5.2, 

was used for this evaluation. The properties of the asphalt mixes were compared with 

the properties of corresponding equivalent RAP binder blends. For example, the HWT 

rut depth measured for the MIX-2 specimens (31.8% of binder replaced by RAP), was 

compared with the DSR and MSCR test results of the PG 64-22-R1-25 binder. The 

|G*|/sinδ values of the RTFO-aged binders at the corresponding high temperature were 

used for this comparison. Also, the Jnr values of the binders determined at 64 °C and 3.2 

kPa stress level were used to compare with the HWT rut depths. Figure 5.2 presents a 



160 

 

comparison of the DSR and HWT test results. It can be observed that the mixes with a 

NMAS = 12.5 mm, the HWT rut depth increased with a reduction in the |G*|/sinδ value. 

A similar increasing trend of rut depth with a reduction in the |G*|/sinδ value was 

observed for asphalt mixes with a NMAS = 19 mm although the amount was not the 

same. Figure 5.2 presents a comparison of the MSCR and HWT tests results. From 

Figure 5.2, it can be observed that the HWT rut depth exhibited an increasing trend with 

an increase in Jnr value for asphalt mixes with an NMAS = 19 mm. However, asphalt 

mixes with a NMAS = 12.5 mm exhibited a completely opposite trend. The HWT rut 

depth was found to increase with a decrease in Jnr value. As mentioned in Section 5.2, 

the binder properties of the two mixes were different (one polymer-modified binder and 

another containing RAP binder). The sensitivity of the Jnr parameter to polymer 

modification may be the reason for this discrepancy. Other studies have reported that 

the Jnr at 3.2 kPa stress level correlated well with the HWT rut test results and can be 

used as a parameter for characterizing the rutting resistance of asphalt binders when 

used in a mix (Zhang et al., 2015; D’Angelo, 2007). Additional studies are needed on 

asphalt mixes used in Oklahoma to develop correlations between the DSR, MSCR and 

HWT test results. 
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Table 5.11 Comparison of HWT, DSR and MSCR test results 

MIX 

ID 
NMAS 

Binder 

type 

%Binder 

replacement 

Rut 

depth 

(mm) 

Equivalent 

RAP binder 

blend  

|G*|/sinδ 

(kPa) 

Jnr 

(kPa-1) 

MIX-1 12.5 PG 76-28 0.00 6.63 0 2.79 0.03 

MIX-2 19 
PG 64-22 

+ RAP 
31.82 3.64 25 14.6 1.77 

MIX-3 19 
PG 64-22 

+ RAP 
44.44 1.95 40 14.77 1.14 

MIX-4 12.5 
PG 64-22 

+ RAP 
41.67 1.77 40 14.77 1.14 

 

 

Figure 5.2 Comparison of DSR and HWT test results 
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Figure 5.3 Comparison of MSCR and HWT test results 

5.6 Summary 

The results of the HWT tests conducted on asphalt mix specimens are presented 

in this chapter. Based on the HWT test results, the asphalt mixes with polymer-modified 

binder exhibited higher susceptibilities to rutting and moisture-induced damage than the 

asphalt mixes with RAP.  Also, the HWT rut depths of the asphalt mixes was observed 

to reduce with an increase in the RAP content from 25% to 35%. Furthermore, the 

rutting resistance of the S4 mix with 35% RAP was found to be better than that of the 

S3 mix with the same amount of RAP. Based on the comparison of the HWT, DSR and 

MSCR test results, the HWT rut depth was observed to increase with a reduction in the 

|G*|/sinδ value and with an increase in the Jnr value. 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

The applicability of the MSCR test method to characterize the polymer-modified 

binders and RAP binder blends commonly used by DOTs in Oklahoma, Texas and New 

Mexico was evaluated in the present study. The experimental plan comprised of 

conducting the Superpave® and MSCR tests on the polymer-modified PG 70-XX and 

PG 76-XX binders from seven different sources. The effects of blending different 

amounts of RAP binders, namely 0%, 25%, 40% and 60% (by weight of the binder), 

with a PG 64-22 binder were evaluated using both the Superpave® and MSCR test 

methods. The MSCR tests were conducted on the RTFO-aged binder samples at 64 °C, 

in accordance with the AASHTO TP 70 (AASHTO, 2013) test method. Also, the 

MSCR tests were conducted at a higher stress level (10 kPa) and higher temperatures 

(70 °C and 76 °C) to determine the stress and temperature sensitivities of the tested 

binders. The results of the MSCR tests were analyzed using the AASHTO MP 19 

(AASHTO, 2010) specification. Furthermore, the rutting and moisture susceptibilities 

of the asphalt mixes containing polymer-modified binders and high amounts of RAP 

were determined using the HWT test. The results of the DSR, MSCR and HWT tests 

were compared to evaluate relationships between binders’ properties and performance 

of asphalt mixes. Based on the results and discussions presented in previous chapters, 

the following conclusions can be drawn: 
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6.1 Conclusions 

6.1.1 Evaluation of MSCR Test Method and Parameters  

(i) The MSCR parameters have potential to adequately characterize the rheological 

properties of polymer-modified binders. The Jnr and %Recovery parameters 

were able to successfully determine the effects of different amounts of RAP 

binder in the binder blends. Also, the MSCR parameters provide a better 

understanding of the stress and temperature sensitivities of polymer-modified 

binders and RAP binder blends. Therefore, the MSCR parameters can be used to 

determine the viscoelastic behavior of the polymer-modified binders and RAP 

binder blends available in Oklahoma, New Mexico and Texas.  

(ii) The %Recovery requirements proposed by AASHTO TP 70 (2013) were found 

to be adequate for differentiating the elastomeric polymer-modified binders 

from other binders used in this study. The polymer-modified PG 70-XX and PG 

76-XX binders (except S7 PG 70-22 binder) were found to satisfy the 

%Recovery requirements of AASHTO TP 70 (2013). The S7 PG 70-22 binder 

did not satisfy the %Recovery requirements as it may not be an elastomeric 

polymer-modified binder. 

(iii) It was found that the current MSCR test method is not sufficient to characterize 

the non-linear viscoelastic behavior of polymer-modified binders. The polymer-

modified binders used in the present study were found to exhibit a non-linear 

behavior at a higher stress level (i.e., 10 kPa) than the stress levels used 

currently. Therefore, a 10 kPa stress level can be added to the MSCR test 
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method in conjunction with the 0.1 and 3.2 kPa stress levels to better 

characterize the non-linear viscoelastic behavior of polymer-modified binders. 

Such characterization is important as pavement rutting is known to be a non-

linear phenomenon.  

6.1.2 Characterization of Polymer-modified Binders 

(i) The continuous high- and low-temperature PG grades of the polymer-modified 

binders were found to meet the minimum specification requirements to be 

graded as advertised and labeled by the manufacturers. However, not all the 

polymer-modified binders were found to satisfy the %Recovery requirements of 

AASHTO TP 70 (2013). Therefore, the polymer-modified binders, which are 

produced to meet the Superpave® specifications, may not always satisfy the 

MSCR %Recovery requirements, depending on the types and amounts of 

polymers used for binder modification. 

(ii) The Jnr and %Recovery parameters were able to identify the differences in the 

rheological properties of the polymer-modified binders of the same PG grades 

but from different sources. The differences in the viscoelastic properties of the 

same PG grade binders were found to become prominent at a higher stress level 

(i.e., 10 kPa) and higher temperatures (70° and 76 °C). Therefore, the responses 

to the permanent deformation of the binders having the same PG grade are 

expected to vary with the binder sources while other conditions (e.g., 

temperature and traffic) remain same.  
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(iii) The results of the DSR tests indicated that the polymer-modified PG 70-XX and 

PG 76-XX binders are expected to exhibit satisfactory rutting and fatigue 

resistance, when used in a mix. Also, the MSCR grades of all of the tested 

polymer-modified binders were found to be PG 64E-XX, indicating binders’ 

ability to sustain extreme level of traffic at 64 °C. Furthermore, from the HWT 

test, the rut depth obtained for the asphalt mix containing polymer-modified 

binder was found to satisfy the ODOT specifications requirement. Therefore, a 

pavement constructed with asphalt mix containing polymer-modified binders is 

expected to perform well in terms of rutting. 

(iv) All of the tested polymer-modified binders were observed to meet the AASHTO 

MP 19 (AASHTO, 2010) stress sensitivity criterion at 64 °C. Therefore, the 

polymer-modified binders are not expected to exhibit high amount of 

deformation when subjected to unexpected heavy loads or increase in ESALs at 

64 °C. However, the stress and temperature sensitivities of the polymer-

modified binders were found to increase with an increase in the stress level and 

temperature. 

(v) The MSCR grades of the polymer-modified binders were found to reduce with 

an increase in temperature. For example, the MSCR grade of the S6 PG 70-28 

binder was found to change from PG 64E-28 to PG 70H-28 with an increase in 

temperature from 64° to 70 °C. Therefore, the effect of an increase in 

temperature on the MSCR grade should be taken into account during 

construction of a pavement as the same binder can be graded differently at 

different temperatures. 
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(vi) From the XRD study, it was observed that different aromaticity and crystallite 

parameters of the binder can be used as an effective tool for the characterization 

of the molecular structure of binders. It was found that the aromatic character of 

the binder reduced to some extent upon the addition of PPA. The compacting of 

the aromatic ring system was observed with the addition of PPA. A higher fa 

value of the PG 76-28 binder than the PG 58-28 binder may be due to the 

formation of aromatic rings or splitting of aliphatic groupings during polymer 

modification. It was assumed that increased layer distance of aromatic sheets of 

polymer-modified binder may be the result of an increase in the volume of 

binder after polymer-modification. The binder with polymer modification 

exhibited compacting of aromatic rings system with aging. The compacted 

aromatic ring system is expected to be responsible for a higher elasticity as well 

a higher MSCR %Recovery of polymer-modified binders. Therefore, the S7 PG 

70-22 binder, which exhibited low %Recovery, can be assumed to have a 

loosely compacted aromatic rings system and/or weak interaction between 

molecules. 

6.1.3 Characterization of RAP Binder Blends 

(i) The |G*| and |G*|/sinδ of the RAP binder blends were observed to increase with 

an increase in the amount of RAP binder in the binder blends. Therefore, the 

RAP binder blends are expected to exhibit a higher rutting resistance than the 

neat binder. However, the level of increase in the rutting resistance was 

observed to be dependent on RAP sources. From the HWT test results, asphalt 
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mixes with high amounts of RAP were observed to exhibit satisfactory rutting 

performance than the mixes with polymer-modified binders. Also, the rutting 

resistance of the asphalt mixes was found to increase with an increase in the 

RAP content from 25% to 35%. As per ODOT specifications, the maximum 

allowable percent binder replacement by RAP for surface courses and other 

Superpave® mixes are 12% and 30%, respectively (ODOT, 2013). The ODOT 

may consider revising the allowable limit of binder replacement as both the RAP 

binder blends and asphalt mixes with high RAP content were found to exhibit an 

improved resistance to rutting. 

(ii)  The high-temperature PG grades of the RAP binder blends were observed to 

increase with an increase in the RAP binder content. No significant changes in 

the PG grades of the binder blends were observed after incorporating 25% RAP1 

and RAP2 binders. However, the addition of 40% and 60% RAP1 binders 

resulted in an increase of two grades than the neat binder. Also, the high-

temperature PG grades were found to increase by one and three grades after the 

addition of 40% and 60% RAP2 binders, respectively. Therefore, the addition of 

RAP binder to the neat binder is expected to improve the resistance to rutting, 

when used in a mix. 

(iii) The low-temperature PG grades of the RAP binder blends were found to exhibit 

an increasing trend with addition of RAP binder. The addition of 40% RAP1 

binder to the binder blend resulted in a three grades bump of low-temperature 

PG grade. Also, the low-temperature PG grade of the PG 64-22 binder increased 

by one grade due to the addition of 60% RAP2 binder. Therefore, an increase in 
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RAP binder to the binder blends is expected to increase the possibility of low-

temperature cracking, when used in a mix.  

(iv) The Jnr values were found to decrease and the %Recovery values were found to 

increase with an increase in the RAP binder content in the binder blends, 

indicating a higher rutting resistance than the neat binder. Also, the MSCR 

grades of the RAP binder blends exhibited an increasing trend with an increase 

in amount of RAP binder. For example, the MSCR grade of the PG 64-22 binder 

was found to be PG 64H-22, which increased to PG 64E-XX after addition of 

60% RAP1 and RAP2 binders. According to the AASHTO MP 19 (AASHTO, 

2010) specification, a binder with an “extreme” grade is expected to sustain a 

traffic levels of greater than 30 million ESALs and standing traffics (< 20 km/h). 

Therefore, the 60% RAP1 and RAP2 binder blends can be used at places which 

experience extreme traffic and/or standing traffics, such as toll plazas, port 

facilities and intersections. 

(v) The stress sensitivities of the RAP binder blends at 64 °C were found to meet 

the AASHTO MP 19 (AASHTO, 2010) stress sensitivity criterion. Also, the 

RAP binder blends were found to become less sensitive to the stress level with 

an increase in the RAP binder. Therefore, the RAP binder blends are expected to 

exhibit better resistance to the deformation when subjected to unexpected heavy 

loads or increase in ESALs at 64 °C. 

(vi) The negative %Recovery observed at higher stress levels and temperatures 

indicated a continuous deformation of the binder sample after the removal of 

creep load. Therefore, the stress and temperature sensitivities of the RAP binder 
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blends should be taken into consideration, although they are expected to exhibit 

a satisfactory rutting performance at high temperatures, based on the 

Superpave® test results.  

6.1.4 Comparison of HWT, DSR and MSCR Test Results 

(i) The DSR and MSCR test methods were found to rank the rutting performance of 

the polymer-modified binders differently. A similar dissimilarity in the ranking 

of binders based on the DSR and MSCR test methods were observed for the 

RAP binder blends. However, the MSCR-based ranking system is expected to 

predict the rutting performance of binders better than the DSR-based ranking. It 

was found that a combination of low stress level and temperature can be used to 

determine the ranking of the binders from the MSCR test method.  

(ii) From the HWT test results, the rut depths for both types of asphalt mixes 

(NMAS=12.5 mm and NMAS= 19 mm) were found to increase with a reduction 

in the |G*|/sinδ values, although the level of increase was not the same. The 

HWT rut depths were found to exhibit an increasing trend with an increase in Jnr 

value for asphalt mixes with an NMAS = 19 mm. However, the rut depths of 

asphalt mixes with a NMAS = 12.5 mm were found to exhibit an opposite trend 

with Jnr value. The sensitivity of the Jnr parameter to polymer modification of 

binders were assumed to be the reason for this discrepancy. 

6.2 Recommendations 

The following recommendations were made based on the limitations and the 

scope of the present study: 
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(i) The Oklahoma DOT may consider improving its current MSCR database by 

including binders’ results from all approved suppliers. A number of different 

polymers are currently being used by the asphalt binder refineries to achieve 

specification requirements. The effects of the types and amounts of the different 

polymers used by refineries located in Oklahoma on the performance of the 

binders were beyond the scope of the present study. A detailed rheological study 

using the MSCR test method is needed to characterize the polymer-modified 

binders with different types and amounts of polymers used in Oklahoma. 

(ii) The refineries located in Oklahoma, New Mexico and Texas are producing 

asphalt binders following the AASHTO M 320 (AASHTO, 2012) specification. 

A study is needed to find out the feasibility of changing the specification of 

binders’ production to AASHTO MP 19 (AASHTO, 2010) from AASHTO M 

320 (AASHTO, 2012). Also, training of both users and producers on the MSCR 

test method and specification are necessary to help adopting this test method in 

Oklahoma, New Mexico and Texas.  

(iii) The present study provides an insight on the rutting resistance of asphalt mixes 

containing polymer-modified binders and high amount of RAP and its relation 

with the DSR and MSCR rutting parameters. However, a comprehensive study 

is needed to establish correlations between the performance of plant and 

laboratory produced asphalt mixes and the DSR and MSCR test results. Based 

on the results of field performance, the MSCR guidelines can be evaluated and 

updated, periodically. 
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(iv) The Oklahoma DOT may consider using high amount of RAP in asphalt mixes 

as they exhibited a higher rutting resistance. However, the low-temperature 

cracking and fatigue performance should be taken into account during the 

selection of an asphalt mix with high amount of RAP. A study is needed to 

optimize the amount of RAP to be added to asphalt mixes based on their overall 

performance.  
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Appendix A: List of Abbreviations 

AASHTO American Association of State Highway and 

Transportation Officials 

AI Asphalt Institute 

ALF Accelerated Loading Facility  

APA Asphalt Pavement Analyzer 

BBR Bending Beam Rheometer  

CR Crumb Rubber 

DCA Dynamic Contact Angle 

DOT Departments of Transportation  

DSR Dynamic Shear Rheometer  

ER Elastic Recovery  

EVA Ethylene-Vinyl-Acetate 

EVT Equi-Viscous Temperature  

ESAL Equivalent Single Axle Load 

FD Forced Ductility  

FHWA Federal Highway Administration  

FTIR Fourier Transform Infrared  

HMA Hot Mix Asphalt 

HWT Hamburg Wheel Tracking  

ILS Inter-Laboratory Study 

LTPP Long-Term Pavement Performance 

LSV Low Shear Viscosity  

LWT Loaded Wheel Tester 

MEPDG Mechanistic-Empirical Pavement Design Guide 

MSCR Multiple Stress Creep and Recovery 

NCAT National Center for Asphalt Technology  

NCHRP National Cooperative Highway Research Program 

NEAUPG North East Asphalt User Producer Group 
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NHDOT New Hampshire Department of Transportation 

NMDOT New Mexico Department of Transportation 

ODOT Oklahoma Departments of Transportation  

PAV Pressure Aging Vessel 

PG Performance Grading 

PURWheel Purdue University Laboratory Wheel Tracking Device 

RAS Recycled Asphalt Shingles 

RAP Reclaimed Asphalt Pavement 

RAP binder Binder extracted from RAP 

RCRT Repeated Creep and Recovery Test 

RLPD Repeated Load Permanent Deformation 

RTFO Rolling Thin Film Oven  

RV Rotational Viscometer  

S-VECD Simplified Viscoelastic Continuum Damage 

SBS Styrene-Butadiene-Styrene 

SEPS Styrene-ethylene/propylene-styrene 

SFE Surface Free Energy 

SHRP Strategic Highway Research Program 

SEAUPG Southeastern Asphalt User/Producer Group 

Superpave® Superior Performing Asphalt Pavements 

TSR Tensile Strength Ratio 

TxDOT Texas Department of Transportation 

VDOT Virginia Department of Transportation 

XRD X-ray Diffraction 

ZSV Zero-Shear Viscosity  

Jnr Non-recoverable creep compliance 

Jnr diff Percent difference in Jnr values at two stress levels 

%Recovery MSCR percent recovery 

η′ Storage viscosity 

 


