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Abstract 
 

Over the past century, the population of the world has become increasingly urbanized. 

As a result, cities have become larger and more densely populated than any time in 

history. This unprecedented growth and rapid modification of the surface has impacted 

the overlying boundary-layer of the atmosphere. As such, understanding the overall 

magnitude and spatial variability of these changes has critical value to the ever growing 

population living within the impacted regions. The goal of this study is to determine the 

impact of urbanization on near surface atmospheric conditions and how those impacts 

evolve with time. 

The Weather Research & Forecasting (WRF) model was utilized to simulate 

atmospheric conditions in and around the Oklahoma City area. The WRF output was 

compared to surface observations from the Oklahoma City Micronet and the Oklahoma 

Mesonet to quantify model accuracies and biases. The National Land Cover Dataset 

(NLCD) was subsequently modified to represent land use characteristics from 1890, 

following the Oklahoma Land Rush, to 2011 at intervals of every 30 years. The WRF 

model was initialized with modified NLCD land use datasets to determine the impact 

from a developing metropolitan area.  

An analysis of the optimal simulation run times demonstrated that the 24-hour run 

time provided the most accurate results in the variety of scenarios and the urban heat 

island index was within about 0.5°C of the verification from surface observing stations. 

The results yielded an increase in urban heat island indices of over 3.5°C throughout the 

past 120 years with an over 5.0°C magnitude warming of the near surface air temperatures 

over and around the developed urban areas. The analysis of the 1890 land use background 
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showed that the natural variability of air temperatures without any influences from the 

metropolitan area are on the order of 1-2°C. 

Additionally, implementing unique methodologies for interpreting urban heat 

characteristics demonstrated that by utilizing the top 10, 100, 500, and 1000 warmest 

model simulation pixels as urban values instead of arbitrary points, a more representative 

value for urban heat island indices was calculated (resulting in a value of about 3.5°C in 

the summer in 2011). The use of air temperature histograms (in particular for the 

minimum temperature) of the model grid point’s output showed changes in the historical 

distribution of air temperature values indicating a transition towards warmer values over 

time. Additionally, an analysis of the distribution of air temperature values across the 

entire domain for each of the historical time periods showed the areal spread of air 

temperature impacts by over 20%.   
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Chapter 1: Introduction 
 

Over the past century, the population of the world has become increasingly any time 

in history (Cohen, 2005). This unprecedented growth and rapid modification of the 

surface has impacted the overlying boundary-layer of the atmosphere. As such, 

understanding the overall magnitude and spatial variability of these changes has critical 

value to the ever-growing population living within the impacted regions.  

The hypothesis of this study is that the anthropogenic urbanization in and around 

Oklahoma City has led to noticeable impacts in the near-surface meteorological 

conditions. To test this hypothesis, the following questions will be addressed:  

 

1. What run-time length of the Weather Research and Forecasting (WRF) model 

produces the results with the lowest differences to measured observations? 

2. How has the urbanization of Oklahoma City impacted atmospheric conditions 

since the city was founded in 1890? 

3. What are the characteristics of the atmospheric conditions generated by the WRF 

model over Oklahoma City during urban heat island events? 

4. What statistical methods can be utilized to best describe urban heat island events 

from gridded model output data? 

 

For the first time, a comprehensive analysis of historical urban growth impacts 

towards urban heat island characteristics and additional statistical methodologies to 

quantify urban heat severity will be presented (Fig. 1). The goal of this study is to 

determine the impact of urbanization on near surface atmospheric conditions and how 
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those impacts evolve with time. The results of this work will have technical merit to the 

science of meteorology: (1) through improved understanding of mesoscale and urban 

climate quantified using numerical weather prediction, and (2) there remains a scientific 

need for the understanding of the temporal scales of mesoscale numerical modeling 

needed to resolve accurate urban meteorological signals. This research will also impact 

the broader community through a better understanding of the spatial impacts of near 

surface meteorological conditions from the development of a metropolitan area in which 

the general public live and work. As more people move into urban areas and cities become 

larger, the impact of urban meteorological conditions on life (e.g. higher urban 

temperatures leading to death, weaker winds leading to trapped aerosols and lung 

diseases, etc.) are of a higher concern to public safety and this research will aid in a better 

understanding of potential conditions for growing, existing, and future cities. Similarly, 

city planners of metropolitan areas could greatly benefit their understating of future 

impacts by utilizing the knowledge of how different types of urbanizations could impact 

the atmosphere. 
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Chapter 2: Scientific Background 

Population Trends 

Over the past 2000 years, the world has rapidly become more urbanized, a process 

which has accelerated greatly in the 20th century. As of 2008, the population of the globe 

was 6.3 million people and growing at a rate of approximately 1.2 percent, 75 million 

people per year, or 200,000 people per day (United Nations, 2000; US Census Bureau, 

2004; Cohen, 2005; Lee, 2009). Most of this growth is in the urban environment (United 

Nations Human Settlements Program, 1997; Dabberdt et al., 2000; United Nations, 2003; 

Lee, 2009) as the world’s rural population has remained at approximately 3 billion people 

(Cohen, 2003; Cohen, 2005). In 2007 and for the first time in history, more people lived 

in urban areas than in rural areas. Figure 2 shows the past and future global projection of 

population.  

Cohen (2003) noted that issues relating to this population growth are critical as “the 

human species lacks any prior experience with such rapid growth and large numbers of 

its own species”. The 20th century yielded the highest population growth rate in history 

(2.1% in 1965) and is the only century in which the global population not only doubled, 

but tripled (Cohen, 2003; Cohen, 2005). While the population growth rate has weakened 

and is projected to decline, population growth models are still uncertain of the future 

population totals (United Nations, 2000). The consensus estimation of future worldwide 

population is 8.9 to 9.1 billion people will inhabit the planet in 2050 with estimates 

ranging between 7.3 and 11.7 billion (United Nations, 2000; Cohen, 2003; Cohen, 2005). 

Over the past two hundred years worldwide urbanization has increased and 

accelerated greatly during the 20th century (Cohen, 2003). Two hundred years ago, 
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approximately 1 in 50 people lived in cities, while today more than 1 in 2 people reside 

in urban areas (Lee, 2009). Cohen (2003) stated that of the projected 2.2 billion people 

added to the world in the next 20 years, approximately 2.1 billion will be in urban areas. 

During this time, urban populations will increase at a rate of 1.8% per year, which is twice 

the projected rate of global population increase during the same period (Cohen, 2003). 

Serious challenges exist with such rapid and unprecedented population growth in cities 

with millions of people (Brockerhoff, 2000) and “climate and weather studies 

encompassing the urban environment will be critical to meeting [these challenges]” (Lee, 

2009). Further, the current and projected growth rate in urban areas would require one 

city of one million residents created every week for the next 40 years just to keep pace 

with the population growth (Cohen, 2005). 

During the next five years, the number of cities with at least one million residents is 

projected to reach 564, which in contrast, is dramatically larger than 195 cities of this size 

in 1975 (Brockerhoff, 2000). This increase in large cities is not only due to population 

growth from new births, but also from (a) the migration of people from rural areas into 

cities and (b) from the transformation of rural settlements into urban areas (Cohen, 2003).  

Not only are urban areas becoming more abundant and populated, they are becoming 

more densely populated. The world’s average population density was 45 people per 

square kilometer in 2000 and is projected to rise to 66 people per square kilometer in 

2050 (and as high as 93 people per square kilometer in some regions; Cohen, 2003). 

Cohen (2003) also noted that, given that only about 10% of the land is arable on the global 

scale, the population densities per unit of arable land would be roughly 10 times higher. 

Brockerhoff (2000) states that the future will be not just an urbanizing world, but a world 
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in which people are more likely to be residents of very large cities, or megacities of 10 

million residents or more.  Such cities are already more numerous than ever before. 

 

Urban Meteorological Studies 

Over the past 40 years, the study of the meteorological conditions within and their 

impacts from the urban environment have gained increased interest in atmospheric and 

climatological disciplines. Oke (1974; 1979b; 1980) pioneered the study of urban 

meteorology through extensive work along with others (Changon, 1981,1992; Jones and 

Suckling, 1983, Landsberg, 1981a, 1981b; Unger et al., 2001) who demonstrated how 

conditions, such as temperature, wind speed, and boundary layer depth, are altered by the 

presence of large expanses of city structures. Further, their work demonstrated that these 

impacts could be seen at the mesoscale level. 

The most noticeable impact by humans to the atmospheric conditions of the urban 

environment is the presence of urban heat islands which has been extensively studied 

across the globe (Arnfield, 2003) including North America (Basara et al., 2008; Schroeder 

et al., 2010; Ackerman, 1985; Jauregui, 1997; Kim, 1992; Kukla et al., 1986; Magee et 

al., 1999, Runnals and Oke, 2000, Schmidlin, 1989), South America (Figuerola and 

Mazzeo, 1998), Europe (Johnson, 1985; Klysik and Fortuniak, 1999; Moreno-Garcia, 

1994; Shahgedanova et al., 1997; Unger, 1996; Yagüe et al., 1991), Asia (Kumar et al., 

2001; Nasrallah et al., 1990; Park, 1986; Wang and Liu, 1982), Africa (Adebayo, 1987), 

and Australia (Morris and Simmonds, 2000). These demonstrated that urbanization can 

lead, with the proper synoptic conditions, to periods where urban core can be in excess 

of 10.0°C warmer compared to the rural areas of metropolitan areas at a given time. 
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 A better understanding of how surface variability alters the urban environment 

has been a focus of many recent studies including water balance (Grimmond and Oke, 

1986, Grimmond et al., 1986, Mitchell et al., 2008, Wang et al., 2008), evapotranspiration 

(Grimmond et al., 1991, Taha 1997), aerodynamic properties (Grimmond and Oke, 

1999a; Grimmond et al, 1998, Li et al., 2007, Baik et al., 2009), heat storage (Grimmond 

and Oke, 1999b; Grimmond et al., 1991, Meyn and Oke, 2009), and botanical influences 

(Grimmond et al., 1996, Alexandri and Jones, 2008). Other studies have investigated how 

different surfaces resulted in altering the partition of heat fluxes (Anandakumar, 1999) 

and how they resulted in additional transport of heat into the subsurface (Asaeda et al., 

1996). Carlson et al. (1981) used satellite estimations over Los Angeles, California and 

Saint Louis, Missouri to infer the distribution of surface heat and evaporative fluxes as 

well as thermal inertia, which all have been theorized to lead to enhanced urban heat 

island impacts. 

 Additionally, there has been extensive research on how the structure of cities 

alters the impacts to the atmospheric conditions. As with many urban meteorological 

studies, temperature was a main focus of many of the urban geometry impacts including 

nocturnal temperatures (Arnfield, 1990b; Eliasson 1996a), street-level temperatures 

(Barring et al., 1995), ground shadowing impacts (Swaid and Hoffman, 1990-91), and 

urban heat islands (Oke, 1981; Eliasson, 1994; Barring et al., 1995; Eliasson, 1996b). 

Further studies focused on other aspects of impacts from city geometry such as wind flow 

(Cionco and Ellefsen, 1998), dispersion (Johnson and Hunter, 1995), and surface 

radiation budgets (Frank et al., 1981b; Voogt and Grimmond, 2000; Champan et al, 

2001). 
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The boundary layer is an important aspect of understanding the near surface processes 

occurring above metropolitan areas. The work by Hildebrand and Ackerman (1984) 

demonstrated that the presence of an urban environment dramatically impacts urban heat 

fluxes (by two to four times that of the rural fluxes), creates larger magnitudes of moisture 

fluxes at upper levels, and results in greater urban turbulences intensities aloft. While 

most studies analyze large metropolitan area impacts on the boundary layer, Tapper 

(1990) showed that these impacts can be measured even over much smaller urban areas 

thus showing the noticeable impacts from just minor land-use changes. 

 

Urban Atmospheric Modeling 

Through the use of various computer models, theoretical hypotheses focused on the 

impacts of the urban environment on various atmospheric conditions can be tested. 

Similar to the observational studies that will be outlined in Chapter 5, most of the urban 

atmospheric modeling studies focused on urban temperature / urban heat islands or the 

energy balance and partition of fluxes related to the presence of an urban environment. 

While the presence of urban heat islands had been well documented scientifically, other 

studies have sought to determine if non-measured variables critical to the determination 

of the urban heat island could be simulated. Hafner and Kidder (1999) demonstrated that, 

through the use of Advanced Very High Resolution Radiometer (AVHRR) satellite data, 

surface parameters such as soil temperature and moisture could be modeled to impact the 

presence and intensity of urban heat islands. Herbert et al. (1998) used numerical models 

to determine the thermal climate within a city canyon, while Richiardone and Brusaca 
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(1989) were able to use a model to alter stability and surface heat fluxes to show their 

impacts on different urban heat island intensities. 

The modeling of urban environment impacts on the surface energy balance has also 

been extensively analyzed. Sakakibara (1996) utilized models to compare a parking lot 

with an urban canyon to show that the urban geometry contributed greatly to the alteration 

of the surface energy budget and thus the formation of urban heat islands. Sivers and 

Zdunkowski (1985) showed from an extension of the work by Aida and Gotoh (1982) 

that not only does the presence of urban canyons impact the albedo within the city, but 

the orientation of the buildings and more so the orientation of the streets impacts the 

variations of the albedo. Taha (1997) demonstrated that, by modifying an existing 

mesoscale model with an objective hysteresis model, the impacts of surface modification 

and their resulting surface fluxes are more pronounced than in an unmodified mesoscale 

model. Grimmond et al. (2010) compared 33 numerical models on their performance in 

simulating fluxes in the urban energy balance and to determine the level of model 

complexity needed to accurate simulate the fluxes. Similarly, Grimmond et al. (2011) 

compared 32 urban land surface schemes through a four-stage systematic evaluation. In 

both studies, the results showed that no particular model or scheme performed better that 

the rest across all of the flux simulations; however, the selection of parameter values can 

have large impacts on the resulting simulations.  

 

Oklahoma City 

 Oklahoma City, Oklahoma, USA, is located in the south-central part of the United 

States and represents a typical, rapidly growing urban area in North America. Founded in 

1889, its aerial extend covers nearly 1610 km2, which makes it one of the largest cities 
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by land area in the United States. Despite its large spatial extent, only approximately 630 

km2 is defined as an urban area. However, over the past century, its urban area continues 

to rapidly expand outward and is projected to continue to expand in the future. 

The United States Census Bureau’s latest estimation lists the Oklahoma City 

metropolitan area (i.e. the geographic area that consists of Oklahoma City and its 

surrounding suburban areas) at a population of just over 1.2 million residents. This is a 

10.1% increase in population from the 2000 census and ranks it as the 44th most populated 

metropolitan area and 31st most populated urban area in the United States (United States 

Census Bureau, 2009; United States Census Bureau, 2009). Figure 3 shows the urban and 

rural population trends from 1950 to 2050 of the United States and Oklahoma City. This 

data demonstrates that, over the past 60 years, Oklahoma City has a higher rate of urban 

population increase than the United States mean and is projected to grow at the same rate 

over the next 20 years. 

Oklahoma City is an ideal choice for urban modeling study for many reasons. It 

resides in relatively flat terrain (Fig. 4) with elevations of approximately 330 m above 

mean sea level just to the east of the city to 420 m just west of the city leading to an 

elevation change of less than 100 m across a distance of 100 km. River valleys run from 

west to east through the city, but are very shallow. Additionally, there are no large bodies 

of water adjacent to the urban core. As a result, these optimal features limit complicating 

errors and factors which can be associated with surrounding geography. Further, the 

region is heavily monitored by in situ and remote sensing instruments focused on 

observing atmospheric conditions. The nested atmospheric observing networks yield 
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excellent input and verification data for any numerical simulations of the urban and 

adjacent rural environments.   
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Chapter 3: Observational Data 

Oklahoma Mesonet 

The Oklahoma Mesonet (Fig. 5) is an automated network of 121 remote, 

meteorological stations across Oklahoma (Brock et al., 1995; Shafer et al., 2000; 

McPherson et al., 2007).  Each station measures core parameters that include:  air 

temperature and relative humidity at 1.5 m, wind speed and direction at 10 m, atmospheric 

pressure, downwelling solar radiation, rainfall, and bare and vegetated soil temperatures 

at 10 cm below ground level. In addition, over 100 sites measure air temperature at 9 m. 

In an effort to avoid anthropogenic influences, most Oklahoma Mesonet sites are located 

in rural areas. Mesonet data are collected and transmitted to a central point every 5 

minutes where they are quality controlled, distributed and archived (Shafer et al., 2000; 

McPherson et al., 2007). 

 

Oklahoma City Micronet 

The Oklahoma City Micronet (OKCNET) was an operational network designed to 

improve atmospheric monitoring across the Oklahoma City metropolitan area (Basara et 

al, 2011).  The 40-station network consisted of four Oklahoma Mesonet Stations (OKCE, 

OKCN, OKCW, and SPEN) and 36 stations mounted on traffic signals at a height of 

approximately 9 m and station spacing of approximately 3 km. At each traffic signal site, 

atmospheric conditions of air temperature, humidity, pressure, rainfall, wind speed, and 

wind direction were measured and transmitted every minute to a central facility 24 hours 

per day, year-round where they were quality controlled, distributed, and archived using 

the Oklahoma Mesonet infrastructure. The Oklahoma City Micronet included a cluster of 

stations within the central business district as well as stations throughout the Metropolitan 
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area (Fig. 6). Basara et al. (2008) showed that air temperature measurements in the urban 

areas show little difference between 2 m and 9 m during the night time when urban heat 

islands are most prevalent (Fig. 7), which indicates that comparisons of air temperatures 

can be made between Oklahoma City Micronet (9 m) and the Oklahoma Mesonet (1.5 

m).  

 

Urban Heat Islands 

Temperature and apparent temperature values measured in densely urbanized areas 

have been shown (and felt) to be warmer temperatures than surrounding rural areas 

(Basara et al., 2010). The warmer temperatures typically peak in magnitude shortly before 

sunrise and are the result of the difference in thermal storage of urban areas (e.g. concrete, 

asphalt) and rural areas (e.g. grasslands). These warmer temperatures are referred to as 

urban heat islands due to their spatial uniformity (and “island” shape) with relation to the 

urban area. An urban heat island index (UHII) is a measure of the strength of an urban 

heat island and is the difference between the urban temperature and the rural temperature 

(Eq. 1; Ackerman, 1985; Oke, 1987).  

 

UHII = (TUrban – TRural)    (1) 

 

The definition or calculation of urban and rural temperatures varies across studies but 

typically involves the averaging of several independent observations of those influenced 

by urban land use (e.g. “urban”) and those sufficiently removed from any urban influence 

(e.g. “rural). The UHII is difficult to accurately calculate when representative urban 
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measurements are not available, which occurs in many metropolitan locations where 

meteorological measurements are observed in the outer parts of cities (e.g., airports). If 

multiple measurements of urban and rural measurements are available (as with the 

Oklahoma City Micronet and the Oklahoma Mesonet), then the UHII can be determined 

by taking the difference of the mean urban and mean rural temperatures (Kim and Baik, 

2005; Basara et al., 2008) and can provide a more accurate measurement of the UHII by 

reducing the variability between temperature observing sites (Hawkins et al., 2004; 

Basara et al., 2008). An example of an urban heat island measured by the Oklahoma City 

Micronet is shown in Figure 8. Arnfield (2003) stated that UHII is “the most well 

documented example of anthropogenic climate modification”. However, through the 

results of this research, it will be demonstrated that this statement, while true, is a bit 

incomplete as there are more factors beyond anthropogenic sources that contribute to the 

UHII. 

The research presented in the following chapters utilizes a variety of new approaches 

to calculating the UHII. The standard UHII equation as shown in Eq. 1 will be utilized in 

two different methods: (1) through measurements taken at specific site locations where 

observations stations were located (e.g., Oklahoma Mesonet stations at Chandler, El 

Reno, Guthrie, Kingfisher, Minco, Norman, Oklahoma City East, Oklahoma City North, 

Oklahoma City West, Shawnee, and Spencer), and (2) through arbitrary locations 

specifically chosen for their strong urban and rural representativeness. Additionally, the 

UHII is analyzed through non-stationary methods where maximum urban values from 

varying quantities of numerical model grid points ensure that the warmest locations are 

utilized regardless of their exact location. By implementing several new and original 



14 

 

approaches to the UHII calculation, a more complete understanding of the urban heat 

characteristics is accomplished and limitations of each UHII approach can be minimized 

through the strengths of other UHII approaches.   
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Chapter 4: Numerical Urban Modelling System 

Candidate Days 

To ensure that the WRF model can resolve urban heat island signatures from 

Oklahoma City, five data cases were analyzed across varying seasons. By using days 

throughout the calendar year, a determination can be made as to the impact of seasonal 

varying background fields (e.g. relative greenness, downwelling solar radiation) or input 

data fields (e.g. air temperature, humidity) may have on the model’s ability to accurately 

resolve the urban meteorological signatures. Candidate days (Table 1) were chosen that 

included weak synoptic conditions (e.g. light winds, clear skies, and no rain) for a 24-

hour window before and after the modeled period. Additionally, days were chosen that 

had distinct urban heat islands measured by the Oklahoma City Micronet and the 

Oklahoma Mesonet to allow for model verification. 

 

 The Weather Research and Forecasting (WRF) Model 

 The Weather Research and Forecasting (WRF) model (http://www.mmm.ucar.edu/ 

wrf/users/docs/arw_v3.pdf) was developed through a partnership between the National 

Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric 

Administration (NOAA), the National Centers for Environmental Prediction (NCEP), the 

Forecast Systems Laboratory (FSL), the Air Force Weather Agency (AFWA), the Naval 

Research Laboratory, the University of Oklahoma (OU), and the Federal Aviation 

Administration (FAA). The WRF model being used for this study is version 3.5 and 

compiled as the Advanced Research WRF (ARW, previously called EM) with the nesting 

options enabled. Table 2 shows the WRF and WRF Preprocessing System (WPS) options 
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utilized in the model runs including the radiation schemes, boundary layer schemes, and 

urban canopy model activation. Anthropogenic heating was turned off for the model runs 

due to anthropogenic heating constants being set to modern values which were not 

representative of past, historical conditions. For example, due to the nature of this study, 

anthropogenic heating for historical runs would introduce a warm bias from stronger heat 

sources (e.g. air conditioners, automobiles, etc.) that did not exist in the early part of the 

1900’s. The computing for this project was performed at the OU Supercomputing Center 

for Education & Research (OSCER) at the University of Oklahoma (OU). 

 

Domains 

 The WRF model was run in a five domain configuration with 2-way nesting to allow 

the inner domains to feedback to the outer domains and vice versa. All domains were 

centered over Oklahoma City and have the following characteristics: 

 Domain 1 : 4050km x 4050 km with 40.5km grid spacing 

 Domain 2 : 1350km x 1350 km with 13.5km grid spacing 

 Domain 3 : 450km x 450 km with 4.5km grid spacing 

 Domain 4 : 150km x 150 km with 1.5km grid spacing 

 Domain 5 : 50km x 50km with 500m grid spacing 

Figure 9 displays the domains with the Oklahoma county boundaries and neighboring 

state outlines indicated. Domain 5 is the domain focused upon in this study. 
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Input Data / Background Fields 

Input meteorological data and background fields in the WRF model used for this study 

were assembled from various sources. The 32 km National Centers for Environmental 

Prediction (NCEP) North American Regional Reanalysis (NARR; Mesinger et al., 2006) 

data files were used for the surface and upper air data initialized into the WRF model 

runs. The NARR files exist on the Eta 221 grid at 29 pressure levels created every 3 hours 

and are generated from the Eta 32 km / 45 level model and include many meteorological 

variables including temperature, wind, moisture, pressure, and surface fluxes. The NARR 

files created by NCEP utilized radiosonde data, such as air temperature, wind, and 

moisture, as well as meteorological data from surface observing stations, satellites, and 

aircrafts.  

 The land use dataset is the United States Geological Survey (USGS) National Land 

Cover Database (NLCD; http://www.mrlc.gov/). This study used the 2011 NLCD which 

has 24-categories of land data types at 30 arc second (~1 km) spacing and the dataset 

included four urban categories (open space, low, medium, and high intensity). 

As the main part of this study focuses on how the land surface conditions had changed 

in the Oklahoma City region since its inception in 1890, a historical analysis of the area 

was analyzed. Historical land use ingested into the WRF model were created from a 

variety of sources including the City of Oklahoma City, U.S. Department of Commerce 

Bureau of the Census, U.S. Department of Agriculture, and the Oklahoma Water 

Resources Board.  

The City of Oklahoma City provided historical analyses of water and sewage 

pipelines for every decade back to 1900. These maps indicated where urban areas existed 
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as well as the infrastructure for urban development. The U.S. Department of Commerce 

Bureau of the Census data was utilized to help determine the size and extent of population 

areas in the areas surrounding Oklahoma City (e.g. Edmond, Moore, Norman, etc.). The 

U.S. Department of Agriculture maintains historical records of agriculture yield 

production, which was used to determine the extent and spread of “cultivated crops” 

(Category 82 in the NLCD) in each county. The Oklahoma Water Resources Board 

archives historical records of every lake in Oklahoma including when each lake was 

built/dammed. Additionally, general historical records of the creation of major large 

urban features, such as Will Rogers World Airport, Tinker Air Force Base, and interstate 

highways, were utilized in the development of the historical mapping of the land use of 

the greater Oklahoma City area. Figures 10-14 show the historical information with which 

each of the tridecadal periods’ background land use maps were created. 

As a result of the assimilation of historical land use features, land use maps for 1890, 

1920, 1950, and 1980 were created; the land use map for 2011 was already created from 

the NLCD imagery. In 1890 (Fig. 10), urban areas did not exist, lakes were not present 

(just the free-flowing rivers), and the vegetation was native consisting of grasslands as 

well as evergreen and mixed forests with no cultivate crops. By 1920 (Fig. 11), small 

urban areas had begun to develop and farming became very widespread. In 1950 (Figure 

12), the urban areas began to expand outward, an urban core to Oklahoma City began to 

develop, and lakes began to be formed to provide water to the growing city. By 1980 (Fig. 

13), urban explosion and rapid growth had occurred and surrounding cities (suburban 

areas) also began to rapidly develop. Finally, in 2011 (Fig. 14), expansion of the 
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metropolitan area continued and existing urban areas developed higher population 

densities.     

 

The Uncoupled High Resolution Land Data Assimilation System: HR-LDAS 

 The uncoupled High Resolution Land Data Assimilation System (HR-LDAS; Chen 

et al., 2007) was developed by the National Center for Atmospheric Research (NCAR) to 

initialize land surface input files before utilizing them in the coupled WRF model. It 

utilizes the Noah land surface model (LSM) initially developed by scientists at Oregon 

State University (Pan and Mahrt, 1987) and updated by scientists at the National Center 

for Environmental Prediction (NCEP) and the National Center for Atmospheric Research 

(NCAR). The HRLDAS uses the same parent and nested grids as those for the WRF 

model runs and combines land use, soil texture, soil moisture, vegetation, terrain, and 

other land surface parameters (Chen et al. 2007) to generate its background output which 

is used as updated input for the WRF model. Nemunaitis (2014) showed the 

improvements of utilizing a multi-year spin up of runs with five years of spin up prior to 

any WRF model runs. Figure 15 shows the WRF initialization field of soil moisture 

conditions at a 1 km grid spacing using just NARR initial conditions and no NLDAS 

spin-up and using a 5-year spin up of NLDAS and NARR initial conditions (Nemunaitis, 

2014). All model runs utilized in this study included five years of HR-LDAS spin-up 

utilizing NARR data applied to the initial conditions.  
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Chapter 5: Run-time Accuracy 
 

An optimal model run time must be selected for any model simulations to ensure the 

most representative model output to actual conditions. Model run times that are too short 

may not allow the model physics to completely spin-up, while model run times that are 

too long begin to compound slight individual time step errors into large output errors. 

Past urban heat island modeling studies have used a variety of model run time from 24 

hours (Miao et al., 2008), to 36 hours (Lin et al., 2008), to 60 hours with discarding the 

first 6 hours (Salamanca et al., 2012) or 12 hours (Giannaros et al., 2013) of output. 

However, none of the studies justified the selection of their model run time lengths. 

Unlike other past numerical model studies, this study performed a sensitivity analysis of 

different model run times across a variety of case studies to determine the optimal run-

time needed to observe urban heat island signatures from the WRF model with minimal 

difference between observed values before selecting a run time for the model simulations.  

For each candidate day, the model was initialized at 18 hours before (e.g. 18-hour 

run-time) the desired output time (1200 UTC) and run with a given set of initial 

atmospheric and land-use conditions. The output time of 1200 UTC was chosen to 

correlate closely to the time of peak urban heat island intensities. The run-time length was 

then increased by six hour intervals out to 48 hours and the process was repeated. The 

UHII were calculated from model grid points located where Oklahoma Mesonet and 

Oklahoma City Micronet stations existed. After all run-time lengths were completed, a 

statistical analysis comparing UHII from model output to actual observations was 

performed on each model run-time to determine the optimal run-time for the WRF model 

given the parameters of the overall study. 
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21 June 2008 Case Study 

The results of the analysis from this case study are shown in Figure 16a (urban) and 

Figure 16b (rural). The verification of average air temperature data is via the dashed line 

with the maximum and minimum values indicated by the shaded envelope. The main 

focus on this case study is in the 01 to 03 UTC timeframe, which was selected due to the 

least difference of the model output’s values compared to the observations across all-time 

series runs. Mean error values of the model runs from the observational data are shown 

in Table 3. 

For the urban results (Fig. 16a), the individual runs behave differently from each 

other. The 48 and 42-hour runs were colder by ~1°C in the late afternoon (18 - 23 UTC) 

and the 48-hour run was warmer during the middle of the night (04 - 09 UTC). The shorter 

runs (18 - 36 hour) were warmer by ~2°C in the late afternoon and colder near sunrise. 

Overall, all of the model runs urban values performed very well in the 01 - 03 UTC 

timeframe with mean error values less than 0.67°C and the 24 and 30-hour performing 

exceptionally well with mean error values less than 0.40°C.  

For the rural results (Fig. 16b), the run results were similar in pattern to the urban 

results. The 48 and 42-hour runs were colder in the late afternoon (18 - 23 UTC) by ~2-

3°C and warmer during the middle of the night (04 - 09 UTC) by ~2°C. The shorter runs 

(18 - 36 hour) were also warmer in the late afternoon and throughout the night by between 

1°C and 2°C and very close to verification near sunrise with errors of 1.0°C or less. 

Overall, all of the rural values from the model runs performed slightly worse than the 

urban values but had mean errors less than 2°C in the 01-03 UTC timeframe and the 24 

and 30-hour performing exceptionally well with mean error values just above 1.0°C.  
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  From an urban heat island index standpoint, the results from this case study looked 

very well. Figure 16c shows the run time accuracy of the urban heat island index for each 

of the model run time lengths. During the afternoon hours, the model runs were 

approximately 1°C above the verification value of near 0°C but well within the maximum 

and minimum envelope of between 1.5°C and -2.5°C. All of the model runs showed an 

increase in the urban heat island index at 00 UTC and increased over the next few hours 

to plateau at 02 UTC to a value of ~2.5°C in a similar pattern to the verification data 

which had a plateau of ~3°C.  However, the model runs all had lower urban heat island 

indices than the verification throughout the night by less than 1°C, but the 24-hour run 

had the values to the verification data with errors between 0°C and 1°C.  

Additionally, an analysis was performed on the historical perspective of the 24-hour 

model simulations with each of the tridecadal land use backgrounds. This unique analysis 

will track how the nocturnal time series of UHII changes from urban development. The 

comparisons of historical 24-hr UHII simulations for 21 June 2008 case study (Fig 16d) 

demonstrated that as the urban area grew over time, the UHII values from the model 

simulations transitioned closer to verification with each successive period. The 1890 

model simulation had static UHII values near 0°C with UHII values from successive runs 

increasing by approximately 0.5°C in the 01-03 UTC timeframe. 

 

1 August 2008 Case Study 

This late summer case had one run time perform much better than all of the other run 

times in the study. The run time accuracies for this case are shown in Figure 17a and the 

mean error statistics in Table 4. All of the run times have very similar patterns, which 
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also match the pattern of the verification data. While the 48-hour run time showed the 

coldest urban results, it matched best to the verification data being within 0.5°C 

throughout most of the simulation period. Similarly, the rural run time accuracy (Fig. 

17b) behaved similarly to the urban accuracies in that all runs matched the verification 

profile pattern and that the 48-hour run was the coldest and closest to the verification data. 

Again, the 48-hour run was within 0.5°C throughout most of the period. 

However, from an urban heat island index perspective (Fig. 17c), the 48-hour run time 

wasn’t always the closest to the verification data. This result shows that while the other 

model run times may not have had as accurate urban and rural values, their differences 

(e.g. urban heat island indices) were more accurate. Thus, one must consider all aspects 

of the analysis when considering the true value and accuracy of a model run. Depending 

upon the verification time, most all of the model run times were similar to one another 

with errors of approximately 1°C with a slight edge to the 42-hour run time which was 

less than 0.5°C for much of the time period, especially during the 05-07 UTC time frame. 

Analyzing the 24-hour run times over time (Fig. 17d), the 2011 land use information 

had the closest results to the verification data, as expected, with errors between 0°C and 

1.5°C throughout the night. However, the earlier years were not stratified uniformly by 

historical age. This is likely due to varying differences from verification of either the 

urban or rural components leading to differing errors in the urban heat island indices.   

 

5 September 2008 Case Study 

The model run time accuracies from this case had very strong results to the urban 

(Fig. 18a) and rural (Fig. 18b) verification data and the mean error statistics (Table 5) 
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also show low difference from the observations. For the urban results, most of the model 

run times remained within the very narrow 2°C verification envelope through the late 

afternoon and early evening indicating very accurate and consistent simulations of the 

urban environment. At approximately 05 UTC, the model results began to diverge from 

each other and transitioned from an error of less than 0.5°C to over 4.0°C. However, the 

18 and 24-hour model runs remained very close to the verification data with errors of less 

than 1.0°C. For the rural results, the model runs again remained consistent with each other 

and verification during the afternoon hours being within 1.0°C, but began to diverge near 

sunset (e.g., 01 UTC) whereby differences were as much as 3.0°C. The 42 and 48-hour 

model runs had the closest results to verification (within 1.0°C) throughout the evening 

and the 36-hour run time became most accurate just before sunrise (e.g., 10 UTC). The 

pattern and slopes of all of the model run times matched the verification very well, which 

indicates that the model runs grasped the nocturnal cooling rates accurately in the rural 

areas, but the initial air temperature values at sunset led to difference overnight. 

The model runs’ accuracy of the urban heat island indices (Fig. 18c) showed less 

accurate results than the individual urban and rural component simulations. During the 

late afternoon, most of the models had higher urban heat island indices by approximately 

0.5°C than the verification data. Near sunset (e.g., 00 UTC), all model runs increased the 

urban heat island index to between 2.0°C and just under 3.0°C, but not as high as the 

verification data which reached near 4.0°C. This particular case had a different than 

normal verification data pattern of urban heat island indices in that instead of remaining 

high or slightly increasing throughout the night time hours, these values dropped by 

~2.0°C at approximately 03 UTC before slowly increasing 1.0°C over the next few hours. 
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Most of the model runs behaved similarly to the initial decrease in urban heat island index, 

but did not slowly increase as the verification data and instead slowly decreased 

approximately 1.5°C throughout the night. The 24-hour model run remain much warmer 

than the other model runs during the night staying within the verification envelope until 

just before sunrise. 

An analysis of the 24-hour run time simulation comparisons for this case (Fig. 18d), 

shows that the 2011 land use values did show the closest urban heat island index values 

to the verification data with errors close to 0°C in the afternoon and between 0°C and 2°C 

throughout the evening. However, the 1950 land use values best matched the overall 

unique time series pattern of this case, but its peak urban heat island index was a few 

hours behind the verification data. 

 

15 September 2008 Case Study 

The urban run time accuracies of this case (Fig. 19a; Table 6) were warmer for all of 

the model run times in the late afternoon and early evening by between 1.0°C and 3.0°C. 

Due to a stronger cooling rate in the model run times, between 05 and 09 UTC all of the 

model runs transitioned to having cooler urban air temperatures than verification by 

between 0.5°C and 2.0°C by sunrise. The 24-hour model run time had the weakest cooling 

rate, and thus, was the most accurate of all of the model run times in predicting the urban 

air temperatures over the entire time period. 

The rural run time accuracies (Fig. 19b; Table 6) once again showed between 1.0°C 

and 3.0°C warmer air temperature values than the verification data for all of the model 

runs. However, the rural cooling rate in the models matched the verification cooling rate 
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and thus the modeled rural air temperature values remained warmer than the verification 

data during the entire time period. Overall, the 24-hour model run time had the closest 

rural air temperature values to the verification data throughout the time period with errors 

of between 1°C and 2°C. 

From an urban heat island index viewpoint, all of the models had much smaller 

temporal changes than the verification data as seen in Figure 19c and Table 6. The model 

runs had higher UHII values by nearly 0.5°C during the late afternoon, increased as 

expected during early evening, but remained much lower by approximately 2.0°C 

throughout the night. While the UHII values produced by model runs remained in the 

envelope for more of the time period, the envelope was much larger than in other cases 

ranging from 1.0°C to near 7.0°C. Analysis of the 24-hour historical simulation 

comparisons (Fig. 19d) shows that the 2011 land use values only performed slightly better 

than the 1950 land use values with both having values approximately 2°C lower than the 

verification data.  

  

15 March 2009 Case Study 

This case was much different than the others given that it was a cold weather case. 

The run time accuracies of the urban air temperatures (Fig. 20a; Table 7) were within 

0.5°C during the late afternoon and early evening except the 24-hour run which was 

approximately 2°C to 3°C cooler than verification during this period. However, at 01 

UTC, all of the model runs had very strong cooling rates in the urban environment, but 

the verification data had a much lower cooling rate. These strong cooling rates only seen 

in this case study may be the result of the different urban parameters utilized by the WRF 



27 

 

model in wintertime simulations. As a result, by sunrise there were differences from 

4.0°C to as high as 5.0°C in urban temperatures between each of the model runs and the 

verification data.  

The rural temperature analysis of the run time accuracies (Fig. 20b; Table 7) was 

much different than that of the urban air temperature analysis for this case. Throughout 

the entire time period, all of the model runs very accurately matched the verification data 

and were within 1.0°C for almost the entire period. The model runs had nearly the same 

cooling rate of the rural air temperatures as with the urban air temperatures, but this 

cooling rate matched that of the verification data. 

The run time accuracies of the UHII values (Fig. 20c; Table 7) were fairly close in 

the afternoon hours being within 0.5°C with the exception of the 24-hour run which was 

about 1.0°C cooler. However, they did not respond well during the night time hours after 

its initial increase around sunset.  As the verification values of urban heat island indices 

remained between 3.0°C and 4.0°C, the model runs values decreased to below -1.0°C 

during the night. This large difference is likely the result of similar cooling rates in the 

urban and rural temperatures when the two cooling rates were much different in reality. 

Overall, all of the model run times performed poorly during the peak of the UHII with 

errors greater than 4°C. Comparing the 24-hour simulation comparisons historically (Fig. 

20d) showed little variation due to land use changes and all were 2°C to 5°C cooler than 

the verification. For this winter case, the WRF model actually simulated an urban cool 

island rather than the actual urban heat island. As such, the WRF model had difficulties 

accurately simulating the urban heat island for this cold weather case. 
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Summary 

With the exception of the colder weather case, the WRF model simulated the urban 

heat island development from late afternoon to early morning in Oklahoma City. In some 

cases, the magnitudes of the rural and urban temperature components varied by 1.0°C or 

more, but the resulting UHII values remained within 0.5°C to verification data. Overall, 

the 24-hour run time provided the most accurate results across the variety of scenarios in 

which the WRF model was run. From the five case studies (Tables 3-7), the 24-hour run 

time simulations resulted in the lowest mean error in three of the cases and was within 

1.0°C for the other two cases. As a result, the remainder of the research presented will 

utilize 24-hour run times of the WRF model.   
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Chapter 6: Urban Heat Island Changes Over Time 
 

After determining the most accurate WRF model run-time from the Run-time 

Analysis (see Chapter 5), a historical analysis of urban heat island evolution was 

performed. While there has been much documentation of a variety of urban heat modeling 

studies, this study is unique in its analysis of urban heat islands from a historical 

perspective. The addition of the fourth dimension of time to an urban heat study provides 

a view of the temporal development of urban heat islands that no other study has shown. 

For each tridecadal simulation, all input data remained the same with the exception of the 

land use background field which was altered (see Chapter 4) to represent the spatial 

dimensions of the Oklahoma City urban areas at each tridecadal period. For this study, 

climatic trends were not accounted for as the goal was to determine how the specific 

urban areas were impacting the surrounding meteorological conditions. For each case 

study, the particular hour of focus was determined from the simulation output hour in 

which the maximum indication of urban heat island values from the simulation occurred.  

Additional analysis was performed to better demonstrate the urban growth impacts by 

calculating the difference between a model simulation (e.g., 1920, 1950, 1980, or 2011 

land use model simulations) and the initial state (e.g., 1890 land use model simulation). 

The initial state model simulation indicates the natural variability of the air temperature 

values which has no influence from any urban development and is an aspect of this 

research that has not been utilized by any other urban heat development studies. This 

natural variability is the result of differences in elevation (e.g. river valleys) and land use 

(e.g. forest, grasslands, prairie, etc.). 
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21 June 2008 Case Study 

The 2-m air temperature values at 02 UTC from the 24-hour model simulations of 21 

June 2008 are shown in Figure 21 for the five tridecadal periods. In 1890, the urban core 

area cannot be detected; however, terrain influences can be seen. The higher terrain to the 

west is indicated by slightly warmer temperatures of nearly 3°C compared to the various 

river valleys (including the Oklahoma River which runs through Oklahoma City), which 

can be seen by the locally lower temperatures. Given that the land use for 1890 was 

consistent with no urban land use values, this output indicates that the natural variability 

of air temperatures without any influences from the metropolitan area are on the order of 

1-2°C within the study domain. In 1920, the city grew with slight warming of 

approximately 1°C in the Oklahoma City core. For the 1950 simulation, the urban air 

temperatures were about 3°C warmer than the surrounding areas and more pronounced 

not only in Oklahoma City but also in Norman to the south. Due to the urban development 

explosion in 1980, the strong urban air temperatures, approximately 4-5°C warmer than 

rural areas, are clearly shown. Finally, by 2011, the warm air temperatures remained 

approximately 4-5°C warmer than rural areas but expanded further into the surrounding 

areas. Additionally, cooler temperatures over lakes within the Oklahoma City area created 

localized minimum air temperatures.  

By subtracting out the natural variability seen in the 1890 results, the true impacts of 

urban growth over time can be more clearly analyzed. These results are shown in Figure 

22, which is the air temperature difference between the 1890 land use model run and each 

of the other tridecadal model runs. In 1920, the growth over the small urban core is 

indicated by the 1°C to 2°C bullseye of air temperature difference. In 1950, the urban 
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expansion and development of surrounding cities is seen as well as 3°C to 5°C warmer 

temperatures in the urban core. From 1980 and 2011, the dramatic increase in both spatial 

coverage and intensity can be seen with temperature differences reaching over 5°C across 

large portions of the metropolitan area.  

Another unique benefit of utilizing temperature difference maps is the elimination on 

non-uniform, rural air temperature fields. Each of the maps in Figure 21 show that the 

rural areas vary from 1-5°C depending upon whether the observation is in the cooler, 

lower terrain of the east versus the warmer, slightly higher terrain of the west. Thus, the 

urban heat island calculation might vary depending upon which rural location(s) are 

considered. The difference maps allow for the true difference in air temperature values 

from urban to rural as a result solely on urban development to be calculated. 

 

1 August 2008 Case Study 

Figure 23 shows the 2-m air temperatures at 06 UTC for the 1 August 2008 case study 

for each of the tridecadal periods. This case study had the hottest air temperatures of all 

of the case studies and was one of the hottest days of 2008 with temperature values over 

32°C. Similar to the 21 June 2008 case, there are only slight changes of 1°C to 3°C from 

1890 to 1920 to 1950 as the Oklahoma City urban area began to grow. The urban air 

temperatures then rapidly expanded with the urban expansion in 1980 and continued 

through to 2011 with urban air temperatures increasing by over 5°C. Once again, the 

warmer areas to the west from the higher terrain can also be clearly seen. 

By removing the natural variability from the 1890 land use model run, the increase in 

the 2-m air temperature values over the urban areas are more clearly seen (Fig. 24). Again, 
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slight 1°C to 3°C urban air temperature increases can be seen for 1920 and 1950 before 

the significant urban growth by 1980 shows dramatic increase of over 5°C in the urban 

air temperature differences. The impact of both Lake Hefner and Lake Overholser are 

also clearly indicated in the northwest and west, respectively, parts of the Oklahoma City 

area. 

 

5 September 2008 Case Study 

Due to a slight south-westerly wind in this case, the 2-m air temperature results at 02 

UTC for this case (Fig. 25) show downwind impacts from heat advection at source points 

of higher elevation to the west. Similar air temperature magnitude increases remain for 

each of the five time periods as compared to the previous two cases; however, the 

surrounding urban areas (e.g. Norman to the south, Edmond to the north) are more 

pronounced. The air temperature differences (Fig. 26) are once again similar to the 

previous cases with the slight indication of the influences from the wind. The 2-m air 

temperature values increased by over 5°C in the Oklahoma City urban area over the 120-

year time frame.  

 

15 September 2008 Case Study 

The 2-m air temperature results at 02 UTC for this case (Fig. 27) are again impacted 

by advection of the air temperatures downwind from the source regions. In this case, the 

winds are slightly from the north, which can be seen as warmer areas are advected slightly 

to the south, especially in southern Oklahoma City and Norman. The river valley 

temperatures from the model simulations are more noticeable in this case showing the 
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natural variability. These larger river valley temperatures of about 2°C led to smaller 

increases in air temperature differences (Fig. 28) of 1°C or less through the middle of the 

Oklahoma City urban core (where the river runs). Since the arbitrarily selected urban 

location lie within the river valley, the statistical comparisons of urban core changes 

utilizing traditional UHII calculations over time may be limited in explaining the entire 

urban impacts. Future explanation of alternate methods for statistically analyzing urban 

growth are presented in Chapter 7. 

 

15 March 2009 Case Study 

This final case study had the coldest air temperatures (~10°C) and shows the least 

significant results over time. The 2-m air temperature values at 03 UTC are shown in 

Figure 29. The values from 1890 to 1920 to 1950 show almost no noticeable change over 

time with air temperature changes at or below 1.0°C over the first 60 years. During the 

urban expansion periods of 1980 and 2011, there are slight increases of approximately 

2.0°C in the air temperature around Oklahoma City; however, the urban core of the city 

remained cooler by approximately 1°C to 2°C or slightly decreased. The air temperature 

difference maps (Fig. 30) better demonstrate these changes over time. The WRF model 

had difficulty in its resolution of the urban land use categories during colder weather. 

However, additional statistical methods utilizing the WRF output from this case study do 

show urban impact results and are shown in Chapter 7.  
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 Summary 

Overall, the spatial extent and magnitude of near surface air temperature increases of 

a developing urban area over time was shown through the use of the WRF model runs. 

The increases in 2 m air temperatures from the development of the metropolitan area were 

over 5°C in the summer when urban heat is of most concern. The 1890 model runs 

indicated that even with the removal of all urban land use locations, there still existed a 

natural background variability to air temperature values of between 1°C and 2°C. This 

study is unique in that it demonstrated that when analyzing urban heat island indices, one 

must consider that the value is not just due to urban impacts but also to the natural 

variability of the areas. In the case of Oklahoma City, its urban area lies in the Oklahoma 

River valley, which naturally has slightly warmer temperatures of about 1°C to 2°C than 

its surrounding area. The WRF model did not handle the cold weather case very well from 

a spatial extent or magnitude point of analysis, possibly due to the different parameters 

utilized by the model for wintertime simulations. Since this study generated background 

variability maps, the utilization of difference maps helped better portray the impacts due 

to just the urban land use growth over time which other urban heat studies could not 

produce.  
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Chapter 7: Alternate Urban Heat Island Methodologies 
 

In addition to typical urban heat island characteristics such as urban temperatures, 

rural temperatures, and urban heat island indices, other metrics can be utilized to portray 

the spatial extents and magnitude of urban induced air temperatures. This study developed 

new methodologies for providing unique numerical and graphical representations of the 

urban heat characteristics beyond just the UHII as previously defined. Through the use of 

these expanded urban heat representations, this study provides a historical view of urban 

heat development that has not been shown by other researchers. As part of this study, 

analyses were performed not only at set locations (either arbitrary or predefined), but at 

all of the grid spaces in the WRF model output. By doing so, the entire model output 

analysis was considered rather than just a set number of points. The use of the numerical 

values from all of the model output grid spaces provides more robust characterizations to 

be developed through the dramatically increased number of data points available for 

analysis and allows for numerical urban heat calculations to be generated from a quantity 

of data points of a few orders of magnitude greater than previous studies. 

 

Verification Siting Issue (Mesonet vs. Selected Rural) 

Choosing particular locations in which to calculate urban and rural temperatures must 

be carefully considered. Typical observation based urban heat island studies utilize 

existing meteorological stations which can unintentionally introduce biases. The surface 

observational data in this study is the Oklahoma Mesonet and the Oklahoma City 

Micronet. While the Oklahoma Mesonet provides valuable rural temperatures 

measurements and the Oklahoma City Micronet station can provide valuable observations 
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that represent the urban temperature environment, those precise locations are not 

necessarily the best location to be utilized in a modeling study. Some of the Oklahoma 

Mesonet stations considered rural locations in this study (e.g. Norman, El Reno, 

Chickasha, and Shawnee) are properly sited using World Meteorological Organization 

(WMO; WMO, 1983) site standards; however, they are fairly close to locations in which 

urban land use categories exist in a modeling framework. As a result, due to the 

calculations and averaging that occurs within the WRF system, the grid spaces containing 

the Oklahoma Mesonet sites have urban induced impacts. To remove these impacts, 

arbitrary rural locations were selected that were sufficiently removed from grid space 

locations that contained urban land use categories and urban locations were selected that 

were within and surrounded by grid spaces containing urban land use categories. The 

urban locations are shown by five black dots in the urban core of Oklahoma City and the 

rural locations are shown by eight black dots (one at each cardinal direction) on the model 

output maps (such as Fig. 21) in this study. 

 

Top 10/100/500/1000 Warmest Locations UHII 

Because the WRF model output in this study provides 28,056 points of air 

temperature data from the output grid, utilizing this large dataset in determining urban 

heat island characteristics can be accomplished. For the 21 June 2008 case study, a graph 

of urban and rural temperatures for each tridecadal period utilizing air temperature 

averages of the previously mentioned arbitrary points for urban and rural values as well 

as the top 10, 100, 500, and 1000 warmest pixels are shown in Figure 31a. For 1890, the 

arbitrary locations (e.g., “Urban”) value is lower by about 1°C to 2°C than all of the 
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aggregated categorical values (e.g., “Top 10”, “Top 100”, etc.). This is due to the fact that 

the arbitrary location is fixed over the future location of the urban core, while the 

categorical values take into account warmer higher elevation locations. However, once 

the city begins to grow, this discrepancy disappears. In this case study, all of the urban 

air temperature values derived from the warmest temperatures approach (e.g., “Top 10”, 

“Top 100”, etc.) increase approximately 2°C over time; however, the arbitrary urban air 

temperature value (e.g., “Urban”) slightly decreases less than 0.5°C from 1980 to 2011 

after increasing over 3°C from 1890 to 1980. This slight decrease in the arbitrary air 

temperature value from 1980 to 2011 may be the result of the values not being the actual 

warmest locations in the urban area, which demonstrates a key limitation to the typical 

UHII methodology of static locations for urban and rural location utilized by past 

research. By utilizing the warmest values approach, it ensures that the maximum 

magnitude of urban heat values is used when calculating UHII, which may not occur 

when using the more traditional specific location based approach for urban air 

temperature values.  

Examination of the resulting urban heat island values calculated from the difference 

between the averaged arbitrary rural locations and either averaged arbitrary urban 

locations (“UHII”) or averaged “Top X” warmest grid point values (e.g., “Top 10”, “Top 

100”, etc.), a more precise value can be determined from using more information provided 

from the model simulations. The results for the 21 June 2008 case study (Fig. 31b) show 

an urban heat island index of approximately 3.3°C to 3.8°C in 2011. The difference 

between each of the “top X locations” varied more in the 1920 and 1950 runs due to the 

small number of urban grid spaces being less that some of the calculated thresholds. By 
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2011, there are more than 1000 grid spaces of urban categories, which leads to the smaller 

variation in urban heat island index values between the calculations.  

Results from the 1 August 2008 (Figs. 32a & 32b), 5 September 2008 (Figs. 33a & 

33b), 15 September 2008 (Figs. 34a & 34b), and 15 March 2009 (Figs. 35a & 35b) show 

similar results. The 1 August 2008 case had urban heat island index values in 2011 from 

just below 3.0°C to just under 3.5°C and each of the tridecadal values were much closer 

to each other likely due to the warmer higher terrain being part of the calculation before 

the urban areas dominate the later runs. The 5 September 2008 and 15 September 2008 

cases were very similar in pattern and magnitude to the 21 June 2008 case. The 15 March 

2009 case showed dramatic improvements in the calculation of the UHII values using this 

methodology rather than the standard arbitrary point method. In this case, the arbitrary 

point method actually has a decreasing urban heat island index from 1.6°C in 1890 to just 

above 1.0°C in 2011 due to the poor urban air temperature calculations from the WRF in 

cold weather cases. However, analyzing the warmest point shows a steady increase of 

UHII values of about 1.0°C over time through its use of the values from within the city 

boundaries but outside the unresolved portions of the urban core. Overall, this new 

approach to the calculation of UHII from quantities of grid space values provides more 

accurate representations of UHII especially in cases where microscale features and/or 

advection of air temperature may displace the warmest temperatures away from the 

arbitrary locations.  
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2 m Air Temperature Coverage Percentile Increases 

The urban heat island index, regardless of its method of calculation, provides a single 

number to indicate maximum value of urban impact to near surface air temperatures; 

however, it can only be realistically applied to one location, mainly the urban core of a 

city. Those not living in the maximum urban air temperature locations used in the urban 

heat island index formula typically do not have an understanding of the urban impacts in 

their area. This study utilized a new approach to quantify the areal extent of urban heat 

growth over time through the use of coverage percentiles of specific air temperature 

values across the domain. By calculating the spatial impacts of increasing air 

temperatures, a more accurate representation of the urban land use changes with respect 

to spatial coverage can be presented.  

For each of the case studies, the distribution of air temperature values from each of 

the model output grid points were calculated across the domain for each of the historical 

periods. Figure 36 shows the categorical air temperature at 02 UTC increase for the 21 

June 2008 case study and display the spatial coverage of warming air temperatures as it 

increased over time. In 1890, 0% of the domain had temperatures at or above 26°C, but 

by 2011 nearly 20% of the area reached or surpassed this threshold due to the increasing 

urban impacts. For the 25.5°C threshold, there was an increase of about 23% over the 120 

years and an increase of about 28% for the 25.0°C threshold.  

Results from the 1 August 2008 at 06 UTC (Fig. 37), 5 September 2008 at 02 UTC 

(Fig. 38), 15 September 2008 at 02 UTC (Fig. 39), and 15 March 2009 at 03 UTC (Fig. 

40) show similar results. The most dramatic increase in the areal coverage of specific 

urban heat values in each of the graphs occurred between 1950 and 1980, which 
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corresponds to the largest spatial expansion of urban land use in the study. These results 

indicate the spatial extent to which the urban land use changes impact the metropolitan 

areas. Changes in an urban heat island index can indicate the maximum magnitude 

impacts, while changes in the spatial coverage of temperature thresholds utilizing this 

unique methodology can indicate areal impacts from urban growth. 

 

2 m Air Temperature Distribution Shift 

The spatial air temperature distribution data from the WRF model output can also be 

utilized to indicate how the temperatures are shifting to warmer values. As a result of the 

uniqueness of this study in its utilization of historical urban characteristics and large 

quantity of air temperature values from model simulation grid spaces, histograms of air 

temperature values at each of the model output grid spaces for each of the case studies 

were generated and categorized by each of the tridecadal time periods. The values are not 

cumulative (e.g., “greater than or equal to x°C”), but a count of the values between the 

value (e.g., x°C) and its next highest categories (e.g., (x+0.5)°C). 

For the 21 June 2008 at 02 UTC case study (Fig. 41a), the 23.5°C value was most 

frequent across the domain in 1890. However, by 2011, the most frequent temperature 

value has shifted 2.0°C warmer to 25.5°C. Analyzing each individual tridecadal time 

period shows a transition more towards the right side of the histogram indicating warming 

trends over time. Looking closer at individual air temperatures can show the change of 

skewness over time. For example, the distribution of 23.5°C temperatures over the 

tridecadal periods is skewed right indicating a move away from this value, while the 
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distribution of 26.0°C temperatures over the tridecadal periods is skewed left indicating 

that this value is more prevalent in 2011 than in 1890. 

Additionally, histograms were created of the maximum and minimum temperatures 

for the 18 to 12 UTC output periods. The histogram of the maximum air temperatures for 

the 21 June 2008 case study (Fig. 41b) has a very small range of about 2°C likely due to 

the maximum day time air temperatures’ uniform coverage across both urban and rural 

areas. A comparison of the minimum air temperatures (Fig. 41c) also indicates the strong 

warming trend over time with values on the right (e.g., warmer) side of the histogram 

becoming more frequent over time.  

Results from the 1 August 2008 (Figs. 42a, 42b, and 42c), 5 September 2008 (Figs. 

43a, 43b, and 43c), 15 September 2008 (Figs. 44a, 44b, and 44c), and 15 March 2009 

(Figs. 45a, 45b, and 45c) show similar results. The 1 August 2008, 5 September 2008, 

and 15 September 2008 cases showed very large counts in the warmest air temperature 

values in the 1980 and 2011 simulations for both the analysis time and the minimum air 

temperatures over the entire run time frame and small ranges of approximately 2°C in the 

maximum air temperatures. Despite the fact that the cold weather case (i.e. 15 March 

2009) did not represent urban heat characteristics well in the spatial maps, it had similar 

results to the warmer weather case study histograms with skewness shifts from a right 

skewness in colder temperatures to a left skewness of warmer temperatures. Additionally, 

it also had a very small range of maximum air temperatures similar to the warm 

temperature cases. This indicates that this new methodology for indicating the changing 

trends of temperature distributions over time can be utilized for cases in which traditional 

spatial methodologies may not be useful (e.g. winter cases). One major difference with 
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this cold weather case is that the distribution peaks of air temperature for each period did 

not shift over time, but the range of air temperatures did expand to warmer values going 

from ranges of 3°C in 1890 to 5°C in 2011.   
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Chapter 8: Conclusions 
 

This study was designed to determine the urban impacts of a developing metropolitan 

area to the near surface meteorological conditions. Oklahoma City was selected as the 

research location due to its short historical time frame and its location in a relatively flat 

and consistent surface free from topographical (e.g. mountains, hills, etc.) or hydrological 

(e.g. ocean, large lakes, etc.) impacts. Many original and/or newly modified 

methodologies, data sets, and resulting information were created and utilized throughout 

this research and the flow chart indicating the work flow is shown in Figure 1. 

The first part of this research investigated optimal run-time length of the WRF model, 

an aspect that other urban heat studies did not perform. The results showed that the 

summer and early fall cases all accurately represented the patterns of the urban heat island 

from late afternoon to early morning by the WRF model with air temperature values only 

differing by approximately 1.0°C or less from verification. However, the cold weather 

case did not simulate the urban impacts well. While the magnitudes of the rural and urban 

temperature components differed from verification at times, the resulting UHII remained 

to within about 0.5°C of the verification from surface observing stations. Depending upon 

the verification time, differing model runs had different magnitudes of error of air 

temperatures as compared to the verification data with error values ranging from near 0°C 

to over 5°C. However, overall, the 24 hour run time simulations resulted in the lowest 

mean error in three of the cases and was within 1.0°C for the other two cases in the variety 

of scenarios in which the WRF model was run. Those performing numerical simulations 

of non-operational case studies should generate run time accuracy statistics for their 
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model configurations before producing model simulations to ensure a run time that 

produces the most accurate results. 

The second part of the research investigated how the near surface air temperatures 

increased as a result of the changing land use over time. The results of the historical model 

runs utilizing the changing land use categories clearly showed the increase of the spatial 

extent and an over 5.0°C magnitude warming of the near surface air temperatures over 

and around the developed urban areas. From the removal of all urban categories for the 

1890 model simulations, the natural background variability of the air temperatures from 

topographical features were shown to have UHII values on the order of 1-2°C. These 

values are important in better understanding all components that must be considered in 

the calculation of urban heat characteristics. Those performing urban heat island analysis 

from modeled output would benefit greatly by generating background variability fields 

through the removal of urban land use categories. The use of air temperature difference 

maps from the natural background aided in a better understanding of the true urban 

impacts toward air temperature increases. Previous urban heat studies have thoroughly 

analyzed current urbanization impacts of meteorological conditions in metropolitan areas 

across the globe, but this research added a historical perspective to those impacts that was 

never before shown. City planners and policy decision makers can now understand the 

magnitude of urban heat impacts that may occur as a result of urban development 

decisions that are made in the future. 

The final section of the research demonstrated additional methodologies for 

portraying and describing the urban heat island impacts beyond standard heat island 

indices. One must take careful measures to utilize verification or analysis locations that 
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best represent the conditions that are occurring.  By utilizing the top 10, 100, 500, and 

1000 warmest pixels as urban values instead of arbitrary points, a more accurate value 

for urban heat island indices was calculated (showing value of about 3.5°C in the summer 

in 2011) because the warmest values for the urban areas were guaranteed to be part of the 

equation. The distribution of air temperature values from each grid point across the 

domain for each of the historical time period showed the areal impacts of over 20% in 

some air temperature thresholds from urban growth, which cannot be gathered from 

UHIIs which simply indicate maximum air temperature magnitudes of the urban areas. 

The use of air temperature histograms (in particular for the minimum temperature) of the 

model grid point’s output showed a transition over time more towards the right indicating 

a warming trend over time. An analysis and understanding of the minimum air 

temperatures and their shift towards warmer values is critical as heat advisories and 

warnings for public health are issued based upon overnight minimum air temperatures. 

Warm, minimum air temperatures overnight impact the human body by not allowing it to 

cool sufficiently and can lead to heat related illness as a result during prolonged warming 

periods (Tan et al., 2010). Each of these three unique alternate methodologies aided 

greatly in better understanding the urban impacts historically, quantitatively, and spatially 

to the increase in near surface air temperature values from the development of a 

metropolitan area. While this work was done in the Oklahoma City area, which has fairly 

flat topographical features and minor hydrological features, these new methodologies 

could be applied in regions with a more diverse area with topographical and hydrological 

influences to determine their robustness and applicability. 
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Overall, through the use of altered land use backgrounds ingested into the WRF 

model, the results showed that the changes resulting from increased intensity and spatial 

coverage of the growth of Oklahoma City led to increases in the magnitude and spatial 

coverage of near surface air temperature values. These results aided in a more 

comprehensive understanding of potential conditions for growing, existing, and future 

cities. Additionally, the effectiveness and application of the alternate urban heat island 

characteristics methodologies presented in this study could be easily applied to other 

urban modeling research. As more of the world’s population continues to either move 

into urban areas or new urban areas are developed, it is critical to the productivity of its 

industries, the success of its commercial enterprise, and the health of its residents to 

understand how the growth of their metropolitan areas impacts their meteorological 

future. 
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Appendix A: Tables 
 

 

 

 

  

Date 

Urban 

Temperature 

(°C) 

Rural 

Temperature 

(°C) 

UHII 

(°C) 
Avg. 2 m Wind 

Speed (m/s) 

21 June 2008 23.3 20.0 3.3 0.0 

01 August 2008 25.9 22.9 3.0 0.8 

05 September 2008 17.6 14.6 3.0 0.0 

15 September 2008 13.8 9.4 4.4 1.2 

15 March 2009 6.3 3.0 3.3 0.2 

 

Table 1. A list of candidate days indicating their season and their meteorological 

conditions at 12 UTC. Urban/Rural temperatures are an average of the temperatures 

measured from Oklahoma City Micronet Central Business District stations (e.g. urban) 

and Oklahoma Mesonet stations surrounding the Oklahoma City area (e.g. “rural”). 

The urban heat island index is the difference between the urban and rural averaged 

temperatures. 
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Option Value Value Description 

Time Control   

Run Hours Var. Run time in hours 

Start Hour Var. UTC hour of start time 

Interval Seconds 10800 Time interval between incoming real 

data, which will be the interval between 

the lateral boundary conditions file 

Time Step 3 Time step integration in seconds 

   

Domain   

Metgrid Levels 40 Number of vertical levels 

Eta Levels TBD Model Eta levels  

Top Pressure Level 5000 Top pressure level in pascals 

   

Physics   

Microphysics 6 WSM 6-class graupel scheme 

Longwave Radiation 1 Rrtm scheme 

Shortwave Radiation 1 Dudhia scheme 

Surface Layer Physics 1 Monin-Obukhov scheme 

Land-Surface Option 2 Unified Noah land-surface model 

PBL Physics 1 YSU scheme 

Cumulus Options 0 No cumulus 

Heat and Moisture Fluxes 1 With fluxes from the surface 

Num Soil Layers 4 Noah land-surface model 

Urban Canopy Model 1 Activated in Noah LSM 

   

Dynamics   

Time Integration 3 Runge-Kutta 3rd order 

Turbulence and Mixing 1 Evaluates 2nd order diffusion term on 

coordinate surfaces 

Eddy Coefficient  4 Horizontal Smagorinsky first order 

closure 

Upper Level Damping 0 No upper level damping 

Non-hydrostatic true Running in non-hydrostatic mode 

 

Table 2. A list of WRF/WPS options selected for all model runs. 
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  18hr 24hr 30hr 36hr 42hr 48hr 

Urban Validation Time 0.66 0.37 0.13 0.21 -0.36 0.05 

 ±1 hr 0.67 0.39 0.27 0.29 -0.37 -0.02 

 All Times -0.04 0.11 -0.15 0.01 -0.77 -0.36 

Rural Validation Time 2.03 1.41 1.53 2.36 1.16 1.35 

 ±1 hr 1.80 1.07 1.17 1.90 0.81 1.01 

 All Times 1.28 0.73 0.48 0.98 -0.05 0.06 

UHII Validation Time -1.37 -1.04 -1.40 -2.15 -1.51 -1.31 

 ±1 hr -1.12 -0.68 -0.91 -1.62 -1.18 -1.03 

 All Times -1.32 -0.63 -0.64 -0.97 -0.72 -0.42 

 

Table 3. Mean errors in air temperature in model simulations of 02 UTC (“Validation 

Time”), 01-03 UTC (“±1 hr”), and the 18 hours ending at 12 UTC (“All Times”) for 

the 21 June 2008 case. 

 

  18hr 24hr 30hr 36hr 42hr 48hr 

Urban Validation Time 1.14 0.97 0.94 0.45 0.96 -1.12 

 ±1 hr 0.87 0.82 0.98 0.55 0.97 -1.09 

 All Times 1.45 1.23 1.17 0.98 1.68 -0.40 

Rural Validation Time 1.84 1.78 1.66 1.32 0.99 -0.41 

 ±1 hr 1.87 1.72 1.76 1.33 1.01 -0.37 

 All Times 1.89 1.65 1.47 1.29 1.59 -0.15 

UHII Validation Time -0.71 -0.80 -0.72 -0.87 -0.02 -0.71 

 ±1 hr -1.00 -0.91 -0.78 -0.78 -0.04 -0.72 

 All Times -0.45 -0.42 -0.30 -0.31 0.09 -0.25 

 

Table 4. Mean errors in air temperature in model simulations of 06 UTC (“Validation 

Time”), 05-07 UTC (“±1 hr”), and the 18 hours ending at 12 UTC (“All Times”) for 

the 1 August 2008 case. 
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  18hr 24hr 30hr 36hr 42hr 48hr 

Urban Validation Time 1.19 1.19 2.22 1.82 2.50 1.82 

 ±1 hr 1.07 1.01 2.03 1.71 2.35 1.70 

 All Times 0.43 0.67 1.49 0.85 1.71 1.45 

Rural Validation Time 2.74 2.35 3.57 3.32 4.02 3.33 

 ±1 hr 2.45 2.09 3.25 3.08 3.45 2.96 

 All Times 1.87 1.69 2.60 2.05 2.65 2.30 

UHII Validation Time -1.55 -1.16 -1.35 -1.50 -1.52 -1.51 

 ±1 hr -1.38 -1.08 -1.22 -1.37 -1.11 -1.25 

 All Times -1.44 -1.01 -1.11 -1.20 -0.94 -0.86 

 

Table 6. Mean errors in air temperature in model simulations of 02 UTC (“Validation 

Time”), 01-03 UTC (“±1 hr”), and the 18 hours ending at 12 UTC (“All Times”) for 

the 15 September 2008 case. 

 

  18hr 24hr 30hr 36hr 42hr 48hr 

Urban Validation Time 0.11 -0.43 -0.96 0.02 -0.04 -0.63 

 ±1 hr 0.52 -0.08 -0.78 0.15 0.12 -0.50 

 All Times 0.26 0.22 -1.33 -0.22 -0.62 -1.14 

Rural Validation Time 1.71 0.91 0.73 1.52 0.80 0.29 

 ±1 hr 1.49 0.79 0.62 1.29 0.67 0.10 

 All Times 1.07 0.59 -0.09 0.88 0.31 -0.21 

UHII Validation Time -1.60 -1.34 -1.68 -1.50 -0.85 -0.92 

 ±1 hr -0.98 -0.87 -1.40 -1.13 -0.55 -0.59 

 All Times -0.81 -0.37 -1.25 -1.10 -0.94 -0.93 

 

Table 5. Mean errors in air temperature in model simulations of 02 UTC (“Validation 

Time”), 01-03 UTC (“±1 hr”), and the 18 hours ending at 12 UTC (“All Times”) for 

the 5 September 2008 case. 
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  18hr 24hr 30hr 36hr 42hr 48hr 

Urban Validation Time -2.69 -1.84 -1.68 -1.86 -1.75 -2.45 

 ±1 hr -2.70 -2.01 -1.77 -1.66 -1.73 -2.32 

 All Times -2.54 -3.44 -1.89 -1.87 -1.91 -2.27 

Rural Validation Time 0.70 0.43 1.15 1.43 1.51 0.91 

 ±1 hr 0.51 0.33 0.95 1.18 1.21 0.66 

 All Times -0.10 -0.76 0.30 0.52 0.59 0.11 

UHII Validation Time -3.39 -2.27 -2.83 -3.28 -3.26 -3.36 

 ±1 hr -3.20 -2.33 -2.72 -2.84 -2.94 -2.98 

 All Times -2.44 -2.68 -2.19 -2.39 -2.50 -2.38 

 

Table 7. Mean errors in air temperature in model simulations of 03 UTC (“Validation 

Time”), 02-04 UTC (“±1 hr”), and the 18 hours ending at 12 UTC (“All Times”) for 

the 15 March 2009 case. 
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Appendix B: Figures 

 

  

 

 
 

Figure 1. Methodology flow chart of this research study indicating procedures and 

results of original content and results. 
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Figure 2. Urban and rural population trends and projections of the world. (United 

Nations, 2009) 

 

 
Figure 3. Urban and rural population trends and projections of the United States. 

(United Nations, 2009) 
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Figure 5. A map of the Oklahoma Mesonet in 2010. 

 

 
 

Figure 4. Topographical map of Oklahoma. (Courtesy of Oklahoma Mesonet) 



63 

 

 

 

 

 
Figure 6. A map of the Oklahoma City Micronet with a Central Business District inset. 

 

 
 

 
 

Figure 7. Mean diurnal air temperature gradients between 2 m and 9 m in urban and 

rural locations during Joint Urban 2003. (Basara et al., 2008) 
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Figure 8. Example of a heat island measured by the Oklahoma City Micronet. 

(Schroeder et al., 2010). 

 
Figure 9. WRF domains: 4050 km x 4050 km with 40.5 km grid spacing (d01), 1350 km 

x 1350 km with 13.5 km grid spacing (d02), 450 km x 450 km with 4.5 km grid spacing 

(d03), 150 km x 150 km with 1.5 km grid spacing (d04), and 50 km x 50 km with 500 m 

grid spacing (d05). 
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Figure 10. Historical information with which the background land cover images for 

1890 were created. 
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Figure 11. Historical information with which the background land cover images for 

1920 were created. 
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Figure 12. Historical information with which the background land cover images for 

1950 were created. 
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Figure 13. Historical information with which the background land cover images for 

1980 were created. 
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Figure 14. Historical information with which the background land cover images for 

2011 were created. 
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Figure 15. WRF initialization field of soil moisture conditions at a 1-km grid using just 

NARR initial conditions and no NLDAS spin-up (left) and using a 5-year spin up of 

NLDAS and NARR initial conditions (right). (Nemunaitis, 2014) 
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a)   b)  

c)   d)  

 

Figure 16. Run time accuracy of air temperature simulations at 2 m for urban stations 

(a), rural stations (b), and the resulting UHII (c) for 21 June 2008 case study. The 

simulation comparison of historical 24 hour UHII simulations (d) are also shown. 
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a)   b)  

c)   d)  

 

Figure 17. Run time accuracy of air temperature simulations at 2 m for urban stations 

(a), rural stations (b), and the resulting UHII (c) for 1 August 2008 case study. The 

simulation comparison of historical 24 hour UHII simulations (d) are also shown. 
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a)   b)  

c)   d)  

 

Figure 18. Run time accuracy of air temperature simulations at 2 m for urban stations 

(a), rural stations (b), and the resulting UHII (c) for 5 September 2008 case study. The 

simulation comparison of historical 24 hour UHII simulations (d) are also shown. 
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a)   b)  

c)   d)  

 

Figure 19. Run time accuracy of air temperature simulations at 2 m for urban stations 

(a), rural stations (b), and the resulting UHII (c) for 15 September 2008 case study. The 

simulation comparison of historical 24 hour UHII simulations (d) are also shown. 
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a)   b)  

c)   d)  

 

Figure 20. Run time accuracy of air temperature simulations at 2 m for urban stations 

(a), rural stations (b), and the resulting UHII (c) for 15 March 2009 case study. The 

simulation comparison of historical 24 hour UHII simulations (d) are also shown. 
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Figure 22. Air temperature difference at 2 m at 02 UTC from the 1890 land use model 

run for 1920, 1950, 1980, and 2011 for the 21 June 2008 case study. 

 

 

 

 

 
Figure 21. Air temperature at 2 m at 02 UTC from 1890, 1920, 1950, 1980, and 2011 

for the 21 June 2008 case study. 
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Figure 24. Air temperature difference at 2 m at 06 UTC from the 1890 land use model 

run for 1920, 1950, 1980, and 2011 for the 1 August 2008 case study. 

 

 

 

 

 

 
Figure 23. Air temperature at 2 m at 06 UTC from 1890, 1920, 1950, 1980, and 2011 

for the 1 August 2008 case study. 

 

 

 



78 

 

 

 

 
Figure 26. Air temperature difference at 2 m at 02 UTC from the 1890 land use model 

run for 1920, 1950, 1980, and 2011 for the 5 September 2008 case study. 

 

 
Figure 25. Air temperature at 2 m at 02 UTC from 1890, 1920, 1950, 1980, and 2011 

for the 5 September 2008 case study. 

 

 

 

 



79 

 

 
  

 

 
Figure 28. Air temperature difference at 2 m at 02 UTC from the 1890 land use model 

run for 1920, 1950, 1980, and 2011 for the 15 September 2008 case study. 

 

 
Figure 27. Air temperature at 2 m at 02 UTC from 1890, 1920, 1950, 1980, and 2011 

for the 15 September 2008 case study. 
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Figure 30. Air temperature difference at 2 m at 03 UTC from the 1890 land use model 

run for 1920, 1950, 1980, and 2011 for the 15 March 2009 case study. 

 

 
Figure 29. Air temperature at 2 m at 03 UTC from 1890, 1920, 1950, 1980, and 2011 

for the 15 March 2009 case study. 
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a)  

b)  

Figure 31. Urban and rural air temperatures (a; “Urban”, “Rural”) and Urban heat island 

indices (b; “UHII”) for arbitrary locations for the top 10, 100, 500, and 1000 warmest 

grid box locations in the 21 June 2008 at 02 UTC case study. 
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a)  

b)  

Figure 32. Urban and rural air temperatures (a; “Urban”, “Rural”) and Urban heat island 

indices (b; “UHII”) for arbitrary locations for the top 10, 100, 500, and 1000 warmest 

grid box locations in the 1 August 2008 at 06 UTC case study. 
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a)  

b)  

Figure 33. Urban and rural air temperatures (a; “Urban”, “Rural”) and Urban heat island 

indices (b; “UHII”) for arbitrary locations for the top 10, 100, 500, and 1000 warmest 

grid box locations in the 5 September 2008 at 02 UTC case study. 
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a)  

b)  

Figure 34. Urban and rural air temperatures (a; “Urban”, “Rural”) and Urban heat island 

indices (b; “UHII”) for arbitrary locations for the top 10, 100, 500, and 1000 warmest 

grid box locations in the 15 September 2008 at 02 UTC case study. 
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a)  

b)  

Figure 35. Urban and rural air temperatures (a; “Urban”, “Rural”) and Urban heat island 

indices (b; “UHII”) for arbitrary locations for the top 10, 100, 500, and 1000 warmest 

grid box locations in the 15 March 2009 at 03 UTC case study. 
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Figure 36. Air temperature coverage percentile increases in the 21 June 2008 at 02 UTC 

case study. 

 
Figure 37. Air temperature coverage percentile increases in the 1 August 2008 at 03 

UTC case study. 
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Figure 38. Air temperature coverage percentile increases in the 5 September 2008 at 02 

UTC case study. 

 
Figure 39. Air temperature coverage percentile increases in the 15 September 2008 at 

02 UTC case study. 
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Figure 40. Air temperature coverage percentile increases in the 15 March 2009 at 03 

UTC case study. 
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a)  

b)  

c)  

Figure 41. Histogram of air temperatures at 2 m at 02 UTC (a), for the daily maximum 

(b), and for the daily minimum (c) for the 21 June 2008 case study. 
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a)  

b)  

c)  

Figure 42. Histogram of air temperatures at 2 m at 06 UTC (a), for the daily maximum 

(b), and for the daily minimum (c) for the 1 August 2008 case study. 



91 

 

 

 

 

 

a)  

b)  

c)  

Figure 43. Histogram of air temperatures at 2 m at 02 UTC (a), for the daily maximum 

(b), and for the daily minimum (c) for the 5 September 2008 case study. 
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a)  

b)  

c)  

Figure 44. Histogram of air temperatures at 2 m at 02 UTC (a), for the daily maximum 

(b), and for the daily minimum (c) for the 15 September 2008 case study. 
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a)  

b)  

c)  

Figure 45. Histogram of air temperatures at 2 m at 03 UTC (a), for the daily maximum 

(b), and for the daily minimum (c) for the 15 March 2009 case study. 


