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ABSTRACT

The Sobolev method has becen applied to the solution of the statis-
tical rate equations for multi-level representations of singly ionized
silicon and neutral hydrogen for various models of supernova envelopes.
The physical models are based on the power law models of Branch [1977].
The electron temperature in the envelope is taken as isothermal ot as
decreasing outward in the envelope as derived for a gray, spherical
atmosphere. Radiation is treated for two cases. In the dilute case,
the radiation field is simply the dilute photospheric radiation except
when the continuum becomes optically thick where it is replaced by the
diffuse radiation field in the approximation given by Castor and Van
Blerkom [1970]. In the discontinuous opacity case, the size of the
photosphere is allowed to extend indefinitely for frequencies greater
than some transition frequency. Thus, some lines and continua are
treated in the dilute case while others see only the local radiation.
In all cases the resulting source functions and line optical depths are

compared to those obtained by less detailed calculations with good

agreement,



NON~LTE EFFECTS IN SUPERNOVA ENVELOPES
CHAPTER I
INTRODUCTION

Supernovae have been recognized as a distinct class of
celestial objects since Baade and Zwicky proposed the name in 1934
[Baade and Zwicky, 1934]. They are stellar objects which, like
novae, suddenly become very bright and then fade over a period of
time. However, by the study of both types in nearby galaxies
[Zwicky, 1965], it is clear that supernovae are over one thousand
times brighter than novae. The brightest novae may achieve a
luminosity one million times brighter than that of the sun, so super-
novae are over one billion times brighter than the sun. The lumi-
nosities of whole galaxies range from 10° to 10'!solar luminosities.
Thus, a single supernova may rival or exceed its parent galaxy in
brightness.

The study of supernovae is hampered by their relative infrequency.
In our own galaxy there has been an average of oﬁe per 250 years vis-
ible from earth based on records over roughly the past 2000 years
[Clark and Stephenson, 1976], the last being observed by Kepler in
1604, Presently, somewhat over 20 supernovae are discovered each year
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in other galaxies. It is from these supernovae that observations are
drawn which provide clues to their nature.

The observational quantities of supernovae which we have to work
with are their light curves (the time variation of the luminosities),
the variation of their coiors with time and their spectra. From
these, it has been found that supernovae can be divided into two types,
Type I and Type II [Minkowski, 1941}, although other types have been
suggested to explain peculiar supernovae [Zwicky, 1965].

Type I supernovae are characterized by the following: a) The
light curves are all very similar, Following maximum light (the time
of peak luminosity) there is a rapid drop in luminosity for about 20
days. This is followed by a more gentle, exponential decay in lumin-
osity. An average Type I light curve, following Barbon et. al. [1973],
is shown in Figure la. b) The colors are blue at maximum light,
suggesting a temperature of over 10,000 K, and redden with increasing
time. c¢) The spectra show strong, broad features near maximum light,
but the presence of hydrogen is questionable at best.

For Type II supernovae, the following characteristics apply: a) The
light curves vary greatly from one supernova to the next, but they do
not resemble those of Type I. A 'mormal" Type II light curve, following
Barbon et, al. [1979], is,'nonetheless, shown in.Figu¥e 1b. The
"'shoulder" in the Iight curve is usually present although its duration
and slope can vary greatly. Type II supernovae appear to be roughly
three times fainter than Type I at maximum light [Branch and Bettis,

1978]. b) The colors vary like those of Type I, but are bluer at maxi-
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4
mum light, suggesting a larger temperature. c¢) The spectra arc nearly
featureless at maximum light, - As time progresses, the Balmer lines be-
come strong and other lines appear.

The bulk of our understanding of individual éfars comes from the
interpretation of their spectra. Spectra of supernovae were taken as
early as 1895 [Johnson, 1936]. However, these spectra have only recently
become interpretabla, In part, this is due to acceptance of a thermal
model for the envelopes around supernovae near maximum light, The
essence of this model is that the continuum radiation is produced by a
rapidly expanding, cooling photosphere [Arp, 1961; Pskovskii, 1969].

The lines are produced by scattering in the differentially expanding
atmosphere above the photosphere, yielding typical P-Cygni profiles.
These profiles have an emission part about the rest wavelength ci the
line and an absorption part blueshifted by roughly the velocity of the
envelope where the line is formed. This can be understood by looking at
surfaces of constant line-of-sight velocity in the expanding envelope.

In cylindrical coordinates (z, p, ¢) with the z-axis along the line of

5

sight, the line-of-sight velocity at some point, R = (z? + p?)™, in the
envelope is given by
= z '
v, = V(RJR . Eq. 1
But for V(R) = R, as expected after an explosion,
V «z Eq. 2

z
Therefore, the surfaces of constant velocity are planes perpendicular to-

the z-axis. This is illustrated in Figure 2 showing the relationship

between these surfaces and a typical profile. For reasons to be ex-
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6
plained later, lines can be expected to form quite near the photosphere.
Thus, identifying a line having an absorption component gives a measure
of the velocity of the material at the photosphere, Vb. The identifica-
tion of the Si II A6355 line in Type I supernovae has indicated Vb =

11,000 km/s [Branch, 1977], while hydrogen lines in Type II supernovae
have indicated Vb =~ 7,000 km/s [Patchett and Branch, 1972].
The radius of the photosphere, Rp, as a function of time can be
investigated by the method first suggested by Baade [1926] for variable
stars. In its simplest form, the ratio of the radius at one time to that

at another is found from the Stefan-Boltzmann law, where, for a black-

body of radius R and a temperature T, the luminosity is given by

L = 4wR%cT" Eq. 3
so that
- % 2

where subscripts refer to the values at two different times. If the
velocity as a function of time is known, the difference in radius,

Rz-Rl, can be found by integrating the velocity over time. Thus, the
actual radii and, from Equation 3, the actual luminosity may be found.
Since we are dealing with a single object at a fixed distance, the

ratio of the intrinsic luminosities is given by the ratio of the ob-
served luminosities.. The (blackbody) temperature can be derived from the
colors. In practice, luminosities are only observed in certain frequency
bands, but the basic principle still applies. In a fashion like this,

Branch [1977, 1979] has shown that Rp increases linearly with time for

Type I up to about 20 days past maximum light, while this is roughly
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true for Type Il supernovae up to about 1-1/2 months past maximum light.
The photosphere is fixed in the material for Type I while for Type II
supernovae the photosphere slowly falls back with respect to the medium
[Kirshner and Kwan, 1974]. .

Support for these conclusions comes from studies of supernova
hydrodynamics. A good review of this topic has been written by
”Chevalier [1980]. It is found that if ~10°° to 10°2 ergs are deposited
at the center of a massive star, a shock wave is propagated outward
which leaves behind a differentially expanding envelope with velocity
proportional to radius, each mass element coasting at a constant velocity
[Lasher, 1975; Chevalier, 1976; Falk and Arnett, 1977; Weaver and
Woosley, 1978].

The next step in the process of understanding supernovae is the
quantitative analysis of their ﬁpectra. This is important for several
reasons. First, supernovae are expected to be a primary site for the
expulsion of the products of nucleosynthesis. Thus, the chemical
composition of supernova envelopes is important for understanding the
solar abundances of elements and the chemical evolution of galaxies
[Tinsley, 1977b].

| Supernovae are also an important tool in cosmology. If the in-
trinsic luminosity of a supernova can be determined, the apparent
luminosity then gives the distance which, with the redshift of the
parent galaxy, can be used to determine Hg, the expansion rate of the
universe. This has been done for individual supernovae [Kirshner and

Kwan, 1974; Schurmann et. al., 1979] and for composite light curves



and colors [Branch and Patchett, .1973; Branch, 1977, 1979]. Since
supernovae are so bright, they may be able to probe far enough into
the universe to measure qg, the deceleration parameter, as suggested
by Wagoner [1977], for example. However, the radii and temperatures
used to determine the luminosity by the Baade method are derived from
the spectra and colors and thus are susceptible to assumptions about
the spectra.,

Giver. the physical conditions expected in the envelope (Chapter II),
local thermodynamic equilibrium (LTE) conditions are not to be ex-
pected, so that line intensities may not be calculated in the usual
fashion., Instead, the statistical rate equations must be solved to find
the level populations at each point in the envelope. Normally, this
involves the simultaneous solution for the transfer of line radiation
and therefore a large scale iterative procedure. However, because of
the rapid differential expansion of the envelope, line transfer may be
treated as developed by Sobolev [1960] and Castor [1970]. Photons
generated at a point are either reabsorbed locally or are Doppler-
shifted out of resonance and then either strike the photosphere or
escape completely., This allows the radiation field to be treated in a
local fashion.

There have been many attempts at line identification in supernovae
near maximum light based on LTE populations or comparison with novae,
For a good review of this topic, see Oke and Searle [1974]. More
recent papers have built on the earlier views [Mustel', 1975; Patchett

and Wood, 1976; Kirshner et. al., 1976; Assousa et, al, 1976; Ciatti
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and Rosino, 1977a, 1977b]. Some non-LTE calculations using the Sobolev
method have been presented by Kirshner and Kwan [1974] and Gordon [1975]
for one month past maximum light, However, the understanding of certain
lines is crucial in understanding supernovae. Thehidentification of
the A6355 line of Si II has been used to determine the photospheric ve-
locity of Type I, The line appears to be unblended and is strong
chroughout the period near maximum light, It is important to know
whether this identification can be verified with a reasonable physical
model of the envelope. If so, the line profile will be useful for ex-
ploring the structure of the envelope. When lines begin to appear in
Type II supernovae, the Balmer lines are dominant, while they are appar-
ently completely missing in Type I. It is important to place limits on
the amount of hydrogen in Type I supernovae so that realistic hydrody-
namic models can be constructed [Lasher et.al., 1977]. Also, the search
for likely progenitors is constrained by the envelope composition
[Tinsley, 1977a].

The purpose of this paper is to explore the deviations from LTE
of the level populations of Si II in Type I supernovae and hydrogen
in Type II in the context of various physical models discussed in
Chapter II. Any understanding of. hydrogen in Type II will easily be
transferred to Type I supernovae. The treatment. of the radiation field
will follow the Sobolev method as presented in Chapter III. The models
all consider only the time near maximum light during the linear (or near
linear) expansion of the photosphere. All models also follow the

development of the envelope as a function of time and consider several
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radius points. Priority is given to the atomic levels which control
the strength of the observed lines. As discussed in Chapter IV, the
atoms are represented by enough levels so the high priority level
populations should be well determined. The fina1~§hapter presents the

results and discussion,



CHAPTER II
PHYSICAL MODELS OF THE ENVELOPE

Several models of the envelope were considered, but all were
centered on a basic model formulated by Branch [1977] derived from
composite light curves and colors. He assumed the temperature, T,
and density, p, in the envelope varied as powers of radius, R, and
time, t, as

T « RP¢P™S Eq. 5

p « RTN"3 Eq. 6
and that the opacity, k, varied as powers of T and p as

k « Tmpq Eq. 7
and showed that this implied

R, = X Eq. 8

where

m(p-s) + (q+1)(n-3)
mp + n(q+l) -1 Eq. 9

Since x is known to be near unity from the near linear variation of

X =

the photospheric radius with time and the lack of change of Doppler
shifts in unblended lines during the phases of interest, a reasonable
set of the parameters which satisfy this are necessary. The simplest
way to accomplish this is via a strong density gradient, i.e. if n is
large x = 1. If the opacity is independent of T and p (m = q = 0), then

11
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x =023 | Eq.. 10

Hydrodynamic calculations [Colgate and McKee, 1969] have related
the velocity in the envelope to the external mass fraction, F, so that

V(R) « F(R)™S o Eq. 11
If V(R) = R and Equation 6 is assumed, then since

F(R) « f: p(r)ridr Eq. 12
Equation 11 becomes

R « p(n-3)/4 Eq. 13
so that n = 7, Calculations by Weaver [private communication] based on
hydrodynamic modeling also show agreement with p « v~ 7, Therefore,
this density structure was adopted for all calculations.

The total density at the photosphere at maximum light is determined
by assuming Ne « R”7 and requiring that the electron scattering optical
depth, Ty be equal to three for thermalization. The optical depth
is given by T(R) = f;N(ch(r)dr where 0 is the absorption cross-section.
It is roughly equivalent to the number of photon mean free paths from
the point R to the observer. The requirement that Te be equal to three
at the photosphere is due to estimates of the relative contribution of
lines to the opacity [Karp et. al., 1977] which forms the photosphere.
The assumption that Ne « R™7 will be examined in Chapter V. The density
is then taken to follow Equation 6 with n = 7, Mass elements traveling
at constant velocity decrease in density as t ° due to expansion.

Electron densities were then calculated by the algorithm given by

Karp [1980] which ensures swift convergence. The thirteen most abundant

elements [Ross and Aller, 1976] were used for this purpose. These and



TABLE 1

Elemental Abundances

Element Log N
H 12.00
He 10.80
c 8.62
N 7.94
0 8.84
Ne 7.57
Na 6.28
Mg 7.60
Al 6.52
si 7.65
Ca 6.35
Fe 7.50

Ni 6.28
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their abundances (normalized to log NH = 12, where NH is the number
density of hydrogen) are listed in Table I,

Since Type I supernovae are likely to be deficient in hydrogen
[Bychkova and Bychkov, 1977] and their actual comﬁbsition is unknown,
three compositions were considered: solar abundance, no hydrogen and no
hydrogen or helium., Type II models were assumed to have solar abundances.

The photosphere is assumed to radiate like a blackbody. This is
consistent with the derivation of the temperatures from the colors,

The photospheric temperatures and radii as a function of time and the
photospheric velocities at maximum light come from Branch [private
communication]., Table II lists these for Type II supernovae and

compares them with the results of selected hydrodynamic models. The
agreement is quite good. Table III simply lists the adopted temperatures
and.radii for Type I supernovae for which there are not such detailed
comparisons available, The photospheric velocity is taken to be 10,000
km/s at all times. Lasher [1975] has shown that the light curve and
colors of Type I supernovae can be reproduced by a hydrodynamic model
similar to those referred to in Table II,

The electron temperature in the envelope is taken to be isothermal
and equal to the temperature of the photosphere or is assumed to be
given by the expression Vaﬁ Blerkom [1973] has derived for a gray,
spherically symmetric atmosphere in radiative equilibrium, For p « r’
his formula gives

T(r) = T(Rp)r'°'6 2l-s 72—)" | Eq. 14

26
where r = R/Rp. With the preceeding as a base, the following two types



Physical Parameters of Type II Supernovae

TABLE II

t-t_ T, 10> x) R, (101° A (10% xa/s)
(days) CH FA WwW Present CH FA Ww Present CH FA WW Present
0 4. 42, 40, 25. 74 .10 .10 .39 8.8 7.1 12. 7.0
3 12, 18. 16. 170 .97 .30 .33 .57 8.3 7.9 6.9 7.0
7 10. 13. 11. 12, 1.2 .58 .67 .83 7.8 8.0 6.5 7.0
15 8.3 -85 7.5 8.7 1.6 1.1 1.3 1.3 7.1 7.9 6.3 6.9
30 6.3 6.1 6.2 6.2 2.0 1.8 2.1 1.8 5.8 5.5 5:2 5.8
45 ——— =—= 5.8 5.3 ——— === 2.3 2.8 —— ——— 4.2 6.4

ST



TABLE III

Physical Parameters of Type I Supernovae

tet_ T, R,
(days) (103 &) o’ cm)
-5 35. .55
0 17. 1.0
5 12. 1.5
10 9.3 1.9
15 7.7 2.4
20 6.2 2.8
25 4.9 3.3

16
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of models are considered.

Dilute Models

The photosphere is assumed to be well-defined, producing a dilute,
blackbody radiation field in the surrounding envelope. The mean
continuum intensity, Jv’ was treated following Castor and Van Blerkom

[1970] so that core and diffuse components were considered. Thus,

= 16 d
J, =I5+ I Eq. 15
where
c _ _ ,
Jv = WBv(Tp)exp( Tc) Eq. 16

is the dilute core radiation decreased according to the continuum
optical depth, Tes which is found by trapezoidal integration. W is
the geometrical dilution factor given by

W=kl - (1-12)% Eq. 17
This is simply 1/4m times the solid angle subtended by the photosphere
from the point r., Even though the envelope is not homogeneous, the

diffuse component was taken to be

d _ ' .
Jv = Sv[l - exp(-rc)] Eq. 18
where the continuum source function is given by
_ 2hv? -1
S, = —Ez—{biexp(hv/kTe) - 1) Eq. 19

This was only done to keep the equations in a local form.

In the calculations of the electron densitiés, the ionization
ratios are assumed to deviate from their LTE values (at the temperature
of the photosphere) by the factor Wz(Te/Tp)%, assuming photoionization

from excited levels dominates. This factor will be discussed and
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explained in Chapter V. When considering hydrogen, the actual deviation

coefficient is used for its contribution to the electron density,

Discontinuous Opacity Model

It is well known that Type I supernovae are flux deficient below
4000 R [Holm et.al., 1974 ; Zwicky, 1965]. One possible explanation
is an increase in opacity with decreasing wavelength. This will in-
crease the photospheric size with decreasing wavelength since a greater
opacity at some frequency means that one does not have to look as deeply
into the atmosphere before it becomes opaque. For some point in the
envelope, high frequency radiation will then be at the local blackbody
intensity while lower frequency radiation will be dilute from a deeper
photosphere. Because of fhis, the ionizing radiation may be Planckian
at a lower temperature (if a temperature gradient is considered) than
deduced from observations of light in the visible and infrared.
As a first approximation, one might assume that all populations are
driven to their LTE values. In this paper, a cutoff frequency was
considered such that the photosphere was indefinitely large for v > Ve
The continuum radiation was taken to be only the diffuse component
with Te set to infinity for v > Vo The radiation was considered in
the dilute fashion for v < V.o In the calculations of Ne’ the ioniza-
tion ratios are assumed to be at their LTE values for the local electron
temperatﬁre with the exception of hydrogen as noted for the dilute case.
This model is an extreme which should place limits on the effects of

a more realistic change in opacity.



CHAPTER III

METHOD

In statistical equilibrium, which is assumed, the level populations
of an ion are determined by the fact that the rate of transition into
any level is equal to the rate out of that level, So, we write for
level i,

jgiNj(Cji ¥ Rji) ¥ Ne2N+Yi ¥ NeN+ai

= N_i{j;i(cij + Rij) +Cy + Ry} Eq. 20
where Ni is the number density of the ith level of the ion, N is the
number density of the next ionization stage, Cij and Rij are the
collisional and radiative bound-bound rates from level i to level j,
\f] and a, are the collisional and radiative recombination coefficients,
and CiK and RiK are the collisional and radiative ionization rates.

The Rij depend on the mean intensity oflthe radiation field in the

transition, <Jij>' (For a downward transition, Rij = Aij + Bij<Jii>

where Ai. and Bij are the Einstein coefficients for spontaneous and

stimulated emission.) This field is normally non-local, depending on

the level populations at all points in a static gtellar atmosphere.
"In an expanding envelope the situation can be simplified.

Sobolev [1960] first introduced the concept of the escape probability

in the treatment of radiative transfer in moving media, He defined the

19
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escape probability, B, as the "fraction of the quanta in the correspond-
ing line (which) will leave the medium owing to the Doppler effect,"
Instead of a balance of transitions, there is an excess of downward
| transitions from level i to level j given by NiAijéij' Neglecting
collisional and stimulated transitions, these excess rates must be
balanced by ionization and recombination so that Equation 20 becomes
j;iNjAJ.iBij + NeN+ai = Ni(igiAiiji + Ry) Eq. 21
Sobolev derived a crude expression for the escape probability by
assuming a homogenous, infinite, expanding'medium and considering a
photon traveling from one point to another distant one in a spectral
line with a rectangular profile. The fraction of radiation absorbed
(which must equal 1 - B) is then found by integrating the absorption
coefficient times the line profile function over the line element, This

gave an expression for the escape probability in terms of the velocity

gradient and level populations

2
By, = (5= gof, (Np/g, - N /g )} " u av(s) Eq. 22
C S

where £ and u refer to the lower and upper levels of the transition

g is the statistical weight, f is the oscillator strength, v is the
transition frequency and Q%éil is the velocity gradient along the line
element. The important idea here is that a large velocity gradient
produces a large escape probability due to the fact that the photon is
more rapidly Doppler-shifted out of resonance. However, this expression
for the escape '"probability'" can become larger than unity for very
small level populations or large velocity gradients.

Castor [1970] has further developed the Sobolev method by consider-
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ing the complete radiation field (due to the line and from the continuum)
and by only assuming the natural line profile is very narrow. This

yields a more satisfactory form for the escape probability,

- d1nR
and the line optical depth is given by

- _p L+ox?. . 245
Bou "B = fo —;;;—— {1 - exp[ Tzu/CI + 0x*)]}dx Eq. 23
where
g = Ml -1 Eq. 24

2 \V
. e’ ul V(R)

Tou © me ngzu(Nz/gz - Ny/g)/ (= RIF©) Eq. 25
where F(o) is of order unity. For a linear relation between V and R,
o =0 and F(o) = 1 so that

Bzu = {1 - exp{-'rm})/'rg'u Eq. 26
This reduces to Sobolev's expression when T is large (and B is small)
and approaches unity for vanishing line optical depth.

Now the radiation field in the line can be written in terms of the

line source function, Suz’ and the photospheric radiation intensity, Ip’

as

>= (1 - Buz)suz + BUQWI ' Eq. 27

<Ju£ P

where

Sug = NuAuz/(Nszu - NuBuz) Eq. 28
This allows the radiation field in a line which is optically thick to
be dominated by the local line source function and that for an optically
thin line to be dominated by the dilute photospheric radiatiom.

Thus, <Ju2> is written in terms of local parameters. The complete

equation for level i becomes
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u§iNu(Ne°ui ¥ AuiBui * BuiBuiWIp)

+

+
pkiNp (NeCps + ByyBesWip) + NN (Ngv; + ;)

Ni{ugi(N Ciu * ByuBiulI,) *+ o35 (Nocyy + Aizsiz + Bi,Q,Bi.Q,WIp)

e iu juiu p
0 J -
+ Nc; + 4“6131(V)B¥11 - exp(-hv/kTe)/bi]dv} Eq. 29

where cui=~Cui/Ne, ai(v) is the photoionization cross-section of the
ith level, Jv is the mean intensity of the continuum radiation field,
Te is the local electron temperature and bi is the coefficient of
deviation from LTE, bi = Ni/Ni*, where Ni* is the ﬁoltzmann population
for the current Ne and N [Mihalgs, 1978].

Castor and Van Blerkom [1970], Castor and Nussbaumer [1972], and
Oegerle and Van Blerkom [1976a] have solved the statistical rate
equations in this form for He II, C III, and He I in Wolf-Rayet
envelopes, These stars arevejecting matter at the relatively slow
speed of 2000 km/s. Oegerle and Van Blerkom [1976b] and Van Blerkom
[1978] have also applied the method to He I and H in P-Cygni which is
ejecting matter with a speed of a few tens of km/s. In all cases, the
results compare quite favorably with observations of line intensities
and profiles. Since we are dealing with larger velocity gradients in
supernova envelopes, the Sobolev method is even more appropriate as
the line photons will be more quickly Doppler-shifted out of resonance.

By Equations 25 and 26 we see that the escape probabilities
depend on the (unknown) level populations in a non-linear way. This
means that we must estimate the populations, calculate the escape
probabilities and iterate until convergence is achieved. Convergence

for non-linear problems is not a trivial matter., Others have approached
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the problem by requiring the fractional change in all populations to be
less than some criterion [e.g. Castor and Van Blerkom, 1970; Oegerle and
Van Blerkom, 1976a). This approach was adopted here with some modifi-
cations. The primary convergence criterion was

I(Nirk\ - Nirk'll)/Nirk‘l < .Q1 Eq. 30
where k is the iteration index and i labels the atomic level. Since
“ﬁhere is primary interest in the populations of certain levels, a
slightly more global criterion was used so that

I(Nirk‘ - Nirk“ﬂ)/Nirk"l < .01 Eq. 31
for those levels, It was also required that the change in population

for these levels be decreasing at the time of convergence, so that

(A (k-1
A, ] <o, 7 Eq. 32
where
M fk\ fk_l\

Another difficulty in non-linear problems can be slow convergence.
In order to speed convergence, a modified Newton-Raphson scheme was
applied to each level population., If the populations were to change
quadratically as a function of iteration number, the "final" population

in level i based on information obtained by iteration k would be given

by
) M i 2 (k-1 (k\

N =N, +{;5\(Ai )/(Ai -Ai ) Eq. 34
This only works if Ni k is convex with respect to iteration number
(k-1 f k-1

EET IR}

. IR
and so is used only if |A, | < la;

AN
there is no general way to estimate Ni k » So the form used here was

M (k-1 ()

(SN fy y
N. = . If Ai and Al had opposite signs, Ni

i Ni +lmi
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. K . . :
was simply set equal to Ni to avoid pushing the population too far
in one direction.
These calculations were done at five radius points for each
. 7
model and time considered: at r =1, 1.1, 1,2, 1,31.4, For per ,
at r = 1,4 the density has decreased by a factor of ten from at the

photosphere. The times relative to maximum light which were considered

are those listed in Tables II and III.



CHAPTER IV

ATOMIC REPRESENTATIONS AND RATES

Representations

Since the statistical rate equations must be solved for the level
populations, some finite number of levels must be chosen. One pro-
cedure is to choose enough levels so that the uppermost are nearly in LTE
via collisional processes. Griem [1963] has given a formula for
determining this for hydrogenic atoms. He finds that for principal
quantum number n > no, the populations will be within 10% of their LTE

value with

18,6 1
ny = (L4102 c%zﬁ)4}2/17 Eq. 35

N
e H
where z is the nuclear charge and EH is the ionization potential of

hydrogen. In the best case (for the physical models considered;

N, = 7x10'® cm™%, T = 25,000 K), ng = 8. However, in the worst case

(N~ 10° cm™3 T =~ 3000 K), ng>30. To keep the problem tractable for
P

e
consideration of several physical models, it is desirable to represent
the atoms with 20 levels or less.

Another procedure is to consider which atomic levels directly affect
the population of the levels of interest., For Si II, the 4s 2S level
is of primary interest since it controls the strength of the A6355

(4s 2S - 4p 2P’) transition. Of secondary interest is the 3d 2D level

25
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which controls the next strongest line in the visible at 14130
(3d %D - 4f 2F%), Radiative rates dominate collisional rates for these
transitions. This can be seen by the following. The collisional rate
can be approximated [Van Regemorter, 1962] by ‘

Ngc = Ne13.7fTe'%P(E/kTe)E'l Eq. 36
where f is the oscillator strength, P is a tabulated function =0.2 for

ions and E is the excitation energy in cm !. The radiative rate is

given [Wiese et,al,, 1969] by

A = .667g,f/g, E* | Eq. 37
where gy is the statistical weight of the lower level and g, is the
statistical weight of the upper level. So

Nec . -l -3
=& = 4.INT,. ‘g /g, E Eq. 38

For the A6355 transition, E =~ 16,000 cm !, g,= 6, and g, = 2. Thus,
for N, = 3x10'Y cm™® and T = 35,000 K, this ratio is A5x10° %, For the
A4130 transition, E = 24,000 cm !, g, = 14 and g, = 10, yielding a
ratio of 6x10 “. Since the electron density drops more rapidly (both
as a function of time and radius) than the square root of the temper-
ature this is the largest these ratios can be.

So, let us look at radiative rates into the 4s 2S5 level considering

/A

transitions from the 4p, 5p, and 6p 2P° levels. We find A 1p,4s
. 3

Sp,4s

= 6.6x10°% and A = 3,8x10° 3., For radiative rates into the

6p,4s/A4p,4s
3d 2D level, consider transitions from 4p, S5p, 6p 2P° and 4f and 5f 2F°,

~

. . - -3 -2
This gives A4p,3d/A4f,3d = 1.2x10 °, ASp,sd/A4f,3d = 1,3x10 ©,

~ -3 - e e g
A6p,3d/A4f,3d =~ 5,8x10 ° and ASf,Sd/A4f,3d = 5, This indicates that

considering energy levels up to the 6p 2P? and S5f 2F° levels should
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include all levels affecting the population of the 4s 2S level and may
be adequate for the 3d 2D level. Quartets (which do not interact with
the doublet terms) have been ignored. The adopted representation of
Si II is shown in Figure 3.

Similarly, for hydrogen where the n=2 level is of interest, radi-.

ative rates dominate and we find A /A 10”2, Therefore, by in-

10,2'73,2 ©
cluding 10 levels, all levels which directly influence the n=2 level
will be included.

One other consideration is whether complete redistribution in the
éngular momentum sublevels can be assumed. The most serious problem
would occur if the electron density were so low that 2-photon decay
from the 2 2S level would occur more rapidly than collisional transfer
to the 2 2P level. The critical density for this is N = 10* cm?

[Osterbrock, 1974], which is never reached. Therefore, the hydrogen

atom will be represented by the n=1 through n=10 levels.,

Rates

The final information necessary for solving the rate equations
involves the atomic transition rates. These can be divided into two
categories: radiative rates and collisional rates.

Oscillator strengths were taken from Wiese et.al._[1969] except
that, for Si II, the 3p 2P° - 3p? 2p, 3p? 25, 3d 2D, and 4d 2D f-values
were taken from Curtis and Smith [1974], the 3p 2P% - 3p?® 2P f-value was
taken from Livingston et.al. [1976] and all f-values for allowed transi-
tions not found elsewhere were taken from Kurucz and Peytremann [1975].

The Einstein coefficients were calculated from the oscillator strengths
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in the usual fashion.

Photoionization rates were determined by integration over the
photoionization cross-sections as shown in Equation 7. These cross=-
sections were calculated as hydrogenic for both hy&rogen and Si II, so
that

a,(v) = 7.9x10'”gini(\)o/v)3/z2 | Eq. 39
where n, is the effective quantum number of level i, g is the statis-
tical Gaunt factor, Vi is the threshold frequency and z is the effective
charge. For hydrogen, the Gaunt factors for n=1 and n=2 were taken to
be 0.8 and 0.9 respectively [Allen, 1973]. For all other hydrogen levels
and all Si II levels the Gaunt factor was set to unity. For hydrogen,
the n, are just the principal quantum numbers and z = 1, For Si II, z
was taken to be 2 and n; was determined by assuming the 5f 2E% level had
n, = 5 and then by scaling by ionization energy as if Si II were hydro-
genic, That is, n, = nsf(Isf/Ii§ where Ii is the ionization energy of
level i, This provided agreement, on the average, with the cross-
sections for the 3p 2P%, 4s 25, 3d 2D and 4p 2P° levels listed in
Allen [1955]. For these four levels, the n, were adjusted so that
actual agreement was achieved.

Radiative recombination rates were determined by the Milne relation.
from the photoionization cross-sections

o, = 2/@%: (kae)‘3/2 (gi/g+)vo3exp(h\)o/kTe)ai(vo)E1 (hvo/kTe) Eq. 40
where g+ is the statistical weight of the upper ion, and E; (x) is the
first exponential integral of x.

Although collisional rates were only important for the upper levels
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of hydrogen and a few transitions in Si II, they were calculated for all

transitions.

For Si II, excitation and de-excitation rates were calculated

[Van Regemorter, 1962] by

Cou 19.73Te'3/2quP(x)exp(-x)/x Eq. 41

Cup = czuexp(x) Eq. 42

where X = E/kTe, E is the excitation energy and P(x) is tabulated. The
tabulated function was made analytic by fitting the following formulae
to it.

+29E; (x) x<0.01

P(x)
= -,59 logx - .026 0.01<x<0.2
= .167 (logx)? - .126 logx + .219 0.2<x<3.5
= .2 3.5<x Eq. 43
For hydrogen, the formula of Johnson [1972] was used to calculate
excitation and de-excitation rates. For excitation (n'>n),

L
= (-g'l']:—;e)z zg-ﬂaozxz{enn' [(% + ;E)El (XJ ot (% + %JEI (Z)]

“an? y )
* Cpyr - em.lnz—’; )[%Ez (x) - %Ez (z)1} Eq. 44
where x = E /KT, y =1 - (%3)2, 2= X+ T, Ty, = .45X,
Tosl,nt = 1.94n71°57, & v = z—ffm,, Eopt = %r,l:x_z(l + %x-l +nox?),
n, =n'(4.0 - 18.63n7" + 36.24n"% - 28.09n7%) for n » 2, n; = -0.603,

E2 (x) is the second exponential integral, and ap-is the first Bohr radius.
Again, de-excitation rates follow from Equation 42,
The collisional ionization rates for Si II were calculated by

the formula of Seaton [1964]

Cip = 2.0x10'°;1'2Te!5 10(~50401/Te) Eq. 45
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where . [ is the number of electrons in the ionizing shell and I is the
ionization energy in eV. T was set to unity for all levels.

For hydrogen, the collisional ionization rates were calculated
by integration of the cross-sections df Percival [1966] over a Maxwel-
lian velocity distribution.

All three-body recombinations coefficients were calculated by de-
tailed balancing, so that they are given by
Eq. 46

— *ev"1
Yy = Ng*N*) Nj*res



CHAPTER V
RESULTS AND DISCUSSION

The models described in Chapter II were explored as described in
Chapter III with the computations being done on the IBM 370/158 computer
at the University of Oklahoma. Typical running times for a model were
15 minutes CPU for Si II and 7 minutes CPU for hydrogen.

At this point, tables of level populations could be presented, but
they would have little meaning. If one wishes to construct synthetic
spectra, it is not practical to solve the statistical rate equations
for each ion under consideration, Rather, a more crude, but faster,
method is preferred for predicting the level populations. For the
discontinuous opacity models, the assumption of LTE populations might
be a reasonable approximation since the ionizing radiation and radiation
exciting most from the ground is the local Planckian field.

For the dilute models, a different approach can be taken. Since
we are considering a radiation dominated situation, the levels which
are popuiuted directly froﬁ the ground level will be excited by the -
dilute photospheric radiation. Thus, the excitation of these levels
should be given by

N,/N, = H—I-ll;-\%‘ﬂ(NJ.L/NI)* Eq. 47
where Vv is the frequency in the transition from the excited level to

32
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the grqund, By is the blackbody intensity at frequency v and * refers
to the LTE excitation at the photospheric temperature. In this paper,
the photospheric radiation has been assumed to be blackbody, so that
Equation 47 becomes

Ni/N1 = W(Ni/Nl)* . Eq. {8

Some levels may not be excited directly from the ground. For
such a level, there may exist a lower level which controls the popu-
lation so that

N /Ny = WIN,/Np)* ‘ Eq. 49

The ionizing radiation has also been diluted so that the photo-
ionization rate from level i is given by

RiK = WRiK* Eq. 50
The ionization can be divided into the part due to the ground and that
due to excited levels so that the ionization balance is given by

NeN*ar = NjR; .+ &, N.R. Eq. 51
where at is the total recombination coefficient to all levels, and

at < Te'!‘i Eq. 52
whére Te is the local electron temperature. If we assume that ioniza-
~tion from excited levels dominates that from the ground, Equations 48,50,
51, and 52 can be combined to yield

N'/N = (Te/Tp)l”éw2 /N _ Eq. 53
where Tp is the photospheric temperature. We see that the dilution fac-
tor enters twice, once in the excitaton and once in the ionization. To

see the size of the effects these factors produce, Table IV lists W, W2,

and, for the non-isothermal case, (Te/TP)% and Wz(Te/TpJ% as a function



TABLE IV

Factors Affecting Ionization

r W w (T /1) WE(T /T
1.0 .50 1250 1.00 1250
1.1 .29 .085 .85 .072
1.2 .22 1050 74 .037
1.3 .18 .033 .66 .022

1.4 .15 .023 .60 .014
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of r for the radii considered here, Although significant effects in the
ionization and excitati&n can occur, ionization increases outward due to
the rapidly decreasing electron density.

One of the assumptions used in determining the atomic densities
at the photosphere at maximum light was that the electron densities at
that time decreased with increasing radius like the atomic densities,
i.e. Ne « v 7, This is certainly true for our models of Type II en-
velopes over the range of r considered. The photospheric temperature
at maximum light is Tb = 25,000 K. Thus, hydrogen is fully ionized
throughout the envelope even considering the ionization to fol;ow
Equation 53, Since solar abundance is assumed, hydrogen contributes
the bulk of the electron density and No does decrease as the'atomic
density. For Type I envelopes, similar arguments apply for the solar
abundance model and the model without hydrogen. However, in the model
without hydrogen and helium, it is not a priori clear how the mix of
metals should affect the electron density., To see how valid the assump-
tion was in this case, the power of radius by which the electron density
fell was calculated by assuming

Ng(r) = N (r=1)r™" Eq. 54
and finding m from the actual electron densities calculated by the
algorithm mentioned in Chapter III, For the non-isothermal case where
the largest effect would be expected, we find tﬁat m=7.1, 7.1, 7.0
and 7.0 for r = 1.1, 1.2, 1.3, and 1.4 respectively. Therefore, the
assumption was valid in all cases considered.

Now the predicted populations based on Equations 48, 49 and 53

could be calculated and compared with those obtained from the rate
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equatiohs. However, there is a more useful form for the results. The
contribution a line transition makes to a spectrum is its profile, i.e.
the relative amounts of emission and absorption as a function of fre-
quency. For the Sobolev method, Castor [1970] has derived an expression
for the line profile in terms of the line source. function and the line
optical depth. The profile can be described as consisting of an emis-
sion part minus an absorption part. The absorption part depends on the
line optical depth while the emission part depends on both the line
optical depth and the source function.

From Equation 25, we see that u is roughly proportional to the
population of the lower level of the line since, for the most part,
the upper level population will be decreased at least by the Boltzmann
factor. Looking at Equation 28 and ignoring stimulated emission, we
see that Su is proportional to the ratio of the upper and lower level
populations.

If we now assume that Equations 48 and 53 give the population of
the lower level of a line of interest and that Equation 49 then gives

the population of the upper level, we can write

_ e g Nty o YR |
g = oo fu N' (1 wguN D/ ( ‘CL R ) Eq. 55
and
s, WS * , Eq. 56

where the primes refer to the predicted values and * again refers to the
LTE values at the photospheric temperature. For LTE populations, the
line source function is equivalent to the blackbody intensity in the

line, so
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Sui = WBv(Tp) Eq. 57
In a different fashion Castor [1970] showed that for an unsaturated,
radiation dominated line in an expanding atmosphere,

S., = WIP ) Eq. 58

ul
which reduces to Equation 57 for our assumed photospheric radiation.
For the discontinuous opacity case, we would simply predict the line
woptical depths and source functions to be due to the LTE populations,
Now we will compare the calculated and predicted quantities in the

form of ratios of S/S' and t/t'. The dilute model results will be

presented first followed by those for the discontinuous opacity.

Dilute Models

The simplest physical model considered was the dilute, isothermal
model, Some preliminary results have been published [Feldt, 1979] for
Si IT in Type I envelopes of this sort, We have a choice of chemical
compositions here and will look at the results for the case of no
hydrogen or helium. The effect of varying chemical composition will
be discussed later. The physical processes involved will be discussed
in some detail for this case, since, as we shall see, they will be im-
portant in all the dilute models.

Figures 4 and 5 show &/S' for the A6355 and A4130 lines of Si II
as functions of time and fractional radius. The'plotted numbers refer
to the times relative to maximum light previously indicated in Table FII
with '1' referring to t-to = 5 days and '7' referring to t-t, = 25 days.
We see that, at the earliest times, the predicted source function is

increasingly too small as r increases. This is because the upper levels
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Figure 4. Si II X8355, isothermal, xH,He
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(4p 2P° and 4f 2F%) of the transitions are mainly populated by cascades
from levels which are populated directly from the ground due to the
high temperatures at those times. Thus, the dilution factor enters
only once in populating both the lower and upper levels of the transition
and so the source function is not proportional to the dilution factor as
predicted. The effect is not as strong for the 24130 transition., This
may be due to the larger energy of the 4f 2F° level or to the lack of
enough higher 2D levels which could cascade into it. The effect dis-
appears as the temperature drops, decreasing the ultraviolet radiation
field, which in turn, decreases the direct excitation of the upper
levels. The upper levels for these lines then do become populated by
the lower levels and S/S! drops to unity.

At later times, there is a slight decrease in S/S' with increasing
r due to the Doppler shift of the radiation in the line from the photo-
sphere. This was not considered in the prediction and is not a major
effect, Since a point in the envelope is moving away from the photo-
sphere, the radiation received in the line at frequency v was originally
at frequency vp = V(1 + %!) where AV is the velocity difference and
is at most &.01 for the radii considered. Thus, the radiation in the
line from the photosphere is changed by the factor BvD/Bv,'where Bv is
the blackbody intensity. For the low temperatures at later times, this
ratio is roughly given by

BvD/Bv = (vp/V)3exp[h(v -vp)/kTp] - Eq. 59
which is increasingly less than unity as r, and thus AV, increases.

Figures 6 and 7 show T/t' for the same two lines in this model.
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Figure 6. Si IT 26355, iso'ihermal, xH, He
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Figure 7.» Si II 130, isothermal, xH,He
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At the earliest times, the predicted T are too large and increasingly
50 as 1T incrcases. This is due to the breakdown of the assumption
that the ionization from the ground level is insignificant. It actually
contributes about 40% of the ionization at those times so that the ion-
ization is roughly proportional to W!'* instead of W? since the dilution
" factor enters ionization from the ground level only through the photo-
ionization rate. The result is that the ionization is greater than
predicted and, since the higher ionization stages of Si are dominant
at these times, the density of Si II is less. This decreases all line
optical depths.

At intermediate times, the predicted T are too small and increas-
ingly so as r increases. By these times, the cooling envelope has
decreased the ionization enough so that, even though Si III is the
dominant ion, the ground level population of Si II is large enough to
cause the ground continuum to become optically thick. This means that
the ionizing radiation must come from excited levels. Many of these
levels are populated as described by Equation 49 so that some fraction
of the ionizing radiation has effectively been diluted three times
rather than twice. Thus, the actual ionization is less, and all line
strengths are greater, than predicted. This does not occur at r=1 since
the continuum optical deptﬁ is assumed to be zero there.

The reason T/t'! increases with increasing radius at these inter-
mediate times is due to the effect of the Doppler shift, similar to
that described earlier. However, here the effect is in the continuum

radiation and is much larger. From Equations 16, 20, and 29 and using
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the v~ dependence of the photoionization cross-sections, we see that,
for an optically thin continuum, we can form the ratio of photoioniza-

tion rates

D _ Son v [exp(v/KT) - 11 v -
Rac/Ryc = T2 v=T[exp (v/KT) = 11Ty Eq. 60

where the subscript and superscript D refers to the Doppler-shifted

case. One of the principle ionizing levels at these times is the 3p2 2p

lével, for which the continuum begins at hv = 76,000 cm ? and, since
KT < 8000 cm ! here, we find hv/kT > 9, Therefore, the numerator and
denominator of Equation 60 can be approximated by exponential integrals
which, in turn, can be approximately evaluated so that
R,o/Ry, = V/Vpexp[h(v - Vp)/KT] Eq. 61
Allowing the frequency to be increased one percent by the Doppler shift
and inserting the appropriate temperatures and frequency, we see that
at r=1.4, this ratio can be as low as .85 for t-to = 10 days and as
low as .75 for t-to = 25 days. The main reason the lines are not as
greatly affected as the continuum is that hv is much smaller for them.
At the latest times, T/T' is nearly unity with a slight tendency to
decrease with increasing r. Si II is the dominant ion here, and the
effects due to ionization differences become minimal., Rather, there is
a slight decrease in the excitation (from the ground level) of the
lower levels of the transition. (Recall that T is roughly propor-
tional to the population of the lower level.) The energy differences
for these excitations are much greater than those in the lines, so the
effect is more noticeable than the slight effect found in the source

functions. Notice that, as expected, the effect is greater for the
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higher lying 3d 2p level associated with the A4130 transition than for
the 4s 2S level associated with the A6355 transition,

If we now look at the source function ratios for hydrogen in a
dilute, isothermal model for Type II supernovae, we find little new.
Figures 8 through 11 give S/S' for the first four Balmer lines beginning
with Ha, The plotted numbers now refer to the times relative to maxi-
mm light given in Table II with 'l' referring to t-ty, = 0 days. The
calculated source functions at early times are not as discrepant from
those predicted as was the case for Si II. (Compare Figures 8 and 4.)
This is due to the fact that we start the Type I models before maximum
light at a temperature which is greater than for the Type II models
at maximum light. The lower temperature for the earliest times con-
sidered in the Type II models causes less direct population of the
upper levels. At late times, S/S' is near unity for Ha. However, for
the other Balmer lines, S/S' drops to near one-~half. This is due to
the influence of levels other than n=2 in populating the upper levels
of these lines and allowing the dilution factor to enter more than once.
The Doppler shift produces neglible effect for these lines due to the
smaller velocity gradient in the Type II envelope.

Figure 12 shows t/t' for Ha. Since all Balmer lines depend on
the population of n=2 fbr.their line optical depths, it would be re-
dundant to give T/T' for the other lines also. We see essentially the
same behavior as observed for Si II. For r > 1, the only difference
found is at late times where T/1' does not fall below unity. This is

due to the fact that hydrogen is not completely recombined even at
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Figure 12. Ha, isothermal
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t-to = 45 days. Therefore, even though the line excitation is somewhat
less than predicted (as described for Si II), this is more than cor-
rected for by the lower ionization at t-ty = 30 days and the two balance
at t-to = 45 days. The odd behavior of t/t' at r=1 at late times is due
to the artificial lack of any continuum optical depth from the ground.

-This increases the ionization and feeds the n=2 level via recombination
-énd cascades.

Next, we consider the effect of a temperature gradient in the en-
velope. According to the predictions, it should simply decrease the
ionization by (Te/Tp)%' Since this is included in the predictinns,
the ratios S/S' and t/T' should not change from the isothermal case
unless other physical effects become important. Figure 13 through 21
show the counterparts of Figures 4 through 12 in the case of the temper-
ature gradient given by Equation 9, It is clear by comparison that
the same physical processes are important in this case as were for the
isothermal one. For hydrogen, numerical difficulties were encountered
for t-to = 30 days and these results are not available. However, the
general agreement with the isothermal case suggests no surprises
would have been likely.

For Si II in Type I supernovae, another consideration is the chem-
ical composition of the envelope. As hydrogen and helium are removed
from the model, the density of the metals must be increased to maintain
the electron densities assumed at maximum light. The strength of the
lines is not only affected through thé total Si density, but also by

the effects of composition on the electron densities as a function of
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Figure 13. Si II 26355, non-isothermal, xH,He
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Figure 28. H$, non-isothermal




Tou

e e

Tau’

60

Figure 21. Ho\, non-isothermal




61
time and radius and by changes in the mix of escape probabilities.
The electron densities affect the level populations mostly through re-
combination while a change in the mix of escape probabilities can affect
excitation. The effect of varying chemical composition was explored
in the non-isothermal models since they are likely to be more realistic.

Figures 22 and 23 give S/S' for the A6355 and A4130 transitions
“én the model with no hydrogen. Figures 24 and 25 show the counterparts
for the model with solar abundance, while Figures 13 and 14 show the
counterparts for the model without hydrogen and helium. There are very
few differences. At the time marked '3' (t-tg = 5 days), there is some
change in S/S' for A6355 due to a change in the mix of escape probabil-
ities. The upper level (4p 2P?%) of this transition is also connected
to the 3p? 2D level via a line at 3858 A. Because the oscillator
strength for this transition is smaller than for the A6355 transition,
as the Si density is increased the escape probability for A6355
decreases before that for A3858. This means the population of the
upper level is more likely to be decreased by the escape of A3858
photons as the Si density is increased and this decreases the source
function. At times before or after this, these two escape probabilities
are both large or both small so that this effect does not occur.

The effect of varying chemical composition on the line optical
depths, although somewhat more noticeable, is also fairly small. The t/1!
corresponding to the case without hydrogen and helium shown in Figures
15 and 16 are given in Figures 26 and 27 for the case without hydfogen

and in Figures 28 and 29 for solar abundance. Comparing Figures 15,
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Figure 22. i II A6355, non-isothermal, xH
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Figure 24. Si II 26355, non-isothermal, solar
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26 and 28, we see that at the earliest and latest times there is no
effect for the A6355 transition. At intermediate times, increasing the
Si density increases the continuum optical depth from the ground, thus
decreasing the ionization. This increases the denéity of Si II, as
long as higher ionization stages dominate, increasing all line optical
depths. For the case of no hydrogen shown in Figure 26, helium is the
dominant electron source and it recombines by t-tg = 15 days. The re-~
sulting decrease in electron density causes Si III to be the dominant
ion. For the other two compositions, the electron density remains
larger and Si II and Si IIT have roughly equal densities. This explains
the changing behavior of S/S' due to varying chemical composition at
the time marked '5'. Comparison of Figures 16, 27 and 29 for the A4130
transition show the same effects. Small differences are due to minor
differences in the excitation of the lower levels for the 14130 and

26355 transitions.

Discontinuous Opacity Model

Numerical difficulties were encountered in solving the set of si-
multaneous equations for this model, so only a brief discussion will
be given. Solutions were obtained for hydrogen in Type II envelopes
for times up to 15 days past maximum light. The cutoff frequency, Ves
" could have reasonably been chosen anywhere between 7.5x10'* Hz and
1x10'S Hz, corresponding to 4000 & and 3000 X respectively. The Balmer
continuum begins at v = 8.2x10'* Hz, so choosing v = 8x10!'* Hz includes
the Balmer and Lyman continuum and lines inside the photosphere while

all other lines and continua are treated in the dilute case. This pro-

cedure was adopted.
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The source function ratios for the first four Balmer lines are
shown in Figures 30 through 33 using the same notation as previously
for hydrogen. The line optical depth ratios for Ho are shown in Figure
34, The principal reason for the behavior of both the source function
and the line optical depths is that the n=2 level is overpopulated with
respect to all other level populations near those of LTE on the average
since these lines are inside the photosphere. However, lines which
have significant escape probabilities will tend to overpopulate the
lower level of the transition as photons are lost., At the earliest times,
the larger electron density causes larger collisional rates out of the
upper levels, keeping the escape probability low for transitions among
them and keeping their populations near those of LTE. However, the
escape probabilities of lower levels are not as affected by collisions
and are significant for Ho and Paschen o allowing an overpopulation
of the n=2 and n=3 levels, As time increases, the expanding, cooling
envelope causes the electron densities to drop, increasing the escape
probabilities in transitions among the upper levels. This causes the
upper levels to become more overpopulated and decreases the overpop-
ulation of the lower levels since the Lyman lines still tend to enforce

the average populations for n>2 to be near LTE.

Accuracz

Now that we've seen the results, how accurate are they? As dis-
cussed earlier, radiative rates dominate in the lines of interest,
Inspection of the rates in all other transitions shows that, with a

few exceptions, radiative rates are always dominant. Therefore, the
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Figure 38. Ha, discontinuous opacity
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accuracy of the results depend on the accuracy of three things: the
oscillator strengths, the photoionization cross-sections and the con-
vergence accuracy.

For hydrogen, the oscillator strengths should be accurate to with-
in 1% [Wiese, et.al., 1969], and the photoionization cross-sections
are accurate to 10% due to the Gaunt factors used [Allen, 1973]. The
oscillator strengths for Si II are less accurately known. Those of
the strongest transitions are probably accurate to 25% [Wiese, et.al,
1969], while for weaker transitions, errors by factors of five may not
be unusual., It is difficult to assess the accuracy of the photoioniza-~
tion cross-sections for Si II. Since a cross-section of a few times -
107® cm® is ordinary, order of magnitude errors are quite unlikely.

On the average, these cross-sections are probably accurate within a
factor of two or three.

_The convergence accuracy was tested by applying a more stringent
requirement than normal to sample cases. By requiring the change in
all populations to be less than 0.001 rather than 0.01, the results
were affected by less than 1%.

The overall accuracy of the results, then, is limited by the ac-
curacy of the photoionizatién cross-sections. For hydrogen, the results
should be accurate to within 10%, while for Si II any results which
depend on the ionization may be off by fairly large factors. However,
the similarities between the results for Si II and hydrogen suggest

that the accuracy for Si II is within 50%.
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Conclusions

The main question to be answered here was whether crude estimations
could produce reasonably accurate level populations in supernova en-
velopes. Since the spectra are not well understooé, certainly a factor
of two is quite "reasonable accuracy." For the dilute models, all of
;he calculated source functions and line optical depths were, with a
few exceptions, within a factor of two of those predicted. The dis-
continuous opacity model showed differences as large as factors of seven
in the line optical depths. However, this model is an extreme which
should place upper limits on the deviations which might be found from
an opacity which increases uniformly with decreasing wavelength,

Therefore, certainly for predicting the absence or presence of
lines, the crude predictions can be quite useful. Work done along these
lines [Branch, private communication] has shown great promise, indica-
ting that the dilute models predict most spectral features quite well
with the exception of the Balmer lines in Type II supernovae. Since
the calculated and predicted level populations for hydrogen are in rough
agreement, this suggests that these lines are formed due to some phy-
sical aspect not considered in the models rather than a lack of under-
standing of the atomic processes involved.

Line profiles are more dependent on the variation of S and T with
radius, however., Future directions will include an investigation of the

profiles produced by the accurate level populations.
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