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Abstract 

 

Global observations and model simulations show that atmospheric carbon dioxide 

(CO2) concentrations and surface temperatures have been and will keep increasing. 

These environmental changes have significant influences on terrestrial biogeochemical 

cycles. On the other way, how changes in terrestrial biogeochemistry in response to the 

environmental changes can either amplify or alleviate climate change. Soils, the 

primary research subject of this dissertation, store more than twice as much carbon (C) 

as the atmosphere. As such, small changes in soil C may have large impacts on the 

magnitude of atmospheric CO2 concentrations and therefore climate change. However, 

due to the huge storage and relatively long residence time, how soil C responds to 

increasing atmospheric CO2 concentrations and surface temperatures is still unclear. The 

unclear response of soil C is one of the most important reasons for the uncertainties of 

the magnitude of global change in this century. In this dissertation, I attempted to study 

the responses of soil C and related biogeochemical processes to increased temperature 

and CO2 concentrations, through syntheses and data-model integration. 

In the first study, I estimated the responses of two critical soil C dynamic processes, 

replenishment and priming effect, to increased C input. With the responses of the two 

processes, I estimated the net change of soil organic C by increased C input. Results 

show that approximately 58% of newly added C is transferred into soil organic C (SOC) 

via replenishment, whereas the additional loss of old SOC due to priming effect only 

accounts for 8.4% of the added new C in the first year after a one-time new C input. As 

a result, the new C input leads to a net increase in SOC, ranging from 40% to 49% of 



xvii 

the added new C. The magnitude of the net increase in SOC is positively correlated with 

the nitrogen-to-C ratio of the added substrates. Furthermore, a 100-year modeling 

experiment confirms that an increase in new C input leads to significant SOC 

accumulation over time. The findings suggest that increasing plant productivity and the 

consequent increase in C input to soils likely promote SOC storage despite the 

enhanced decomposition of old C, potentially mitigating further climate change. 

The first study evaluated impacts of C input on soil C dynamics. My second study 

evaluated how nitrogen (N) regulates C input under elevated CO2. A popular hypothesis 

of the N constraint to the CO2 fertilization effect is progressive N limitation (PNL), 

which postulates that the stimulation of plant growth by CO2 enrichment results in more 

N sequestered in plant, litter and soil organic matter (SOM) so that, the N availability 

for plant growth progressively declines in soils over time. The reduced N availability 

then in turn constrains the further CO2 fertilization effect on plant growth over longer 

time scales. Although extensive research has explored whether or not PNL occurs under 

CO2 enrichment, a comprehensive assessment of the N processes that regulate PNL is 

still lacking. In the second study, I quantitatively synthesized the responses of all major 

processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental 

data available in the literature. The results showed that CO2 enrichment significantly 

increased N sequestration in the plant and litter pools but not in the soil pool, partially 

supporting one of the basic assumptions in the PNL hypothesis that elevated CO2 results 

in more N sequestered in organic pools. However, CO2 enrichment significantly 

increased the N influx via biological N fixation and the loss via nitrous oxide (N2O) 

emission, but decreased the N efflux via leaching. In addition, no general diminution 



xviii 

was observed in effects of CO2 fertilization on plant growth. Overall, the analyses 

suggest that the extra N supply by the increased biological N fixation and decreased 

leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the 

increases in plant N sequestration and N2O emission. Moreover, the syntheses indicate 

that CO2 enrichment increases soil ammonium (NH4
+) to nitrate (NO3

-) ratio. The 

changed NH4
+/NO3

- ratio and subsequent biological processes may result in changes in 

soil microenvironments, above-belowground community structures and associated 

interactions, which could potentially affect the terrestrial biogeochemical cycles. In 

addition, the data synthesis suggests that more long-term studies, especially in regions 

other than temperate ones, are needed for comprehensive assessments of the PNL 

hypothesis. 

In the third study, I evaluated methods for estimating the temperature sensitivity 

(Q10) of SOC decomposition since the Q10 estimate substantially depends on their 

specific assumptions. I compared several commonly used methods (i.e., one-pool (1P) 

model, two-discrete-pool (2P) model, three-discrete-pool (3P) model, and time-for-

substrate (T4S) Q10 method) plus a new and more process-oriented approach for 

estimating Q10 of SOC decomposition from laboratory incubation data. The process-

oriented approach is a three-transfer-pool (3PX) model that resembles the 

decomposition sub-model commonly used in Earth system models. The estimated Q10s 

generally increased with the soil recalcitrance, but decreased with the incubation 

temperature increase. The results indicated that the 1P model did not adequately 

simulate the dynamics of SOC decomposition and thus was not adequate for the Q10 

estimation. All the multi-pool models fitted the soil incubation data well. The Akaike 



xix 

information criterion (AIC) analysis suggested that the 2P model is the most 

parsimonious. As the incubation progressed, Q10 estimated by the 3PX model was 

smaller than those by the 2P and 3P models because the continuous C transfers from the 

slow and passive pools to the active pool were included in the 3PX model. Although the 

T4S method could estimate the Q10 of labile carbon appropriately, the analyses showed 

that it overestimated that of recalcitrant SOM. The similar structure of 3PX model with 

the decomposition sub-model of Earth system models provides a possible approach, via 

the data assimilation techniques, to incorporate results from numerous incubation 

experiments into Earth system models. 

In the fourth study, I studied how warming affect SOC storage in Alaskan tundra. By 

combining a process-based model and a unique field experiment, this study shows that 

warming reduced the base turnover rate of SOC, which is the representation of 

unresolved microbial community and activity on the resolved scale. The reduced base 

turnover rate of SOC suggests that microbial decomposers acclimate to warming in 

Alaskan tundra. Although warming still accelerates SOC loss, the acclimation 

counterbalances the SOC loss acceleration by 62%. Our study suggests that it is critical 

to incorporate changes in biological properties (as parameters) to improve the model 

performance in predicting C dynamics and its feedback to climate change. 

This dissertation demonstrates that integrating data and model can advance our 

understanding of biogeochemical cycles in the context of global change. Future research 

is needed to study the integrated effect of global change factors on the responses and 

feedbacks of biogeochemical cycles to global change. 
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Chapter 1: Introduction 
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1.1 Introduction: Global change and terrestrial biogeochemical cycles 

Human activities, such as fossil-fuel burning and deforestation, have led to 

substantial increase in atmospheric carbon dioxide (CO2) concentrations and the Earth 

surface temperature (IPCC, 2013). How to control the climate change in a reasonable 

magnitude is one of the most critical issues for humans in the 21st century (IPCC, 2013). 

Terrestrial ecosystems contain around 5 times carbon (C) as the atmosphere does 

(Chapin III et al., 2011). In addition, the two largest C fluxes, photosynthetic uptake of 

CO2 and ecosystem CO2 release via respiration, are sensitive to atmospheric CO2 

enrichment and climate warming (Rustad, 2006, Schwalm et al., 2010). Therefore, 

terrestrial C and related biogeochemical cycles play critical roles in regulating climate 

change. However, there still huge uncertainties exist in simulating and predicting 

terrestrial C cycle under global change (IPCC, 2013, Jones et al., 2013). 

One of the most important uncertainties is how soil organic C (SOC) will change 

under increased new C input. Priming effect, which promotes microbial growth and 

liberates C from mineral associations, has been identified as a major mechanism that 

stimulates decomposition of old soil organic C (SOC) by the addition of new C to soils 

(Kuzyakov et al., 2000, Fontaine et al., 2004a, Dijkstra & Cheng, 2007, Heimann & 

Reichstein, 2008, Kuzyakov, 2010, Sayer et al., 2011, Schmidt et al., 2011, van 

Groenigen et al., 2014, Keiluweit et al., 2015). In the context of climate change, a major 

concern is that if priming effect is substantial and pervasive across ecosystems, 

enhanced plant production due to elevated CO2 and thus increased C input to soils may 

limit or reduce SOC storage, leading to a positive feedback to climate change (Heimann 

& Reichstein, 2008, Sayer et al., 2011, van Groenigen et al., 2014). However, enhanced 
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SOC decomposition due to priming effect may be counter-balanced by replenishment of 

SOC due to increased C input through various mechanisms (Rubino et al., 2010, 

Cotrufo et al., 2013, Cotrufo et al., 2015, Soong & Cotrufo, 2015). As a result, the 

direction and magnitude of SOC change in response to increased C input is determined 

by the net effect of priming and replenishment. Therefore, it is critical to quantify both 

priming effect and replenishment and thus the net SOC change caused by increasing C 

input. 

The researches on the priming effect and replenishment are based on an important 

assumption that atmospheric CO2 enrichment stimulate plant growth and the consequent 

C input to soil. Thus, a third important uncertainty is that whether the stimulated plant 

growth and the increased C input to soils by CO2 fertilization sustains on longer 

temporal scales. An important reason is that the stimulated plant growth requires 

additional nitrogen (N), an essential element for molecular compounds of amino acids, 

proteins, ribonucleic acids (RNAs) and deoxyribonucleic acids (DNAs) in organisms 

(Oren et al., 2001, Hungate et al., 2003, Luo et al., 2004, Thornton et al., 2009, Norby 

et al., 2010). Therefore, N limitation has the potential to constrain the CO2 fertilization 

effect on terrestrial C sequestration (Rastetter et al., 1997, Oren et al., 2001, Luo et al., 

2004, Reich et al., 2006, Norby et al., 2010, Reich & Hobbie, 2013). The N limitation 

potential is dependent on the balance of N demand and supply (Luo et al., 2004, Finzi et 

al., 2006, Walker et al., 2015). To date, no general pattern of N limitation under 

enriched CO2 across ecosystems has yet been revealed. To reveal the general pattern, it 

is necessary to synthesize the response of multiple N cycling processes to CO2 

enrichment. 
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Another important uncertainty is the response of soil organic matter (SOM) 

decomposition to warming. SOM is the largest C pool in terrestrial ecosystems 

(Schlesinger, 1995). As a biochemical process, the decomposition of SOM is sensitive 

to increased temperature (Luo et al., 2001, Fang et al., 2005, Davidson & Janssens, 

2006). Thus, it is important to accurately estimate the temperature sensitivity (expressed 

as Q10, which measures the change in decay rates for a 10 K warming) of SOM 

decomposition. However, the Q10 estimation substantially relies on the methods used, 

which usually have their respective assumptions, leading to contradictory conclusions 

(Liski et al., 1999, Fang et al., 2005, Rey & Jarvis, 2006, Conant et al., 2008). To better 

understand the warming impacts on SOM decomposition, it is important to evaluate 

these methods and the underlying assumptions. 

In addition, one more question is whether the increased Earth surface temperature 

alters soil microbial community which may reduce (i.e., acclimation) or enhance the C 

release from terrestrial soils (Luo et al., 2001, Bradford et al., 2008, Hartley et al., 

2008, Karhu et al., 2014). Although many warming studies in both fields and 

laboratories have been conducted, the microbial response to warming and the 

consequent effects on C cycle are still lacking in the permafrost soils, which store 

around twice as much C as the atmosphere does (Zimov et al., 2006, Schuur et al., 

2008, Schuur et al., 2009, Chapin III et al., 2011, IPCC, 2013). In addition, in the 

permafrost regions, the SOM is relatively easy to be decomposed as long as temperature 

gets warmer (Schuur et al., 2008, Schuur et al., 2009). Therefore, the C dynamics in 

permafrost regions is potentially critical to climate change. Scientists are trying to 

incorporate the permafrost C dynamics into Earth system models (ESMs) (Koven et al., 
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2011). However, lacking of accurate understanding of the possible nonlinear microbial 

responses to climate warming may lead to mislead the model prediction. Thus, a 

comprehensive study including both experimental evidence and model simulation is 

critically needed to understand the C dynamics in the permafrost regions and evaluate 

the current generation’s ESMs. 

 

1.2 Literature review 

1.2.1 Effect of new C input on soil C storage. 

The research on the effect of new C input on the dynamic of old SOM could be 

traced back to 1926 (Löhnis, 1926). Löhnis (1926) found that more nutrient released 

from old SOM after adding fresh detritus, which is called priming effect. The priming 

effect has attracted much attention again in the context of climate change because it 

may promote the decomposition of old SOM and consequently amplify climate change 

(Kuzyakov et al., 2000, Fontaine et al., 2004a, Dijkstra & Cheng, 2007, Kuzyakov, 

2010, Cheng et al., 2014, van Groenigen et al., 2014). Recent researches have 

demonstrated that the priming effect includes both positive and negative (Kuzyakov et 

al., 2000). When increased new C is added, microbial community would decompose 

more old SOM with positive priming effect, whereas it would decompose less old SOM 

with negative priming effect. The direction and magnitude of the priming effect could 

be affected by the amount of the new substrate added into the system, the chemical 

characters of added substrates and SOM (e.g, C/N ratio), and soil microbial community 

composition (Kuzyakov et al., 2000, Guenet et al., 2010a, Kuzyakov, 2010, 

Blagodatskaya et al., 2011). Although the negative priming effect has been observed in 
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some studies (e.g., Guenet et al., 2010a, Qiao et al., 2014), new C addition usually leads 

to positive priming effect (Wu et al., 1993, Kuzyakov et al., 2000, Bell et al., 2003, 

Perelo & Munch, 2005, Fontaine et al., 2007, Kuzyakov, 2010, Guenet et al., 2012, 

Qiao et al., 2014, van Groenigen et al., 2014). Because the SOM stores a huge amount 

of C, the priming effect may increase the CO2 concentrations in the atmosphere, and 

consequently aggravate the positive feedback to climate change (Kuzyakov et al., 2000, 

Fontaine et al., 2004a, Dijkstra & Cheng, 2007, Fontaine et al., 2007, Kuzyakov, 2010, 

van Groenigen et al., 2014). 

On the other hand, studies on soil aggregates and stabilization have suggested that 

labile C could be transferred to relatively resistant form to replenish SOC (Sollins et al., 

1996, Jastrow & Miller, 1997, Six et al., 2002). The mechanisms for the replenishment 

include physical, chemical, and biochemical ones (Jastrow & Miller, 1997, Six et al., 

2002). In other words, not all the new C has been respired to CO2 in the priming effect 

studies. Thus, to understand the SOC change by new C input, it is critical to quantify 

both the replenishment and priming effect, and consequently, the net effect. 

 

1.2.2 Nitrogen limitation to plant growth under CO2 enrichment. 

Although the constraint of N to CO2 fertilization effect has been studied widely, it is 

still controversial and no general pattern has been generated. Several proposed 

mechanisms on both negative and positive effects of CO2 enrichment on the N 

availability for plant growth have been discussed during the past decades. On the one 

hand, progressive N limitation (PNL) hypothesis postulates that the stimulation of plant 

growth by CO2 enrichment results in more N sequestered in plants, litter and soil 
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organic matter (SOM) so that, the N availability progressively declines in soils over 

time (Hungate et al., 2003, Luo et al., 2004). In addition, the growth dilution hypothesis 

posits that as the plants get larger under CO2 enrichment, litter quality decreases due to 

lower tissue N concentration and greater C:N ratio (Justes et al., 1994, Luo et al., 2006). 

The low litter quality induced by the growth dilution could depress the litter 

mineralization and, in turn, the N release from litter to soil (Rastetter et al., 1997). On 

the other hand, the stimulated fresh C input to soils by CO2 enrichment has the potential 

to increase the N mineralization due to the enhanced microbial activities, as posited by 

the “priming effect” hypothesis (Löhnis, 1926, Kuzyakov et al., 2000). In addition, the 

enhanced biological N fixation (Luscher et al., 2000, Hoque et al., 2001) and increased 

fine root production (Iversen, 2010, Iversen et al., 2011) under CO2 enrichment could 

partially alleviate the N limitation. Moreover, with the relatively constant resorption 

efficiency, the greater amount of N in plant tissues under enriched CO2 could also 

provide more N for the next step’s plant growth (Norby et al., 2000, Norby et al., 2001, 

Luo et al., 2004). The diverse mechanisms of the CO2 enrichment effects on available N 

in soils have constrained the accurate predictions of terrestrial C dynamics in Earth 

system models. Therefore, a synthesis of comprehensive data across ecosystems are 

needed to derive the general patterns of the N availability and plant growth in response 

to CO2 enrichment. 

 

1.2.3 Methods for estimating temperature sensitivity of SOM decomposition. 

Temperature sensitivity of SOM decomposition has been estimated by using a 

variety of methods, such as seasonal soil respiration directly in field experiments (Luo 
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et al., 2001) and laboratory incubation (Fang et al., 2005). Comparing to direct field 

measurements, laboratory incubation can better exclude influences of factors other than 

temperature on SOM decomposition. Thus, it has widely been used for estimating 

temperature sensitivity (i.e., Q10). In the laboratory incubation experiments, direct 

calculation at specific incubation time has been used to estimate Q10 of SOM 

decomposition based on incubation data using the CO2 emission rates at different 

incubation temperatures (Rey & Jarvis, 2006). The estimate is likely underestimates the 

temperature sensitivity because greater decomposition results in less substrate at high 

than low temperatures at the same point of incubation time. An improvement has been 

made recently by estimating the Q10 by comparing the times for respiring a given 

amount of C at different temperatures (Rey & Jarvis, 2006, Conant et al., 2008). One 

important assumption of this method is that a given amount of respired CO2 is from 

similar fractions of SOM when the substrates are at the same level at different 

temperatures (Conant et al., 2008). 

In addition to the direct calculations, C dynamic models have also been used to 

simulate laboratory incubation studies and estimate Q10 (Kätterer et al., 1998, Rey & 

Jarvis, 2006). In these models, the soil is usually divided into discrete pools based on 

their turnover rates (Kätterer et al., 1998, Rey & Jarvis, 2006). Through these models, 

the Q10 for each conceptual pool can be estimated (Rey & Jarvis, 2006). Generally, 

multi-pool models fit incubation data very well and are more popular for Q10 estimation 

(Kätterer et al., 1998, Rey & Jarvis, 2006). 
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1.2.4 Effect of warming on soil C loss in permafrost regions. 

Permafrost regions have experienced, and will likely experience faster climate 

warming than other regions (IPCC, 2013). SOC in the permafrost regions is huge in 

magnitude and has long been protected due to low temperatures. As climate gets 

warmer, SOC in these regions can become vulnerable to rising temperatures and could 

potentially lose a large amount of carbon (C) to the atmosphere, acting as an important 

C source (Schuur et al., 2009, Koven et al., 2011, MacDougall et al., 2012, Schuur et 

al., 2015, Hicks Pries et al., 2016). However, it is still controversial that to what extent 

the C source will be. 

Climate warming in the permafrost regions can lead to direct temperature rise and 

permafrost thaw. In addition, long-term warming may also affect soil microbial 

community composition, which may further change microbial activity, and 

consequently CO2 emissions to the atmosphere (Manzoni et al., 2012, Hultman et al., 

2015, Xue et al., 2016). The changed microbial community and activity may lead to 

nonlinear response of soil C decomposition to warming (Luo et al., 2001, Bradford et 

al., 2008, Hartley et al., 2008, Karhu et al., 2014). One of the most common nonlinear 

responses is acclimation (Luo et al., 2001; Bradford et al., 2008). With acclimation, the 

accelerated SOC loss can be alleviated. Moreover, the altered microbial community and 

activity may also change C use efficiency (CUE) (Allison et al., 2010, Li et al., 2014). 

With higher CUE, microbes use more proportion of derived C to build up their body 

mass and community size, and consequently less proportion of C would be respired to 

the atmosphere via CO2 emission, and vice versa (Luo et al., 2001, Bradford et al., 

2008, Hartley et al., 2008, Karhu et al., 2014). Thus, how SOC change in the 
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permafrost regions is determined by all the magnitude of temperature rise, permafrost 

thaw, and possible changes in decomposers. 

 

1.3 Studies conducted in the dissertation 

Four studies were conducted in this dissertation to study the responses of soil carbon 

and related biogeochemical processes to increased temperature and carbon dioxide 

concentrations. In Chapter 2, I attempted to synthesize the effects of increasing carbon 

input on soil carbon replenishment and priming effect, and the consequent net soil 

organic carbon change. I first compiled 45 datasets from laboratory incubation 

experiments using isotope-labelled carbon to trace the origins of emitted carbon 

dioxide, which can provide information on carbon replenishment and priming effect. 

Second, against the collected dataset, I evaluated four soil dynamic models, including a 

conventional first-order kinetic model, an interactive model, a regular Michealis-

Menten model, and reverse Michealis-Menten model. I selected the most parsimonious 

model (i.e., the interactive model). After that, using the interactive model, I synthesized 

short-term and long-term effects of increasing carbon input on soil carbon 

replenishment and priming effect, and the consequent net soil organic carbon change for 

the datasets spanning a diverse range of different soils and substrate quality. 

In Chapter 3, I synthesized data published in the literature on the nitrogen limitation 

to plant growth under enriched carbon dioxide conditions. Two sets of data from the 

literature were collected. With the first dataset, I quantitatively examined the effects of 

carbon dioxide enrichment on all the major processes and pools in the nitrogen cycle 

using meta-analysis. These processes and pools included nitrogen sequestered in 
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organic components, biological nitrogen fixation, net mineralization, nitrification, 

denitrification, leaching, and total inorganic nitrogen, ammonium and nitrate contents in 

soils. The first dataset was also used to explore the responses of the nitrogen processes 

to short- vs. long-term carbon dioxide treatments. In addition, the responses of the 

nitrogen processes to carbon dioxide enrichment were compared between without and 

with nitrogen addition conditions. The second dataset was compiled for the plant 

growth in decadal free air carbon dioxide enrichment (FACE) experiments. With the 

dataset, I explored whether the carbon dioxide fertilization effect on plant growth 

diminishes or not over time. 

In Chapter 4, I evaluated five methods for estimating the temperature sensitivity 

(Q10) of soil organic carbon decomposition. A data set from a long-term laboratory soil 

incubation experiment was collected. Then I developed a new three-transfer-pool (3PX) 

model to resemble the model structure of soil carbon dynamics in Earth system models 

for estimating Q10 of SOM decomposition. I compared four widely used methods: one-

pool (1P) model, two-discrete-pool (2P) model, three-discrete-pool (3P) model, and 

time-for-substrate (T4S) with the 3PX model for Q10 estimation using the same data set 

from a laboratory soil incubation experiment. 

In Chapter 5, by integrating data from a unique long-term field manipulative 

experiment and a process-based model, I attempted to test the hypothesis that soil 

microbial community can acclimate to warming, and consequently alleviate the 

accelerated SOC loss.  
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Chapter 2: More replenishment than priming loss of soil organic 

carbon with additional carbon input 
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Abstract: An increase in carbon (C) input to soil under increasing atmospheric CO2 can 

replenish soil organic C (SOC) through various stabilization mechanisms, and stimulate 

the decomposition of old SOC by priming effect. The net change in SOC under 

increased C input is a balance between those two effects, and remains controversial. 

Here I show, through data-model integration and synthesis, that approximately 58% of 

newly added C is transferred into SOC via replenishment, whereas the additional loss of 

old SOC due to priming effect only accounts for 8.4% of the added new C in the first 

year after a one-time new C input. As a result, the new C input leads to a net increase in 

SOC, ranging from 40% to 49% of the added new C. The magnitude of the net increase 

in SOC is positively correlated with the nitrogen-to-C ratio of the added substrates. 

Furthermore, a 100-year modeling experiment confirms that an increase in new C input 

leads to significant SOC accumulation over time. The findings suggest that increasing 

plant productivity and the consequent increase in C input to soils likely promote SOC 

storage despite the enhanced decomposition of old C, potentially mitigating further 

climate change. 

 

 

2.1 Introduction 

Soils store more than twice as much carbon (C) as the atmosphere (IPCC, 2013). As 

such, a small change in soil C content may have a large impact on the magnitude of 

atmospheric CO2 concentrations and therefore climate change. Priming effect has been 

identified as a major mechanism that stimulates decomposition of old soil organic C 

(SOC) by the addition of new C to soils (Kuzyakov et al., 2000, Fontaine et al., 2004a, 

Dijkstra & Cheng, 2007, Heimann & Reichstein, 2008, Kuzyakov, 2010, Sayer et al., 
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2011, Schmidt et al., 2011, van Groenigen et al., 2014, Keiluweit et al., 2015). The 

latter promotes microbial growth and liberates C from mineral associations (Kuzyakov, 

2010, Keiluweit et al., 2015). In the context of climate change, a major concern is that if 

priming effect is substantial and pervasive across ecosystems, enhanced plant 

production due to elevated CO2 and thus increased C input to soils may limit or reduce 

SOC storage, leading to a positive feedback to climate change (Heimann & Reichstein, 

2008, Sayer et al., 2011, van Groenigen et al., 2014). However, enhanced SOC 

decomposition due to priming effect may be counter-balanced by replenishment of SOC 

due to increased C input through various mechanisms (Rubino et al., 2010, Cotrufo et 

al., 2013, Cotrufo et al., 2015, Soong & Cotrufo, 2015). Therefore, it is critical to 

quantify the net effect of priming and replenishment on SOC balance as it determines 

the direction and magnitude of SOC changes caused by increasing C input as 

anticipated in the higher CO2 world in the future. 

We used a data-model synthesis to quantify both short-term and long-term 

replenishment and priming effect of new C input, and consequently the net SOC 

change. I compiled 45 datasets from laboratory incubation experiments using isotope-

labelled C to trace the origins of emitted CO2 (Table 2.1). Observations from those 

experiments provide information on C replenishment and priming. The 45 studies were 

divided into two data groups, one for model selection and parameter optimization (data 

group I with 40 datasets) and the other for model validation (data group II with 5 

datasets) (Table 2.1). 
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Table 2.1 Summary of the collected studies. 40 studies were used for model 

selection and parameter optimization (data group I), and the other 5 were used for 

out-of-sample model validation (data group II). 

Study 

Ecosystem/Soil 

type 

Added 

substrate 

SOC 

(mg kg-1) 

New C  

(mg kg-1) 

Duration of 

Experiment 

(days) 

 

Data 

group 

1 Vertisol Glucose 19000 1000 66 I 

2 Vertisol Starch 19000 1000 66 I 

3 Vertisol Legume leaves 19000 1000 66 I 

4 Vertisol Wheat leaves 19000 1000 66 I 

5 Grass savannah Cellulose 10500 495 70  I 

6 Grassland Cellulose 23300 1000 160  I 

7 Cropland Cellulose 5000 500 39  I 

8 Cropland Wheat straw 10400 3200 80  I 

9 Cropland Wheat straw 10400 2200 80  II 

10 Cropland Wheat straw 10400 1500 80  II 

11 Barren Glucose 26300 1000 97  I 

12 Barren Glucose 19100 1000 97  I 

13 Barren Glucose 15900 1000 97  I 

14 Cropland Ryegrass leaves 35000 424 100  I 

15 Brown forest soil Sucrose 39700 6000 32  I 

16 Brown forest soil Chopped leaves 39700 6000 32  I 

17 Brown forest soil Ground leaves 39700 6000 32  I 

18 Cropland Wheat straw 14700 5000 120  I 

19 Cropland Alfalfa leaves 14700 5000 120  I 

20 Cropland Glucose 17000 500 98  I 

21 Cropland Glucose 14000 500 98  I 

22 Cropland Mustard leaves 17000 500 98  I 

23 Cropland Mustard leaves 14000 500 98  I 

24 Coniferous forest Pinus leaves 17500 1430 120  I 

25 Coniferous forest Michelia leaves 17500 1430 120  I 

26 Coniferous forest Pinus leaves & N 17500 1430 120  I 

27 Coniferous forest Pinus leaves & P 17500 1430 120  I 

28 Coniferous forest Michelia leaves & N 17500 1430 120  I 

29 Coniferous forest Michelia leaves & P 17500 1430 120  I 

30 Coniferous forest Pinus leaves 4780 1430 120  I 

31 Coniferous forest Pinus leaves & N 4780 1430 120  I 

32 Coniferous forest Michelia leaves 4780 1430 120  I 

33 Coniferous forest Michelia leaves & N 4780 1430 120  I 

34 Permanent grassland Glucose 40900 5000 100  I 

35 Permanent grassland Glucose 40900 500 100  II 

36 Permanent grassland Ryegrass leaves 40900 5000 145  I 

37 Permanent grassland Ryegrass leaves 40900 500 145  II 

38 Cropland Wheat straw 8300 1540 31  I 

39 Cropland Wheat straw 8800 1540 31  I 

40 Cropland Wheat straw 9300 1540 31  I 

41 Cropland Wheat straw 9200 1540 31  I 

42 Grassland Glucose 24000 1000 54  I 

43 Grassland Glucose 24000 100 54  II 

44 Subtropical forest Glucose 138400 2768 168 I 

45 Tropical forest Glucose 27800 556 168 I 
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Before estimating the effects of increased C input on the net SOC balance, I 

evaluated four models, representing four different approaches to quantify replenishment 

and priming effect. The four models are: 1) a conventional (i.e., first-order kinetic) 

decomposition model, 2) an interactive two-pool model, 3) a regular Michaelis-Menten 

model, and 4) a reverse Michaelis-Menten model (Fig. 2.1). In the conventional and the  

 

Figure 2.1 Models evaluated in the study. a, conventional model, in which C loss 

from each pool is only determined by pool size and its decay rate. b, interactive 

model, in which old C loss is affected by both new and old C pools. c, regular 

Michaelis-Menten model, in which C transfer rate has a linear relationship with 

microbial pool size (MIC) and a Michaelis-Menten relationship with substrates 

(i.e., new and old C). d, reverse Michaelis-Menten model, in which C transfer rate 

has a Michaelis-Menten dependence on MIC and a linear dependence on substrate. 

 

interactive two-pool models, replenishment is represented by a transfer coefficient from 

the new C to the old soil C (Fig. 2.1a, b), while the regular and reverse Michaelis-

Menten models transfer the new C to the old C through microbial uptake and turnover 
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(Fig. 2.1c, d). For the priming effect, it is represented by changing model parameters 

(e.g., increase of decay rates of C pools) in the conventional model, and by a nonlinear 

relationship between the decomposition rate of old C and the amount of the new C in 

the interactive model. The regular and reverse Michaelis-Menten models represent 

priming effect by including the dependence of old C decomposition on microbial 

biomass (linearly in the regular Michaelis-Menten model and nonlinearly in the reverse 

Michaelis-Menten model) and effects of new C input on microbial biomass (Fig. 2.1c, 

d). 

 

2.2 Materials and Methods 

2.2.1 Data collection. 

Laboratory incubation experiments with isotope-labelled carbon (C) addition were 

chosen for this study. Since isotope measurements are necessary to trace the origins of 

the emitted CO2, a comprehensive literature search with the terms of “isotope” and “soil 

incubation” was conducted using the online search connection Web of Science in 

Endnote. Studies meeting the following criteria were selected for further analyses: (i) 

both control and new C addition treatment were included; (ii) the added new C was 

isotope labelled to distinguish the origins of emitted CO2; (iii) soil organic C (SOC)  

contents before incubation and the added new C amount were reported; (iv) CO2 

emissions from old SOC at both control and new C addition treatment, and from the 

added new C were reported or could be estimated; (v) multiple CO2 emission 

measurements (> 2 time points) over the incubation period were conducted; (vi) 

experiments lasted at least one month. One month was chosen based on the tradeoff 



18 

between the number of studies I can synthesize vs. the information available for model 

optimization in each study. A total of 45 datasets from 16 publications were collected 

(Table 2.1) (Wu et al., 1993, Chotte et al., 1998, Magid et al., 1999, Luna-Guido & 

Dendooven, 2001, Bell et al., 2003, Fontaine et al., 2004b, Perelo & Munch, 2005, 

Fontaine et al., 2007, Nottingham et al., 2009, Guenet et al., 2010a, Guenet et al., 

2010b, Blagodatskaya et al., 2011, Pascault et al., 2013, Qiao et al., 2014, Wang et al., 

2014a, Wang et al., 2014b). In three publications, different amounts of new C were 

applied (Wu et al., 1993, Guenet et al., 2010a, Blagodatskaya et al., 2011). In this case, 

one new C amount was used for model selection and parameter optimization (studies 8, 

34, 36, 42 in Table 2.1), and the others were used for model validation (studies 9, 10, 

35, 37, 43 in Table 2.1). Overall, there were 40 datasets for model selection and 

parameter optimization (data group I), and 5 for model validation (data group II). The 

studies were divided into three categories based on added substrate nitrogen-to-C (N:C) 

ratio: (i) without N, (ii) low N:C ratio (i.e., straw), and (iii) high N:C ratio (leaf 

materials), to investigate the influence of substrate N:C ratio on SOC storage change. 

 

2.2.2 Models. 

Four different types of models, including a conventional model, an interactive model, 

a regular Michaelis-Menten model, and a reverse Michaelis-Menten model, were used 

to represent soil C dynamics in this tudy. The conventional model used first-order 

equations which are commonly used in the current generation of Earth system models 

(Fig. 2.1a) (Liang et al., 2015, Luo et al., 2016). As new (N) C is added to the soil with 
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labile (L) and recalitrant (R) pools, the C dynamics among the three pools can be 

represented by the following equations: 

𝑑𝑁

𝑑𝑡
= 𝐼−𝐾𝑁 × 𝑁 

𝑑𝐿

𝑑𝑡
= 𝐾𝑁 × 𝑁 × 𝑎𝐿, 𝑁 + 𝐾𝑅 × 𝑅 × 𝑎𝐿, 𝑅 − 𝐾𝐿 × 𝐿 

𝑑𝑅

𝑑𝑡
= 𝐾𝑁 × 𝑁 × 𝑎𝑅, 𝑁 + 𝐾𝐿 × 𝐿 × 𝑎𝑅, 𝐿 − 𝐾𝑅 × 𝑅 

where I is new C input; 𝐾𝑁, 𝐾𝐿, and 𝐾𝑅 are decay rates of new C, labile SOC, and 

recalcitrant SOC; 𝑎𝐿,𝑁 and 𝑎𝑅,𝑁 are transfer coefficients from new C to labile and 

recalcitrant SOC, respectively; 𝑎𝑅,𝐿 is transfer coefficient from labile to recalcitrant 

SOC; 𝑎𝐿,𝑅 is transfer coefficient from recalcitrant to labile SOC. The conventional 

model can represent nonlinear processes, such as priming effect, through changing 

parameters (van Groenigen et al., 2014). Thus, the model had two sets of parameters, 

one for the control and the other for the new C addition treatment. 

The interactive model was built based on the Introductory C Balance Model (ICBM) 

(Andrén & Kätterer, 1997). In the interactive model, the soil C dynamics are described 

by: 

𝑑𝑁

𝑑𝑡
= 𝐼 − 𝐾𝑁 × 𝑁 

𝑑𝑂

𝑑𝑡
= 𝐾𝑁 × 𝑁 × 𝑟 − (𝐾𝑂 + 𝐾𝑝 × 𝑁𝑝) × 𝑂 

where N and O are the pool sizes of new and old C, respectively; KN and KO are the base 

decay rates of new and old C, respectively; r is the transfer coefficient from new to old 

C (i.e., replenishment coefficient); Kp is the decay rate of old C due to priming effect; p 
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is a power factor that determines the magnitude of the effect of new C pool size on 

priming effect. 

The third model is the regular Michaelis-Menten model (Allison et al., 2010, 

Wieder et al., 2013, Wang et al., 2014c) (Fig. 2.1c) with the following equations 

𝑑𝑁

𝑑𝑡
= 𝐼 − 𝐵 ×

𝑉𝑁 × 𝑁

𝑁 + 𝐾𝑁
 

𝑑𝑂

𝑑𝑡
= 𝜇𝐵 × 𝐵 − 𝐵 ×

𝑉𝑂 × 𝑂

𝑂 + 𝐾𝑂
 

𝑑𝐵

𝑑𝑡
= −𝜇𝐵 × 𝐵 + 𝜀 × 𝐵 × (

𝑉𝑁 × 𝑁

𝑁 + 𝐾𝑁
+

𝑉𝑂 × 𝑂

𝑂 + 𝐾𝑂
) 

where N, O, and B are pool sizes of new C, old C, and microbial biomass; VN and VO are 

maximum substrate C (new or old C) assimilation rates; KN and KO are Michaelis-

Menten constants; 𝜇𝐵 is turnover constant of microbial biomass; 𝜀 is microbial growth 

efficiency. 

The fourth model is the reverse Michaelis-Menten model (Wutzler & Reichstein, 

2013, Wang et al., 2016) as, 

𝑑𝑁

𝑑𝑡
= 𝐼−𝜇𝑁 × 𝑁 ×

𝐵

𝐵 + 𝐾𝐵
 

𝑑𝑂

𝑑𝑡
= 𝜇𝐵 × 𝐵 − 𝜇𝑂 × 𝑂 ×

𝐵

𝐵 + 𝐾𝐵
 

𝑑𝐵

𝑑𝑡
= −𝜇𝐵 × 𝐵 + 𝜀 × (𝜇𝑁 × 𝑁 + 𝜇𝑂 × 𝑂) ×

𝐵

𝐵 + 𝐾𝐵
 

where N, O, and B are pool sizes of new C, old C, and microbial biomass; 𝜇𝑁, 𝜇𝑂, 𝜇𝐵 

are turnover constants of new C, old C, and microbial biomass; 𝐾𝐵 is a constant for C 

consumption by microbes; 𝜀 is microbial growth efficiency. 
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2.2.3 Model optimization and selection. 

The model optimization was based on Bayes’ theorem: 

𝑃(𝜃|𝑍) ∝ 𝑃(𝑍|𝜃)𝑃(𝜃) 

in which the posterior probability density function (PDF) P(θ|Z) of model parameters 

(θ) was estimated from the prior PDF P(θ) and the data information represented by a 

likelihood function P(Z|θ). The prior PDFs were uniform distributions over specific 

parameter ranges. The likelihood function P(Z|θ) was calculated assuming that errors of 

observations were independent and followed a multivariate Gaussian distribution: 

𝑃(𝑍|𝜃) ∝ 𝑒𝑥𝑝 {− ∑ ∑
[𝑍𝑖(𝑡) − 𝑋𝑖(𝑡)]2

2𝜎𝑖
2(𝑡)

𝑡∈𝑜𝑏𝑠(𝑍𝑖)

𝑛

𝑖=1

} 

where Zi(t) and Xi(t) are the observed and modeled values, respectively. σi(t) is the 

standard deviation of measurements. 

For each study in data group I, the models were optimized by using the adaptive 

Metropolis-Hastings algorithm, a Markov Chain Monte Carlo (MCMC) technique 

(Metropolis et al., 1953, Hastings, 1970). In the conventional model, it is necessary to 

change parameters to capture priming effect. Thus, there were two separate sets of 

parameters, one for the control and the other for the new C addition treatment. In the 

rest three models, one set of parameters for each study was derived using data from both 

the control and the new C addition treatment simultaneously. To derive the posterior 

PDFs of parameters, two steps were repeated (Xu et al., 2006, Liang et al., 2015): (i) a 

proposing step and (ii) a moving step (Xu et al., 2006, Liang et al., 2015). In the 

proposing step, a new point θnew was generated based on the previously accepted point 

θold: 
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𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + 𝑑(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)/𝐷 

where θmax and θmin are the maximum and minimum values in the prior uniform 

distribution of the given parameter, d is a random value between -0.5 and 0.5, and D is 

used to control the proposing step size. In the moving step, the new point θnew was tested 

against the Metropolis criterion to determine whether θnew is accepted or rejected. The 

covariance from a test run was used for the first 4000 iterations. After that, the 

covariance was updated each iteration based on previously generated parameters. The 

first half of accepted samples were discarded, and only the rest were used for further 

analyses. 

Deviance information criterion (DIC) (Spiegelhalter et al., 2002) and likelihood of 

model (Burnham & Anderson, 2002) were used to evaluate the models given the data. 

For each study, DIC was calculated by  

𝐷𝐼𝐶 = 𝐷̅ + 𝑝𝐷 

where  

𝐷̅ =
1

𝑆
∑ (−2𝑙𝑜𝑔(𝑃(𝑍|𝜃𝑖)))

𝑆

𝑖=1

 

and  

𝑝𝐷 = 𝐷̅ + 2𝑙𝑜𝑔(𝑃(𝑍|𝜃̅)) 

where S is the number of the generated parameter sets, and 𝜃̅ is the mean of the 

generated parameter sets. The weighted average DIC for all studies was calcuted by  

𝐷𝐼𝐶𝑤 =
∑ 𝐷𝐼𝐶𝑖𝑁𝑖

40
𝑖=1

∑ 𝑁𝑖
40
𝑖=1

 

where Ni is the number of data points in the ith study. Smaller DIC means better model. 

The likelihood (L) of model given the data was calculated by 
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𝐿 = 𝑒−0.5(𝐷𝐼𝐶−𝐷𝐼𝐶𝑚𝑖𝑛) 

where DICmin is the minimum DIC value of the four models. In this study, 0.5 was used 

as a threshold for L to select model. Only the interactive model had a L value bigger 

than 0.5 (Fig. 2.2). Thus, the interactive model was used for further analyses. 

 

Figure 2.2 Within-sample model evaluation. a – d, comparison between observed 

and model simulated cumulative CO2 emissions in data group I. a, conventional 

model; b, interactive model; c, regular Michaelis-Menten model; d, reverse 

Michaelis-Menten model. Blue, CO2 emission from old C at control; Red, CO2 

emission from old C at new addition treatment; Black, CO2 emission from added 

new C; Dashed line, 1:1 line; Solid line: linear regression line (slope, R2, P values 

are shown in e). e, number of parameters, slope, R2, P values, deviance information 

criterion (DIC), and likelihood of the models given the data. The number of 

parameters in the conventional model is 12 due to 6 parameters for each of control 

and new C addition treatment. 
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2.2.4 Model validation. 

The interactive model was further validated against data group II (i.e., out-of-sample 

validation). For example, the optimized model in study 8 was used to estimate CO2 

emissions for studies 9 and 10, with their respective new C input amount. The model 

was run repeatedly with all the generated parameter sets from study 8. The procedule 

was repeated for study 35, 37, and 43 with parameters generated from study 34, 36, and 

42, respectively. Then the mean values of the modeled CO2 emissions were compared 

with the observed ones in data group II to reveal the performance of the model in SOC 

dynamic simulation. Through the validation, the predictive skill of the interactive model 

given the soil and substrate types could be revealed. 

 

2.2.5 Short-term replenishment, priming and net SOC change. 

For each study, short-term replenishment, priming and net SOC change, with their 

respective new C input at the beginning, were estimated using the optimized interactive 

model. I paid particular interest in the first year to estimate annual C balance. The 

annual replenishment is the C amount that is transferred from new to old pool and has 

not been decomposed within the first year. The annual priming loss is the cumulative 

stimulated C loss from old C pool due to priming effect during the same period. For 

each study, all the generated parameter sets were treated as replicates. Mean (M) and 

standard deviation (SD) of the replicates were calculated. For each variable and 

category, the weighted mean and 95% confidence interval (CI) were estimated by the 
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following two steps (Borenstein et al., 2009). In the first step, the within-study variance 

was calculated by 

𝑉 =
𝑆𝐷2

𝑛
 

and the between-study variance T2 was calculated by 

𝑇2 =
𝑄 − 𝑑𝑓

𝑈
 

where  

𝑄 = ∑ 𝑊𝑗𝑀𝑗
2

𝑘

𝑗=1

−
(∑ 𝑊𝑗𝑀𝑗

𝑘
𝑗=1 )

2

∑ 𝑊𝑗
𝑘
𝑗=1

 

𝑑𝑓 = 𝑘 − 1 

𝑈 = ∑ 𝑊𝑗

𝑘

𝑗=1

−
∑ 𝑊𝑗

2𝑘
𝑗=1

∑ 𝑊𝑗
𝑘
𝑗=1

 

where k is the number of studies. Mj is the mean value of study j. Wj is the first-step 

weighting factor of each study, which is 1/Vj. In the second step, the weighting factor of 

the random-effects model was calculated by 

𝑊𝑗
∗ =

1

𝑉𝑗
∗ 

where 𝑉𝑗
∗ is the sum of the within-study variance for study j and the between-studies 

variance: 

𝑉𝑗
∗ = 𝑉𝑗 + 𝑇2 

Then the weighted mean was calculated as 

𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
∑ 𝑊𝑗

∗𝑀𝑗
𝑘
𝑗=1

∑ 𝑊𝑗
∗𝑘

𝑗=1

 

with the variance as 
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𝑉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
1

∑ 𝑊𝑗
∗𝑘

𝑗=1

 

The 95% lower and upper limits (LLweighted and ULweighted) for the weighted mean were 

computed as 

𝐿𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 − 1.96 × √𝑉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 

and 

𝑈𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 + 1.96 × √𝑉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 

The effect was considered statistically significant at P < 0.05 level if the 95% CI did not 

overlap with zero. The difference among categories were considered statistically 

significant at P < 0.05 level when their 95% CIs did not overlap. All the calculations 

were conducted in MetaWin 2.1 (Rosenberg et al., 2000). 

 

2.2.6 Long-term modeling experiment. 

For each of the datasets spanning a diverse range of different soils and substrate 

quality, 100 sets of parameters were randomly sampled from the posterior PDFs. The 

sampled parameter sets, as replicates, were then used for the modeling experiment. 

Assuming global average C input to top soils (1m) is 378 g m-2 y-1 (Field et al., 1998) 

and average soil bulk density is 1.3 g cm-3, monthly C input is about 24 mg C kg-1 soil 

month-1. For each study, the interactive model was spun up to steady state with monthly 

new C input by 24 mg C kg-1 soil month-1. Then the model was run for 100 years in 

three C input scenarios. The first scenario was constant C input by 24 mg C kg-1 soil 

month-1 (i.e., no increase in C input). The second scenario was constant C input by 26.4 

mg C kg-1 soil month-1 (i.e., a 10% step increase in C input). In the third scenario, the 
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increase in C input was linearly increased from 0.0475 mg C kg-1 soil month-1 in the 

first year to 4.7525 mg C kg-1 soil month-1 in the 100th year. The C was added every 30 

days. Over the 100 years, the C input in the second and the third scenarios was 2880 mg 

C kg-1 soil greater than that in the first scenario. The weighted effect of increased C 

input and the 95% CI were estimated using the synthesis method described above. 

 

Figure 2.3 An example showing the comparison between observed (dots) and 

simulated (lines and shading areas) cumulative CO2 emissions by the conventional 

(a), interactive (b), regular Michaelis-Menten (c), and reverse Michaelis-Menten 

(d) models during laboratory incubation. Lines are mean values of model 

simulations and shading areas are the ranges from 2.5th to 97.5th percentiles (i.e., 

95% range). The box on the right of each panel shows the distributions of model 

simulated cumulative CO2 emissions at the last day (i.e., day 66). Blue, CO2 

emission from old C at control; Red, CO2 emission from old C at new C addition 

treatment; Black, CO2 emission from added new C. The difference between red 

and blue is priming effect. a, in the conventional model, two sets of parameters, 

one for control and the other for new C addition treatment, were used to simulate 

priming effect. 
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2.3 Results 

The model evaluation against data group I (i.e., within-sample evaluation) showed 

that the regular Michaelis-Menten model underestimated cumulative CO2 emission 

from SOC as experiments proceed (Fig. 2.2c, e; Fig. 2.3). Although the conventional 

and the reverse Michaelis-Menten models well simulated the cumulative CO2 

emissions, neither demonstrated a high likelihood (<< 0.5) to represent replenishment 

and priming effect due to overfitting issues given the data (Fig. 2.2a, d, e). The 

interactive two-pool model was the most parsimonious model given the data (Fig. 2.2b, 

e). The interactive model was further validated by data group II (i.e., out-of-sample 

validation). The analysis indicates that the calibrated interactive two-pool model has a 

high predictive skill (Fig. 2.4). 

 

Figure 2.4 Out-of-sample validation of the interactive model against data group II. 

y-axis shows mean values of simulated CO2 emissions for studies in data group II 

by the interactive model optimized against the corresponding studies in data group 

I. Blue, CO2 emission from old SOC at control; Red, CO2 emission from old SOC 

at new C addition treatment; Black, CO2 emission from added new C. Dashed line: 

1:1 line; Solid line: linear regression line. 
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Figure 2.5 Syntheses of new C input induced replenishment, priming, and net SOC 

change and their dependence on substrate N:C ratio (Mean ± 95% confidence 

interval). a – b, annual replenishment, priming and net SOC change (a) and their 

dependence on substrate N:C ratio (b) with a one-time new C addition at the 

beginning. c – d, long-term modeling experiment showing net SOC increase by 

additional C input. c, predicted net SOC change by a 10% step increase in C input 

(24.0 vs. 26.4 mg C kg-1 soil month-1) for 100 years. Gray bar represents the 95% 

confidence interval of the equilibrium difference of the two scenarios. d, predicted 

net SOC change by gradual increase in C input. Total increase in C input is 2880 

mg C kg-1 soil month-1 in the 100 years in both c and d. 

 

 

After the model evaluation, I used the optimized interactive model to estimate 

annual C replenishment, priming effect, and net SOC change for all studies with their 
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respective new C input at the beginning of experiments. The analyses show that new C 

input indeed induces priming effect, which on average stimulates C loss from old SOC 

equivalent to 8.4% (7.5%–9.4%, 95% confidence interval) of the added C within one 

year (Fig. 2.5a). However, 54% to 61% of the added new C is transferred to replenish 

SOC. The greater magnitude of replenishment than priming leads to a net increase in 

SOC, equivalent to 45% (40%–49%) of the added new C (Fig. 2.5a). Although the 

magnitudes of replenishment and priming effect change over time, the conclusion that 

new C input increases SOC holds (Fig. 2.6). In addition, the replenishment increases 

with the increase in substrate N:C ratio (Fig. 2.5b). In contrast, a higher priming loss of 

old SOC occurs when the added substrates have lower N:C ratios (Fig. 2.5b). As a 

result, the net SOC increase in response to new C input ranges from 63% (high N:C 

ratio) to 50% (low N:C ratio) and to 22% (without N) of the added new C (Fig. 2.5b). 

 

Figure 2.6 Five-year time courses of effects of replenishment (blue) and priming 

(red) on SOC, and the net SOC change (black) with a one-time new C input at the 

beginning. Shading areas are 95% confidence intervals. Dashed line means the end 

of the first year. 
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In addition, the long-term modeling experiment shows that soil C content at 

equilibrium in the second scenario is increased by 565–670 mg C kg-1 soil, comparing 

with the first scenario (Fig. 2.5c). Persistent increase in C input in the second scenario 

leads to gradual SOC accumulation, showing an average increase by 412 mg C kg-1 soil 

(360–464 mg C kg-1 soil). The SOC increase induced by gradual C input increase in the 

third scenario is even greater, ranging from 493 to 549 mg C kg-1 soil over the 100 years 

(Fig. 2.5d).  

 

2.4 Discussion 

There may be several reasons for the positive effect of the new C input on SOC 

storage. First, the added new C may be protected by direct physical and chemical 

bonding (Jastrow & Miller, 1997, Plaza et al., 2013). In addition, part of the new C is 

used to increase microbial biomass and the production of metabolic by-products 

(Cotrufo et al., 2013, Cotrufo et al., 2015). Through the microbial processes, the added 

C is transferred to stable SOC after microorganisms die (Bird & Torn, 2006, Rubino et 

al., 2010, Cotrufo et al., 2013, Wieder et al., 2014, Cotrufo et al., 2015). Although the 

increased microbial growth may promote the decomposition of old SOC for energy and 

nutrient acquisition (Kuzyakov et al., 2000), the results demonstrate that the amount of 

C loss resulting from the priming effect is relatively small, compared with the amount 

of replenished soil C. The long-term modeling experiment confirms that additional new 

C input promotes SOC storage despite the enhanced old SOC decomposition by the 

priming effect. 
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Both the replenishment and priming loss of soil C may be affected by the substrate 

nitrogen-to-C (N:C) ratio since microbial activity is co-limited by energy and nutrient 

supplies (Schimel & Weintraub, 2003, Fontaine & Barot, 2005, Hobbie, 2015). The 

results show that the replenishment increases with the increase in substrate N:C ratio 

(Fig. 3b). This may be due to more efficient utilization of substrates with high N:C 

ratios for microbial growth than low N:C substrates, resulting in a higher proportion of 

substrates transformed to microbial biomass and products (Bird & Torn, 2006, Rubino 

et al., 2010, Cotrufo et al., 2013, Hobbie, 2015). On the other hand, a higher priming 

loss of old SOC occurs when the added substrates have lower N:C ratios (Fig. 2.5b), 

which may be due to the scarcity of N obtained from low N:C substrates. In this case, 

soil microbes utilize more old soil organic matter for N, resulting in stronger priming 

effects (Kuzyakov, 2010). As a result, the net SOC increase in response to new C input 

increases with the substrate N:C ratio. Thus, if atmospheric CO2 enrichment reduces 

N:C ratio in plant tissues (de Graaff et al., 2006, Luo et al., 2006, Myers et al., 2014), 

the rate of SOC increase due to the enhanced substrate input may be suppressed 

(Sulman et al., 2014, van Groenigen et al., 2014). 

Moreover, this study may have potential implications for C cycling models. It has 

been well agreed that it is necessary to incorporate priming effect into C cycling models 

(Allison et al., 2010, Wutzler & Reichstein, 2013, Wieder et al., 2014, Guenet et al., 

2016, Wang et al., 2016). Although the regular Michaelis-Menten equation is widely 

used to describe enzyme kinetics with mono-substrate, the model selection in the 

current study suggests that it may not perform well with mixed, complex SOC. The 

conventional model with changing parameters and the reverse Michaelis-Menten model 
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both fit data reasonably well but may have overfitting issues. In the interactive model, 

though the underlying mechanisms are still to be uncovered, the simple power function 

of new C pool size represents priming quite well. Thus, incorporating the interactive 

model into terrestrial C cycling models may improve their performance in simulating 

soil C dynamics. 

In summary, using extensive data sets, I have selected a parsimonious two-pool 

interactive model. Based on the model, I have revealed the effect of new C addition on 

SOC storage through two critical processes, replenishment and priming. The analyses 

highlight that increasing new C inputs increase SOC sequestration due to a higher rate 

of replenishment versus loss of old C by priming effect. Consequently, increasing C 

inputs to soils from enhanced plant productivity under elevated CO2, plant invasion, and 

vegetation recovery likely result in SOC accumulation in soils over time, potentially 

mitigating climate change.  
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Chapter 3: Processes regulating progressive nitrogen limitation under 

elevated carbon dioxide: A meta-analysis 
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Abstract: The nitrogen (N) cycle has the potential to regulate climate change through 

its influence on carbon (C) sequestration. Although extensive research has explored 

whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a 

comprehensive assessment of the processes that regulate PNL is still lacking. Here, I 

quantitatively synthesized the responses of all major processes and pools in the 

terrestrial N cycle with meta-analysis of CO2 experimental data available in the 

literature. The results showed that CO2 enrichment significantly increased N 

sequestration in the plant and litter pools but not in the soil pool, partially supporting 

one of the basic assumptions in the PNL hypothesis that elevated CO2 results in more N 

sequestered in organic pools. However, CO2 enrichment significantly increased the N 

influx via biological N fixation and the loss via N2O emission, but decreased the N 

efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant 

growth was observed over time up to the longest experiment of 13 years. Overall, the 

analyses suggest that the extra N supply by the increased biological N fixation and 

decreased leaching may potentially alleviate PNL under elevated CO2 conditions in 

spite of the increases in plant N sequestration and N2O emission. Moreover, the 

syntheses indicate that CO2 enrichment increases soil ammonium (NH4
+) to nitrate 

(NO3
-) ratio. The changed NH4

+/NO3
- ratio and subsequent biological processes may 

result in changes in soil microenvironments, above-belowground community structures 

and associated interactions, which could potentially affect the terrestrial biogeochemical 

cycles. In addition, the data synthesis suggests that more long-term studies, especially in 

regions other than temperate ones, are needed for comprehensive assessments of the 

PNL hypothesis. 
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3.1 Introduction 

Fossil-fuel burning and deforestation have led to substantial increase in atmospheric 

carbon dioxide (CO2) concentrations, which could stimulate plant growth (IPCC, 2013). 

The plant growth stimulated by CO2 fertilization and the resulting terrestrial carbon (C) 

storage could partially mitigate the further increase in CO2 concentrations and 

associated climate warming (IPCC, 2013). However, this effect may be constrained by 

the availability of nitrogen (N), an essential element for molecular compounds of amino 

acids, proteins, ribonucleic acids (RNAs) and deoxyribonucleic acids (DNAs) in 

organisms (Rastetter et al., 1997, Oren et al., 2001, Luo et al., 2004, Reich et al., 2006, 

Norby et al., 2010, Reich & Hobbie, 2013). A popular hypothesis of the N constraint to 

the CO2 fertilization effect is progressive N limitation (PNL) (Luo et al., 2004). 

Progressive N limitation postulates that the stimulation of plant growth by CO2 

enrichment results in more N sequestered in plant, litter and soil organic matter (SOM) 

so that, the N availability for plant growth progressively declines in soils over time (Luo 

et al., 2004). The reduced N availability then in turn constrains the further CO2 

fertilization effect on plant growth over longer time scales. However, whether and to 

what extent PNL occurs depends on the balance of N demand and supply (Luo et al., 

2004, Finzi et al., 2006, Walker et al., 2015). If the N supply meets the N demand, PNL 

may not occur. Otherwise, PNL may lead to a diminished CO2 fertilization effect on 

plant growth over time. Some of the site-level studies support (Reich et al., 2006, Norby 

et al., 2010), while the others refute the PNL hypothesis (Finzi et al., 2006, Moore et 

al., 2006). To date, no general pattern of PNL across ecosystems has yet been revealed. 
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Since the key determining PNL occurrence is that whether N supply meets N demand 

(Luo et al., 2004), it is important to understand how N supply changes under elevated 

CO2. The change in the N supply for plant growth under elevated CO2 is determined by 

the responses of multiple N cycling processes, including biological N fixation, 

mineralization, nitrification, denitrification, and leaching (Chapin III et al., 2011). In 

addition, the responses of these processes to CO2 enrichment may be influenced by 

external N addition, such as N deposition and fertilization (Reay et al., 2008). Thus, 

synthesizing the responses of processes that regulate PNL to CO2 enrichment may help 

reveal the general pattern of PNL in terrestrial ecosystems. 

In the current study, the main objective was to synthesize data published in the 

literature on the N limitation to plant growth under enriched CO2 conditions. The data 

synthesis was designed to answer two questions: (i) How do the major processes in the 

terrestrial N cycle respond to CO2 enrichment? (ii) Does the CO2 fertilization effect on 

plant growth diminish over time? To answer these questions, two sets of data from the 

literature were collected. With the first dataset, I quantitatively examined the effects of 

CO2 enrichment on all the major processes and pools in the N cycle using meta-

analysis. These processes and pools included N sequestered in organic components (i.e., 

plant tissues, litter and soil organic matter (SOM)), biological N fixation, net 

mineralization, nitrification, denitrification, leaching, and total inorganic N (TIN), 

ammonium (NH4
+) and nitrate (NO3

-) contents in soils. I separated the first dataset 

according to the experimental durations to explore the responses of the N processes to 

short- vs. long-term CO2 treatments. In addition, the responses of the N processes to 

CO2 enrichment were compared between without and with N addition conditions. The 
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second dataset was compiled for the plant growth in decadal free air CO2 enrichment 

(FACE) experiments. With the dataset, I explored whether the CO2 fertilization effect 

on plant growth diminishes or not over time. 

 

 

3.2 Materials and Methods 

3.2.1 Data collection. 

For the first dataset, a comprehensive literature search with the terms of “CO2 

enrichment (or CO2 increase)”, “nitrogen” and “terrestrial” was conducted using the 

online search connection Web of Science in Endnote. Then, papers meeting the 

following two criteria were selected to do the further analyses: (i) including both control 

and CO2 enrichment treatments, where the ambient and elevated CO2 concentrations 

were around the current and predicted atmospheric CO2 concentrations by the 

Intergovernmental Panel on Climate Change (IPCC, 2013), respectively (Fig. 3.1); (ii) 

including or from which I could calculate at least one of the major N pools or processes: 

soil TIN content, soil NH4
+ content, soil NO3

- content, aboveground plant N pool 

(APNP), belowground plant N pool (BPNP), total plant N pool (TPNP), litter N pool 

(LNP), soil N pool (SNP), N fixation, nodule mass and/or number, net mineralization, 

nitrification, denitrification, and inorganic N leaching. Overall, there were 175 papers 

included in the first dataset. For each paper, means, variations (standard deviation (SD), 

standard error (SE) or confidence intreval (CI)) and sample sizes of the variables in both 

control and CO2 enrichment treatments were collected. 
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For those studies that provided SE or CI, SD was computed by 

𝑆𝐷 = 𝑆𝐸√𝑛                    Eq. (1) 

or 𝑆𝐷 = (𝐶𝐼𝑢 − 𝐶𝐼𝑙)√𝑛 2𝑢𝑃⁄                     Eq. (2) 

where n is the sample size, CIu and CIl are the upper and lower limits of CI, and up is the 

significant level and equal to 1.96 and 1.645 when α = 0.05 and 0.10, respectively. In 

some studies, if tissue N concentration and biomass were reported, I multiplied the two 

parts as N pools. When both APNP and BPNP were provided (or calculated), the two 

Figure 3.1. Distributions of the experimental duration (A) and the CO2 

concentrations under ambient (B) and elevated (C) treatments and their 

difference (D) for the 175 collected studies. Red dashed lines represent the 

mean values. 
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were added together to represent the TPNP. When data from multiple soil layers were 

provided, they were summed if they were area-based (i.e., m-2 land), or averaged if they 

were weight-based (i.e., g-1 soil). In studies where the respective contents of NH4
+ and 

NO3
- were reported, the TIN was calculated by adding the two together. For all the 

variables, if more than one result were reported during the experiment period, they were 

averaged by 

𝑀 = ∑
𝑀𝑖

𝑗

𝑗

𝑖=1
                    Eq. (3) 

with standard deviation 

𝑆𝐷 = √
∑ 𝑆𝐷𝑖

2(𝑛𝑖 − 1)𝑛𝑖
𝑗
𝑖=1

(∑ 𝑛𝑖
𝑗
𝑖=1 − 1) ∑ 𝑛𝑖

𝑗
𝑖=1

                    Eq. (4) 

where j is the number of results, Mi, SDi and ni are the mean, SD and sample size of the 

ith sampling data, respectively (Liang et al., 2013). If additional treatments applied 

(e.g., N addition), they were treated as independent studies. 

Because treatment time and N addition may affect the responses of the N processes 

to CO2 enrichment, the dataset was divided into different categories: (i) short-term (≤ 3 

years) vs. long-term (> 3 years), and (ii) without N addition vs. with N addition. 

Moreover, the dataset was also divided into forest, grassland, and cropland to explore 

possible differences between ecosystem types. 

For the second dataset, 15 available time series of plant growth were collected from 7 

decadal FACE experiments. The ecosystems included 9 forests, 5 grasslands and 1 

desert. Because of the limited data, I included variables that can represent plant growth 

in one way or another, for example, net primary production (NPP), biomass, and leaf 

production. These data were collected to reveal whether the effect of CO2 enrichment 
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on plant growth diminishes over treatment time as proposed by the PNL hypothesis 

(Luo et al., 2004). In the 7 studies, the treatment lasted from 7 to 13 years, and at least 6 

years’ production measurements were reported. For each data, the percentage change in 

NPP (or biomass or leaf production) by CO2 enrichment was calculated. Then, a linear 

regression between the percentage change and the treatment year was conducted. A 

significantly negative slope indicates that the effect of CO2 enrichment on the plant 

production diminishes over time. A non-significant slope was treated as 0. After 

deriving all the slopes, the frequency distribution of the slopes were fitted by a Gaussian 

function: 

𝑦 = 𝑦0 + 𝑎𝑒
−

(𝑥−𝜇)2

2𝜎2                     Eq. (5) 

where x is the mean value of each individual interval, and y is the frequency of each 

interval. y0 is the base frequency. 𝜇 and 𝜎 are the mean and SD of the distribution. 

 

3.2.2 Meta-analysis. 

With the first dataset, the effect of CO2 enrichment for each line of data of the N 

variables was estimated using the natural logarithm transformed response ratio (RR) 

(Hedges et al., 1999, Liang et al., 2013): 

log𝑒𝑅𝑅 = log𝑒(𝑋𝐸 𝑋𝐶⁄ )                    Eq. (6) 

where XE and XC are the variable values under enriched CO2 and control conditions, 

respectively. The variation of the log RR was 

𝑉 = (
𝑆𝐷𝐶

2

𝑛𝐶𝑋𝑐
2

+
𝑆𝐷𝐸

2

𝑛𝐸𝑋𝐸
2)                     Eq. (7) 

where SDC and SDE are the standard deviation of XC and XE, and nC and nE are the 

sample sizes of XC and XE. 
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Then, the random-effects model was used to calculate the weighted mean. In the 

random-effects model, the weighted mean was calculated as 

𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
∑ 𝑊𝑗

∗𝑀𝑗
𝑘
𝑗=1

∑ 𝑊𝑗
∗𝑘

𝑗=1

                    Eq. (8) 

with the variance as 

𝑉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
1

∑ 𝑊𝑗
∗𝑘

𝑗=1

                    Eq. (9) 

where k is the number of studies, Mj is the Ln(RR) in study j, and Wj
* is the weighting 

factor which consists of between- and within-study variances (Rosenberg et al., 2000, 

Liang et al., 2013). The 95% lower and upper limits (LLweighted and ULweighted) for the 

weighted mean were computed as 

𝐿𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 − 1.96 × √𝑉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑                    Eq. (10) 

and 

𝑈𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 + 1.96 × √𝑉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑                    Eq. (11) 

The weighted mean and corresponding 95% bootstrapping CI (999 iterations) for each 

variable and category were calculated in MetaWin 2.1 (details are described in the 

software handbook by Rosenberg et al., 2000). The results were back-transformed and 

represented as percentage change by (RR – 1) × 100%. The response was considered 

significant if the 95% CI did not overlap with zero. 
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Figure 3.2. Results of a meta-analysis on the responses of nitrogen pools and 

processes to CO2 enrichment. In (A), APNP, BPNP, TPNP, LNP, and SNP are the 

abbreviations for aboveground plant nitrogen pool, belowground plant nitrogen 

pool, total plant nitrogen pool, litter nitrogen pool, and soil nitrogen pool, 

respectively. In (C), TIN, NH4
+ and NO3

- are total inorganic nitrogen, ammonium, 

and nitrate in soils, respectively. The error bars represent 95% confidence 

intervals. 

 

 

3.3 Results 

The meta-analysis of the first dataset showed that CO2 enrichment significantly 

increased N sequestered in plants and litter but not in SOM (Fig. 3.2). Whereas CO2 
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enrichment had little overall effects on N mineralization, nitrification and 

denitrification, it significantly increased biological N fixation by 44.3% (with 95% CI 

from 29.5% to 61.8%). The increased biological N fixation was consistent when using 

various methods except H2 evolution (Fig. 3.3). In legume species, CO2 enrichment 

significantly increased nodule mass and number (Fig. 3.3B). In addition, CO2 

enrichment increased N2O emission by 10.7% (with 95% CI from 2.0% to 22.3%), but 

reduced leaching (i.e., -41.8% with 95% CI from -58.9% to -24.3%) (Fig. 3.2B). 

Although CO2 enrichment did not change the total inorganic N availability in soils, it 

increased the soil NH4
+/NO3

- ratio by 16.9% (with 95% CI from 5.4% to 30.2%) (Fig. 

3.2C). 

 

 

Figure 3.3. Responses of biological N fixation measured by different methods (A) 

and nodule dry mass and number in legume species (B). ARA: acetylene reduction 

assay. Mean ± 95% confidence interval. 
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Figure 3.4. Responses of terrestrial nitrogen pools and processes to CO2 

enrichment (Mean ± 95% confidence interval) as regulated by experimental 

durations (A – C; short-term: ≤ 3 years vs. long-term: > 3 years), nitrogen addition 

(D – F), and ecosystem types (G – I). Please see Figure 1 for abbreviations. 

 

Treatment time had no effect on most of the variables (overlapped 95% CIs for short- 

and long-term treatments) except nitrification, which was not changed by short-term 

treatment, but was significantly reduced (-23.4% with 95% CI from -30.4% to -12.1%) 

by long-term CO2 enrichment (Fig. 3.4B). In addition, it seemed that the responses of 

the NH4
+/NO3

- ratio was strengthened over time, representing a neutral response to 

short-term CO2 enrichment, but significantly positive and negative responses to long-

term CO2 enrichment (Fig. 3.4C). The effects of CO2 enrichment were influenced by N 

addition (Fig. 3.4D – F). For example, nitrification was significantly reduced by CO2 

enrichment without N addition by 19.3% (with 95% CI from -40.5% to -0.65%), but 

was not changed with N addition. Denitrification and N2O emission responded to CO2 

enrichment neutrally without N addition, but significantly positively with N addition 
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(Fig. 3.4E). Additionally, the responses of some variables to CO2 enrichment were 

dependent on ecosystem type (Fig. 3.4G – I). APNP responded to CO2 enrichment 

positively in forests and croplands, but neutrally in grasslands (Fig. 3.4G). Net 

mineralization had no response to CO2 enrichment in forests or grasslands, while it was 

significantly increased in croplands (Fig. 3.4H). Moreover, the change in the TIN was 

neutral in forests, grassland, but positive, in croplands, respectively (Fig. 3.4I). In 

addition, a positive response of the NH4
+/NO3

- ratio was only observed in grasslands 

(Fig. 3.4I). 

 

Figure 3.5. Time courses of CO2 effects on ecosystem NPP (or biomass or leaf 

production) in decadal-long FACE experiments. Please see Table 1 for details of 

experiments, references and statistical results. Only statistically significant (P < 

0.05) regression lines are shown. The panel at the right-low corner shows the 

distribution of the slopes (-0.37% year-1 with 95% CI from -1.84% year-1 to 1.09% 

year-1). 
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The results from the second dataset showed that CO2 enrichment significantly 

increased plant growth in most of the decadal FACE experiments (Fig. 3.5). In addition, 

the CO2 fertilization effect on plant growth did not over treatment time change in 11 

experiments (P > 0.05), decreased in 2 experiments (slope < 0, P < 0.05), and increased 

in 2 experiments (slope > 0, P < 0.05), respectively (Table 3.1, Fig. 3.5). Overall, the 

slope of the response of the plant growth vs. treatment time was not significantly 

different from 0 (i.e., -0.37% year-1 with 95% CI from -1.84% year-1 to 1.09% year-1; 

Fig. 3.5). 

 

Table 3.1. Results on the effect of CO2 enrichment on ecosystem NPP (or biomass 

or leaf production) in decadal-long free air CO2 enrichment (FACE) experiments 

over treatment time. 

Experiment 

Ecosystem 

type 

Treatment 

years Variable Slope^ R2 P 

Duke_n Forest 8 NPP 0.50 0.25 0.21 

Duke_N Forest 8 NPP -1.39 0.27 0.29 

ORNL Forest 11 NPP -1.42 0.38 0.04 

BioCON_n* Grassland 13 Biomass 0.42 0.05 0.48 

BioCON_N* Grassland 13 Biomass 0.23 0.01 0.76 

NZ Grassland 10 Biomass 0.95 0.05 0.53 

Swiss_n* Grassland 10 Biomass 0.30 0.01 0.75 

Swiss_N* Grassland 10 Biomass 1.66 0.47 0.03 

NDFF Desert 9 Biomass -9.54 0.15 0.40 

Aspen_o* Forest 7 Leaf production -0.07 0.00 0.97 

Aspen_O* Forest 7 Leaf production 0.09 0.00 0.93 

AspenBirch_o* Forest 7 Leaf production -5.27 0.77 0.01 

AspenBirch_O* Forest 7 Leaf production 6.48 0.82 0.00 

AspenMaple_o* Forest 7 Leaf production -9.16 0.40 0.13 

AspenMaple_O* Forest 7 Leaf production 1.11 0.11 0.46 
^The values of the slope, R2 and P in the linear regression in Fig. 3.5 are shown. 
*The lower and upper n (i.e., n and N) mean without and with N addition, respectively. 

The lower and upper o (i.e., o and O) mean without and with O3 treatment, respectively. 
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3.4 Discussion 

In this study, I carried out two syntheses on the responses of the terrestrial N cycle 

and plant growth to CO2 enrichment to test whether PNL generally occurs across 

ecosystems. 

 

3.4.1 PNL alleviation. 

According to the PNL hypothesis, a prerequisite for PNL occurrence is that more N 

is sequestered in plant, litter and SOM (Luo et al., 2004). The results showed that 

elevated CO2 significantly increased N retention in plant tissues and litter, which is 

consistent with previous meta-analyses (de Graaff et al., 2006, Luo et al., 2006). Thus, 

there seems to be evidence for some basic assumptions of the PNL hypothesis. 

However, the results from the second dataset did not show a general diminished CO2 

fertilization effect on plant growth on the decadal scale, which disagrees with the 

expectation of the PNL hypothesis, suggesting that N supply under elevated CO2 may 

meet the N demand. In this study, I have identified two processes that increase N supply 

under elevated CO2, i.e., biological N fixation and leaching. 

CO2 enrichment significantly enhanced the N influx to terrestrial ecosystems through 

biological N fixation, which reduces dinitrogen (N2) to NH4
+ (Fig. 3.2B). The enhanced 

biological N fixation may have resulted from the stimulated activities of symbiotic (Fig. 

3.3B) and free-living heterotrophic N-fixing bacteria (Hoque et al., 2001). In addition, 

the competition between N2-fixing and non-N2-fixing species may have contributed to 

enhance the biological N fixation at the ecosystem level (Poorter & Navas, 2003, 

Batterman et al., 2013). 
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In addition, the N efflux via leaching was reduced under elevated CO2 conditions 

(Fig. 3.2B). This could be attributed to the decrease in NO3
-, which is the primary N 

form in leaching (Chapin III et al., 2011), and the increased root growth which may 

immobilize more inorganic N in soils (Luo et al., 2006, Iversen, 2010). In contrast, 

gaseous N loss through N2O emission increased under elevated CO2, although this 

increase was only observed when additional N was applied. 

 

Figure 3.6. Mechanisms that alleviate PNL. PNL hypothesis posits that the 

stimulated plant growth by CO2 enrichment leads to more N sequestered in long-

lived plant tissues, litter and soil organic matter (SOM) so that, the N availability 

for plant growth progressively declines over time, and plant growth is 

downregulated (grey symbols). The current synthesis indicates that the basis of 

PNL occurrence partially exists (i.e., more N sequestered in plant tissues and litter; 

black symbols). Despite of the increases in plant N sequestration and N2O 

emission, stimulated biological N fixation and reduced N leaching can replenish the 

N availability, potentially alleviating PNL (blue boxes and arrows). Upward, 

downward, and horizontal arrows mean increase, decrease, and no change, 

respectively. 
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The net effect of the responses of N processes to CO2 enrichment resulted in higher 

N retention in ecosystems, especially within plant tissues and litter. Because the product 

of biological N fixation (i.e., NH4
+) and the primary form for N leaching loss (i.e., NO3

-

) can be directly used by plants, the effects of CO2 enrichment on the two processes 

directly increase the N availability for plant growth, potentially alleviating PNL (Fig. 

3.6). The increased N in plant tissues can be re-used by plants via resorption (Norby et 

al., 2000, Norby et al., 2001), and consequently reduce the N demand from soils. This 

may be another mechanism that alleviates PNL (Walker et al., 2015). Therefore, the 

increased N availability from increased N fixation and reduced N leaching could 

potentially support net accumulation of organic matter in terrestrial ecosystems 

(Rastetter et al., 1997, Luo & Reynolds, 1999). 

Since biological N fixation provides at least 30% of the N requirement across natural 

biomes (Asner et al., 2001, Galloway et al., 2004), the results suggest that the positive 

response of biological N fixation to CO2 enrichment plays an important role in 

alleviating PNL. The PNL hypothesis was proposed to characterize long-term dynamics 

of C-N coupling in response to rising atmospheric CO2 concentration. Thus, it is critical 

to understand the long-term response of biological N fixation to elevated CO2. In this 

paper, I have synthesized 12 studies that lasted 4 – 7 years and binned them in a long-

term category (> 3 years). On average, in those long-term studies, CO2 enrichment 

increased biological N fixation by 26.2%. The increased biological N fixation is 

supported by evidence at gene level from long-term experiments. For example, Tu et al. 

(2015) found that the abundance of nifH gene amplicons, which is a widely used marker 

for analyzing biological N fixation, was significantly enhanced by 12 years of CO2 
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enrichment in a grassland (BioCON). However, the synthesis showed a relatively wide 

95% confidence interval from 2.54% to 59.8%. The wide range can be partially 

attributed to the relatively small number of studies. In addition, most studies 

incorporated in the current synthesis were conducted in temperate regions. Thus, 

longer-term studies, as well as studies in other regions (e.g., boreal and tropical) are 

critically needed to reveal more general patterns in the future. 

In this study, it is suggested that the general trend of the N cycle changes under 

elevated CO2 converges towards increased soil N supply for plant growth, which in 

theory could alleviate PNL. However, the PNL alleviation potential may vary across 

different ecosystems due to asymmetric distributions of biological N fixation 

(Cleveland et al., 1999). In addition, PNL alleviation may also be influenced by other 

factors. While a diminished CO2 fertilization effect on plant growth was not observed in 

most of the long-term experiments, it occurred in two sites (i.e., ORNL and Aspen-

Birch) (Fig. 3.5). Plant growth is usually influenced by multiple environmental factors 

(e.g., nutrients, water, light, ozone). The undiminished CO2 fertilization effect in most 

studies indicates that resource limitation (including N) was not aggravated, suggesting 

that no PNL occurred in these sites. However, in the ORNL and Aspen-Birch (without 

O3 treatment) experiments, the diminished CO2 fertilization effect on plant growth was 

potentially driven by limitation of N, or other resources, or their combined effect. For 

example, reduced N availability has been identified as one of the primary factors that 

lead to the diminished CO2 fertilization effect on NPP in the ORNL FACE experiment 

(Norby et al., 2010). In the Aspen-Birch community, however, the deceleration of leaf 

area increases due to canopy closure was responsible for the diminished CO2 
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fertilization effect on plant growth without O3 addition (Talhelm et al., 2012). With O3 

addition, O3 significantly reduced the canopy development, resulting in a relatively 

open canopy during the experiment period. In addition, the negative effect of O3 

addition increased over time, leading to the apparent increase in the CO2 fertilization 

effect (Fig. 3.5) (Talhelm et al., 2012). 

 

3.4.2 Dependence of the responses of N cycling processes upon methodology, treatment 

duration, N addition and ecosystem types. 

Experimental methodology may potentially influence findings. Cabrerizo et al. 

(2001) found that CO2 enrichment increased the nitrogenase activity measured by 

acetylene reduction assay (ARA), but not the specific N fixation measured by the H2 

evolution method. In the studies synthesized here, four methods were used to estimate 

biological N fixation, including isotope, ARA, H2 evolution and N accumulation. 

Among them, ARA and H2 evolution measure nitrogenase activity (Hunt & Layzell, 

1993) whereas isotope and N accumulation methods directly measure biological N 

fixation. All but the H2 evolution method showed a significantly positive response to 

CO2 enrichment (Fig. 3.3A). The insignificant response shown by the H2 evolution 

method was likely because of the small study numbers (i.e., 3). In addition, the 

biological N fixation measured by ARA, isotope and N accumulation showed similar 

response magnitudes (Fig. 3.3A), suggesting consistency among the three methods. 

However, further assessment on the H2 evolution method is needed. 

The responses of some N cycling processes that affect N availability are dependent 

on treatment duration, N addition, and/or ecosystem types (Fig. 3.4). N mineralization, 
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in addition to biological N fixation, is a major source of available N in soils. The meta-

analysis showed no change in the net N mineralization in response to CO2 enrichment, 

which is consistent with the results by de Graaff et al. (2006). However, the response of 

net mineralization was dependent upon ecosystem types, showing no change in forests 

and grasslands, but significant increases in croplands (Fig. 3.4H). There may be two 

reasons for the stimulated net mineralization in croplands. First, N fertilization, which is 

commonly practiced in croplands, can increase the substrate quantity and quality for 

mineralization (Barrios et al., 1996, Booth et al., 2005, Chapin III et al., 2011, Lu et al., 

2011, Reich & Hobbie, 2013). Second, tillage can alter soil conditions (e.g., increasing 

O2 content), which can potentially favor the N mineralization under enriched CO2 

(Wienhold & Halvorson, 1999, Bardgett & Wardle, 2010). These findings suggest that 

CO2 enrichment can stimulate the N transfer from organic to inorganic forms in 

managed croplands. 

Unlike leaching, the response of nitrification was dependent upon treatment duration 

(Fig. 3.4). Nitrification was not changed by short-term treatment, but was significantly 

reduced by long-term CO2 enrichment (Fig. 3.4). One possible reason for the reduced 

nitrification with long-term CO2 enrichment is the cumulative effect of hydrological 

changes. CO2 enrichment is assumed to reduce stomatal conductance and, consequently, 

water loss via plant transpiration, leading to an increase in soil water content (Niklaus et 

al., 1998, Tricker et al., 2009, van Groenigen et al., 2011, Keenan et al., 2013). A 

synthesis by van Groenigen et al. (2011) shows that CO2 enrichment increases soil 

water content by 2.6% −10.6%. Increased soil water content may result in less oxygen 

(O2) concentration in soils, which could potentially constrain nitrification. 
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In addition, the response of gaseous N loss was dependent on N addition (Fig. 3.4). 

The reduced nitrification was only observed under conditions without N addition (Fig. 

3.4E). With N addition, no response of nitrification to CO2 enrichment was observed 

(Fig. 3.4E). Additionally, the response of denitrification to CO2 enrichment shifted from 

neutral, without N addition, to significantly positive with N addition (Fig. 3.4E). One 

possible reason is that N addition provides more N substrate for nitrifying and 

denitrifying bacteria (Keller et al., 1988, Stehfest & Bouwman, 2006, Russow et al., 

2008). The strengthening trends of both nitrification and denitrification led to a shift of 

the response of N2O emission to CO2 enrichment from neutral without N addition to 

significantly positive with N addition (Fig. 3.4E). The results indicate that CO2 

enrichment significantly increases gaseous N loss when additional N is applied. This is 

consistent with a previous synthesis (van Groenigen et al., 2011). Increased N2O 

emissions can partially offset the mitigation of climate change by the stimulated plant 

CO2 assimilation as the warming potential of N2O is 296 times that of CO2. However, a 

recent modeling study by Zaehle et al. (2011) found an opposite result showing that 

CO2 enrichment reduced emissions of N2O. In their model, elevated CO2 enhanced 

plant N sequestration and consequently, decreased the N availability for nitrification 

and denitrification in soils, which led to the reduced N2O emissions. However, the 

synthesis shows that inorganic N does not decrease. Especially with additional N 

application, enhanced denitrification by CO2 enrichment results in a greater N2O 

emission. 
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3.4.3 Changes in soil microenvironment, community structures and above-belowground 

interactions. 

The meta-analysis showed that the two major forms of soil available N, NH4
+ and 

NO3
-, responded to long-term CO2 enrichment in opposing manners (Fig. 3.4C). While 

the enhanced biological N fixation by CO2 enrichment tended to increase the NH4
+ 

content in soils, the reduced nitrification decreased the NO3
- content in soils, leading to 

a significant increase in the NH4
+/NO3

- ratio (Fig. 3.4C). 

Although the total available N did not change under elevated CO2, the altered 

proportion of NH4
+ over NO3

- in soils may have long-term effects on soil 

microenvironment and associated aboveground-belowground linkages that control the C 

cycle (Bardgett & Wardle, 2010). On the one hand, plants would release more hydrogen 

ion (H+) to regulate the charge balance when taking up more NH4
+. As a result, the 

increased NH4
+ absorption could acidify the rhizosphere soil (Thomson et al., 1993, 

Monsant et al., 2008). The lowered pH could have significant effects on soil microbial 

communities and their associated ecosystem functions. For example, fungal/bacterial 

ratio increases with the decrease in pH (de Vries et al., 2006, Rousk et al., 2009). The 

increased fungal/bacterial ratio may result in lower N mineralization because of the 

higher C/N ratio of fungi and the lower turnover rates of fungal-feeding fauna (de Vries 

et al., 2006, Rousk & Bååth, 2007). In other words, the increased fungal/bacterial ratio 

may slow down the N turnover from organic to inorganic forms. On the other hand, the 

increased NH4
+/NO3

- ratio may increase the N use efficiency because it is more 

energetically expensive for plants to utilize NO3
- than NH4

+ (Odum & Barrett, 2005, 

Lambers et al., 2008, Chapin III et al., 2011). In addition, since the preferences for plant 
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absorption of different forms of N are different (Odum & Barrett, 2005, Chapin III et 

al., 2011), the increased NH4
+/NO3

- ratio may benefit some plant species while depress 

others, and consequently alter the community structures over time. These diverse 

changes in soil microenvironment and microbial and plant community compositions 

could further affect the terrestrial C cycle on long temporal scales, on which more 

studies are needed. 

 

3.4.4 Summary. 

This chapter synthesizes data in the literature on the effects of CO2 enrichment on the 

terrestrial N cycle to improve the understanding of the N limitation to plant growth 

under elevated CO2. The results indicate that elevated CO2 stimulates N influx via 

biological N fixation but reduces N loss via leaching, leading to increased N supply for 

plant growth. The additional N supply via the enhanced biological N fixation and the 

reduced leaching may partially meet the increased N demand under elevated CO2, 

potentially alleviating PNL. In addition, the analysis indicates that increased N2O 

emissions may partially offset the mitigation of climate change by stimulated plant CO2 

assimilation. Moreover, changes in soil microenvironments, ecosystem communities 

and above-belowground interactions induced by the different responses of NH4
+ and 

NO3
- to CO2 enrichment may have long-term effects on the terrestrial biogeochemical 

cycles and climate change. 
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Chapter 4: Methods for estimating temperature sensitivity of soil 

organic matter based on incubation data: A comparative evaluation 
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Abstract: Although the temperature sensitivity (Q10) of soil organic matter (SOM) 

decomposition has been widely studied, the estimate substantially depends on the 

methods used with specific assumptions. Here I compared several commonly used 

methods (i.e., one-pool (1P) model, two-discrete-pool (2P) model, three-discrete-pool 

(3P) model, and time-for-substrate (T4S) Q10 method) plus a new and more process-

oriented approach for estimating Q10 of SOM decomposition from laboratory incubation 

data to evaluate the influences of the different methods and assumptions on Q10 

estimation. The process-oriented approach is a three-transfer-pool (3PX) model that 

resembles the decomposition sub-model commonly used in Earth system models. The 

temperature sensitivity and other parameters in the models were estimated from the 

cumulative CO2 emission using the Bayesian Markov Chain Monte Carlo (MCMC) 

technique. The estimated Q10s generally increased with the soil recalcitrance, but 

decreased with the incubation temperature increase. The results indicated that the 1P 

model did not adequately simulate the dynamics of SOM decomposition and thus was 

not adequate for the Q10 estimation. All the multi-pool models fitted the soil incubation 

data well. The Akaike information criterion (AIC) analysis suggested that the 2P model 

is the most parsimonious. As the incubation progressed, Q10 estimated by the 3PX 

model was smaller than those by the 2P and 3P models because the continuous C 

transfers from the slow and passive pools to the active pool were included in the 3PX 

model. Although the T4S method could estimate the Q10 of labile carbon appropriately, 

the analyses showed that it overestimated that of recalcitrant SOM. The similar 

structure of 3PX model with the decomposition sub-model of Earth system models 
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provides a possible approach, via the data assimilation techniques, to incorporate results 

from numerous incubation experiments into Earth system models. 

 

4.1 Introduction 

Soil organic matter (SOM) is the largest carbon (C) pool in terrestrial ecosystems 

(Schlesinger, 1995). As a biochemical process, the decomposition of SOM is sensitive 

to increased temperature (Luo et al., 2001, Fang et al., 2005, Davidson & Janssens, 

2006), and consequently has critical impacts on global C cycle and climate change (Cox 

et al., 2000, Schlesinger & Andrews, 2000). However, SOM consists of many 

components with different kinetic properties (Davidson & Janssens, 2006), leading to 

large uncertainty in predicted soil C storage under future climate change (Friedlingstein 

et al., 2006). Therefore, there is an increasing concern on how temperature sensitivity 

(expressed as Q10, which measures the change in decay rates for a 10 K warming) 

depends on the SOM compounds and C qualities (Fang et al., 2005, Conant et al., 2008, 

Xu et al., 2012). However, the Q10 estimation substantially relies on the methods used, 

which usually have their respective assumptions, leading to contradictory conclusions 

(Liski et al., 1999, Fang et al., 2005, Rey & Jarvis, 2006, Conant et al., 2008). To better 

understand the warming impacts on SOM decomposition, it is important to evaluate 

these methods and the underlying assumptions. 

The direct calculation at specific incubation time has been used to estimate the Q10 of 

SOM decomposition based on incubation data using an equation (
𝑅2

𝑅1
)

10

𝑇2−𝑇1, where T1 

and T2 are the incubation temperatures, and R1 and R2 are the CO2 emission rates at T1 

and T2, respectively (Rey & Jarvis, 2006). The estimate is usually an apparent Q10 and 
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likely underestimates the temperature sensitivity after the initial incubation stage 

because greater decomposition results in less substrate at high than low temperatures at 

the same point of incubation time. To resolve this issue, a method that estimates the 

apparent Q10 by comparing the times for respiring a given amount of C at different 

temperatures (called the time-for-substrate Q10) has been developed (Rey & Jarvis, 

2006, Conant et al., 2008). One important assumption of this method is that a given 

amount of respired CO2 is from similar fractions of SOM when the substrates are at the 

same level at different temperatures (Conant et al., 2008). 

In addition, first-order kinetic models have also been used to estimate the Q10 

(Kätterer et al., 1998, Rey & Jarvis, 2006). In these models, the soil is usually treated as 

one or several discrete fractions (or pools) based on the turnover times (Kätterer et al., 

1998, Rey & Jarvis, 2006). Through these models, the intrinsic Q10 (defined as the 

temperature sensitivity of individual C pools with similar turnover time) for each pool 

can be derived (Rey & Jarvis, 2006). Generally, the multi-pool models fit the incubation 

data very well (Kätterer et al., 1998, Rey & Jarvis, 2006). However, these models do 

not include C transfers across pools which occur in natural ecosystems (Rovira & 

Vallejo, 2002, Cheng et al., 2007). On the other hand, although three conceptual pools 

with C transfers among them have been widely used to describe SOM dynamics in 

Earth system models (Parton et al., 1987, Jenkinson, 1990, Luo et al., 2003), the three-

transfer-pool model has never been used, to my knowledge, to estimate temperature 

sensitivity of SOM decomposition from soil incubation data. Moreover, although a 

large amount of experimental studies have been conducted and have improved our 

understanding of the temperature sensitivity of SOM decomposition, the Q10 is usually 
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set to be one single value (usually around 2) in Earth system models. It is imperative to 

find ways to use results from numerous incubation experiments to improve these 

models. 

 

Figure 4.1. Model structures of one-pool (a), two-discrete-pool (b), three-discrete-

pool (c), and three-transfer-pool (d) models. 

 

 

 

 

 

 

 

 

 

In this study, I developed a new three-transfer-pool (3PX) model to resemble the 

model structure of soil carbon dynamics in Earth system models for estimating Q10 of 

Figure 4.2. An example of the calculation of the time-for-substrate Q10 at 25 °C 

which is determined by comparing the times required to decompose a given 

amount of carbon at specific substrate levels at different incubation 

temperatures (𝑸𝟏𝟎 = 𝒕𝟐𝟓 𝒕𝟑𝟓⁄ ) 
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SOM decomposition. Then I compared four widely used methods: one-pool (1P) model 

(Fig. 4.1a), two-discrete-pool (2P) model (Fig. 4.1b), three-discrete-pool (3P) model 

(Fig. 4.1c), and time-for-substrate (T4S) (Fig. 4.2) with the 3PX model (Fig. 4.1d) for 

Q10 estimation using the same data set from a laboratory soil incubation experiment. 

Parameters of these models were estimated using the Bayesian Markov Chain Monte 

Carlo (MCMC) technique, which has recently been used to improve parameterization of 

ecological models (Xu et al., 2006, Gaucherel et al., 2008, Luo et al., 2011, Ahrens et 

al., 2014). In these models, the intrinsic Q10 for each pool was estimated directly 

through fitting the CO2 emission data and the apparent Q10 was calculated from the 

estimated intrinsic Q10, pool size and decay rate of each pool. The T4S method 

estimates temperature sensitivity by comparing the times for decomposing a given 

amount of C at different temperatures (Fig. 4.2) (Conant et al., 2008, Xu et al., 2010, 

Haddix et al., 2011). 

 

 

4.2 Materials and Methods 

4.2.1 Soil incubation data. 

The data used here were from a published paper by Haddix et al. (2011). The soil 

incubation data collected from a native grassland in Indian Head, Saskatchewan, 

Canada (50.533⁰N, 103.517⁰W). The mean annual temperature and precipitation are 2 

⁰C and 421 mm, respectively. Information about soil sampling and incubation was 

described in detail in Haddix et al. (2011). Briefly, samples were collected from three 

separated locations that were several meters apart (field replicate n = 3). Surface litter 

and aboveground vegetation were cleared away before sampling and soil from 0 to 20 
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cm was collected. In the laboratory, rocks, surface litter and root materials were 

removed. The soil was homogenized and passed a 2-mm sieve before incubation. Then 

the soil samples were incubated at 15, 25, and 35 ⁰C for 588 days (laboratory replicate n 

= 4). CO2 emission rates were measured daily during the first 2 weeks of incubation, 

weekly for the next 2 weeks, and every 4 weeks thereafter. Overall, there were 36 

sampling times over the 588-day incubation period. Data at all the 15, 25 and 35 ⁰C 

were used in this study to evaluate various methods as described below. 

 

4.2.2 Model description. 

Generally, first-order discrete-pool models have similar structure described in Eq. 1 

(Stanford & Smith, 1972, Andrén & Paustian, 1987, Kätterer et al., 1998, Rey & Jarvis, 

2006, Li et al., 2013, Schädel et al., 2013): 

𝐶𝑐𝑢𝑚 = ∑ 𝑓𝑖𝐶𝑡𝑜𝑡(1 − 𝑒−𝑘𝑖𝑡)

𝑛

𝑖=1

          (1) 

where Ccum is the cumulative CO2-C emission at time t (mg C g-1 soil), Ctot is the initial 

soil C content (mg C g-1 soil), fi and ki are the initial fraction and decay rate of the ith 

pool. The sum of fis is 1. The only difference of these models is the number of pools 

(Fig. 4.1a, b, c). It is generally assumed that the initial fractions of pools are not affected 

by incubation temperature (Rey & Jarvis, 2006). Hence, I fitted each of the models with 

the data at all the three temperatures simultaneously using the data assimilation method 

described below, and the fis were set to be independent of incubation temperature. 

In addition to the discrete-pool models described above, a three-pool model with 

transfers among soil pools was developed. The basic concept was derived from the 
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CENTURY and TECO model (Parton et al., 1987, Luo et al., 2003). In the model, SOM 

dynamics are represented by the following first-order differential equation: 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝐴𝐾𝐶(𝑡)          (2) 

where A and K are matrices given by 

𝐴 = (

−1 𝑓1,2 𝑓1,3

𝑓2,1 −1 0

𝑓3,1 𝑓3,2 −1
) 

𝐾 = 𝑑𝑖𝑎𝑔(𝑘) = (

𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

) 

and C(t) = (C1(t) C2(t) C3(t))
T is a 3 × 1 vector describing soil C pool sizes (Fig. 4.1d). 

Matrix A is C transfers between individual C pools as described by the arrows in Fig. 

4.1d. The elements (fi,j) are C transfer coefficients, representing the fractions of the C 

entering ith (row) pool from jth (column) pool. K is a 3 × 3 diagonal matrix representing 

decay rates (the amounts of C per unit mass leaving each of the pools per day). As in 

the above models, those parameters in the 3PX model were also estimated using the 

data assimilation approach below. 

 

4.2.3 Data assimilation. 

We used probabilistic inversion approach described in Xu et al. (2006) and Weng 

and Luo (2011) to estimate parameters in those models from the soil incubation data. 

The approach is based on Bayes’ theorem: 

 𝑃(𝜃|𝑍) ∝ 𝑃(𝑍|𝜃)𝑃(𝜃)         (3) 

with which the posterior probability density function (PDF) P(θ|Z) of model parameters 

(θ) can be obtained from the prior knowledge of parameters represented by a prior PDF 
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P(θ) and the information in the soil incubation data represented by a likelihood function 

P(Z|θ). The prior PDF were specified as the uniform distributions over specific 

parameter ranges. The likelihood function P(Z|θ) was calculated with the assumption 

that errors between observed and modeled values were independent from each other and 

followed a multivariate Gaussian distribution with a zero mean: 

𝑃(𝑍|𝜃) ∝ 𝑒𝑥𝑝 {− ∑ ∑
[𝑍𝑖(𝑡) − 𝑋𝑖(𝑡)]2

2𝜎𝑖
2(𝑡)

𝑡∈𝑜𝑏𝑠(𝑍𝑖)

3

𝑖=1

}         (4) 

where Zi(t) and Xi(t) are the observed and modeled cumulative respiration values, and 

σi(t) is the standard deviation of measurements. 

The probabilistic inversion was carried on using the Metropolis-Hastings (M-H) 

algorithm, which is a Markov Chain Monte Carlo (MCMC) technique (Metropolis et 

al., 1953, Hastings, 1970), to construct posterior PDFs of parameters. Briefly, the M-H 

algorithm repeats two steps: a proposing step and a moving step (Xu et al., 2006). In the 

proposing step, a new point θnew is generated based on the previously accepted point θold 

with a proposal distribution P(θnew |θold): 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + 𝑑(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)/𝐷           (5) 

where θmax and θmin are the maximum and minimum values in the prior range of the 

given parameter, d is a random variable between -0.5 and 0.5 with a uniform 

distribution, and D is used to control the proposing step size and was set to 10 in the 

current study. In the moving step, the new point θnew is tested against the Metropolis 

criterion (Xu et al., 2006) to examine if it should be accepted or rejected. Because the 

initial accepted samples are in the burn-in period (Gelman & Rubin, 1992), the first half 

of accepted samples were discarded and only the rest were used to generate posterior 
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PDFs. The M-H algorithm was formally run 5 replicates and 500,000 times for each 

replicate for statistical analysis of the parameters. 

It is guaranteed for the Markov chain generated by the M-H algorithm to converge to 

a unique stationary distribution. In the current study, the convergence of the sampling 

chains was tested by the Gelman-Rubin (G-R) diagnostic method to ensure that the 

within-run variation (Wi, Eq. 6) is roughly equal to the between-run variation (Bi, Eq. 7) 

(Gelman & Rubin, 1992). 

𝑊𝑖 =
1

𝐾
∑ 𝜎𝑘

2

𝐾

𝑘=1

          (6) 

𝐵𝑖 =
𝑁

𝐾 − 1
∑(𝑝

.,𝑘
− 𝑝

.,.
)

2
𝐾

𝑘=1

          (7) 

where K is the number of replicates, N is the number of accepted iterations after burn-in 

period, 𝑝
.,𝑘

 and σk are the mean and standard deviation of the specific parameter in the 

kth replicate, and 𝑝
.,.
 is the mean of the specific parameter over the five replicates. When 

the Markov chain reaches convergence, the GRi (Eq. 8) is equal to one. 

𝐺𝑅𝑖 = √
𝑊𝑖(𝑁 − 1) 𝑁⁄ + 𝐵𝑖 𝑁⁄

𝑊𝑖
          (8) 

In this study, GRs of all the parameters of all the models were approximately one (Table 

4.1). 
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Table 4.1. Gelman-Rubin statistics of parameters in the one-pool (1P), two-

discrete-pool (2P), three-discrete-pool (3P) and three-transfer-pool (3PX) models 

 

Parameters* 

 G-R statistics 

 1P 2P 3P 3PX 

f1  - 1.0 1.0 1.0 

f2  - - 1.0 1.0 

k1  1.0 1.0 1.0 1.0 

k2  - 1.0 1.0 1.0 

k3  - - 1.0 1.0 

Q10a_15  1.0 1.0 1.0 1.0 

Q10s_15  - 1.0 1.0 1.0 

Q10p_15  - - 1.0 1.0 

Q10a_25  1.0 1.0 1.0 1.0 

Q10s_25  - 1.0 1.0 1.0 

Q10p_25  - - 1.0 1.0 

f2,1  - - - 1.0 

f3,1  - - - 1.0 

f1,2  - - - 1.0 

f3,2  - - - 1.0 

f1,3  - - - 1.0 
*f1 and f2 are the initial fractions of active and slow pools; k1, k2 and k3 are the decay 

rates of individual pools at 25 °C; Q10a_15, Q10s_15 and Q10p_15 are the temperature 

sensitivities at 15 °C of active, slow and passive pool respectively; Q10a_25, Q10s_25 and 

Q10p_25 are the temperature sensitivities at 25 °C of active, slow and passive pool 

respectively; f2,1 and f3,1 are the fractions of C entering, respectively, the slow and 

passive pools from the fast pool; f1,2 and f3,2 are the fractions of C entering, respectively, 

the fast and passive pools from the slow pool; f1,3 is the fraction of C entering the fast 

pools from the passive pool in the 3PX model 

 

4.2.4 Q10 calculations. 

In this study, I estimated three types of temperature sensitivity (Q10): Q10 of bulk soil, 

intrinsic Q10 for each of the SOM pools, and apparent Q10 at different times of soil 

incubation. Bulk soil Q10 at 15 °C was estimated by dividing CO2 emission rate at 25 °C 

by the rate at 15 °C at the first incubation day with the assumption that soil compounds 

and microbial community were the same at the two temperatures. Similarly, the bulk 

soil Q10 at 25 °C was estimated by dividing CO2 emission rate at 35 °C by the rate at 25 

°C at the first incubation day. 
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Intrinsic Q10 of the ith pool was estimated using Eq. 9:  

𝑄10
𝑖 = (

𝑘𝑖(𝑇2)

𝑘𝑖(𝑇1)
)

10
𝑇2−𝑇1

          (9) 

where T1 and T2 are the incubation temperatures, ki(T1) and ki(T2) are the inherent decay 

rates of the ith pool at the incubation temperatures. In the current study, T1 and T2 are 15 

and 25 ⁰C for the Q10 calculation at 15 °C, and are 25 and 35 ⁰C for the Q10 calculation 

at 25 °C. Consequently the intrinsic Q10 was calculated by ki(25)/ki(15) and ki(35)/ki(25) 

at 15 and 25 °C, respectively. 

Apparent Q10 is dependent on the intrinsic Q10 and the size of each C pool in the soil. 

It was calculated using soil CO2-C emission rate at T2 divided by that at T1 at specific 

substrate levels and fractions of SOM pools: 

𝑄10
𝑎 =

∑ 𝑅𝑖(𝑇2)𝑛
𝑖=1

∑ 𝑅𝑖(𝑇1)𝑛
𝑖=1

=
∑ [𝑘𝑖(𝑇2) × 𝐶𝑖 × 𝑓𝑐,𝑖]

𝑛
𝑖=1

∑ [𝑘𝑖(𝑇1) × 𝐶𝑖 × 𝑓𝑐,𝑖]
𝑛
𝑖=1

          (10) 

where ki is the inherent decay rate of the ith pool at T1 and T2, Ci is the C content (pool 

size) of the ith pool, fc,i is the transfer coefficient from the ith pool to CO2. fc,i is 1 in the 

discrete-pool models (i.e., all C comes from the ith pool becomes CO2 as assumed), and 

is the difference between 1 and transfer coefficients from ith pool to the other two pools 

in the 3PX model (e.g., 𝑓𝑐,1 = 1 − 𝑓2,1 − 𝑓3,1). T1 and T2 are 15 and 25 ⁰C for the Q10 

calculation at 15 °C, and are 25 and 35 ⁰C for the Q10 calculation at 25 °C. 

Besides, T4S Q10 is comparing the times for decomposing a given amount of soil C 

at different temperatures (Fig. 4.2): 

𝑄10 = 𝑡𝑇1
𝑡𝑇2

⁄           (11) 
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where 𝑡𝑇1
 and 𝑡𝑇2

 are the times required at T1 and T2, respectively. The Q10 values for 

labile and recalcitrant SOM were determined using times taken to respire the first and 

last 0.5% of initial soil C, respectively. T1 and T2 are 15 and 25 ⁰C for the Q10 

calculation at 15 °C, and are 25 and 35 ⁰C for the Q10 calculation at 25 °C. 

 

4.2.5 Akaike information criterion (AIC). 

The goodness of fit relative to the number of model parameters was evaluated by AIC 

(Akaike, 1974, Burnham & Anderson, 2004): 

𝐴𝐼𝐶 = 𝑎 ln (
∑(𝜖𝑖̂)

2

𝑛
) + 2𝑏          (12) 

where a is the number of data points, 𝜖𝑖̂ is the estimated residual of each data point, and 

b is the total number of estimated model parameters. The model with a smaller AIC 

value is more parsimonious (Saffron et al., 2006). 

 

4.3 Results 

The estimated Q10s from all the methods were greater at 15 °C than that at 25 °C 

(Table 4.2). The multi-pool models fitted the incubation data better than the single-pool 

model (Table 4.2; Fig. 4.3). Although all the multi-pool models described SOM 

dynamics adequately, the estimated parameters were different (Table 4.2). The 

estimated initial active pool size was greater in the 3PX model than that in the 2P and 

3P models. Additionally, the decay rate of the slow pool was smaller in the 2P model 

than those in the 3P and 3PX models. The 1P model can only generate one Q10 at each 

of the temperatures of 15 and 25 °C. In the multi-pool models, the Q10 increased with  
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SOM recalcitrance. Although the fit of all the multi-pool models were highly significant 

(all P < 0.001 and R2 > 0.99), the 2P model had the lowest AIC value followed by the 

3P model. The AIC value of the 3PX was larger than both of these but smaller than that 

of the 1P model (Table 4.2). 

 

Figure 4.3. Observed and modeled cumulative CO2 releases (R) from individual 

and total pools at all the three incubation temperatures (i.e., 15, 25, and 35 °C) in 

the one-pool (1P), two-discrete-pool (2P), three-discrete-pool (3P) and three-

transfer-pool (3PX) models. 

 

During the incubation period, the active pool size declined rapidly (Fig. 4.4). In all 

the multi-pool models, the remaining active C was more at higher than that at lower 

temperatures when the same amount of C was respired, especially in the late incubation 

period (Fig. 4.4). In addition, the modeled active pool size was smaller in the 2P and 3P 
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models than that in the 3PX model. In the meantime, the contribution of the active pool 

to CO2 emission rate reduced quickly with the incubation progress, while the 

contributions of the slow and passive pools increased (Fig. 4.5). The modeled 

contributions of the active pool to CO2 emission at all the incubation temperatures were 

greater in the 3PX model than those in the 2P and 3P models. Correspondingly, the 

modeled contributions of the slow and passive pools were smaller in the 3PX model 

over the incubation period (Fig. 4.5). 

 

Figure 4.4. Simulated dynamics of active pool size against cumulative CO2 

emission at all the three incubation temperatures in the two-discrete-pool (2P), 

three-discrete-pool (3P) and three-transfer-pool (3PX) models. 

 

Although the temperature sensitivity generally increased with the SOM recalcitrance 

(Table 4.1), the estimates were dependent on the methods used (Fig. 4.6). It seemed that 

the estimated Q10 of bulk soil from all the methods was within the 95% confidence 

range of the direct calculation at the first incubation day at 15 °C (Fig. 4.6a), while only 

the T4S method estimated the Q10 of bulk soil at 25 °C appropriately (Fig. 4.6c). In 

addition, the difference of the estimated Q10s among these methods changed with the 

incubation progress (Fig. 4.6b, d). The only Q10 value estimated from the 1P model 

cannot represent the dynamics of temperature sensitivity with the change in SOM 
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compounds. The discrete-pool models generated higher apparent Q10 than the 3PX 

model at both 15 and 25 °C when the active pool size diminished as the SOM 

decomposition progressed (Fig. 4.6b, d). The estimated apparent Q10 of the recalcitrant 

SOM by the T4S calculation was significantly greater than those by all the models at 

the end of the incubation at 25 °C (Fig. 4.6d). In addition, the apparent Q10 decreased 

with the increased contribution of the active pool to CO2 emission rate, and increased 

with the increase in the contributions of the slow and passive pools to CO2 emission rate 

(Fig. 4.7). 

 

Figure 4.5. Simulated contributions of individual pools to CO2 emission rate at all 

the three incubation temperatures in the two-discrete-pool (2P), three-discrete-

pool (3P) and three-transfer-pool (3PX) models. 
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Figure 4.6. Estimated Q10s from the one-pool (1P), two-discrete-pool (2P), three-

discrete-pool (3P) and three-transfer-pool (3PX) models, and the time-for-

substrate calculation (T4S). Panel (a) and (c) show the estimated Q10s of bulk soil 

from different methods (mean ± 95% CI). The gray areas are the 95% confidence 

ranges of Q10 from direct calculation at the first incubation day at 15 (a) and 25 °C 

(c), respectively. Panel (b) and (d) show the dynamics of estimated apparent Q10s 

with SOM respiration. 
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Figure 4.7. Relationships of the modeled apparent Q10 against the modeled 

contributions of active (a), slow (b) and passive (c) pools to the instantaneous CO2 

emission rate in the two-discrete-pool (2P), three-discrete-pool (3P) and three-

transfer-pool (3PX) models. 

 

4.4 Discussion 

4.4.1 Comparison of the models. 

Generally, the estimated Q10 increased with SOM recalcitrance and decreased with 

the increase in the incubation temperature, which is in accord with the Arrhenius 

equation and many previous studies (Knorr et al., 2005, Davidson & Janssens, 2006, 

Conant et al., 2008, Haddix et al., 2011, Xu et al., 2012). However, the estimations 

substantially rely on the methods used and their respective assumptions. The 1P model 

assumes the soil as a single C pool (Stanford & Smith, 1972, Kätterer et al., 1998, Rey 

& Jarvis, 2006). Compared with the multi-pool models, it does not fit the data well 

enough (Kätterer et al., 1998, Rey & Jarvis, 2006). In addition, it cannot represent the 

dynamics of temperature sensitivity with the changes in SOM compounds. Therefore, 

the 1P model is not adequate for describing the dynamics of SOM decomposition in 



76 

general and estimating the temperature sensitivity in particular. All the 2P, 3P and 3PX 

models fitted the incubation data adequately (R2 > 0.99, P < 0.001), but the modeled 

decay rates of the slow pool in the 2P model were smaller than those in the 3P and 3PX 

models. It is mainly because the slow pool in the 2P model conceptually amounts to the 

sum of slow and passive pools in the three-pool models. 

In this study, the Bayesian MCMC technique provided the distributions of estimated 

parameters for each model. In the four models, the goodness of the parameter constraint 

decreased with the increase in the parameter number. In the 1P model, although the 

parameters were constrained perfectly, the AIC analysis demonstrated that it is the worst 

model. In the other three models, the AIC analysis indicated that the 2P model is the 

most parsimonious model, followed by the 3P model. The 3PX model seems to have an 

overfitting issue when it is used to simulate the CO2-C emission data alone. However, in 

the 3PX model, the transfers from slow and passive pools can alleviate the rapid 

consumption of active pool, leading to greater active pool size and its contribution to 

CO2 emission rate than that in the discrete-pool models. Because the apparent Q10 

decreased with the increased contribution of the active SOM to CO2 emission rate (Fig. 

4.7), the estimated apparent Q10s in the 2P and 3P models were higher than that in the 

3PX model after the early incubation period. 

 

4.4.2 Correlations between parameters. 

Strong correlations between some parameters were observed in all the four models 

(Table 4.3). In these models, the values of k at 25 °C and the corresponding Q10 at 25 

°C of the active pool are usually negatively correlated, meaning when the decay rate at 
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the 25 °C incubation temperature is high, low Q10 values are needed to match the data at 

the 35 °C incubation temperature. In contrast, the values of k at 25 °C and the 

corresponding Q10 at 15 °C of the active pool are usually positively correlated, meaning 

when the decay rate at the 25 °C incubation temperature is high, high Q10 values are 

needed to match the data at the 15 °C incubation temperature. In the multi-pool models, 

the high initial fraction of the labile pool is accompanied by the low decay rate, mainly 

because the two parameters are constrained by the information of CO2 emission from 

the labile pool synchronously. As a result, there is a trade-off between them. In the 3PX 

model, the positive correlation between f1 and f2,1 means when more C is allocated to 

labile pool, more proportion of the labile pool would transfer to the slow pool. 

The strong correlations between parameters partly indicate that the models are 

overparameterized with the available data (Braakhekke et al., 2013). However, the 

inherent correlations of parameters due to the model structures may be another 

important reason. For example, the only existed three parameters in the simplest 1P 

model are the decay rate (k) and Q10s at 15 and 25 °C. The Q10s themselves, measure 

the responses of the decay rate to temperature. As a result, they are highly correlated 

with each other (Table 4.3). 
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4.4.3 Estimated Q10 from the T4S method. 

The T4S Q10 calculation assumes that the respired CO2 is from similar SOM 

fractions at different temperatures at the same substrate levels (Conant et al., 2008). 

However, the current and many previous studies have indicated that the recalcitrant 

SOM is more temperature sensitive (Knorr et al., 2005, Craine et al., 2010, Karhu et al., 

2010, Xu et al., 2012). As a result, when the same amount of SOM is decomposed, the 

proportion of emitted CO2 from the slow and passive pools would be more at high than 

that at lower temperatures. The results in the current study confirmed that the active 

pool size increased with the increased incubation temperature when the same amount of 

CO2 was respired in all the multi-pool models (Fig. 4.4). Because the decay rate of the 

active pool is much greater than that of the slow and passive pools, the CO2 emission 

rate at the higher temperatures should be greater than assumed by the method. In other 

words, the time for respiring a given amount of C was less than assumed. Moreover, the 

difference between the active pools at different temperatures increased with SOM 

decomposition (Fig. 4.4), indicating that the assumption of this method causes little bias 

for short-term incubation, but it would lead to overestimation of Q10 of the recalcitrant 

SOM decomposition when applying to long-term incubation experiments. This is 

supported by the results that the estimated Q10 of recalcitrant SOM from the T4S 

method was significantly greater than that from the other methods (Fig. 4.6d). 

 

4.4.4 Potential implication of 3PX model. 

Multi-discrete-pool models assume soil C can be divided into several discrete pools 

(Andrén & Paustian, 1987, Kätterer et al., 1998, Rey & Jarvis, 2006, Li et al., 2013, 
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Schädel et al., 2013). However, in natural ecosystems there are likely C transfers among 

soil SOM pools (Rovira & Vallejo, 2002, Cheng et al., 2007) and the transfers are 

included in Earth system models (Parton et al., 1987, Jenkinson, 1990, Luo et al., 

2003). Although the discrete-pool models can fit the soil incubation data well, the 

estimated Q10 and other parameters with those models could not be directly used to 

improve Earth system models. The 3PX model, on the other hand, represents different 

soil pools and transfers among the pools to resemble ecosystem carbon cycle models. 

Thus, the 3PX model can facilitate knowledge transfer from soil incubation studies to 

Earth system modeling. 

Although the structures of the terrestrial decomposition sub-model may be different 

in different Earth system models, the 3PX-type model and data assimilation techniques 

could provide an effective approach to incorporate the incubation data into these large-

scale models with minor adjustment of the model structure. For example, the 3PX 

model in the current study corresponds to the CENTURY and TECO model (Parton et 

al., 1987, Luo et al., 2003). Instead of the traditional way that giving the parameters 

specific values, the 3PX model can provide constrained values and the uncertainties 

from experimental data. However, because there is little information for the C transfers 

in the data with CO2 emission alone, none of the five parameters relative to the C 

transfers are well constrained. Therefore, data relative to the C transfers should be 

gathered together with CO2 emission and used for the estimates of these parameters. For 

example, isotope measurements have recently been used to constrain the transfer 

coefficient from the active to slow pool (Ahrens et al., 2014). 
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4.4.5 Summary. 

The results in this study indicate that temperature sensitivity estimated from soil 

incubation data strongly depends on the methods used. The 1P model is not adequate 

for Q10 estimate. The 2P model is the most parsimonious one and can fit data well with 

all parameters commendably constrained. The 3P model can estimate the C release and 

its temperature sensitivity of the passive SOM with a minor decrease in the model 

parsimony. The estimated Q10 of the soil with less labile C from the 3PX model is 

smaller than that from the 2P and 3P models due to considering the transfers among 

pools. The T4S method is effective to estimate Q10 of the labile SOM, but would 

overestimate that of the recalcitrant SOM. The 3PX model structure offers a possible 

approach to facilitate the transfer of knowledge learned from soil incubation data into 

Earth system models. 
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Chapter 5: Acclimation of soil carbon dioxide loss to warming in 

Alaskan tundra 
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Abstract: Climate warming can result in physical (e.g., temperature rise and permafrost 

thaw) and biological (e.g., microbial community and activity) changes in permafrost 

regions. While it is well agreed that physical changes can accelerate C releases to the 

atmosphere by increasing thermodynamic reaction rates and the accessibility of soil 

organic C (SOC) to decomposers, how biological changes impact permafrost soil C loss 

is still unclear. Here, combining a process-based model and a unique field experiment 

through data assimilation, this study shows that warming reduced the base turnover rate 

of SOC, which is the representation of unresolved microbial community and activity on 

the resolved scale. The reduced base turnover rate of SOC suggests that microbial 

decomposers acclimate to warming in Alaskan tundra. Although warming still 

accelerates SOC loss, the acclimation counterbalances the SOC loss acceleration by 

62%. Our study suggests that it is critical to incorporate changes in biological properties 

(as parameters) to improve the model performance in predicting C dynamics and its 

feedback to climate change. 

 

5.1 Introduction 

Arctic ecosystems in the Northern Hemisphere have experienced, and are projected 

to continue to experience faster climate warming than other regions (IPCC, 2013). Soil 

organic carbon (SOC) in arctic ecosystems is huge in magnitude and has long been 

protected due to low temperatures. As climate gets warmer, SOC in these ecosystems 

can become vulnerable to rising temperatures and could potentially lose a large amount 

of carbon (C) to the atmosphere, acting as an important C source in this century (Schuur 

et al., 2009, Koven et al., 2011, MacDougall et al., 2012, Schuur et al., 2015, Hicks 
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Pries et al., 2016). However, the magnitude of the C source is still uncertain due to poor 

understanding of mechanisms that control soil C balance in the frontier ecosystems 

(McGuire et al., 2012, Koven et al., 2013). 

Under climate warming, several aspects may influence soil C balance in arctic 

ecosystems. First, temperature increase itself can directly stimulate soil C release due to 

the thermal kinetic behavior of microbial-mediated processes (Davidson & Janssens, 

2006, Liang et al., 2015, Bracho et al., 2016). Second, permafrost thaw can increase 

SOC accessibility for decomposers by lifting temperature and moisture constraints (i.e., 

thawing permafrost and increasing soil drainage), potentially resulting in more C release 

from arctic ecosystems to the atmosphere (Schuur et al., 2009, Koven et al., 2011, 

Hicks Pries et al., 2016). The two aspects are both direct effects of physical changes on 

soil C balance in arctic ecosystems. In addition, a third aspect, biological changes, may 

be also important to determine soil C changes. For example, warming and permafrost 

thaw can change microbial community composition and activity (Manzoni et al., 2012, 

Hultman et al., 2015, Xue et al., 2016), which may further affect CO2 emissions to the 

atmosphere. 

While the direct effects of physical changes have been paid more and more attention 

during the past years (e.g., Zhuang et al., 2006, Koven et al., 2011, MacDougall et al., 

2012), few studies have been conducted to quantitatively examine how and to what 

extent possible changes in biological properties contribute to soil C changes in arctic 

ecosystems. In Earth system models (ESMs), biological properties, as parameters (e.g., 

base turnover rates of C pools), are usually set constant. Thus, changes in biological 

properties are rarely considered in ESMs, which may result in inaccurate predictions of 
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soil C changes in arctic ecosystems and its feedback to climate change (Koven et al., 

2013, Schuur et al., 2015). 

In this study, I quantitatively estimated the contributions of changes in physical 

forcings and biological properties to soil C changes in an arctic tundra by integrating 

data from a unique long-term field manipulative experiment and a process-based model. 

I tested the following hypothesis that soil microbial community can acclimate to 

warming, and consequently partially counterbalance the accelerated SOC loss. 

 

 

5.2 Materials and Methods 

A model-data assimilation, combining a 5-year old field experiment and Terrestrial 

ECOsystem (TECO) model, was conducted. 

 

 

Figure 5.1 Site information and experimental design and treatment. 
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5.2.1 Experimental design and observations. 

A warming experiment, the Carbon in Permafrost Experimental Heating Research 

(CiPEHR) project, was established at a moist acidic tundra in the region of Eight Mile 

Lake (EML), Alaska, USA (63°52’59”N, 149°13’32”W) (Fig. 5.1). Site information, 

experimental design and field observations are described in detail in Natali et al. (2011), 

Natali et al. (2012), Natali et al. (2014). Briefly, the site is within the area of 

discontinuous permafrost, with active layer depth about 50 cm. Mean annual 

temperature and precipitation are -1.0 °C and 378 mm, respectively. The lowest and 

highest mean monthly temperatures are -16 °C in December and 15 °C in July. 

In the experiment, soil was warmed by using snow fences that drift snow to 

accumulate in winter. There were six replicate fences in three blocks. The excess snow, 

as well as the snow fences, were removed from the warming plots before snowmelt in 

early spring to ensure comparable melt out dates and moisture conditions across 

treatments. The experimental treatment started in September 2008, and continued every 

winter from then on. Throughout the growing seasons (May – September) from 2009 to 

2013, gross primary production (GPP), ecosystem respiration (ER), net ecosystem CO2 

exchange (NEE), and soil moisture were automatically monitored (Natali et al., 2011). 

Soil temperatures at 5 cm, 10 cm, 20 cm, and 40 cm were monitored across the 

experimental period (Natali et al., 2011). In addition, thaw depth during growing 

seasons were measured twice a week (Natali et al., 2011). Aboveground biomass was 

measured using a nondestructive point-frame method every year (Natali et al., 2012). 

Belowground biomass down to 35 cm was measured by sampling soil cores in 2011. In 

2009, 2010, 2011, and 2013, soils were sampled for SOC, bulk density, ash weight 
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measurements. SOC profile was corrected using bulk density and ash weight to 

eliminate the influence of soil compaction due to warming. 

 

 

Figure 5.2 Schematic diagram of model used in this study. The proportion of roots, 

belowground litter and SOC is dependent upon thaw depth. 

 

5.2.2 Model. 

Terrestrial ECOsystem (TECO) model was used in this study (Fig. 5.2). TECO 

model is a daily process-based model. To mimic the dependences of soil C availability 

and root activity on thaw depth in the permafrost site, daily thaw depth was gap-filled. 

A linear function (i.e., y = 𝑎𝑥 + 𝑏) between thaw depth and cumulative air temperature 

was used for the daily gap-filling. In growing seasons, positive cumulative air 

temperature was used to fill the increasing thaw depth. At the end of growing seasons, 

negative cumulative air temperature was used to fill the decreasing thaw depth. At the 

beginning of each growing season, when air temperatures in 7 continuous days were 

greater than 0 °C, the first day of the days was marked as the beginning day (DOB). At 
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the end of each growing season, when air temperatures in 7 continuous days were below 

0 °C, the day before the first day of the days was marked as the ending day (DOE). 

During DOB and DOE, positive cumulative air temperature was calculated. During 

(DOE + 1) and (DOB – 1) in the next year, negative cumulative air temperature was 

calculated. Parameters a and b were determined by fitting the observed thaw depth 

during growing seasons using a Markov Chain Monte Carlo (MCMC) technique (Liang 

et al., 2015). The values of a and b were 3.58 × 10-4 and 0.035 in ambient, and 3.65 × 

10-4 and 0.056 in warming, respectively. The same parameters were used for simulating 

decreasing thaw depth after DOEs. A minimum thaw depth of 0.5 cm was set to 

represent soil C availability in winters.  

Gross primary production (GPP) was simulated by 

𝐺𝑃𝑃(𝑡) = 𝑃𝐴𝑅(𝑡) × 𝐹𝐴𝑃𝐴𝑅(𝑡) × 𝜀 × 𝜏(𝑡) 

where PAR is photosynthetic active radiation, which is derived from a weather station 

located approximately 100 m from the experiment. FAPAR is the fraction of absorbed 

PAR by plants, which is Moderate Resolution Imaging Spectroradiometer (MODIS) 

Normalized Difference Vegetation Index (NDVI) in the grid cell which the experiment 

site is in. Due to warming effect on plant growth, a factor 1.068 was applied to FAPAR 

in warming based on NDVI measurements in situ (Natali et al., 2012). 𝜀 is light use 

efficiency, which was determined by data assimilation described in next section. 𝜏 is 

environmental scaler. 

Carbon dynamics within the ecosystem was modeled by 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐵 × 𝐺𝑃𝑃(𝑡) + 𝛿 × 𝐴 × 𝐾 × 𝑋(𝑡) 
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where X(t) is a 15 × 1 vector describing C pool sizes (i.e., two plant pools, one litter 

pool, 4 soil layers with 3 soil pools in each layer) at time t. 𝐵 =

[𝑏𝑠ℎ𝑜𝑜𝑡 𝑏𝑟𝑜𝑜𝑡 0 0 0 0 0 0 0 0 0 0 0 0 0]𝑇 is a vector describing GPP allocations to the C 

pools. GPP only directly allocates to shoots (𝑏𝑠ℎ𝑜𝑜𝑡), roots (𝑏𝑟𝑜𝑜𝑡) and autotrophic 

respiration. To derive better parameter estimations, measured GPP are used when they 

are available. A is a square matrix representing C transfers between individual C pools 

(black arrows in Fig. 5.2). All the diagonal elements in the matrix A are -1. K is a 

diagonal matrix representing turnover rates of pools (the amounts of C per unit mass 

leaving each of the pools per time step). 𝛿 is environmental scaler. In the model, C 

dynamic is dependent on thaw depth (Fig. 5.2). Only pools above the thaw depth are 

involved at each time step. The vertical distributions of root and soil C are described in 

the following section. 

 

5.2.3 Data assimilation for parameter constraints. 

In this study, constrained initial pool sizes by data assimilation, instead of prescribed 

with the equilibrium assumption, are used. In transient systems, data assimilation can 

provide more reasonable initial conditions for model compared to prescription 

(Carvalhais et al., 2008, Williams et al., 2009). Thus, 6 parameters, which are the initial 

pool sizes of shoots, roots, litter, fast soil, slow soil, and passive soil pools, are included 

in the ambient treatment. The constrained initial pools in the ambient are also used in 

the warming treatment, assuming that no significant difference exists in the ambient and 

warming before treatment started. 
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Besides, 16 parameters are to be constrained in the ambient and warming treatments, 

respectively. These parameters include (1) light use efficiency () in the GPP model; 

GPP allocations to (2) shoots (𝑏𝑠ℎ𝑜𝑜𝑡) and (3) roots (𝑏𝑟𝑜𝑜𝑡) in the vector B; turnover 

rates of (4) shoots (𝑘𝑠ℎ𝑜𝑜𝑡), (5) roots (𝑘𝑟𝑜𝑜𝑡), (6) litter (𝑘𝑙𝑖𝑡𝑡𝑒𝑟), (7) fast soil C (𝑘𝑓𝑎𝑠𝑡), 

(8) show soil C (𝑘𝑠𝑙𝑜𝑤), and (9) passive soil C (𝑘𝑝𝑎𝑠𝑠𝑖𝑣𝑒) in matrix K; C transfer 

coefficient from (10) litter to fast soil C (𝑎𝑓𝑎𝑠𝑡,𝑙𝑖𝑡𝑡𝑒𝑟),(11) from litter to slow soil C 

(𝑎𝑠𝑙𝑜𝑤,𝑙𝑖𝑡𝑡𝑒𝑟),(12) from fast soil C to slow soil C (𝑎𝑠𝑙𝑜𝑤,𝑓𝑎𝑠𝑡),(13) from fast soil C to 

passive soil C (𝑎𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑓𝑎𝑠𝑡),(14) from slow soil C to fast soil C (𝑎𝑓𝑎𝑠𝑡,𝑠𝑙𝑜𝑤),(15) from 

slow soil C to passive soil C (𝑎𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑠𝑙𝑜𝑤),(16) from passive soil C to fast soil C 

(𝑎𝑓𝑎𝑠𝑡,𝑝𝑎𝑠𝑠𝑖𝑣𝑒). 

A probabilistic inversion approach is used to constrain model parameters (Xu et al., 

2006, Liang et al., 2015). The approach is based on Bayes’ theorem: 

𝑃(𝜃|𝑍) ∝ 𝑃(𝑍|𝜃)𝑃(𝜃), 

where 𝑃(𝜃) is prior probability density function (PDF). 𝑃(𝑍|𝜃) is a likelihood function 

with the assumption that the model error follows a multivariate Gaussian distribution. 

𝑃(𝜃|𝑍) is the posterior PDF, which is constrained by using adaptive Metropolis (AM) 

algorithm, a Markov Chain Monte Carlo (MCMC) technique (Haario et al., 2001, 

Hararuk et al., 2014). In the AM algorithm, the proposal distribution at each iteration is 

estimated depending on the past iterations by setting a covariance matrix 

𝐶𝑖 = {
𝐶0                                                                    𝑖 ≤ 𝑖0,

𝑠𝑑𝑐𝑜𝑣(𝜃0, … , 𝜃𝑖−1)                                      𝑖 > 𝑖0,
 

where sd is a parameter calculated based on dimension d (i.e., 𝑠𝑑 = 2.38 √𝑑⁄ , and d = 

22 in this study) (Gelman et al., 1996, Hararuk et al., 2014). An arbitrary initial 
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covariance C0 is required in the AM algorithm when iteration is not greater than i0 (i0 = 

4000 in this study). C0 is constructed by a test run in which the new parameter is 

selected by a random move from the previous one within a uniform distributed range 

(Xu et al., 2006, Hararuk et al., 2014, Liang et al., 2015). The AM algorithm is run 

repeatedly for 50, 000 iterations to derive the posterior PDF. At each iteration, a set of 

parameters (new) is proposed based on the accepted parameters in the previous iteration 

(old) and Ci. Then the acceptance probability is calculated by  

𝛼 = 𝑚𝑖𝑛 {1,
𝑃(𝑍|𝜃𝑛𝑒𝑤)𝑃(𝜃𝑛𝑒𝑤)

𝑃(𝑍|𝜃𝑜𝑙𝑑)𝑃(𝜃𝑜𝑙𝑑)
}. 

The acceptance probability is compared with a random number u between 0 and 1. If  

> u, the new set of parameters new is accepted. Otherwise, new is set to old. To test the 

convergence of the Markov chain, five parallel runs are conducted. After discarding the 

first half of the accepted simulations in each run, Gelman-Rubin diagnostic method is 

employed to test the convergence to stationary distributions (Gelman & Rubin, 1992). 

The posterior parameter distributions are converged. 

 

5.2.4 Modeling experiment. 

With all the accepted parameter sets, the model was run in three scenarios. The first 

scenario is physical forcings (i.e., temperature, thaw depth, and etc) in the ambient with 

parameter sets constrained by data in the ambient. The second scenario is physical 

forcings in the warming treatment with parameter sets constrained by data in the 

ambient. The third scenario is physical forcings in the warming treatment with 

parameter sets constrained by data in the warming treatment. By comparing the three 
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scenarios, we can explore how biological changes (i.e., parameters) influence the C 

dynamic in the permafrost site. 

 

Figure 5.3 Effect of warming treatment on soil temperatures during the 

experimental period. Warming increases temperatures at top layers in winters, 

and that at lower layers across the experimental period. 
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5.3 Results 

The experimental treatment increased temperatures at top layers in winters, and 

increased temperatures at lower layers across the experimental period (Fig. 5.3). 

Warming significantly increased thaw depth during growing seasons (Fig. 5.4). In 

addition, the gap-filled daily thaw depth matched observation quite well (Fig. 5.4), 

allowing me to conduct further analyses. With the gap-filled thaw depth and measured 

bulk density and ash profile, the amount of active soil was calculated across the 

experimental period for both the ambient and warming treatments (Fig. 5.5). Warming 

significantly increased the amount of active soil during growing seasons (Fig. 5.5). 

 

 

Figure 5.4 Measured (blue dots) and gap-filled (black lines) thaw depth in the 

ambient (upper panel) and warming (lower panel) treatments. 
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Figure 5.5 Amount of active soil during the experimental period. Warming 

significantly increases the amount of active soil. 

 

 

Figure 5.6 Parameter distributions from data-model integration. a, photosynthetic 

light use efficiency; b, c, GPP allocations to above- and below-ground biomass; d – 

i, base turnover rates of shoots, roots, litter, fast SOC, slow SOC, and passive SOC, 

respectively; j, k, C transfer coefficient from litter to fast and slow SOC; l, m, C 

transfer coefficient from fast to slow and passive SOC; n, o, C transfer coefficient 

from slow to fast and passive SOC; p, C transfer coefficient from passive to fast 

SOC. 
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Warming significantly changed biological properties of both vegetation and soil (Fig. 

5.6). Specifically, warming increased photosynthetic light use efficiency (Fig. 5.6a), and 

slightly decreased GPP allocation to roots (Fig. 5.6c). In addition, warming changed the 

base turnover rates of C pools (Fig. 5.6d – i). Warming significantly reduced the base 

turnover rates of fast and slow SOC pools, whereas the effect on litter and passive SOC 

was minor. Moreover, warming slighted increased C use efficiency of slow SOC pool 

(Fig. 5.7). 

 

Figure 5.7 Distributions of C use efficiency of litter (a), fast SOC (b), slow SOC (c), 

and passive SOC (d). 

 

The changed biological properties had significant effect on SOC loss (Fig. 5.8). On 

average, SOC loss during the experimental period was 96 and 170 g C m-2 in the 

ambient and warming, respectively (Fig. 5.8a, b). However, if the biological changes 

were not considered, the SOC loss would be 290 g C m-2 (Fig. 5.8c). In other words, 

biological changes alleviate the SOC loss acceleration by 62% (Fig. 5.8d). 
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Figure 5.8 SOC change over time (a – c) and the total SOC loss during the 

experimental period (d). a, ambient environmental factors + ambient parameters; 

b, warming environmental factors + warming parameters; c, warming 

environmental factors + ambient parameters. 

 

5.4 Discussion 

5.4.1 Acceleration of SOC loss by warming. 

In this study, the warming treatment significantly increased thaw depth and the 

amount of active soil during growing seasons, leading to more SOC accessible to 

decomposers. In addition, the warming treatment also directly increased soil 

temperature across the soil profile. The increased SOC accessibility and temperature 

can directly accelerate SOC loss in Alaskan tundra. 
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In addition to the physical changes (e.g., temperature increase and permafrost thaw), 

warming also significantly changed biological properties in the Alaskan tundra. This 

study shows that warming increases photosynthetic light use efficiency. The enhanced 

light use efficiency could be attributed to increased canopy nitrogen content and 

released temperature limitation (Hirose & Bazzaz, 1998, Kergoat et al., 2008, Natali et 

al., 2011). Because warming increases soil nitrogen mineralization rate and permafrost 

thaw provides more available nitrogen, plants can acquire more nitrogen for growth, 

leading to the increase in canopy nitrogen content. As a critical element in plant 

photosynthetic process, the increase in canopy nitrogen content is able to enhance the 

light use efficiency. In addition, increased temperature itself can promote plant 

physiological activities. As a result, warming significantly increases photosynthetic C 

assimilation in the study site (Natali et al., 2012). 

Even though the increased photosynthetic C assimilation can partially offset the 

accelerated SOC decomposition, warming still leads to net SOC loss. The soil C 

dynamic in the permafrost regions is different from that in other regions. In other 

regions, warming treatment may accelerate the loss of relatively labile SOC in early 

stage (Kirschbaum, 2004, Hartley et al., 2007). As a result, the reduced labile SOC may 

constrain the further acceleration of SOC loss by warming, resulting in similar soil 

respiration between control and warming treatment in later years (Kirschbaum, 2004, 

Hartley et al., 2007). In the permafrost regions, however, temperature-protected SOC in 

permafrost layers becomes active due to permafrost thaw. Thus, although warming 

accelerated the loss of SOC, there is actually more substrate for microbial decomposers. 
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Therefore, it is unlikely that substrate availability will limit the decomposition of SOC 

in the permafrost regions. Permafrost will still be an important C source in the future. 

 

5.4.2 Acclimation of SOC decomposition to warming. 

The temperature increase and permafrost thaw may alter microbial community 

composition and activity (Manzoni et al., 2012, Hultman et al., 2015, Xue et al., 2016), 

which may further affect CO2 emissions to the atmosphere. This study shows that 

warming significantly decreases the base turnover rates of fast and slow SOC pools, 

suggesting that the microbial community may have acclimated to warming. There may 

be two reasons for the acclimation. The first one is the physiological adjustments of 

microbial decomposers under warming (Luo et al., 2001, Bradford et al., 2008, Allison 

et al., 2010). Warming reduces the conformational flexibility of enzymes due to the 

increased selective force of temperature (Hochachka & Somero, 2002, Bradford et al., 

2008), leading to the reduced base turnover rates of SOC pools. Second, changes in soil 

microbial community composition may also contribute to the acclimation (Zogg et al., 

1997, Hochachka & Somero, 2002, Bradford et al., 2008). Previous studies in the same 

site indicates that warming has significantly changed microbial community composition 

(Penton et al., 2013, Xue et al., 2016). The changed community may alter 

decomposition activity and shift the optimum temperature, resulting in the acclimation 

(Hochachka & Somero, 2002, Bradford et al., 2008, Hall et al., 2008). 

The acclimation observed in this study is consistent with my hypothesis. In addition, 

acclimation has also been found in other ecosystems (Luo et al., 2001, Hochachka & 

Somero, 2002, Bradford et al., 2008), suggesting that acclimation may be a common 
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phenomenon across ecosystems. The acclimation of SOC decomposition to warming 

can partially counterbalance the acceleration of SOC loss by temperature increase and 

permafrost thaw. In this study, I calculated the SOC loss in a scenario that does not take 

the acclimation in to consideration. Results show that acclimation reduced the 

acceleration of SOC loss by 62%, suggesting that the C source in the permafrost regions 

may not as large as by current ESMs. In these ESMs, parameters, which are calibrated 

by historical data, are usually set constant. However, because parameters are the 

representations of multiple unresolved processes on the resolved scale (e.g., soil C 

turnover rate is a parameter that includes impacts of diverse microbial composition, 

accessibility determined by extra enzyme activity and structural protections, and other 

factors), they are changeable once the unresolved processes respond to environmental 

change over time (Bauer et al., 2015). Thus, it is less reasonable to set parameters 

constant, especially in the context of rapid global change. Specifically, since 

acclimation is a common phenomenon, with constant C turnover parameters, ESMs 

may overestimate SOC loss. This study illustrates that integrating field experiments and 

model is efficient to quantify changes in parameters (i.e., unresolved biological 

properties) in models, and consequently improve model performance. 

 

5.4.3 Summary. 

Warming significantly increases soil temperature and permafrost thaw, leading to 

significant acceleration of SOC loss in the Alaskan tundra. On the other hand, the data-

model integration shows that soil microbial community acclimates to warming. The 

acclimation partially counterbalances the acceleration of SOC loss by temperature 
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increase and permafrost thaw. It is also suggested that the current generation of ESMs, 

with constant parameters, may overestimate the permafrost soil C loss. Long-term 

experiments and data-model integration are needed to update biology-related 

parameters to improve model performance. 
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Chapter 6: Conclusions and Perspectives 
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6.1 Conclusions 

In this dissertation, I studied the responses of soil carbon (C) and related 

biogeochemical processes to increased CO2 concentrations and temperature. In Chapter 

2, I revealed the effect of new C addition on soil organic C (SOC) storage through two 

critical processes, replenishment and priming. The analyses highlight that increasing 

new C inputs increase SOC sequestration due to a higher rate of replenishment than loss 

of old C by priming effect. Consequently, increasing C inputs to soils from enhanced 

plant productivity under elevated CO2, plant invasion, and vegetation recovery likely 

result in SOC accumulation in soils over time, potentially mitigating climate change. 

In Chapter 3, I synthesized effects of CO2 enrichment on the terrestrial nitrogen (N) 

cycle and the N limitation to plant growth under elevated CO2. The results indicate that 

elevated CO2 stimulates N influx via biological N fixation but reduces N loss via 

leaching, leading to increased N supply for plant growth. The additional N supply via 

the enhanced biological N fixation and the reduced leaching may partially meet the 

increased N demand under elevated CO2, potentially alleviating PNL. In addition, the 

analysis indicates that increased N2O emissions may partially offset the mitigation of 

climate change by stimulated plant CO2 assimilation. Moreover, changes in soil 

microenvironments, ecosystem communities and above-belowground interactions 

induced by the different responses of NH4
+ and NO3

- to CO2 enrichment may have long-

term effects on the terrestrial biogeochemical cycles and climate change. 

In Chapter 4, I conclude that temperature sensitivity estimated from soil incubation 

data strongly depends on the methods used. The 1P model is not adequate for Q10 

estimate. The 2P model is the most parsimonious one and can fit data well with all 



103 

parameters commendably constrained. The 3P model can estimate the C release and its 

temperature sensitivity of the passive SOC with a minor decrease in the model 

parsimony. The estimated Q10 of the soil with less labile C from the 3PX model is 

smaller than that from the 2P and 3P models due to considering the transfers among 

pools. The T4S method is effective to estimate Q10 of the labile C, but would 

overestimate that of the recalcitrant C. The 3PX model structure offers a possible 

approach to facilitate the transfer of knowledge learned from soil incubation data into 

Earth system models. 

In Chapter 5, I studied how warming affects soil C storage in Alaskan tundra, 

through integrating a process-based model with a long-term field experiment. Results 

show that warming enhances soil temperature and permafrost thaw, which further 

accelerate SOC loss in the Alaskan tundra. however, results also shows that soil 

microbial community acclimates to warming, partially counterbalancing the 

acceleration of SOC loss. In addition, the changed parameters by warming suggest that 

the current generation of Earth system models (ESMs), which usually have constant 

parameters, may overestimate the SOC loss in permafrost regions. 

 

6.2 Perspectives 

How ecosystems respond to global change will significantly influence their functions 

and services. Research in the area has lasted for decades, during which a large amount 

of data have been collected from observations and experiments. This dissertation 

demonstrates that synthesizing existing data can provide general patterns of ecosystem 

responses to global change. Meanwhile, models have also been developed to simulate 
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and predict the responses and feedback of ecosystems to global change. However, data 

collection and model development are relatively independent. Although both of them 

alone have advanced our understanding of ecosystem structures, functions, and services 

in the context of global change, this dissertation indicates that integrating data and 

model can provide more insights. In addition, data are helpful for model development. 

On the other way around, modeling studies are helpful for experimental and 

observational designs. Thus, further data-model integration studies are needed. 

Specifically, when models are developed, they should be parameterized and tested using 

different types of data. 

Chapter 3 indicates that though CO2 enrichment does not affect total soil inorganic N 

much, the ratio of ammonium to nitrate is increased. It is needed to study how the 

changed ratio of ammonium to nitrate may affect soil microenvironments, ecosystem 

communities and above-belowground interactions, and consequently possibly terrestrial 

biogeochemical cycles and climate change on long-term time scales. 

In Chapter 4, the methods for estimating temperature sensitivity I evaluated are based 

on laboratory incubation data. In laboratory incubation experiments, environmental 

factors (e.g., temperature and moisture) are well controlled, which is not the case in the 

field. In addition, soil incubated in laboratory is usually disturbed. The estimated 

temperature sensitivity with laboratory incubation data may not be directly used in the 

field. Thus, field incubation with undisturbed soil is needed in the future. 

The analyses in Chapter 5 indicate soil microbial decomposers acclimate to warming 

in the Alaskan tundra. Further studies are needed to quantify the dependence of 

acclimation magnitude upon warming intensity. In addition, model parameters, which is 
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the representation of multiple unresolved processes on the resolved scale, are 

changeable once the unresolved processes respond to environmental change. Thus, 

setting parameters constant in ESMs may resulting in inaccurate predictions. Integrating 

model and data is needed to improve model performance. 

In addition, results in Chapter 4 demonstrate that the decomposition of SOC 

increases by warming, whereas SOC increases by increased C input as indicated in 

Chapter 2. This suggests that different global change factors may affect SOC in 

different ways. Thus, future research is needed to explore the integrated effect of global 

change factors. 
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