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1. Abstract 

Norms on a Banach space X determined by partitions and weights were intro­

duced by D. Alspach in 1999. This thesis shows that this new approach unifies many 

well~known complemented subspaces of Lp developed during last four decades. It 

is proved that the class of spaces with such norms is stable under sums. We prove 

that a sequence space X with norm given by finitely many partitions and weights 

is isomorphic to a subspace of LP. By introducing the envelope norm, we obtain a 

necessary condition for a Banach sequence space with norm given by partitions and 

weights to be isomorphic to a subspace of Lp, Using this we define a space Yn with 

norm given by partitions and weights with distance to any subspace of LP growing 

with n. This allows us to construct an example of a Banach space with norm given 

by partitions and weights which is not isomorphic to a subspace of Lp. 
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2. Introduction 

Since the 1960's, understanding the complemented subspaces of Lp has been an 

interesting topic of research in Banach space theory [L-P] and [L-R]. Many special­

ists in this area have used many clever ideas to construct complemented subspaces 

of Lp. It was shown by Bourgain, Rosenthal and Schechtman in 1979 that up to 

isomorphism, there are uncountably many complemented subspaces of Lp [B-S-R]. 

In 1999, Dale Alspach proposed a new approach to describe the complemented sub­

spaces of Lp[O, l],P > 2. Define for each partition P = {Ni} of N and function 

W: N-+ (0, 1] 

Now suppose that (Pk, Wk)keK is a family of pairs of partitions and functions as 

above. There are two fundamental questions which will be considered in this thesis. 

What conditions on (Pk, Wk)keK imply that 

(2.1) 

defines a norm on a space of sequences X so that Xis isomorphic to a complemented 

subspace of Lp[O, 1]? Is every complemented subspace of Lp (other than Lp) isomor­

phic to a space of this form? 

Remark: These spaces have unconditional bases. So an affirmative answer to the sec­

ond question would include proving that every Cp space has an unconditional basis. 

The paper includes five major sections besides this Introduction and a preliminaries 

section which contains the statement of some known results which will be needed 

later. Unless otherwise noted we will assume that p > 2 through out this thesis. We 
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will also assume that the scalar field is JR. 

In Section 4, we give a discussion of normalization by the inclusion of discrete parti­

tions. We present well known examples of complemented subspaces of LP with norm 

given by partitions and weights. We also prove that the sums of such Banach spaces 

are stable under these norms, i.e., whose norms are also given by partitions and 

weights. 

In Section 5, we first show that if the norm on a space X is given by finitely many 

partitions and weights, then X is isomorphic to a subspace of Lp. Then we give the 

definition of an envelope norm which was suggested to us by Alspach and we prove 

the existence of the envelope norm generated by a family of partitions and weights. 

We also give a lower bound on a norm which is necessary for a space to be isomorphic 

to a subspace of Lp. Finally we show that if a space with norm given by partitions 

and weights is isomorphic to a subspace of Lp, then its norm is equivalent to the 

natural envelope norm. 

In Section 6, we show that in most cases for single partitions and any weights, the 

space is isomorphic to a complemented subspace of Lp. For double partitions, we give 

a sufficient condition for the space to be isomorphic to a complemented subspace of 

Lp. 

In Section 7, we construct an example which demonstrates the difference between a 

norm given by partitions and weights and the corresponding envelope norm. We also 

obtain an estimate of the distance between a certain Banach space Yn with norm given 

by partitions and weights and Xp ®n. Finally we give an example of a Banach space 

with norm given by partitions and weights which is not isomorphic to a subspace of 
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Lp by applying Theorem 5.9. 

In Section 8, we construct a diagonal subspace of CE f2)tp EB Xp which is uncomple­

mented in the space (~f2)tp EB Xp. However, we are unable to determine whether 

or not the space is isomorphic to a complemented subspace of Lp. In closing, we list 

some open questions for further development. 

This thesis is a result of discussion between professor Dale Alspach and me for a cou­

ple of years in Oklahoma State University. Many ideas were coming from his great 

knowledge and talent in Banach space theory. 
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3. Preliminaries 

In this section, we state some well known inequalities and define some standard 

spaces. We also give the definitions of some standard sums of spaces used in studying 

subspaces of Lp. 

3.1. Inequalities. In this subsection, we state some useful inequalities. 

3.1.1. Khintchine's Inequality. As it is stated in [L-T-1, p.66] the inequality 

of Khintchine has many applications in the study of Lp space theory. Two are of 

particular interest here. Let rn(t) = sign sin 2n11"t, n = 0, 1, 2, ... be the Rademacher 

functions on [O, 1 J. For 1 ~ p < oo, there exist constants Ap and BP such that for all 

scalars (an) , 

1 

Ap (L lanl2) ½ ~ (11 I Lanrn(t)IPdt) v ~ Bp (L lanl2) ½ 

Ap = 1 if 2 ~ p < oo and Bp = 1 if p ~ 2. An immediate consequence is that 

[rn : n = 0, 1, ... ] is isomorphic to £2 • A second consequence will be stated in 3.1.3. 

Next we state a generalization of Khintchine's Inequality. 

3.1.2. Rosenthal's Inequality. It is known that any sequence of mean zero 

independent random variables in Lp is unconditional. Rosenthal's inequality gives 

more information on these sequences [R]. Let 2 < p < oo. If (xi)1 are independent 

· mean zero random variables in Lp, then there exists KP < oo so that 
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It is shown in [J-S-Z] that KP is of order p/ lnp. 

3.1.3. Upper and Lower Estimates in LP. The following estimates are well­

known and can be found in [A-0]. For (xin C Lp, 

1 

A, ( t llx.11; r ~ ([ t r;(t)x; >f < ( t llx;II: / 

if 1 ~ p ~ 2, and 

if 2 < p < 00. 

Integration against the Rademacher functions yields some useful inequalities for un­

conditional basic sequences in LP" If (xi) is a ..\-unconditional normalized basic se-

quence in Lp, then 

if 2 ~ p < oo, and 

if 1 ~ p ~ 2. 

3.2. Sums of Spaces. There are many ways to create Banach space sums of 

Banach spaces. The reader can find these definitions in many standard Banach theory 

books, e.g., [J-L]. 
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DEFINITION 3.1. Direct Sum of Banach Spaces 

Let X 1, ... , Xn be normed spaces with norms II• llx1 , ••• , 11 • llxn. Then the ( external) 

direct sum or direct product of X 1 , ... , Xn is the normed space whose underlying 

vector space is the vector space direct sum of X 1 , ... , Xn and whose norm is the 

norm given by the formula 

This normed space is denoted by X1 EB ... EB Xn or sometimes (X1 EB ... EB Xn)£2 • 

DEFINITION 3.2. fp-Sum 

Let {Xn} be a sequence of Banach spaces. Then the fp-sum of {Xn}, C2:::::Xn)p_, is 
p 

the vector space of sequences (xn) with Xn E Xn for all n, and finite norm, 

A special case of this is the following well known example of a complemented 

subspace of Lp. 

Suppose we have a sequence of Banach spaces Xn each isometric to £2 . Then the 

Rosenthal implicitly introduced another type of sum in [R] and these sums were 

developed further in [A-2]. 

DEFINITION 3.3. (p, 2)-Sum 

Let p > 2. Let (Xn) be a sequence of subspaces of Lp(f.2, µ) for some probability 

measure µ, and let ( wn) be a sequence of real numbers, 0 < Wn :'.S 1. For any 
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sequence (xn) such that Xn E Xn for all n, let 

and let 

X = (Lxn) (p,2,(wn)) 

= { (xn) : Xn E Xn for all II (xn) llp,2,(wn) < 00} 

We will say that Xis the (p, 2, (wn))-sum of {Xn}. 

DEFINITION 3.4. Tensor Product in Lp 

For each k E N, let Jk = [O, l]k. Let m, n E N. Let 1 ~ p < oo and let X and Y 

be closed subspaces of Lp(Im) and Lp(r), respectively. Define the tensor product 

X 0 Y of X and Y by 

X 0 Y = [x(s)y(t) : x EX, y E Y, s E Jm, t E r]Lp(Im+n) 

We will denote the element x(s)y(t) by x 0 y. 

If X = Y, then we write this as a tensor power X®2 . In general, the tensor power 

®f=1 X will also be denoted as X®n. 

3.3. Well-Known Complemented Subspaces of Lp. [R]. 

DEFINITION 3.5. The Spaces Xp,w 

Let w = ( wn) be a sequence of positive scalars. Define Xp,w to be the space of 

sequences x = (xn), of scalars, for which both E lxnlP and E lwnxnl 2 are finite. For 

8 



x E Xp,w, define the norm as 

Rosenthal proved that the following condition on the sequence ( wn) was critical 

in determining the isomorphic type of Xp,W· 

~ 

For each E > 0, L w;:- 2 = oo. ( *) 
Wn<E 

If w = (wn) satisfies (*), then Xp,W is a sequence space realization of Xp. Let {fn} 

be a sequence of independent mean zero random variables in Lp, and let w = (wn) = 

(llfnll2/llfnllp) satisfy (*), then it follows from Rosenthal's inequality that the space 

[f n]Lp is a function space realization of Xp. 

DEFINITION 3.6. The space Bp 

. ~ 

Let {Xp,v<n>} be a sequence of Banach spaces where v<n) = (¼) 2P • Each Xp,v<n> is 

isomorphic to £2 , but v<n) is chosen so that 

SUPneN d(Xp,v<n>, £2) = oo, where d(Xp,v<n>, £2) is the Banach-Mazur distance between 

Xn and £2. Define BP to be fp sum of (Xp,v<n>). 

3.4. Other Results. In this subsection, we quote some other useful results which 

will be cited later in the paper. The first lemma is well-known and easy to prove. 

LEMMA 3.7. Let {XJ1=1, II• II; be Banach spaces, for j-: 1, 2, ... , n. Let Ill• Ill be 

a norm on Rn for which the standard basis is unconditional. Define space ('~J=l X;) 

with norm 111•111 by ll(x;)1=1 11 := lll(llx;ll)1=i111· Then (Ej=l X;) rv (EJ=l X;) 
111,111 ll•llp 

for 1 ~ p ~ oo. 
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PROPOSITION 3.8. (Tong)[T] Let the matrix A = (ai,j) represent a bounded 

linear operator T from a Banach space X into a Banach space Y with unconditional 

bases {xi}~1 and {yj}~1, respectively. Then the diagonal of A also represents a 

bounded linear operator D from X into Y. If the unconditional constants of {xi}~1 

and {Yi}~1 are 1, then IIDII ~ IITII-
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4. Norms Determined by Partitions and Weights 

In this section, we examine some examples of complemented subspaces of Lp in 

order to motivate the idea of a norm given by partitions and weights. Then we 

develop the formal definition of a norm given by an admissible family of partitions 

and weights. Finally we give some results about sums of spaces with these norms. 

4.1. Examples. In the following we will see that many well known· comple­

mented subspaces of Lp have equivalent norms of the form defined as in the In­

troduction. Here it is sometimes convenient to take partitions and weights defined on 

sets other than N. For each example we will have a family of partitions (Pk) of Nm 

for some m and weights (Wk) fork in some index set K. 

EXAMPLE 4.1. Examples with one partition and weight. 

K = {l}. 

(1) If P = {{ i} : i E N} and W = ( wn) is any sequence of positive numbers, then 

X - f.P since 

(2) If P = {N} and W = ( wn) is any sequence of positive numbers, then X - £2 

since 
1 1 

ll(x.)11 = ((t.1x.12w!)ir = (t.1x.12w!)' 
(3) If the index set is N x N, the partition P = {{n} x N}, and W = (wn,m), 

then X - (E f.2)tp since 
1 

ll(x.)11 = (t. (t. lxn,ml2w!,m) f)' 
11 



EXAMPLE 4.2. Examples with two partitions and weights. 

K = {1,2} 

(1) If A = { {n}} with weight W1 = (1) and P2 = {N} with weight W2 = 

(wn), then Xis the space Xp,w2, defined by Rosenthal, with norm IJ(ai)II = 

max { (E lanJP)½, (E Jwnanl2 )½ }· Rosenthal, [R), proved the following: 

(a) If inf Wn > 0, then Xp,W2 - f2. 
n 
~ 

(b) If E w!{,-2 < oo, then Xp,W2 - fp. 

(c) If there is some E > 0 for which {n: Wn 2:: E} and 

{ n : Wn < E} are both infinite and for which 

~ 

Lwn<E w!{,-2 < oo, then Xp,W2 ,-...; f2 EE) fp. 

(d) If W2 satisfies(*), then Xp,w2 - Xp. 

(2) If A= {{(i,j)}} with weight W1 = (1) and P2 = {{n} x N} with weight 

W2 = (wn,m) where Wn,m =(¼)for all n,m, then X - (EnXP,(¼)t· 

Xn = xP,(¼) is isomorphic to f2 and SUPnEN d(Xn, f2) = oo, so X ,-...; Bp, as 

defined by Rosenthal. 

EXAMPLE 4.3. An example with four partitions and weights. K = {O, 1, 2, 3}. 

Let i represent the first index and j represent the second index in the set N x N. 

Assume the sequences ( wi) and ( w.i) satisfy ( *) condition. 

Let Po NxN with weight Wo = (wiwj) (4.1) 

P1 {{n} x N} with weight W1 = (w;) (4.2) 

P2 {N x {n}} with weight W2 = (wi) (4.3) 

P3 {( i, j)} with weight W3 = (1) (4.4) 
12 



Then this is Schechtman's example, [SJ, X ,..., Xp ® Xp, with norm 

max { ( ~[~J[2wM) ½, ( ~ ( ~ l~J[2w';) i) ¼, 

~ L ai,j(xi ® Yi) 
i,j Lp(IxI) 

( ~ ( ~1~,[2w?) i);, ( p~,1·);} (4.5) 

REMARK 4.4. : Case 3 can be generalized by using the index set Nn. If IKI = 2n 

and partition and weights are chosen in a manner similar to the above, then X ,..., x:n. 

4.2. General Definition of the Norm. Let A be any countable index set. 

DEFINITION 4.5. Let P = {Ni} be a partition of A and a function W: A-+ (0, 1] 

be a sequence of weights. Let Xj ER for all j EA. Define 

ll(x;);eAIIP,W = ( ~· (~ x/wJ) i) ; 
Suppose that (Pk, WkheK is a family of pairs of partitions and functions as above. 

Define a norm on the real valued function on A by ll(xi)II = sup ll(xi)ll(Pk,Wk) and let 
kEK 

X be the subspace of elements of finite norm. 

REMARK 4.6. Because of the nature of this norm, X will have a natural un­

conditional basis. Thus this approach is limited to complemented subspaces of Lp 

with unconditional basis. At this time, no complemented subspace of LP without 

unconditional basis is known. 
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PROPOSITION 4. 7. Suppose X is given as in Definition 4.5. Then X is a Banach 

space. 

Proof: Let P = { ( Q, W)} be a family of pairs of partitions and weights as in 

Definition 4.5. Define 

where W = (wb). It is easy to see that XQ,W"' (I:qEQ4q1\~· Since every XQ,W is 

Banach, then space ( I:(Q,W)E1' X(Q,W)) loo(1') is a Banach space. Notice that Xis the 

diagonal space of the space above, i.e., 

X = { (xb(Q, W)hEB,(Q,W)E1': for each b EB, 

xb(Q, W) = xb(Q', W'), 'v(Q, W), (Q', W') E P} (4.6) 

and clearly closed. Hence it is a Banach space. D 

PROPOSITION 4.8. Suppose X is a Banach space with norm given by one partition 

and weight. Then X "'fp, X "'f2 X "'f2 EB fp, or X "' c~=ffi f2) £p. 

Notice that these are the spaces given in Example 4.1 and their direct sums. The 

proof is a routine computation after normalization of the basis. 

Since normalization of the basis is an important first step to understanding the 

spaces, we now introduce admissible families of partitions and weights. 
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DEFINITION 4.9. The partition of A, {{a} : a E A}, will be called the discrete 

partition and be denoted as Pd, The partition of A, {A}, will be called the indiscrete 

partition and be denoted as Pi. 

DEFINITION 4.10. A family of partitions and weights is called admissible if it con­

tains the discrete partition with the trivial weight (w(a))aEA = (1) and the indiscrete 

partition with some weight. 

The discrete partition is included to force the natural coordinate basis to be 

normalized. This requirement is not really a restriction because every normalized 

unconditional basic sequence in Lp has a lower /!,P estimate by 3.1.3. The indiscrete 

partition gives a candidate for a natural £2 structure on the space X. Because we are 

concerned with embedding these spaces into Lp, p > 2, there always must be some 

£2 structure on the space. 

Notice that in the previous examples, Rosenthal's space and Schechtman's space 

have norms given by admissible families of partitions and weights. Each of the 

other cases can be equivalently renormed using an admissible family of partitions 

and weights. Unless otherwise noted we will assume from now on that a Banach 

space X with norm given by partitions and weights is actually given by an admissible 

family of partitions and weights. 

4.3. Sums of Spaces. In this subsection we are going to show some stability 

results for sums of spaces when the spaces are equipped with these norms. 

Let A be a countable index set and let (Xa)aEA be a family of Banach spaces of 

functions defined on sets (Ba)aEA respectively. That is, for each a E A, Xa has a 
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norm given by a family of partitions of Ba and weights on Ba, Let Ia denote the 

index set of the corresponding family for Xa, For each i(a) E Ia, let pa,i(a) be a 

partition of Ba and wa,i(a) be a weight function, i.e., wa,i(a) : Ba -+ (0, l]. For each 

a E A and i( a) E Ia, define the norm on Xa with respect to pa,i(a), wa,i(a) by 

1 

ll(xa,b)bEBallPa,i(a),wa,i(a) = ( L (I:(xa,b)2(wa,i(a)(b))2) !) P 
QEPa,i(a) bEQ 

For each a, there will be one distinguished indiscrete partition and weight. We will 

denote the index of this partition and weight as ( ). Let pa,() = {Ba}, and wa,() be 
1 

the associated weight. For each a, define ll(xa,b)bEBall2 = (I:(xa,b)2 (wa,()(b))2)
2 

bEBa 

Suppose that for the index set A, we have an associated function W : A-+ (0, l]. Let 

(EaEA Xa)p,2,w be defined on B = I1aEABa with the norm 

(4.7) 

Let I = I1aEAia U {( )}. Let (i(a)) E I. Then there is a natural partition of 

B and weight on B given by P(i(a)) = { {a} x P : P E pa,i(a), a E A} and W(i(a)) = 

( w:·i(a))bEBa,aEA· We define as a special case the partition and weight for ( ) as 
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If we expand the definition of the norm we have 

= max { (~ II ( Xa,b ),EB. lit) /; , (~ II ( x.,,).EB. ll~(W (a))') ½} 

= max { (L . sup { II (xa,bhEBa llta,i(a) ,wa,i(a) }) ½ ' 
a.EA i(a)Ela 

( LW(a)2 L(wa,()(b))2lxa,bl2) ½} 
aEA bEBa 

Notice that for each a E A, we take a supremum over Ia, then we take summation 

of those supremums, and finally we take the maximum of two sums. If we consider 

the index (i(a)) which for each a approximates the supremum, it is one element in I. 

So instead of taking the maximum over each Ia, we can compute the norm for each 

index in I, and then take supremum of them only once. Hence the norm becomes 

ll(xa,b)aEA,bEBallp2W = SUp ll(xa,bhEBJp(.( )) Wc·c )) 
' ' (i(a))EI ' a ' ' a 

This gives us the following result: 

PROPOSITION 4.11. Let (Xa)aEA be a family of Banach spaces each with norm 

given by partitions and weights. Then the norm of the space CEa Xa)p,2,w can also 

be expressed as a norm given by partitions and weights. In other words, the class of 

spaces with norm given by partitions and weights is stable under p, 2 sums. 

COROLLARY 4.12. Let (Xa)aEA be a family of Banach spaces with norm given by 

an admissible family of partitions and weights. Then the norm of the space CE Xa). 
a '-P 

can also be expressed with partitions and weights. 
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Proof: We use the same notation as above. Let </) be a one-to-one function from 

N onto A. Then <p enumerates A, i.e., A= {</)(k)}~1 = {ak}~1. We define W: A-+ 

<ti-1c >~ k~ (0, 1] by W(a) = 2- a 2P , i.e., W(ak) = 2- 2P • Then by Holder's inequality, with 

exponents ~ and ~, 

1 

(L ll(xak,b)bEBak ll~(W(ak))2) 
2 

akEA 

~ l 

~ (f 2-k) P ( L II (xak,b)bEBak II~) P 

k=l akEA 

By Proposition 4.11, we have 

= II (xa,b)aEA,bEBa llp,2,W 

= ~ax II (xa,bhEBa llpa,i(a) wa,i(a) 
~(a))EI ' 

D 
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5. Embedding into LP 

In this section, we first show that any sequence space Xis isomorphic to a subspace 

of LP if its norm is given by finitely many partitions and weights. Then we give the 

definition of an envelope norm which was suggested to us by Alspach. We prove the 

existence of the envelope norm generated by a family of partitions and weights. We 

also give a lower bound on a norm which is necessary for a space to be isomorphic to 

a supspace of Lp. Finally we show that if a space with norm given by partitions and 

weights is isomorphic to a subspace of Lp, then its norm is equivalent to the natural 

envelope norm. 

5.1. Finitely Many Partitions and Weights. 

THEOREM 5.1. Any sequence space X with norm given by finitely many partitions 

and weights is isomorphic to a subspace of Lp. 

Proof: Let X be the sequence space with partitions and weights (Pn, Wn):= 1• Let 

Xn be the space of sequences with norm given by one partition and weight (Pn, Wn), 

1 ~ n ~ N. By Lemma 3.7, 

Take an isometric embedding from X into (t Xn) by x ,-:.+ (x ):=1 . Since Xn, n = 
n=l loo 

1, 2, ... , N is isomorphic to a complemented subspace of LP by 4.8, then (t Xn) is 
n=l i 

isomorphic to a complemented subspace of Lp. Hence X is isomorphic to a subsp~ce 

D 
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5.2. Envelope Norms. 

DEFINITION 5.2. Let X = {(ab)bEB} be a Banach space defined on a countable 

set B with norm given by a set of partitions and weights P = {(Pi, Wi) : i E K}. 

111-111 = supiEK 11 • IIPi,Wi is an envelope norm if and only if for any partition Q of B, and 

any function q ---+ (Pi(q), Wi(q)) E P for all q E Q, the partition and weight (Po, Wo) 

belongs to P where P0 = { K : K = q n Ki(q) -=/= 0 for some q E Q, some Ki(q) E 

pi(q)} and 

Wo = (w~(q)hEq,qEQ where wi(q) = (w~(q))bEB· 

In this case we will say that P satisfies the envelope property. 

EXAMPLE 5.3. Let Xp be the Rosenthal's space with norm 

where ( wn) satisfies (*) condition. 

Let P1 = {{n}} with weight W1 = (1) and P2 = {N} with weight W2 = (wn). Then 

P = {(P1 , W1), (P2 , W2)} defines the norm on Xp. It is easy to see that P does not 

have the envelope property. To get a family of partitions and weights which has the 

envelope property we need to add all of the possible combinations of the given two. 

Let Q be the set of all partitions on N. Let Q E Q and T : Q ---+ P. Define 

P(Q, T) = {K: K = {n} if n E q and T(q) = (Pi, W1 ) for some q E Q} 

U {K: K = q if T(q) = (P2 , W2 ) for some q E Q} and 

W(Q, T) = (w(n))nEq,qCN where w(n) = 1 if n E q,T(q) = (Pi, W1) and 

w(n) = Wn if n E q, T(q) = (P2, W2). 
20 



Then an envelope norm is defined by sup(P,W)E1' II • ll(P,W) where 

'P = {(P(Q, T), W(Q, T)) : Q E Q, T: Q-+ 1'}. 

In the next section we will see that this procedure can be generalized. 

5.3. Existence and Minimality of the Envelope Norm. In this subsection 

we show that there is a natural envelope norm associated to each norm given by 

partitions and weights. 

PROPOSITION 5.4. Suppose X is a Banach space defined on a countable set B with 

norm given by a family 1' of partitions and weights. Then there exists a natural family 

of partitions and weights P, (defined below), such that 111-111 = sup(P,W)eP 11 • IIP,w is 

an envelope norm. 

Proof: Let Q be the set of all partitions on B. Let 1' = {(Pi, Wi) : i EK} be the 

given family of partitions and weights for X. Let Q E Q. Let T be a map from Q into 

1' defined by T(q) = (Pi(q), Wi(q)) for all q E Q. Define P( Q, T) = { K : K = q n p =I= 

0, q E Q,p E pi(q)} and W(Q, T) = (wi(q)(b))beq,qEQ where Wi(q) = (wi(q)(b)heB), 

Let P = {(P(Q, T), W(Q, T)) : Q E Q, T : Q -+ 1'}. Define a norm on X as 

lll(xi)III = sup(P,W)E1' ll(xi)IIP,W· We claim that Ill• Ill is an envelope norm. 

Let (J be any partition of B. Let S be any map from (J into P, i.e., S(ij) = 

(P(Qq, Tq), W(Qq, Tq)) for all ij E (J. For any ij E (J, let Tq(q0 ) = (Pi(q,qo), Wi(ij,qo)) 

for all Qo E Qii and let Q = {q =I= 0 : q = q0 n ij, ij E (J, q0 E Qq}, Because (J and Qii 

are partitions, q uniquely determines ij E (J and q0 E Qii such that q = q0 n ij. From 

Definition 5.2 we have P0 = {.K # 0 : .i? = ij n Kq, ij E (J, Kq E P(Qq, Tq)}, which is 

exactly what the definition above gives for the partition of B determined by (J and 
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S, P(Q, S). Thus 

Po = P(Q,S) 

{K: K = qn (qo np) #- 0,q E Q,qo E Qq,P E pi(iJ,qo)} (5.2) 

{K: K = (q n qo) n p #- 0, ij n qo E Q,p E pi(iJ,qo)} (5.3) 

{K: k = q n p -1- 0, q = ii n qo E Q,p E pi(ij,qo)} (5.4) 

where (5.2) is given by the definition of P(Qq, Tq), (5.3) by the definition of Q, and 

(5.4) by the uniqueness of ij and q0 • 

Define T : Q -+ P by T(q) = (Pi(iJ,qo), Wi(iJ,qo)) where q = ij n q0 , q0 E Qq, ij E Q. 

Then we have shown that P(Q, S) = P(Q, T). 

Because Tq(q) = (pi(iJ,q), Wi(iJ,q)) = (pi(q,q), (wiCiJ,q)(b))bEB), then 

S(q) = (P(Qq, Tq), W(Qq, Tq)) = (P(Qq, Tq), (wi(iJ,q)(b))bEq,qEQ,r)· 

Suppose Wo = (wbhEB· If ij E Q and b E ij, then as in Definition 5.2, wb = wi(q,qo)(b) 

where b E q0 and q0 E Qii. Hence for b E q = ij n q0 , wi(iJ,qo)(b) is also the choice 

specified by T(q). Hence W0 = W(Q, T). So (Po, Wo) E P. D 

COROLLARY 5.5. If X has a norm defined by a finite number of partitions and 

weights, then there is an equivalent envelope norm on X. 

Proof: Suppose P = {(Pi, Wi) : i = 1, 2, ... , n }, is the family of partitions and 

weights on a set B which defines the norm on X. If Q is any partition of B and T 

is any map from Q into P, then II• IIP(Q,T),W(Q,T) ~ nm~x 11- ll(Pi,Wi), where P(Q, T) 
i 
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and W(Q, T) are defined as in Proposition 5.4. Thus 11 • llx :=:; Ill• II I :=:; nll • llx, where 

Ill• Ill is the envelope norm in Proposition 5.4. D 

PROPOSITION 5.6. Suppose Pis a family of partitions and weights on B. Then 'P 

as in Proposition 5.4 is the minimal family of partitions and weights on B containing 

P and satisfying the envelope property. 

Proof: P c P is clear. Indeed let ( P, W) E P. Choose Q = P and T : P -+ P by 

T(p) = (P, W) for all p E P. Then (P, W) = (P(P, T), W(P, T)) E 'P. So P c P. P 

satisfies the envelope property by Proposition 5.4. 

Now we prove that P is the minimal one. Suppose 'R, ::, P is a family of partitions 

and weights such that 11 • ll'R is an envelope norm. Let (P(Q, T), W(Q, T)) E 'P where 

Q is any partition of B and T : Q -+ P. Since 'R, ::, P, then we can also consider T 

as a map into R. By the definition of the envelope norm, (Po, W0 ) ER, 

Po= {K: K = qnp,q E Q,p E pi(q)} and Wo = (wi(q)(b))bEq,qEQ 

where Wi(q) = (wi(q)(b))bEB, where T(q) = (Pi(q), Wi(q)) for all q E Q. 

But by the definition of P(Q, T) and W(Q, T), P0 = P(Q, T) and W0 = W(Q, T). 

So P C R. Hence P is minimal. D 

COROLLARY 5.7. Let P be a non empty family of partitions and weights on B. 

Let (P>.hEA be any chain of families of partitions and weights on B such that each 

P>. contains P and satisfies envelope property. Then n>.EA P>. satisfies the envelope 

property. 
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------Proof: By Proposition 5.6, n.xeA "P.x satisfies the envelope property and is minimal 

------containing n.xeA"P.x. Therefore P_x, :J n.xeA"P.x for all N E A. Hence n.x'eA'P.x, :J 

------ ------n.xEA "P.\ ::) n.xeA'P.\, i.e., n.xeA'P.\ = n.xeA'P.x, D 

5.4. Envelope Norms and Embeddings into Lp. In this section we show 

that the envelope norm is related to a property of subspaces of Lp with unconditional 

basis. 

Let X be a Banach space defined on B with a norm given by partitions and 

weights. Let ¢ be a one-to-one map from N onto B such that Xn = eq,(n) where 

(ebheB is the natural unit vector basis of X. Then (xn) is an unconditional basis for 

X. Hence for any x E X, x = E~=1 anXn for some (an). Let Q be any partition of 

B. Let {Fk}k=1 be the corresponding partition of N, i.e., ¢(Pk) = q for some q E Q. 

Then 

00 00 

X =LL anXn = LZk = LZ~ 
k=l nEFk k=l qEQ 

where 

Zk = L anXn = L aneq,(n) 
nEFk nEFk 

Since (xn) is an unconditional basis and (zk) (hence (z~)) is a block of (xn), (zk) is 

an unconditional basic sequence with unconditional constant 1. 

In the lemma below we use the notation introduced in Proposition 5.4. 
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LEMMA 5.8. Let X be a Banach space defined on B. Let 'P = {(Pi, Wi): i EK} 

be a family of partitions and weights on B. · If X is isomorphic to a subspace of 

Lp, then there exists a constant C, depending only on the Banach Mazur distance 

to a subspace of Lp, such that for any partition Q of B and any map T : Q -:.+ 'P, 

llxl[ ~ Cllxll(P(Q,T),W(Q,T)) where T(q) = (Pi(q), Wi(q)). 

Proof: Let¢: N-+ B as above and T: Q-+ 'P such that T(q) = (Pi(q), Wi(q)). If 

Xis isomorphic to a subspace of Lp, with isomorphism R, then (Rzk) (hence (Rz~)) 

is block of (Rxn) which is an unconditional basic sequence in LP. So 

00 

llxllx = II L zkil (5.5) 
k=l 

~ IIRll-1 11 LRzkilLp (5.6) 
k 

1 

2'. IIRll-1 A-' ( ~ IIRz•II: r (5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

= CllxliP(Q,T),W(Q,T) (5.12) 

25 



where (5.6) and (5.8) hold since R is an isomorphism. (5.7) is given by 3.1.3. (5.10) 

is true since Zq = EneFk,¢(Fk)=qanXn, and llz~llx ~ llz~llpi(gJ,Wi(gJ. In (5.10), q is the 

unique element of Q such that iJ. C q. D 

THEOREM 5.9. Suppose X has a norm given by a family P of partitions and 

weights and X is isomorphic to a subspace of LP. Then there is an envelope norm 

111-111 such that Ill• Ill - 11 • llx 

Proof: If we take a supremum over all the choices of Q and T in Lemma 5.8, we 

have llxllx ~ Clllxlll, where Ill• Ill is the envelope norm defined by 'Pin Proposition 

5.4. On the other hand, since PC 'P, we get llxllx ~ lllxlll- Hence llxllx""' lllxlll D 

REMARK 5.10. : Because the natural basis of a space with norm given by parti­

tions and weights is 1 unconditional, the unconditional constant of the image of any 

block basis under an isomorphism R is at most IIRIIIIR-1 11-
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6. Classification 

In this section, we assume the family of partitions and weights is admissible. 

We use the phrase "admissible single partition" to present that the family has only 

one partition besides the discrete· partition and the indiscrete partition. In order to 

understand the computations, we separate the discussion of two regular partitions 

and the discrete partition in Subsection 6.2. which will help us to complete the proof 

of Proposition 6.2. 

6.1. Admissible Single Partition. Suppose we have index set N. 

DEFINITION 6.1. Let (Pd, Wd) be the discrete partition with constant weight Wd = 

(1). Let (PO, WO) be the indiscrete partition and weight. Let (P, W) be a nontrivial 

partition and weight with P = {Ni} and W = (wj), We define X to be the sequence 

space such that 

where 

Assume the notations are the same as in Definition 6.1. Below we will discuss 

the following cases which depend on the behavior of the weights for the indiscrete 

partition. 

PROPOSITION 6.2. 
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(1) If i~f wP > 8 > 0, then for any nontrivial partition and weight (P, W), 
i 

X "' f2. 

(2) Suppose I)wJ ))~ < oo. Let P ={Ni: i EN}. Let !Nil be the cardinality 
i 

of Ni. Let I= {i: !Nil= oo}. Then 

where Wi = (wi)iENi· Hence Xis isomorphic to a complemented subspace of 

(3) Ifwe combine cases (1) and (2), i.e., there is some 8 > 0, such that { i : wi 2:: 8} 

~ 

and { i : wi ~ 8} are infinite and L w;- 2 < oo, we also get spaces which are 
Wi<O 

isomorphic to complemented subspaces of LP. 

Proof of Proposition 6.2: 

(1) Since i~f wJ) 2:: 8 > 0, then 
i 

since wi ~ 1 for all i and 11 • lltp ~ II• 11£2 • 

(2) Since I:i(wP)~ < oo, then we can apply Holder's inequality 

Thus 

ll(xi)llx"' (max {Lxt, ~ (~ x/w/) !}) :; 
k i 3ENi 
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Hence 

LEMMA 6.3. If N \ I is infinite, (L xf :,l,) - £, 
i(/.I lp 

Proof of Lemma 6.3: Since !Nil < oo for all i (j. I and Xp,W is isomorphic 

to a complemented subspace of Lp for any sequence W with constants inde­

pendent of W , then X~~\ is uniformly isomorphic to a complemented sub­

space of lp. This implies (~ x~~i) y c~= lp) £ . Since (E lp)lp rv lp, 
i £ p 

p 

then (~ X~~;) Y fp. Since every infinite dimensional complemented 
i lp 

subspace of f,P is isomorphic to lp, [P], then 

D 

The rest of the proof of part (2) is a messy computation based on splitting 

the argument into several cases of the isomorphic type of the lp sum of Xp,W; 

for i EI. The results are as follows: 

(a) If III < oo, then Xis isomorphic to one of fp, Xp, f2, or £2 EB fp. 

(b) If III = oo, then X is isomorphic to one of fp, Xp, f2 EB lp, Bp, (E f2)tp, 

(3) For the proof of (3), X is a direct sum of one of the spaces from (2) and £2 

from (1). D 

29 



6.2. Double Partitions. In this subsection, we deal with two comparable par­

titions. We will see that various conditions on weights produce various complemented 

subspaces of Lp. We give a sufficient condition for a space to be complemented in LP. 

Consequently we get a partial result for the case omitted fron Proposition 6.2. 

First we introduce some terminology. 

DEFINITION 6.4. Let Pi = {Ni} and P2 = {Kl} be partitions of the natural 

numbers N. Let W = { wm} and W' = { w~} be two sequences of weights. We define 

X to be a sequence space such that 

X = {(ai) : ll(aj)II < oo} 

where 

ll(ai)II = max { (~ (~ w/a/) !) ; , 
z JENi 

( ~ c~. wj'a;' rt ( ~ ll} r} (6.1) 

DEFINITION 6.5. We say that P1 is a refinement of P2 if for each i, there is an l, 

such that Ni C Kl. We denote this as P1 >;= P2. P1 and P2 are said to be comparable 

We assume that we have two comparable partitions in addition to the discrete 

partition. Without loss of generality we assume that P1 >;= P2 • Notice that the case of 

single admissible partition is of this type with P2 being the indiscrete partition. Let 

Wj = max{wj,w~} for all j. 
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Let F;, = {j E Ni : w; = w;}. Then the norm of (ai) can be written in the 

following form: 

ll(a;)llx = max { (~ ~ w;'a;') f);, 
( ~ (~. w;'a;'rr. ( ~>:/} (6.2) 

= max { (L _ :E { L w;'a;') ') ½ , 
l i:NiCK1 \;EN; 

( ~ (~. w;'a;' rr , ( ~>) r} (6.3) 

~ [Lmax{. L (~w/a/) 1
, (~w'/a/)! ,:Ea)}]; (6.4) 

l i:N;CK1 ENi 3EK1 J 

[ ]
½ 

p ,p up ~ max { S1 , Sz , Sz } 

1 

[~max{ s,,s;, s;-rr (6.5) 

where for all l 

S - ~ ~22 ~ 22 . ( ( )')½ z - ~ ~a-w. + ~ w.a. 
i:N;CK1 jEF; J J jENi\F; J J 

( . ( ) ) ½ SI ~ ~ 12 2 ~ 2 2 
z = ~ ~ w; a;+ ~ w;a; 

i:N;CK1 jEF; jEN;\F; 

1 

S,' = Cl=K,~~\e~/)r 
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Let 

Since the basis is unconditional, 

" 1 

ll(a;)II"' [~max {Sn+ 812, s:, + s:,, s,; + s;; r]; 
1 

"' [ ~ ( max { Sn, S!,, s;;} + max { 812, S!2, s',; }Yr 
1 1 

"' ( ~max{ Sn,s:,,s',; rr + ( ~max{ 812, S:2, s,; rr 
Let X 1 and X 2 refer to the subspace corresponding to the first and second term, 

respectively, in the above norm expression. 

We consider X 2 first. 

PROPOSITION 6.6. For any refinement P1 = { Ni} of P2 and any weights, X 2 is 

isomorphic to a complemented subspace of Lp. 
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Proof: 

[ { 

£ 
2 

:Emax L L w;a; , 
I . i,N;CK; (eN;\F; ) 

[~ ( max( (,FcK, c~F;wM) i) ;, 
CFcK,;e~F; wJaJ) ½ ' CFcK,;e~F; a)) ; } ) 1 ; 

= 11 (II (a;) ;eK, \ UF; 11 x,,C•; l;,K, ,J .II,, 
The last equivalence follows from the fact that the £2 norm dominates the fp norm 

and w; :S w;. Hence we have 

Since for each l, Xp,(wj)jeK,\uFi is isomorphic to a complemented subspace of Lp 

with constant independent of l, X 2 is isomorphic to a complemented subspace of Lp. 

Depending on the cardinality of Kz \ UFi and the weights (w;), we get the same 

list of spaces as in Proposition 6.2 (l)or(2). D 

We are unable to resolve completely the situation for X1. We will prove a sufficient 

condition for X1 to be isomorphic to a complemented subspace of LP. We need some 

preparation first. 
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Recall that X1 is the subspace associated with the norm 

1 

(~max { 811, s:,, s,; r r 
where 

( ) 
½ 

SI "'""' "'""' 2 12 11 = L....J L...J ai wi 
i:N;CK1 jEFi 

( ); 
s;~= L I:al 

i:N;CK1 jEFi 

Let F'-i be defined as before. For each i, we split Fi into two parts, subsets Gi and 

Fi\ Gi. Then we express norm in the following form: 

[~max { ,,tc=K, ( J.;, w!a! + m~G; w!a!) i , 

11. 

Ctc=K, (J.;, w~'a! + m~G; w~'a!)),, 
1 

,,tc=K, (J.;, a~+ m~G; ~)}]' (6.8) 

34 



We call X} and Xf the subspaces associated to ( 6.9) and (6.10), respectively. Clearly 

PROPOSITION 6.7. Suppose there exists a constant M ~ l, such that for all i, 

~ L Wfu-2 ::; M. Then for any weights X} is isomorphic to a coµiplemented subspace 
mEG; 

of Lp, 

Proof: 

~ [ ~max { ,,];K, ( (1, Wm~)~ (1, am•/) i, 

CltK,1, w~'am') i ',,];K,1, ~}] ¼ 

::; [Lmax{ L M¥ L amP, 
l i:G,CK1 mEGi 

2 ( ) l 
M~ P 

~ L ll(am)II~ , (I) 
l p,(wm ) 
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where (w~ (l)) is the subsequence of (w~) such that m E UGi, such that Gi C K1. 

On the other hand, 

[~max tf J~, w!a! t 
CfK,~, w~'a!) f ',,fK,~, ~}]; 

M2i/ 
Therefore, we have ll(am)llx1 ~ 

1 

1 

(I: ll(am)lli' , (I)) P 
l p,(wm ) 

In order to understand Xl, it is sufficient to understand what the spaces 

(6.15) 

(6.16) 

(6.17) 

(I: Xp,(w:r, (ll)) are. According to various weights, one obtains various spaces iso-
1 £p 

morphic to (L £2)e , Xp, Bp, .eP or .eP direct sum of combination of them depending 
p 

on the cardinality of the power set of the partition. It is unnecessary to actually 

determine the isomorphic type of the space since each Xp,(w:r, (ll) is isomorphic to a 

complemented subspaces of LP with constant which do not depend on (w~ (!)). Hence 

we have proved that Xl is isomorphic to a complemented subspace of Lp. D 

We need one more proposition before we prove a sufficient condition for Xr to be 

isomorphic to a complemented subspace of Lp. 
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PROPOSITION 6.8. Let K be an infinite subset of N. Let {Fi} be a sequence of 

disjoint infinite subsets of K. Let W = (wi) and W = (wi), with wi ~ wi for all i, 

be sequences of weights. Let Y be the space of all sequences (bi) with finite norm 

defined by 

Let wi = sup Wm. If there exists a constant C such that 
mEFi Wm 

then Y is isomorphic to a complemented subspace of LP. 

Proof: Since Y is the span of a subsequence of the basis of a version of 

(6.18) 

(6.19) 

(E Xp,(wm)) 2 {___,.), then it is isomorphic to a complemented subspace of Lp, by [F], 
P, , w, 

[A-2]. D 

COROLLARY 6.9. Let K, W, W, {Fi} and Y be the same as in the Proposition 

6.8. Let c > 0, define F! = {m E ~: Wm ~ c}. Let wi = sup Wm. If there exists a 
Wm mEF[ Wm 
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constant c; such that 

then Y is isomorphic to a complemented subspace of LP. 

Proof: Observe that the right hand side of (6.20) is equivalent to 

Now apply Proposition 6.6 and Proposition 6.8. D 

We have following result for the subspace Xr 

PRO~OSITION 6.10. Suppose there exist an Mand (Gi), Gi C Fi such that for all 

~ 

i, L w::i- 2 ~ M. If for all sequences (mi) with mi E ~ \ Gi, for all i, ::~ fails (*), 
mEGi ' 

then Xr is isomorphic to (E£2).ep ffi Y, where Y is a complemented subspace of Lp. 

Hence Xr is isomorphic to a complemented subspace of LP. 

Lemma 6.11 will help us to prove the Proposition 6.10. 
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LEMMA 6.11. Suppose Gi, Fi for all i and Mare the same as in Proposition 6.10 

If for all (mi) with mi E Fi\ Gi, for all i, ::~ fails(*), then for any C > 0, there 
• 

exist i0 and c > 0, such that for all (mi), mi E Fi\ Gi, 

Proof: Let µm· = Wmi' for all i. 
i Wmi -

Suppose not, then there exists C0, such that for any i0 and c > 0, there exists (mi) 

such that 

Take io = 1 and co= 1. Find a subsequence (mf) such that 

Hence there exists j 1 , such that 

Let i1 = i1 + 1 and c1 = ½- Find subsequence (mt) such that 

i~i1 ,µm~ <e1 
• 

Hence there exists h, such that 

Inductively we get a sequence of subsequences of (µm~) and (jk) such that 
• 
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Now we construct a sequence by using blocks. Let µm; = µm~ if ik-l ~ i ~ ik, then 
' 

(µm;) satisfies ( *). Contradicting our assumption. D 

Proof of Proposition 6.10: By Lemma 6.11 with C = 1, we find a uniform c and 

( w )-1!:z i0 so that L _..!!!:i.. < l for all sequences (mi)~io· 
Wm; 

µm;<EWm; 

Let 

Let 

Then 

Wm 
Wi = sup -

mEE; Wm 

- Wm 
Wi = sup -

mEEf Wm 

1 

(,].;K, j~G, Wm 2am 2) ' 

1 

(,].;K, f • Wm 2am 2 + ;,].;K, m~f Wm 2am 2) ' 

Let <5 < 1 be a given number. By the definition of wi, we can choose a sequence 

(Wm;) for mi E Ei such that 
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( w )~ Then by the choice of c and i0 , LWi~ < L _.!?::i. + 6 :=; 2 + io < oo. 
i i Wm; 

Hence 

( )
½ 

L L Wi,m2ai,m2 < 
i:F;CK1 mEE; 

( L w/ L w~a~)½ 
i:F;CK1 mEE; 

< ( ~ w;~) 7 Ctc=K, (~, w!a!) ') ¼ 

~ {2 + i0)'f Ctc=K, (~, w!a!) ;) ¼ 

Hence we see immediately that the subspace with basis { ei,m : i : Fi C Ki, m E Ei} 

is isomorphic to CE Xp,(wm)mEE; )£p. 

For the second summand, we notice that wi :=; 1, we have 

< (6.22) 

< (6.23) 

By Proposition 6.8, we know that this second subspace is isomorphic to a comple­

mented subspace of LP. Hence we have proved Xr is isomorphic to a complemented 

subspace of Lp which is Proposition 6.10. 

From Propositions 6.7 and 6.10 , we obtain a sufficient condition for X 1 to be 

isomorphic to a complemented subspace of Lp. 
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21!... 
THEOREM 6.12. If there exist an M and (Gi),Gi c Fi, L w::i- 2 < M such that 

mEG; 

for all sequences (mi), mi E Fi , Gi, (wmJ fails (*), then X1 is isomorphic to a 

complemented subspace of LP. 

Since X,..., X1 EB X2 , we obtain following theorem immediately. 

21!... 
THEOREM 6.13. If there exist an M and (Gi),Gi C Fi, L w::i-2 ~ M such 

mEG; 

that for all sequences (mi), mi E Fi, Gi, (wmJ fails (*), then Xis isomorphic to a 

complemented subspace of Lp. 

In order to understand the basic principle of classification of complemented sub­

spaces of Lp, Dale Alspach gave following conjecture: Let X be a space of sequences 

(ai). Let K, Wand {Fi} be the same as in Corollary 6.9. We define a norm on X by 

ll(a,)llx = max { c~K (:;, w!,a!,) J);, 

c~K J;, w!,a!, t ( ~>~ /} (6.24) 

Then X is isomorphic to a complemented subspace of Lp if and only if there exist 

Wi 's and a constant C such that 

C ( L w/ L w!a!) ½ , (i>~) ½} (6.25) 
i:Ff CK me Ff m 

The sufficient part can be proved by applying the argument above. 

The neccessary part is still an open question. See further discussion in Section 8. 
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6.3. Application to Admissible Single Partitions. In this subsection, we 

discuss the case which is not included in Proposition 6.2, i.e., the case that (w?) 

satisfies ( *). 

PROPOSITION 6.14. Suppose we have all assumptions as in Proposition 6.2. Sup­

pose W( ) satisfies ( *). Then 

(1) If i~f w; ~a> 0, then X,...., X1 as in Subsection 6.2. 
J 

21?.. 
(2) If L w;-2 < oo, then X ,...., Xp. 

j 

(3) If there is some 8 > 0, such that { i : wi ~ 8} and { i : Wi ~ 8} are infinite and 

21?.. L wr- 2 < oo, then X ,...., X1 EB Xp. 
Wi<t5 

Proof:· 

(1) If i~f w; ~a> 0, then 
J 

21?.. 
(2) If L w;- 2 = M < oo, then by Holder's inequality, 

j 

" x~w~ < MT " xP. L....J33- L....JJ 
jENi jEN; 
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So 

11 (xi) llp ,..., max { ~ xf, LJ }>;) ! , (~ x; ( wJ >)2) ! } 
i i \;ENi i 

~max{ ~xf, (~x/(w/>)') '} 

(3) By combining (1) and (2), X,..., X1 EB Xp. 

D 
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7. Distance Between Y O and x:0 Spaces 

In this section, we construct an example which demonstrates the difference be­

tween a norm given by partitions and weights and the corresponding envelope norm. 

We also obtain an estimate of the distance between a certain Banach space Yn, iso­

morphic to x:n, with norm given by partitions and weights, and any subspace of Lp. 

Finally we give an example of a Banach space which is not isomorphic to a subspace 

of LP by applying Theorem 5.9. 

7.1. Construction of Y 0 • We will let Yn be a Banach space with norm given 

by partitions and weights which has essentially the same form as the norm on the 

sequence space realization of (Xp)®n introduced by Schechtman in 1975 [SJ. First we 

will estimate the distance between Yn and Yn with the associated envelope norm for 

the case n = 3. Then for any n E N we can easily extend the argument to Yn with 

the original norm given by partitions and weights and Yn with the corresponding 

envelope norm. Consequently we prove that not every sequence space with norm 

given by partitions and weights is isomorphic to a subspace of Lp and the envelope 

norm on the sequence space realization of (Xp)®n may be a better choice for some 

purposes. 

EXAMPLE 7.1. We will define Yj on N2 x N2 x N2 . Let (wi)~1 be a sequence 

of weights such that wi ---+ 0 as i ---+ oo. Let ii, i2 ,and i3 represent indexes for the 

first, second and third pair of coordinates, respectively. Define weights on N2 by 

Wi = W(m,n) = Wm where i = (m, n) for all m, n E N. Let (eh,h,i3 )h,i2 ,i3 EN2 be the 

natural unit vector basis of Yj. The partitions of N2 x N2 x N2 and corresponding 
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weights are given as follows, 

P4 = { {(m, n)} x {(s, t)} x N2 : m, n, s, t EN} W4 = (wi3 ) 

P5 = {N2 x {(m, n)} x {(s, t)}: m, n, s, t EN} W5 = (wh) 

P6 = {{(m, n)} x N2 x {(s, t)}: m, n, s, t EN} W6 = (wi2 ) 

P7 = {(l,m,n,s,t,u)} for l,m,n,s,t,u EN W7 = (1) 
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where Si for i = 0, 1, ... , 7, are the sums in the previous expression in the same order. 

Since wi ---+ 0 as i ---+ oo, then for any given E, 0 < E ~ 3, 

there exists an N, such that if n > N, 
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Let n1, n2, n3 > N. Choose integers K 1, K2, K3 , such that 

(D\1 

(~f ~ I 
Now take three blocks with constant coefficients as follows 

1 

K 1 - block with coefficient (wn1)-1 K; 2 and support 

1 

K 2 - block with coefficient (wn 2 )-
1K; 2 and support 

1 

K3 - block with coefficient ( Wn3 )-
1 K-; 2 and support 
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Now we estimate the eight sums to get an estimate of the norm of the element 

(7.1) 

1 1 
Similarly we have 82 < E 'ii and 83 < E 'ii. 
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1 1 

Similarly we have S5 < (E + 1);; and S6 < (E + 1);;. 

1_1 1_1 1_1 1 1 

S (( K 2 p)-P ( K2 p)-P ( K2 p)-p)- -
7 = Wn1 1 + Wn2 2 + Wn3 3 P < f P • 

Since f can be arbitrary small, if we take maximum of these eight sums, the norm 

will be as close to 1 as we want. 

Now let us look at the envelope norm of this element (7.1). 

Let Q be a partition of N2 x N2 x N2 such that the support of each of the above three 

blocks is an element of Q. (The other sets in the partition do not matter.) Let 'P be 

the given family of weights and partitions, i.e., 'P = {(]'i, Wi) : i = 0, 1, ... , 7}. Let 

T : Q ~ 'P be a map such that T(suppK1 - block) = (P6 , W6), T(suppK2 - block) = 

(Ps, Ws), and T(suppK3 - block) = (P4 , W4 ). Then the envelope norm of (7.1) can 

be estimated from below using P(Q, T) 

(na,Ka+2) 

+ I: 
is=(na,3) 

(
(na,Ka+2) ) !) ½ 

·. -1 -½ 2 2 . L (wna K3 ) wia 
Z3=(n3,3) 

1 
Hence the envelope norm on ½ is at best 3;; equivalent to the given norm. 
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REMARK 7.2. This computation can be generalized. We define Yn for any n EN 

be a Banach space on N2 x N2 x ... x N2. Let Wi = Ws,t = Ws for t E N as above. Let 

I C {1, 2, ... , n }. Define 

P1 = {rr Ak : where Ak = N2 , k (/-_ I; Ak = {(mk, lk)}, k EI, mk, lk EN} and Wr = 
k=l 

(IT Wik). For a given sequence (wi) such that wi-+ 0 as i-+ oo and any O < E ~ 1, 
k(/.I 

there exists N, such that if m > N, then 

Let m1 , ... , mn > N. We choose n blocks with size Kt for l = 1, ... , n in (N2r 
so that 

The Kt+I -block would be 

(m1, K1 + l, m2, K2 + l, ... , m1+1, l + 1, ... , mn, l + 1) 

(m1, K1 + l, m2, K2 + l, ... , mt+I, l + 2, ... , mn, l + 1) 

(m1,K1+l,m2,K2+l, ... ,mt+1,l+Kt+1,··· ,mn,l+l) 

where O ~ l ~ n - 1. 

By applying similar arguments to that of Example 7.1 we have .that the value of 

1 

the envelope norm of the sum of these blocks is at least nv while the value of the 

norm given by partitions and weights remains approximately 1. 
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7 .2. Distance Between Y n and x:n. Let Yn be the same as above. 

THEOREM 7.3. The distance from Yn to a subspace of Lp goes to oo with n, i.e., 

there is a sequence (K(n)), K(n) -+ oo, such that for all isomorphisms T : Yn -+ 

Proof: If T : Yn -+ Z C Lp is an isomorphism, then by Theorem 5.9, the norm of 

Yn given by partitions and weights is equivalent to the envelope norm with a constant 

depending on IITIIIIT-1 11- Since the envelope norm of some element of norm 1 has 

D 

COROLLARY 7.4. The distance between Yn and (Xp)®n goes to oo with rt. 

COROLLARY 7.5. (En Yn)ip with norm given by partitions and weights is not 

isomorphic to a subspace of Lp. 

52 



8. Further Development and Open Questions 

In this section, we choose a basis (ek) of (E f 2)tp and a basis (eD of Xp to construct 

a diagonal subspace of (E f2)tp EBXp which is uncomplemented in the space (E £2)tp EB 

Xp. However, we are unable to determine whether or not the space is isomorphic to 

a complemented subspace of Lp. 

8.1. A Diagonal Subspace of (E f2)tp EB Xp. This example is of the type for 

the unresolved case of a single (nontrivial) partition in Section 6. 

Let (ek) be the usual basis of (Ef2)tp· Let (eD be the usual basis of Xp,w, for some 

sequence w satisfying ( *). Let 

,, l et e = n , 
e .!!:±!. 

2 

if n even 

if n odd 

Then { e~}~=l is an unconditional basis of (E £2)tp EB Xp,w· 

LEMMA 8.1. Let X be a space with unconditional basis (ek)- Let A = (Ti,j) 

represent a bounded projection T from X onto 

[e2k-1 + e2k : k = l, 2, ... ] where the Ti,/s are 2 x 2 matrixes. 

for i, j E {2k + 1 : k = 0, l, 2, ... } 

Then 

( a·· 1-a··) z,z z,z 
T---z,z - ' 

a·· l-a· · z,z z,z 

for i = 2k + 1, k = 0, l, 2, ... 

, 

Proof: Because (e2l-1 + e2l)l is a basis for T(X), for any k 

00 

Aek = L /3f(e2l-1 + e21), 
l=l 
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for some real numbers ((3f) 1, i.e. 

a1,k f3t 

a2,k (3f 

a3,k - /3~ for k = 1,2, ... 

a4,k /3~ 

Hence A= (aiJ) with ai+lJ = ai,j for all i = 2k + 1, k = 0, 1, 2, ... and all j. 

Since T is a projection on [e21-i + e21], then A(e21-1 + e21) = e21-1 + e2z. So 

ai,i + ai,i+l = 1. We get ai,i+l = 1 - ai,i· Hence 

(
a·· 1-a··) i,i i,i 

Tii = , , 

a·· 1- a·· i,i i,i 

for i = 2k + 1, k = 0, 1, 2, ... 

D 

For the sake of convenience, let (ei,m) be the usual basis of(~= £2 )tp, i.e., 

[ei,m : m = 1, 2, ... ] = £2, and let (e~,m) be the usual basis of Xp,w, where w = (wi,m). 

Suppose that T is a bounded projection from (E £2)£p EB Xp,w onto [ei,m + e~,ml· By 

Lemma 8.1, the diagonal 2 x 2 block of the matrix representation of T corresponding 

to { ei,m, e~,m} is of the form 
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Define 

for all i, m. 

LEMMA 8.2. With the notation above, for fixed i, (wi,m) is chosen so that ¼ 

appears infinitely many times for all n, then for any c > 0 and any n, n > v2~PII, 

there exist infinitely many m, such that wi,m = ¼ and ai,m > 1 - E. 

1 

Proof: For fixed i, Pf Ame~,m ~ (L A~(l - ai,m) 2) 
2 

m=l m 

Since Pt Ame'.,m ~ IIPII max { ( ~ Afn) t, ( ~ A~wl,m) ½ }, 

then ( ~A~(l - <>;,m)2)' < IIPII max { ( ~A{;, t ( ~A~wi,m )' }· For any 

c > 0, let Ff = { m : 1 - ai,m ~ c }. Fix n > v2~PII and choose 6 > 0 such that 

!~ IIPll2 ::; ½- Then choose Fn C {m: Wi,m =¼}such that 6 ~ IFnl½-½. 

If Am = 1 for all m E Fn and O otherwise, 

1 

clFE n Fnl½ ::; ( L (l - ai,m) 2) 
2 

mEFn 

::; max { IIPII ( L 1) t, 11:11 ( L 1) ½} (8.1) 
mEFn mEFn 

obtain that there are infinitely many m with aim > 1 - E and wi m = 1.. D 
' ' n 
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PROPOSITION 8.3. If for each i, ( wi,m) is chosen so that ¼ appears infinitely many 

times for all n, then [ei,m + e~,ml is uncomplemented in (E l2)1P E9 Xp. 

Proof: Suppose [ei,m + e~,ml is complemented in (E .e2)cp E9 Xp. Let T be the 

bounded projection. By Lemma 8.1 , the diagonal operator of T has the same form 

as P defined before Lemma 8.2. By Tong's Lemma[T], P is a bounded diagonal 

projection with IIPII :s; IITII- Let (ni) be a sequence of natural numbers such that 

ni ~ 4IIPII for all i and each integer larger than 4IIPII occurs infinitely often. By the 

assumption on (wi,m) and Lemma 8.2 , for each i, there exists mi, ai,m; ~ ½ with 

Wi,m; = ~;. Hence we get ei,m; so that [ ( ei,mJ~1] "' .eP and ( Wi,mJ~1 satisfies ( *). 

Then ai,m; ( ei,m; +e~,mJ is equivalent to the unconditional basis of XP,(,;.). This implies 
' 

that a basis of .eP is boundedly mapped to the basis of XP,(,;. )· This is impossible. 
' 

Hence T doesn't exist. D 

8.2. Open Questions. 

QUESTION 8.4. Is the space [ei,m; + e~,m; : n E NJ isomorphic to a complemented 

subspace of Lp? 

QUESTION 8.5. Are the spaces n;, a < w1 , defined by Bourgain, Rosenthal, and 

Schechtman isomorphic to spaces with norms given by partitions and weights? Each 

of the spaces n;·n, n = l, 2, ... has such an equivalent norm, but we do not know if 

the constants of equivalence depend on n. 

These questions are all related to the main motivating questions for this thesis 

that were stated in the Introduction. One technical question which also may be of 

interest is the following. 
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QUESTION 8.6. Suppose that Un) is a sequence of mean zero independent random 

variables in Lp, what are the best constants in the following inequalities 

where the supremum is over all partitions { Ni} of N. 
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