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CHAPTER I 

SOME BASIC PRINCIPLES OF ELECTROKINETIC CAPILLARY 

CHROMATOGRAPHY. SCOPEOFTHESTUDY 

Introduction and scope of the study 

Capillary electrophoresis (CE) and capillary electrochromatography (CEC) are 

miniaturized analytical techniques that utilize direct electric current as the driving force 

for mass transport resulting in high resolution and high separation efficiency. CE and 

CEC consume small volumes of samples and reagents and employ automated 

instrumentation, which make them ideal tools for chemical and biochemical analyses. In 

CE, the separation of charged molecules comes about by electrostatic attraction or 

repulsion of the charged analytes toward the electrodes under the influence of an electric 

field. In CEC, charged and neutral molecules are separated on the bases of differences in 

partitioning between the mobile and stationary phase~ and in addition charged molecules 

are also influenced by the electric field as in CE. Therefore, CEC is a hybrid of CE and 

high performance liquid chromatography (HPLC). 

A modification to CE is to add selectors ( also called pseudo-stationary phases) to 

the running electrolyte. Unlike CEC and HPLC where the stationary phase does not 
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move, the pseudo-stationary phase is moving in the same or opposite direction with 

respect to the running electrolyte and at a different velocity. In CE, the selectors or 

pseudo-stationary phases (e.g., micelles, cyclodextrins, crown ethers, charged or 

uncharged soluble polymers, etc.) interact with the molecules much the same way as the 

stationary phase in HPLC or in CEC interacts with the solute molecules. This interaction 

changes the mobility of the solute molecules, and thus resultes in the separation of neutral 

molecules and enhancing the separation of charged molecules. A CE separation system 

that consists of a pseudo-stationary phase and an aqueous or hydro-organic phase is 

referred to as electrokinetic capillary chromatography (EKC) system. In the special case 

where a surfactant is added to the running electrolyte above its critical micellar 

concentration (CMC), the technique is referred to as micellar electrokinetic capillary 

chromatography (MECC). CEC is also a member of EKC techniques where the only 

difference is that separation is performed in the presence of a true stationary phase (i.e., 

non moving phase). Therefore, the goal of this chapter is to enlighten the reader with the 

history of CE and CEC, to introduce the instrumentation used, to portray the basic 

separation principles, and to describe the similarities and differences in both techniques. 

Moreover, several equations and parameters pertinent to the CE and CEC studies 

conducted in this dissertation will be discussed. 

The scope of this dissertation encompasses the development of novel trace 

enrichment and separation approaches in CE and CEC using pesticides as the model 

solutes. This was conducted with the intention that other classes of molecules could be 

potential candidates for the methods and concepts developed in this dissertation. Both 

CE and CEC are known for their high separation efficiencies. However, and as in any 
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given separation process, no separation can take place in the absence of adequate 

selectivity (i.e., discriminating power) even if millions of theoretical plates are easily 

attained. This dissertation recognizes the importance of selectivity by introducing and 

evaluating novel separation media for maximizing separation. The combination of high 

separation efficiency with adequate selectivity leads to high resolving power, which is 

essential for the separation of multicomponent mixtures usually encountered in chemical 

and biochemical analyses. Another important aspect of any separation technology is its 

ability to deal with trace analysis because high resolving power alone is not sufficient for 

achieving the analysis of dilute samples. The detection sensitivity in CE and CEC with 

photometric detectors is curtailed by the narrow pathlength offered by the inner diameter 

(::5: 100 µm) of the capillary for on column detection. This drawback makes CE and CEC 

not directly amenable for the analysis of dilute samples. This dissertation addresses this 

need by introducing on column trace enrichment approaches. 

Besides this introductory chapter, the dissertation contains 4 additional chapters 

which describe the trace enrichment and separation approaches developed. Chapter 2 

deals with the investigation of MECC systems for the separation and trace enrichment of 

environmentally important solutes, the carbamate insecticides. Chapter 3 develops novel 

approaches for trace enrichment and separation by CEC of the carbamate insecticides 

using packed capillary columns. Chapter 4 further elaborates the trace enrichment 

methodologies introduced in Chapter 3 by using segmented capillaries for enhancing the 

detectability of ultra dilute samples of pyrethroid insecticides. Segmented capillaries are 

packed end to end with two types of silica-based stationary phases. The first stationary 

phase is a relatively high carbon load or high retention bonded silica used for the trace 
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enrichment, and the second stationary phase is a specially coated silica used to produce 

high flow and excellent separation. Chapter 4 also involves the use of a high sensitivity 

cell to further lower the limit of detection of the pyrethroid insecticides. Chapter 5 

introduces the use of mobile phases rich in sodium di-2-ethylhexyl sulfosuccinate 

(DOSS) surfactant to modulate CEC selectivity, and the novel approach is referred to as 

surfactant mediated capillary electrochromatography (SM-CEC). In SM-CEC, as in 

EKC, the surfactant functions as a pseudo-stationary phase and is moving with or against 

the mobile phase. In SM-CEC, the solute molecules partition between the stationary 

phase, the pseudo-stationary phase, and the mobile phase to yield unique selectivity and 

separations. This novel separation method was demonstrated in the separation of the 

geometrical isomers and diastereomers found in the pyrethroid insecticides. 

Historical Background and Development of Capillary Electrophoresis and 
Capillary Electrochromatography 

Electrophoresis was introduced in 193 7 by the Swedish scientist Tiselius and his 

co-workers as an important separation tool in the area of biomacromolecules, e.g., 

proteins, DNA and RNA. I However, traditional gel electrophoresis is not very 

quantitative and is labor intensive requiring casting the gel, staining, and destaining for 

the localization of the separated solute bands. These time consuming tasks involved in 

traditional electrophoresis have led to developing faster electrophoretic systems. 

Hjerten2 in 1967 was the first to use glass tubes of 3 mm internal diameters (i.d.) using 

high electric field strength. The solute molecules where detected on line as they passed 

in front of an UV detector. As time passed, and tubes with smaller i.d., such as Pyrex 

glass columns, became available, it was realized that they would allow for better 
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dissipation of heat and a more uniform thermal cross-section of the sample within the 

tube. Using potentiometric detection combined with the Pyrex glass tube, Virtanen3 in 

1974 was able to separate alkali cations. Later that same year and using 200 µm PTFE 

tubing, Mikkers et al.4 were able to separate inorganic and organic compounds and 

identify them using UV and conductometric detection. In the first 50 years of its 

development, CE had come a long way but there were still major problems with low 

separation efficiency, large injection volumes, and poor detection sensitivity. 

In 1981, these complex problems were confronted by Jorgenson and Lukacs.5 By 

using a 75 µm fused-silica capillary and on column fluorescence detection the problem of 

injection and detection was solved in the separation of amino acids and peptides. This 

major breakthrough in capillary technology and on column fluorescence detection 

instrumentation led to achieving high separation efficiency and high sensitivity in CE, 

thus opening the door for further exploration and marking the era of modem CE. 

With the modem era of CE in the early 1980s came a number of separation 

modes. A few methods were adapted from the traditional gel electrophoresis to the 

capillary format including isoelectric focusing, 6 and gel electrophoresis. 7 Terabe et al. 8 

in 1984 introduced one of the most important modes of CE called micellar electrokinetic 

capillary chromatography (MECC). MECC uses a micelle as a pseudo-stationary phase 

where the solute molecules undergo differential partitioning between the micelle and the 

mobile phase, which leads to separation. MECC can enhance the separation of charged 

compounds and also allows the separation of neutral molecules by the introduction of 

sodium dodecyl sulfate (SDS),9,10 a charged micelle that will migrate- against the 

electroosmotic flow (EOF). The introduction of small capillaries, better detectors, and 



6 

other separation modes, such as ligand exchange, 11 ion exchange12 and MECC, have 

greatly improved the separation value of CE. These major advances were capped in the 

early 1990's by a new and advanced platform of CE, the CE on a microchip.13,14 

Progress made in the microelectromechanical and microelectronic industries provided the 

needed technology for the construction of the first microchip channels that are etched on 

the surface of a glass wafer and produce fast multiplex assays. In addition, polymers are 

being used to produce microchips with high flow and high separation efficiencies. As CE 

separation modes become more sophisticated they will accompany gas chromatography 

(GC) and HPLC in meeting the needs of industrial companies. Indeed, CE has been used 

in DNA-sequencing, protein analysis, and carbohydrate analysis.15-18 

Capillary electrochromatography (CEC) was first introduced in the late 1930's19 

when Strain was able to demonstrate the use of electroosmotic flow (EOF) in 

chromatography. The first true pumping action from EOF for analytical separation was 

not introduced until the mid 1970's by Pretorius et aL.20 In the 1980's and 90's CEC 

progressed on several fronts, including (i) the introduction of automated instrumentation 

that allow pressurizing both inlet and outlet vials resulting in reduced bubble formation, 

(ii) the development of specialized stationary phases to produce desired separation, and 

(iii) the advancement of ways to control the EOF. 

As in HPLC, separation in CEC is based on differences in solutes partitioning 

between a stationary phase and a mobile phase. Although, CEC and HPLC are 

comparable in the separation mechanism, CEC has a number of advantages over HPLC. 

The first being that CEC is a microcolumn separation technique that uses microliters of 

solvents as compared to HPLC that uses liters of solvent. More important is the plug-like 
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flow profile in CBC due to EOF, which yields relatively high separation efficiencies as 

compared to HPLC, which has a parabolic flow resulting from a mechanical pump. 

When CE and CBC are compared, CBC has higher peak capacity and selectivity due to 

the stationary phase being packed in the column. In addition, CBC has the advantage of 

tailoring the ligand attached to the stationary phase to the molecules of interest. Another 

major advantage when developing a stationary phase is to consider the ability of the latter 

to produce a strong EOF resulting in fast separation times. 

Since the 1980's, interest in separation sciences has focused mainly on the 

advancement of CE and CBC to produce powerful microseparation techniques for the 

analysis of neutral and ionic species of varying size and shape. Today the number of 

national and international meetings dealing with CE and CBC are countless, giving good 

indication to the value of these separation techniques. 

Electrokinetic Capillary Chromatography Methods 

General Aspects and Instrumentation 

The instrument used in CE and/or CBC is the same in design and is shown in Fig. 

1. The instrument is comprised of several basic parts, which are the same for manual or 

automated instrumentation. The first part is the high voltage power supply capable of 

delivering up to 30 kV. The second is a detector that is typically placed on-column with 

the ability to detect the analytes by UV or :fluorescence. The third component of the 

instrument is some type of recording device, either as simple as a basic strip chart 
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Figure 1. Schematic illustration of a manual instrument set-up used for CE/CEC 
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recorder or a sophisticated computer with integrated software. Other important parts of 

the CE/CEC system are the capillary, platinum electrodes, and a plexiglass box used to 

protect the analyst from the high voltage used. The plexiglass box is also equipped with 

a safety switch that shuts the power off when the lid is opened. The automated 

instrument offers several options that are not available on the manual instrument such as 

temperature control, automated sample injection, autosampler, and for CEC 

pressurization that offers the ability to reduce bubble formation. 

The separation and usually the detection takes place in a fused-silica capillary. 

Fused-silica has a protective polyimide coating that enables it to be flexible and durable. 

At the detection point (-2 mm in length), the polyimide coating must be removed so that 
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on column detection can be performed. The polyimide coating can be removed by 

heating with a flame or an electrical wire stripper (-600 °C) resulting in a window that is 

UV transparent. An alternative to using excessively high heat that can stress or damage 

the fused-silica is to remove the coating by using concentrated sulfuric acid heated at 100 

°C. Depending on the nature of the experiment the internal diameter of the capillary can 

range from 10 to 100 µm. 

Sample Injection 

Injection of the sample in CE and CEC is very important for obtaining 

reproducible results. There are basically two methods for sample injection, which are 

hydrodynamic and electrokinetic, depending on the automation of the instrument. 

Hydrodynamic injection can be broken down into three types called head-space 

pressurization, vacuum injection, or gravimetric (siphoning). When using an automated 

instrument, head-space pressurization or vacuum injection are used most frequently. A 

low pressure is applied to the inlet end of the capillary, resulting in the sample matrix 

being pushed into the capillary, or a vacuum is applied to the outlet end resulting in the 

sample being pulled onto the capillary. Automated instruments also have the ability to 

use electrokinetic injection. When using electrokinetic injection, the amount of sample 

injected is dependent upon the ionic strength of the sample matrix. Unfortunately, when 

injecting electrokinetically, the quantity injected is affected by variation in conductivity 

between the sample and running electrolyte. This difference in conductivity results in the 

concentration of the sample and sample plug injected being different. Although this is a 
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major shortcoming when dealing with electrokinetic injection, it is still very popular 

when dealing with viscous media or gels. In addition, when dealing with CEC where the 

flow is restricted by the packing, electrokinetic injection is typically the method chosen. 

When using a manual instrument, the method typically used is siphoning where the inlet 

end of the capillary is inserted in the sample matrix which is elevated above the outlet 

end of the capillary. This results in the sample matrix being loaded onto the capillary 

with the height and time of elevation determining the amount injected. As with 

automated instruments, manual instrumentation also utilizes electrokinetic injection. 

Detection in CE and CEC 

Detection is a major concern when dealing with CE or CEC due to the very small 

path length the capillary offers. UV absorbance is the most popular detection technique 

used due to the fact that the detectors are inexpensive and most analytes absorb in the UV 

part of the spectrum. A modification to the capillary itself to acquire higher sensitivity 

was introduced by Hewlett-Packard and called the bubble cell. The bubble cell is a 

portion of the capillary that is expanded directly within the capillary, resulting in a three 

fold expansion.21 A second type of detection pathlength enlargement was devised from 

the introduction of the high sensitivity cell or the Z-shaped cell. 22 The path of light is 

aligned with the long axis of the capillary. The major problem with the Z-shaped cell is 

that the absorbance is measured along the long axis of the capillary, resulting in band 

broadening and lower efficiencies. Laser-induced fluorescence (LIF) 23-30 is a second 

type of detection that is becoming more popular and can be used with the bubble cell or 
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Z-shaped cell. Some other methods used are amperometry,31-36 conductivity,36-42 and 

indirect detection techniques.42,43 CE and CEC have also been integrated with mass 

spectrometry (MS) 44-50 and nuclear magnetic resonance spectroscopy (NMR) 42,44,51-54 

both of which are powerful detection tools. 

Modes of separation 

Since the introduction of CE, several separation modes have been developed to 

accomplish the separation of a wide range of analytes differing in their charge, size or 

shape, isoelectric point, polarity and hydrophobicity. The various modes are: capillary 

zone electrophoresis (CZE), micellar electrokinetic capillary chromatography (MECC), 

capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), and capillary 

isotachophoresis (CITP). 

The most common mode for separation is CZE, which is carried out in a uniform 

buffer at constant pH. The separation is based on differences in the analyte charge-to­

mass ratios with size and bulkiness contributing to the selectivity. Both anionic and 

cationic analytes can be separated using CZE whereas neutral solutes will migrate with 

the EOF and elute in the dead volume. The number of separations that have been 

performed by CZE is countless ranging from small ions to viruses and bacteria. 

In MECC, ionic, cationic, and neutral analytes can be separated through the 

hydrophobic interaction of solutes with charged micelles (e.g., sodium dodecyl sulfate). 

When an ionic surfactant is added above its critical micellar concentration (CMC), it 

serves as a pseudo-stationary phase which permits the solute to partition between the 
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micelle and the mobile phase. At the CMC or higher concentrations, the surfactant 

monomers are in equilibrium with micelles. As in reversed phase liquid chromatography, 

the more hydrophobic analytes interact with the micelle stronger than do the less 

hydrophobic analytes. When dealing with charged analytes, the separation results from 

both the interactions with the micelle and by CZE where the analytes are separated via 

differences in their charge-to-mass ratios. 

In CGE, as in traditional gel electrophoresis there is no EOF generated. The 

analytes progress through the capillary by electrophoretic mobility and are separated 

based on their size as they progress through the pores in the gel-filled capillaries. This 

method has been very successful with large molecular weight compounds. Moreover, 

since the gel has anticonvective properties, the diffusion of the analytes is very small and 

theoretical plates as high as 30 million plates per meter have been reported55 for this type 

of separation. 

In CIEF, the capillary is filled with a pH gradient buffer formed by a 

polyampholyte system that is stationary or no flow. The analytes are separated on the 

basis of their isoelectric points or pl values.2 To sum up the process, the analytes migrate 

through a stagnant medium by electrophoretic mobility as long as they are charged. As 

the analytes migrate in the capillary to a pH zone equaling its pl value, the molecule 

becomes neutral and in turn loses its electrophortic mobility or becomes stationary in the 

capillary. A second step is a mobilization step where an electrolyte is used to mobilize 

the focused molecules past the detector and out of the capillary. 

Capillary isotachophoresis (CITP) uses a discontinuous buffer medium for the 

separation of analytes based on distribution of the solutes into continuous but discrete 
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sharp zones. The sample is injected into the capillary between a leading electrolyte with 

the highest mobility in the capillary and a terminating electrolyte with the lowest mobility 

in the capillary. The analytes condense between the leading and terminating electrolytes 

producing a configuration composed of consecutive sample zones moving at the same 

velocity. The analytes are detected with zone length proportional to the concentration. 

Column Technologies for CE and CEC 

Due to the fact that fused-silica is easy to fabricate into capillaries, is electrically 

resistant, is optically transparent, is mechanically strong, and is inexpensive, makes it the 

most widely used capillary material in CE and CEC. Fused-silica behaves as a weak acid 

ionizing within the pH range from 3.5 to 9 with an average surface coverage of 8 

µmol/m2 of silanol groups.56 When the pH of the running electrolyte is between 3.5 to 9, 

the silanol groups become negatively charged and in tum allow for the production of 

EOF. When dealing with cationic compounds, the negative charge can be unfavorable 

due to the positively charged analytes sticking to the walls of the capillary causing peak 

tailing or extremely large or infinite retention times. When dealing with a positively 

charged analyte, several remedies have been successfully demonstrated such as 

manipulation of the buffer pH,57 modification of the capillary surface by adding 

modifiers,58-61 and chemically altering the capillary surface.62 These issues were 

addressed very recently in two review articles.63,64 
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CBC Column Fabrication Typically, CE and CBC are performed with the same 

type of capillary with the inner diameter being 75 or 100 µm for CBC. Figure 2 shows 

the configuration of a capillary column used in CBC. There are mainly two 

configurations used when dealing with packed capillaries. The first is a partially packed 

capillary, see Fig 2a. A partially packed capillary has the detection point 1 to 2 cm past 

the separation bed where the sensitivity would be the same as using an open tube. For a 

fully packed capillary (see Fig. 2b ), the sensitivity is lower due to light scattering form 

silica particles at the detection point. The fully packed column has the advantage over 

the partially packed column in the fact that bubble formation is usually minimized 

whereas in the partially packed column restriction in the flow imposed by the frit 

introduces bubbles in the empty section of the capillary. Another reason for bubble 

formation in the partially packed column is because of its segmented configuration in 

which flow velocity is not homogeneous over the entire capillary. The flow turbulence at 

the interface of the packed, and open capillary brings about bubble formation resulting in 

more difficult operating conditions. 

In CBC, as in ·HPLC, the making of the column is the most important parameter 

affecting reproducibility, efficiency, peak shape, and resolution. The CBC column is 

made of several components including the capillary, stationary phase, and retaining frits. 

There are two main types of stationary phases used with the first being a silica-based 

stationary phase with the ligand covalently bonded to the silica.65,66 The stationary phase 

is held in place by a frit sintered on each end of the capillary. The frit is a crucial part of 

the capillary column due to the fact it must be strong enough to hold the stationary phase 
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Figure 2. Configuration of packed CEC column. (a) Partially packed column with post­
column detection window. (b) Fully packed column with on-column detection window. 

in place but yet porous enough to allow fast flow with little to no band broadening. The 

second type of stationary phase is a monolithic sorbent made up of a porous polymer 

network with ligands extending from the surface.65,67 Unlike silica-based stationary 

phases that use frits, the porous polymer monolithic column is fritless because the 

stationary phase is covalently bonded to the surface of the capillary. Another approach to 

fritless columns involves the entrapment of the silica stationary phase with silicate 

materiaI.68 Moreover, tapered ends on the capillary column can be used to retain the 

silica.69 When using fritless columns, such as the ones just mentioned, the result seems to 

be higher separation efficiencies and significantly improved mechanical robustness. 
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Column Packing Material The first types of packing materials used in CEC were 

designed for use in HPLC. The particle size ranged in size from 3 to 5 µm with a pore 

size of 8 to 10 nm.70 Due to the fact that reversed-phase packing seems to perform better 

when dealing with CEC, octadecyl-silica (ODS) has been the most commonly used 

stationary phase. However, ODS stationary phases used in HPLC are produced with the 

aim of having low silanol group content and sometimes are even endcapped. This lead to 

ODS columns with little or no EOF when used in CEC. Since the separation mechanisms 

of HPLC and CEC are similar, the modification of the stationary phase surface to 

improve selectivity is relatively well understood unlike the ability to improve the EOF in 

packed capillaries which has not been explored to a great extent.71 With time being a 

major concern in all separation techniques, understanding how to produce a strong EOF 

with high separation efficiencies is critical for optimizing CEC. As CEC progresses, 

manufacturers of silica are starting to address the need to develop new stationary phases 

which are more suited for CEC.72 A few articles in the literature have addressed this 

issue. 73-80 The current trend is to incorporate permanent charges (positive or negative) to 

control the magnitude and polarity of the EOF while keeping an adequate density of 

retentive ligands on the surface of the stationary phase to yield good chromatographic 

selectivity. In HPLC, mechanical pumps generate the flow whereas in CEC the flow is 

generated by electroosmotic mobility resulting in no back pressure and thus allowing for 

very small particle sizes of 1 µm or less. With the new stationary phases specially 

designed for CEC, it is common practice to acquire 100,000 plates per meter or more. In 
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another report, using a specially modified silica with permanently charged sulfonic acid 

groups allowed the pH to be used in the range of 2.5 to lQ.81 

Monolithic columns for CEC are receiving increasing attention as an alternative 

to capillary columns packed with microparticles and having retaining frits. With 

monolithic stationary phases there is no need for retaining frits, thus eliminating bubble 

formation and yielding stable columns. There are two categories of monolithic columns: 

rigid porous polymer-based monoliths82-84 and porous silica-based monoliths. 85-87 In the 

category of polymer-based monoliths, acrylamide-, 83,88 methacrylate ester-84,89,90 and 

polystyrene-based monoliths91 have been described. Silica-based monoliths were 

prepared mostly by a sol-gel techniques.85-87 In situ preparation of monolithic columns 

offers the advantage of the large number of readily available chemistries which can be 

performed to produce tailor-made columns for solving particular separation problems. 

Basic Principles of Capillary Electrophoresis 

Electrophoretic Migration 

Separation in CE is accomplished through the movement of ions in the presence 

of an electric field. The anions migrate toward the anode or positive electrode while the 

cations migrate toward the cathode or negative electrode with electroneutrality of the 

solution being held constant through the dissociation of water. In solution, cations and 

anions carry the current. Therefore, the conductivity of the solution is dependent on the 

concentration and mobility of the electrolyte ions in the electric field. Also, the mobility 
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of the ionized solute is dependent on its charge-to-mass ratio with size and shape 

contributing to a lesser extent. 

In the presence of an external electric field, a charged particle experiences a force 

Fe that is equal to the product of its net charge q and the electrical field strength E: 

E is given by: 

E=V 
L 

(1) 

(2) 

where L is the total length of the separation capillary and V is the external applied 

voltage. Fe is positive for positively charged ions such that this force pushes them in the 

direction of the more negative electrode; the opposite applies to negative ions. The 

electrical force acting on the charged particle accelerates it, but there is an additional 

force acting on the particle called a drag force. The drag force results from the particle 

movement through the running electrolyte and is opposite to that of the electrical force 

experienced. This drag force Fd is directly proportional to the particle's electrophoretic 

velocity Vep, and is given by: 

Fd = - f x vep (3) 

where f is the translational friction coefficient. For small spherical ions f can be 

expressed by Stoke's Law: 

f = 61r17r (4) 

where 17 is the viscosity of the electrolyte through which the particles are migrating and r 

is the radius of the moving particle. The frictional drag is directly proportional to 

viscosity, size of the particle, and electrophoretic velocity. Due to the presence of the 
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frictional drag, a charged species is accelerated to a limiting velocity, which is dependent 

on both Fe and Fd. During electrophoresis the acceleration force is balanced by the 

retarding force and a steady state is attained. Under these conditions, the sum of the two 

opposite forces, Fe and Fd, is equal to zero, and a limiting velocity or electrophoretic 

velocity (vep) is acquired, which is given by equating equations 1 and 3 as follows: 

qE 
vep =7 (5) 

Since the electrophoretic mobility, µep, is defined as the electrophoretic velocity of the 

charged particle per unit field strength, a combination of equations (4) and (5) will give 

the following mathematical expression: 

vep q 
µ =-=--

ep E 6m-,r 
(6) 

By evaluating equation ( 6), it is evident that small particles with a large number of 

charges will have higher mobilities than large particles with a small number of charges. 

The magnitude of µep depends on the net charge on a molecule and its frictional 

properties (size and shape) as well as the dielectric constant & and the viscosity 1J of the 

running buffer. 

Another relationship for electrophoretic mobility has been derived for colloidal 

particles, and is given by:92 

(7) 

where sis the zeta potential of the charged species, K is the Debye-Hiickel constant and a 

is the radius of the ionic species. The parameterf(Ka) is a constant whose value depends 

on the shape of the migrating particle. The value off(Ka) varies between 1 and 1.5. 
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Electroosmotic Flow in Open Tubes 

At the present time the most popular type of capillary used in CE is fabricated 

from fused-silica. The popularity of fused-silica is due to the fact that its chemistry is 

well known and understood. The surface of the fused-silica capillary under most 

conditions consists of ionized silanol groups (SiO} As a result, the walls of the capillary 

are lined with anions or negative charges. These negative charges will attract cations to 

the solid phase/liquid phase interface from the running electrolyte. Also, the negative 

ions (i.e., electrolyte anions) will be repelled from the capillary wall resulting in a 

distribution of charges and a potential gradient inside the capillary. Figure 3a is a 

representation of the charge distribution and potential gradient inside the capillary. The 

compact region is made of ions (mostly cations) closest to the capillary surface. These 

ions are tightly bound and form an immobile layer. Thermal motion in the compact 

region allows for a small number of cations to move out of the compact region. These 

cations form the diffuse region of the electric double layer, which is mobile. After the 

electric double layer and going towards the center of the capillary comes the bulk 

solution made up of equal concentrations of cations and anions. Figure 3b illustrates an 

electrical potential gradient as a result of the overall spatial distribution of ions within the 

electrical double-layer originating from the theory according to Stem-Gouy-Chapman.92 

From examination of Fig. 3b, it is noticeable that the y axis is the electric 

potential (\Jf) and \Jfo which is located at the surface of the capillary wall has the largest 

potential. When moving across the x axis, which is the distance starting at the capillary 
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Figure 3. Schematic illustration of (a) the electric double-layer, (b) the electric double­
layer potential gradient and vicinity region. 
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wall and moving inward, a linear decrease is observed. The linear decrease continues 

until \Jf dis reached which is the interface of the compact region and diffuse region. From 

\Jfd there is an exponential decay to l; (the zeta potential), which is at the boundary of the 

diffuse region and bulk solution. Following the x axis through the bulk solution a drastic 

reduction in potential can be seen. The zeta potential is another characteristic used to 

define the potential at the plane of shear occurring when the liquid is forced to move. 

When an external voltage is applied, it causes the solvated cations forming the diffuse 

region of the electric double layer to migrate towards the cathode. As the cations move 

towards the cathode, they drag with them the bulk solution. Even though this diffuse 

layer is approximately 100 A thick, the flow is transmitted throughout the bulk solution. 

This is the fundamental of electroosmotic flow (EOF) in CE. The magnitude of the EOF 

can be expressed in terms of velocity or mobility:93 

(8) 

where l'eo is the electroosmotic mobility. The zeta potential is governed by the surface 

charge on the capillary wall and is expressed as:94 

(9) 

where p is the surface charge density of the capillary surface and o is the thickness of the 

double layer. By implementing modem electrolyte theory which states that o equals 1 /K, 

equation (9) can be arranged to: 

s = 41rp oc _1_ 
K& J7 

(10) 
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where K is the Debye-Hiickel parameter and I is the ionic strength of the medium. Since 

( is directly proportional to the surface charge density on the capillary wall, and this 

surface charge is strongly dependent on pH, the magnitude of the EOF is also pH 

dependent. When the pH is high the silanol groups will be ionized and the EOF will be 

high, whereas when the pH is low the silanol groups are less ionized resulting in lower 

EOF. Furthermore, ( is inversely proportional to Ji of the electrolyte as proposed in 

the electric double-layer theory. An increase in /will reduce EOF. 

A unique feature of EOF is its flat profile due to electrical pumping action. In 

other chromatographic techniques, there is a laminar or parabolic flow profile due to 

mechanical pumping. Figure 4a depicts the EOF inside a capillary with electrical 

pumping action and Fig. 4b with mechanical pumping action. 

Migration Time and Apparent Mobility 

In CE, what actually is measured is the apparent mobility which contains both 

electrophoretic and eletroosmotic components. To obtain separation each of the solutes 

must have a unique apparent mobility (µapp) which is given by: 

(11) 

where µeo and µep are the electroosmotic and electrophoretic mobility, respectively. 

Likewise, the apparent velocity (vapp) of a solute is expressed by: 

(12) 
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a. Electroosmotic Flow 

b. Laminar Flow 

Figure 4. Schematic illustration of flow profiles and their effects on peak shape. (a) Plug 
profile when EOF is used as the driving force yielding sharper peaks as shown on the 
right hand side. (b) Laminar flow profile observed when a mechanical pump is used as 
the driving force yielding broad peaks as shown on the right hand side. 

where Vis the applied voltage, E is the applied electric field and L is the total length of 

the capillary. Migration time (tM) is the actual time the analyte spends in the capillary 

from the moment of injection to detection, which is given by: 
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I I IL 

tM = Vapp = (Vep + Veo) = (µep + µeo )v (13) 

where I is the length of the capillary from the capillary inlet to the detection point. The 

migration time, to, of a neutral solute (i.e., EOF marker) can be expressed in terms of 

mobility through the following equations involving mobility and velocity: 

Hence, the electrophoretic mobility, µep, is given by: 

where µapp is calculated using the observed migration time of the solute: 

IL 
µapp =[V 

M 

(14) 

(15) 

(16) 

The direction (± sign) of /lep depends on the solute charge, and its sign is positive for 

cations and negative for anions. 

Separation Efficiency 

The separation efficiency in CE is typically very high compared to liquid 

chromatography (LC). There are several reasons for the higher separation efficiency. 

First and fare-most, there is no stationary phase in CE. Resistance to mass transfer 

between the stationary and mobile phases leads to band broadening. Another source of 
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band broadening in LC is dispersion (i.e., eddy diffusion and stagnant mobile phase) 

which are not important in CE. Since LC is a pressure driven process, frictional forces 

resulting from the mobile phase interacting with the walls of the capillary cause radial 

velocity gradients throughout the capillary. As a consequence of the wall drag, laminar 

or parabolic flow pattern are seen in Fig. 4b. 

The separation efficiency in CE can be expressed by the number of theoretical 

plates, N, which is given by: 

N=(~J (17) 

where m is the standard deviation of the peak in unit of length. Under ideal conditions, 

longitudinal molecular diffusion (along the capillary) can be considered to be the only 

contributor to zone broadening. Thus, through the use of Einstein's law, the efficiency 

can be related to molecular diffusion: 

(18) 

where D is the diffusion coefficient of the solute. By substituting equation (18) into 

equation (17), column efficiency can be expressed as: 

(19) 

When l = L, as m mass spectrometry or electrochemical detection, equation (19) 

becomes: 

(19a) 
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Equation (19a) shows that for large molecules (e.g., proteins, DNA, and RNA) N should 

reach millions of theoretical plates because of the small diffusion coefficient D. Usually, 

N can be calculated directly from the electropherogram using the same mathematical 

equation as that in liquid chromatography:95 

N = 4(tM J2 
= 5.54(~J2 

= 16(tM J2 

wi wh wb 
(20) 

where wi, wh, and wb are the peak widths at the inflection point, half-height and base, 

respectively. 

Equations (17-20) predict several parameters that can be optimized for high 

separation efficiencies. Due to diffusion, the longer an analyte is in the column the lower 

the separation efficiencies. Thus, by using high running voltages the electrophoretic 

velocity increases and solutes tend to diffuse less. This is also seen in equation (19) 

where N is directly proportional to V. 

Resolution and Selectivity 

The selectivity, a, and resolution, Rs, for two adjacent zones is given by the 

following expressions: 

11Ap 11Ap 
a=--=---

71 llep + Ao 
(21) 

and 

(22) 

respectively. When l = L, equation (22) can be simplified to: 
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R =-l-1::.. V 
s 4 '2 µep n'- } -V L, \µep - µeo 

(23) 

In the last three equations, L1µep and µ are the difference in the electrophoretic mobility 

and average apparent mobilities of the two adjacent zones, respectively. The "'iieP is the 

average electrophoretic mobility of the same adjacent zones. Equation (23) reveals that 

when the electrophoretic and electroosmotic mobility becomes equal, but opposite in 

sign, Rs approaches infinity. When these conditions are met, the analysis time will also 

approach infinity. It was shown that separation efficiencies are proportional to voltage, 

but resolution increases with the square root of voltage. Hence, voltage has less effect on 

resolution as compared to pH and composition of the running electrolyte, which largely 

influences l::..µep and in turn resolution. 

Retention Factor and Resolution in MECC 

An illustration of a neutral single-component separation in MECC is shown in 

Fig. 5. The fundamental equation for the retention factor (k) accounts for the presence of 

the mobile pseudo-stationary micellar phase. It is a modification of the equation for k' 

used in liquid chromatography: 

(24) 

where tmc is the time of the micelle. As the velocity of the micelle approaches zero, tmc 

approaches infinity, thus this equation simplifies to the classical chromatographic 

expression for the retention factor, k~ 
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Figure 5. Schematic illustration of the separation principles in MECC (upper trace) and 
the detected electropherogram (lower trace) for a single component in MECC. 

The resolution between two adjacent solutes in MECC is defined by: 

(25) 

where a is the selectivity factor ( a = k: ilk: 1) and t0/tmc is the elution range parameter. 

Since resolution is proportional to Jii , the major players in optimizing resolution is a 

and t0/tmc· While a can be manipulated by varying the composition of the running 

electrolyte (e.g., pH, organic modifier, etc.), toltmc, which reflects the breadth of the 
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migration time window, can be adjusted by manipulating the surface charge density of 

the micelle and that of the capillary wall. 

Like the MECC expression fork: the expression for resolution simplifies to the 

classical chromatographic equation when tmc approaches infinity. The value of resolution 

between two adjacent peaks is directly calculated from the electropherogram by using the 

following expression: 

2(t R2 -( Ri) 
R. =----

W1 +W2 
(26) 

where w1 and w2 are the peak width at base for peaks 1 and 2, respectively. Equation 26 

is valid for all electrophoretic and chromatographic methods. 

Factors Affecting the Separation Efficiency in Open Tubes 

Predicted through theory, equation (19) is the simplified calculation of N and does 

not account for all factors affecting band broadening. Since the magnitude of equation 

(20) is reflective of all band broadening processes that can occur simultaneously during 

solute migration, it will yield lower values than what is predict by equation (19). Thus, 

the total variance, crl, is predicted by the sum of all contributing variances: 

(27) 

h . 2 2 2 2 2 h ·b · h 1 · where t e variances cr o, cr LH, cr i, cr ~ke, cr w are t e contri utlons to t e tota variance 

from molecular diffusion, Joule heating, injection volume, conductivity differences, and 

solute-wall interaction, respectively. There is a large number of important contributors to 

solute zone broadening in CE shown in Table 1. 
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TABLE 1. 

SOURCES OF ZONE BROADENING IN CE. 

Source of zone band broadening 

Longitudinal molecular diffusion 

Joule heating 

Injection plug length 

Sample adsorption 

Conductivity differences 

Comments 

• Defines the fundamental limit of 

Efficiency 

• Solutes with lower diffusion 

coefficients form narrower zones 

• Leads to temperature gradient and 

laminar flow 

• Injection length should be less than 

the diffusion controlled zone 

lengths 

• Dilute samples often necessitate 

longer than ideal injection lengths 

• Interaction of solutes with capillary 

walls cause severe peak tailing 

• Solutes with higher conductivities 

than the running buff er result in 

fronted peaks 

• Solutes with lower conductivities 

than the running buffer result in 

tailed peaks 
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Basic Principles of Capillary Electrochromatography 

EOF in Packed Columns 

Capillary electrochromatography (CEC) uses either fully or partially packed 

columns, typically with a silica-based material. Since silica and fused-silica (i.e., 

capillary wa~l) have the same properties, the flow will be generated not only from the 

capillary wall but also from the silica particles used to pack the column. In fact, the 

surface area of the silica particle is higher than that of the capillary wall. From this point 

of view, the packing having a much higher surface charged density would contribute to 

the EOF far more than that generated by the capillary wall. For illustration of overall 

EOF in packed capillaries, see Fig. 6. The overall EOF in packed capillary is not well 

understood. However, an expression for the average velocity of EOF, Yeo, generated in 

CEC by the stationary phase has been derived as:96 

(28) 

where Sp is the zeta potential on the stationary particle, and c* and Cb are electrical 

conductivities of packed column and open column, respectively. 

One limitation to equation (28) is that it does not account for the particle size of 

the packing. This seems to suggest that an infinite particle size could be used in CEC. It 

is well known that smaller particles in HPLC give better separation efficiencies. The 

disadvantage of using small particle in HPLC results in a large pressure drop, which is 

not seen in CEC due to EOF. Despite its being omitted in equation (28), particle size 

does 
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Figure 6. EOF in CEC. 
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have its limitation in CEC. When the particle size falls below 10 times that of the 

thickness of the electric double layer, a limit is reached. The theory is that double layers 

on the surface of the particles overlap and cancel each other out. This cancellation results 

in a dramatic decrease in the magnitude ofEOF. 
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Migration Time and Mobility in CBC 

The migration time in CBC of a neutral solute is similar to that in HPLC and it is 

expressed as: 

(29) 

where tr is the retention time of the solute, t0 is the dead time and k is the conventional 

chromatographic retention factor, k = (tr-to)/to. For charged analytes not only is the 

electroosmotic mobility and retention from the stationary phase should be accounted for 

but the electrophoretic mobility must also be taken into consideration. The apparent 

mobility of a charged solute in CBC, µc, is given by:97 

(30) 

From equations 28 and 29, the retention time of a charged solute in CBC is expressed as: 

(31) 

It can be seen that when µep is zero (neutral solute), equation (31) reverts back to (29) 

which is for conventional CBC. 

Retention Factor 

When dealing with charged analytes in CBC, the electrophoretic mobility and 

chromatographic retention must be taken into account. The retention factor for a charged 

analyte in CBC, k:, is expressed as: 

(32) 
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where k: is the velocity factor and is expressed by the following equation: 

(33) 

For neutral solutes k: = 0, therefore equation (32) becomes: 

(34) 

which is the case as in chromatography. 

Selectivity Factor 

Selectivity in chromatography is defined as the segregation of components 

between two distinct zones (peaks), and is determined by the ratio of retention factors of 

the specified components: 

(35) 

where k; and k; are chromatographic retention factors, tr1 and tr2 are the retention times, 

and t'rl and t'r2 are the adjusted retention times ofrespective components. 

For charged analytes the selectivity factor is expressed as: 

(36) 

For neutral solutes k: = 0, and therefore k~2 = k; and k~1 = k; which gives the same 

equation as in (35). 
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Resolution 

Resolution, Rs, expresses the extent of the overlap of two adjacent specified 

component zones (peaks). For neutral solutes resolution can be expressed by the product 

of a selectivity factor a, efficiency N and retention factor k' terms as follows: 

Rs= JN(a-l)(~J 
4 a l+k2 

(37) 

Band Broadening Factors in CBC 

There are six maJor factors that contribute to band broadening in column 

chromatography and these include (1) eddy diffusion (heaay,dif), (2) axial molecular 

diffusion (ha,dif.f), (3) mass transfer resistance in the mobile phase (h,rans,m), (4) mass 

transfer resistance in the stationary phase (h,rans,s), ( 5) extra column effects ( such as 

injector, connector, detector, etc) (hexira), and (6) joule heating (hjoute), The six 

contributors are basically summed resulting in the observed band broadening expressed 

as plate height: 

Bobs = heady,dif.f+ ha,dif.f+ htrans,m + htrans,s + hextra + hjoule (38) 

Unlike in pressure-driven liquid chromatography, in CBC the two process (1) and (3) do 

not contribute to the overall band broadening, due to the presence of electroosmosis. The 

phenomenon of electroosmosis is believed to be the major reason for higher 

chromatographic efficiency in CBC, see Fig. 7. As can be seen in this figure, while 

solute molecules travel different pathways and reach the column end over a time interval 

(band broadening by eddy diffusion) in pumped flow, they travel the same pathways with 
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Figure 7. EOF versus pumped flow. 
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CEC Plug Flow profile 

µ-HPLC Laminar Flow Profile 

EOF. Also seen in Fig. 7 is the presence of inter particle mobile phase mass transfer 

resistance whereby solute molecules move faster in the middle of the channel than near 

the surface of the particles in pressure driven flow. Joule heating (6) is subdued by 

keeping the capillary diameter 100 µm or less, by using low buff er concentration, and by 

using applied voltages lower than 50 kV. 

Conclusions 



38 

This chapter has outlined the scope of the dissertation and overviewed some of 

the basic principles of CE and CEC pertinent to the various interrelated studies conducted 

within the frame work of our investigation. Furthermore, this chapter shows that 

electrokinetic capillary chromatography (EKC), which consist of a host of capable 

separation methods, is well suited to solving analytical problems as the ones this 

dissertation has addressed. 
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CHAPTER II 

ELECTRICALLY DRIVEN MICROSEP ARA TION METHODS FOR PESTICIDES 

AND METABOLITES. I. MICELLARELECTROKINETIC CAPILLARY 

CHROMATOGRAPHY OF CARBAMATE INSECTICIDES WITH 

MEGA-BORATE AND SDS SURFACTANTS* 

Introduction 

Carbamate insecticides are the esters of carbamic acid (NH2COOH) where one of 

the protons attached to the nitrogen atom is replaced by a methyl group. Thus, the name 

N-methyl carbamates (NMC) whose basic structure is CH3NH-COO-R where R is either 

an aryl group or an aliphatic oxime. This leads to two major groups of NMC: aryl N­

methyl carbamate and N-methylcarbamoyloximes.1 In the present study, we investigated 

the electrophoretic behavior of both types of NMC, see Figure 1 for structures. 

Carbamates 1-3 belong to the latter, while structures 4-9 are representative of the former 

NMC. 

N-Methyl carbamates were originally introduced to replace the organochlorine 

pesticides because of their effectiveness as insecticides and nematicides, their low 

* The content of this Chapter has been published in J AOAC, 1999, 82, 1542. 
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Figure 1. Structures, abbreviations and MECC elution order of the carbamate 
insecticides used in this study. 

mammalian toxicities and their low bioaccumulation potentials. NMC are widely used in 

agricultural set-ups to protect different kinds of crops from a variety of insects. Thus, 

there is a need for analytical methods for the determination of carbamate residues in 

fruits, vegetables and water to ensure food and drinking water safety. Also, the 



46 

availability of analytical methods for the control of the formulations of these insecticides 

is essential. 

Thus far, high performance liquid chromatography (HPLC)2,3 has been the most 

widely used technique for the determination of NMC, despite the recent significant 

progress made in electrically driven microseparation techniques [ e.g., capillary 

electrophoresis (CE) and capillary electrochromatography (CEC)], and especially the 

proven potentials of CE in pesticide analysis.4 There is a need for complementary 

techniques such as HPLC and CE on which control laboratories can rely to reduce false 

positives in the determination of pesticides. Despite the fact that CE already proved 

useful for the separation of several pesticides,4 systematic studies involving MECC of 

NMC are scarce.5,6 

This chapter is concerned with the study of the electrokinetic behavior ofNMC in 

micellar electrokinetic capillary electrochromatography (MECC). MECC is the CE 

method of choice for the electrophoretic separation of neutral species such as NMC. To 

better understand the underlying phenomena, two different micellar systems were 

evaluated, namely the traditionally used sodium dodecyl sulfate (SDS) micellar phase 7 

and the recently introduced in situ charged glycosidic micelles. In situ charged 

glycosidic micelles, which have been introduced by us in 1992, 8 have been shown very 

useful in CE of a wide variety of pesticides.9-15 In situ charged glycosidic micelles are 

based on the complexation of the sugar head group of the glycosidic surfactant with 

borate. This allows the manipulation of the migration time window by conveniently 

varying the pH, surfactant concentration and borate concentration in the running 

electrolyte. 8- 15 
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Experimental 

Instrument 

Separations were performed on a home-built capillary electrophoresis instrument 

comprised of a positive and negative high-voltage power supply Model CZEIOOO/PN/R 

from Spellman (Plainview, NY, USA) and a UV-Vis variable wavelength detector Model 

SCIOO from Thermo Separation Products (San Jose, CA, USA). Unless stated otherwise, 

both alkyl phenyl ketones (APK) and NMC were detected at 254 nm. Electropherograms 

were recorded with a computing integrator Model CR4A from Shimadzu (Columbia, 

MD, USA). All separations were carried out in fused-silica capillaries (Polymicro 

Technologies, Phoenix, AZ) of dimensions 50 µm i.d. x 365 µm o.d., 50 cm to the 

detector, 80 cm total length. 

Reagents and Materials 

The surfactant decanoyl-N-methylglucamide (MEGA 10), see Figure 2 for 

structure, was purchased from Anatrace (Maumee, OH, USA). Urea was obtained from 

Aldrich Chemical Co. (Milwaukee, WI, USA). Boric acid was from Fisher Scientific 

(Fair Lawn, NJ, USA). Sodium phosphate monobasic was from Mallinckrodt (Paris, 

KY). The carbamate insecticides (see Figure 1 for structures and abbreviations) were 

purchased from ChemService (West Chester, PA, USA). Sodium dodecyl sulfate (SDS) 

and alkyl phenyl ketones (APK), namely, acetophenone, propiophenone, butyrophenone, 

valerophenone, hexanophenone and heptanophenone, were from Sigma Chemical Co. 
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(St. Louis, MO, USA). All solutions were passed through a 0.2 µm Titan syringe filter 

obtained from Scientific Resources, Inc. (Eatontown, NJ, USA). 

H OH H 

I I I 
OH OH H 

I I I OH 
HHOHHHH 

Figure 2. Structure of the MEGA 10 surfactant. 

Field-Amplified Sample Stacking (FASS) 

On-column concentration was performed according to the FASS procedure 

reported by Chien and Burgi.16,17 Briefly, about 70% of the capillary length to the 

detection point was pressure ,filled with the dilute carbamate sample prepared in 25 mM 

borate, 25 mM MEGA 10, pH 9.0, and then a voltage of 24 kV was applied in the 

negative polarity mode (i.e., the cathode at the inlet end and the anode at the outlet end of 

the capillary). A capillary of 50 cm long and 50 µm I.D. offers a volume of ca. 982 nL. 

Thus, when this capillary is 70% filled with a dilute sample, the volume introduced into 

the capillary is about 687 nL. Upon the application of 24 kV, the current initially was 

17µA due to the difference in conductivity between the running electrolyte and the large 

dilute sample plug. The running electrolyte was 1.0 Mborate, 10 mM sodium phosphate, 

125 mMMEGA 10, pH 7.0. As the aqueous sample plug was pumped out of the column 

by the cathodic EOF, the current kept increasing until it reached its normal value (85 µA) 

in the absence of the sample plug. At this time, the polarity of the system was switched 

back to the normal configuration (i.e., anode at the capillary inlet and cathode at capillary 

outlet) and the electrophoretic separation was performed. 
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Methods 

In the case of MEGA 10 surfactant, the running electrolyte was prepared by 

dissolving proper amounts of boric acid, sodium phosphate, and MEGA 10 in water, and 

the pH was adjusted to 7.0 with sodium hydroxide. With SDS surfactant the running 

electrolyte was prepared by dissolving proper amounts (see figure captions) of boric acid 

and SDS in water, and adjusting the pH to 8.0 with sodium hydroxide. All samples were 

dissolved in HPLC grade acetonitrile form Burdick and Jackson (Muskegon, MI, USA) 

and injected neat. Sample injection was performed by hydrodynamic injection from a 

height of 10 cm above the outlet reservoir for a time of one second. Between runs the 

capillary was rinsed consecutively with 0.1 M NaOH, water and the running electrolyte. 

In all calculations involving efficiency, the plate count was estimated from peak 

standard deviation taken as the half width at 0.607 of peak height and was reported as the 

average of at least two runs. The migration time of the umetained species, t0 , was 

determined by the deflection peak of acetonitrile. The migration time of the micelle, tmc, 

was determined by the iterative method using alkyl phenyl ketones.9 

Results and Discussion 

Comparison of MEGA 10 and SDS 

Figures 3 and 4 show the separation of 9 carbamate insecticides using MEGA 10 

and SDS micellar systems, respectively, under optimum conditions. As expected, both 

systems yielded different selectivity. In fact, peaks of aminocarb (Arni) and bendiocarb 
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Figure 3. Electropherogram of the carbamate insecticides. Experimental conditions: 
running electrolyte, 1.0 Mborate 10 mM sodium phosphate, 125 mMMEGA 10, pH 7.0; 
capillary, untreated fused silica, 80 cm (total length) x 50 µm I.D., 50 cm to detection 
point; voltage, 24 kV. Analytes: 1, Oxa; 2, Met; 3, Ald; 4, Bay; 5, Carn; 6, Ami; 7, Ben; 
8, Car; 9, Met. 

(Ben) switched order when gmng from MEGA-borate to SDS micellar systems. 

Furthermore, the separation of the 9 carbamate insecticides under investigation in the 

presence of SDS required the addition of 4.0 M urea to the running electrolyte. The SDS 

micellar system did not separate the carbofuran (Carn) and Ben insecticides without 

added urea. The resolution between Ben and Carn increased from Oto 1.02 when going 

from O to 4.0 M urea. This contrasts the data obtained with MEGA 10 whereby the 

addition of urea to MEGA 10 surfactant resulted in no separation between the Carn and 
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Figure 4. Electropherogram of the carbamate insecticides. Experimental conditions: 
running electrolyte, 100 mM borate, 100 mM SDS, 4.0 M urea, pH 8.0. All other 
conditions are the same in Figure 3. Analytes: 1, Oxa; 2, Met; 3, Ald; 4, Bay; 5, Carn; 6, 
Ami; 7, Ben; 8, Car; 9, Met. 

Ben. In the absence of urea, the resolution for the two insecticides with MEGA 10 as the 

surfactant was 2.54 as opposed to no resolution in the presence of urea. 

The analysis time with MEGA 10 is half that obtained with the SDS mi cellar 

system (compare Figures 3 and 4). This is in part due to the presence of 4.0 M urea in the 

SDS micellar system which increases the viscosity of the running electrolyte and in turn 

decreases the electroosmotic flow. The migration time window for the MEGA 10 

extends between a t0 = 5.2 min and a tmc = 14.3 min yielding a ratio tmclt0 = 2.75, while 

the migration time window for SDS spans between a t0 = 4.75 min and a tmc = 32.7 min 

giving a ratio of tmclt0 = 6.88. In the absence of 4.0 M urea, the migration time window 

of the SDS micellar system extends between a t0 = 4.32 min and a tmc = 14.78 min, 
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which corresponds to a tmclt0 ratio equals to 3.43, a slightly higher ratio than that 

obtained with the MEGA 10-borate system. 

The average separation efficiencies for the SDS and MEGA systems were about 

the same 169,542 and 162,825, respectively. However, the MEGA system yielded 

13,422 plates/min as opposed to 7044 plates/min with the SDS system. When comparing 

Figures 3 and 4, one can readily see the advantage of in situ charged micelles (i.e., 

MEGA 10-borate complex) over the traditionally used micellar systems (e.g., SDS) of 

predetermined migration time window and relatively strong hydrophobic character. With 

in situ charged micelles the migration time window is a freely adjustable parameter that 

can be manipulated by varying the pH and borate and surfactant concentration to suit a 

given separation problem in the shortest analysis time possible.8-15 

In addition, due to its relatively weak hydrophobic character (i.e., possessing a 

large polyolic polar head group and an alkyl chain with 2 fewer carbon atoms), the 

MEGA 10-borate micellar system allowed more equitable distribution of the carbamate 

solutes between the mobile and stationary phases than did the SDS micellar system. The 

k' values of the various carbamates and the selectivity factor a are shown in Table 1. The 

k' values of the carbamates obtained with the MEGA 10 mi cellar system are much less 

than those obtained with the SDS-urea micellar system. Conversely, in most cases, a is 

higher with MEGA 10 than with SDS. In the absence of urea, the retention of the 

carbamates with SDS are substantially higher than those obtained in the presence of urea. 

Typically, the k' values for Bay, Carn/Ben, Ami, Car and Met are 3.38, 3.57/3.68, 4.2, 

6.87 and 15.41, respectively, in the presence of urea as opposed to 6.17, 7.4617.46, 10.45, 



TABLE 1. 

RETENTION FACTOR, k', AND SELECTIVITY, a, OF CARBAMATES 
INSECTICIDES OBTAINED WITH MEGA 10 AND SDS MI CELLAR 

SYSTEMS. CONDITIONS AS IN FIGURES 3 AND 4. 

Solutes MEGA 10 Solutes SDS 

k' a k' a 

--

Oxa 0.03 Oxa 0.44 

2.80 1.39 

Met 0.084 Met 0.61 

4.17 3.03 

Aid 0.35 Aid 1.85 

2.03 1.82 

Bay 0.71 Bay 3.38 

1.21 1.06 

Cam 0.86 Cam 3.57 

1.12 1.03 

Ami 0.96 Ben 3.68 

1.10 1.14 

Ben 1.06 Ami 4.20 

2.79 1.64 

Car 2.96 Car 6.87 

2.96 2.24 

Met 8.75 Met 15.41 
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18.67 and 74.29 in the absence of urea. Similarly, at constant surfactant and borate 

concentration and pH, the k' values for carbamate insecticides decreased monotonically 

as the amount of added urea increased (results not shown). At 100 mM MEGA 1 O in 1 O 

mM sodium phosphate containing 1.0 M borate, pH 7.0, the retention factor of Bay, Carn, 

Ben, Ami, Car and Met decreased (almost by 50%) from 0.62, 0.75, 0.80, 0.93, 2.58 and 

6.88, respectively, in the absence of urea to 0.35, 0.39, 0.39, 0.52, 1.29 and 3.10 in the 

presence of 4.0 M urea. 

Electrokinetic Behavior of MEGA 10-borate 

It is well established that the magnitude of borate complexation is high in very 

alkaline solutions, and reaches a plateau at pH~ 12.1s However, by using relatively high 

borate concentration ( e.g., 1.0 M boric acid) at pH 7 .0, 15 it is possible to yield a MEGA 

10 micellar system that has a migration time window whose ratio tmclt0 is comparable to 

what can be achieved at pH 10 using 200 mM borate.12 By changing the borate 

concentration over a wide range it was determined that at pH 7.0, 1.0 M boric acid was 

the optimum concentration for maximum resolution of the 9 carbamates. 

To assess the approximate CMC value of the MEGA 10-borate system under 

investigation, a series of experiments involving various MEGA 10 concentrations at fixed 

pH and borate concentration were conducted using some carbamates and alkyl phenyl 

ketones (APK). In MECC, according to the following equation the retention factor k' is a 

linear function of the surfactant concentration: 19 

k'= rjJK ~ Kv([S]-CMC) (1) 
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where K is the distribution coefficient of solute between micellar and aqueous phases, v 

is the partial specific volume of the micelle, [S] is the concentration of the surfactant and 

CMC is the critical micellar concentration. The x-intercept of the line is [S] = CMC. 

Tables 2 and 3 summarize the data resulting from plotting k' of solutes versus MEGA 

concentration in the absence and presence of urea in the running electrolyte. The average 

CMC as determined from the plots of the carbamate insecticides was 10.5 mM and that as 

measured from plots of APK was 10.1 mM. 

TABLE 2. 

Y-INTERCEPTS, X-INTERCEPTS (CMC) AND SLOPES OF PLOTS OF log k' OF 
CARBAMATE INSECTICIDES VERSUS THE CONCENTRATION OF MEGA 

10 IN THE ABSENCE (0 M) AND PRESENCE OF UREA (4 M). 
CONDITIONS: 10 mM SODIUM PHOSPHATE, 1 M 

BORIC ACID, pH 7.0. OTHER CONDITIONS 
ARE AS IN FIGURE 3. 

Solute y-intercept x-intercept Slope x 103 R 

-Kv(CMC) CMC Kv 

OM 4.0M OM 4.0M OM 4.0M OM 4.0M 

Bay -0.078 0.024 12.6 -7.5 6.2 3.2 0.997 0.977 

Cam -0.086 0.006 11.3 -1.6 7.6 3.8 0.998 0.983 

Ami -0.10 0.006 12.0 -1.6 8.3 3.8 0.998 0.983 

Ben -0.11 0.008 11.8 -1.6 9.3 5.0 0.998 0.987 

Car -0.25 -0.056 10.0 4.2 25.1 13.5 0.997 0.991 

Met -0.34 -0.11 5.5 3.4 61.8 32.0 0.979 0.977 



56 

TABLE 3. 

Y-INTERCEPTS, X-INTERCEPTS (CMC) AND SLOPES OF PLOTS OF log k' OF 
APK VERSUS THE CONCENTRATION OF MEGA 10 IN THE ABSENCE (0 M) 

AND PRESENCE OF UREA (4 M). CONDITIONS: 10 mM SODIUM 
PHOSPHATE, 1 M BORIC ACID, pH 7.0. OTHER 

CONDITIONS ARE AS IN FIGURE 3. 

Solute y-intercept x-intercept Slope x 103 R 

-Kv(CMC) CMC (mM) Kv 

OM 4.0M OM 4.0M OM 4.0M OM 4.0M 

Acetophenone -0.068 -0.008 12.6 2.6 5.4 3.1 0.997 0.999 

Propiophenone -0.14 -0.052 11.5 7.3 12.2 7.1 0.996 0.999 

Butyrophenone -0.30 -0.15 11.0 9.5 27.2 15.8 0.997 0.999 

Valerophenone -0.66 -0.41 10.1 11.1 65.3 36.9 0.997 0.999 

Hexanophenone -1.29 -1.06 8.1 12.0 159.0 88.2 0.997 0.998 

Heptanophenone -2.58 -2.94 7.2 14.8 356.0 198.0 0.997 0.997 

Performing the same experiments as in the preceding section but in the presence 

of 4.0 M urea yielded k' vs. [S] plots whose x-intercept values (i.e., CMC values) were 

scattered over a range of 2.6 to 14.8 mM for the APK, and averaging to a CMC of7.6 M. 

k' vs. [S] plots for the carbamate insecticides gave negative values for the CMC. This 

would suggest that MEGA 10 is being affected in a negative way in the presence of urea. 

In other words, the addition of urea at the level of 4.0 M seems to disrupt the formation of 

the MEGA 10-borate micelle. Urea is a water structure breaker, a fact that leads to (i) an 

increase in the hydration of the hydrophilic group of the surfactant and (ii) disruption of 

the organization of the water produced by the dissolved hydrophobic group, thereby 

decreasing the entropy increase on micellization.20 Since the hydration of the hydrophilic 

group and the decrease in entropy oppose micellization, the net result is an increase in 
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CMC.20 This means a higher bulk concentration of surfactant is needed for micelle 

formation. The results shown in Tables 2 and 3 for carbamates and APK in the presence 

of urea shows either scattered values or negative values for the calculated CMC. This 

may indicate that at 4.0 M urea, the micellization of the MEGA 10 surfactant is partially 

disrupted so that Eqn 1 (page 54) may not describe any more the behavior of these 

systems. The linearity of k' vs. [SJ plots may still be conserved because as the surfactant 

concentration is increased the phase ratio is increased and in turn k'. 

The adverse effects of urea on the MEGA 10 system have also manifested 

themselves by a lower reproducibility and separation efficiency. In fact, and on the 

average the %RSD for the migration times of Bay, Carn, Ben, Ami, Car and Met was 

found to be 3.4 in the absence of urea as opposed to 5.0 in the presence of urea. A 

similar trend was also found with the %RSD of the migration time of APK. For these 

solutes the average %RSD was found to be 1. 7 in the absence of urea as compared to an 

average of 3.9 in the presence of urea. Also, the average separation efficiency calculated 

for 4 carbamates, namely Bay, Ami, Car and Met was 103,000 in the absence of urea as 

opposed to 61,000 in the presence of urea using 125 mM MEGA 10. 

Limits of Detection and On-Column Sample Preconcentration 

Table 4 lists the limits of detection (LOD) for six representative carbamate 

insecticides determined under the conditions used in Figure 3. The LOD were measured 

at the Amax of the specific absorption band of each solute. As one would expect, the 

LOD is an inverse function of the molar absorptivity (E) of the species. In fact, Car with 



TABLE 4. 

Amax, MOLAR ABSORPTIVITY, E, LOD AND MOLAR CONCENTRATION 
DETERMINED AFTER ON-COLUMN SAMPLE PRECONCENTRATION 

BY FASS. FOR FASS, SEE EXPERIMENTAL SECTION. 

Solutes 11. (nm) E (M-lcm-1) LOD (M) FASS (M) 

Oxa 248 6.1 X lQ3 1.7 X 10-3 

Aid 248 2.0 X lQ3 1.6 X lQ-3 

Bay 270 1.8 X lQ3 2.9 X 10-3 1.0 X 10-4 

Cam 282 3.5 X lQ3 8.3 X l0-4 

Car 281 6.1 X 103 2.5 X lQ-4 9.9 X 10-6 

Met 266 2.6 X lQ3 8.0 X 10-4 
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the highest E yielded the lowest LOD which is about one order of magnitude lower than 

the LOD exhibited by Aid whose E is lower. These LOD are not sufficiently low to allow 

the determination of pesticides in environmental samples. However, environmental 

samples are usually subjected to various sample manipulations (e.g., sample clean-up, 

extraction, sample size reduction by solvent evaporation, etc.) before their analysis is 

carried out. These pre-analysis steps, and especially extraction (e.g., liquid-liquid 

extraction and more recently solid-phase extraction) and solvent evaporation bring about 

the enrichment of the analytes of interest. Following, the enriched and cleaned-up sample 

may be ready for analysis or may still require an on-column sample preconcentration to 

achieve an additional enrichment factor of 30 fold or less. 

In CE, on-column trace enrichment methods for solutes including pesticides based 

on field amplified sample stacking (FASS),21 on-column solid-phase preconcentration,22 



59 

and more recently sweeping by micelles23 have been described. Among these three 

different approaches, FASS is the most useful method with the MEGA-borate micelle 

used in our studies. On-column solid phase extraction is excluded because in the presence 

of a surfactant such as the MEGA, the surfactant molecules will compete with the solute 

to the binding sites on the solid phase, thus lowering the effectiveness of the 

preconcentration. The sweeping approach, introduced very recently by Quirino and 

Terabe,23 is only effective under conditions of negligible EOF, which is usually obtained 

at low pH. The low pH condition does not apply to the MEGA-borate system described 

in this report because the MEGA micelle is charged via complexation with borate ion at 

high pH. 

FASS proved to be very effective in on-column preconcentration before CE 

separation. FASS is based on the fact that the electrophoretic velocity of an ion depends 

linearly on the field strength. In FASS, the region of the sample has a lower conductivity 

than the supporting electrolyte. Therefore, the analyte experiences locally an increased 

field strength and migrates at higher velocity. When reaching the background electrolyte, 

the ions experience a lower electric field in the supporting electrolyte than in the sample 

region, and consequently the velocity of the ions decreases as they cross the stationary 

boundary. The slower moving ions will stack up into a smaller volume, thereby 

increasing the analyte concentration in the sample zone.16,17,24,25 Although FASS is 

powerful, only a few attempts have been made so far to introduce FASS for trace 

enrichment in MECC of neutral solutes such as the carbamate insecticides.26,27 

In MECC, neutral solutes acquire an effective electrophoretic mobility, µep,eff, 

through their association with the micelle as follows: 19 
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(2) 

where µep,mc is the electrophoretic mobility of the micelle. According to Eqn 2 the 

stronger the association of the solute with the micelle (i.e., large k') the higher the 

effective electrophoretic mobility of the solute and the better the stacking. 

Two typical carbamate insecticides, namely Bay and Car, were selected to show 

the feasibility of sample stacking by FASS in MECC with neutral solutes. As can be 

seen in Figure 3, Bay is much less retained than Car under otherwise the same conditions. 

As indicated in the experimental section, the sample for stacking by FASS was prepared 

in 25 mM MEGA 10, 25 mM borate, pH 9.0. Using this low ionic strength electrolyte as 

the running electrolyte, the k' values for Bay and Car were determined to be 0.21 and 

1.05, respectively. Based on these k' values, and from Eqn 2, the effective 

electrophoretic mobilities of Bay and Car are -7.3 x 10-s cm2N.s and -2.2 x 10-4 

cm2N.s, respectively, which correspond to 17% and 51 % of the electrophoretic mobility 

of the MEGA-borate micelle, which is -4.3 x 10-4 cm2N.s. Under these conditions, the 

effective electrophoretic mobility of Car is about 3 fold higher than that of Bay. 

As shown in Table 4, FASS allowed the detection of 1.0 x 10-4 Mand 9.9 x 10-6 

M for Bay and Car, respectively, which are 25 and 29 fold lower than the LOD of Car 

and Bay, respectively. FASS resulted in similar enrichment for Bay and Car despite the 

fact that Car . exhibited higher effective electrophoretic mobility than Bay. The 

effectiveness of sample enrichment is also determined by the solubility of the solute in 

the separation medium. The molar solubilities of Bay and Car in water are 9.6 x 10-3 M 

and 6.0 x 10-4 M, respectively.28 For Car, the gain in preconcentration by FASS due to 
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its relatively higher k' value is offset by its lower molar solubility. In fact, if we assume 

(i) that the large sample plug of about 687 nL (see experimental section) shrinks down to 

8 nL (i.e., 4 mm in length) when the stacking is finished, and (ii) that no sample loss 

during FASS occurs, a concentration factor of 86 will be readily realized. A 

concentration factor of 86 should have allowed the FASS determination of 2.9 x 1 o-6 M 

and 3.4 x 10-5 M for Car and Bay, respectively. These values are obtained by simply 

dividing the LOD values by 86. The fact that the observed FASS for Car is 9.9 x 10-6 M 

which is higher than the actual or expected FASS (2.9 x 1 o-6 M) may indicate that the 

amount of Car exceeding the molar solubility has precipitated out during sample 

stacking. In the case of Bay whose k' value is relatively low, the stacking was not very 

effective and yielded a relatively broad peak, a phenomenon that may explain the higher 

concentration of the observed FASS (1.0 x l0-4 M) than the actual or the expected FASS 

(3.4 x 10-5 M). In summary, these preliminary results indicate that more in-depth studies 

are needed to better understand the stacking of neutral solutes in MECC. 
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CHAPTER III 

ON-COLUMN TRACE ENRICHMENT BY SEQUENTIAL FRONTAL AND 

ELUTION ELECTROCHROMATOGRAPHY. I. APPLICATION TO 

CARBAMATE INSECTICIDES* 

Introduction 

In capillary electrochromatography (CEC), the mobile phase is transported 

through a capillary containing a stationary phase without a pressure drop by means of 

electroosmosis. The use of electroosmotic flow (EOF) as the driving force for differential 

migration yields a plug-like flow profile which results in a relatively high separation 

efficiency.1-3 This high separation efficiency combined with the unique selectivity of the 

stationary phase have made CEC a microseparation technique of high resolving power 

very suitable to a wide variety of applications (for very recent reviews, see Refs 4,5). 

However, CEC suffers from its rather poor concentration sensitivity with on-line 

photometric detection ( e.g., UV-Vis detection), a fact that makes CEC not directly 

amenable to many real applications, especially those of biological and environmental 

significance where samples to be analyzed are usually very dilute. Therefore, there is a 

* The content of this Chapter has been published in Anal. Chem., 2001, 73, 3365. 
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strong need for on-column trace enrichment (i.e., on-line preconcentration) schemes to 

enhance concentration detection limits. 

The present investigation is concerned with (i) the introduction of an on-column 

trace enrichment method for dilute samples based on sequential frontal and elution 

electrochromatography and (ii) the application of the method to carbamate insecticides. 

This chapter is considered as a continuation to our very recent initial studies in the area of 

on-line preconcentration in CEC of pesticides 6,7 where the trace enrichment was based 

on introducing a relatively large plug of a dilute sample preceded by the introduction of a 

short plug of pure water. The plug of water produced zone narrowing and consequently 

concentration enhancement. The present investigation involved on-line preconcentration 

by frontal electrochromatography under conditions of strong solute binding to the 

stationary phase followed by step-gradient elution electrochromatography with a mobile 

phase of high eluting strength, see next section. 

Thus far, only two articles have addressed the sensitivity enhancement in CEC but 

with limited success as far as the concentration detection limit is concerned. 8,9 As will be 

shown below, our studies involved systematic studies over a wide range of conditions in 

order to find the optimum conditions for on-column trace enrichment and to better 

understand the underlying phenomena. 

Theoretical Treatment 

The on-column trace enrichment method developed in this study comprised two 

distinct steps: a frontal electrochromatography step followed by an elution 

electrochromatography step, see Fig. 1. The dilute sample is first applied to the column 
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in a relatively large volume under conditions of strong solute binding to the stationary 

phase. In this frontal electrochromatography step, and in principle, solute molecules will 

accumulate at the column entrance in a relatively narrow band (i.e., zone compression or 

narrowing), see Fig. la. After this stationary phase mediated focusing step, the solutes 

molecules are swept with a mobile phase whose organic modifier content is relatively 

high to bring about the rapid elution and separation (i.e., elution electrochromatography 

by a step-gradient) of the enriched solute band. This step-gradient brings about a 

focusing effect on the enriched solute band, see Fig. 1 b. 

- I -
eb 

/sp ___ _ 

~p---------

Detection 
Point 

Detection 
Point 

(a) 

(b) 

Figure 1. Schematic illustration of trace enrichment by frontal electrochromatography in 
(a) followed by zone focusing during step-gradient by elution electrochromatography. /, 
length of column to detection point; leb, length of enriched band; lsp, length of sample 
plug; ljeb, length of focused enriched band. 

The effectiveness of the on-column trace enrichment is largely influenced by the 

affinity of the individual solutes to the stationary phase during the frontal 

electrochromatography step. The stronger the retention of the solute the narrower the 
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concentrated band at the top of the column. In fact, and under a given mobile phase flow 

velocity u (i.e., electroosmotic flow velocity), the average solute velocity ~ is directly 

proportional to the fraction of time the solute spends in the mobile phase as follows: 

v = u(fraction of time the solute spends in the mobile phase) (1) 

Equation (1) is equivalent to writing 

- ( moles of analyte in mobile phase J 
V=U ~) 

total moles of analyte in mobile and stationary phases 

thus, yielding the dependence of the average solute's velocity on its retention factor k' as 

follows: 

(3) 

With ideal plug flow profile as in CEC, the distribution function for injection and 

detection can be considered as rectangular. Under this condition, and during sample 

introduction, equation (3) can be rearranged as follows: 

(4) 

where leb is the length of the enriched solute band or compressed solute zone, l is the 

capillary length to the detection point, ti is the injection time (i.e., time of the frontal 

electrochromatography step), t0 is the retention time of an unretained species (i.e., EOF 

marker), and k' is the retention factor of the solute being enriched in the injection solvent. 

Equation (4) can be further rearranged to yield: 

( 1 l 
leb = lsp i--, ) 

\l+k 
(5) 
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where lsp is the length of the sample plug, i.e., the distance traversed by the injection 

solvent, see Fig. 1. For a given sample plug length, eqn (5) shows that the effectiveness 

of zone compression (i.e., very small Zeb) during enrichment increases with increasing k'. 

The peak width obtained during the elution step, and in turn the signal intensity, is 

influenced, among other things, by the length of the enriched band Ueb) on the top of the 

column. The narrower the enriched band the stronger the signal intensity and the more 

effective the on-column trace enrichment. To ensure an optimal on-column trace 

enrichment, the high retention factor during sampling (i.e., during frontal 

electrochromatography) must be combined with negligible retention during desorption 

(i.e., during elution electrochromatography) in order to minimize band broadening during 

elution. This is usually accomplished by combining a strong eluent with a relatively 

strong EOF. In reversed-phase chromatography (RPC), an organic-rich mobile phase 

corresponds to a high eluent strength. A relatively strong EOF is ensured by using a 

relatively high running voltage, a column with high surface charge density, and a mobile 

phase oflow viscosity. 

During the elution electrochromatography step, a step-gradient elution occurs 

where the enriched sample band is further compressed or stacked. This stacking comes 

about from the fact that the solute molecules contacting the eluting mobile phase travel 

much faster than the solute molecules on the opposite side contacting the injection 

solvent which has a weaker eluent strength. The net result is an additional zone focusing 

until the eluting mobile phase reaches the slow migrating side of the injected enriched 

band. This zone focusing (i.e., zone narrowing) increases with (i) increasing the 

difference in the eluent strength between the injection solvent (weak eluent, high k') and 
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the mobile phase (strong eluent, low k') and (ii) decreasing the length of the sample plug 

Usp ). Thus, the effectiveness of on-column trace enrichment is factored by all these 

variables. This report addresses the effects of the various parameters during trace 

enrichment in CEC. 

Experimental 

Instrumentation 

The instrument used was an HP3D CE system from Hewlett-Packard (Waldbronn, 

Germany) equipped with a photodiode array detector. Electrochromatograms were 

recorded with a computer running an HP 3D-CE Chemstation. A pressure of 10 bar was 

applied to both ends of the capillary during the experimental runs. The temperature was 

held constant at 25 °C. All samples were injected electrokinetically at various times and 

applied voltages which are stated in figure captions. 

Reagents and Materials 

Buffer solutions were prepared using either sodium phosphate monobasic from 

Mallinckrodt (Paris, KY, USA) or ammonium acetate from EM Science (Gibbstown, NJ, 

USA). The organic modifier used in the mobile phase was HPLC grade methanol, 

acetonitrile or tetrahydrofuran purchased from Fisher Scientific (Fair Lawn, NJ, USA). 

Benzene, alkyl benzenes, analytical grade acetone and HPLC grade toluene were from 

Aldrich (Milwaukee, WI, USA). All solutions were passed through a 0.2 µm Titan 
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synnge filter obtained from Scientific Resources, Inc. (Eatontown, NJ, USA). The 

Carbamate insecticides (see Figure 1 in Chapter II) were purchased from ChemService 

(West Chester, PA, USA). Dimethyloctadecylchlorosilane was purchased from Hlils 

Petrarch Systems (Bristol, PA, USA). Nucleosil silica was purchased from Macherey & 

Nagel (Duren, Germany). Fused silica capillaries with an internal diameter of 100 µm 

and an outer diameter of 360 µm were from Polymicro Technology (Phoenix, AZ, USA). 

Stationary phase and column packing 

Nucleosil 120-5 silica was converted in-house to an octadecyl-silica (ODS). The 

silica has a mean particle diameter of 5 µm, a mean pore diameter of 120 A, and a 

specific surface area of 200 m2/g. The following method was used to convert silica to 

ODS. To a 250 mL three neck round bottom flask, 30 mL of toluene were added. A 

condenser was connected to one neck, a stirring motor to the second and a glass stopper 

to the third. After the toluene was heated to 109 °C in an oil bath, 1.29 g of silica were 

added. The silica was heated for 15 min to purge all air from the pores. Subsequently, 

0.5 g of dimethyloctadecylchlorosilane was added, and the reaction suspension was 

allowed to reflux for 24 hrs at 109 °C. Thereafter, the suspension was cooled to room 

temperature and then centrifuged for 10 min. The ODS stationary phase thus obtained 

was washed two more times with toluene and three more times with acetone. After the 

third acetone wash, the ODS was allowed to air dry for 24 hrs before use. 

Untreated fused silica capillaries were packed using the slurry packing technique. 

The ODS stationary phase was suspended in acetone, and isopropanol was used as the 

packing solvent. The first step in the packing procedure was to sinter with a thermal wire 
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stripper a temporary porous frit on the outlet end of the capillary. A detection window 

approximately 10 cm from the temporary outlet frit was made using the same thermal 

wire stripper. The packing pressure was first ramped from Oto 3000 psi within 3-5 min 

and then maintained constant at 3000 psi for 1 hr. The column was then rinsed with water 

for 30 min to 1 hr. Thereafter, the column was cut to the desired length and an inlet frit 

was sintered using the wire stripper. With the wire stripper a permanent outlet frit was 

sintered at 5 mm ahead from the detection window. The temporary outlet frit was then 

removed leaving a capillary segment of 8.5 cm from the detection window, which was 

then emptied from silica using an HPLC pump. 

Procedures 

Stock solutions of mne carbamate insecticides namely oxamyl, methomyl, 

aldicarb, baygon, carbofuran, aminocarb, bendiocarb, carbaryl, and methiocarb were 

prepared by dissolving 3 mg of each carbamate in individual 10 mL volumetric flasks 

filled with HPLC grade acetonitrile. This gave an approximate concentration of 1.5 x lQ-3 

M for each of the nine carbamates. A first dilution was performed by taking 1.0 mL of 

the stock solution and diluting it to 100 mL with HPLC grade acetonitrile in a volumetric 

flask to yield an approximate concentration of 1.5 x 1 o-5 M. The solvent used in the last 

dilution step consisted of pure buffer or various mixtures of acetonitrile/buffer (10/90 to 

80/20 v/v). Since the carbamates were dissolved in pure acetonitrile, the stock solution 

pipetted was kept small (e.g., 10 µ1 or less) as not to affect the overall concentration of 

acetonitrile in the final dilution. 
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Results and discussion 

Column evaluation 

In order to ensure a relatively strong electroosmotic flow (EOF), the ODS 

stationary phase was intentionally prepared at a relatively low surface coverage in 

octadecyl ligands. Therefore, and as a first step in our studies, the ODS stationary phase 

was evaluated for its performance as a reversed-phase packing with benzene and 

alkylbenzene homologous series as the neutral model test solutes. Figure 2a shows a 

typical electropherogram of the test solutes under reversed-phase elution conditions. The 

average plate count is 25,200, which corresponds to 100,800 plates/m. The EOF velocity 

under the conditions of Fig. 2 is about 0.82 mm/s. This flow velocity is indicative of 

moderate surface coverage and matches well our previous surface modification6, 1 o, 11 

whereby only 25% of surface silanols (i.e., 2 µmol/m2) are reacted leaving behind 75% 

of umeacted silanols (i.e., 6 µmol/m2). Despite this relatively moderate surface coverage 

in octadecyl ligands (- 2 µmo1fm2), the ODS stationary phase yielded the normal 

reversed-phase behavior as manifested form the quasi-linear plots of log k' versus the% 

acetonitrile in the mobile phase, see Fig. 2b. 

Chromatographic behavior of carbamates 

In order to introduce efficient ways for the on-line preconcentration of carbamate 

insecticides, the chromatographic behavior of these solutes (for structures see Fig. 1 in 

Chapter II) was examined over a wide range of mobile phase composition. This was 

performed by studying the effect of percent organic modifiers such as acetonitrile (ACN), 
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methanol (MeOH), and tetrahydrofuran (THF) in mobile phases composed of sodium 

phosphate, pH 6.0, with an overall sodium phosphate concentration of 2 rnM. As 

expected, the retention and selectivity (see Fig. 3) is largely affected by the% acetonitrile 

in the mobile phase with the best separation obtained at 55 % (v/v) ACN. Linear plots of 

log k' versus % acetonitrile were obtained in the percent range 50-80% (v/v) ACN with 

an R ranging from 0.981 to 0.999. Again, and as one would expect the stationary phase 

exhibited reversed-phase chromatography behavior for the nine carbarnates studied. 

The effect of mixed organic modifiers on retention and selectivity of the 

carbarnates was also investigated. In this regards, MeOH or THF were mixed with ACN 

containing mobile phases and the results are shown in Fig. 3d, 3e and 3f. As shown in 

Fig. 3d and 3e, the addition of 5 and 10% THF led to completely destroying the 

selectivity between bendiocarb, baygon, carbofuran, and aminocarb. This indicated that a 

strong eluent such as THF is not suitable to bring about a baseline separation of the 9 

carbamate insecticides. On the other hand, a weaker eluent such as MeOH in small 

amount improved the separation as shown in Fig. 3f. Maximum resolution was obtained 

when 5% methanol was added to a mobile phase containing 60% acetonitrile. With the 

mobile phase at 60% acetonitrile and 5% methanol, the selectivity between bendiocarb 

and baygon was 1.05 as opposed to 1.0 with the mobile phase at 55% acetonitrile. In 

summary, baseline resolution was not acquired with any of the mobile phases tested. This 

is in agreement with HPLC to the fact that no isocratic separation method was found in 

the literature. The method of choice for baseline resolution in HPLC is a methanol 

gradient 12 or an acetonitrile/methanol gradient.13 
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On-line trace enrichment 

Various parameters were investigated in order to find the conditions under which 

optimum trace enrichment can be performed. This involved the study of the effects of the 

organic modifier concentration in the sample solution, the sample injection voltage, the 

length of the sample plug and the composition of the mobile phase used in the elution 

step. 

Effect of Acetonitrile Content in the Sample Plug. Figure 4 shows the effect of 

the ACN content in the sample plug on the effectiveness of the on-line preconcentration 

by means of frontal electrochromatography. The results are expressed in terms of peak 

height and peak width. Methiocarb was used as the model solute. The sample plug was 

introduced electrokinetically at 3 kV from a sample solution at 4.0 x 1 o-6 M in 

methiocarb for an injection time of 180 s. The content of the sample in ACN was varied 

between O and 80% (v/v). On the average, the length of the sample plug (tsp) was around 

4.0 cm, which is about 16% of the effective length of the column. In all cases, the elution 

step was carried out with a mobile phase composed of 80% (v/v) acetonitrile and 20% 

(v/v) of 10 mM sodium phosphate, pH 6.0, using 20 kV as the elution voltage. As can be 

seen in Fig. 4, there is virtually no change in either peak height or peak width as a 

function of % ACN in the sample in the % range from O to 30%. The near plateau 

obtained for peak height and peak width of the eluted band which was originally enriched 

from a sample containing from O to 30% ACN (see Fig. 4) can be attributed to two 

opposing effects. Increasing the ACN content improves the surface contact with the 
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Figure 4. Plots of peak height and peak width at half height vs. percent acetonitrile in the 
injection sample. Conditions of frontal electrochromatography: organic content in the 
injected sample, 0, 10, 20, 30, 40, 50, 60, 70 and 80% (v/v) acetonitrile; sample plug was 
introduced electrokinetically at 3 kV from a sample solution at 4.0 x 1 o-6 M in 
methiocarb for an injection time of 180 s. Conditions of elution electrochromatography: 
mobile phase, 20% (v/v) of 10 mM NaH2P04 (pH 6.0) and 80% (v/v) acetonitrile; 
voltage, 20 kV; detection wavelength, 266 nm. All other conditions as in Fig. 3. 

hydro-organic solution being enriched by opening the hydrophobic chains (i.e., the 

octadecyl ligands), thus increasing the effective hydrophobic surface area. This is in 

agreement with the findings that in solid-phase extraction (SPE) with ODS cartridges, the 

SPE materials are usually pretreated or pre-wetted with an activating solvent such as 

ACN, MeOH or acetone to improve surface contact.14 On the other hand, as the% ACN 
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is increased, the solute affinity to the stationary phase is decreased. In the O to 30% ACN 

range, the solute accumulates at the entrance of the column occupying a distance Zeb of 

0.7, 1.2, 2.1 and 3.4 mm at 0, 10, 20 and 30% ACN in the sample plug, respectively. 

These values were estimated through eqn (5) by using the extrapolated k' values of 

methiocarb obtained from plots of log k' vs. % ACN in the mobile phase and by 

considering that the distance traversed by the solvent front of the sample plug is Zsp = 4.0 

cm. Although the length of the enriched solute band increases from Zeb = 0.7 to Zeb = 3.4 

mm as the amount of ACN is increased from Oto 30% (v/v), the elution step is able to 

compress the band and to decrease the initial band spreading during sample introduction. 

However, after 40% ACN content, the peak height and peak width decreased and 

increased rapidly, respectively, indicating a significant decrease in the effectiveness of 

the on-line preconcentration. At 40% ACN and higher, not only the initial solute band 

becomes wider and wider (increasing form Zeb= 5.6 to Zeb= 23 mm when going from 40 

to 80% v/v ACN) but also the elution step is unable to compress the band as the solute 

molecules move faster and faster in the head sample solvent in which the solute was 

originally dissolved because its ACN content is increased (see theoretical treatment). In 

other words, as the amount of ACN in the sample solvent is increased, the difference in 

the eluent strength between that of the sample solvent and the eluting mobile phase 

decreases, thus diminishing the focusing effect of the mobile phase during the elution 

electrochromatography step. As can be seen in Fig. 4, the peak width at half height is in 

very close agreement with the peak height. As one would expect as peak height increases 

peak width will decrease. Therefore, 30% ACN in the sample solvent seems to be optimal 

for trace enrichment. 
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Applied Voltage During Sample Enrichment. Figure 5 shows the effect of 

varying the injection voltage during on-line sample enrichment, i.e., during frontal 

electrochromatography. All conditions are the same as in the preceding section with 

sample plug composed of 30:70 acetonitrile/buffer (v/v). The applied voltage during 

sample enrichment was varied from 3 to 20 kV. In all cases, the sample plug length lsp 

was kept constant at approximately 4.4 cm which represents 18% of the effective column 

length, I (i.e., length to the detection window). Typically, this sample plug is introduced 

within 27 sat 20 kV as opposed to 180 sat 3 kV. Increasing the voltage increases the 

magnitude of the intraparticle or perfusive EOF (i.e., the flow within the pores). This 

means that the relative stagnant volume decreases and the apparent mobile phase volume 

increases, thus leading to an increased mass transport within the pores (i.e., reduction in 

the mobile-phase mass-transfer resistance). This translates into higher capacity and better 

focusing of the sample. Since the mass transfer within the pore is directly proportional to 

the magnitude of the perfusive EOF, a linear relationship is obtained between peak height 

and the applied voltage during sample enrichment, see Fig. 5. Under CEC conditions, a 

significant intraparticle or perfusive flow was reported and this flow was shown to 

increase with pore size.15,16 

lnj ection Time or Length of Sample Plug. It is apparent from the above results 

that an applied voltage of 20 kV for sample introduction and a relatively low acetonitrile 

content in the sample are the best choice for on-line trace enrichment. Next, it was 

necessary to examine the maximum length of sample plug lsp that needs to be introduced 

for enhanced trace enrichment. In this regards, the length of the sample plug was varied 
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Figure 5. Plots of peak height vs. voltage applied during injection. Conditions of frontal 
electrochromatography: injection voltage, 3, 11, 15 and 20 kV for a duration of 180, 49, 
36 and 27 sec, respectively; solute, methiocarb at 3.7 x 10-6 M dissolved in 30/70 
acetonitrile/buffer (v/v). Conditions of elution electrochromatography: mobile phase, 
20% (v/v) of 10 mM NaH2P04 (pH 6.0) and 80% (v/v) acetonitrile; voltage, 20 kV; 
detection wavelength, 266 nm. All other conditions as in Fig. 3. 

by changing the injection time at a constant applied voltage (i.e., 20 kV). These studies 

were performed with carbofuran as the test solute at 3.0 x 10-7 M. As can be seen in Fig. 

6a, the peak height increases sharply as the injection time is increased from 1 to 3 min 

under four different elution conditions (see next section). Above 3.5 min, only a 

moderate increase in peak height has been observed. For a 1 min injection, the sample 
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plug is about lsp = 6.31 cm long Ueb = 1.1 cm) while for a 5 min injection the length of 

the sample plug lsp is about 28.7 cm (i.e., 3.7 cm longer than the column length to the · 

detection window and leb = 5 cm). This corresponds to increasing the sample size from 

0.25 to 1.15 column length when going from a 1 min to 5 min injection. The flow 

velocity at 3.5 min was used to calculate the sample plug length at 5 min assuming a 

negligible change in flow velocity. For a 3.5 min injection time, the sample size lsp 

reaches 20.1 cm Ueb = 3.5 cm) or 0.80 column length. Thus, for carbofuran (relatively 

low k') the maximum allowable sample plug length seems to be around 20 cm. Beyond 

this length, the eluted band becomes excessively broad. Based on the theoretical 

treatment discussed in section 2, and under a given set of preconcentration conditions, 

one can state that the higher the solute retention in the frontal electrochromatography 

step, the longer the permissible sample plug length and consequently the higher the 

analyte signal in the subsequent elution electrochromatography step. 

Percent Acetonitrile in the Mobile Phase Used in the Elution St~. Figure 6a also shows 

a large dependence of trace enrichment on the composition of the mobile phase used in 

the elution step following the on-line sample accumulation (i.e., frontal 

electrochromatography) from dilute solutions. With all other conditions held constant, 

the percent acetonitrile in the running mobile phase was varied from 75 to 90% in the 

acetonitrile/buffer mobile phase. As can be seen in Fig. 6a, the higher the organic content 

in the mobile phase the greater the peak height was. This is in agreement with the 

discussion in section 2 in the sense that the larger the difference between the eluent 

strength of the mobile phase and the injection solvent the better the effectiveness of the 
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zone compression during the step-gradient elution. In addition, stronger eluent leads to 

decreasing longitudinal molecular diffusion as the solute residence time in the column is 

decreased with increasing mobile phase eluent strength. Figure 6b shows the dependence 

of the trace enrichment on the acetonitrile content of the mobile phase used in the elution 

step. In other words, Fig. 6b shows the smallest detectable concentration by the on­

column trace enrichment scheme as a function of the % ACN in the mobile phase. At 

90% ACN in the eluent, very dilute sample of concentration as low as 4.0 x 1 o-8 M of 

carbofuran could be detected. 

Sensitivity Enhancement Under Optimal Conditions. To determine the sensitivity 

increase (i.e., enhancement factor) by the on-line trace enrichment, the limit of detection 

(LOD) was determined under analytical injection conditions. Using a mobile phase at 

90% ACN and an applied voltage of 20 kV, and injecting carbofuran for 2 sec, the LOD 

was found to be 2 x 1 o-5 M. As shown above, trace enrichment under optimal conditions 

including 30% ACN in the sample plug, 20 kV as the injection voltage, 3.5 min as the 

injection time and elution with a mobile phase at 90% ACN, a 4.0 x l0-8 M solution of 

carbofuran could be readily enriched and detected. This trace enrichment allows a 

sensitivity higher by a factor of 500 compared to straight CEC (i.e., without 

preconcentration) with UV detection. 

Simultaneous On-Line Preconcentration and Separation of Carbamates Spiked in 

Deionized and Tap Waters. Figure 7a and 7b show typical electropherograms for the 

simultaneous on-line preconcentration and separation of carbofuran, carbaryl and 
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methiocarb spiked in deionized and tap waters, respectively. The deionized water sample 

spiked with the 3 carbamates was injected for 3.5 min at a concentration of l0-7 M for 

each solute in a solvent composed of 30/70 acetonitrile/buffer (v/v). The elution and 

separation were then achieved with a mobile phase at 80% ACN. Figure 7a shows the 

baseline resolution of the 3 carbamates under investigation. 

Figure 7b illustrates the electropherograms obtained for a blank injection and an 

injection of 3 carbamates spiked in tap water at 10-7 M. Both the blank and the 

carbamate sample were injected for 4.39 min. The EOF in the presence of tap water in the 

blank and sample decreased by a factor of 1.25 with respect to that with deionized water 

under otherwise the same running conditions. This is why the injection time with tap 

water was prolonged to 4.39 min in order to introduce the same sample plug length as in 

the case of deionized water. The lower EOF in the case of tap water is due primarily to 

the presence of various inorganic ions, specially the divalent calcium ion, and humic and 

fulvic substances which collectively confer to the tap water a higher ionic strength and 

higher viscosity than the deionized water. In fact, comparing Fig. 7b to Fig 7a reveals a 

large breakthrough in the tap water injection which is absent in the deionized water 

injection, which is most often attributed to the presence of fulvic and humic 

substances.17,18 The %RSD (n = 3) for retention times for trace enrichment and 

separation of spiked tap water were 1.57, 1.60 and again 1.60 for carbofuran, carbaryl 

and methiocarb, respectively. Also, the %RSD (n = 3) for peak areas for the 3 

carbamates were 1.51, 6.81 and 2.89, respectively, while for peak heights the %RSD (n = 

3) were 2.39, 1.46 and 6.46, respectively. 
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The retention time of the peak b1 observed in the blank injection for both 

deionized and tap water corresponds to the time at which the injection solvent (i.e., 30:70 

% ACN: water) plug has emerged out entirely from the column end, thus reflecting a 

sudden change in conductivity as well as in the average EOF across the column. The 

peak b2 observed in the blank injection of tap water may be attributed to a retained 

interference from the tap water. 

Conclusions 

Capillary electrochromatography with ODS packed capillary columns allows the 

rapid and efficient separation of closely related pesticides and the introduction of a 

relatively large sample plug equivalent to almost one column dead volume thus 

permitting the determination of dilute samples of carbamate insecticides at concentration 

of - 1 o-7 to 1 o-8 M with a UV detector. The on-column trace enrichment by sequential 

frontal and elution electrochromatography has the potential of allowing multiple column 

dead volumes of sample to be injected because the analytes are adsorbed onto a stationary 

phase, which will not only result in the preconcentration of analytes but also in the 

removal of interferences. 
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CHAPTER IV 

ON-COLUMN TRACE ENRICHMENT BY SEQUENTIAL FRONTAL AND 

ELUTION ELECTROCHROMATOGRAPHY. II. ENHANCEMENT OF 

SENSITIVITY BY SEGMENTED CAPILLARIES WITH Z-CELL 

CONFIGURATION-APPLICATION TO THE DETECTION 

OF DILUTE SAMPLES OF MODERATELY POLAR 

AND NONPOLAR PESTICIDES* 

Introduction 

As with other microcolumn separation techniques, capillary 

electrochromatography (CEC) suffers from its rather poor concentration sensitivity due to 

the small sample volume and the short path length for on-column photometric detection. 

This fact is the major drive for introducing new ways for enhancing CEC concentration 

sensitivity and enabling the technique to analyze dilute samples. The alleviation of this 

shortcoming is essential for the exploitation of the high resolving power of CEC in the 

analysis of dilute samples of biological and environmental provenance in order to meet 

* The content of this Chapter has been accepted for publication in J Chromatogr. A, 
2002, in press. 
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current challenges such as those imposed by the era of proteomic and safe drinking water 

whereby low abundance proteins must be isolated and characterized and trace amounts of 

toxic pollutants must be determined, respectively. Although extensive research efforts 

have been dedicated to improving detection sensitivity in capillary electrophoresis by 

developing various approaches for on-line preconcentration (for recent reviews, see Refs 

1-4), only a few reports have appeared so far concerning on-column trace enrichment for 

enhancing detection sensitivity in CEC.5-9 The on-line preconcentration approaches used 

in CE are several including field amplified sample stacking, large volume sample 

stacking, pH-mediated focusing, isotachophoretic stacking, chromatographic extraction 

and sweeping.1-4 The approach allowed a maximum sensitivity enhancement of 100 fold. 

Very recently, our approach to on-column trace enrichment involved sequential frontal 

and elution electrochromatography whereby relatively long sample plug (21 cm) 

dissolved in a solvent of weaker eluting strength than the mobile phase is first introduced 

followed by elution with a mobile phase of stronger eluent strength thus effecting a step­

gradient elution and zone narrowing in the separation step.9 This approach allowed a 500 

fold sensitivity enhancement. To further boost the concentration sensitivity of CEC, we 

are describing here the sequential frontal and elution electrochromatography with a 

segmented capillary and a z-cell configuration for detection. The present approach 

allowed a sensitivity enhancement of 817 and 1100 fold for permethrin (a pyrethroid 

insecticide) and methiocarb (a carbamate insecticide), respectively. In the segmented 

capillary configuration, the capillary column consists of two contiguous segments each 

packed with a different stationary phase: the inlet segment is a short segment for 

preconcentration and the second segment is a longer segment and functions as the 
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separation segment. While the preconcentration segment should provide the highest 

affinity towards the enriched analytes, the separation segment approaches used in CEC 

are based on the capability of the chromatographic column packed with microparticles to 

play the simultaneous role of preconcentrator and separator.5-9 

This chapter is a continuation to our earlier contribution to on-column trace 

enrichment of dilute samples in CEC (see also chapter 111).6,7,9 In our initial studies,6,7 a 

water plug of a few millimeters long (3 to 5 mm) was injected first followed by 

prolonged injection of the dilute sample (ca. 12 mm sample plug) dissolved in a solvent 

of the same composition as the mobile phase used in the separation step. The water plug 

(the more retentive mobile phase) brought about an enhanced accumulation of the dilute 

samples into a narrow band at the inlet of the CEC column. This should exhibit the 

highest selectivity and separation efficiency. 

Basic Principles 

The basic principles of the on-column trace enrichment method used in this study 

was previously described in detail (see chapter 111).9 Briefly, it comprised two distinct 

steps: a frontal electrochromatography (FEC) step followed by an elution 

electrochromatography (EEC) step. 

As shown in Fig. 1, we have devised a segmented capillary column configuration 

with a z-cell in order to accomplish the highest performance in terms of trace enrichment 

and detection sensitivity. In this configuration, while the concentrating segment provides 

strong solute binding during FEC step (i.e., the thinnest Zeb), the separation segment 

provides the selectivity and plate counts during EEC step. The length of the concentrating 
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Figure 1. Schematic illustration of trace enrichment by frontal electrochromatography in 
(a) followed by zone focusing during step-gradient by elution electrochromatography in 
(b ). This illustration also shows the segmented capillary design consisting of two 
contiguous segments packed with different stationary phases: a concentrating segment 
preceding a separation segment. l, length of column to detection point; leb, length of 
enriched band; lsp, length of sample plug; l;"eb, length of focused enriched band. 

segment need not to exceed the length of the enriched solute band leb (i.e., 3 to 5 mm). 

But for convenience and ease of packing the capillary column, we have set this length in 

our work to 2.5 cm which is about 10% of the effective length of capillaries used in our 

studies. For details of packing segmented capillaries, see Experimental section and also 

Ref.. IO Previously, we have introduced the concept of segmented capillaries for the 

control of EOF in CEl l,12 and CECIO separations. In these work, we have shown that the 

overall EOF in segmented capillaries is a linear function of the fractional length of a 

given segment as follows: 



µeo,av = (µeo,l - µeo,2 )• :, + µeo,2 
t 

(1) 
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where µe0 , 1 and µeo,2 are the electroosmotic mobilities in segment 1 ( e.g., concentrating 

segment) and segment 2 (e.g., separation segment), respectively, when operated 

individually. It, l 1 and l 2 are the total column length, the length of segment 1 and segment 

2, respectively. The total column length is It= !1 + !2. Equation 1 shows that knowing 

the individual EOF in each segment, the overall EOF in segmented capillaries can be 

readily predicted. 

During the EEC step, a step-gradient elution occurs where the enriched sample 

band is further compressed or stacked yielding a band of length lfeb , see Fig. 1. This 

stacking comes about from the fact that the solute molecules contacting the eluting 

mobile phase travel much faster than the solute molecules on the opposite side contacting 

the injection solvent which has a weaker eluent strength. The net result is an additional 

zone focusing until the eluting mobile phase reaches the slow migrating side of the 

injected enriched band. This zone focusing (i.e., zone narrowing) increases with (i) 

increasing the difference in the eluent strength between the injection solvent (weak 

eluent, high k') and the mobile phase (strong eluent, low k') and (ii) decreasing the length 

of the sample plug (/sp), 

Experimental 

Instrumentation 

For instrumentation see Chapter III. 
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Reagents and Materials 

Buffer solutions were prepared using either tris from Fisher Scientific (Fair Lawn, 

NJ, USA), sodium phosphate monobasic from Mallinckrodt (Paris, KY, USA) or 

ammonium acetate from EM Science (Gibbstown, NJ, USA). The organic modifier used 

in the mobile phase was HPLC grade acetonitrile or tetrahydrofuran purchased from 

Fisher Scientific (Fair Lawn, NJ, USA). All solutions were passed through a 0.2 µm 

Titan syringe filter obtained from Scientific Resources, Inc. (Eatontown, NJ, USA). The 

insecticides (see Fig. 2 and Chapter II) were purchased from ChemService (West Chester, 

PA, USA). Nucleosil silica was purchased from Macherey-Nagel (Duren, Germany). 

Fused silica capillaries with an internal diameter of 100 µm and an outer diameter of 360 

µm were from Polymicro Technology (Phoenix, AZ, USA). 

Figure 2. Structures of the pyrethroid insecticides (fenpropathrin, sanmarton and 
permethrin) used in this study. For structures of the N-methylcarbamates insecticides 
( carbofuran, carbaryl and methiocarb) see Chapter II. 
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Stationary Phases and Column Packing 

Four types ofnonpolar silica-based stationary phases were examined in this study. 

The first stationary phase was based on a 5 µm Nucleosil 120-5 silica with an average 

pore diameter of 120 A and a specific surface area of 200 m2/g. This silica was 

converted in-house to an octadecyl-silica (denoted HM-ODS) according to our previously 

described procedures.9,13 The second stationary phase investigated was 5µm Nucleosil 

C18-silica from Macherey-Nagel (Duren, Germany) having an average pore diameter of 

100 A and a specific surface area of 250 m2/g. This stationary phase (denoted EC-ODS) 

is endcapped with a carbon coverage of 15% w/w as stated by the manufacturer. The 

third sorbent was a 5 µm ODS (denoted HC-ODS) with an average pore diameter of 120 

A and came from J.T. Baker (Phillipsburg, NJ, USA). The fourth silica was a 5 µm C8-

Zorbax from DuPont (Wilmington, DE, USA). 

Untreated fused silica capillaries were packed usmg the slurry packing 

technique.9,13 All capillaries used in this study were 25 cm packed I 33.5 cm in total 

length. See Fig. 1 for the configuration of segmented capillaries. When packing 

capillaries with two segments ( each segment with a different stationary phase), the 

concentrating segment was first packed to an approximate length of 8 cm. A pressure of 

200 bars was applied and the silica length was measured to the nearest millimeter. 

Following, the separation segment was packed at the same pressure as the concentrating 

segment. Thereafter, the concentrating segment was cut to the desired length followed by 

sintering the inlet frit. Throughout the length of the concentrating segment was 2.5 cm. 

The outlet frit was sintered to form an overall effective length (i.e., to the detection point) 

of 25 cm. When using the high sensitivity cell, the capillary was cut at 5 mm after the 
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outlet frit. When using on-column detection, the outlet end of the capillary was cut at 8.5 

cm after the outlet frit. The remaining silica in this 8.5 cm segment was flushed out using 

an HPLC pump, and the detection window was formed 5 mm from the outlet frit. 

To acquire a greater sensitivity an HP3°CE high-sensitivity detection cell was 

employed. The z-shape of the cell allows for a 1200 µm path length as compared to the 

100 µm path length of a regular capillary column. The increased path length can lead to a 

seven-fold increase in sensitivity when compared to the 100 µm capillary (see Agilent 

Technologies on line, magazine Peak 1-98). 

Procedures 

Stock solutions of three carbamate (i.e., carbofuran, carbaryl, and methiocarb) and 

three pyrethroid insecticides (i.e., fenpropathrin, sanmarton and permethrin) were 

prepared by dissolving 10 mg of each insecticide in individual 100 mL volumetric flasks 

filled with HPLC grade acetonitrile. This gave a concentration of 2 x 1 o-4 to 5 x 10-4 M 

depending on the insecticides. A first dilution was performed by taking 1.0 mL of the 

stock solution and diluting it to 100 mL with HPLC grade acetonitrile in a volumetric 

flask to yield an approximate concentration of 4 x 1 o-6 M. The solvent used in the last 

dilution step consisted of pure buffer or various mixtures of acetonitrile/buffer ( 10/90 to 

80/20 v/v). Since the insecticides were dissolved in pure acetonitrile, the stock solution 

pipetted was kept small (e.g., 10 µ1 or less) as not to affect the overall concentration of 

acetonitrile in the final dilution. 
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Capillary Configuration-Selection of Stationary Phases Best Suited For 
Preconcentration and Separation 
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Four different non-polar stationary phases were first examined for their plate counts with 

alkyl benzenes as the test solutes as well as for their EOF using a running voltage of 20 

kV and a mobile phase of ACN:water (4:1 v/v) whose aqueous component (10 mM 

ammonium acetate) had a pH of 6.0. The home made ODS Nucleosil (HM-ODS) 

stationary phase provided the highest separation efficiency (123,400 plates/m) as well as 

a relatively fast EOF (1.21 mm/s). This ODS stationary phase was intentionally prepared 

at a relatively low surface coverage in octadecyl ligands9 to ensure a relatively strong 

EOF. Under the same running conditions and for the same test solutes, the capillary 

packed with C8-Zorbax provided a slightly higher EOF velocity of 1.35 mm/s but a 

significantly lower separation efficiency of 67,000 plates/m. The capillaries packed with 

the ODS from J.T.Baker (HC-ODS) or the endcapped ODS Nucleosil (EC-ODS) from 

Machery Nagel provided the slowest EOF velocities of 1.02 and 0.91 mm/s, respectively, 

with an average plate count of 78,000 and 67,000 plates/m, respectively. Besides the 

HM-ODS, which was specially designed for use in CEC, the other 3 non-polar silica-

based stationary phases were manufactured for use in HPLC. From the above 

experiments, it is obvious that the stationary phase best suited for separation is the HM-

ODS because it exhibited the highest separation efficiency with a relatively strong EOF. 

In order to select the stationary phase best suited for preconcentration, the various 

stationary phases were evaluated with the pesticides under investigation. Three 

carbamate insecticides (namely carbofuran, carbaryl and methiocarb) and three 



97 

pyrethroid insecticides (namely fenpropathrin, sanmarton and permethrin) were analyzed 

at various acetonitrile content of the mobile phase. The results are shown in Figs. 3a and 

4a in terms of log k' vs %ACN in the eluent. The plots shown in Figs 3a and 4a are for 

carbofuran and permethrin, respectively, as representative solutes of N-methylcarbamate 

and pyrethroid insecticides, respectively. In all cases, linear plots were obtained. Since 

the carbamates insecticides are relatively polar solutes, it is not surprising to see that the 

HM-ODS (of low surface coverage in octadecyl ligands) and the C8-Zorbax yielded the 

highest retention toward the carbamate insecticides. In both cases, the unreacted surface 

silanols are most likely contributing to enhanced solute retention via silanophilic 

interactions. Using these data, the lengths of the compressed solute bands Zeb during the 

FCE step were calculated from Eqn 5 (see Chapter Ill) at the various %ACN in the 

injection solvent. Plots of Zeb versus% ACN for the various stationary phases are shown 

in Fig. 3b for the representative solute carbofuran. As can be seen in this figure either 

C8-Zorbax or the home-made ODS Nucleosil are ideal for use in the preconcentration 

segment in segmented capillaries depending on the %ACN used in the injection solvent. 

At relatively low %ACN (below 40%) Cs-Zorbax provides thinner Zeb while the home 

made ODS Nucleosil is the opposite and yields thinner Zeb at high% ACN. 

On the other hand, since the pyrethroids are relatively more hydrophobic than the 

carbamates, the ODS with the highest surface coverage (i.e., the EC-ODS from Machery 

Nagel) provided higher retention than the HM-ODS Nucleosil (see Fig. 4a) and in turn 

the thinnest compressed enriched band Zeb at all %ACN in the sample solvent (see Fig. 

4b ). Unexpectedly, the C8-Zorbax exhibited the 



027Sx R=0.9843 
1-y=l.6203!.0210:s: R=0.9995 
2-y=l.3011 • R=O 9982 

1.5 r a. 

3-y=l.1065-:·:!!!: R=0:9963 4-y=0.8602- • 

~ u[ :!ill 
r - 0 

L v-. " -0.5 

~W D M • ~ ~ ~ N ~ 
%ACN(v/v) 

IS f b. 

I 
- 10 E 
u -a, 
u 

= • -= .... 
~ 

5 

10 20 

4 
~3 

• 

#/' 

M • ~ ~ 

%ACN(v/v) 
70 80 

Figure 3. (a) Plots of logarithmic retention factor (log k') for carbofuran vs. percent acetonitrile (v/v) in the 
mobile phase and (b) plots of the compressed band of carbofuran Zeb vs. % acetonitrile (v/v) in the injected 
sample. Conditions: capillary column, 25 cm I 33.5 cm x 100 µm; mobile phase hydro-organic solution made up 
of various concentrations of CH3COONRi to acquire an overall ammonium acetate concentration of 2 mM (pH 
6.0) mixed with acetonitrile at different proportions; voltage, 20 kV; column temperature 25 °C. (b) Data points 
calculated from equation 5 chapter III using lsp = 21 cm and k' values at different% ACN. 1, C8-Zorbax; 2, HM­
ODS Nucleosil; 3, HC-ODS; 4, EC-ODS Nucleosil. 

I.O 
00 



3 

:!ill 2 

' -
I 

0 

l-y=4.3754-0.046Sx R=0.9956 
2-y=3.9941-0.04llx R=0.9986 
3-y=3.911S-0.0423x R=l.0000 

ro D H • ~ A ~ H ff 
0/o ACN (v/v) 

2.5 I b. 

2 

-_[1.s 

I 
't;; I 

i5 

o.s 

010 D H • ~ A 
%ACN(v/v) 

I 

70 80 

Figure 4. (a) Plots of logarithmic retention factor (log k') for permethrin vs. percent acetonitrile 
(v/v) in the mobile phase and (b) plots of the compressed band of permethrin Zeb vs. % 
acetonitrile (v/v) in the injected sample. Conditions: capillary column, 25 cm I 33.5 cm x 100 
µm; mobile phase hydro-organic solution made up of various concentrations of CH3COONH4 to 
acquire an overall ammonium acetate concentration of 2 mM (pH 6.0) mixed with acetonitrile at 
different proportions; voltage, 20 kV; column temperature 25 °C. (b) Data points calculated from 
equation 5 chapter III using lsp = 21 cm and k' values at different% ACN. 1, Cs-Zorbax; 2, EC­
ODS Nucleosil; 3, HM-ODS Nucleosil. 

I.O 
I.O 



100 

same or slightly higher retention toward the pyrethroids than the ODS with the high %C 

(i.e., HC-ODS) (Fig. 4a). This can be explained by the fact that the relatively short C8 

chains of the Cs-Zorbax do not "stack" as extensively as the longer octadecyl ligands on 

the ODS column (see Fig. 5 for illustration of the stack configuration). In other words, 

the effective nonpolar phase ratio available for solute interaction is about the same or 

higher on the Cs-Zorbax column than on the EC-ODS column from Machery Nagel with 

high carbon load. Since the EC-ODS with high surface coverage yielded the lowest 

EOF, C8-Zorbax was elected as the stationary phase for preconcentration segment. 
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Figure 5. "Stack" configuration versus "fur" configuration for alkylated stationary 
phases. 

Previously, we have investigated the CEC behavior of carbamate insecticides as a 

function of the organic content of the mobile phase,9 and found that an eluent at 80 to 

90% (v/v) ACN was very suitable for the rapid separation of the carbamate insecticides. 
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Therefore, and for completeness, it was necessary to evaluate in this study the retention 

of pyrethroid insecticides in reversed-phase chromatography (RPC) with the HM-ODS 

Nucleosil so that the amount of organic modifier in mobile phase needed for separation 

could be determined. Figure 6a illustrates the separation of the three pyrethroids using a 

mobile phase of 15% (v/v) of 14 mM ammonium acetate , 5% THF (v/v) and 80% 

acetonitrile (v/v). As shown in Fig. 6b, linear plots oflog k' versus percent acetonitrile in 

the mobile phase were obtained demonstrating that the stationary phase exhibited RPC 

behavior toward the three pyrethroids studied. It was found that by adding 5% THF (v/v) 
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Figure 6. (a) Electrochromatogram of pyrethroids used in this study and (b) plots of 
logarithmic retention factor (log k') of the three pyrethroids vs. percent acetonitrile (v/v) 
in the mobile phase. Conditions: capillary column packed with HM-ODS, 25 cm I 33.5 
cm x 100 µm; mobile phase: (a), hydro-organic solution made up of 15% (v/v) of 14 mM 
CH3COONH4 (pH 6.0), 80% acetonitrile (v/v) and 5% THF (v/v). (b) various 
concentration of CH3COONH4 to acquire an overall ammonium acetate concentration of 
2 mM (pH 6.0) mixed with acetonitrile at different proportions; voltage, 20 kV; detection 
wavelength, 214 nm; column temperature, 25 °C. Solutes: 1, fenpropathrin; 2, sanmarton; 
3, trans-perrnethrin; 4, cis-permethrin. 
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to the mobile phase as compared to using acetonitrile alone decreased the k' for 

fenpropathrin from 1.5 to 0.9 and for permethrin from 2.3 to 1.6. This indicates that THF 

has a strong eluting power towards the pyrethroids. This strong eluting power is 

necessary in on-line trace enrichment for the sweeping, which occurs in EEC step after 

the injection or stacking during the FEC step so that the enriched band is reduced in size 

(i.e., zone compression) before the final separation step. 

On-Line Trace Enrichment 

In a very recent contribution from our laboratory,9 the effects of the sample 

injection voltage during trace enrichment by FEC, the length of the sample plug and the 

composition of the mobile phase used in the elution step were investigated in order to 

find the conditions under which optimum trace enrichment can be performed.9 We have 

shown that increasing the applied voltage during sample enrichment by FEC led to 

increasing signal intensity of the enriched band upon elution. This was attributed to 

increasing the magnitude of perfusive EOF (i.e., the flow within the pores) which lead to 

increased mass transport within the pores and consequently higher capacity and better 

focusing of the sample. An applied voltage of 20 kV for sample introduction was a good 

compromise. Also, the study of the effect of sample plug length revealed that the higher 

the solute retention in the FEC step, the longer the permissible sample plug length and 

consequently the higher the analyte signal m the subsequent elution 

electrochromatography step. As stated in section 2, for achieving the most effective on­

column trace enrichment, the FEC step should be combined with the fastest EEC step. 

This means that the larger the difference between the eluent strength of the mobile phase 
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and the injection solvent the better the effectiveness of the zone compression during the 

step-gradient elution. 

Effect of Acetonitrile Content in The Sample Plug. Figure 7a and b shows the 

effect of %ACN in the sample plug on the effectiveness of the on-line preconcentration 

by means of FEC on a single sorbent capillary and a segmented capillary, respectively, 

using permethrin as the model solute. The single sorbent capillary consisted of the home 

made ODS Nucleosil while the segmented capillary column was made of a C8-Zorbax 

segment (2.5 cm) and HM-ODS Nucleosil segment (22.5 cm). The results shown in Fig. 

7a and bare expressed in terms of peak height in mAU versus %ACN in the sample plug. 

The sample plug was introduced electrokinetically at 20 kV from a sample solution at 1.3 

x 10-7 Min permethrin for an injection time of 3.5 min. The content of the sample in 

ACN was varied between O and 80% (v/v) for the segmented column (C8-

Zorbax~HM-ODS Nucleosil) while for the single phase capillary column (packed with 

HM-ODS Nucleosil) was varied between 30 and 60% (v/v). On the average, the length 

of the sample plug (lsp) was around 21 cm, which is about 84% of the effective length of 

the column. In all cases, the elution step was carried out with a mobile phase composed 

of 80% (v/v) acetonitrile and 20% (v/v) of 10 mM ammonium acetate, pH 6.0, using 20 

kV as the elution voltage. As can be seen in Fig. 7b, the peak height increases slowly 

first in the O to 20% ACN range and then rapidly in the 20 to 40% ACN range. 

Increasing the ACN content improves the surface contact with the hydro-organic solution 

being enriched by opening the hydrophobic chains (i.e., the octadecyl ligands), thus 

increasing the effective hydrophobic surface area, see Fig. 5. This is in agreement with 
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the findings that in solid-phase extraction (SPE) with ODS cartridges, the SPE materials 

are usually pretreated or pre-wetted with an activating solvent such as ACN, MeOH or 

acetone to improve surface contact.14 In the Oto 50% ACN range, the solute accumulates 

at the entrance of the column occupying a distance leb of 0.0009, 0.003, 0.008, 0.02, 0.06 

and 0.2 cm at 0, 10, 20, 30, 40 and 50% ACN in the sample plug, respectively. These 

values were estimated through eqn 5 chapter III by using the extrapolated k' values of 

permethrin obtained from plots of log k' vs. % ACN in the mobile phase on the C8-

Zorbax capillary and by considering that the distance traversed by the solvent front of the 

sample plug is tsp = 21 cm. Although the length of the enriched solute band increases 

from leb = 0.0009 to leb = 0.2 cm as the amount of ACN is increased from O to 50% (v/v), 

the elution step is able to compress the band and to decrease the initial band spreading 

produced during sample introduction. However, after 50% ACN in the sample plug, the 

peak height decreased indicating a significant decrease in the effectiveness of the on-line 

preconcentration. At 50% ACN and higher, not only the initial solute band becomes 

wider and wider (increasing form leb = 0.2 to leb = 3.8 cm when going from 50 to 80% 

v/v ACN) but also the elution step is unable to compress the band as the solute molecules 

move faster and faster in the head sample solvent in which the solute was originally 

dissolved because its ACN content is increased (see section 2). In other words, as the 

amount of ACN in the sample solvent is increased, the difference in the eluent strength 

between that of the sample solvent and the eluting mobile phase decreases, thus 

diminishing the focusing effect of the mobile phase during the elution 

electrochromatography step. 
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Similar behavior was obtained on the single phase capillary column, see Fig. 7a. 

As can be seen in Fig. 7a, the maximum is approximately at 50% ACN compared to Fig. 

7b where the peak height is at a maximum around 45% ACN. The slightly higher ACN 

content required for maximum peak height on the single phase ODS capillary than on the 

segmented Cs-Zorbax~HM-ODS Nucleosil capillary is due to the longer octadecyl 

chains which necessitate more organic solvent to open the hydrophobic chains. The C8 

chains on the C8-Zorbax being shorter than the C18 ligands can withstand higher aqueous 

concentration without undergoing significant stack configuration (see Fig. 5 for 

illustration). As shown in Fig. 7, 50% ACN in the sample solvent seems to be optimal 

for trace enrichment of the pyrethroids. 

In our previous contribution to trace enrichment in CEC,9 the optimum organic 

modifier concentration in the sample solution was determined to be 30% for the home 

made ODS Nucleosil using methiocarb as the model solute for carbamate insecticides. In 

the present study, the effect of ACN in the sample plug was studied on a segmented 

column (C8-Zorbax~HM-ODS Nucleosil) using carbaryl as the model solute. The 

results are shown in Fig. 7c by a plot of peak height vs.% ACN in the injection sample. 

The sample plug was introduced electrokinetically at 20 kV from a sample concentration 

of 1.3 x 10-6 M in carbaryl for an injection time of 3.5 min. When comparing Fig. 7c to 

7b, one can see the same trends. Due to the fact that the carbamates are less hydrophobic 

than the pyrethroids, the percent organic in the sample injection is less for the carbamates 

(30% ACN) than for the pyrethroids ( 45% ACN) for maximum peak height obtained in 

the subsequent EEC step. 
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Sensitivity Enhancement Under Optimal Conditions. Tables 1 and 2 list the 

LOD's with and without on-column trace enrichment for carbamates and pyrethroid 

insecticides, respectively, under various column and detection configuration. First, 

without preconcentration and as expected, the LOD decreased in the presence of the z­

cell configuration by a 2.5 and 3.7 fold for carbaryl and methiocarb, respectively, at 282 

nm. Similarly, for fenpropathrin, sanmarton and permethrin, the LOD decreased by 2.1, 

2.2 and 2.7 fold, respectively, at 214 nm. As can be seen in Tables 1 and 2, significant 

sensitivity enhancement was achieved by on-column trace enrichment. In the case of 

carbamate insecticides, and under optimum conditions, 282 and 620 fold sensitivity 

increase were obtained with carbaryl and methiocarb, respectively, with on capillary 

detection at 282 nm. This sensitivity enhancement grew to 500 and 917 fold for carbaryl 

and methiocarb, respectively, when the capillary was connected to the z-cell. The 

segmented capillary with a z-cell at 282 nm boosted the sensitivity to 752- and 1100-fold 

for carbaryl and methiocarb, respectively. At 208 nm, although the sensitivity 

enhancement was smaller, ca. 112 fold for both carbaryl and methiocarb with on­

capillary detection and 346 fold for combined segmented capillary and z-cell, more dilute 

samples were determined at 208 nm, see Table 1. In the case of pyrethroid insecticides, 

125, 133 and 167 fold increase in sensitivity were obtained by the trace enrichment of 

fenpropathrin, sanmarton and permethrin, respectively, under optimal conditions using 

on-capillary detection. This sensitivity enhancement became 286, 250 and 292 fold for 

fenpropathrin, sanmarton and permethrin, respectively, when using the z-cell for 

detection. This sensitivity increase was further enhanced by combining segmented 
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TABLE 1. 

LIMIT OF DETECTION WITH OR WITHOUT PRECONCENTRATION FOR TWO 
CARBAMATE INSECTICIDES. ALL SAMPLES WERE MADE IN DEIONIZED 

WATER. CONDITIONS FOR ELUTION: MOBILE PHASE, 20% v/v OF 
10 rnM AMMONIUM ACETATE (PH 6.0), 80% v/v ACN; 
VOLTAGE, 20 kV; OTHER CONDITIONS AS IN FIG. 8. 

Preconcentration (M) No Preconcentration (M) 

2 sec injection at 20 kV 3.5 min injection at 20 kV 

On- High 

Capillary Sensitivity 

Detection Cell 

Solute/ 

Wavelength 

Carbary! 

@ 282 nm 2.24 x 10-s 8.95 x 10-6 

@208 nm 6.34 X lQ-6 

Methiocarb 

@282 nm 5.54 x 10-6 1.51 x 10-s 

@ 208 nm 4.33 X lQ-6 

On-

Capillary 

Detection 

7.95 X lQ-8 

5.63 X 10-8 

8.93 X lQ-8 

3.85x l0-8 

High 

Sensitivity 

Cell 

4.48 X 10-8 

6.04 X 10-8 

Segmented 

Capillary 

With High 

Sensitivity 

Cell 

2.98 X 10-8 

1.83 X 10-8 

5.03 X 10-8 

1.25 X 10-8 



TABLE 2. 

LIMIT OF DETECTION WITH AND WITHOUT PRECONCENTRATION FOR 
SOME PYRETHROIDS. ALL SAMPLES WERE MADE IN DEIONIZED 

WATER. CONDITIONS FOR "NO PRECONCENTRATION" AS IN 
FIG. 6A AND FOR "PRECONCENTRATION" AS IN FIG. 8. 

No Preconcentration (M) Preconcentration (M) 

2 sec injection at 20 kV 3.5 min injection at 20 kV 

On- High On- High Segmented 

Capillary Sensitivity Capillary Sensitivity Capillary 

Detection Cell Detection Cell With High 

Solute Sensitivity 

Cell 

Fenpro-

pathrin 6.20 x 10-6 2.98 x 10-6 4.96 x 10-8 2.17 X 10-8 1.15 X 10-8 

Sanmar-

ton 8.73 X 10-6 3.93 X lQ-6 6.55 X lQ-8 3.49 X lQ-8 1.42 X 10-8 

Perme-

thrin 5.72 X lQ-6 2.06 X lQ-6 3.43 X 10-8 1.96 X lQ-8 7.00 X 10-9 
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capillary with the z-cell and grew to 539, 615 and 817 fold for fenpropathrin, sanmarton 

and permethrin, respectively. 

As expected, the magnitude of sensitivity enhancement paralleled the order of 

solute retention. In other words, the more retained the solute the more effective the trace 

enrichment. 

Simultaneous On-Line Preconcentration and Separation of Pyrethroids and 

Carbamates Spiked in Deionized, Tap and Lake Waters. Figure 8a, b and c show typical 

electrochromatograms for the simultaneous on-line preconcentration and separation of 

fenpropathrin, sanmarton and permethrin spiked in deionized, tap and lake waters, 

respectively. In all cases, the water sample was spiked with the 3 pyrethroids at a 

concentration of 1 o-8 M for each solute in a solvent composed of 50/50 acetonitrile/buffer 

(v/v). While the deionized water sample was injected for 3.5 min at 20 kV that of tap and 

lake waters was introduced at the same voltage but for 4.1 min and 5.0 min, respectively. 

The elution and separation were then achieved at 20 kV with a mobile phase at 5% (v/v) 

THF, 80% (v/v) ACN and 15% (v/v) of 14 mM ammonium acetate, pH 6.0. The 

injection time in the case of tap water was prolonged to 4.1 min due to the fact that the 

EOF in the presence of tap water in the blank and sample decreased by a factor of 1.17 

with respect to that with deionized water under otherwise the same running conditions. 

Under these circumstances, prolonging the injection time with tap water to 4.1 min 

insured the introduction of the same sample plug length as in the case of deionized water 

(i.e., 21 cm sample plug). Also, the EOF in the presence of lake water was almost 

identical to that of tap water. The injection for lake water was prolonged for an extra 0.9 

min with respect to tap water due to an interfering peak in the electrochromatogram when 
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Figure 8. Simultaneous on-line preconcentration and separation of pyrethroids spiked in deionized 
(a), tap (b) and lake (c) waters. Conditions of frontal electrochromatography: injection time, 3.5 
min in (a) 4.1 min in (b) and 5.0 min in (c); injection voltage, 20 kV; solutes: 1, fenpropathrin; 2, 
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CH3COONH4 (pH 6.0), 80% (v/v) acetonitrile and 5% (v/v) THF. High sensitivity cell used for 
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the sample is introduced for 4.1 min as in the case of tap water. As shown in the blank 

and sample electrochromatograms in Fig. 8c, prolonging the injection time by an extra 

0.9 min moved the interferring peak away from the analyte peak #3. According to our 

previous findings,9 a longer injection than 4.1 min or 21 cm would not yield a significant 

increase in peak height. The lower EOF in the case of natural waters ( e.g., tap water and 

lake water) may be attributed to the presence of various inorganic ions, specially the 

divalent calcium ion, and humic and fulvic substances 15,16 which collectively confer to 

natural waters a higher ionic strength and higher viscosity than deionized water. 

Under optimal conditions using segmented capillary with high sensitivity cell, the 

trace enrichment by sequential frontal and elution electrochromatography allowed the 

detection of very dilute samples of pesticides prepared in deionized, tap and lake waters. 

At 208 nm, the LOD's for carbaryl in deionized, tap and lake waters were 1.83 x 10-8, 

1.97 x 10-8 and 2.53 x 10-8 M, respectively. Under the same trace enrichment conditions, 

the LOD's for methiocarb in deionized, tap and lake waters were 1.2 x 10-8, 1.35 x lQ-8 

and 1.73 x 10-8 M, respectively. These figures which are very close in magnitude 

demonstrate that the trace enrichment is not influenced by the nature of the water matrix. 

Also the LOD's for the three pyrethroids were largely independent of the nature of the 

water matrix. In fact, the LOD's for fenpropathrin in deionized, tap and lake waters were 

found to be 1.15 x 10-8, 1.14 x 10-8 and 1.14 x 10-8 M, respectively. The LOD's for 

sanmarton were 1.42 x 10-8, 9.76 xl0-9 and 9.76 x 10-9 M while the LOD's for 

permethrin were found to be 7. 0 x 1 o-9, 1.21 x 1 o-8 and 1.21 x 1 o-8 M in deionized, tap 

and lake water, respectively. 
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Conclusions 

Capillary electrochromatography with segmented packed capillary columns using 

a high sensitivity cell (i.e., z-cell) allows the rapid and efficient separation of closely 

related pesticides and the introduction of a relatively large sample plug equivalent to 

almost one column dead volume. This permitted the determination of dilute samples of 

carbamate and pyrethroid insecticides consisting of tap and lake water spiked at 

concentration of - 1 o-8 to 1 Q-9 M with a UV detector. These LOD's were largely 

independent of the nature of the water matrix. 
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CHAPTERV 

EFFECT OF THE NATURE OF ALKYL BONDED SILICA-BASED STATIONARY 

PHASES IN CAPILLARY ELECTROCHROMATOGRAPHY. SURF ACT ANT 

MEDIATED CAPILLARY ELECTROCHROMATOGRAPHY FOR THE 

SEPARATION OF NONPOLAR PYRETHROID 

INSECTICIDES* 

Introduction 

Capillary electrochromatography (CEC) with silica bonded stationary phases has 

already demonstrated its high resolving power in various applications including 

carbohydrate species, 1-3 pesticides, 4-6 small and large nucleic acid fragments, 7 ,8 and 

various chiral substances 9-13 just to name a few (for recent reviews on CEC applications, 

see Refs. 14-17). Despite these advances, the exploitation of the full potentials of CEC is 

yet to come. This will largely depend on the introduction of more specially designed 

stationary phases for CEC and other components of the electrochromatographic system. 

* The content of this Chapter has been submitted to Electrophoresis for publication. 
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In this chapter, we focused our investigation on enhancing the resolving power of 

CEC by introducing a novel concept for separation by CEC based on surfactant-rich 

mobile phases. For this purpose, we selected pyrethroid insecticides because of their 

importance as agrochemicals and environmental species and also because of their various 

isomeric forms to challenge the resolving power of CEC. In order to achieve this goal, 

we first compared various alkyl bonded silica-based stationary phases of different levels 

of surface coating with alkyl ligands in the separation of isomeric pyrethroids. Second, 

mobile phases containing a charged surfactant, namely sodium di-2-ethylhexyl 

sulfosuccinate (DOSS), were introduced to enhance the resolving power of CEC. The 

new CEC system is referred to as surfactant mediated capillary electrochromatography 

(SM-CEC). In this SM-CEC system, DOSS plays the role of a slowly moving pseudo­

stationary phase so that the solutes are partitioned between a mobile phase, a fixed 

stationary phase and a slowly moving pseudo-stationary phase. As will be shown in this 

chapter, the SM-CEC provided an enhanced resolution for all the pyrethroids, thus 

permitting the resolution of isomeric pyrethroids. 

Principles of Surfactant-Mediated Capillary Electrochromatography 

Surfactant-mediated capillary electrochromatography (SM-CEC) refers to a CEC 

system consisting of a fixed stationary phase packed in the capillary column ( e.g., 

octadecyl-silica (ODS)) and a slowly moving pseudo-stationary phase dissolved in the 

mobile phase. The pseudo-stationary phase described here consists of sodium dioctyl 

sulfosuccinate (DOSS) surfactant (see Fig. 1 for structure of DOSS) dissolved in an 
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Figure 1. Structure of sodium di-2-ethylhexyl sulfosuccinate surfactant (DOSS). 
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organic-rich mobile phase. At the ACN concentration customarily used in CEC (20% or 

greater), it is well established that micelle formation is inhibited, and consequently the 

DOSS surfactant dissolves in a large :fraction as monomers.18 The inhibitory effect of 

acetonitrile on micellization is based on the reduction of the dielectric constant of the 

aqueous phase by the organic solvent which would cause increased mutual repulsion of 

the ionic heads in the micelle, thus opposing micellization. Recently, DOSS has been 

used in capillary electrophoresis with hydroorganic electrolyte systems for the separation 

of neutral, hydrophobic compounds.19,20 

As can be seen in Fig. 1, DOSS is a branched surfactant where the polar head 

group occupies a central position in the hydrophobic chain. The branched nature of the 

DOSS surfactant may explain its relatively high critical micellar concentration (CMC) in 

pure water,18 which is 2.5 mM. At concentration higher than the CMC, DOSS forms a 

cloudy solution in aqueous buffer solutions, but dissolves freely in hydro-organic 

solutions such as those used for mobile phase in reversed-phase CEC. Under this mobile 

phase condition, the surfactant DOSS consists of monomers moving electrophoretically 

against the electroosmotic flow (EOF). However, the relatively strong EOF sweeps the 
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DOSS towards the detection point at an apparent velocity slower than the mobile phase 

velocity. A neutral solute (e.g., pyrethroids) that associates with DOSS will acquire an 

electrophoretic mobility as shown in the following equation: 

µ eff, ep = f cµ ep, c (1) 

where µeff,ep is the effective electrophoretic mobility of the solute and fc is the mole 

fraction of DOSS-solute complex whose electrophoretic mobility is µep,c· A neutral 

solute will acquire the electrophoretic mobility of the complex whenfc approaches 1, i.e., 

when the solute associate with the DOSS surfactant avidly. Thus, the stronger the 

association of the solute with the DOSS surfactant the higher the effective electrophoretic 

mobility of the solute and vice versa. 

In SM-CEC, the solute partitions between 3 phases (a mobile phase, a fixed 

stationary phase and a slow moving pseudo-stationary phase), thus leading to an 

enhanced separation. The following equations describe the various equilibria that control 

the partitioning of the solute between the mobile phase and the stationary phases (i.e., 

DOSS and ODS): 

(DOSS)m ::;:::===--~ (DOSS)s 

+ + 

Pm -- p 
s 

11 1( 
(DOSS-P)m ::::::;:::::====~- (DOSS-P)s 

where m and s stand for mobile and stationary phase, respectively, and P stands for 

pyrethroid or any other neutral solute. When P is in the mobile phase, it is either free or 
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interacting with the DOSS pseudo-stationary phase. Whether free or complexed with 

DOSS, the solute is also interacting with the ODS stationary phase. Moreover, the DOSS 

is distributed between mobile and stationary phases. 

Experimental 

Reagents and Materials 

Buffer solutions were prepared using either Tris from Fisher Scientific (Fair 

Lawn, NJ, USA), sodium phosphate monobasic from Mallinckrodt (Paris, KY, USA) or 

ammonium acetate from EM Science (Gibbstown, NJ, USA). The organic modifier used 

in the mobile phase was HPLC grade acetonitrile purchased from Fisher Scientific. 

Analytical grade acetone as well as the surfactant sodium di-2-ethylhexyl sulfosuccinate 

(DOSS) were purchased from Aldrich (Milwaukee, WI, USA); for structure of DOSS see 

Fig. 1. All solutions were passed through a 0.2 µm Titan syringe filter obtained from 

Scientific Resources, Inc. (Eatontown, NJ, USA). The pyrethroid insecticides (see Fig. 2 

and also Fig. 2 in chapter IV) were purchased from ChemService (West Chester, PA, 

USA). Dimethyloctadecylchlorosilane was purchased from Hills Petrarch Systems 

(Bristol, PA, USA). Fused-silica capillaries with an internal diameter of 100 µm and an 

outer diameter of 360 µm were from Polymicro Technology (Phoenix, AZ, USA). 

Instrumentation 

For instrumentation see Chapter III. 
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Figure 2. Structures of three pyrethroid insecticides used in this study, see Fig. 2 in 
Chapter IV for others. 

Stationary Phase and Column Packing 

For stationary phase and column packing used see Chapter IV. 

Results and Discussion 

Comparison of the Stationary Phase 

The overall performance of four alkyl-bonded stationary phases was evaluated 

using six pyrethroids as the model solutes. Figure 3 illustrates the electrochromatograms 

of the six pyrethroids obtained on the four stationary phases used in this study. The 

separations were performed using a hydroorganic mobile phase which consisted of 75% 

(v/v) acetonitrile and 25% (v/v) of 20 mM ammonium acetate, pH 6.0. As can be seen in 
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Figure 3. Electrochromatograms of some pyrethroids using various stationary phases. 
(a), HM-ODS; (b), C8-Zorbax; (c), HC-ODS; (d), EC-ODS. Conditions: mobile phase, 
25% (v/v) of 20 mM CH3COONH4, pH 6.0, and 75% (v/v) acetonitrile; Voltage, 20 kV; 
detection 214 nm. Solutes; 1 and 2, tetramethrin; 3, fenpropathrin; 4-7. cypermethrin; 8, 
sanmarton; 9 and 12 permethrin; 10 and 11, phenothrin. 
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Fig. 3, the home-made ODS Nucleosil 120-5 (i.e., HM-ODS) gives the best separation for 

the different analytes and their geometrical isomers (i.e., cis and trans) and diastereomers 

in the least amount of time. Overall, the HM-ODS and C8-Zorbax material provided the 

highest EOF velocities over a wide range of mobile phase composition, see Table 1. The 

HM-ODS was intentionally prepared in house with a low surface coverage in octadecyl 

ligands ( ca. 2 µmole octadecyl ligands/m2) in order to yield an ODS stationary phase 

with a higher number of silanol groups on the silica surface, thus causing higher EOF 

velocities, and in turn faster separation times. The EC-ODS had the slowest EOF 

velocity due to endcapping. Endcapped stationary phases have a limited number of 

silanol groups available on the silica surface to produce EOF. 

TABLE 1 

ELECTROOSMOTIC FLOW VELOCITY FOR THE DIFFERENT STATIONARY 
PHASES AT DIFFERENT ACN CONTENT OF THE MOBILE 

PHASE. OTHER CONDITIONS AS IN FIG, 3 

EOF velocity, mm/s 

%ACNin 
mobile phase HM-ODS C8-Zorbax RC-ODS EC-ODS 

70.00 0.91 1.08 0.92 0.64 
75.00 1.04 1.13 0.97 0.71 
80.00 1.02 1.20 1.03 1.01 
85.00 1.17 1.26 1.08 0.97 
90.00 1.23 1.32 1.16 0.98 
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Returning to Fig. 3, some of the pyrethroids may yield more than one peak 

because these solutes are geometrical isomers as well as diastereomers which in principle 

can be separated using an ODS or C8 stationary phase. The various stereoisomers of the 

pyrethroids under investigation are not mentioned in this study because they can not be 

separated by reversed-phase CEC. While fenpropathrin which is not diastereomeric or 

geometric isomer is expected to give only one peak, tetramethrin; phenothrin and 

permethrin which exist as geometric isomers (i.e., cis and trans) could yield two peaks 

each. Aslo, sanmarton, which exist as two diastereomers may yield two separate peaks. 

Furthermore, cypermethrin has 4 diastereomers of which could result in a possible four 

peaks. Figure 3a-d shows that the two isomers of sanmarton could not be separated with 

the four stationary phases investigated. For cypermethrin, three of the four possible 

diastereomeric peaks were separated (see Fig. 3a, b, d). The cis and trans isomers of 

phenothrin and permethrin were separated with three of the four stationary phases, see 

Fig. 3a, b, and d. The four stationary phases investigated were able to separate the cis 

and trans isomers of tetramethrin, see Fig. 3. These results show the effects of the 

surface coverage in alkyl ligands and in turn the interplay of hydrophobic/silanophilic 

interactions on the selectivity of the stationary phases towards the solutes under 

investigation. Also, the results show the importance of the stationary phase morphology 

or texture ( e.g., porosity) which affects the solute accessibility to the interactive ligands. 

Linear regression analysis for the relationship of log k' versus percent acetonitrile 

in the mobile phase was carried out, and the results are shown in Fig. 4 for the four 

stationary phases. In all cases, the plots of log k' vs. %ACN are linear, and the absolute 

values of the slopes of the lines obtained on the four stationary phases increased with the 
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hydrophobicity (i.e., solute size) of the solute as usually encountered in reversed-phase 

chromatography (RPC). This trend strongly supports the notion that the four stationary 

phases exhibit RPC behavior toward the investigated analytes. The retention of the 

various solutes increased with carbon load of the stationary phase; that is at any percent 

ACN in the mobile phase solute retention increased in the order the EC-ODS > HC-ODS 

> HM-ODS. Unexpectedly, the C8-Zorbax exhibited the same or slightly higher retention 

towards the pyrethroids than the EC-ODS which is endcapped and has a %C (15% C) as 

was reported earlier (see Chapter IV).21 This was explained by the fact that the short CS 

chains of the C8-Zorbax do not "stack" as extensively as the longer octadecyl chains of 

the ODS stationary phase. This means that the effective nonpolar phase ratio available 

for solute interaction is about the same or higher on the C8-Zorbax than on the EC-ODS. 

a) -e-- 1 -- y = 2.6067 • 0.030995x R= 0.99261 

-B--- 2 -- y = 2.7665 - 0.032839x R= 0.99625 

0.8 

0.6 

~0.4 
C> 
0 
-0.2 

0 

-0.2 

-+- 3 -- y = 3.4172 - 0.038908x R= 0.99665 

- 4,5-- y = 3.6847 - 0.041853x R= 0.99662 

-+-- 6 --y = 3.6477 - 0.041074x R= 0.99623 

-h- 7 -- y = 3.6999 - 0.041676x R= 0.99694 

-- 8 -- y = 3.7678 • 0.042183x R= 0.99667 

--- 9 -- y = 3.6083 - 0.039181x R= 0.99677 

-10 --y= 3.6479-0.039319xR=0.99655 

___...._ 11 -- y = 3.643 • 0.03991x R= 0.99667 

-'f-- 12 --y = 3.7177 • 0.040127x R= 0.99732 

D 

70 75 80 85 90 
% ACN (v/v) 

95 

b) -e-- 1 -- y = 2.9598 • 0.0333x R= 0.9992 

-B--- 2 -- y = 3.0855 • 0.0347X R= 0.9991 

1.2 

0.8 

~0.6 
bJ) 
Q 
-o.4 

0.2 

0 

-+- 3 -- y = 3.8143 - 0.0416x R= 0.9990 

- 4,5 -- y = 4.0849 - 0.0446x R= 0.9992 

-+--6 
-- y = 4.0554 • 0.0438x R= 0.9988 

-- y = 4.0554 - 0.0438x R= 0.9988 
-a 
---9 

--y = 4.1905 - 0.0453x R= 0.9992 

.,..._ 10 --y= 3.9378-0.0411X R= 0.9985 

___...._ 11 -- y = 4.0585 • 0.0425x R= 0.9991 

'I' 12 -- y = 4.0357 • 0.0428X R= 0.9991 

70 75 80 85 90 

% ACN (v/v) 
95 . 



c) --&--1 --y=2.6662-0.032409xR=0.99394 

-e- 2 --y = 2.878 • 0.034866x R= 0.99349 

-+- 3 --y = 3.6039 - 0.041312x R= 0.99612 

- 4,5 --y = 3.8778 - 0.044422x R= 0.9958 

-t-- 6 --y = 3.886 • 0.044107x R= 0.99576 

-.!r- 7 -- y = 3.9289 - 0.044613x R= 0.99612 

--- 8 ·-- y = 4.0095 - 0.04517x R= 0.99622 

- 9 --y = 4.0328 - 0.044114x R= 0.99732 

-+-:- 10-- y = 3.9553-0.042655x R= 0.99603 

- 11 --y = 3.9048 - 0.042919x R= 0.99624 

- 12 --y = 3.9906 - 0.04307x R= 0.9963 

o.a 

0.6 

~0.4 
bJl 
Q 
-0.2 

0 

-0.2 

-0.4 66 70 76 80 85 90 
%ACN(v/v) 

96 

1.2 

0.8 

~0.6 

~ 

,i 0.4 

0.2 

0 

d) -&-- I --y=2.6714-0.0302xR=0.999S 

-e- 2 --y = 2.7991 • 0.03 ISx R= 0.9980 

-+- 3 --y = 3.S408 • 0.0383x R= 0.9982 

- 4,5 --y = 3.8118 • 0.0413x R= 0.9978 

-t-- 6 --y = 3.775S • 0.0404x R= 0.9975 

-.!r- 7 --y = 3.8468 • 0.0413x R= 0.9979 

--- 8 --y = 3.9226 - 0.0418x R= 0.9980 

- 9 --y = 3.8134- 0.0391x R= 0.9979 

-+--10 --y=3.8674-0.0394xR=0.997S 

- 11 --y = 3.82S0 - 0.0397x R= 0.9980 
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Figure 4. Plots of logarithmic retention factor (log k') for pyrethroids vs. percent 
acetonitrile (v/v) in the mobile phase. (a), HM-ODS; (b), C8-Zorbax; (c), HC-ODS; (d), 
EC-ODS. Conditions: mobile phase, hydro-organic solution made up of various 
concentrations of CH300NH4 to acquire an overall ammonium acetate concentration of 5 
mM (pH 6.0) mixed with acetonitrile at different proportions; voltage 20 kV. Solutes; 1 
and 2, tetramethrin; 3, fenpropathrin; 4-7. cypermethrin; 8, sanmarton; 9 and 12 
permethrin; 10 and 11, phenothrin. 

Table 2 lists the separation efficiencies for fenpropathrin and sanmarton obtained 

on the four stationary phases tested. These two solutes were selected because they each 

exhibited a single peak. The highest separation efficiencies are obtained when using 

home-made ODS (i.e., HM-ODS). The lower separation efficiencies obtained with the 

EC-ODS and HC-ODS capillary columns both having high carbon load on their surfaces 

may be attributed to an increased mass transfer resistance into the relatively thick 
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TABLE2 

SEPARATION EFFICIENCY, N, OBTAINED ON THE VARIOUS STATIONARY 
PHASES AT DIFFERENT ACN CONTENT OF THE MOBILE 

PHASE. OTHER CONDITIONS AS IN FIG. 3. 

Separation efficiency, N 

%ACNin HM-ODS Cs-Zorbax HC-ODS EC-ODS 
mobile phase Fen* San* Fen* San* Fen* San* Fen* San* 

70.00 18800 15500 13800 12500 13500 7900 16200 10950 
75.00 20900 16600 12850 10300 12400 6800 13750 9900 
80.00 13800 11150 11000 5500 11300 7100 14700 9900 
85.00 16400 10400 7700 12500 9900 

* Fen and San stand for fenpropathrin and sanmarton, respectively 
-- Peaks were not sufficiently resolved to determine N 

retentive layer on the surface of the stationary phase of higher carbon coverage. On the 

other hand, the lower separation efficiency obtained on the C8-Zorbax may be attributed 

to an increased silanophilic interaction of the solutes with the surface silanols than on the 

home made ODS-Nucleosil (HM-ODS) because of the shorter alkyl chain on the former 

than on the latter. 

Surfactant Mediated Capillary Electrochromatography 

Based on the above investigation, HM-ODS provided the best performance as far 

as the overall separation and speed of analysis of the pyrethroid insecticides are 

concerned. Therefore, the HM-ODS was selected to demonstrate the usefulness of the 

new SM-CBC concept in enhancing the resolving power of CBC. In this regards, the 
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SM-CEC based on the DOSS surfactant (see section 2) was investigated in the separation 

of the pyrethroids and their geometric isomers and diastereomers under different mobile 

phase conditions including the concentration of DOSS · surfactant and organic modifier 

(e.g., acetonitrile) in order to determine the optimal conditions. 

Figure Sa and b shows the dependence of the adjusted retention time (tr-to) on 

DOSS concentrations in the mobile phase at 60 and 70% (v/v) ACN, respectively. At 

60% ACN, the adjusted retention time goes through a maximum at 20 mM DOSS (Fig. 

Sa) while at 70% ACN, the adjusted retention time increases steadily with increasing the 

DOSS concentration (Fig. Sb) in the range studied. Changing the DOSS concentration 

and the ACN content of the mobile phase is expected to influence various parameters of 

the SM-CEC system, e.g., ionic strength, viscosity and dielectric constant of the mobile 

-e-- Tetramethrin 1 
-e-- Telramethrln 1 

-- Sanmarton 
-e- Tetramethrln 2 - Permethrln 1 
-+- Fenpropathrln --+- Phenothrln 1 

- Cypermethrin 1 -+- Phenothrln 2 

- Cypermethrln 2. - Permethrin 2 

--+- Cypermethrln 3 -Ii}- Dead dme (EOF marker) 
----.!t-- Cypermethrln 4 

-a- Tetramethrln 2 -+- Sanmarton 

-+- Fenpropathrln --- Permethrln 1 

- Cypermethrln 1 -+- Phenothrln 1 

- Cypermethrin 2 _...... Phenothrln 2 

--+- Cypermethrln 3 ---+- Permethrin 2 
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Figure 5. Plots of adjusted retention time (tr-t0 ) for pyrethroids and EOF velocity vs. 
DOSS concentration in the mobile phase: (a), 60% (v/v) acetonitrile, 40% (v/v) 12 mM 
Tris, pH 8.00; (b ), 70% (v/v) acetonitrile, 30% (v/v) 17 mM Tris, pH 8.00. Other 
conditions: voltage, 20 kV; detection, 214 nm. 
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phase as well as the amount of DOSS adsorbed onto the stationary phase and the extent 

of solute-DOSS association. At 60% ACN, the EOF velocity decreased from 1.43 to 1.00 

mm/sec when going from O to 40 mM DOSS in the mobile phase, see Fig. Sa. On the 

other hand, at 70% ACN, the EOF velocity increased from 0.91 to 1.12 mm/sec when the 

DOSS concentration in the mobile phase increased form O to 50 mM, Fig. Sb. The 

increase in the EOF velocity at 70% ACN parallels the expected increase of DOSS 

adsorbed onto the stationary phase surface with increasing surfactant concentration. This 

should result in increased surface charge density and in turn the EOF velocity. This 

effect seems to be higher in magnitude than the opposing effect resulting from increasing 

the ionic strength of the mobile phase with increasing DOSS concentration which should 

decrease the EOF velocity. At 60% ACN the two opposing effects seem to reverse in 

magnitude such that the second effect (i.e., ionic strength effect) is the predominant one, 

and the net result is a decrease in the EOF velocity as the DOSS concentration in the 

mobile phase at 60% ACN is increased. 

Increasing the DOSS concentration in the mobile phase results in increasing the 

solute-DOSS association in both the mobile and the stationary phase· and in turn 

increasing the adjusted retention time. This expected trend is seen in Fig. Sb (i.e., at 70% 

ACN) for the entire surfactant concentration range studied despite the fact that the EOF 

has increased with increasing the DOSS concentration, thus indicating that the magnitude 

of the EOF increase is well below the magnitude of other retention promoting effects. 

This expected trend is also seen in Fig. Sa (i.e., at 60% ACN) but with a maximum in the 

adjusted retention time at 20 mM DOSS. The shallow decrease in the adjusted retention 

time at DOSS concentration higher than 20 mM may be explained by the viscosity 
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increase of the mobile phase that is richer in the aqueous component, which then slow the 

electrophoretic mobility of the DOSS-pyrethroid complex in the opposite direction to the 

EOF. 

As can be seen in Fig. 5a and b, the selectivity factor for two of the 4 

diastereomers of cypermethrin increased from - 1.00 (no separation) to 1.02 (partial 

separation) at both 60 and 70% ACN when going from O to 40 mM DOSS in the mobile 

phase. For the other two diastereomers of cypermethrin, the selectivity factor increased 

from 1.02 to 1.03 at both 60 and 70% ACN when increasing the DOSS concentration 

from O to 40 mM. Another noticeable increase in selectivity was observed for the solute 

pair consisting of sanmarton and the first eluting permethrin isomer. In this case, the 

selectivity factor increased substantially from 1.03 to 1.10 when going from O to 40 mM 

DOSS at 60 % ACN. 

The separation efficiencies for six representative isomeric pyrethroids were 

chosen and plotted, see Fig. 6. As these plots suggest, the efficiencies tend to rise as the 

concentration of DOSS goes up. These results indicate that the DOSS pseudo-stationary 

phase works as an anti-convective medium reducing solute longitudinal diffusion in the 

mobile phase. In fact, upon solute binding to the DOSS, the resulting complex has a 

higher molecular size than the free solute, thus exhibiting smaller diffusion coefficient. 

The combined enhancing effects of DOSS on selectivity and separation efficiency 

resulted in improving the resolution of the pyrethroids and their geometric isomers and 

diastereomers in SM-CEC. This is shown in Table 3 which lists the resolution between 

neighboring peaks in the absence and presence of DOSS in the mobile phase. With a few 
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Figure 6. Plot of separation efficiency N vs. DOSS concentration for the six pyrethroids 
investigated. Conditions: mobile phase, 40% (v/v) of 12 mM Tris, pH 8.0, and 60% (v/v) 
acetonitrile; Voltage, 20 kV. 

exceptions, resolution increased substantially with increasing DOSS concentration in the 

mobile phase in the concentration range studied. A noticeable case is the diastereomers 

of cypermethrin. 

Based on the above evaluation of the various conditions, it was concluded that 

60% (v/v) acetonitrile, 40% (v/v) of 12 mM Tris, pH 8.0, containing 30 mM DOSS gave 

the best separation in the least amount of time. Fig. 7a and b shows the six pyrethroids 

without DOSS and with 30 mM DOSS, respectively. The resolution of the cypermethrin 

diastereomers was increased from 0.0 with no DOSS to 0.60 with 30 mM DOSS, see Fig. 
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TABLE3 

RESOLUTION FOR THE SIX PYRETHROIDS AND THEIR DIASTEREOMERS 
UNDER INVESTIGATION ATV ARIOUS DOSS CONCENTRATION IN 

THE MOBILE PHASE. OTHER CONDITIONS AS IN FIG. 7. 

Resolution, Rs 

Solute O mM DOSS 20 mM DOSS 30 mM DOSS 40 mM DOSS 

Tetramethrin 
1.98 2.88 3.15 2.50 

Tetramethrin 
19.56 23.13 24.61 23.81 

F enpropathrin 
4.45 6.38 6.14 5.97 

Cypermethrin 
0.00 0.49 0.60 0.61 

Cypermethrin 
0.95 1.38 1.34 1.26 

Cypermethrin 
0.59 0.70 0.81 0.81 

Cypermethrin 
2.81 2.66 2.94 2.66 

Sanmarton 
1.01 1.97 2.38 3.13 

Permethrin 
0.73 0.99 0.97 1.07 

Phenothrin 
2.18 2.66 2.53 3.12 

phenothrin 
1.65 1.59 1.74 1.91 

Permethrin 
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Figure 7. Electrochromatograms of the pyrethroids used in this study: (a) without DOSS 
and (b) with 30 mM DOSS. Conditions: mobile phase, 40% (v/v) of 12 mM Tris, pH 8.0, 
and 60% (v/v) acetonitrile; Voltage, 20 kV; detection 214 nm. Solutes; 1 and 2, 
tetramethrin; 3, fenpropathrin; 4-7, cypermethrin; 8, sanmarton; 9 and 12 permethrin; 10 
and 11, phenothrin. 
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7. Unfortunately, the time also increased for cypermethrin by 8 min and for the last peak 

by 15 min. The increase in time is acceptable considering the improvement in resolution 

obtained when using DOSS in the mobile phase. 

Conclusion 

We have shown that an ODS stationary phase with moderate surface coverage in 

octadecyl ligands is useful in the separation of pyrethroid insecticides. Furthermore, SM­

CEC is an effective separation system for the separation of isomeric forms of pyrethroid 

insecticides. The presence of a charged surfactant ( e.g., DOSS) in the mobile phase 

introduces another factor for manipulating retention, selectivity and separation efficiency. 

The net result of optimizing these three parameters is a significant enhancement in the 

resolving power of the CEC system. 
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