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CHAPTER 1 

Introduction 

The metal-insulator transition is one of the most interesting topics in the con

densed matter physics. The modern theory of the metal-insulator transition is based 

on the scaling theory of localization, which was proposed by Abrahams et al. 1 , and 

concludes that all one-dimensional and two-dimensional systems are insulators, and 

the metal-insulator transition only exists in the three-dimensional systems. 

However, the recent discovery of the metal-insulator transitions (MIT) in dilute 

two-dimensional (2D) electron (hole) systems has raised the question concerning the 

existence of the metallic phase in 2D systems. While contradicting to the prediction 

of the scaling theory, the experiments deserve a theoretical explanation. Since the 

electron-electron interaction is important for the experimental systems, and the scal

ing theory of localization is initially developed in non-interacting systems, the validity 

of the scaling theory in strongly interacting systems deserves further study. 

1.1 Weak Localization and Scaling Theory of Localization 

1.1.1 Weak Localization 

In the classical theory, the finite conductance arises due to the electron-impurity 

scattering, where the electrons and impurities are considered as particle-like classical 

objects. While this is true in general, the quantum interference effect can not be 

ignored for a system at low temperatures due to the wave-nature of electrons. It 

turns out to have profound effects on the behavior of a conductance. 

1 



2 

m 

Figure 1.1. A propagation path of the electron and its time reversal. 

The most important effect of the quantum interference in terms of transport 

property is weak localization. Due to the interference between the different propa

gation paths of the electrons, the quantum system has higher backscattering prob

ability comparing to its classical counterpart. It leads to an interesting behavior 

for the quantum system which has no classical counterpart: all one-dimensional and 

two-dimensional systems are localized. 

To demonstrate the basic idea, let us consider a simple process. We would like 

to calculate the probability R( m -+ m) that the electron in position ( or state) m is 

scattered back to the position ( or state) m. From the basic quantum mechanics, the 

probability could be calculated by squaring the sum of the amplitude of all possible 

Feymann paths, 

R(m-+ m) = I LAi(m-+ m)l 2 , 

i 

where Ai denotes the amplitude for the different path of the propagation. 

To simplify the discussion, we just consider a specific path P, as shown m 

Fig. 1.1, 
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and its time-reversed path P. 

Supposing that the scatter is elastic and there is no magnetic field, It can be proved 

that the time-reversed path has same amplitude and phase as the original path, so 

the total probability is, 

while the corresponding classical system has 

The backscattering probability of a quantum system is twice larger than the 

corresponding classical system. 

The higher backscattering probability has profound effect on the conductance 

behavior of a quantum system. It is the origin of the localization behavior of the 

quantum system. 

1.1.2 Scaling Theory of Localization 

The scaling theory of localization provides an unify prediction of the behavior 

of the conductance for a quantum system. The theory is based on an observation by 

Thouless 2 , 

fl.E 
g(L) = dE/dN' 

where g ( L) is the dimensionless conductance of a d-dimensional su percu be with size 

L in the quantum unit of conductance 2e2 / h, 

G(L) 
g ( L) = 2e2 / h ' 

dE / dN is the mean spacing of the energy levels, and b..E is the geometric mean of 

the fluctuation in energy level caused by replacing periodic to antiperiodic boundary 

conditions. The dimensionless conductance g(L) is the dimensionless ratio measuring 

the change of energy levels in changing the boundary conditions. 
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Contemplating that combining"/ cubes into a system with size ryL, the conduc

tance of the larger system will be determined by the new energy levels of the larger 

system, which in turn is determined by the energy levels of the building blocks and 

their responses to the change of boundary conditions. If supposing that the dimen

sionless conductance g(L) for the smaller systems is the only relevant quality for the 

scaling process, we have the single-parameter scaling relation of the conductance, 

g(ryL) = f(ry, g(L)) 

The scaling function f is independent on the detail disorder profile in the system. 

The assumption was verified numerically by MacKinnon and Weger 3 . 

The scaling relation can be rewritten as the continuous form, 

d In g ( L) = /3 ( ) 
dlnL g 

(1.1) 

f3(g) only depends on the conductance g. 

The asymptotic behavior of the f3 function could be determined by simple ar

gument. For the limit g -t 0, the system is expected to be strongly localized, and the 

conductance exponentially decays with the size of the system, 

Thus, 

lim f3 (g) = ln ( J_) . 
g--+O go 

The limit g -too corresponds to the macroscopic case, and follows Ohm's law, 

and 

lim f3(g) = d - 2. 
g--+oo 

The determination of /3-function between the two limits is beyond the capability 

of the theory. One has to make assumption in this region. A reasonable plot of /3 

function is depicted in Fig. 1.2. Apparently we are making assumption that the /3 

function is an increasing function of the conductance. 
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~(g) 

d=3 ·--------------------

d=2 
Ing 

d=I ~-------------

Figure 1.2. ,8-functions of the disordered systems. 9c denotes the critical point of the 
metal-insulator transition of the three-dimensional system. 

For large g, when taking account of the weak localization effect discussed in 

Sec. 1.1.1, the ,8-function has a perturbation expansion about 1/g, 

where a is a positive constant. 

a 
,8 (g) ~ d - 2 - - + · · · , 

g 
(1.2) 

Integrating the scaling equation 1.1, one gets the quantum correction to the 

conductance, 

g(L) = 

And the conductivity is, 

a0 /L- a, d = 1 

ao - a ln L, d = 2 

a0 L + a, d=3 

a0 - aL, d=l 

a(L) = g(L)L2-d = a0 - a ln L, d = 2 

ao + aL, d=3 

For the one-dimensional and two-dimensional systems, the conductivity is a 

decreasing function of the system size. For a macroscopic system, the size is so large 

that the conductivity will finally decrease to zero. It follows the main conclusion of 
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the scaling theory of localization: all one-dimensional and two-dimensional systems 

are insulators. 

Few notes concerning the theory: 

(i) The scaling theory of localization is based on the scaling assumption. Besides 

that, other assumptions such as Eq. 1.2 are also implied. While these assumptions are 

confirmed for non-interacting systems, their validity for interacting system is generally 

unknown. 

(ii) The system is supposed to be in zero temperature in the discussion. How

ever, the temperature dependence of the conductance can be readily inferred from 

the size dependence of the conductance. In a real system, it is generally agreed that 

the size of system could be replaced by the phase coherence length Lcp, beyond which 

the electron loses its phase memory and has no quantum interference. The dephasing 

length is a function of the temperature, normally goes as Lcp rv l/Tv. For instance, 

by substituting the size of system to the phase coherence length, the temperature 

dependence of the conductivity of a two dimensional system is: 

a(T) = a0 - a 1 ln T (1.3) 

1.2 Two-Dimensional Metal-Insulator Transition 

According to the scaling theory of localization presented in Sec. 1.1.2, the con

ductance of a two-dimensional system should logarithmically decrease ( weak local

ization, Eq. 1.3) with the decreasing temperature, and is reduced to zero at absolute 

zero temperature. No metal-insulator transition is expected. This behavior is indeed 

confirmed in the high density MOSFET systems 4•5 , which could be well considered 

as the non-interacting systems. 

However, when the electron density becomes lower, the situation is less clear 

since the electron-electron interaction becomes important. On the other hand, in 

the limit of extremely low density, the electron system is expected to form a new 

phase: Wigner crystal 6 . The Wigner crystal lattice is pinned by disorder, the system 

is strongly localized and the conducting is through the hopping between the lattice 
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sites. So the conductivity is expected to decrease exponentially with the decreasing 

temperature in this limit. 

In the low density (strongly interacting) and high density (weakly interacting) 

limits, the two-dimensional systems are expected to be insulator. One may jump 

to conclusion that the two-dimensional electron systems will always be insulating 

systems in all density regimes and interaction strengths. 

However, the recent studies on the temperature dependences of the resistance 

of dilute 2D systems in the zero magnetic field show that the conclusion may be 

incorrect. The metallic behavior, i.e., the resistance of the system decreases with a 

decreasing temperature, is observed in a variety of dilute, high mobility 2D systems. 

These experiments incite the new interests on whether the metallic phase exists in 

2D systems, especially in those strongly correlated systems. 

In this section, the basic experimental facts will be reviewed. The existing 

theories are also discussed. A full review of the topic can be found in Abrahams et 

al. 7 . 

1.2.1 Temperature Dependence of Resistivity 

The first experiment that claims a metallic phase in 2D system is by Kravchenko 

et al. 8•9 . They measured the temperature dependence of the resistivity on the high 

mobility (low disorder) silicon MOSFETs. The mobility of the samples is so high 

that the measurement can be carried out in the density below 1011 cm-2 . 

Fig. 1.3 shows a typical behavior of the temperature dependence of the resis

tivity in Si MOSFET systems. At high density, the resistivity drops rapidly with 

decreasing temperature, indicating a metal-like behavior. The drop of the resistivity 

could be several orders of magnitude. The temperature dependence of resistivity can 

be fitted reasonably well by the formula 10 , 

p(T) = P1 + P2 exp ( - ~) . (1.4) 

p1 and p2 are the functions of the density, but are independent on the temperature. 

The fitting breaks down at a certain temperature T*, above which the resistivity 
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Figure 1.3. Temperature dependence of the resistivity in a silicon MOSFET for 30 
different electron densities 9 . The inset shows behavior of the resistivity 
close to the critical density 10 . From Abrahams et. al. 7 
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decreases with the increasing temperature again (insulating behavior). The exponen

tial dependence on the temperature usually associates with the energy gap in the 

excitation spectrum. 

At lower densities, the system becomes insulating. The resistivity could be 

fitted by the formula 11 , 

p(T) ~ Po exp (ff) . (1.5) 

The behavior is known to associate with the variable-range hopping between localized 

states under the influence of the Coulomb interaction (Efros-Shklovskii hopping) 12 . 

p0 is a temperature independent constant and is close to the quantum unit of the 

resistance, h/ e2 11 ,13 . This is in contrast to the normal Efros-Shklovskii hopping, 

where p0 weakly depends on the temperature. 

There exists a critical density which separates the insulating and metallic 

regimes. At this density, the resistivity is found to be independent of temperature 

to the lowest accessible temperature 14,15 , and the resistivity is of the order of the 

quantum resistance unit, h/ e2 . 

The qualitatively similar behavior is observed in a variety of electron and hole 

systems, including Si MOSFETs with different geometry and oxide thicknesses 16 , 

p-SiGe heterostructures 17,18 , p-GaAs/ AlGaAs heterostructures 19- 22 , n-AlAs het

erostructures 23 and n-GaAs/ AlGaAs heterostructures 24 . It indicates that the ob

served metal-insulator transition is a universal behavior instead of a special property 

associated with a specific material. 

Fig. 1.4 shows the behavior of a hole system, p-GaAs/GaAlAs heterostructure. 

It shares many qualitative features as the Si MOSFET systems, although the resis

tivity drop at the metallic side is much weaker than the drop in Si MOSFETs. The 

resistivity at the critical density is also order of the h/ e2 . Eq. 1.4-1.5 are still valid 

for this system. 
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Figure 1.4. Resistivity as a function of temperature at B = 0 at various fixed densit ies 
for a p-GaAs/ AlGaAs heterostructure. p =0.089, 0.94, 0.99, 0.109, 
0.119, 0.125, 0.13, 0.15, 0.17, 0.19 0.25 , 0.32, 0.38, 0.45, 0.51, 0.57 
and 0.64- 1011 cm- 2 . Inset: Schemat ic presentation of t he p-type ISIS 
structure grown on semi-insulating ( 311 ) A GaAs substrate, consisting 
of a thick p+ buffer, a 300 nm undoped AlAs barrier , a 150 nm undoped 
GaAs channel layer , and a top 50 nm GaAs layer which is p doped. T he 
2DHS forms at the lower interface of t he channel layer upon application 
of negative bias to the p+ conducting layer. From Hanein et al. 19 . 
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1.2.2 Nonlinear Effects 

The resistivity mentioned above is obtained in the linear regime, i. e., the elec

tric field strength is close to zero, E -+ 0. If the electric field strength is increased in 

the measurement, the interesting nonlinear resistivity-electric field dependence anal

ogous to the resistivity-temperature behavior is observed. 

Fig. 1.5 shows the electric field dependence of the resistivity in a Si MOSFET 

system 25 . The resistivity is defined asp= (V/ I) (W/ L), where Vis the voltage across 

the sample and I is the electric current measured. As seen in the Fig. 1.3, the electric 

field dependence of the resistivity also shows different behaviors for different carrier 

densities. At the high density, the resistivity is an increasing function of the electric 

field, indicating a metal-like behavior. At low density, the resistivity decreases with 

the the increasing electric field, as expected in an insulating system. There also exists 

a critical density on which the resistivity is nearly independent on the electric field. 

The phenomena have connection with behavior of the temperature dependence 

of the resistivity. We will discuss it in the next subsection. 

1.2.3 Scaling 

A striking feature of the 2D MIT is that the resistivity can be scaled with density 

and temperature in a wide range of density and a certain range of temperature (below 

T*). The resistivity can be written as, 

p(ns,T) = f(T/To(ns)), (1.6) 

where ns is the carrier density, T0 (ns) is the scaling function which is a function of 

the density. 

It can be clearly seen from Fig. 1.6 that the temperature dependence of the 

resistivity can be well scaled into two branches. Near the critical density, the scaling 

function T0 (ns) has the density dependence, 

(1. 7) 
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Figure 1.5. Resistivity as a function of electric field at n 8 = 7.81, 7.92, 8.03, 8.14, 8.25, 
8.36, 8.47, 8.70, 8.91, 9.13, 9.35, 9.57, 9.79, 10.34, and 10.78 x 1010 cm-2 

at T = 0.22 K. From Kravchenko et al. 25 
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Figure 1.6. Scaling behavior of the resistivity for a Si MOSFET. Inset shows density 
dependence of the scaling parameter, T0 . From Kravchenko et al. 9 . 
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a. 
10° 

Figure 1.7. The scaling with the electric field. 6n = (n - nc)/nc, a = 2.7. From 
Kravchenko et al. . 25 . 

which is independent on the sign of n 8 - nc, where nc is the critical density. The 

scaling exponent fJ was found to be 1.6 ± 0.1 for Si MOSFETs 9•16 . 

However, the scaling in other systems are not as successful as in Si MOSFETs. 

For those systems with weak metallic behavior, such as p-GaAs/ AlGaAs heterostruc

tures and low mobility Si MOSFETs, the scaling may fail entirely 19,21 . For those 

systems do scale successfully, the scaling exponents may not be of the same value as 

for Si MOSFETs 17 . 

Another scaling behavior observed in the Si MOSFET is the duality, i. e., 

p*(nc - 6, T) = 1/ p*(nc + 6, T), 

where p* = p/ Pc, Pc is the resistivity at the critical density. To get the duality, the 

density have to be limited in a certain range. The duality is proved to be a generic 

feature of the critical region 26 for a continuous quantum phase transition 27 . 

Corresponding to the scaling behavior of the density dependence of resistivity, 

there is similar scaling behavior for the electric field dependence. Fig. 1. 7 shows the 

scaling behavior of the resistivity for Si MOSFET with the electric field 25 . The 
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resistivity has the scaling form, 

Following the generic argument for a continuous quantum transition 27 , scaling 

with the electric field is related to scaling with the temperature. The scaling exponents 

are related by, 

(3 Zl/1 

a (z + 1)1.11, 

where 1.11 is the critical exponent for the correlation length, and z is the dynamical 

exponent. Derived from the experimental data, the correlation exponent v1 = 1.5 -

1.9 25,28, and z = 0_8 _ 1.2 25,28,29. 

1.2.4 Parallel Magnetic Field Effects 

Another unusual property of dilute 2D systems is its response to a parallel 

magnetic field. It was found that a relatively weak parallel field could greatly suppress 

or even totally destroy the metallic behavior, causing the resistivity to increase by 

orders of magnitude 3o-32 . 

Fig. 1.8 shows a typical behavior of the response of the resistivity to a parallel 

magnetic field for the Si MOSFETs. The resistivity increases rapidly with the parallel 

magnetic field. An order of magnitude increasing is observed in this sample. Even 

higher change of the resistivity is observer at lower temperatures. The resistivity 

saturates at a certain magnetic field. The response to the parallel magnetic field is 

. qualitatively similar on both metal and insulator sides. 

The behavior in p-GaAs/ AlGaAs hole systems is qualitatively same as in the 

· Si MOSFETs 20 ,33 . The difference is that the resistivity does not saturates at high 

magnetic field, instead increases with the magnetic field at a slower rate. Fig. 1.9 

shows the behavior. 

A strong parallel magnetic field destroys the metallic behavior. Fig. 1.10 shows 

the temperature dependence of resistivity for a given density which is metallic in zero 
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field turns to insulating behavior at a strong field. Yoon et al. 33 show that there 

exists a critical field above which the metallic behavior is destroyed. 

Since the parallel magnetic field only couples with the spins of electrons (pro

vided magnetic field is not so strong that the finite thickness effect becomes impor

tant), the observed behavior must be related to the electronic spin polarization. It 

is found that the magnetic field which is required to saturate the resistivity is about 

the same value as the field needed to fully polarize the electron spins 34,35 . 

1.2.5 Measurements Other Than Resistivity 

The experiments discussed so far are all based on measurements of resistivity. 

Although resistivity is easily accessible to experimentalists, other measurements may 

also shed some light on the nature of the metal-insulator transition. 

Dultz and Jiang 36 measured the compressibility K in GaAs/ AlGaAs systems. 

The compressibility can be written as, 

1 26µ --n -
K - 6n' 

where µ is the chemical potential of the system, and n is the electron density. Within 

the Hartree-Fock approximation, 

1/ K becomes negative at low densities and decreases with a decreasing density. How

ever, it is found in the experiment that the negative 1/ K at low densities reaches a 

minimum at the critical density nc of the 2D MIT, and then increases dramatically 

with further decreasing density, as shown in Fig. 2.8. Although this surprising upturn 

of 1/ K was observed much earlier in a pioneering work by Eisenstein et. al. 37•38 , this 

is first time that the minimum point in 1/ K is identified as the critical density for the 

2D MIT. 

Ilani et al. 39,4o measured the local compressibility of the GaAs/ AlGaAs het

erostructures. They found that local compressibility deviates the Hartree-Fock pre

diction by an order of magnitude when the system enters into the insulator regime. 
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They also show that the spatial distribution of electron density is not homogeneous. 

They concluded that the system near the metal-insulator transition consists of the 

localized charge which coexists with the surrounding metallic phase. When the den

sity is lower into the insulating state, the proportion of the localized charge increases 

while the metallic phase disappears. It strongly suggests that the metal-insulator 

transition is connected with the microscopic restructuring inside the system, and is 

the percolation transition of two phases. 

1.2.6 Quantum Phase Transition or Not? 

Although the evidences that support the 2D MIT seem to be overwhelming, 

there are emerging experiments arguing that the 2D MIT may not be quantum tran

sition in nature, instead some other classical or semi-classical mechanisms cause the 

apparent metallic behavior. 

From the scaling theory of localization, the quantum effect causes a weak tem

perature dependence of the conductivity, 

O"(T) = Jo - J 1 ln T, 

which drives the system into an insulating state at zero temperature. However, if 

there exists a classical or semi-classical mechanism which causes strong increase of 

the conductivity with decreasing temperature at a finite temperature, the weak lo

calization effect may be smeared. On the other hand, by the original definition of the 

quantum metal-insulator transition, the system is considered as a metal only when 

its zero temperature resistivity is finite. In practice, the metallic and insulator states 

are judged by the sign of dp/dT. It is not necessarilly an equivalent condition to the 

original criterion. Although a strong resistivity drop is observed on the metallic side, 

the fate of the resistivity at zero temperature is unknown. It could be argued that 

the resistivity curve of the metallic phase may turn up again at low temperatures, 

and reenters into an insulator regime. 

Simmons et al. 41 investigated the weak localization effect in the p-GaAs/ AlGaAs 

systems. The upturn of the resistivity on the metallic side is indeed observed in the 
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low temperature limit, as shown in Fig. 1.12b. By investigating negative magne

toresistance of the 2D system 42 , they show that the upturn is caused by the weak 

localization effect, while there is no evidence of weak localization in the region where 

the resistivity strongly drops. It indicates that the system will become insulator again 

at low temperatures even at high density, and the strong resistivity drop observed is 

not related to the single particle quantum interference effect. 

Brunthaler et al. 43 investigated the quantum effect in Si MOSFETs. They found 

that the strong resistivity drop, which is considered as the signature of the metallic 

behavior, occurs at the temperature well above the regime where the quantum effect 

is important. Fig. 1.13 shows two temperature boundaries for the quantum effects. It 

indicates that the strong resistivity drop is caused neither by single electron quantum 

interference effect (Tr,o = T boundary) nor by the electron-electron induced quantum 

interference effect (kTee = n/T boundary). 

Both experiments suggest that the apparent metallic behavior is caused by semi

classical mechanisms. When the quantum effect takes hold of the system, the system 

may reenter into the insulating state. In other words, there will be no metal-insulator 

transition at zero temperature. 

1.3 Theory 

The most important feature of the 2D MIT systems is that it is a strongly 

correlated system. The typical density at which the metal-insulator transition is 

observed in Si MOSFET is about ns = 1011 cm-2 , and the the electron-electron 

interaction energy is estimated to be, 

and the Fermi energy is, 

e2 
Ee-e"' -V(1rn8 ) ~ lOmeV, 

E 

1rn2n 
Ep = --8 ~ 0.58meV, 

2m* 

where E is the dielectric constant, m* is the effective mass of electron in Si MOSFET. 

The ratio between the electron-electron interaction energy to the Fermi energy is, 

Ee-e 1 
rs -- = > 10, 

Ep a'ay0rns 
(1.8) 
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where aB = cfi2 /m*e2 is the effective Bohr radius of the system. The electron-electron 

interaction energy is much larger than the Fermi energy. 

Unfortunately, a reliable theoretical method for such strongly correlated systems 

is yet to be developed. In most cases, one has to depend on the model instead of the 

ab initio theory. 

Various models have been proposed to understand the unusual behavior. There 

are two trends in constructing the model: quantum transition theories and classical 

transition theories. The quantum transition theories range from the non-Fermi liquid 

state to a superconducting state, suggesting that the transition observed is a quantum 

transition which will survive to zero temperature. On the other hand, the classical 

transition theories believe that the apparent metallic behavior could be understood by 

the classical or semi-classical mechanisms, and the metallic behavior may disappear 

at extremely low temperature. 

1.3.1 Quantum Mechanisms 

Dobrosavljevic et al. 44 present a phenomenological theory about the 2D MIT. 

After analyzing the scaling theory of localization (Sec. 1.1.2), they concluded that 

there is no fundamental principle requiring the scaling function f3(g) be monotonic 

or negative in 2D for large g limit for 2D systems. Instead, they propose that the 

scaling function f3(g) has the expansion, 

f3(g) = d - 2 + a/g°' + .. ·, a> 0. 

Unlike the assumption used in the non-interacting systems, f3(g) is positive in the 

large g limit. The corresponding temperature dependence in the metallic phase is, 

g(T) rv ln11°'(T /To). 

To justify the unconventional behavior of /3-function, Chakravarty et al. 45 pro

posed that the metallic state is a 2D non-Fermi liquid, which is the result of the 

strong electron-electron interaction, and could be stable against the weak disorder 

presented in the system. 
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The insulating state is supposed to be the Wigner crystal 46 . For a pure system, 

the Wigner crystallization occurs at extremely low density (rs ~ 37) 6 . However, A 

recent Quantum Monte Carlo (QMC) calculation shows that the transition could 

occur at higher density comparable to the observed metal-insulator transition density 

(rs "' 10) in the presence of disorder 47 . The Wigner crystal is pinned by the disorder, 

resulting an insulating behavior. The metal-insulator transition is supposed to be the 

melting of the Wigner crystal to the non-Fermi liquid. 

Although the model provides a complete picture about how the transition oc

curs, one can get little knowledge about the metallic phase and the insulating phase, 

since we know little about the non-Fermi liquid or disordered Wigner crystal. 

A number of models have been based on the superconductivity 4s-5o. They 

considered that the metal-insulator transition is in fact the superconductor-insulator 

transition. This provides an easy explanation to the existence of the apparent metal

lic phase, and the strong suppression of the conductivity under the magnetic field. 

However, there is no experimental evidence that the superconductivity exists in the 

systems. The existence of the weak localization effect 41 •43 at low temperatures di

rectly contradicts to a superconducting state. 

Some other theories are based on the perturbative renormalization group ap

proaches. They investigated the interplay between the electron-electron interaction 

and the disorder. The early work by Finkelstein 51 predicted that the electron-electron 

interaction may lead to delocalization in a disordered 2D system. The problem was 

reconsidered by Castellani et al. 52 recently and had limited success in predicting 

the temperature dependence and magnetic field dependence of the metallic phase. A 

recent analysis by Si and Varma 53 suggests that the electron-electron interaction will 

be unscreened at low electron densities, at which the system becomes insulating and 

the compressibility becomes zero. The theory does not provide a explanation to the 

metallic phase. All the analyses share a common problem that the predicted regime 

are far beyond the applicable regime of the perturbation. So the applicability of the 

theories to the 2D MIT is still questionable. 
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Some numerical simulations have been carried out to study the systems. Benenti 

et al. 54 employ the exact diagonalization on a small lattice cluster with interacting 

spinless fermions. They found a intermediate density regime between the Wigner 

crystal phase and the Fermi liquid phase, which may be responsible to the metallic 

phase observed in the experiments. Denteneer et al. 55 carried out a quantum Monte 

Carlo calculation on a 2D disordered Hubbard model, and found the repulsion between 

electrons can significantly enhance the conductivity, and d<7 / dT may change sign at 

a low temperature. These calculations provide some hints about the behavior of a 

disordered interacting system. However, due to the great difficulties in calculating 

the strongly correlated systems, the size of systems and the number of electrons in 

the simulation are generally very small, so the results are inconclusive. 

1.3.2 Semi-classical Theories 

Contrary to the quantum transition theories, the semi-classical theories believe 

that the apparent metallic behavior (strong resistivity drop) is due to semi-classical 

mechanisms. The fate of these apparent metallic states at the low temperature is 

thus questionable. 

Klapwijk and Das Sarma 56 proposed a theory based on the scattering between 

the electrons and the charge impurities. They showed that it could lead to very large 

magnetoresistance if the electrons number is comparable to the number of impurities. 

The system becomes insulating if all electrons are captured by the charged impurities. 

Following the line, Das Sarma and Hwang 57 calculated the temperature dependence 

of the resistivity on the metallic side. They found the non-monotonic behavior of 

the temperature dependence of the resistivity, which is observed in experiments, can 

be deduced from the model if a temperature dependent screening of the scattering 

between the electrons and the impurities is supposed. However, the theory tends to 

overestimate the temperature where the strong resistivity drop occurs. 

Another line of the semi-classical theory is percolation theory 26 ,58 , which will 

be discussed in detail in Sec. 1.4. The basic idea is that the strong electron-electron 

interaction and the disorder lead to the redistribution of the electrons: they form 
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some high density conducting regions and some low density insulating regions. The 

metal-insulator transition is the percolation transition of the high density conducting 

regions. The theory can explain many aspects of the experiments, and is consistent 

with some recent experiments 39 ,40 . 

1.4 Percolation Model 

The percolation mechanism provides a new understanding to the observed 

metal-insulator transition. The model was proposed by He and Xie 26 . 

One of the striking features of the system is the I-V nonlinearity (see Sec. 1.2.2) 

at average electric fields much weaker than the expected value determined by the 

effective temperature of the electrons 25 . This raises questions of whether the sys

tem can be described by a theory for homogeneous systems. On the other hand, 

a slowly-varying disorder potential combined with electron-electron interaction may 

favor macroscopic inhomogeneity in the system, which will be discussed in detail in 

next chapter. 

Once the system becomes inhomogenous, the electrons will form some high and 

low density regions. High density region has higher local conductivity comparing 

with the low density region. The system could be considered to be composed by 

two phases, high density liquid phase and low density gas phase. The liquid phase 

has lower energy with a cohesive energy .6c, while the gas phase could be disorder

pinned Wigner crystal phase. When increasing the density, the liquid phase percolates 

through the system, and drives the system into the metallic state. 

Some simple arguments can be made to explain the experimental findings. 

1.4.1 Temperature Dependence of The Resistivity 

One of the most striking features of the experiments is that the temperature 

dependence of the resistivity changes from insulator-like to metal-like as the average 

electron density increases. This is readily understood in the theory. At a low enough 

average density, the system is in the two-phase regime. When the average density 
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is below the threshold density of the percolation, the conduction in the system is 

dominated by the phonon-assisted hopping through the localized gas phase. At low 

enough temperatures, this gives the Coulomb-gap behavior 12 

p rv e .jEo1r) 

where E0 is an energy scale determined by the localization length and the Coulomb 

interaction. On the other hand, when the average density is above the threshold 

density, the metallic liquid phase percolates through the whole system. The system is 

able to conduct electric current. Using a simple two-fluid model for the conduction, 

we have 

a = fiat + f gag and !1 + f g = 1, 

where f 1 and Jg are respectively the fractions of the electrons in the liquid and the gas 

phases. a , a1, and ag are respectively the total conductivity, the conductivity of the 

liquid and the conductivity of the localized gas. If supposed At temperatures much 

lower than the cohesive energy 6.c of the liquid, we estimate Jg to be 

_.!b;_ 
Jg':::::' Ae r. 

Combining the above equations, we obtain the low temperature behavior of the re

sistivity on the metallic side 
- - _.!b;_ 

P =Po+ Pie r, 

where /Jo = l/a1 and p1 = Ap0(l - ag/a1) . This temperature dependence of p on the 

metallic side is consistent with the experimental findings. On the other hand, For 

higher temperature T > 6.c, the liquid phase is evaporated and ceases to exist. The 

resistivity of the system depends weakly on temperature. 

1.4.2 Scaling and Duality 

When the system approaches the critical point nc, there is a diverging length 

scale ~ and a vanishing energy scale E ""' e2 / r Using the usual arguments 27 , in the 

region close to the critical point , we write the finite temperature resistivity of the 
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system in the scaling form 

p(T, n) = p(b/Tlfv), 

where b = (n- nc) and 11 is the correlation length exponent. The value of 11 predicted 

by the percolation theory is 11 = 4/3. This is very close to the measured values of 

1.5 - 1.9 (see Sec. 1.2.3). 

The duality observed in the experiments can be readily understood by the fol

lowing argument. Because there is no other critical point at a finite temperature, the 

function p(x) is an analytic function of its variable. Taylor expanding it at x = 0, we 

have 

P(T n + b) = p-(o) + P-(1) _b_ + ~p-(2) (-b-)2 + ... 
, c Tl/v 2 Tl/v ' 

where p(o) = p(O), p(l) = d!~) lx=O, and p(2) = d2Jx~x) lx=O· Immediately we have 

Obviously, this operationally defined duality relation is a generic feature of the critical 

region. 

1.4.3 Electric-Field Dependence of The Resistivity 

There are two important features associated with the electric-field experi

ments 25 . First, the nonlinear I - V occurs at very small electric field. Second, 

the nonlinear resistivity exhibits scaling as a function of electric field in both the 

metallic and insulating sides. There are two known mechanisms through which non

linearity can occur in a homogeneous system 27 . The first one requires that the energy 

scale determined by the electric field to be the dominant energy scale in the system. 

In the critical region, this energy should be larger than the temperature. However, 

in a typical nonlinear I - V experiment in Si MOSFETs, the nonlinearity occurs at 

electric fields as low as 0.25 mV /cm 25 . Using a phase breaking length of 10000A, one 

estimates the nonlinear electric field energy scale to be about 0.3mK, much smaller 

than the temperature 220mK. No nonlinearity should result from this mechanism. 

The second mechanism is due to Joule heating. Joule heating raises the effective 
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temperature Te of the electrons according to Te rv E 112 59 . The experiments indi

cate that Te is about 2K at an electric field of 50m V / cm. Using an electric field of 

0.25mV /cm, one estimates Te to be 150mK. This is lower than the lattice tempera

ture 220mK. Therefore Joule heating is not significant at such an electric field and no 

nonlinearity should result. The above arguments indicate that the nonlinear I - V 

may be caused by the intrinsic inhomogeneity in the system. 

The scaling behavior appeared at large electric fields can be readily understood 

by the following arguments 27 . Close to the critical point, the vanishing energy scale 

Erv e2 /~ is cut off by the electric field through Erv eE~. Thus, the zero temperature 

resistivity can be written in the scaling form 

p(E,n) = p(fJ/El/v(z+l)), 

where z = 1 because the vanishing energy scale at the critical point is given by 

Erv e2 /t Using the classic value of v = 4/3, it is found v(z + 1) = 8/3 ~ 2.66, which 

is very close to the experimental value of 2. 70 25 . 

1.4.4 Effects of An In-Plane Magnetic Field 

When an in-plane magnetic field is applied, the electrons begin to be polarized. 

On the other hand, the gas phase is much easier to be polarized than the liquid phase, 

as shown in the quantum Monte Carlo calculation by Tana tar et al. 6 . So for the small 

magnetic field, the energy gap between the liquid and gas phases decreases linearly 

with the magnetic field. When the Zeeman energy of the magnetic field is larger than 

the Fermi energy of the gas phase, it fully polarizes the electrons in the gas phase. 

The portion of electrons in the gas phase at low temperatures can be estimated to be 

gµBSzH11-L>c 

]g rv e T 

when gµBSzH11 < 6.c. Using the two-fluid model above, we find the in-plane magnetic 

field dependence of the resistivity on the metallic side at low temperatures to be 
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Figure 1.14. In-plane magnetic field dependence of the resistivity. The Inset shows 
the temperature dependence of p for various in-plane magnetic fields: 
(a) H11 « H11,o, (b) H11 < H11,o, (c) H11 > H11,o· The temperature is 
measured in unit of gµBSzHll,c· From He and Xie 26 . 

When the Zeeman energy goes beyond L}.c, the liquid phase ceases to exist because 

the critical temperature Tc is zero. The system is a fully polarized gas and it is 

not affected by further increases of H11· Fig. 1.14 shows this generalized situation 

for a given temperature T. The resistivity increases exponentially with H from its 

zero-field value p0 (T) to the saturated value Pm(T) at the critical field H11,c given by 

gµBSzHIJ,c = L}.c, i.e. 

{ 
lnpo(T) + : 11 (lnpm(T) - lnpo(T)) 

ln p(T, H 11 ) = 11,c 

ln Pm(T) 
(1.9) 

if H11 > H11,c 

When T « gµBSzH11,c, p(T, H11) should be exponential in H11/T for intermediate 

values of H11. Using this we have 

1 (T) 1 _ + gµBSzHJl,c 
n Pm rv n Pm T .. (1.10) 

Next we look at how the low temperature behaviors of the resistivity on 

the metallic side evolve for different in-plane magnetic fields. Using Eqn. 1.9 and 

Eqn. 1.10, we have 

HII gµBSzHJI HJI 
lnp(T, H11) = (1- H) lnpo(T) + · T + H lnpm, 

11,c 11,c 
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This equation predicts different behaviors of p(T, H11), shown in the inset of Fig. 1.14, 

for H11 < H11,o and H11 > H11,o, where H11,o = P1H11,c/('p0 +2h). Using the experimental 

data of pi/ p0 :::: 10 and H11,c ,.__, 20 kOe in the experiments of Simonian et al., we 

predict H11,o ,.__, 10 kOe. This is consistent with the experiments. For H11 « H11,o, the 

temperature Tm at which p(T, H11) reaches a minimum is given by 

1.4.5 Further Works 

The percolation theory provides a framework to understand the experimental 

findings. However, some issues have to be addressed: 

(1) The formation of the two phases. One has to understand the underlying 

mechanism in the formation of the inhomogenous ground state. The problem will be 

discussed in Chapter 2. 

(2) The transport behavior of the system. The percolation model provides a 

classical mechanism to understand the experiments. However, at low temperatures, 

the quantum effect becomes more and more important. In a typical experimental 

setup, the lowest temperature could reach 30 mK. How a classical model can be valid 

for a low temperature system and the quantum effect to a semi-classical system are 

the problems to be discussed in Chapter 3. 



CHAPTER 2 

Droplet State 

A noticeable character of the electron system in the experiments is that rs, the 

parameter measuring the strength of the Coulomb interaction (Eq. 1.8), is fairly 

large. The electron system may be unstable against phase separation at these large 

values of rs. For a two-dimensional (2D) electron system, there believed to be two 

phases: a high density Fermi gas phase and a low density insulating Wigner crystal 

phase. The dielectric constant of the liquid phase becomes negative when rs c::: 2 60 , 

which indicates that the liquid phase is unstable. At lower densities, the Wigner 

crystal phase appears around rs c::: 37 in the absence of disorder 6 . This critical value 

of rs appears to be reduced with disorders 47 . In the intermediate values of rs, we 

believe that there is a phase separation which we think is responsible for the observed 

MIT. 

We propose that a droplet state of the electron system resulted from the phase 

separation of the electrons into this new liquid phase and a low density "gas" phase. 

Here we call the low density phase "gas" purely for the reason that its density is 

low. In fact, in the presence of impurities, the" gas" phase may be disordered Wigner 

crystal. In this chapter, we study the energetics of such a droplet state. We find that 

both electron-electron interaction and disorder potential are crucial for the formation 

of the droplet state. Moreover, A density functional calculation based on local den

sity approximation (LDA) is carried out the simulate the density distribution of the 

system. 

34 
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Figure 2.1. A simple model to investigate the shrinking of the electron distribut ion. 

2.1.1 Model 

The electron is uniformly distributed in a disc with radius b, and is 
shrunk to a smaller radius a. 

2 .1 Energetics Consideration 

An obvious condition for the droplet state is that the electron gas is unstable. 

To investigate what possibilities of the instability leads to, we study a simple but 

physically mot ivated model. Let us consider electrons in the disc of radius b with 

uniform positive background. Imagining that the electron system is shrunk to a new 

radius a < b while the positive background remains intact. Clearly the charging 

energy due to the separation of the electrons from the positive background increases 

the energy of the system. However there can also be energy gained ( decreasing total 

energy): since for a uniform electron gas the ground state energy E9 is at its minimum 

when rs '.::::'. 2 60 , for rs > 2 the system gains energy by shrinking the area occupied 

by electrons. Furthermore, in t he presence of disorder , electrons tend to occupy the 

valleys of t he disorder landscape. Thus, a slowly varying disorder potential is in favor 

for the formation of the droplet state. We calculate the energy changes when electron 
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disc is shrunk from b to a to determine whether a spontaneous shrinking can take 

place. 

For electron-electron or electron and positive background interaction, we use 

screened Coulomb potential. For Si MOSFETs, the image charge in the metal sub

strate induces the screening and the interaction in the momentum space can be written 

as 61 

1 27re2 1 - e-2kD 
V(k)------

- E k 1 - K e-2kD' 

where D is the thickness of the Si02 insulating layer and E = ! (E1 + E2), K = 

(E1 - E2)/(E1 + E2), with E1 and E2 being the dielectric constants of Si and Si02, 

respectively. For other systems, such as GaAs/ AlGaAs, the screened interaction can 

be well represented by the following form: 

and the corresponding moment space representation is, 

V(k) - 27re2 1 
E yk2 + ).2 

Both forms of the interactions define an interaction range ~- For Si MOSFETs, 

~ = (E/E2)D, and for the screened Coulomb potential, ~ = 1/2,\ . Outside the range 

the interaction is strongly screened. 

2.1.2 Ground State Energy 

To calculate the ground state energy of the electron gas with the screened 

Coulomb interaction, we use the variational correlated-basis-function (CBF) method 62 . 

This method has been applied to the bare Coulomb interaction and is proved to pro

vide rather accurate result for the ground state energy of 2D electron system. The 

accuracy of the ground state energy is found to within 10% comparing with the best 

available quantum Monte-Carlo results 6 for densities down to rs = 20. In the CBF 

approach, there is a variational variable a for which the ground state energy E9 has 

to be minimized, 
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Figure 2.2. The ground state energy of electron system for different screening 
strength: (a) for screened Coulomb interaction, (b) for Si MOSFETs. 
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A(~) - Uc (-la) (Ry.) 
rs rs 

A(a) A~ (a) + A51 (a) + A52 (a) + A53 (a) + · · · 

A~(a) a' [t(n :n2)2 + ~2 ~ ~ l 
1 

- 1611 
[2 arccos(y) - y(l - y2 ) 112] 

7r 0 

xy3e-2Y2 /ady 

-~ 11 
dyi 11 

dy21
1 

dy311r d()Yi2 
7r O O O 0 

x { 1 - exp [-Yi2/2a)} 

x exp [-(Yi+ y~ + 2yD /2a] 

xlo [ a-1 (YiY~ + Y~Y~ + 2Y1Y2Y~ cos e)112] , 

where lRy = e2 /2caB, aB = di2 /m*e2 , and y12 = y1 - y2 . Uc is the cohesive energy 

which depends on the special form of the interaction, 

1 I [ ( k ) 
2

] d2 k Uc(x) = 2 exp - 2x V(k) (21r)2 . 

Fig. 2.2 shows the calculated results for the ground state energy. The screening 

effect raises the ground state energy because the electron correlation is suppressed. 

For the low density (large rs), it can be clearly seen that the ground state energy 

will be lower if the electron disc is shrunk to higher density. 

2.1.3 Electrostatic Energy 

However, the shrinking of the electron disc will cause the redistribution of the 

charge, which will raise extra electrostatic energy due to the fixed positive background. 

The charge distribution in the momentum space can be written as 

(k) = 2N ( J1 ( ka) _ J1 (kb) ) 
p ka kb ' 
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where N is the total number of the electrons in the disk. The charging energy is 

where 7 = a/b is the ratio of the radii after and before shrinking electron disc. 

The charging energy shows distinct forms for different interaction ranges. When the 

interaction range ( is much larger than the radius of the disk, ( » b, the electron

electron interaction can be roughly considered as the bare Coulomb interaction. In 

this case, the electrostatic charging energy is 

Ee~ 4: (o.290545 - ]:_ ln 11 - 11) (1 - 1)2 + · · · (Ry). 
rso 7r 

In the other limit b » (, the interaction is well screened and the electrostatic energy 

has the form, 

where rs and r~ are the inverse density parameters before and after the shrinking. 

2.1.4 Shrinking Without Disorder 

The total energy difference can be written as 

For a small initial radius b ~ (, the energy gain i:l.E9 dominates over the energy loss 

Ee, thus, there is always finite shrinking. 

However, the above conclusion is not true in general as demonstrated in Fig. 2.3. 

Fig. 2.3 shows the shrinking distance i:l.b = b-a versus initial radius b. i:l.b approaches 

a constant for large b. However, the shrinking shown here can not be considered 

as a macroscopic shrinking because the typical i:l.b is only about 2aB, which is far 

smaller than the average distance between the electrons, which is rs = l5aB for this 

calculation. Similar behavior has also been observed for other values of rs. 
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Figure 2. 3. The shrinking distance 6-b = b- a versus disc radius b for different screen
ing strength. (a) for screened Coulomb potential; (b) for Si MOSFETs. 
The initial density parameter rs = l5aB. 
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2 .1. 5 Disorder Effect 

Thus the intrinsic instability is not sufficient to overcome the charging energy 

cost in order to form the electron droplet state. The system is in a marginally stable 

situation. However, in real systems, there are always disorders. The low frequency 

component of a disorder potential forms the potential landscape, and electrons tend 

to occupy the low potential valleys. We assume that around each local minimum, 

the disorder potential is isotropic and slowly varying. We expand the disorder po

tential around the local minimum up to the quadratic term. Therefore, we adopt the 

following simple model for disorder potential 

r2 
W(r) = Vob2 , 

where Vo is the potential depth from center to edge of the disc. The energy gain by 

shrinking to a radius a can be evaluated as 

~Ew = ~! J W(r)p(r)dS 

~(-y2-1). 

The total energy difference in the limit b » l can be written as 

The effect of the electrostatic energy will be suppressed by the potential fluctuation. 

Large value of Vo is in favor for the disc to shrink. 

Fig. 2.4(a) plots the ~b = b - a as a function of the initial radius b for Si 

MOSFETs with D = lOaB and rs= 15aB. There exists a critical v;c (rv 0.08) above 

which ~b ex b. Thus, for large b there is a macroscopic shrinking for V0 > v;c. Similar 

result has also been obtained for the screened Coulomb interaction with 1/ >. places 

the role of D. In Fig. 2.4(b) we plot the energy change as a function of the initial" 

radius b. It is clear that larger value of Vo gives rise to larger energy gain. We have 

carried out the calculations for many values of rs and the resulting phase diagrams 

are plotted in Fig. 2.5. 
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Figure 2.4. (a) The shrinking distance 6.b = b - a versus radius b for Si MOSFETs 
with D = l0a8 . Top curves are for larger disorder potential V0 's. (b) 
6.Etot versus radius b. Lower curves are for larger disorder potential 
Va's. The initial electron density parameter r8 = l5a8 . 
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Fig. 2.5 shows the phase diagram in the r 8 - ( plot for the case of b » ( Each 

value of V0 corresponds to a curve in the figure. The curves for larger Vo are above 

those for smaller Vo. On the right side of the curve for a given V0 , the electron disc 

will have a macroscopic shrinking, thus, an electron droplet phase is stable. To form 

the electron droplet state, the screening of the electron-electron interaction and the 

potential fluctuation are both crucial. The smaller interaction range between the 

electrons and the lower electron density, the easier to form the droplet phase. 

2.1.6 Conclusion 

From the energetics consideration, it is possible to have a droplet phase for 

2D electron systems at low densities. Both electron-electron interaction and disorder 

potential fluctuations are important for the formation of the droplet phase. 

We would like to make several comments. 

(i) We only consider one electron disc, corresponding to one drop in the droplet 

state. In real systems, electrons tend to occupy valleys of potential fluctuations to 

give rise many such drops. The size of each drop is determined by local potential 

depth. 

(ii) We only consider zero temperature effect, so the "gas" phase is empty. At 

a finite temperature, The "gas" phase is occupied by lower density electrons. Thus, 

a finite temperature enhances the possibility for the droplet state since the density 

difference between the liquid and the "gas" is smaller and the charging energy is less 

costly. However, in order to form the droplet state, the temperature has to be below 

the cohesive energy ( the energy cost to remove an electron from the liquid phase to 

the "gas" phase 26 ). 

(iii) In order to have a percolation, the "gas" phase needs to have a much 

smaller local conductivity than the liquid phase. This requires that a typical length 

scale of the "gas" region is larger than the localization length of the "gas" phase. The 

"gas" phase is low in electron density which gives rise to a short localization length. 

Thus, one may not need a large shrinking of electron drops to realize a percolation 

transition. 
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Figure 2.5. The phase diagram in the rs - ~ plot . rs is the init ial density parameter 
of the electron disc. D or 1/ >. represents the interacting range ~ of the 
electron-electron interaction. Each value of Vo corresponds to a curve 
in the figure. On the right side of the curve, the electron disc will have 
a macroscopic shrinking. 
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2.2 LDA Calculation And Compressibility 

The energetics consideration suggests that the 2D system could form the droplet 

state at the low densities with the help of disorder. In this section, we investigate the 

space distribution of electron density of 2D electron systems by using the local density 

approximation. At the same time, the compressibility of the system is calculated, and 

is found to be consistent to the experimental finding 36 . 

2.2.1 Model 

For the systems with the 2D metal-insulator transitions, it is crucial to deal 

with the electron-electron interaction in a satisfactory way. Since the theoretical tool 

to deal with strongly correlated systems is yet to be developed, approximations have 

to been made in a real world calculation. Local density approximation (LDA) is a 

good candidate to deal with this class of problems, and is found to be quite accurate 

in getting the total energy and electron density distribution comparing to the exact 

diagonalization results 63 . 

To investigate the density distribution of a disordered 2D electron system, we 

use the density functional theory. The total energy functional reads, 

E[n] = Er[n] + Eee[n] + Ed[n] + Ex[n] + Ec[n]. 

Here Er[n] is the functional of the kinetic energy, Eee[n] is the direct Coulomb energy 

due to the charge inhomogeneity and Ed(n) is the potential energy due to the disorder. 

The strong correlation effect caused by the electron-electron interaction is included in 

the final two terms: Ex[n] is the exchange energy and Ec[n] is the correlation energy. 

The ground state density distribution can be obtained by minimizing the total energy 

functional with respect to the density. 

Using the local density approximation, the total exchange and correlation en

.ergies are approximated to depend only on the local density, 

Ex(c)[n] ~ J dxe~(c) [n(x)] n(x), 
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where E~(ci(n) is the exchange (correlation) energy density for a homogeneous 2D 

electron system at a given density n, which can be determined by quantum Monte

Carlo calculations. We use the result from Tanatar and Ceperley 6 , 

E~(n) 

E~(n) 
1 + a1x 

ao~~~~~~~~ 

1 + a1x + a2x2 + a3x 3 

where x = l/(1rn) 114 . The energy unit is lRy* = m*e4 /2c*2n2 , and the parameters 

a0 = -0.3568, a1 = 1.13, a2 = 0.9052, a3 = 0.4165. 

The kinetic energy functional can be written as 

Er[n] = j dx L 1/;Js(x) (-V2) 1Pis(x), 
s,i 

where the sum is over all occupied quasi-particle energy levels (i) and the spin index 

(s). 

The energy functional for the disorder potential Vi(x) can be written as 

To simulate the disorder landscape in a real 2D system, two kinds of the disorder 

are used, 

(i) The off-plane charge impurity potential. 

1 
Vi(x) = - ~ -v=1x=-=X=i 1=2 +=d=2 ' 

where d is the distance between the electron and the impurity planes, and the impu

rities are randomly distributed with a density ni. 

(ii) The correlated disorder potential with the correlation between the different 

positions: 

(Vi(x)Vi(x')) = Vs2 exp (-Ix~ x'I) , 

where Vs is the amplitude of the potential fluctuation, and ~ is the correlation length 

of the disorder. The model simulates a slowly varied disorder potential, and ~ is 

roughly the average size of valleys in a disorder landscape. 
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The density distribution of the ground state can be obtained by minimizing the 

energy functional under the constraint of a constant total electron number. One gets 

the effective single particle Schodinger equation, 

(2.1) 

where 

Vsc[n, x] = Vi(x) + 6~ [e:~[n]n + e:~[n]n] 

is the potential self-consistently determined by the density distribution. The density 

distribution can be written as, 

n(x) = L l'l/Jis (x) 1
2, 

is 

where the sum is over all occupied quasi-particle energy levels and the spin index. 

To further simplify the calculation, we make an approximation to the kinetic 

energy so that it can be written in the form of a density functional 64 , 

Er[n] ~ J dx [1rn(x)2 + ! l'Vn(x) 1
2 + · · ·] . 

4 n(x) 
(2.2) 

The first term provides the local density approximation for the kinetic energy, while 

the second term includes the effect of the density gradient. 

To minimize the total energy functional with the constraint of a constant total 

electron number, we introduce the new variable x so that, 

_ x(x) 2 

n(x) =NJ dx'x(x')2' 

where N is the total number of the electrons in the system. The constraint for the 

constant total electron number is automatically satisfied with the new variable. The 

steepest descent method 64 is used to minimize the total energy functional to x, 

m+l(.) - m( ) c5E[x] I 
X X - X X - 'Y~ x=xm(x) ' 

where 'Y is the iteration constant which is chosen so that the interaction is convergent, 

and 
c5E[x] 2N 2 
~ = J dxx(x) 2 [- 'V + 21rn + Vsc[n, x] - µ J x(x), 
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where 
J dxx(x) [-v'2 + 21rn + Vsc[n, x]J x(x) 

µ= J dxx(x)2 

is the chemical potential of the system. 

The calculation is carried out in a 128 x 128 discrete space. The size of the system 

is set as L = 256a'k, where a'k is the effective Bohr's radius, a'k = cri2 /me2 , with c 

being the dielectric constant and m the effective mass of an electron. The periodic 

boundary condition and the Ewald sum for the Coulomb interaction are applied to 

minimize the finite size effect. The electron density is adjusted by changing the total 

electron number N. The density distribution is calculated by using the wave function 

method (Eq. 2.1), and the chemical potential is calculated by using the gradient 

approximation (Eq. 2. 2), which is found to be accurate in calculating the chemical 

potential comparing to the results got from wave function method. 

The compressibility of the system is calculated by 

1 N 2 8µ 
--

K, S EJN' 

where S is the total area of the system. 

2.2.2 Density Distribution 

Figure 2.6 shows the density distribution of the system. It can be clearly seen 

that the electrons form some high density regions, while the density of other regions 

are essentially zero. The boundary of each high density region can be easily identified 

because the density rapidly decays to zero beyond the boundary. The electron number 

contained in each high density regions depends on the detail landscape of the disorder. 

For the specific disorder potential used in the calculation, there are 3-10 electrons in 

each high density region. Depending on the average density of the system, the high 

density regions may connect each other together (rs = 10), or form some isolated 

regions (rs = 19). There exists a certain density (rs = 14) where the high density 

regions starts to percolate through the system, and form a conducting channel. The 

calculation clearly demonstrates that the metal-insulator transition observed in the 

2D electron systems is the percolation transition of the electron density. 
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Figure 2.6. The density distributions for the different electron densities . We use 
the contour plot for the local density parameter rs = 1/ ,Jin. The 
density of the white area decreases rapidly to zero. The disorder po
tential is generated by off-plane charge impurities with d = lOa'a, 
ni = 2.5 x 10- 3 /ajJ. 
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Figure 2.7. The density distribution for the free electron gas on the same disorder 
landscape as the Fig.2.6 at density T's = 14. 
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The electron-electron interaction is important for the conducting behavior of 

a dilute electron system in the sense that it makes the density distribution more 

extended because of the Coulomb repulsion. Figure 2. 7 shows the density distribu

tion for the free electron gas with the same density as in Fig. 2.6(b) by turning off 

the electron-electron interaction. The system only forms some isolated high density 

regions at the disorder valleys, while the density distribution of the corresponding 

interacting system (Fig. 2.6(b)) is quite extensive at the same density. At a given 

disorder strength, the critical density for the free electron gas is much higher than its 

interacting counterpart. 

2.2.3 Compressibility 

Figure 2.8 shows the compressibility of the systems. To compare with the 

experiments 36- 38 (see Sec. 1.2.5), we calculate bµ/bN, which is the direct measured 

quantity in the experiments. It is well known that the compressibility of a uniform 

electron gas is negative in the low density region due to the effect of the exchange 

and correlation energies, as shown by the solid line in Fig. 2.8(a). However, when the 

disorder is present, the behavior changes greatly. In the low density, the electrons tend 

to occupy the valleys of the disorder landscape, and the local density, instead of the 

average density, determines the compressibility of the system. On the other hand, at 

higher densities, all of the valleys are filled, one can expect the compressibility of the 

system to resume the behavior of a uniform electron gas. We have a non-monotonic 

behavior for bµ/bN, as shown by the dots in Fig.3(a), which are in good agreement 

with the experimental measurements 36- 38 . Comparing with Fig. 2,6, we find that the 

turning point of the compressibility (N ~ 100, r 8 ~ 14) coincides with the percolation 

threshold of the system. At low densities, the data points in the plot show strong 

fluctuation, indicating the effect of the local fluctuation of the disorder potential. 

The behavior can -be understood by a simple theory. Following the definition, 

the chemical potential µ is the energy needed to add an electron into the system, 

µ(N) = E(N + I) - E(N) 
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Figure 2.8. bµ/bN as a function of the electron density. Solid lines are for the uniform 
electron gas, squares are the data points for the disordered system, and 
the dashed-lines are the results from the theory discussed in the text. 
Two kinds of the disorder are used in the calculation: ( a) The off-plane 
charge impurities. The same parameters as the Fig. 2.6 are used; (b) 
The correlated disorder potential with Vs = 0.2Ry*, ~ = 0.2L. The 
parameters in the dashed-lines: (a) n0 = 0.5 x 10-3 /a'j], a= 2.3; (b) 
n0 = 10-3 / a'j], a = 1.5. N is the total number of the electrons in the 
simulation box. N = 60 corresponds to rs = 19; N = 100 corresponds 
to rs = 14; N = 200 corresponds to rs = 10. 
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where we suppose that the electron energy is determined by the local density of the 

electrons. E(N) is the total energy of the system, co(n) is the energy per electron for 

the uniform electron gas, and nef I is effective local density. For the inhomogeneous 

system as shown in Fig. 2.6, the effective local density can be estimated by neJJ(n) ~ 

n/ f (n), where f (n) is the fraction of the high density region. After some algebra, we 

have 

µ(n) 

{Jµ 

6n 

( n) [ d In fl ( n) d In f 
µo f 1 - d Inn + co f d Inn' 

, n 1 d In f , n n d f ( ) [ ]2 ( ) ( )2 2 
µo f f 1 - d Inn - co f f dn2 ' 

where µ0 is the chemical potential for a uniform electron gas. In the low density limit, 

f(n)-+ 0, the local effective density is greatly different from the average density of the 

system. As a consequence, the density dependence of the chemical potential, 8µ/8n, 

changes greatly. In general, supposing f(n) rv n°' in the low density limit, the analysis 

shows that fJµ/6n will have a non-monotonic behavior if a> 1. The behavior of f(n) 

is determined by the local disorder potential profile. In a 2D system, the infinite 

harmonic potential has f ( n) rv n. So the requirement a > 1 is equivalent to the 

condition that the local disorder potential has a weaker confinement effect than the 

harmonic potential. The condition can be easily satisfied in a typical experimental 

system. For instance, the Coulomb potential has f(n) rv n4 . In Fig. 2.8, we use the 

above equation for 6µ/6n with the following relation of f(n) to fit the data, 

1 
f(n) = 1 + (:o)°'. 

This form has a correct behavior in the high density limit, f -+ 1, and the low density 

behavior is controlled by a. By carefully choosing the values for a and n0 , we obtain 

a good agreement with our numerical data as shown in the dashed line in Fig. 2.8(a). 

To show the effect of the detail potential profile, we plot the compressibility 

for two kinds of disorder potentials in Fig. 2.8. Indeed, they have different indexes 

a. The index for off-plane charge impurity is greater than the correlated random 

potential. 
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2.2.4 Conclusion 

To conclude, we have studied the electron space distribution and the compress

ibility of disordered dilute 2D electron systems by using the local density approxima

tion. Electron distribution confirms the formation of the droplet state that consists 

of high and low density regions. Our calculated compressibility is in good agree

ment with the experimentally observed behavior showing unexpected anomaly at low 

densities. The turning point of the compressibility happens around the percolation 

threshold. 



CHAPTER 3 

Quantum and Semi-Classical Transportation 

Within the droplet model, the 2D metal-insulator transition can be considered 

as the percolation transition of the high density phase. In this chapter, we study the 

percolative transport in detail. 

In the first section, a simple classical percolative resistance network model is 

used to calculate the temperature dependence of the resistance. At low tempera

ture, the quantum effect becomes important. The semi-classical percolation with the 

quantum correction is studied in detail in the following sections to understand the 

low temperature behavior. 

3.1 The Classical Model 

3.1.1 Model 

A straightforward percolative model can be built based on a random resistance 

network. Fig. 3.1 shows the mapping between an inhomogeneous 2D system and 

a random resistance network. The system is divided into blocks, and each block 

maps to a resistance: those high density blocks (black regions) are mapped to liquid 

phase resistances (black resistances), and those low density blocks (white regions) are 

mapped to gas phase resistances ( unfilled resistances). 

The liquid phase is considered as conductive, and its resistance is supposed to 

be roughly independent of temperature, 

Rliquict = 1, (3.1) 

where we set the unit of resistance as the resistance of the liquid phase. For the low 

density gas phase, the conduction is through the hopping of the localized electrons, 

56 
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Figure 3.1. Mapping from an inhomogeneous 2D system to a resistance network. Left: 
black denotes the high density liquid phase, white denotes low density 
gas phase. The system is divided into blocks. Right: black denotes the 
resistance of a high density block, white denotes the resistance of a low 
density block. 

for which the temperature dependence of the resistance is of the form, 

~~ = p9 exp (fl), (3.2) 

where p9 and T0 are constant parameters. 

The proportion of the liquid phase is determined by the electron density. We 

denote the proportion of the high density liquid phase at the zero temperature as P0 , 

which is a function of the electron density. At a finite temperature, the high density 

liquid phase is excited to the gas phase (see Sec. 1.4), the temperature dependence of 

the proportion of the high density liquid phase is then, 

p, - P, (1 -l:!..c/T) liquid - 0 - e , (3.3) 

where ~c is the cohesive energy of the liquid phase, which is the energy gap between 

the liquid phase and the gas phase. 

Eq. 3.1-3.3 define a random resistance network as shown in Fig. 3.1. The average 

conductance of the network could be calculated by using transfer matrix method 65 . 
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Figure 3.2. The resistance of the model resistance network vs. temperature. The 
calculation is carried out on a stripe with width 20 and length 20000. 
For solid lines, P0 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. For 
dashed line, P0 = 0.45. parameters are: Ta/~ = 10, a9 = 0.1. 
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3.1.2 Results 

The calculation result is shown in Fig. 3.2. The great resemblance with the 

experimental results (see Fig. 1.3 and Sec. 1.2.1) is observable. The most important 

features of the experimental findings can be reflected in this simple model: 

(i) Several orders of drop of the resistance can be found at the low temperature 

for high densities (large P0 ). This is the result of the evaporation of the liquid phase 

to the gas phase. When P0 > Pc, where Pc= 0.5 is the percolation threshold for the 

network model used here, the conductance of the system can be written as, 

R(T) = R(Piiqui<l) ~ R(Po) + [-R'(Po)Po] e-~c/T, 

where we ignore the effect of the resistance of the gas phase, which is much larger 

than the resistance of the liquid phase at low temperatures. 

(ii) There exists a curve that is almost independent of temperature, as shown 

as dashed line in Fig. 3.2. The curve has P0 = 0.45, which is a little bit lower than 

the percolation threshold of the corresponding percolation network at Pc = 0.5. 

(iii) When P0 « Pc, the system enters into the insulating regime. The con

ductance of the system is determined by the resistance of the gas phase, as shown in 

Eq. 3.2. 

(iv) The re-entry of insulating state at the high temperature observed in the 

experiments is also present in this simple models. For P0 ~ Pc, the proportion of the 

liquid decreases with temperature, and there exists a temperature T1 , when T > T1 , 

Piiquid (T) < Pc. So the system re-enters the insulating phase at high temperature. 

3.1.3 Conclusion 

The experimental findings can be well reflected by a simple model with few 

parameters based on the classical percolation model. The most striking features 

of the metal-insulator transition, i. e., the resistivity drops several orders at low 

temperatures, can be easily explained in the percolation picture. 

However, the model is purely classical, with no quantum effect present. As the 

temperature getting lower, the quantum effects become more and more important. 
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Moreover, according to the scaling theory of localization, there will be no percolation 

transition in a 2D quantum percolation network. On the other hand, for a real system, 

there always exists a finite dephasing effect, which is caused by the electron-electron 

scattering and electron-phonon scattering at finite temperatures. The behavior of 

such systems, where the quantum effects compete with the classical effects, is inter

ested. 

3.2 Quantum Effects: One-Dimensional System 

In the classical calculation as shown in last section, the system is supposed to 

consist of inhomogeneous density distribution with high density conducting regions 

and low density insulating regions, and the resistance of system can be simulated by 

a simple random resistance network. This calculation is only valid when the electron 

phase is totally incoherent in each separate region. The dephasing of electrons is 

essential for the model since a pure quantum system will never percolate according 

to the well-known scaling theory of localization 1 . 

It is not obvious that a system can be considered as a classical system at low 

temperatures. A recent experiment 66 on 2D systems shows that the phase coherence 

length is quite long, typically 600-1000 nm. Thus, it is more likely that a real system 

is in the regime where quantum effects compete with classical effects. Classical effects 

are manifested by a finite phase coherence length, which may be due to a finite tem

perature or other novel mechanisms. For instance, there are experiments indicating 

that the dephasing rate may be finite even at zero temperature 67•68 . On the other 

hand, in a disordered 2D system, the quantum effect always causes the localization 

length to be finite. For a 2D system with metal-insulator transition, the localiza

tion length strongly depends on the electron density. Actually, by changing electron 

density, the conductance of the system may change several orders of magnitude, in

dicating the localization length may strongly depend on the electron density. The 

behavior of the system is determined by two competing length scales: localization 

length and phase coherence length. Therefore, it is important to study the system 
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Figure 3.3. The model to simulate the system with dephasing and disorder. The 
rectangles represent the normal random scatters, and the diamonds 
represent the dephasing scatters. 

with any given strength of disorder and dephasing, and determine the effect of the 

finite localization length and phase coherence length. 

In this section, we study the interplay of disorder and dephasing of one

dimensional (lD) systems in transport properties. We limit ourselves to lD models to 

reduce the severe finite-size effect in numerical results for higher dimensions, although 

our conclusion can be carried over to higher dimensions. 

3.2.1 Model 

Our lD model (Fig. 3.3) consists of normal random scatters and dephasing scat

ters, alternatively. While the normal random scatters give rise to a finite localization 

length, the dephasing scatters randomize electron phase. The normal random scatters 

are constructed by M 6-barriers with random height qi, which has the distribution 

{ 
_l_ if - !:,.q < . < !:,.q 

p (qi) = !:,.q ' 2 - qi - 2 . 

0, otherwise 

In the model t:i..q controls the randomness of the system. The transmission and reflec

tion coefficients for the normal random scatters can be calculated from the transfer-

matrix for individual 6-barrier 69 , 

[ fr f ] 
r* 1 
t* t 

[ 
1 - i!li. -i!li. ] 2k 2k 

i qi 1 + i!li. 
2k 2k 

where t and r are the transmission and reflection amplitudes for the barrier, and 

k is the momentum of the injected electron. The transfer matrix for M sequential 

6-barriers can be calculated from 
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Pl 

A B 

P2 

Figure 3.4. The structure of an individual dephasing scatter. The system is connected 
to two identical external electron reservoirs Pl and P2. An electron 
can be scattered along the directions shown by the arrows. There is no 
backscattering caused by this dephasing scatter. 

where X is the transfer matrix describing the propagation of the electron from one 

b-barrier to the next. Assuming the spacing between the neighboring barriers is unity, 

Xis 

X = [ 
eoik 

Using the transfer-matrix technique, the localization length can be determined ana

lytically 69 . 

To introduce the dephasing effect into the system, one has to include the in

teraction between the system and the environment. The Biittiker model 7o,71 shown 

in Fig. 3.4 is the simplest way to achieve that. In this approach, the system is con

nected to t he external electron reservoirs via the dephasing scatters. With a certain 

possibility, an electron is scattered into the external reservoirs, totally losing its phase 

memory, and then re-injected into the system. Two restrictions are imposed to reflect 
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physical reality. First, the net current between the system and the reservoirs should 

be zero so that each scattered electron will finally return to the system. To do so, one 

can adjust the chemical potentialµ of the external reservoirs such that Jp 1 + lp2 = 0, 

where !Pl (Jp2 ) is the current between the system and the external reservoir Pl (P2). 

Second, the system is connected to two identical electron reservoirs Pl and P2, and 

the S-matrix between the system and the reservoirs is designed so that the electron 

is only scattered forward, thus the dephasing scatters will not cause any momentum 

relaxation. The S-matrix reads 71 

A 0 vr=a 0 -fo 
B vr=a 0 -fo 0 

S= 
Pl fo 0 vr=a 0 

P2 0 fo 0 vr=a 
where a is the possibility that the electron is scattered to the reservoirs, namely, the 

dephasing rate. The phase coherence length is estimated by L'P :::: M /a. 
The localization length of the system is determined by the normal random 

scatters, while the phase coherence length is determined by the dephasing scatters. 

For a system with N dephasing scatters, there are N + 2 external chemical potentials 

µi with i = L, R, l, 2, · · · N, where µL(R) is the chemical potential for the left (right) 

measurement electrode. The system satisfies the multi-lead Ohm's law, 

Ii = L O"ijµj, i, j = L, R, l, 2, · · · N. 
j 

The conductance between the leads, O"ij, is determined by the Landaur-Biittiker for

mula, 
2e2 

O"ij=hTij forijcj, 

where Tij is the transmission coefficient between the leads. For the leads attached 

to the dephasing scatters, the transmission coefficient is the sum of all transmission 

coefficients between leads Pl and P2, 

Tij = TiPl,jPl + TiP1,jP2 + TiP2,jP1 + ~P2,jP2, 

fori,j = 1, 2, · · ·N. 
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The gauge invariance, namely shifting each µi by a constant should not affect the 

result, is satisfied through the condition 

aii = - Laij· 
jf:.i 

The total conductance of the system is calculated by imposing the condition 

Ii= 0 fori = 1, 2, · · · N. 

After some algebra, the total conductance of the system can be written as 

-1 

Although we start from a seemly artificial model, the total conductance formula 

actually reflects physical reality. It contains two kinds of contributions: the first is 

the direct conductance aLR coming from direct quantum tunneling; the second is the 

correction due to the dephasing effect caused by classical sequential tunneling. Thus, 

the conductance formula is consistent with the general picture of the dephasing effect 

on a conductance. 

3.2.2 Conductance 

The typical behavior of the conductance for the system is shown in Fig. 3.5, 

where we plot the conductance as a function of the dephasing rate a. In a real 

system, the dephasing rate is a monotonic function of temperature, so the plot can 

also be considered as the temperature dependence of the conductance. We have 

systematically calculated the conductance for different sets of parameters, and the 

results show qualitatively similar behavior, although the peak position depends on 

the parameters. The most important feature of the plot is that the conductance is not 

a monotonic function of the dephasing rate, or temperature. The plot can be divided 

into two regions, the gray and white regions. In the gray region, the dephasing rate 

is low and the phase coherence length is long. The electron is localized within the 
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Figure 3.5. The typical behavior of the conductance. We use t he parameters 
Q0 = q/2k = 1.1 , f:..q = 0.5, M = 5, N = 100, and average over 500 
samples. The gray and white regions show the quant um and classical 
regime respectively. 
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phase coherence length, so the system shows quantum localization with insulator

like behavior, namely, the conductance decreases as temperature drops. This region 

can be considered as the quantum region. On the other hand, when the dephasing 

rate becomes higher, the system enters into the classical regime and the conductance 

increases with decreasing temperature, a typical metallic behavior. 

The turning point between the quantum and classical regimes can be determined 

by comparing the phase coherence length L'P with the localization length t calculated 

from the transfer matrix formalism 69 . The result is shown in Fig. 3.6. It turns out 

that the transition occurs at the point where Lcp I"'-' t. From Fig. 3.6 and Fig. 3.6, one 

can clearly see that by changing the phase coherence length or the localization length, 

it is possible to observe the transition from the metal-like behavior to the insulator-like 

behavior, and the behavior of the system is determined by the competition between 

the localization length and the phase coherence length. Therefore, it is the transition 

between the quantum and the classical phases. 

3.2.3 Connection With Experiments 

Great resemblance could be found when comparing the experimental observa

tion to the result from this simplified model. In Fig. 3.7 we plot the dephasing rate 

( or tern perature) dependence of the resistance. Different curves are for different scat

tering parameter Q = q/2k. Changing the carrier density is equivalent to changing 

the Fermi momentum, which in turn changes Q. Thus, different curves correspond to 

different carrier densities. In the plot, we impose a finite cutoff of the dephasing rate 

a, which makes lower a inaccessible (gray region in the plot). For a above the cutoff, 

the phase coherence length Lr/! is always finite. Depending on whether Lr/! is larger 

or smaller than the localization length t, one can either observe the metal-like or the 

insulator-like behavior, as shown in Fig. 3.7. When the finite cutoff falls upon the 

turning point (the maximum conductance point in Fig. 3.5), the system shows the 

"critical" behavior, where the resistance is nearly flat within a certain temperature 

range. In Fig. 3.8, we show the density dependence of the conductance for different 
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Figure 3.6. The comparison between the localization length and the l/apeak, which is 
equivalent to the phase coherence length. Q0 = qi/2k, and tlq = 0.5. 
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Figure 3.7. The dephasing rate (or temperat ure) dependence of the resistance for 
different carrier densities ( Q0 = qd2k). The gray region shows inac
cessible region due to the fini te cutoff of t he dephasing rate. We use 
6-q = 0.5 , and Q0 = 0.1, 0.5 , 1.0, 1.1 , 1.2, 1.3, 1. 5, 2. 0. 
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Figure 3.8. The density dependence of the conductance for different temperatures. 
We reverse the direction of the axes so that it is easier to compare with 
n - p plot wildly used in the literatures. 
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a ( or temperature). One can identify a "fixed" point where different curves cross at. 

Similar feature has been seen in many experimental plots. 

3.2.4 Discussion 

The finite cutoff of the dephasing rate can be justified by two possible reasons. 

First, the cutoff may be due to a finite temperature. In this case, if we assume the 

dephasing rate goes to zero when temperature approaches zero, as suggested by a 

simple power law a rv Tv, there is always an upturn of the resistance at low enough 

temperature as shown in Fig. 3.7 for low values of a. This suggests a re-entrance 

to an insulator at low temperatures. The re-entry behavior may have already been 

observed in the recent experiment 41 . Under the circumstance, the transition is a 

finite temperature effect. The seco,nd possibility is that the dephasing rate might 

be finite at zero temperature 67•68 . Consequently, the metallic phase will survive 

even at zero temperature. If we adhere to the original definition that a metal has 

a finite resistance at zero temperature while the resistance of an insulator diverges, 

the system will always be a metal. The reason is that on the low density "insulator" 

side, the resistance will saturate to a finite value at T = 0 because of the finite phase 

coherence length. However, in a similar plot as shown in Fig. 3.8, a "fixed" point can 

still be identified which can be used as an operational definition of "metal-insulator 

transition". 

The saturation of the dephasing rate at low temperatures is still a controversial 

issue. Some argue that the saturation observed in the experiments is not an intrinsic 

effect. Nevertheless, whether it is intrinsic or extrinsic, the same factors which cause 

the saturation should have a similar effect on the conductance. To justify a real 

metal-insulator transition, one has to clearly rule out those external factors that may 

cause finite dephasing rate at low temperature 67•68 . 

In our simplified model, the detail structure of 2D electron gas is omitted. 

However, the same mechanism should be essential for the system at low tempera

ture, while the percolation mechanism dominates in higher temperature, where the 

quantum effect is not important. 
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In summary, we have studied the interplay between dephasing and disorder. 

Based on a lD model, we show that by changing the phase coherence length or the 

localization length, it is possible to observe the transition from the insulator-like be

havior to the metal-like behavior, which corresponds to a transition between quantum 

and classical phases. The resemblance between this simplified model and the exper

iments suggests that the quantum effect is important at low temperature, although 

the high temperature behavior is dominated by the classical effect. We suggest that 

conductance experiment should be accompanied by a dephasing rate measurement to 

address the effect of a finite coherence length. Although our calculation is for a lD 

model, the same physics should survive at higher dimensions. 

3.3 Semi-classical Percolation In 2D Systems 

In this section, we extend the calculation to a 2D quantum percolation model 72- 75 

with a finite phase coherence length. The dephasing mechanism is introduced by at

taching current-conserving voltage leads to the system, a method widely used for 

one-dimensional models in mesoscopic community 7o,71 . The system is no longer a 

Hamiltonian system since the voltage values at voltage leads are allowed to vary in 

order for the current conservation to be satisfied. The conductance in such a system 

is calculated. The transition point defined by the operational definition dp / dT = 0 

is identified. The scaling property close to the crossing point is also studied, and the 

results are in agreement with the experimental findings. 

3.3.1 Model 

Our quantum percolation model is based on a tight binding Hamiltonian of a 

2D square lattice, 

H = LciC{Ci + L tij(ctcj + cJci), 
<i,j> 

(3.4) 

where < ij > denotes a pair of nearest-neighbor sites and ci is the on-site energy. We 

choose ci to be random, ranging from -W /2 to W /2 to model an on-site disorder. The 

nearest-neighbor hopping matrix elements tij is a random variable which assumes the 
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Figure 3.9. Lattice system of our study. • denotes a lattice site where a 
phase-breaking voltage lead is attached. 

values 1 ( connected bonds in Fig. 3.9) or O ( empty bonds in Fig. 3.9) with respective 

probabilities P and 1-P. In order to introduce phase-breaking mechanism, we attach 

current-conserving voltage leads 7o,71 at random lattice sites(• sites in Fig. 3.9). The 

probability where a lattice site is attached with a voltage lead is denoted Pv and the 

hopping element between a voltage lead and a lattice site is denoted tv. The sole role of 

the voltage leads is to randomize the phases of incoming and outgoing wave-functions 

at the lead sites while maintain current conservation. Using Keldysh Green's function 

formalism 71 ,75 , it is straightforward to derive the multi-lead current-voltage relation: 

where 

and 

N 

Ii= LCJijVj i, j = L, R, 1, 2, · · · N, 
i=l 

Clii = - I: Clij 
j=/:i 

(3.5) 

(3.6) 

(3.7) 

In the above equations, a denotes the vector space of the lattice system, Tai is the 

transmission matrix, G~~) is the retarded (advanced) Green's function of the lattice 

system, and Pi = Imgf are the density of states matrices for the voltage leads and 

measurement leads Land R, with gf being the advanced Green's function at ith lead. 

In order to satisfy current conservation, we require that the total current through each 
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voltage lead to be zero, namely, Ii = 0 when i #- L, R. This restriction fixes the values 

for 11;. Under these conditions, we obtain the conductance between L and R 

(3.8) 

Here afR is the direct conductance which can be obtained from Eq. (3) with i = 'L 

and j = R, and aiR is the indirect conductance, 

-1 

aiR = - [ aLl · · · aLN ] (3.9) 

The aiR is the conductance of the conductance network obtained from the quantum 

lattice model. The direct conductance af R represents the direct quantum hopping 

between the measurement electrodes, and the indirect conductance aiR includes the 

contributions from the sequential hopping. 

3.3.2 Conductance 

We have calculated the total conductance g numerically. In the following we 

present the results and discuss their implications. There are several parameters in our 

model as mentioned before: P (probability for tij = 1), Pv (probability for a voltage 

lead), tv (hopping between a voltage lead and the lattice system), W (on-site disorder), 

and E (electron energy). The results presented below are for tv = 0.1, W = 2 and 

E = 0. We have done systematic studies by varying these three parameters, including 

zero on-site disorder with W = 0, and we found that the qualitative results remained 

unchanged. In Fig. 3.lO(a) we show gas a function of P for a pure quantum case with 

Pv = 0. The calculation is done on an L x L square lattice. The different curves are for 

different L's with L = 10 (solid line), L = 20 (dashed line) and L = 30 (long-dashed 

line). The important message from this plot is that for a given P, g -decreases with 

increasing system size L, indicating an insulating behavior. This result is consistent 

with the conclusion of scaling theory of localization, namely, in a disordered quantum 

system, all states are localized. 
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Figure 3.10. (a) Conductance gas a function of the probability P for a pure quantum 
system with size L = 10, 20 and 30. (b) Same as (a), except with 
Pv = 0.2. Inset: Plot g vs. P at the vicinity of Pc for L = 10, 15, 20, 
25, 30, 35 and 40. 
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In Fig. 3.lO(b) we plot the same curves as in Fig. 3.lO(a), except with Pv = 0.2, 

i.e., 20% of lattice sites are attached with phase-breaking voltage leads. The striking 

difference between the two plots is that in Fig. 3.lO(b), all curves cross at a single 

point Pc ~ 0.62. For P > Pc, g increases with L, while it decreases with L for 

P < Pc. We can connect the numerical results with the experimental observations, i. 

e., changing the carrier density is equivalent to changing P, and changing temperature 

is equivalent to changing the system size L 77 . Thus Fig. 3.10 can be considered as the 

density dependence of the conductance for different temperatures. A similar crossing 

point has been observed in many experiments and the crossing point is identified 

as the metal-insulator transition point using the operational definition dp/ dT = 0. 

Moreover, We find that the conductance at the "transition point" Pc is of the order 

2e2 / h, and weakly depends on the strength of disorder. The similar behavior is also 

observed in the experiments. 

3.3.3 Scaling Properties 

In Fig. 3.11 we show the scaling properties of our data. We use the standard 

finite-size scaling analysis 78 . The conductance curves for system sizes L and different 

P's can be scaled to the metallic and insulating branches. Those curves with P > Pc 

(Pc = 0.62) on the metallic side are scaled along the L-axis so that they coincide with 

a particular curve chosen here for P = 0.70. ((P) is determined from curve shifting. 

The similar procedure is also applied to insulating side, in which case we scaled the 

curves to coincide with the curve for P = 0.54. We find that all the conductance g 

for different size L ( ranging from 10 to 45) can be collapsed in a two-branch scaling 

function, g(L) = J(L/((P)), where ((P) diverges at Pc. Fig. 3.ll(a) shows the 

scaling function and ((P) is shown in the inset. We find that ( = IP - Pcl-11 with 

v = 1.4 ± 0.2, which coincides with the experiments. 

Another important scaling property is the /3 function, defined as 

/3( ) = ologg . 
g ologL. (3.10) 
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Figure 3.11. (a) Scaling plot of g vs. L/~ for L = 10, 12, 15, 18, 20, 20, 25, 28, 
30, 32, 35, 38, 40 and 45. Inset: ~ vs. the probability P. (b) Plot /3 
function vs. g. Inset: /3 vs. log g near /3 = 0. 
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Figure 3.12. Pv versus Pc. 

Fig. 3.ll(b) shows f3(g). /3 is negative for small g and approaches a positive value for 

large g. In the inset, /3 is plotted as a function of log g and we find that /3 ex log(g / 9c) 

around f3 '.::::'. 0, in common with other kinds of metal-insulator transition 79 . 

In our model, the phase coherence length Lq; is controlled by the probability of 

voltage leads Pv and the hopping between the a voltage lead and lattice system tv. 

Although it is difficult to determine the explicit relation between Lq; and Pv and tv, it 

is evident that for a fixed tv, Lq; decreases with increasing Pv and approaches infinity 

(pure quantum system) at Pv = 0. We have carried out calculations for several values 

of Pv for a fixed tv = 0.1 to determine the metal-insulator transition points. Fig. 3.12 

presents the resulting transition points Pc versus Pv. 

3.3.4 Remarks 

We would like to make a few comments. 

i. It is clear from the above calculation that the crossing point results from a finite 

phase coherence length. It is widely believed that the phase coherence length goes to 
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infinity when the temperature approaches zero. If this is the case, the crossing point 

will disappear at zero temperature, and there will be no "metal-insulator transition 

"even by the operational definition dp/dT = 0. However, there are recent experiments 

which suggest that the phase coherence length might be finite even as T ----+ O 67,68 . 

ii. The operational definition dp / dT is widely used in experiments to determine the 

critical point of a metal-insulator transition. But according to the original definition of 

metal-insulator transition, the transition occurs at the point where zero temperature 

resistance becomes infinity. If we started from the original definition, the crossing 

point of our numerical result is clearly not a metal-insulator transition point. 

In summary, we have demonstrated that it is possible to understand the metal

insulator transition by the quantum percolation model with a finite phase coherence 

length. Our calculation shows a crossing point, similar as seen in the experiments. 

The scaling property around this crossing point is also investigated and the results 

are consistent with the experimental findings. These results strongly suggest that the 

"metal-insulator transition "observed in the experiments is percolation in nature and 

a finite phase coherence length plays an important role in the transition. 



CHAPTER 4 

In-Plane Magnetic Field Effects And Spin Polaron 

In this chapter, the effects of the in-plane magnetic field will be studied. We 

focus on those systems at the clean limit, such as p-GaAs/ AlGaAs heterostructures. 

In this case, the droplet state proposed in the earlier chapters may be not applicable, 

since the disorder strength is not strong enough to overcome the Coulomb energy 

caused by the density redistribution. Some recent experiments about the effect of 

the in-plane magnetic field 80,81 reveals new details for the properties of the systems, 

which provide a basis to carry out detailed theoretical studies of the effects of an 

in-plane magnetic field. 

We believe that the percolation model is still valid for these systems. However, 

the corresponding electron states for the high conducting phase and the low con

ducting phase are not corresponded to the high density and low density regions. We 

propose that the high conducting phase is the normal unpolarized Fermi liquid, while 

the low conducting phase is spin polarized. We will show that with few reasonable 

assumptions, the effect of the in-plane magnetic field and the metallic temperature 

dependence can be understood in a unified picture. The theory is valid in clean sys

tems with less disorder effect. For those systems with strong disorder effect, such as 

Si MOSFETs, the droplet state is still a favorable model. 

4.1 Analysis 

We start from the ground state of a dilute 2D electron (hole) system on the 

metallic side. The experiments reveal many Fermi-liquid like behaviors in the 2D 

metal-insulator transition systems. For instance, it is found that the weak local

ization effect is present at low temperatures 41•43 , which is directly contradictory to 

79 
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the theoretical proposal of the superconducting ground state 48 . The other proposed 

ground states, such as Luttinger liquid state 45 ,45 , get little support from the experi

ments. Thus we assume that the ground state of the dilute 2D electron (hole) system 

is still a Fermi-liquid. 

To study the transport behavior of the homogeneous 2D system, it requires the 

knowledge of the excitation states. Unfortunately, the theoretical method is yet to 

be developed to deal with the excitation of strongly correlated systems. On the other 

hand, the experiments provide some hints concerning the properties of excited states. 

It is known that the temperature dependence on the resistivity at the metallic side 

follows 10 
' 

p(T) =Po+ P1 exp(-6/T). (4.1) 

The exponential term indicates an energy gap 6 between the ground state and the 

excited states. 

The recent experiments 80 ,81 on the resistivity response to the in-plane magnetic 

field provides more informations on the excited states. These experiments reveal that 

a strong magnetic field destroys the metallic phase. There exists a critical magnetic 

field Be, beyond which the system enters into the insulating state. The critical mag

netic fitld Be is found to be connected with the energy gap 6 80 : 

In other words, the energy gap between the ground state and the excited states is the 

same as the energy to polarize the spins. If the ground state is the unpolarized Fermi 

liquid, the excitation states should be related to the spin polarized states. On the 

other hand, the in-plane magnetic field actually drives the system into the insulating 

state, indicating the insulating state is spin polarized. 

Quantum Monte Carlo (QMC) calculations 82 provide favorable evidence to 

the conclusion. The QMC calculations indicate that there exists a spin unpolarized

polarized phase transition in 2D electron systems before the transition to the Wigner 

crystal phase. Although the QMC results provide no information about the excited 

states, we will show that some knowledge can be inferred from the QMC results. 
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The ground state energy per particle depending on the spin polarization 
( near the transition point: From top to bottom, the densities are 
Ts= 25, Ts= 25.565, Ts= 26. The transition density is at Ts= 25.565. 
( = (nt - ni)/n. The figure is based on the QMC results by Attaccalit 
et. al. 82 . The ground state energy does not depend on the sign of (. 

Besides other possibilities, two kinds of the excitations are interesting to con

sider. First is the density wave. The density wave causes the density redistribution, 

and form the spatial inhomogeneous structure. To get the excitation gap, it requires 

a large density redistribution. For instance, the density of some regions after the 

excitation becomes so low that the Wigner crystal forms in these regions. However, 

our earlier calculations (see Chapter II) based on the QMC results show that the 

redistribution of the density causes excessive Coulomb energy. Without the help of 

disorder, this kind of excitation is actually prohibited. 

Another possibility is the spin wave excitations. As in the case of the density 

wave, the spin wave causes the spatial inhomogeneous structure in the sense of the 

spin density distribution. On the other hand, the large spin redistribution does not 

induce extra Coulomb energy. For a system with relatively low disorder, such as 

p-GaAs/ AlGaAs heterostructures, the excitation is much more favorable. 

The QMC results provide some hints about the spin wave excitation. Figure. 4.1 

shows the spin polarization dependence of the ground state energy per particle near 

the transition point. It can be seen that there are three minimal points at ( = 0 and 
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~ = ±1. Above the transition density, ~ = 0 is the absolute minimal point, while 

~ = ±1 are the local minimal points. At a finite temperature, it is energetically 

favorable to excite some regions of the uniform spin unpolarized ground state (~ = 0) 

into fully pofarized state, instead of the partially polarized states. We call this kind of 

excitation as the spin polaron excitation. The same conclusion is true for the density 

below the transition point, where some regions of the spin polarized ground state can 

be excited to the spin unpolarized state. 

Based on these discussions, we propose: The ground state at the metallic side 

is the spin unpolarized liquid, while the ground state for the insulating side is spin

polarized. At the critical point of the metal-insulator transition, the system undergoes 

a spin unpolarized-polarized transition. Near the critical point, the spin polaron 

excitation, which causes the spatial inhomogeneous structure, is responsible for the 

observed strong metallic behavior. The picture is consistent with the percolation 

model 26 : the high conducting phase is the spin unpolarized phase, and the low 

conducting phase is spin polarized. In the following, we will show that the picture 

indeed reproduces the main experimental features. 

4.2 Electron Distribution And Resistivity 

The electron distribution of the system at a finite temperature can be calculated. 

The system is divided to three regions: spin unpolarized regions ( u); spin polarized 

regions with ~ rv 1 (p) and ~ rv -1 (f5). For each region, the ground state energy per 

particle can be expanded near the local minimal points at~= 0 and~= ±1: 

Eu(n, ~) 

Ep(n, ~) 

Ep(n,~) 

0 1 2 Eu(n) + 2x(n)~ + · ·. 

E0 (n) + '6.c(n) + Bo(n)(l - ~) + · · · 

E0 (n) + 6.c(n) + Bo(n)(l + ~) + · · · 

where 6.c is the energy difference between the spin unpolarized and polarized states. 

B 0 and x are the expanding coefficients depending on the density. 

At the limit that each separated region is large, the interface energy between 

the different regions can be ignored, and the total energy of the system can be written 
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as, 

i=u,p,fi 

where B is an external in-plane magnetic field, and we set gµB = 1. nu, np and nfi 

are the number of the electrons at the corresponding regions, and ~u, ~p, ~fi are the 

corresponding spin polarizations. 

The entropy of the system can be calculated by counting the number of ways 

to distribute the electrons into three different regions: 

s = k [n ln n - . ~ nis ln nis] 
z=u,p,p ;s=t,-1. 

where nis is the number of electrons in each region with spin s. 

The distribution can be calculated by minimizing the free energy f = c - Ts 

under the constraint of a constant total electron number n. Introducing the new 

parameters: nu= (1 - x)n, np(fi) = xn(l ± ~)/2, nit(-1-) = ni(l ± ~i)/2, the free energy 

can be minimized to x, ~ and ~i, where x is the fraction of the electrons in the spin 

polarized regions; i = u, p, p. After some algebra, the distribution of the electrons at 

the finite temperature can be obtained, 

B±Bo 
~P(fi) = tanh kT , 

B-x~u 
~u = tanh kT , 

cosh B+Bo - cosh B-Bo 
~ = kT kT 

cosh B+Bo + cosh B-Bo ' 
kT kT 

{ 
h B-xgu [ti.c+Bo+he;] }-l . cos kT exp kT 

X = 1 + ----=--=-----=--=--
COSh B+Bo + cosh B-Bo 

kT kT 

(4.2) 

Many experimental findings can be reproduced by some simple calculations. 

First, at low temperatures and without an in-plane magnetic field, the result can be 

approximately written as, 

Bo ( 6.c + Bo) ( 6.c ) x ::::::! 2 cosh kT exp - kT ::::::! exp - kT 

It can be seen that the distribution of the electrons exhibits an energy gap 6.c, which 

is indeed the energy difference between the spin unpolarized and spin polarized states, 

as found in the experiments 80 . 
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When the magnetic field is presence, we have ~u ::::::: B / (x + kT), and 

cosh fr ( ~c) x::::::: B exp --
cosh x+kT kT 

For a weak magnetic field, the energy gap only depends weakly on the magnetic field. 

Such behavior is indeed observed in the experiments 80 . 

Supposing that the size of each separated region is large such that the quantum 

effect of the transport between different regions can be ignored, the resistivity of 

the system can be calculated by using a classical percolation model. The system 

is then mapped onto a random resistance network with three kinds of resistances 

(Ru, Rp, Rp), which are corresponding to the three different regions. The occurrence 

probability of each resistance is determined by Eq. 4.2. The local resistivity of each 

region is supposed to be a function of its polarization, 

p(~)::::::: Po(l + o{2 + · · ·), 

There are no odd order terms about ~ because the local resistivity is independent of 

the sign of the polarization. a is positive since the spin polarized region has higher 

local resistivity. In the following calculation, we omit the higher order terms of~-

Figure 4.2 shows the temperature dependence of the resistivity under different 

in-plane magnetic field strengths for a system which is metallic at zero magnetic 

field. The magnetic field polarizes the electron spins, and drives the system into the 

insulating phase. The critical field Be is approximately ~c (1.12~c in this case). We 

found that the temperature dependence of the resistivity can be well fitted by Eq. 4.1 

before the magnetic field drives them into an insulating state. For a weak magnetic 

field, ~ ::::::: ~c - (3B 2 , and p1 can be well fitted by equation p1 (0) [1 - (B / ~c) 2], 

which has no arbitrary parameter. The fitting of p1 is consistent with the recent 

experiment 80 • 

When the system is driven into the insulating side, it can be seen that the 

resistivity saturates at low temperatures due to the full polarization of spins. From 

Eq. 4.2, we have ~P = tanh[(B+Bo)/kT]. The saturation temperature is T8 rv B+Bo, 

which linearly increases with an in-plane magnetic field. The similar behavior is 

observed in the experiment on the p-GaAs/ AlGaAs samples 80 . 
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Figure 4.2. (a) The temperature dependence of the resistivity for different in-plane 
magnetic field strengths. From bottom to top, the field strengths are 
B / 6.c = 0.0, 0.4, 0.8, 1.0, 1.12, 1.2, 1.4, 1.6. Po = 1, a = 9, X = 5, 
Bo = 5. (b) The parameters to fit the data with Eq. 4.1. Squares are 
for p1 , Triangles are for 6.. Solid line is the function P1 (0) [1-(B / 6.c)2]. 
Dashed line is just a guide line. , 
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0. 

Figure 4.3. The resistivities depending on the in-plane magnetic field for different 
temperatures. T = 0.1, 0.3, · · ·, 1.9. The other parameters are the 
same as in Fig. 4.2. 

Figure. 4.3 shows the resistivities depending on the in-plane magnetic field for 

different temperatures. For a weak magnetic field, the resistivity has the dependence 

p rv B 2 , as seen in experiments 81 . The behavior can be easily expected from the 

theory: the resistivity of system under the weak magnetic field is determined by the 

resistivity of the spin unpolarized regions, and ~u rv B, p ~ p0 (1 + o{~) ,.-., B 2 . 

A crossover point, which is corresponding to the dashed line in Fig. 4.2(a), can 

be identified. The similar crossing point is also found in the experiments, and is 

identified as the critical magnetic fields 33 . The resistivity saturates at high magnetic 

field. The saturation magnetic field is different from the the critical field. This is the 

result of the percolation model: the system enters into insulating state if the fraction 

of the low conducting phase exceeds the percolation threshold. 

4.3 Discussions and Summary 

Before summary, we like to make few comments: 
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(i) We assume that the local resistivity is a function of the spin polarization. The 

assumption is reasonable since th~ spin correlation between the electrons prevents the 

electrons from hopping between sites. Further theoretical works is required to justify 

the assumption. 

(ii) We suppose that the resistivity of the system can be calculated by using 

the classical percolation model. To make the assumption valid, it requires the size 

of each separated region is larger than the phase coherence length of the electrons. 

Some recent experiments do suggest that the strong metallic behavior occurs at the 

regime where the quan~um effect is less important 41 . 

(iii) To have the spin polaron excitation, the spin polarization dependence of 

the ground state energy per particle should have the local minimal points at~= ±1. 

However, the QMC results indicate that the density regime satisfying the condition is 

very narrow (rs= 24.5- 26.5 for the QMC result we used) 82 . This could be an issue 

to our model. On the other hand, the energy scale involved is so small that much 

higher accuracy is required to get a conclusive answer from the QMC calculations. 

(iv) In this study, we ignore the disorder effect. For the system that the disorder 

is important, such as Si MOSFETs, the density wave excitation may be more favorable 

than the spin polaron excitation. 

In summary, we proposed the spin polaron excitation as a possible excitation 

state of the dilute 2D electron systems. The picture can easily explain the experimen

tal fact that the energy gap between the ground state and the excited states is the 

same as the energy needed to polarize the electron spins. The temperature depen

dence of the resistivity can be understood as the effect of the spin polaron excitation. 

The theory provides a unified picture to understand the temperature dependence and 

magnetic field dependence. 
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