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CHAPTER! 

Introduction 

The set of prices of default free bonds with maturities ranging from shortest to longest 

defines the term structure of interest rates. Modelling default free bond prices I term struc

ture of interest rates has been approached in many ways. An exhaustive catalogue of the 

approaches has become virtually impossible. The modelling of the term structure of interest 

rates is important for both practitioners and academicians. A practitioner is concerned with 

the model's tractability, ability to price bonds, and other interest rate derivatives and last 

but not least, its ability to hedge the risks caused by the underlying risk factors. Whereas 

academic literature is concerned with understanding the factors that affect the term struc

ture of interest rates and how to efficiently model the term structure using these factors. 

Financial institutions and other market participants utilize term structure models to manage 

their exposures to fluctuating interest rates and other risk factors, and to price fixed income 

securities (bonds, mortgage backed securities etc.). 

The early theories of the term structure of interest rates include the pure expectations 

hypothesis (Lutz (1940)), the liquidity-premium theory (Hicks (1946)), and the market 

segmentation hypothesis (Culbertson (1957)). 

The expectations theory laid more stress on the expectations of future interest rates. 

The state variables of the expectations theory are the spot short term rate and expectations 

of the spot short term rate at future dates. Rational risk neutral decision makers operat

ing in perfect debt markets adjust borrowing and lending plans until all debt instruments 

outstanding have identical total returns over any given holding period, independent of their 

final maturity. CIR (1985) show that the implication of the general expectations hypothesis 

1 



that all expected returns for all holding periods are equal, is mathematically inconsistent 

with Jensen's inequality1. 

As a result a restricted version of expectations theory was postulated. The Local Ex

pectations Hypothesis states that the expected holding period returns are equal only for 

one specific holding period. The natural choice of holding period was the next basic (i.e. 

shortest) interval. The local expectations hypothesis failed to take into consideration risk 

aversion as it assumes local risk neutrality and hence no term premiums. 

The liquidity-premium theory introduces market participant's risk preferences. The 

liquidity premium theory states that there is an imbalance (excess supply) of long matu

rity bonds. This in turn implies that the lenders must be paid positive liquidity premium 

to entice them to lend long term. In other words the theory implicitly assumes that all 

lenders have prevailingly short lending horizons and borrowers prevailingly long borrow

ing horizons. The liquidity theory implies that the slope of term structure is positive and is 

determined by the risk tolerance and excess supply of bonds. As a consequence the theory 

fails to explain inverted term structure. 

The market segmentation theory required information about the excess demand for 

bonds of each maturity segment. The preferred habitat theory (a type of market segmen

tation theory) first set forth by Modigliani and Sutch (1966) (hereafter MS) is essentially 

an adaptation of the expectations theory of the term structure of interest rates to a world in 

which 

• future rates are uncertain 

• all market participants have definite preferences about the length of time for which 

they want to lend or borrow money (hence the name preferred maturity habitat) 

• both the borrowers and lenders generally exhibit risk aversion and hence all other 

1 Jensen's inequality implies that a function of the expected value of a random variable is less than or equal 

to the expected value of the funcJion of the random variable. 
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things being equal, would prefer to match maturities in their portfolios to their chosen 

horizon so as to be certain about the return or cost. 

The MS model asserts that the expected change in future rates may be expressed as the 

difference between the current rate and a weighted.average of past rates. Hence one of the 

testable implications of the MS model was that a distributed lag on past short term rates 

is an indicator of expected future short term rates. Hamburger and Latta (1969) (hereafter 

HLT) produce evidence inconsistent with this implication of the MS model. HLT argue 

that it is possible that the periods used to test the MS hypothesis- the post-Accord and in 

particular the Operation Twist period may contain some special factors not allowed for in 

the model2. HLT further argue unless these factors can be taken into account or supporting 

evidence can be presented for other periods, the case for including the lagged rates in the 

term structure equation as suggested by the preferred habitat theory of MS would appear to 

be weak. 

Each of the theories, the expectations hypothesis, the liquidity premium theory, and 

the market segmentation hypothesis were not originally designed as dynamic pricing or 

hedging models. This led to the general equilibrium approach which included both the 

expectations of future rates and the risk preferences of the market participants. The general 

equilibrium approach to modelling the term structure of interest rates in a continuous time 

framework was pioneered by Cox, Ingersoll and Ross (1985) (hereafter CIR). The general 

equilibrium approach begins from assumptions concerning the dynamic properties of pro

duction processes and specification of decision maker's utility functions. Expected utility 

of wealth maximization by rational agents produces a relationship between the dynamics 

of the production process and the dynamics of the instantaneous short-term interest rate. 

Given the dynamics of the instantaneous short-term interest rate, bond prices must satisfy 

2Launched at the beginning of 1961 by the incoming Kennedy administration, an attempt to twist the 

maturity structure of interest rates by raising yields on securities with short term to maturity while simulta

neously lowering, or at least holding the line on, long term rates. 
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a partial differential equation to preclude arbitrage opportunities. 

The market for interest rate derivatives developed significantly over the last two decades. 

In 1988 the notional principal outstanding for interest rate options ( calls and puts) traded 

over the counter was $ 279.2 billion whereas the trading volume increased to $ 3277.8 

billion in 1996. Similarly the trading volume of the interest rate options (caps, collars, 

floors, and swaptions) traded over the counter in 1988 was $ 327.3 billion and increased 

to$ 4190.1 billion in 19963• With the substantial growth rate in the market for interest 

rate derivatives, people started addressing the issue of pricing of interest rate derivatives. 

The problem was addressed in two stages, in the first stage the bond prices of different 

maturities are determined and in the second stage the prices of interest rate derivatives are 

determined. Since the second stage is contingent on the first one, if the prices of the bonds 

are not determined accurately the pricing errors would compound during the second stage 

of pricing of interest rate derivatives. The general equilibrium models did not price the cur

rent set of bonds exactly which led to greater mispricing when applied to pricing of interest 

rate sensitive contingent claims. 

Ho and Lee (1986) (hereafter HL) were among the first to develop a model that utilized 

the present term structure as an input to the model and hence was consistent with the term 

structure used to parameterize the model. The HL model relates current bond prices to an 

arbitrage free risk neutral stochastic process to determine the instantaneous short rate. The 

risk neutral stochastic process is useful for valuing other interest rate derivatives. Gener

alizing on the work by Ho and Lee (1986), Heath, Jarrow, and Morton (1992) (hereafter 

HJM) take a related approach. This approach models the evolution of the entire term struc

ture. The authors show that given an initial term structure, pricing can proceed once the 

structure of all forward rate volatilities is provided. 

In both the equilibrium models and the HJM models the derivation of the pricing for

mula is contingent on the parametric specification of either the underlying factors such as 

3Source: Bank for International Settlements 
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the short term rate or the forward rates. A misspecification of the stochastic process for the 

above stated factors will lead to systematic pricing and hedging errors for derivative secu

rities linked to these factors. This implies that the success or failure of these approaches in 

modelling the term structure is closely tied to their ability to capture the dynamics of the 

underlying risk factors. 

In such parametric models it is quite difficult to justify the choice of one parametric 

specification over the other. This leads to a very serious problem of misspecification. Even 

if a model fits the term structure of interest rates well in sample, it may produce significant 

out of sample errors. Ait-Sahalia (1996) rejects " ... every parametric model of the spot rate 

(previously) proposed in the literature" by comparing the marginal density implied by each 

model with that estimated from the data. Backus, Foresi, and Zin (1995) and Canabarro 

(1995) further show that the misspecification of the underlying interest rate model can lead 

to serious pricing and hedging errors. 

In this research, a relatively new approach (non-parametric pricing technique using 

neural networks) is taken in which the data is allowed to determine both the dynamics of the 

underlying factors and the pricing relationship with minimal restrictions on the underlying 

factors and the pricing model. This approach again has the advantage that it prices the 

bonds at the current time exactly because the prices of the bonds today are used as inputs 

to the network. At the same time this approach does not impose the parametric restrictions 

as imposed by the HJM models. 

Though an exhaustive categorization of the different approaches to the modelling of the 

terms structure of interest rates is virtually impossible, the term structure models can be 

broadly categorized as equilibrium, HJM, and network models. Despite the importance of 

term structure modelling, there is a lack of consensus on what approach would be ideal from 

a pricing point of view. In other words what approach should one pick for an application 

such as the pricing of bonds? The study addresses this issue and is concerned with the 

application of the three approaches to pricing and hedging zero-coupon, default free bonds. 

5 



1. Equilibrium Models 

2. Heath Jarrow and Morton Models and 

3. Network Models. 

The CIR model was the first equilibrium model to be developed. The CIR model is 

a one factor model and all one factor models impose the restriction that the bond price 

changes of different maturity bonds are perfectly correlated. Observation of historical price 

changes are inconsistent with this implication. The one factor models also have a drawback 

that they are able to explain only a few shapes of the yield curve ( downward sloping, 

upward sloping, and one hump). 

In light of the one factor model's weaknesses, the study also considers a two factor 

general equilibrium model, the Longstaff and Schwartz (1992) (hereafter LS) model. The 

two factor LS model considers the short term rate and its volatility as the two underlying 

risk factors. The importance of second factor in the LS model, the short rate's volatility, 

is identified in a study by Chan, Karolyi, Longstaff, and Sanders (1992) (hereafter CKLS). 

CKLS show that the volatility of the short rate is not constant and is dependent on the level 

of short term rate. The resulting bond pricing relationships associated with CIR and LS 

models are of closed form. 

Given that equilibrium models are unable to price the bonds of different maturities at 

the current date exactly, the HJM models are considered. The HJM model in the most 

general form takes the current term structure as an input. The resulting HJM model prices 

are fully consistent with the current term structure. Due to the intractability of the general 

HJM models Ritchken and Sankarasubramanian (1995) (hereafter RS) imposed restrictions 

on the forward rate volatility that make the model more tractable. With the restrictions im

posed by RS two different kinds of models are possible. The generalized Vasicek (hereafter 

HJM-GV) model assumes a constant short rate volatility and the other model assumes vari

able short rate volatility (hereafter HJM-RS). The findings of CKLS motivate inclusion 
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of both types of HJM in this study. The study includes both the HJM-GV and HJM-RS 

models. The HJM-RS model allows short rate volatility to be a function of the level of 

short rates. In other words any model that has a variable short rate volatility falls under the 

HJM-RS model category. 

Both the equilibrium models and HJM models impose some kind of parametric restric

tions on the underlying risk factors such as the short term rate, forward rate etc. Consider

ing the fact that very little is known about the identity and dynamic structure of the actual 

underlying factors, the study considers the non-parametric approach using network models. 

In the category of the network models the most commonly used and standard network 

model is the multi layer perceptron (hereafter MLP). Cybenko (1988) and Hornik (1989) 

demonstrate that one-hidden-layer MLPs can represent to arbitrary precision most classes 

of linear and non-linear continuous functions with bounded inputs and outputs. For an 

application to the term structure modelling, bond prices are non-linear functions of the risk 

factors and the inputs (the risk factors) and outputs (bond prices) are bounded. Results 

of the Cybenko and Hornik study suggest that an MLP should be able to model the term 

structure to arbitrary precision. Girosi and Poggio (1990) (hereafter GP) show that radial 

basis functions (hereafter RBF) have the "best" approximation property i.e. there is always 

a choice for the parameters that is better than any other possible choice. This property is a 

strength of RBF network because if an RBF with a particular training algorithm does not 

perform well in an application, there is always a way to improve the performance of the 

RBF. This gives an opportunity to keep improving the performance of the RBF network 

till one achieves the desired level of accuracy. This property in contrast is not shared by 

the MLP network. As a result the study also includes the RBF network in the study to 

compare the performance of the MLP versus RBF network for a bond pricing and hedging 

application. 

In the network models the underlying factors are defined as the inputs and bond prices 

are the outputs. After sufficient training of the network, the network can be used to price 
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the bonds for an out-of-sample period analogous to using a pricing formula in a parametric 

procedure. 

A term structure model is assessed not only by its ability to price bonds but also by 

its ability to hedge the underlying risk factors. In other words can a risk manager use the 

model to minimize the risk associated with the movements (parallel and non-parallel) in the 

yield curve? Traditionally, hedging strategies are based on simple duration or convexity. 

Hedging strategies of this sort are valid if and only if the movements in the term structure 

are parallel and the volatilities of different maturity interest rates are of similar magnitude. 

Another traditional approach to the hedging of a fixed income portfolio utilizes princi

pal components analysis (hereafter PCA). PCA is one form of broader class of models that 

fall under the dimension reduction approach. The PCA approach essentially assumes that 

changes in all interest rates in the term structure are generated from a multivariate normal 

distribution. 

PCA analysis extracts the common factors, principal components, that explain the 

greatest portion of the total volatility of the term structure's rates from the variance-covariance 

matrix of rate changes. The resulting model describes the change in the rate of a specific 

maturity as a linear combination of the principal components and the principal components' 

coefficients for that maturity. 

Though there is extensive literature on each of the parametric pricing approaches there 

is little literature devoted to the relative pricing and hedge performance. 

The objectives of this study are: 

• Determine the relative performance of the parametric and non-parametric bond pric

ing models in their ability to price zero coupon bonds. 

• Determine if the parametric models and the non-parametric models improve the 

hedging effectiveness over the traditional duration and principal components based 

hedge positions. 
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The study tests pricing and hedge effectiveness using a rolling window approach. Using 

monthly data on zero coupon bond prices from 1983 - 1995 each model is applied to price 

zero coupon bonds in the first month of 1996. Then the window is rolled forward by a 

month i.e. the first month of 1996 is added in the estimation window, the first month of 

1983 is dropped and model prices are estimated for the second month of 1996. The rolling 

window approach produces sets of bond prices corresponding to the term structure for that 

month. The approach is repeated till last month of 1999 i.e. forty-eight windows. 

Two portfolios are used to test the hedging effectiveness, the portfolio that is to be 

hedged and the portfolio that is used to hedge. The weights of the portfolio to be hedged 

are known but the weights of the hedge portfolio for the first month of 1996 are determined 

by estimating model specific hedge portfolio weights using the data from February 1983 

through the January 1996 estimation period. Then by looking at the actual prices of the 

securities in the second month of 1996, both the hedge portfolio and the portfolio to be 

hedged are repriced. Ideally the return on the hedge portfolio should be the same as the 

return on the portfolio to be hedged. The difference in the returns of the two portfolios is 

defined as the hedging error. The process is repeated using the rolling window approach 

till last month of 1999. Hence in the hedging applications the number of windows over 

which the hedge error is measured is forty-seven as opposed to forty-eight in the pricing 

applications. This approach is applied for each model throughout the sample period. The 

sttmmary statistics such as mean and variability of the hedging errors over the forty-seven 

months are used to test relative hedging effectiveness. 

The study finds that in terms of pricing of zero coupon bonds the non-parametric pricing 

approach using multi layer perceptron produces smaller pricing errors than other models 

considered. This has important implications with regards to the pricing applications of 

interest rate sensitive securities especially bonds. The superior performance of the MLP 

network implies that other models are misspecified in terms of parametric restrictions, 

stochastic assumptions, volatility structure, etc. Errors due to model misspecification are 

9 



compounded when a misspecified model is used to price interest rate options and other 

derivative contracts. 

The study produces evidence that the HJM models (HJM-GV and HJM-RS) produce 

smaller pricing errors than the equilibrium models (CIR and LS). The HJM models use the 

information about the whole yield curve (interest rates of different maturities) during the 

estimation period whereas the equilibrium models use information about only one point of 

the yield curve (the short rate) during the estimation period. The movements in the yield 

curve are not perfectly correlated and hence the HJM models that use the information on 

the whole yield curve are able to capture the imperfect correlation amongst the movements 

of rates of different maturities better than the equilibrium models. 

The study also produces evidence that amongst the HJM models the HJM-RS model 

produces smaller pricing errors than the HJM-GV model. The evidence presented in this 

study supports the contention that a model that allows for varying spot rate volatility is 

more suitable for the pricing of bonds than a model that specifies the spot rate volatility as 

constant. 

In the hedging applications the study finds that the MLP network and the HJM-RS 

model with varying spot rate volatility perform better than the CIR model, hedge positions 

based on duration, and hedge positions based on principal components analysis. The study 

also highlights the fact that the CIR model is quite effective in hedging a portfolio that has 

a shorter duration but is ineffective in hedging a portfolio that has a longer duration. This 

result is consistent with the observed larger pricing errors for longer maturity zero coupon 

bonds produced by the CIR model. 

The evaluation of relative hedging performance has important implications from a prac

titioner's point of view. The HJM-RS (with varying spot rate volatility) model and the MLP 

network are more difficult to implement than the simple Principal Components based hedge 

positions. The study finds significant evidence that the extra cost in implementation of the 

HJM-RS and network models is worth the effort (the benefits in terms of better pricing 
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and hedging performance outweigh the costs of their implementation). This is demon

strated by the lesser mean and variance of the hedge errors produced by HJM-RS model 

and MLP network when compared to the other models. The results illustrate that the hedge 

performance of principal component hedge positions is adversely affected by outliers in 

the estimation sample. The hedge effectiveness of parametric and network models do not 

deteriorate with the presence of outliers in the estimation sample to the same extent as the 

hedge effectiveness of the principal component method. 

Though the duration and principal component hedges are easy to implement, the study 

identifies their weaknesses by examining a scenario where the yield curve was subject to 

a significant shock that produced simultaneous parallel shift and change in the curvature 

of the term structure. During the fall of 1998 Russia defaulted on its sovereign debt and 

this caused a decrease in the yields of U.S. Treasury bonds of longer maturity. Hedge 

performance of each model is examined surrounding the Russian debt crisis during the fall 

of 1998. 

Overall the HJM-RS model and the MLP network produce smaller pricing and hedg

ing errors than other models. The inputs provided to the MLP network are identical to 

the inputs required by HJM-RS model. This implies that the network has been able to 

learn the relationship among the risk factors of the HJM model and the term structure of 

interest rates better than the relationship specified by the HJM model. This ability of the 

network models to uncover uncertain relationships as demonstrated by this study is one of 

the major advantages of network models. Till date in the financial markets there are many 

assets whose relationship with the underlying risk factors is yet not known exactly. Neural 

networks are useful in such circumstances. 

The MLP's smaller pricing errors relative to those produced by HJM-RS implies that 

the HJM-RS model can be improved. Approaches to improve the HJM-RS model identified 

by this study include a relaxation of the assumption that the errors in the measurement of 

the yields are independent and identically, and inclusion of another stochastic factor besides 
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the single stochastic short rate. 
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CHAPTER2 

Literature Review 

One of the early theories of the term structure of interest rates is the expectations hy

pothesis. The expectations hypothesis would include any model that implies that the ex

pectations play a pivotal role in explaining the relation between yields on bonds of different 

maturities in an uncertain economy. The expectation hypothesis states that under rational 

behavior, perfect markets, and negligible transaction costs, all debt instruments outstanding 

must have identical total returns over any given holding period, irrespective of their final 

maturity. The implications of the expectations hypothesis as identified by Modigliani and 

Sutch (1967) are as follows 

• At any point in time there is a unique relationship between the yield of a security with 

m periods to maturity and the expected one-period yield in each of the following m 

periods. 

• In the case of long term bonds with a market value close to par the relation between 

the yield and the expected future short rates can be closely approximated by a simple 

average of these m future short rates. 

• If the expected future short rates are known with certainty, then in frictionless markets 

there would be a unique current and future structure of interest rates consistent with 

rational market behavior. 

• All market participants including borrowers and lenders irrespective of their intended 

borrowing/investment horizon would be indifferent to the maturity structure of their 

assets or liabilities. 
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Cox Ingersoll and Ross (1985)(hereafter CIR) show that the implication of the expecta

tion hypothesis that all expected returns for all holding periods are equal is mathematically 

inconsistent with Jensen's inequality. This led to the local expectations hypothesis that im

plied that the expected holding period returns are equal only for one specific period and the 

natural choice for the holding period was the next short period. Even the local expectations 

hypothesis suffered from the flaw that it failed to take into account the risk aversion of 

market participants. 

Another theory proposed by Hicks (1946) restricted the expectations hypothesis and 

was called the liquidity-premium theory. This theory places more importance on the risk 

preferences of the market participants. This states that to overcome liquidity preference the 

term premia must be positive and increase with maturity in a monotonically non-decreasing 

manner. This implication of the liquidity premium theory is inconsistent with an inverted 

term structure. 

In contrast the unrestricted theory proposed by Modigliani and Sutch (1966) (hereafter 

MS) was the preferred-habitat theory that interprets term premia as habitat-displacement 

allowances. This theory needs unobservable information about the distribution of borrower 

and lender habitats before it can restrict the sign or magnitude of term premia in differ

ent maturity sectors. This theory falls under a broader category of market segmentation 

hypothesis initiated by Culbertson (1957). The market segmentation theory maintains that 

the term structure of interest rates reflects the relative demands of different investors with a 

variety of relative inflexible portfolio preferences. The MS model implies that the expected 

change in future rates may be expressed as the difference between the current rate and a 

weighted average of past rates. Hence one of the testable implications of the MS model 

was that a distributed lag on past short term rates is an indicator of expected future short 

term rates. Hamburger and Latta (1969) (hereafter HLT) produce empirical evidence that is 

inconsistent with this implication of the MS model. HLT use monthly and quarterly obser

vations of the yields on three month Treasury bills and long term U.S. Government bonds 
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for the period 1951-1965 to compare the MS model with that of Wood's model (1964). The 

Wood model assumes that at any point in time the best estimate of next period's short term 

rate is the current rate, past rates are irrelevant. HLT argue that it is possible that the peri

ods used to test the MS hypothesis- the post-Accord and in particular the Operation Twist 

period may contain some special factors not allowed for in the model. HLT further argue 

that unless these factors can be taken into account or supporting evidence can be presented 

for other periods, the case for including the lagged rates in the term structure equation as 

suggested by the preferred habitat theory would appear to be weak. 

The expectations hypothesis, liquidity premium, and market segmentation hypotheses 

were each found lacking for the purpose of pricing and hedging bond portfolios. The in

ability of each of these theories to explain the term structure of interest rates led to the gen

eral equilibrium approach pioneered by Cox, Ingersoll, and Ross (1985) (hereafter CIR). 

This approach encompasses all the previous theories of the term structure and argues that 

expectations, risk aversion, investment alternatives, and preferences about the timing of 

consumption all play a role in determining the term structure of interest rates. At the same 

time CIR model is free from the flaws that the previous theories of term structure had i.e. it 

does not impose risk neutrality on the market participants and considers risk aversion of the 

market participants and investment alternatives in deriving the bond pricing relationship. 

Affine models are a subset of the equilibrium term structure models. The CIR model is 

an example of an affine model. A term structure model is said to be affine if the logarithm 

of the bond yields are linear or affine in terms of the model's state variables. Brown and 

Schaefer (1991) and Duffie and Kan (1993) clarify the assumptions necessary for an affine 

yield model. Duffie and Kan show that the risk adjusted drift of the short term rate, the 

expected change in the short rate less the covariance of the short rate with the stochastic 

discount factor, and the variance of the short term rate must both be affine to produce an 

affine yield model. The models such as Vasicek (1977), CIR, Pearson, and Sun (1994), 

LS (1992), and Hull, and White (1993, 1996) satisfy these requirements, but some other 
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continuous time models such as that of Brennan and Schwartz (1979) do not. Affine models 

were first investigated by Brown and Schaefer (1994). Duffie and Kan (1994) developed a 

general theory and showed how the state variables in an affine model can be re-interpreted 

as pure discount bond yields. 

The market for interest rate derivatives developed significantly over the last two decades. 

In 1988 the notional principal outstanding for interest rate options (calls and puts) traded 

over the counter was $ 279.2 billion whereas the trading volume increased to $ 3277.8 

billion in 1996. Similarly the trading volume of the interest rate options (caps, collars, 

floors, and swaptions) traded over the counter in 1988 was $ 327.3 billion and increased 

to $ 4190.1 billion in 19963• With the substantial growth rate in the market for interest 

rate derivatives, people started addressing the issue of pricing of interest rate derivatives. 

The problem was addressed in two stages, in the first stage the bond prices of different 

maturities are determined and in the second stage the prices of interest rate derivatives are 

determined. Since the second stage is contingent on the first one, if the prices of the bonds 

are not determined accurately the pricing errors would compound during the second stage 

of pricing of interest rate derivatives. The general equilibrium models did not price the cur

rent set of bonds exactly which led to greater mispricing when applied to pricing of interest 

rate sensitive contingent claims. 

Given the simplicity of a one factor model and the flaw of the equilibrium models that 

they do not price the current set of bonds exactly, a new approach using the binomial tree 

was developed which took the current term structure as given. Black, Derman, and Toy 

(1990) (hereafter BDT) developed a single factor model using the information about the 

current term structure and estimated volatilities to construct a tree of possible future short 

rates. This tree in tum can be used to value other interest rate derivatives. BDT start by 

assuming that changes in all bond yields are perfectly correlated, expected returns on all 

securities over one-period are equal, short rates at any time are lognormally distributed, and 

3 Source: Bank for International Settlements 
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there are no taxes or trading costs. This is in contrast with the affine yield approach that 

assumes that (1 + y(t, 1)) is conditionally lognormal and not the one-period yield, y(t, 1) 

(yield on a one-period bond measured at time t). The single factor underlying the BDT 

model is the short rate, the annualized one-period interest rate. The model takes as inputs 

an array of yields on zero-coupon Treasury bonds for different maturities and an array of 

the estimated yield volatilities for the same bonds. BDT call the first array the current yield 

curve and the second array the current volatility curve. BDT develop a tree of future short 

rates consistent with the current yield curve, the current volatility curve and the absence 

of arbitrage opportunities. In the BDT model choosing the yield curve and volatility curve 

implies the cap curve. A cap curve gives for each maturity, the price of an at-the-money 

differential cap4• So the BDT model had the drawback that the cap curve implied by the 

BDT model was not consistent with the observed cap curve. BDT are able to match the 

outputs, yield curve, and volatility curve but not the cap curve. 

The inconsistency of the cap curve implied by the BDT model with the observed cap 

curve led to the Black and Karasinki (1991) (hereafter BK) model. BK also assume that the 

one-period yield y(t, 1) is conditionally lognormal and develop a similar approach to pric

ing of interest rate sensitive securities. BK model by construction matches all the outputs, 

the yield curve, the volatility curve, and the cap curve with the observable market prices. 

Both the BDT and BK models can be effectively used to price interest rate derivatives 

but not zero coupon bonds as the current set of zero coupon prices is an input to both the 

models. Both the BDT and BK models are single factor models and suffer from the same 

drawback as all other single factor models i.e. they assume that the changes in the prices 

of bonds of different maturities are perfectly correlated; 

Ho and Lee (1986) (hereafter HL) were among the first to suggest the application of 

the binomial tree approach to pricing of interest rate sensitive securities. BDT and BK 

4 A differential cap pays at a rate equal to the difference (if positive) between the short rate and the strike 

price. For a particular maturity, an at-the-money cap has a strike equal to the forward rate for that maturity. 
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were inspired by the same motivation as HL in their objective of pricing of interest rate 

sensitive securities. HL assume a discrete trading economy i.e. the market clears at discrete 

points in time separated by regular intervals. The authors also assume that the market is 

frictionless, the bond market is complete and the short term rate follows an arithmetic 

brownian motion with a constant volatility and a deterministic time-varying drift. In this 

economy HL assume that the zero coupon bond price curve fluctuates randomly over time 

according to a binomial process. HL model was again a single factor model and so implied 

that the returns on bonds of different maturities are perfectly correlated. HL model was 

originally presented as a whole yield curve model (a model that uses the information on the 

whole yield curve at current time). 

The Heath Jarrow and Morton (1992) (hereafter HJM) model is a direct descendent of 

the HL model. HJM generalized on the work of Ho and Lee and developed a model in 

which the entire set of forward rates evolves simultaneously with respect to a set of volatil

ity curves. The HJM framework encompasses a wide variety of term structure models. 

Effectively the framework can include any term structure model that has a continuous for

ward rate curve. HJM started off by taking the current term structure as given and then 

addressed the issue of pricing of interest rate contingent claims5. 

Another widely accepted and more recent approach is presented in the paper by Brace, 

Gatarek, and Musiela (1997) (hereafter BGM). BGM analyze a class of term structure mod

els with volatility of lognormal type that falls under the general HJM framework. Under 

the HJM framework modeling lognormally distributed interest rates avoids the problem of 

negative interest rates but these rates explode (interest rates tend to infinity) with positive 

probability implying zero bond prices and hence arbitrage opportunities. The correspond

ing forward rates in the BGM framework do not explode, and are positive and mean revert-

5The study uses the restricted version of HJM with restrictions imposed by Ritchken and Sankarasub

ramanian (1995) and the empirical procedure of how the model can be applied to the pricing of bonds is 

explained in section 4.3 in detail. 
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ing. BGM argue that under an arbitrage-free setting forward rates over consecutive time 

intervals are related to one another and cannot all be lognormal under one arbitrage-free 

measure. But each forward rate is lognormal under the forward arbitrage-free measure 

rather than under one (spot) arbitrage-free measure. 

The BGM model provides justification for use of the Black futures formula to price caps 

and floors. Since in most markets caps and floors form the largest component of an average 

swap derivatives book, BGM approach has been applied quite extensively. A cap/floor is 

a strip of caplets/floorlets each of which is a call/put option on a forward rate. The BGM 

approach also takes the current term structure as given and hence cannot be applied to the 

pricing of zero coupon bonds at a certain date. 

Both the equilibrium models and HJM models fall under the category of parametric 

pricing models. In such models, often there is no economic rationale for the choice of one 

parametric specification over the other. This can lead to a very serious problem of mis

specification. Even if a model fits the term structure of interest rates well in sample, it may 

produce significant out of sample errors. Ait-Sahalia (1996) rejects " ... every parametric 

model of the spot rate (previously) proposed jn the literature" by comparing the marginal 

density implied by each model with that estimated from the data. Backus, Foresi, and 

Zin (1995) and Canabarro (1995) further show that the misspecification of the underlying 

interest rate model can lead to serious pricing and hedging errors. 

Given the fact that very little is known about the validity of the parametric restric

tions imposed by the parametric models on the underlying risk factors, a non-parametric 

approach to the modelling of the term structure of interest rates is the next logical step. 

The non-parametric approach using neural networks has been applied to many secu

rities. Kryzanowski, Galler, and Wright (1993) (hereafter KGW) and Zirilli (1997) have 

shown that network models can recognize stocks providing superior future returns and the 

ones providing inferior future returns. KGW use a Boltzmann Machine for sorting stocks. 

A Boltzmann Machine is an artificial neural network that uses simulated annealing (a tech-
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nique of stochastic optimization) to set the states of the neurons during both the weight

learning and function-computing stages of its operations. The network employed by KGW 

learns the relationship between a company's stock return one year in the future and the most 

recent four years of the firm's financial data, its industry and different macroeconomic fac

tors. Refenes, Zapranis, and Francis (1995) (hereafter RZF) and Bansal and Viswanathan 

(1993) explore a dynamic version of the arbitrage pricing model (APT). RZF use a multi 

layer perceptron and the model training algorithm used is the regular backpropagation. RZF 

show that even simple neural learning procedures such as the backpropagation algorithm 

far outperform current 'best practice' in a typical application for stock ranking within the 

framework of the arbitrage pricing model. The network's smooth interpolation properties 

allow neural models to fit well in sample and produce small out of sample errors. 

Neural networks have also been recently applied to different types of problems in 

money management. Both Daiwa Securities Co. and NEC corporation apply neural net

works software to recognize price chart patterns for Tokyo Stock Exchange listed stocks. 

According to Loofbourrow and Loofbourrow (1993) the best known trading system user is 

Brad Lewis of Fidelity Investments. Lewis has developed· neural networks to manage $2 

billion of Fidelity's funds in seven portfolios. 

Not surprisingly neural networks have also been applied to predict exchange rates. 

Mehta (1995) discusses the applicability of neural networks to foreign exchange forecasts 

and concludes that neural networks are currently the best problem solving tool available 

for non-linear time series. Refenes and Zaidi (1995) state that, when applied to historical 

data, neural networks outperform moving averages and mean value based forecasts for U.S. 

Dollar and German Deutsche Mark exchange rate predictions. Neely, Weller, and Dittmar 

(1997) implement genetic programming, a non-linear technique in the same family as neu

ral network approaches to determine technical trading rules for foreign exchange trading. 

Given the versatility of neural networks they have also been applied to prediction of 

bond ratings and credit scoring. Dutta and Shekhar (1988), Moody and Utans (1995), and 
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Singleton and Surkan (1991, 1995) apply neural networks to predict corporate bond ratings. 

Jensen (1992) showed how neural networks can be applied to credit scoring. 

Swanson and White (1995) use different techniques including neural networks to exam

ine the predictive power of forward interest rates. They use criteria such as forecast mean 

square error, forecast direction accuracy, and forecast-based trading system profitability. 

They find that the forward premium has predictive power to forecast the sign of future 

changes in the interest rates. They compare linear models such as Mishkin's (1988) to the 

neural networks. Though the study gives information about the predictive power of for

ward rates, it does not provide any information about an ideal approach to the pricing and 

hedging of zero coupon bonds. 

Though there have been studies that apply neural networks to many financial applica

tions, neural networks have not yet been applied to the pricing and hedging of fixed income 

securities. The relative pricing and hedging performance of neural network, equilibrium 

and HJM models is an empirical question. 

This study compares the price and hedge performance of the three categories of term 

structure models, the equilibrium models, the HJM models, and the network models. The 

equilibrium models are considered since these are one of the first approaches to the mod

elling of the term structure of interest rates and are widely used by researchers and prac

titioners. One of the primary drawbacks of the equilibrium models was found to be the 

inability of equilibrium models to accurately price zero coupon bonds. This drawback of 

the equilibrium models led to another approach to the modelling of interest rates in which 

the current term structure was an input to the model ensuring that the bonds at the current 

time are exactly priced. Hence the relative performance of HJM models with respect to the 

equilibrium models is of interest to both practitioners and academics. Both the equilibrium 

models and the HJM models impose parametric restrictions on the underlying risk factors 

and little is known about the validity of these restrictions given the observed market data. 

Since very little is known about the misspecification of the underlying risk factors in any 
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parametric models the class of network models is the third category of models considered 

in the study. The study uses the two standard neural networks (MLP and RBF) to price and 

hedge zero coupon bonds. The remainder of this chapter presents a review of the literature 

relevant to each type of model. 

2.1 The Equilibrium Models 

The equilibrium approach was triggered by CIR (1985). The model has been exten

sively applied in practise due to its tractability (easily implementable as it gives closed 

form solutions for bond prices). Testing the CIR model has generated a substantial litera

ture. 

For instance, Brown and Dybvig (1986) (hereafter BD) empirically test the CIR model 

using Treasury Bills, Bonds and Notes. BD use the data on prices of U.S. Treasury Bills, 

Bonds and Notes traded from 1952 to 1983. Using only data on the bond prices the authors 

estimate both the instantaneous default free interest rate and the variance of changes in 

that rate. They compare such estimates implied by the prices of a cross section of bonds 

trading at a point of time with estimates obtained from studying the time series of short 

term interest rates. In other words they compare the implied instantaneous interest rate to 

the short term Treasury Bill rate and look at the mean and variance of the difference. BD 

conclude that the CIR model systematically overestimates short term interest rates and the 

model fits Treasury Bills better than other Treasury Issues. They also conclude that the 

model significantly overprices premium issues and underprices discount issues. 

Jordan and Kuipers (1997) (hereafter JK) use the cross sectional approach. In particular, 

the observed price of a discount bond at time t is assumed to equal the model price plus 

a random error (price fitting). They assume that the errors are distributed normally with 

zero mean and a constant variance. Given these assumptions they employ non-linear least 

squares to estimate the parameters of the Vasicek (1977), Merton (1973) and CIR (1985) 

models. They conclude that the CIR and Vasicek models describe the yield curves observed 
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in the Treasury market with minimal error on average. 

All single state variable models imply that price changes of bonds of different maturities 

are perfectly correlated. This is inconsistent with observed term structure dynamics. This 

resulted in the investigation of more general bond pricing models, multi-factor models 

which have more flexibility. 

The multi-factor models address the issue that the changes in prices of bonds of differ

ent maturities are not perfectly correlated. Brennan and Schwartz (1979) specify the second 

factor as the long term rate and Longstaff and Schwartz (1992) specify the volatility of the 

short term rate as the second factor. Longstaff and Schwartz (1993) implement their model 

and apply it to the pricing of STRIPS (separate trading of registered interest and principal 

securities). Longstaff and Schwartz estimate the parameters by using the one-month U.S. 

Treasury bill rates from January 1964 through December 1989 and apply the model for the 

date of November 9, 1992. The authors find pricing errors of the order of 0.122 % for the 

one year bond and 1.322 % for the 29 year bond. Though the one year bond pricing error is 

reasonable the pricing error on the 29 year bond is quite high from a practitioner's point of 

view. Brennan and Schwartz (1979) apply their model to a sample of Canadian government 

bonds for the period 1964 - 1977 and evaluate the predictive ability of the model. They 

find that the root mean square prediction error for bond prices was of the order of 1.5 % 

which is again quite high from a practitioner's point of veiw. 

2.2 The Heath Jarrow and Morton Models 

Heath Jarrow and Morton (1992) show that once the structure of forward rate volatilities 

is specified and an initial term structure is given, the prices of the zero coupon bonds in the 

future can be derived. In the HJM framework the process by which the term structure 

evolves is path dependent i.e. given an initial term structure one needs to know not only 

the risk factors or their proxies but also the entire path by which they evolved since their 

initialization. This makes the model computationally intractable since the description of 
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the movements of term structure requires an almost infinite number of state variables. 

In practice, the volatility function of the forward rates is usually considered to be 

Markov. A stochastic process is said to be Markovian with respect to a set of variables 

if the evolution of the process from time t is a function of only the observations of all 

the variables at time t and not the path that the variables took from an initial date to time 

t. Ritchken and Sankarasubramanian (1995) (hereafter RS) consider a class of interest rate 

processes in which spot rate volatilities can fluctuate according to the levels of the spot rate. 

RS further show that if the volatility structure of forward rates is given by an exponentially 

declining function of the time to maturity, the evolution of the spot rate is Markovian. With 

this, given an initial term structure, RS show that there exists a two state variable represen

tation of the evolution of future bond prices. 

2.3 The Network Models 

The networks used to model the term structure in the study are the radial basis func

tions (hereafter RBF) and multi layer perceptrons (hereafter MLP) . The artificial neural 

networks are considered usually as a non-parametric technique. The networks do not make 

any distributional assumptions about the data though a functional form of the network does 

exist. 

Hutchinson, Lo and Poggio (1994) (hereafter HLP) demonstrate that learning networks 

can be used successfully for both learning and estimating a pricing formula for options. The 

authors apply different networks (MLP, RBF, and projection pursuit regressions (hereafter 

PPR)) to daily call option prices on S&P 500 futures from 1987 - 1991 and compare 

each of the network's pricing and delta hedging performance to the naive Black-Scholes 

(hereafter BS) model. Their performance measure is the coefficient of determination, R2 , 

of the model values compared to the true option prices for the out of sample data. The 

other measure considered is the "tracking error" of a replicating portfolio designed to delta

hedge an option position, using the model in question to calculate the hedge ratio or delta. 
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If the option pricing model used to calculate the delta is correctly identified and if one can 

costlessly and continuously maintain the hedge portfolio, then at expiration the combined 

value of the stock and bond positions should exactly offset the value of the option. The 

difference between the terminal value of the call and the terminal combined value of the 

stock and bond positions serves as a measure of the model's hedge performance. Since 

it is impossible to continuously hedge in practice, there will always be an error due to 

discreteness which the authors call as "tracking error". 

The authors test the performance of the networks in two phases. In the first phase the 

authors generate option prices using the BS model by performing Monte Carlo simulation 

and train all the three networks MLP, RBF, and PPR using the data generated by the BS 

model. Using average out-of-sample R 2 values the authors compare the performance of 

the three networks relative to the BS model. The average values of R 2 reported by the 

authors in the first phase were 99.95%, 99.08%, 99.48%, and 100% for RBF, PPR, MLP, 

and BS respectively. The value of 100% for the BS model is not surprising since the data is 

generated using the BS model. The results indicate that all three networks on average have 

an R 2 value above 99% implying that all the three networks do a good job of learning the 

BS model. 

In the second phase the authors apply the three networks MLP, RBF, and PPR to daily 

call option prices on S&P 500 futures from 1987-1991 and compare each of the network's 

pricing and delta hedging performance to the naive BS model. The average out-of-sample 

R 2 values reported by the authors for the MLP, RBF, and PPR were 95.53 %, 93.26 %, and 

96.56 % respectively. For the BS model the authors report an average R 2 of 84.56 %. The 

authors compare the absolute tracking error of each of the network MLP, RBF, and PPR 

with the absolute tracking error of the BS model. The statistic used by the authors is a 

paired t-test. The null hypothesis is that the average difference of the two tracking errors 

is zero, and the (one-sided) alternative hypothesis is that the difference is positive, i.e., the 

learning-network tracking error is smaller. The t-statistics reported for the MLP vs. BS, 
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RBF vs. BS, and PPR vs. BS were 3.7818, 2.1098, and 2.0564 respectively. 

Overall the authors find that the MLP is able to better learn the BS formula as compared 

to both the RBF and the PPR. MLP also does better when applied to the daily call option 

prices on S&P 500 futures from 1987-1991. The study ofHLP strongly indicates that the 

networks MLP, RBF, and PPR can learn a non-linear relationship like the BS model very 

well (from the phase one study of HLP) and at the same time uncover unknown non-linear 

relationships between the outputs and inputs (from the phase two of HLP study). This 

makes these networks strong candidates for an application to the pricing and hedging of 

bonds in which the relationship between the bonds and the underlying risk factors is highly 

non-linear and unknown. Overall the authors find that the MLP is able to better learn the 

BS formula as compared to both RBF and PPR, and MLP also does better when applied to 

the daily call option prices on S&P 500 futures from 1987 - 1991. 

2.4 The Hedging Applications 

Empirical investigation of Bond hedging applications have examined simple immuniza

tion strategies based on duration and convexity. The duration of a bond is dependent on the 

first derivative of the price of a bond with respect to the interest rate whereas convexity is 

dependent on the second derivative of the bond with respect to the interest rate. 

Gultekin and Rogalski (1984) (hereafter GR) using bond data conclude that "the data 

are not consistent with the hypothesis that price and volatility of Treasury securities is ad

equately measured by simple duration". GR use six non-stochastic measures of duration 

Dl through D6. Dl is Macaulay's (1938) duration, D2 is the one suggested by Bierwag 

(1977), D3 - D5 are the ones proposed by Cooper (1977), and D6 is Khang's (1979) du

ration. Each of the duration measures considered by GR presumes a specific characteristic 

movement of the term structure as shown in Table 2.16• 

GR consider the duration measures D 1 through D7 and a four factor model using a 

6The details of each of the durations considered by GR are explained in detail in Appendix G 
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Table 2.1: Measures of Duration considered by Gultekin and Rogalski( 1984) 

The different measures of duration as considered by GR have the following implications 

for the changes in the yields. 

Measure Significance 

Dl Permits the changes in only the level of yields 

D2-D6 Allow for additive and multiplicative yield-curve movements 

i.e. changes in both level and the slope of yield curve. 

D2-D6 differ only in the implicit degree of slope and 

curvature of yield curves. D2 assumes the steepest yield 

curves while D6 assumes the flattest. 

D7 A stochastic duration proposed by Cox, Ingersoll, and Ross (1979) 

that starts with the proposition that term structure cannot 

be expected to change according to any known and fixed pattern. 

factor analysis. GR use a general equation 

r(m) = -(~y)Dk(m) (2.1) 

in which for a given change in the term structure, - ( ~y), the price change in a security with 

maturity m, r(m), is directly related to its duration Dk(m), with k = 1, 2, ... , 7 denoting 

the duration measure under consideration. GR use equation (2.1) to test the following three 

hypotheses 

• The relation between security price changes and duration is linear 

• Duration is a complete measure of risk i.e. duration incorporates the effect of matu

rity and coupon differences on price volatility 

• Capital markets for bonds are efficient 
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The model of period-by-period changes used by GR to test the three hypotheses was 

rr(m) = i'lr + i'2rDkr-1(m) + i'3rDk;_1(m) + i14rCr(m) + er(m) (2.2) 

The subscript T refers to the period T, so that rr(m) is the one-period continuously com

pounded price change on security m. Cr(m) is the coupon on security m, and Dkr-i(m) 

denotes the duration measure under consideration with k = 1, 2, ... , 7. The coefficients 

i'ln i'2n i'3n and i'4r vary stochastically over time. If the hypothesis that Duration is a 

complete measure of risk is true that would imply that the expected value of the interest 

rate change i'2r is statistically significant.· The authors include the term Dk~_ 1 ( m) to test 

linearity. Linearity would presume that E ( i'3r) = 0. GR include the term involving Cr ( m) 

in equation (2.2) to measure whether duration normalizes coupon differences. Complete

ness assumes that E( i14r) = 0 and the intercept term in equation (2.2) is included by the 

authors to measure the level of interest rates. The third hypothesis that the capital markets 

for bonds are efficient implies that i'ln i'2n i'3n i'4n and er(m) should be uncorrelated 

through time. The disturbances are assumed to have zero mean and to be independent of all 

other variables in equation (2.2). The variables i'ln i'2n i'3n i'4n and er(m) are assumed 

to follow approximately a multivariate normal distribution. GR perform tests of the impli

cations for duration measures Dl to D7 for holding periods of 1, 3, 6, and 12 months by 

applying the model of equation (2.2) to U.S. Treasury bonds for the period January 1947 

through December 1976. Applying the model in equation (2.2) to the data the authors re

jected the hypothesis that the relation between returns and duration is linear. GR fail to 

reject the hypothesis that additional measures of risk systematically affect average price 

changes, signifying that duration is an incomplete measure of risk. 

GR also construct Treasury portfolios holding maturity approximately constant each 

month to test a multiple-factor model (the factors are derived by performing factor analysis 

on bond portfolio returns). The authors systematically construct constant maturity portfo

lios to consist of all securities within a maturity range. Return and duration measures over 

any maturity range are computed as a weighted average of all the individual returns and 
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durations that fall within the range. GR select specific maturity ranges to avoid any empty 

portfolios, constructing 12 portfolios during the 18-year period 1959 through 1976. Thirty

day increments are taken from 60 days up to a half year, 90-day increments up to 1 year, 

360-day increments thereafter to about 6 years, and all securities with maturities beyond 

2, 160 days. The authors factor analyze the 12 Treasury portfolio return series to obtain 

factor loadings of up to four factors. The model used by the authors to test the multi-factor 

model is 

where r 7 (p) is the one-period continuously compounded return on portfolio p = 1, 2, ... , 12; 

and >-.k(p) denotes the factor loadings with k = 1, 2, 3, 4. A one-factor model assumes that 

i'3n i'4n and i'57 in equation (2.3) are zero; a two-factor model sets i'4n and i'57 to 

zero and i'57 is zero for a three-factor model. The authors compute means and standard 

deviations of R2 values adjusted for degrees of freedom obtained by period-by-period re

gressions using the multiple factor model in equation (2.3) for the time period 1959 through 

1976. GR also compute comparable means and standard deviations of R2 adjusted for de

grees of freedom for duration Dl using equation (2.2) by assuming i'37 and i'47 to be zero. 

GR find that over the period 1959 through 1976 the average R2 for duration Dl was 0.577 

and one, two, three, and four factors had an average R2 of 0.550, 0.588, 0.645, and 0. 759 

respectively. The authors also find that the standard deviations of the R2 values are system

atically smaller as the number of factors is increased. Based on this evidence, GR conclude 

that a four-factor model (factors derived from factor analysis) explains about 18% more 

return variability than duration D 1. 

The GR study was one of the first studies that compared the traditional duration based 

hedges with the hedges based on a four factor model (the factors are extracted using factor 

analysis) and concluded that a multi factor model is required for the hedging of a fixed 

income portfolio. Litterman and Scheinkman (1991) (hereafter LS) find that there are three 
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principal common influences on the variations in bond returns represented by the zero

coupon yield curve. LS examine the bond returns of 13 Treasury issues by using the weekly 

prices from February 22, 1984, through August 17, 1988. The bonds were maturing at dates 

that varied from May 15, 1989 to May 15, 2016. The authors observe that the percent of 

variance explained by three principal components for the weekly returns of the 13 bonds 

is approximately 99%. At the same time the authors also compare each bond's return with 

the returns on a duration-hedged portfolio composed of all the 13 bonds. The weights 

used by LS in the duration hedged portfolio were inversely proportional to the durations 

of the bonds, so that each made an approximately equal contribution to the total return 

of the portfolio. The authors compare the principal components approach to the duration 

approach based on the percent of variance of excess returns on the 13 bonds explained and 

unexplained by both approaches. LS find that the three-factor hedge reduces the residual 

variance (unexplained variance) by an average of 28%. 

Bliss (1987) finds that hedging based on factor decomposition (using principal compo

nents) is superior to hedging based on traditional methods. Bliss uses three portfolios of 

bonds constructed on February 15 1996 to test the hedging effectiveness of the factor model 

versus Macaulay duration. The three portfolios are as follows: 

• Portfolio 1: A single twenty-year 8 percent coupon bond (paying coupons semiannu

ally) 

• Portfolio 2: Equal numbers of one-year and twenty-year 8 percent coupon bonds 

• Portfolio 3: Long positions in one-unit each of one-year and twenty-year zero coupon 

bonds, together with a short position in one-unit of a ten-year zero-coupon bond 

Bliss computes the factor loadings by using the data on changes in Fama and Bliss 

(1997) yields for ten different maturities (.25, .5, 1, 2, 3, 5, 7, 10, 15, and 20 years to matu

rity) for the time period November 1982 through December 1995. Bliss forms two hedge 

portfolios for each of the three portfolios. One is a Macaulay duration matched hedge port-
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folio (consisting of two zero coupon bonds of adjacent (six months apart) maturity) and the 

other is a factor durations matched hedge portfolio ( consisting of four zero coupon bonds of 

1, 5, 10, and 20 years to maturity, in amounts chosen to match the price and all three factor 

durations of the portfolio being hedged). Bliss reprices each of the three portfolios and the 

associated two hedge portfolios on March 15, 1996. An ideal hedge portfolio would have 

the same return over the period from February 15 to March 15 as the portfolio it is hedg

ing. Bliss finds that for portfolio 1 the hedging errors using Macaulay's duration and factor 

based hedging are 0.29%, and -0.10% respectively. For portfolio 2 the hedging errors 

using Macaulay's duration and factor based hedging are 1.03%, and -0.06% respectively. 

For portfolio 3 the hedging errors using Macaulay's duration and factor based hedging are 

1.07%, and 0.0% respectively. 

The findings of GR, LS, and Bliss indicate that immunization strategies using simple 

duration are not capable of hedging a fixed income portfolio and immunization strategies 

based on procedures such as principal components analysis do a better job in hedging such 

a portfolio. Given the evidence from the literature the next issue that arises is how would 

immunization strategies based on specific term structure models perform with respect to 

· the strategies based on simple duration and principal components analysis. 

There is extensive literature on the testing of the equilibrium and HJM models and 

their application to the term structure of interest rates. Ait-Sahalia (1996) rejects " ... every 

parametric model of the spot rate (previously) proposed in the literature" by comparing the 

marginal density implied by each model with that estimated from the data. Backus, Foresi, 

and Zin (1995) and Canabarro (1995) further show that the misspecification of the under

lying interest rate model can lead to serious pricing and hedging errors. In other words 

there is little evidence whether the parametric restrictions imposed by each of the two cat

egories of models equilibrium models and HJM models are true or not. One way to test 

the parametric restrictions is to compare the two approaches to a non-parametric estima

tion procedure and see which of the three approaches is more suitable to term structure 
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modelling. 

The study includes the network models as a non-parametric estimation procedure to 

compare the relative performance of each of the two approaches, the equilibrium models, 

and the HJM models with respect to the network models. Besides the pricing of bonds a 

term structure model is often used by a practitioner in hedging a fixed income portfolio. 

Traditionally duration and principal components analysis have been used to hedge a fixed 

income portfolio. The study also addresses the issue of whether the traditional approaches 

to the hedging application are superior to designing model (based) hedges using the three 

categories of models, the equilibrium models, the HJM models, and the network models. 
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CHAPTER3 

Theoretical Frameworks 

The three different categories of the term structure models considered in the study have 

significantly different theoretical framework. The equilibrium models start from the as

sumptions of the underlying economy and from the assumptions about the stochastic evo

lution of the one or more exogenous factors or state variables in the economy and assump

tions about the preferences of a representative investor. The general equilibrium conditions 

are used to endogenously derive the interest rates and the prices of all contingent claims. 

The equilibrium models because of their assumption that preferences of a representative 

investor play a role in explaining the term structure, require the estimation of the market 

price of risk. The HJM models impose structure directly on the evolution of the forward 

rate curve and do not require an estimation of the market price of interest rate risk. The 

structure imposed on the evolution of the forward rate curve imposes a stochastic spot rate 

process with multiple stochastic factors influencing the term structure. Then these models 

are derived from the necessary and sufficient conditions for the absence of arbitrage. The 

network models do not make any assumptions about the processes of the risk factors at all. 

The only assumption made by the network models is that the outputs or the bond prices (in 

this case) are a Borel integrable function of the inputs or risk factors. A Borel integrable 

function is a function with finite number of discontinuities. 

The rest of the chapter presents the theoretical framework for each of the three different 

approaches to the modelling of term structure. 
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3.1 The Equilibrium Models 

To illustrate the candidate bond pricing models in the equilibrium framework, let the 

discount bond price F(x1, x2 , 7)be a function of the two stochastic variables (risk factors) 

x 1, x 2 , and time to expiration 7. The Cox, Ingersoll, and Ross (1985) (hereafter CIR) 

is a special case of this general two factor model and the Longstaff and Schwartz (1992) 

(hereafter LS) model specifies the two factors as the short term rate and its volatility. Let 

the general forms for the two stochastic processes of the general two factor model be given 

by 
2 

dxi = /3i(x1, x2, 7)dt + L T/ij(x1, x2, 7)dzj, i = 1, 2 
j=l 

(3.1) 

Where dzj are two independent Wiener processes. Applying Ito's lemma produces the 

dynamics for the rate of change of the discount bond price. 

where the mean of the process is 

µ(xi, x2, 7) = ! [Fi/311 + F2/322 + iF11(TJi1 + 'T/i2)] 

+ ! [iF22(TJ~1 + 'T/~2) + Fi2cov(~x1, ~x2) - F3] 

(3.3) 

The stochastic process determining the return on a portfolio with proportions p 1, p2 and 

p3 invested in discount bonds having time to maturities 71 , 72 and 73 is given by 
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For the return on the portfolio to be non-stochastic, coefficients of the stochastic terms dz1 

and dz2 must equal zero. 

(3.5) 

To prevent arbitrage the return on the portfolio must equal the risk free rate. 

(3.6) 

Equations (3.2) and (3.3) have a solution if and only if 

holds for all maturities, t(.). Substituting forµ, S1, and S2 produces a partial differential 

equation that must be satisfied by all derivatives. 

1 (2 2 1 2 
Fif311 + F2f322 + 2Fn 'T/11 + 'T/12) + 2F22('T/21 

+TJi2) + Fi2cov(Llx1, Llx2) - F3 - >.1F1'T/11 - >.2F2'T/22 = Fr (3.8) 

Solving (3.8) subject to the boundary condition, F(x1 , x2 , T = 0) = 1 produces the dis

count bond pricing relationship. 

The underlying economic structure of the single-factor Cox, Ingersoll, and Ross (1985) 

model produces mean reverting dynamics for the instantaneous short-term interest rate. 

The stochastic process (3.1) becomes 

f311 = K(O - r) 

'T/11 = uy'r 

dr = K(O - r)dt + uy'rdz1 (3.9) 

The CIR model further restricts the partial differential equation (3.8) and the functional 

form of the market price of risk for the single factor 
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A2 = 0, flu= K(O - r), 'T/11 = a, X2 = 'T/12 = 'T/21 = 'T/22 = fl22 = 0 

with (a, A) constants. Solving (3.8) subject to the boundary condition produces the well 

known CIR discount bond pricing relationship given as 

F(t, T) = A(t, T) exp(-B(t, T)r) (3.10) 

Where 

B t T _ 2(exp('y(T- t) - 1))) 
( ' ) - ('y + K)(exp('y(T - t) - 1)) + 27 

and 

A(t T) = [ 27(exp(('y + K)(T - t)/2)) ] 2"'91u
2 

' (7 + K)(exp('y(T - t) - 1)) + 27 

Longstaff and Schwartz (1992) derive linear relationships between the expected return 

and volatility of the underlying physical production technology and the instantaneous short-

term interest rate and the rate's volatility. The mean reverting specification of the returns 

to the physical production process produces mean reverting processes for the instantaneous 

short-term rate and a mean reverting process for the variance of the short term interest 

rate. In the LS model expected returns are driven by two economic factors, X and Y. The 

first factor X represents the component of expected returns that is unrelated to production 

uncertainty, while Y represents the component common to both, the expected returns from 

production and the volatility of production returns. An advantage of this specification is 

that expected returns and production volatility are not required to be perfectly correlated. 

The dynamics of X and Y are governed by mean reverting stochastic processes 

dX = (a- bX)dt + cVXdz2 

dY = (d - eY)dt + Jll dz3 

a,b,c,d,e,f > 0, 

z2 and z3 are scalar Wiener processes. The stochastic processes (3.1) become 

flu = (On - Kur - K12 V), 'T/11 = aVX, 'T/12 = flll 
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Where 

{3<5 - o{ e - <5 
Ou = G."f + f3rJ, Kn = (3 , K12 = -13--

- a -a 

2 2 a{3(<5 - e) f3e - a<5 
022 = a "/ + (3 'f/, K21 = (3 , K22 = (3 -a -a 

The resulting mean reverting processes implied for the instantaneous short-term interest 

rate and the volatility of the instantaneous short-term rate are 

(3.11) 

(3.12) 

The LS model imposes restrictions on the partial differential equation (3.8) and the func

tional form of the market prices of risk 

Rescaling 

x = X/c2 , y = Y/ J2, x1 = X, x2 = Y, A1 = 0, .\2 = AJy, cov(-6.X, .6.Y) = 0 

a d 
/311 = (c2 - bx), /322 = (!2 - ey), 'f/11 = VX, 'f/22 = vY 

The partial differential equation (3.8) becomes; 

Since z2 is uncorrelated with z1 and z3 , changes in X cannot be hedged. The partial 

differential equation (3.13) is solved subject to the maturity condition that the bond value 

equals one when T = 0, and then the change of variables is made to r and V. This gives the 

following equilibrium value for the value of a riskless unit discount bond 

F(r, V,T) = A2'Y(T)B2'1(T) exp(KT + C(T)r + D(T)V) (3.14) 

where 

A(T) 
2¢ 

(<5 + ¢)(exp((/JT) - 1) + 2¢' 
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and 

2'1/J 
(6 + '1/J)(exp('I/JT) - 1) + 2'1/J' 
a</J(exp('I/JT) - l)B(T) - /3'1/J(exp(</JT) - l)A(T) 

</J'I/J(/3 - a) 
'1/J(exp(c/)T) - l)A(T) - </J(exp('I/JT) - l)B(T) 

</J'I/J(/3 - a) 

V ~ + )., 

¢ v'2a + 62, 

'ljJ J213 + v2 , 

"' 7(6 +¢) + 17(v + '1/J). 

3.2 The Heath Jarrow and Morton Models 

The study follows the methodology implemented by Bliss and Ritchken (1996) (here-

after BR) to empirically investigate whether the movements in interest rates can be ade

quately described by the restri9ted version of the H.TM (Arbitrage Based) model. The the

ory behind these models comes from the work ofHJM (1992) who generalized on the work 

by Ho and Lee (1986). Ritchken and Sankarasubramanian (1995)(RS hereafter) identify 

the necessary and sufficient conditions on volatility structures that permit the term struc

ture to be characterized by two state variables regardless of the structure for spot interest 

rate volatility. 

HJM start by considering a continuous trading economy with a trading interval [O, T] 

for a fixed T > 0. HJM characterize the uncertainty in the economy by the probability 

space (n, F, Q) where n is the state space with was a sample point, Fis the a-algebra rep

resenting measurable events, and Q is a probability measure. The information in the HJM 

framework evolves over the trading interval according to the augmented, right continuous, 

complete filtration Ft : t E [O, T] generated by ~n valued Brownian motion Zt. Under the 

probability measure Q HJM specify the instantaneous forward rate process as 
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dft(T) = µ1(t, T, w)dt + a"t(t, T, w)dzt, t < T, (3.15) 

Because of their dependence on w, µ and CJ are path-dependent. From here on the reference 

to w will be dropped for simplicity. Hence unless specified otherwise all the functions 

in this framework are dependent on w causing all these functions to be path dependent. 

The process simultaneously evolves each forward rate ft(T). Given a non-random initial 

forward curve f O (T), any subsequent time-t forward rate curve will be a function of the 

forward rate process, df ( t, T) and its evolution from time O to time t: 

From the forward rate process equation (3.15), the processes followed by the spot rate and 

the pure discount bonds can be written as 

1 1T rt(T) = -T ft(s)ds - t t 

Using these functional relationships the integrated form of the short rate process is 

rt= fo(t) + lot µ(s, t)ds + lot CJ(s, t)dz8 

and the price of the bond evolves as 

where the µp(t, T)and CJp(t, T) are functions of the specification of the forward rate dy-

namics. 

HJM (1992) use no arbitrage arguments to derive restrictions on the permissible forms 

that the drift term of the forward rate process can take: 

dft(T) = CJJ(t, T) [>.(t) - CJp(t, T)] dt + CJJ(t, T)dzt 
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where 

.,\(t) = µp(t, T) - r(t) 
ap(t, T) 

is the market price of interest rate risk and 

Though the forward rate volatility process may be quite general, the forward rate drift is 

restricted to a particular function of the volatility structure. The forward rate process, in 

turn, implies the following relation between current and future bond prices: 

Bt(T) = { B(O, T)} 
B(O, t) 

exp { hT [lot a1(u, s)ap(u, s)du] ds - hT [lot a1(u, s)[.,\(u)du + dw(u)J] ds} 

The HJM (1992)analysis presented so far is quite general and is also not very useful 

from a practitioner's view point. Firstly due to the dependence of the bond prices on the 

market price of risk which is a function of the risk preferences and is difficult to measure. 

Secondly the evolution of the term structure as stated above will not be Markovian with 

respect to a finite collection of variables. This implies that at any time the knowledge of 

only the state variables at that time is not sufficient to characterize the term structure at that 

time. The information about the path taken by the state variables from the initialization date 

to that point in time is required. This is due to the dependence of all the functions above 

on the sample point was stated above. These issues cause impediments in developing effi-

cient numerical procedures for pricing interest rate claims. Though numerical procedures 

do exist for such path dependent functions, the implementation of the discrete approxi-

mations become almost impractical for long dated interest rate contingent claims. Amin 

and Morton (1994) test various path dependent HJM models using short maturity options 

on euro-dollar futures and an algorithm with ten or fewer time steps. They find that the 

path dependent tree develops a greater density of terminal nodes than a path-independent 

tree of the same number of time steps, and suggest that this makes the path-dependent 
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trees converge more quickly. Heath, Jarrow, and Morton and Spindel (1992) report similar 

efficiencies for pricing five-year swaptions. 

Later on Caverhill (1994), Hull and White (1993) and Ritchken and Sankarasubrama

nian (1995) show that if the volatility structure of forward rates has the form: 

O" J (t, T) = O"k( t, T), 

where k(t,T) is a deterministic function satisfying the following semigroup property: 

k(t, T) = k(t, u)k(u, T) 

k(u,u) = 1, 

(3.16) 

then, given the initial term structure, any single point on the term structure at date t is 

sufficient to explain the full yield curve at that date. The usual choice for the single point is 

the short term rate and its dynamics are path independent and the structure for the k(t, T) 

is the exponentially dampened structure 

k(t, T) = exp -(t,,(T - t) ). (3.17) 

The first type of volatility structures considered in the study are generalized Vasicek(hereafter 

GV) structures that follow equation (3.16). The name follows from the fact that the spot 

rate volatility is independent of time and is constant. Under the GV model, forward rate 

volatilities are exponentially declining in their maturities, and the future value of the state 

variable is normally distributed. Empirical tests of the volatility structures performed by 

Flesaker (1992) and Amin and Morton (1994) find no support for the Ho and Lee (1986) 

model and the GV model was found to be useful in that it was capable of generating abnor

mal returns in particular trading strategies. 

The second type of forward rate volatility structures considered in the study are the ones 

that allow for variable spot rate volatility. Ritchken and Sankarasubramanian (1995) con

sider a class of interest rate processes in which spot rate volatilities can fluctuate according 
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to the levels of the spot rate. Let ur(t, ·) represent the volatility of the instantaneous spot 

rate, r(t), at date t. Such structure could depend on any term structure information avail

able at time t. Ritchken and Sankarasubramanian then show that if the volatility structure 

of forward rates is given by 

O'J(t, T) = O'r(t, ·)k(t, T) (3.18) 

where k(t, T) again is a deterministic function satisfying the semigroup property, then, 

given an initial term structure, there exists a two state variable representation of the evolu-

tion of future interest rates. 

For volatility structures that do not use the time varying parameters, the only feasible 

(for the evolution of the spot rate to be markovian) k(t, ·) function is again the deterministic, 

exponentially dampened function given by equation (3.17), and thus 

u1(t, T) = ur(t, ·) exp-K,(T - t) 

In other words, the forward rate volatility, normalized by the spot interest rate volatility, 

must be a deterministic, exponentially dampened function of maturity 

(3.19) 

For the volatilities belonging to the two state variable class, Ritchken and Sankarasubra-

manian show that there is a simple analytical linkage between interest rate term structures 

at dates s and t. 

Based on the notation used by BR (1996) the bond prices are indexed at date t by their 

maturities rather than their maturity dates. Let 

represent the time-t price of an m-maturity pure discount bond that pays a dollar at date 

t+m. Given an initial term structure, F0 ( ·) at time 0, the price of a bond, at any future date, 

t, must be defined in terms of its forward price at date 0, the short interest rate at date t, and 
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a variable that captures the history of the path of interest rates from s tot as follows: 

[F(O,t+m)l [ 1 ] Ft(t + m) = F(O, t) exp -·i32 (m)cp(t) + /3(m)'lj)(t) (3.20) 

where 
1 /3(m) - -(1 - e-~m); 
K, 

cp(t) = ht o}(, t)ds; 

'lj)(t) f(O, t) - r(t). 

The non-existence of the above conditions would imply the violation of the no arbitrage 

assumption. In this representation given the initial term structure, the entire term structure 

at a subsequent time t can be reconstructed once cp(t) and 'lj)(t) are known. Neither of these 

factors depend on maturity m. Thus this model is a two state variable model, even though 

there is only one underlying stochastic factor. Equation (3.20) identifies the two state vari

ables as the ex post forward premium on the spot interest rate, cp(t), and the "integrated 

variance" factor, 'lj)(t). Ritchken and Sankarasubramanian characterize the dynamics of 

the two state variables,¢( t) and 'lj)( t), in terms of their current values and the forward rate 

curve at an earlier date 0. Specifically, interest rate claims can be priced as if the local 

expectations applied, if the dynamics of the state variables are taken as 

d'lj)(t) = [K,'lj)(t) + <,b(t)]dt + ar(t, ·)dw(t) 

d<,b(t) = [a;(t, ·) - 2K,<,b(t)]dt 

The dynamics of the instantaneous spot interest rate under the Ritchken and Sankarasubra-

manian assumption is given by 

dr(t) = [K,'lj)(t) + <,b(t) + :tf(O, t)] dt + ar(t, ·)dw(t). 

The evolution of the spot rate process turns out to be Markovian as it depends only on the 

two state variables cp and 'ljJ at time t. This is in contrast with the general models under 

43 



the HJM framework in which the spot interest rate process cannot described by a Markov 

process with a finite number of state variables. 

Hence the two models considered in this study are the ones that are presented in equa-

tion (3.20). For the GV type of volatility structures the state variable </J(t) is deterministic. 

From equation (3.16) and the value of </J(t) from equation (3.20) GV structures imply 

<fJ(t) 

=} </J(t) 

ht a 2 exp -(2K(t - s))ds 

a2 
-(1 - exp(-2Kt)). 
2K 

(3.21) 

(3.22) 

The GV volatility structures (hereafter HJM-GV) have only one state variable 'lj;(t) as 

the state variable </J(t) is deterministic. For the HJM-GV model the prices of bonds are 

given by 

where· 

[F(O,t+m)l [ 1 ] Ft(t + m) = F(O, t) exp --i32 (m)</J(t) + f3(m)'lj;(t) 

1 f3(m) - -(1 - e-itm); 
K 

a2 
</J(t) - -(1 - exp(-2Kt)); 

2K 

'lj;(t) - J (0, t) - r(t). 

(3.23) 

Whereas the forward rate volatility structures that allow for variable spot rate volatility 

(hereafter HJM-RS) have two state variables 'lj;(t) and efJ(t). The prices of bonds in the case 

ofHJM-RS model are given by the equation (3.20). 

3.3 The Network Models 

The third approach to the term structure modelling considered in the study is the non

parametric pricing approach using learning networks. Though there are different types of 

networks that exist the ones used in the study are Radial Basis Functions and Multi Layer 

Perceptrons. Studies in the past have also shown some type of equivalence ( convergence to 

44 



similar outputs) between different learning networks. For instance, Maruyama, Girosi, and 

Poggio (1991) show an equivalence between Multi Layer Perceptrons (hereafter MLP)and 

Radial Basis Functions (hereafter RBF). The authors show that if the inputs are normalized 

then the two networks MLP and RBF produce the same results. Girosi, Jones, and Poggio 

(1993) prove that a wide class of approximation schemes can be derived from regulariza

tion theory, including RBF networks and some forms of Projection Pursuit Regressions and 

MLP networks. At the same time researchers like Ng and Lippman (1991) argue that the 

practical differences in using each method, e.g., in running time or memory used, may be 

more important than model accuracy. 

The term Artificial Neural Networks(ANN hereafter) comes from the network's anal

ogy to the biological structure of Neural Networks. The human brain consists of a huge 

number of highly connected elements called neurons. The neurons have three major com

ponents that are relevant from the ANN point of view. The components are the dendrites, 

the cell body and the axon. The dendrites are tree-like receptive networks of nerve fibers 

that carry electrical signals into the cell body. The cell body essentially sums and scales 

these incoming signals. The axon is a single long fiber that carries the signal from the cell 

body to other neurons. The point of contact between an axon of one cell and a dendrite of 

another cell is called a synapse. A neural network's performance is primarily dependent 

on the functional form specified by the arrangement of neurons and the strengths of the 

individual synapses, determined by a complex chemical process. 

A single input neuron is a good point to start with, to comprehend the concept of the 

neural networks. The scalar weight w is multiplied by the scalar p to form wp, one of 

the terms that is sent to the summer. Another input, 1, is multiplied by a bias band then 

passed to the summer. The summer output n, also referred to as the net input, is passed 

through an activation function ( essentially a transfer function) f, which produces the scalar 

neuron output a. The weight w corresponds to the strength of a synapse, the cell body is 

represented by the summation and the activation function. The neuron output a represents 
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the signal on the axon. The neuron output is calculated as 

a= f(wp+ b) 

A single layer perceptron is a perceptron that has more than one neuron to which the 

inputs are fed. 

Rosenblatt's(1958) learning rule and the Least Mean Squares(LMS) algorithm of Widrow 

and Hoff(1960) were designed to train single-layer perceptron like networks. It was realized 

that the single layer networks suffer from the disadvantage that they are only able to solve 

linearly separable classification problems. As a consequence both Rosenblatt and Widrow 

proposed multilayer networks that could overcome such problems but were not able to 

extend their algorithms to train such networks. It was in the mid 1980s that the backprop

agation algorithm was rediscovered and widely publicized independently by Rumelhart, 

Hinton and Williams (1986), Parker (1985), and Cun (1985). The algorithm was popular

ized by its inclusion in the book Parallel Distribution Processing that described the work of 

the Parallel Distributed Processing Group led by psychologists Rumelhart and McClelland. 

This triggered a torrent of research in neural networks. This backpropagation algorithm is 

used in the study for both the pricing as well as the hedging applications using the MLP net

work. The Multi Layer Perceptron, trained by the backpropagation algorithm, is currently 

the most widely used neural network and is one of the two networks used in the study. 

The Multi Layer perceptron 

A Multi Layer perceptron is more than one single layer perceptron cascaded together. 

The output of the first layer is the input to the second layer and the output of the second 

layer is the input to the third layer and so on. The MLP in this study has two layers one 

hidden layer and one outer layer. Let the weight matrix for the first layer be W 1 and the 

weight matrix for the second layer be denoted by W 2 and the input matrix be denoted by 
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p. Let f1, and j2 denote the activation functions in the layers 1, and 2 respectively. Let b1, 

and b2 denote the bias matrices in the layers 1, and 2 respectively, and a2 denote the final 

output. Then the final output of the network is given by 

(3.24) 

The activation function also known as the transfer function used in the layer 1, J1 is the 

tansigmoid function. For a given input x the tansigmoid function transfers it to an output y 

given by 
1- exp(-x) 

y-
- 1 + exp(x) · 

(3.25) 

whereas the transfer function used in layer 2 is the pure linear function that transfers an 

input x into an output y given by 

y=x. (3.26) 

Alternatively the pure linear function preserves the input and does not change it's value. 

The study uses the equation (3.24) as a bond pricing relationship once all the parameters 

of the network have been estimated using Bayesian Regularization algorithm explained in 

detail in Appendix A. 

The Radial Basis Functions 

Besides the MLP the second type of network the study uses is the RBF. An RBF net

work is a two layer or a three layer ( depending on whether the inputs are fed to the radial 

basis functions or they are processed before feeding) feed forward network whose output 

nodes form a linear combination of the basis functions in the hidden layers that are usu-

ally the Gaussian kernels and multiquadratics as defined in Appendix B. The radial basis 

function networks were initially used to solve the problem of interpolation i.e. fitting a 

curve exactly through a set of points. Gradually the RBF formulation has been extended by 

researchers to perform the broader task of approximation (Broomhead and Lowe (1988), 
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Moody and Darken (1989), and Poggio and Girosi (1990)). Poggio and Girosi show how 

RBFs can be derived from the classical regularization problem in which some unknown 

function is to be approximated given a sparse data set and some smoothness constraints. 

Lay and Hwang (1993) state that an RBF network can be regarded as an improved alterna

tive of a probabilistic neural network (PNN). In a probabilistic neural network, a symmetric 

RBF kernel is placed on each training data set so that the unknown density can be well in

terpolated and approximated. 

An RBF network can be regarded as linear in the parameters if all the RBF centers 

and the non-linearities are fixed in the hidden layer. So the hidden layer performs a fixed 

non-linear transformation with no adjustable parameters and essentially it maps the input 

space onto an output space of the hidden layer. The output layer then performs a linear 

combination of this output space and the only training or adjustable parameters are the 

weights of the linear combiner. A schematic of the RBF network with n inputs and a 

scalar output is shown in Figure (3.1). Such a network essentially implements a mapping 

fr : Rn --+ R according to 

nr 

fr(x) =Ao+ L Ai<P(llx - c;II) (3.27) 
i=l 

where x E Rn is the input vector, ¢( ·) is the non-linear function of the hidden layer from 

R+ to R, 11 · 11 is the Euclidean norm, Ai O S i S nr are the weights or parameters, Ci E 

Rn, 1 s i s nr are known as RBF centers, and nr are the number of centers. In the 

RBF networks the non-linear function and the centers are fixed and the only adjustable 

parameters are the weights of the second layer. The ¢( ·) used for the study is the Gaussian 

function that is 

¢(11) = exp ( ;
2) (3.28) 

Once the number of centers are chosen and the coefficients of the equation (3.27) deter

mined using the orthogonal least squares algorithm explained in detail in Appendix B, the 

functional form of equation (3.27) is used to get the bond prices of the required maturities. 
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Non Linear Transformation Linear Combiner 

Figure 3.1: A Radial Basis Function 

At this point some comparisons between the two types of networks used, MLP and 

RBF is worthwhile.The RBF networks possess a property that the choice of the parameters 

cannot be claimed as the optimal choice. In this particular case the study can use differ

ent estimation procedures to estimate the weights of the second layer and probably could 

improve the ability of the network's approximation ability. This result is shown by Girosi 

and Poggio (1990) that RBFs have the "best" approximation property i.e. there is always 

a choice for the parameters that is better than any other possible choice. This property in 

contrast is not shared by the MLP network. The performance of an RBF network depends 

on 

• the selection of the centers 

• estimation of the weights of the second layer 

• choice of the parameter b (usually learned while training the network). This b is 
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related to how much of an area overlap one wants between two adjacent Gaussian 

functions. 

• choice of the tolerance value in the orthogonal least squares algorithm ( also learnt 

during the training of the network) 

The neurons that are the centers of the Gaussian functions have localized receptive 

fields in the sense that they respond only to inputs close to the centers. This is also in sharp 

contrast to the MLP networks which use the tansigmoid function that has a global response. 

So the networks with localized receptive fields are quite advantageous when the new data 

is coming from only a small sub sample of the whole population and the centers or neurons 

in that sub sample region will only respond to such inputs. It is quite difficult to predict if 

the term structure modelling has this particular property or not because that depends on the 

type of shock the yield curve is subject to in the out of sample period as well as the two 

points on the yield curve that are being used as inputs. On compact data the training times 

for RBFs are shorter than the training times on other standard MLP networks. A compact 

data set is characterized by lesser number of inputs. In this study the number of inputs 

is always two and hence this study deals with only compact data sets. At the same time 

RBF has a disadvantage that if the data set are not compact and the number of dimensions 

is huge i.e. the number of inputs keeps increasing, then the number of centers required 

to span the whole input space is sufficiently large and this increases the complexity of the 

network exponentially. 

The RBF network trained in this study can be alternatively trained by changing the way 

the weights of the second layer are determined. They are determined using the linear least 

squares regression. The data can be checked if the data of the outputs of the first layer 

conforms to the assumptions of the linear least squares model or not. That is whether the 

errors are normally distributed, the variance of the error terms is constant, the outputs and 

the error terms are not correlated, if there is any auto correlation etc. So one way to improve 

the performance of an RBF network is to test these assumptions and correct for them if any 
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of them is violated and then estimate the weights of the second layer. Other areas in which 

the RBF networks performance can be improved is the choice of the convergence criteria 

for minimizing the generalizing error that an RBF network would do. The error caused by 

applying a neural network to the out of sample period is known as the generalizing error. 

3.4 The Hedging Applications 

There are different ways one can hedge a portfolio of fixed income securities. Tradi

tionally hedging strategies were based on Macaulay's duration, convexity, and principal 

components analysis (hereafter PCA). Duration is based on the first order derivative of 

the bond price with respect to the interest rate and convexity is based on the second order 

derivative. PCA is based on the decomposition of the variance covariance matrix of the 

changes in yields of differing maturities into three principal components that are orthog

onal i.e. uncorrelated by construction. Besides these traditional measure one could also 

design a specific model based hedging strategy because a hedging application would also 

depend on the number of underlying risk factors. 

Hedging based on Macaulay's duration is a single factor hedging and is very simple to 

implement. Litterman and Scheinkrnan (1991) argue that there are three principal compo

nents that explain the variations in the yield curve. After Litterman and Scheinkrnan (1991) 

there is some literature that highlights some of the drawbacks of estimating a PCA model. 

Nunes and Webber (1997) find that leaving the jumps in the data set before estimating a 

PCA model does affect the results and James and Webber (2000) suggest it is necessary 

to remove the jumps before estimating the PCA model. Rebonato (1996) finds that " ... any 

yield curve model that uses principal components as driving factors is constrained to dis

playing a sigmoid-like correlation structure. This feature is not a result of the particular 

assumptions of the specific models, but a general consequence of the low dimensionality 

of these approaches". Rebonato argues that PCA methods that use 2 or 3 components are 

incapable of producing an exponential like correlation structure amongst the instantaneous 
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forward rates for maturities 1 through 10 years. 

Finally hedging strategy can be based on hedging all the underlying risk factors specific 

to a model. So a hedging strategy can be designed in the following three ways 

• Devise a hedging strategy that is based on Macaulay's duration 

• Devise a hedging strategy based on PCA methods in which the factors are uncorre

lated to one another by construction 

• Devise a hedging strategy that hedges all the underlying risk factors specific to a 

model (dependent on what model is used to explain the term structure). 

Till date ambiguity persists relating to which of these approaches should one pick for 

the hedging of a fixed income portfolio? Using the three approaches to hedge, the study 

addresses the issue of what approach is ideal for the hedging of a fixed income portfolio 

and if the third approach is better than the first two then what model should one pick to 

design the hedging strategy? 
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CHAPTER4 

Empirical Methodology 

4.1 Data Requirements 

The data requirements for the study are the prices of zero coupon bonds. The data used 

for the study are the unsmoothed Fama-Bliss (1987) yields (analogous to bootstrapping 

to create a spot rate curve) for the time period 1983 - 19997• The unsmoothed Fama

Bliss method extracts forward rates by an iterative procedure. Fama-Bliss (hereafter FB) 

extend the discount rate function each step by computing the forward rate necessary to price 

successively longer maturity bonds given the discount rate function fitted to the previously 

included issues. FB use a series of filters to throw out the suspicious quotes. The resulting 

discount rate function exactly prices the included bonds. FB use the mean price and the 

weighting is irrelevant because fitted-price errors of bonds remaining after the filtering 

step are all zero. The resulting discount rate function is piecewise linear Gagged) with the 

number of parameters equal to the number of included issues. 

The data used in the study includes a time series of zero coupon bond yields ( extracted 

with the unsmoothed FB method) over the period of 1983 - 1999. The unsmoothed Fama 

and Bliss (1987) yields are converted into prices using the discount function exp(-(m)y) 

(m is the maturity of the bond and y is the yield). The data includes the yields on the target 

maturities .25, .5, 1, 2, 3, 5, 7, 10, 15, and 20 years on the first trading day of every month 

during the time period January 1983 through December 1999. The summary statistics of 

the estimated term structure used are listed in Table 4.1. 

71 would like to thank Robert R. Bliss for kindly providing the programs on the estimation of the term 

structures. 

53 



Table 4.1: Summary Statistics of the Estimated Term Structure(1983 - 1999) 

The mean and variance of the zero coupon yields for different maturities as estimated by 

the unsmoothed FB method in percentage and percentage square respectively. 

Time to Maturity Mean Variance 

(years) 

.25 6.76 7.36 

.5 6.99 7.39 

1 7.22 6.87 

2 7.49 6.16 

3 7.67 5.62 

5 7.89 5.11 

7 8.05 4.77 

10 8.13 4.54 

15 8.41 4.47 

20 8.47 4.56 
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The study also requires a proxy for the instantaneous short term rate for the Cox Inger

soll and Ross (1985) (hereafter CIR) model. To be consistent with the use of the data for 

the other models the unsmoothed FB yield for the bond that has .25 year to maturity is used 

as a proxy for the instantaneous short term rate. 

4.2 The Equilibrium Models 

4.2.1 The CIR model 

CIR (1985) pioneered the Equilibrium approach to the modelling of the term structure 

of interest rates. They start from the description of the underlying economy and from the 

assumptions about the stochastic evolution of the one or more exogenous factors or state 

variables in the economy. The assumptions made by CIR are as follows 

• There is a finite number of constant stochastic returns to scale production technolo

gies that produce a single good that can be allocated to either consumption or invest

ment 

• There is a fixed number of identical individuals who maximize the time additive 

expected utility of consumption function by selecting optimal consumption and in

vestment function 

• All investment is done by firms and the individuals invest all of their unconsumed 

wealth in the shares of those firms. The values of the firms follow multivariate diffu

sion process. 

• The joint process for the firm values and the state variables completely describe the 

state of the system. 

• There are perfect competitive markets for continuous trading in the firm's shares and 

a variety of contingent claims, as well as for instantaneous risk free borrowing and 
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lending. 

• Equilibrium in this economy gives the market clearing interest rate, prices for the 

contingent claims, and the total production and consumption plans. 

• The authors also assume that temporal change in production opportunities is de

scribed by a single state variable, the means and variances of the rates of return of 

the production processes are proportional to this variable and the assumption about 

the stochastic differential equation describing the development of the variable. 

Given these assumptions CIR derive the dynamic process for the instantaneous short 

term rate relationship, equation(3.9) and the resulting bond pricing relationship, equation 

(3.10). Hence in this model the anticipations, risk aversion, investment alternatives, and 

preferences about the timing of consumption all play a role in determining the bond prices. 

The methodology used to estimate the CIR model is the one used by Chan, Karolyi, 

Longstaff, and Sanders (1992) (hereafter CKLS). To estimate the CIR model the unsmoothed 

FB yield extracted for a bond that matures in .25 years is used as the proxy for the instanta

neous short-term rate. The model is estimated using Hansen's (1982) Generalized Method 

of Moments estimation to estimate parameters of the instantaneous short-term interest rate 

process, equation (3.9). The continuous time model is estimated using the discrete time 

analog 

Tt - Tt-1 a + f3rt-1 + tt (4.1) 

From the set of equations ( 4.1) it follows that the relation of its parameters to that of equa

tion (3.9) is 

K, -/3 

() (4.2) 
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For the GMM estimation the following orthogonality conditions are used 

9t( 0) 

E[gt ( 0)] 0, 

(4.3) 

where O = (a, (3, 1) and Et and 'l}t are defined in the set of equations (4.1). An estimate of 

0 is obtained by choosing e to minimize the quadratic 

Jr(O) = gr(O)'Wr(O)gr(O), 

where 
1 T 

9r(O) = TL 9t(O) 
t=l 

is the sample average of the realizations of 9t, and Wr(O) is a positive definite weighting 

matrix. The sample average 9T will converge to zero for large T, under the null hypothesis 

when evaluated at the true values of 0. Hansen (1982) shows that Wr can be consistently 

estimated by 

[ 
T l-1 

Wr(O) = ~ ~9t(O)gt(O)' 

as long as O is a consistent estimate of O and the gr(O) is serially uncorrelated. It turns out 

that the estimation of Wr(O) requires an estimate of O and hence an interactive procedure 

can be used as suggested by Hansen (1982). The Wr(O) can be initialized to an identity 

matrix and the O can be estimated by minimizing the function 9r(O)'lgr(O). This estimate 

of e is used to compute the new w r ( 0) and this in tum is used to estimate the new e. The 

iterative procedure is repeated till Os converge. The software used to write the programs 

was MATLAB. 

CKLS estimate the parameters of the short rate process as specified in the set of equa

tions ( 4.1) using the generalized method of moments. These parameters are estimated by 

using the annualized one-month U.S. Treasury bill yield from June 1964 to December 1989 

(306 observations). The estimates of the parameters are shown in Table 4.2. 
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Table 4.2: CIR Parameter Estimates (CK.LS) 

The parameters of the short rate process as specified in the set of equations (4.1) and es

timated by GMM in the CKLS study are stated. These parameters are estimated by using 

the annualized one-month U.S. Treasury bill yield from June 1964 to December 1989 (306 

observations). 

Parameter Estimate Standard Error 

/3 

0.0189 

-0.2339 

0.0073 

0.0201 

0.3544 

0.0010 

Table 4.3: CIR Parameter Estimates 

The parameters of the short rate process as specified in set of equations ( 4.1) and estimated 

by GMM are stated. These parameters are for the last window that uses the data on the 

short term rate from December 1986 till November 1999 (156 months). 

Parameter Estimate Standard Error 

/3 

0.0476 

-0.0087 

0.0098 

-0.1432 
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0.0129 
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Since the study uses a rolling window approach, the parameters are re-estimated at the 

beginning of every month starting January 1996 to December 1999. The parameters for the 

last window that uses the data on the short term rate from December 1986 till November 

1999 (156 months) and their standard errors are stated in Table 4.3. An additional measure 

the market price of interest rate risk is needed to price a unit discount bond. The ask price 

(implied by the ask discount rate) of Treasury Bills maturing in one year from the first 

trading day of each month beginning January 1996 till December 1999 is used. The market 

price of interest rate risk at each date is implied by minimizing the squared difference 

between the CIR predicted price for the Bill using parameters estimated for that date and 

the actual price. The estimate of the market price of risk for the last window is also stated 

in Table 4.3. The values of the estimated parameters with the implied values of the market 

prices of risk for all the windows are plugged into the pricing equation (3.10) to get the 

predicted price of unit discount bonds. 

From the parameters a, (3, and a 2 shown in Tables 4.3 and 4.2 one can derive the 

parameters of the short rate process, equation (3.9) using the set of equations (4.2). The 

parameters shown in Tables 4.3 and D.l are similar to the ones in Table 4.2 except the 

parameter f3. The parameter f3 appears to be of a different order due to a difference in 

scaling (the study uses the interest rates of x% as x instead of .Ol(x)). 

4.2.2 A numerical example of the CIR model 

A numerical example is included to illustrate the empirical methodology of the CIR. 

Considering the first window i.e. using the data on FB yield for the .25 year bond from 

January 1983 till December 1995 the parameters a, (3, and a of equation (4.1) are estimated 

using Generalized Method of Moments procedure. The estimates are shown in Table 4.4. 

The parameters of the short rate process K,, and O are calculated using the set of equations 

(4.2). 

The values of the parameters are plugged into the pricing equation (3.10) to get the 
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Table 4.4: CIR Parameter Estimates (example) 

The parameters of the short rate process as specified in the set of equations (4.1) and esti

mated by GMM are stated. The parameters of the short rate process as specified in equation 

(3.9) are calculated using the set of equations (4.2). These parameters are for the last win

dow that uses the data on the short term rate from January 1983 to December 1995 (156 

months). 

Parameter Estimate Standard Error 

a 0.0202 0.0717 

/3 -0.0052 0.0124 

a2 0.0149 0.0023 

.\ -0.03841 NA 

K, 0.0052 NA 

f) 0.0389 NA 

price of the bond of a particular maturity. The prices as produced by the pricing relation, 

equation (3.10) for the first trading day of January 1996 for all the different maturities are 

shown in Table 4.5. 

4.2.3 The LS model 

Longstaff and Schwartz (1992) (hereafter LS) develop a two factor general equilibrium 

model of the term structure of interest rates using the CIR (1985) framework. The authors 

assume that all physical investment is performed by a single stochastic constant returns 

to scale technology which produces a good that is either consumed or reinvested in pro

duction. LS assume that the expected returns are driven by two economic factors, one 

represents the component of returns that is unrelated to production uncertainty, while the 

other represents the component common to both the expected returns from production and 

the volatility of production returns. The development of the processes for both the state 
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Table 4.5: CIR Predicted Bond Prices 

The values of the parameters from Table 4.4 are plugged into the pricing equation (3.10) to 

get the price of the bond of a particular maturity. The prices as produced by the pricing rela

tion, equation (3.10) for the first trading day of January 1996 for all the different maturities 

are shown as CIR-Price. The unsmoothed Fama and Bliss (1987) yields for the first trading 

day ofJanuary 1996 are converted into prices using the discount function exp(-(m)y) (m 

is the maturity of the bond and y is the yield) are shown as FB-Price. 

Maturity PB-Price CIR-Price 

.5 0.9758 0.9751 

1 0.9523 0.9505 

2 0.9072 0.9024 

3 0.8602 0.8564 

5 0.7714 0.7729 

7 0.6823 0.7028 

10 0.5709 0.6229 

15 0.4049 0.5433 

20 0.2853 0.5039 
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variables is assumed to be a stochastic differential equation of the form of equation (3.9). 

The authors use the two factor general equilibrium model of the term structure of interest 

rates to derive closed from expressions for discount bond prices and discount bond option 

prices. 

The methodology used to implement the LS model is based on the study by Longstaff 

and Schwartz (1993). To estimate the LS model, the stochastic processes of short term rate 

and its volatility given by equations (3.11) and (3.12) are proxied by a discrete GARCH 

model, Bollerslev (1986) as 

Tt+l - Tt (4.4) 

ft+1 ~ N(O, Vt) 

(4.5) 

This specification allows unexpected changes in r to be conditionally heteroscedastic through 

their dependence on the value of V. In turn, the volatility V follows an autoregressive 

process since its current value depends on its lagged value. This specification closely re

sembles the continuous time dynamics of r and V. Because of this the parameters of the 

GARCH model need not map directly into the parameters of the continuous time process. 

In compliance with the rolling window approach the parameters of the set of equations 

(4.5) are estimated using the time series of short term interest rates over the forty-eight 

rolling windows. The proxy for the short term interest rate used is the FB yield on the .25 

year bond. The estimates of the parameters for the equation for the last window i.e. from 

December 1986 till November 1999 (156 months) and their standard errors are stated in 

Table 4.6. 

The residuals from the above estimated equation coupled with the coefficients of the 

variance equation of the set of equations ( 4.5) for the GARCH model are used to get a 

time series of volatility estimates from the time series of interest rates. With the time series 

estimates of interest rates and the volatilities the following steps are taken to estimate the 
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Table 4.6: LS Parameter Estimates 

The parameters of the variance equation of the discrete GARCH model as in the set of 

equations ( 4.5) are stated. These parameters are for the last window that uses the data on 

the short term rate from December 1986 till November 1999 (156 months). 

Parameter Estimate Standard Error 

/3o 0.00000019133 0.0000010304 

/31 0.0000204 0.0000169 

/32 0.3282 0.134 

/33 0.5536 0.1615 

parameters of the LS model. 

• compute the mean and variance of the time series of interest rates, 

• compute the mean and variance of the time series of volatilities, 

• compute the maximum and the minimum value of the ratio V /r for contemporaneous 

values of these factors. 

The six statistics that determine the LS bond pricing model are given as 

a . (Vt) mm rt 

/3 max(~) 
8 

a(a + f3)(/3E[r] - E[V]) 
(4.6) 

2(f32(Var[r] - Var[V])) 

'Y 
8(/3E[r] - E[V]) 

a(/3-a) 

~ 
f3(a + /3)(E[V] - aE[r]) 
2(Var[V] - a2Var[r]) 

'f/ = 
~(E[V] - aE[r]) 

/3(/3-a) 

The values of the calculated statistics by Longstaff and Schwartz (1993) are shown in 

Table 4.7. 
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Table 4.7: LS Statistics (Longstaff and Schwartz (1993)) 

The values of o:, /3, 8, 'Y, (, and T/ in the set of equations (4.6) as calculated in the study by 

Longstaff and Schwartz (1993) are stated. The authors use the data on the one month U.S. 

Treasury bills from January 1964 to December 1989. 

statistic Calculated Value 

a 0.001149 

/3 0.1325 

6 0.05658 

"I 3.0493 

~ 3.998 

rJ 0.1582 

The values of the statistics in the set of equations (4.6) as calculated in the study for the 

last window that uses the data on the short term rate from December 1986 till November 

1999 (156 months) are stated. The proxy used for the short rate is the Fama and Bliss 

(1987) yield on the .25 year bond. 

The differences in the parameters shown in Tables 4.8 and D.2 could be due to the 

different data sets used in both cases. 

The values of the calculated statistics with the implied values of the market prices of 

interest rate risk (using the CIR model) for all the windows are plugged into the pricing 

equation (3.14) to get the predicted price of a unit discount bond. 

4.2.4 A numerical example of the LS model 

A numerical example is included to illustrate the empirical methodology of the LS 

model. Considering the first window i.e. using the data on FB yield for the .25 year 
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Table 4.8: LS Statistics 

The values of o:, (3, 8, 'Y, ~. and 17 in the set of equations (4.6) for the last window that uses 

the data on the short term rate from December 1986 till November 1999 (156 months) are 

stated. 

statistic Calculated Value 

a 0.00003699 

f3 0.00182 

<5 0.004669 

'Y 6.5099 

~ 0.0951 

rJ 0.1377 

Table 4.9: LS Parameter Estimates (example) 

The parameters of the variance equation of the discrete GARCH model as in the set of 

equations (4.5) are stated. These parameters are for the first window that uses the data on 

the short term rate from January 1983 to December 1995(156 months). 

Parameter Estimate Standard Error 

(30 0.000000010537 0.000001599 

f31 0.0000764 0.0000471 

f32 0.2639 0.3399 

{33 0.2726 0.1321 
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Table 4.10: LS Statistics (example) 

The values of o:, (3, 8, 'Y, ~. and rJ in the set of equations (4.6) for the last window that 

uses the data on the short term rate from January 1983 till December 1995(156 months) are 

stated. 

statistic Calculated Value 

a 0.0001054 

/3 0.001026 

<5 0.008326 

'Y 4.7169 

' 0.05168 

TJ 0.1993 

bond from January 1983 to December 1995 the parameters of variance equation of the set 

of equations ( 4.5) are estimated using GARCH estimation procedure. The estimates are 

shown in Table 4.9. The values of the statistics for the first window are calculated using the 

set of equations (4.6). The statistics are stated in Table 4.10. 

The values of the calculated statistics from Table 4.10 with the implied values of the 

market prices of risk (using the CIR model)(.\ = -0.03841) for this window are plugged 

into the pricing equation (3.14) to get the predicted price of a unit discount bond of a 

particular maturity. The prices of the bonds of different maturities for this window are 

shown in Table 4.11. 

4.3 The Heath Jarrow and Morton Models 

Heath Jarrow and Morton (1992) (hereafter HJM) designed a methodology to price 

interest rate sensitive contingent claims given the prices of all zero coupon bonds. Their 

methodology imposes structure directly on the evolution of the forward rate curve and 

does not require an estimation of the market price of interest rate risk. The authors also 
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Table 4.11: LS Predicted Bond Prices 

The values of the parameters from Table 4.10 are plugged into the pricing equation (3.14) to 

get the price of the bond of a particular maturity. The prices as produced by the pricing rela

tion, equation (3.14) for the first trading day of January 1996 for all the different maturities 

are shown as LS-Price. The unsmoothed Fama and Bliss (1987) yields for the first trading 

day of January 1996 are converted into prices using the discount function exp(-(m)y) (m 

is the maturity of the bond and y is the yield) are shown as FB-Price. 

Maturity PB-Price LS-Price 

.5 0.9758 0.9753 

1 0.9523 0.9511 

2 0.9072 0.9044 

3 0.8602 0.8597 

5 0.7714 0.7764 

7 0.6823 0.7005 

10 0.5709 0.5996 

15 0.4049 0.4612 

20 0.2853 0.3537 
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impose a stochastic spot rate process with multiple stochastic factors influencing the term 

structure. The model is derived from the necessary and sufficient conditions for the absence 

of arbitrage. The HJM model specifies a general continuous time stochastic process for 

the evolution of the forward rate curve across time given the initial forward rate curve. 

The authors use the insights of Harrison and Kreps (1979) to characterize the conditions 

on the forward rate process to ensure that the process is consistent with an arbitrage free 

economy which in turn implies that there is a unique equivalent martingale probability 

measure. Under these conditions the authors state that the markets are complete and use 

the procedures in Harrison and Pliska (1981) to price contingent claims. 

The HJM framework examined in this study is the restricted version of HJM suggested 

by Ritchken and Sankarasubramanian (1995). The restrictions imposed by Ritchken and 

Sankarasubramanian are as specified in equation (3 .19) that the forward rate volatility is the 

spot rate volatility times an exponentially decaying function. Under these restrictions the 

model that allows for the variability of the spot rate volatility is called HJM-RS model from 

hereon and the one that has a constant spot rate volatility is called the HJM-GV (generalized 

Vasicek) model. 

4.3.1 The HJM-RS model 

The empirical methodology used to estimate the HJM models is based on the study 

by Bliss and Ritchken (1996) (hereafter BR). Let Ys(t, t + m) represent the continuously 

compounded annualized forward yield over the time [t, t + m] measured at dates :::; t. So 

the yield on am-maturity pure discount bond paying a dollar at time t + m and costing 

Bt(t + m) at date twill be 

1 
Ys(t, t + m) = -- lnBt(t + m) 

m 

and the forward rate observed at time s < t for the period t to t+m is 

t+m-s t-s 
Ys(t, t + m) = + Ys(s, t + m) - -ys(s, t) 

m m 
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The equation (3.20) rewritten in yield form is 

Yt(t, t + m)m = Ys(t, t + m)m + [-~,82(m)¢(t) + ,B(m)'ljJ(t)] (4.7) 

In other words the yield at time t equals the sum of its original forward yield and a deviation 

that is fully determined at date t by the two state variables, 'ljJ(t) and ¢(t). Let 

D.yt(t, t + m) = Yt(t, t + m) - Ys(t, t + m) (4.8) 

denote the deviation between the actual yield at date t and the original forward yield at 

previous observation date s. The deviation is referred to as "forward rate change". By 

substituting (4.8) into (4.7) 

mD.yt(t, t + m) = {-~,B2(m)¢(t) + ,B(m)'ljJ(t)} (4.9) 

Bliss and Ritchken suggest a transformation of the variables ¢(t) and 'ljJ(t), since the two 

variables are not readily observed. By selecting any two distinct maturities T1 and T2 and 

observing the D.yt(t, t + T1) and D.yt(t, t + T2) the equations 

T1D.Yt(t, t + T1) = {-~,82(T1)cp(t) + ,8(T1)'l/J(t)} 

T2D.Yt(t, t + T2) = {-~,82(T1)cp(t) + ,8(T2)'l/J(t)} 

can be inverted to solve for cp(t) and 'ljJ(t). Substituting the two back in equation (4.9) 

Where 
T1,B(m)[,B(T2) - ,B(m)] 

H1(m; T1, T2) - m,B(T1)[,B(T2) - ,B(T1)] 

T2,B(m)[,B(m) - ,B(T1)] 
H2(m; T1, T2) = m,B(T2)[,B(T2) - ,B(T1)] 

Hence the equation (4.9) that involves unobservable state variables cp(t) and 'ljJ(t), is trans

formed into equation (4.10) that involves the observable state variables D.yt(t, t + T1) and 
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In other words, if the no arbitrage condition holds, and the restriction of the volatility struc

ture of (3.19) holds, then given the forward rate change in any two maturities 7 1 and T2, the 

forward rate change of any arbitrary maturity can be explained. Consequently under such 

circumstances the equation (4.10) must hold. 

It is first recognized that annualized yields are measured with error (caused due to the 

estimation of the term structure from actual bond prices) and assume that 

Yt(t,t+m) = yf(t,t+m) +E(t,t+m) (4.11) 

Where y;ri(t, t + m) is the measured yield on am maturity pure discount bond at date t, and 

E(t, t + m) is the error in the measurement. The errors are assumed to be independent and 

identically distributed normal random variables with mean O and variance 'f/2 • 

The assumed error structure for the measurement error dictates a very specific error struc-

ture for the forward rate change. Substituting equation ( 4.11) in ( 4.8) and simplifying 

D.y'f(t, t + m) = y'f(t, t + m) - Ys(t, t + m) + E(t, t + m) 

Also since 

t+m-s t-s + Ys(s, t + m) - -ys(s, t) 
m m 

Ys(t, t + m) 

D.yt(t, t + m) 
t+m-s t-s 

y'f(t, t + m) - Ys(s, t + m) + -y8 (s, t) + E(t, t + m) 
m m 

Substituting for Ys(s, t + m) and Ys(s, t) 

D.y'f(t, t + m) = m( ) t + m - S m( ) t - S m( ) Yt t, t + m - Ys s, t + m + --y8 s, t 
m m 

t+m-s t-s 
- E(s,t+m) +-E(s,t) +E(t,t+m) 

m m 

Simplifying 

t+m t 
D.y'f(t, t+m) = yf(t, t+m)-y':(t, t+m)- --E(s, t+m) +-E(s, t) +E(t, t+m) 

m m 
(4.12) 
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Substituting 

t+m t 
t*(t, t + m) - t(t, t + m) - --t(s, t + m) + -t(s, t) 

m m 

in equation (4.12) 

~y";(t, t + m) = yf (t, t + m) - Y1:(t, t + m) + t*(t, t + m) (4.13) 

The t*(t, ·)sin turn are normally distributed with mean 0. For the covariances if m = n 

t+m t 
cov[t*(t, t + m), t*(t, t + n)] = Var[t] + [(--) 2 (Var[t])] + [(-) 2 (Var[t])] 

m m 

Simplifying 
t t 

cov[t*(t, t + m), t*(t, t + m)] = 2772 (1 + - + (-)2 ) 
. m m 

The covariances if m =I- n are 

t t 
cov[t*(t, t + m), t*(t, t + n)] = 772 (-)(-) 

m n 

Since the t(t, ·)s are independently and identically distributed and the t* is just a linear 

combination of normally distributed variables. 

Substituting equation (4.13) into equation (4.10) yields 

~y";(t, t + m) = ~y";(t, t + T1)H1(m) + ~y";(t, t + T2)H2(m) + t**(t, t + m) (4.14) 

Where 

t**(t, t + m) _ t*(t, t + T1)H1(m) + t*(t, t + T2)H2(m) - t*(t, t + m) 

A similar analysis as above shows that the t**(t, ·)s are again normally distributed with 

mean O and covariances given by. 

{ 
a'(m)~(m, n)'y(n) 

cov[t**(t, t + m), t**(t, t + n)] = 
a'(m)~(m, m)'y(m) 

ifm=/-n 

ifm = n 

Where 

a'(m) = (H1(m), H2(m), -1, 0) 
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,'(m) = (H1(n), H2 (n), 0, -1) 

and 

2(1 + ;1 + (;1 )2) 
t2 __f!_ £._ 

7172 71m 71n 

__f!_ 2(1 + ;2 + (;2)2) 
__f!_ £._ 

I)m,n) = 7]2 
7172 72m 72n 

t2 __f!_ 2(1 + -fn + (-/n) 2) 
£._ 

nm 72m mn 

£._ t2 £._ 2(1 + ~ + (~)2) 71n 72n mn 

Hence the HJM-RS model has two unknown parameters, K, and rJ2 to be estimated 

from the data. The two parameters are estimated by the maximum likelihood estimation 

procedure using the variance covariance structure developed. 

Bliss and Ritchken (1996) (hereafter BR) estimate the parameters of the HJM-RS model 

for the years 1982 to 1994 using each year's data. BR use data on the change in forward 

rates for the months of January through December for a particular year to estimate the 

parameters of that year. The estimates of the parameters and their standard errors for each 

of the 13 years in their study are shown in Table 4.12. 

The estimates of the parameters K, and rJ in the study for the last window and their 

standard errors are stated in Table 4.13. The last window uses the data on the change in 

forward rates for all the maturities from December 1998 to November 1999 (12 months). 

If one compares the results of Table 4.13 and the results of Table D.4 with the results 

of Table 4.12 the ranges of the values of the parameters are similar. The estimates of 

the parameters K, and rJ vary from 0.1127 to 0.1952 and 0.033 to 0.0582 respectively in 

this study for the time period January 1996 to December 1999. Whereas the range of the 

estimates of the parameters K, and rJ vary from 0.09 to 0.28 and 0.04 to 0.20 respectively in 

the study by Bliss and Ritchken for the time period 1982 to 1994. 

4.3.2 A numerical example of the HJM-RS model 

A numerical example is included to illustrate the empirical methodology of the HJM-

RS model. Considering the first window i.e. using the data on bond prices of all the 
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Table 4.12: HJM-RS Parameter Estimates (Bliss and Ritchken) 

The parameters 11, and 'T/ of the equation (4.10) and their standard errors as estimated by 

Bliss and Ritchken (1996) for the years 1982 through 1994 are stated. These parameters 

are estimated by using the data on the change in forward rates for all the maturities from 

January to December of that particular year. 

Year Yi, Standard Error rt Standard Error 

1982 0.276 0.079 0.207 0.016 

1983 0.081 0.013 0.072 0.006 

1984 0.178 0.022 0.084 0.007 

1985 0.104 0.014 0.067 0.005 

1986 0.094 0.011 0.069 0.005 

1987 0.170 0.026 0.071 0.005 

1988 0.091 0.017 0.043 0.003 

1989 0.349 0.039 0.053 0.004 

1990 0.098 0.013 0.049 0.004 

1991 0.164 0.034 0.048 0.004 

1992 0.287 0.036 0.058 0.004 

1993 0.207 0.022 0.046 0.004 

1994 0.210 0.038 0.067 0.005 

Table 4.13: HJM-RS Parameter Estimates 

The parameters of the equation ( 4.10) are stated. These parameters are for the last window 

that uses the data on the change in forward rates for all the maturities from December 1998 

to November 1999 (12 months). 

Parameter Estimate Standard Error 

0.1952 

0.0466 
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Table 4.14: HJM-RS Parameter Estimates (example) 

The parameters of the equation ( 4.10) are stated. These parameters are for the window that 

uses the data on the change in forward rates for all the maturities from January 1995 to 

December 1995 (12 months). 

Parameter Estimate Standard Error 

0.1738 

0.0582 

0.0211 

0.0039 

maturities considered (.25, 1, 2, 3, 5, 7, 10, 15, and 20) from January 1995 till December 

1995 the parameters K, and 'f/ are estimated using maximum likelihood estimation procedure 

with the variance covariance structure developed in equation (4.14). The estimates are 

shown in Table 4.14 

The objective at hand is to price a bond of 2 year maturity given the prices of .5 and 5 

year maturity. This implies m = 2, T1 = .5 and T2 = 5. The yields on the bonds in this 

example are all in percentages. The betas are calculated using the relation 

This results in /3(2) = 1.6894, /3(.5) = 0.4789 and /3(5) = 3.3408. 

In this particular case the D.yt(t, t + m) denotes the difference of the forward rate for 

them year yield measured on December 1995 and the actual spot rate for them year yield 

measured in January 1996. The notation is the same for time T1 and T2 • 

Using the equation (4.10) H1 (m; T1, T2) and H2(m; T1, T2) are calculated and substituted 

to get the D.yt(t, t + m). The values of H 1 (m; T1 , T2) = 0.5089, H2(m; T1 , T2) = 0.5347 

and D.yt(t, t + m) = -0.2475. The values of D.yt(t, t + T1) and D.yt(t, t + T2 ) as observed 

from December 1995 to January 1996 are -0.3218 and -0.1565 respectively. This implies 

the D.yt(t, t + m) as predicted by the model for the 2 year bond is -0.2475. The forward 

rate for the 2 year bond in December 1995 is 5.1579. The model predicts that the yield on 
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Table 4.15: HJM-RS Predicted Bond Prices 

The values of the parameters from Table 4.13 are plugged into the equation ( 4.10) to get 

the change in forward yield for a particular maturity. The change in forward yield is then 

converted into the price of a bond. The prices for the first trading day of January 1996 for 

all the different maturities are shown as HJM-RS-Price. The unsmoothed Fama and Bliss 

(1987) yields for the first trading day of January 1996 are converted into prices using the 

discount function exp( -( m )y) (mis the maturity of the bond and y is the yield) are shown 

as PB-Price. 

Maturity PB-Price HJM-RS-Price 

.5 0.9758 NA 

1 0.9523 0.9525 

2 0.9072 0.9065 

3 0.8602 0.8604 

5 0.7714 NA 

7 0.6823 0.6937 

10 0.5709 0.5837 

15 0.4049 0.4355 

20 0.2853 0.3062 
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the 2 year bond in January 1996 as 5.1579 - 0.2475 = 4.9104. This is compared to the 

smoothed yield on a 2 year bond on January 1996 i.e. 4.87. The two yields the smoothed 

and the model predicted are converted into prices using the discount function exp( -( m )y) 

(m is the maturity of the bond and y is the yield) and the difference is called the pricing 

error for the HJM-RS model. The prices of the bonds as predicted by the HJM-RS model 

for the first trading day of January 1996 are shown in Table 4.15. 

4.3.3 The HJM-GV model 

The second model in the Heath J arrow and Morton framework considered in the study 

is the HJM-GV model. As opposed to the HJM-RS model, in this model the volatility of 

the spot rate is a constant and does not depend on the level of spot rate. In such a case, cp ( t) 

becomes 
2 

cp(t) = ~(1 - e-2"t) 
21,; 

(4.15) 

that is deterministic. Hence this model has only the state variable 'lj;(t) requiring a single 

benchmark maturity T, to be used. Again assume Ys(t, t + m) represent the continuously 

compounded annualized forward yield over the time [t, t + m] measured at dates :S t. So 

the yield on am-maturity pure discount bond paying a dollar at time t + m and costing 

Bt(t + m) at date 't' will be 

1 
Ys(t, t + m) = -- lnBt(t + m) 

m 

and the forward rate observed at time s < t for the period t to t+m is 

t+m-s t-s 
Ys(t, t + m) = + Ys(s, t + m) - --y8 (s, t) 

m m 

The equation (3.20) rewritten in yield form is 

Yt(t, t + m)m = Ys(t, t + m)m + [-1,82 (m)cp(t) + ,B(m)'lj;(t)] (4.16) 

Where cp(t) is given by equation (4.15). In other words the yield at time 't' equals the sum 

of its original forward yield and a deviation that is fully determined at date 't' by the sole 
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state variable, 'lj; ( t). Let 

f:1yt(t, t + m) = Yt(t, t + m)- Ys(t, t + m) (4.17) 

denote the deviation between the actual yield at date t and the original forward yield at 

previous observation date s. The deviation is referred to as "forward rate change". By 

substituting (4.17) into (4.16) 

mf:1yt(t, t + m) = {-1,B2 (m)¢>(t) + ,B(m)'lj;(t)} (4.18) 

As done earlier with the HJM-RS model, a transformation of the variable 'lj;(t) is done, 

since the variable is not readily observed. By selecting any single maturity T and observing 

the f:1yt(t, t + r) the equation 

can be inverted to solve for 'lj;(t). Substituting it back in equation (4.18) 

Where 

f:1yt(t, t + m) = f:1yt(t, r)h(m) + a2k(m) 

h(m) = r,B(m) 
m,B(r) 

k(m) = ,B(m)[,B(r) - ,B(m)](l - e-21.t) 
4Km 

(4.19) 

Hence the equation (4.18) that involves unobservable state variable 'lj;(t), is transformed 

into equation (4.19) that involves the observable state variable f:1yt(t, t + r). 

Again similar to the analysis of the HJM-RS model it is first recognized that annualized 

yields are measured with error and assume that 

Yt(t, t + m) = yf(t, t + m) + E(t, t + m) (4.20) 

Where Yt ( t, t + m) is the measured yield on am maturity pure discount bond at date t, and 

E(t, t + m) is the error in the measurement. The errors are assumed to be independent and 
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identically distributed normal random variables with mean O and variance f/2 • 

The assumed error structure for the measurement error dictates a very specific error struc-

ture for the forward rate change. Substituting equation (4.11) in (4.8) and simplifying 

l:1yf (t, t + m) = yf (t, t + m) - Ys(t, t + m) + t(t, t + m) 

Also since 

t+m-s t-s 
+ Ys(s, t + m) - --y8 (s, t) 

m m 
Ys(t, t + m) 

f:1yt(t, t + m) 
t+m-s t-s 

yf(t, t + m) - Ys(s, t + m) + -y8 (s, t) + t(t, t + m) 
m m 

Substituting for Ys(s, t + m) and Ys(s, t) 

l:1yf(t,t+m) = m( ) t + m - S m( ) t - S m( ) Yt t, t + m - Ys s, t + m + --y8 s, t 
m m 

t+m-s t-s 
- t(s, t + m) + --t(s, t) + t(t, t + m) 

m m 

Simplifying 

t+m t 
l:1yf (t, t + m) = yf(t, t + m) -y1;(t, t + m) - --t(s, t + m) + -t(s, t) + t(t, t + m) 

. m m 
(4.21) 

Substituting 

t+m t 
t*(t, t + m) t(t, t + m) - --t(s, t + m) + -t(s, t) 

m m 

in equation (4.21) 

yf(t, t + m) = yf(t, t + m) - y1;(t, t + m) + t*(t, t + m) 

The t*(t, ·)sin tum are normally distributed with mean 0. For the covariances if m = n 

t+m t 
cov[t*(t, t + m), t*(t, t + n)] = Var[t] + [(--)2(Var[t])] + [(-)2(Var[t])] 

m m 

Simplifying 
t t 

cov[t*(t, t + m), t*(t, t + m)] = 2rJ2 (1 + - + (-)2) 
m m 
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The covariances if m =I- n are 

t t 
cov[E*(t, t + m), E*(t, t + n)] = rJ2(-)(-) 

m n 

Since the E ( t, ·) s are independently and identically distributed and the E* is just a linear 

combination of normally distributed variables. 

Substituting equation (4.21) into equation (4.19) yields 

t1yf(t, t + m) = t1yf(t, t + T)h(m) + a2k(m) + E**(t, t + m) (4.22) 

Where 

E**(t, t + m) - E*(t, t + T)h(m) - E*(t, t + m) 

Again E**(t, ·)s are normally distributed with mean O and covariances given by. 

Where 

and 

cov[E**(t, t + m), E**(t, t + n)] = { 
a*' (m)~*(m, n)'y*(n) if m =I- n 

a*' (m)~*(m, m)'y*(m) if m = n 

l)m, n) = rJ2 

a*' (m) = (h(m), -1, 0) 

"/ (m) = (h(n), 0, -1) 

2(1 + * + (*) 2) 
~ 
Tm 

~ 2(1 + ! + (!)2) Tm 

1:. £_ 
Tn mn 

1:. 
Tn 

£_ 
mn 

2(1 + * + (*)2) 

Hence this model requires the estimation of the parameters 1,,, 'f/2 and a 2 • The three pa-

rameters are estimated by the maximum likelihood estimation procedure using the variance 

covariance structure developed above. The estimates of the parameters and their standard 

errors are stated in Table 4.16. 
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Table 4.16: HJM-GV Parameter Estimates 

The parameters of the equation ( 4.18) are stated. These parameters are for the last window 

that uses the data on the change in forward rates for all the maturities from December 1998 

till November 1999 (12 months). 

Parameter Estimate Standard Error 

(J 

0.0681 

0.0685 

0.6736 

0.0234 

0.0051 

0.1374 

Table 4.17: HJM-GV Parameter Estimates (example) 

The parameters of the equation (4.18) are stated. These parameters are for the first window 

that uses the data on the change in forward rates for all the maturities from January 1995 

till December 1995 (12 months). 

Parameter Estimate Standard Error 

(J 

0.0079 

0.0768 

0.3005 

0.0184 

0.0059 

0.0868 

4.3.4 A numerical example of the HJM-GV model 

A numerical example is included to illustrate the empirical methodology of the HJM

GV model. Considering the first window i.e. using the data on bond prices of all the matu

rities considered (.25, 1, 2, 3, 5, 7, 10, 15, and 20) from January 1995 till December 1995 the 

parameters K,, 17, and CJ are estimated using maximum likelihood estimation procedure with 

the variance covariance structure developed in equation ( 4.22). The estimates are shown in 

Table 4.17 

The objective at hand is to price a bond of 2 year maturity given the price of .5 year 

maturity. This implies m = 2, T = .5. The yields on the bonds in this example are all in 
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Table 4.18: HJM-GV Predicted Bond Prices 

The values of the parameters from Table 4.16 are plugged into the equation (4.18) to get 

the change in forward yield for a particular maturity. The change in forward yield is then 

converted into the price of a bond. The prices for the first trading day of January 1996 for 

all the different maturities are shown as IUM-GV-Price. The unsmoothed Fama and Bliss 

(1987) yields for the first trading day of January 1996 are converted into prices using the 

discount function exp(-(m)y) (mis the maturity of the bond and y is the yield) are shown 

as FB-Price. 

Maturity PB-Price HJM-GV-Price 

.5 0.9758 NA 

1 0.9523 0.9527 

2 0.9072 0.9077 

3 0.8602 0.8629 

5 0.7714 NA 

7 0.6823 0.7019 

10 0.5709 0.5949 

15 0.4049 0.4486 

20 0.2853 0.3182 
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percentages. The betas are calculated using the relation 

This results in ,8(2) = 0.2498, ,8(.5) = 0.4990. 

In this particular case the Diyt(t, t + m) denotes the difference of the forward rate for 

the m year yield measured on December 1995 and the actual spot rate for the m year yield 

measured in January 1996. The notation is the same for time 71• 

Using the equation (4.18) h(m; T) is calculated and substituted to get the Diyt(t, t+m). 

The value of h(m; T) = 1.000987 and Diyt(t, t+m) = -0.3144. The value of Diyt(t, t+T) 

as observed from December 1995 to January 1996 is -0.3218. This implies the Diyt(t, t + 

m) as predicted by the model for the 2 year bond is -0.3144. The forward rate for the 2 

year bond in December 1995 is 5.1579. The model predicts that the yield on the 2 year 

bond in January 1996 as 5.1579 - 0.3144 = 4.8435. This is compared to the smoothed 

yield on a 2 year bond on January 1996 i.e. 4.87. The two yields the smoothed and the 

model predicted are converted into prices and the difference is called the pricing error for 

the HJM-GV model. The prices of the bonds as predicted by the HJM-GV model for the 

first trading day of January for different maturities are shown in Table 4.18. 

4.4 The Network Models 

Non-parametric techniques have become popular recently in an effort to reduce the 

number of arbitrary parametric restrictions imposed on the underlying process. A non

parametric approach that used an artificial neural network makes an assumption that the 

output is a Borel integrable function of the underlying state variables (inputs). In other 

words the function is allowed to have a finite number of discontinuities and bond prices 

as a function of the two inputs are assumed to satisfy this condition. This is a reasonable 

assumption because all the models considered in the study, the affine models, and most of 

the other term structure models satisfy this relation between the bond prices and the risk 
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factors. 

Table 4.19: MLP Predicted Bond Prices 

The values of the parameters from the set of equations (4.23) are plugged into the equation 

(3.24) to get the output of the network or the bond price for a particular maturity. The 

prices for the first trading day of January 1996 for all the different maturities are shown 

as MLP-Price. The unsmoothed Fama and Bliss (1987) yields for the first trading day of 

January 1996 are converted into prices using the discount function exp(-(m)y) (mis the 

maturity of the bond and y is the yield) are shown as PB-Price. 

Maturity FB-Price MLP-Price 

.5 0.9758 NA 

1 0.9523 0.9519 

2 0.9072 0.9055 

3 0.8602 0.8583 

5 0.7714 NA 

7 0.6823 0.6906 

10 0.5709 0.5676 

15 0.4049 0.4051 

20 0.2853 0.3034 

4.4.1 The Multi Layer Perceptrons 

In the case of a Multi Layer Perceptron (hereafter MLP) the first task at hand is to 

choose the number of layers and the number of neurons in each layer. In this study the 

MLP considered has two layers and number of neurons in the first layer are 22 and 1 in 

the second layer. The transfer function used in the first layer is the tansigmoid function as 

given by equation (3.25) and the transfer function used in the second layer is the pure linear 

function as given by equation (3.26). 

The algorithm used is based on the usage of the flexible models i.e. MLPs by restricting the 
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complexity of the models using Bayesian methods. Bayesian methods have become quite 

popular in the neural network literature since David Mackay (1992). This is because the 

neural networks since their inception have been notorious for overfitting the data i.e. they 

used to fit the in sample data well but once applied to the out of sample data the network 

used to produce large errors. The Bayesian methods tend to reduce this overfitting problem. 

The Bayesian Regularization algorithm used to train the network is explained in detail in 

Appendix A. In the relation between the inputs and outputs as given by equation (3.24) the 

following are the dimensions of the different matrices 

pl -+ 2 X 1 

w1 -+ 22 X 2 

bl -+ 22 X 1 

w2 -+ 1 X 22 

b2 -+ 1 X 1 

a2 -+ 1 X 1 

(4.23) 

With the dimensions of each matrix in equation (3.24) as given in the set of equations 

(4.23), the number of parameters required to be estimated from the data are 89 (the ele

ments of W 1, b 1, W2 , and b2). 

To apply the MLP to the pricing of the zero coupon bonds consistent with the HJM 

framework two maturities are chosen at first. The zero coupon bond prices of the two ma

turities on a monthly basis are fed to the network for the time period 1983 - 1995. During 

that time period the third maturity bond price that is to be forecast is also fed to the network 

as a target. During the training period 1982 - 1995 based on a function of the difference 

between the output of the network and the target value ( explained in detail in the Appendix 

A) the network estimates all the parameters in the set of equations (4.23). In essence the 
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Table 4.20: RBF Predicted Bond Prices 

The values of the parameters estimated using the data from January 1983 through Decem

ber 1995 are plugged into the equation (3.27) to get the price of a bond. The prices for the 

first trading day of January 1996 for all the different maturities are shown as RBF-Price. 

The unsmoothed Fama and Bliss (1987) yields for the first trading day of January 1996 are 

converted into prices using the discount function exp(-(m)y) (mis the maturity of the 

bond and y is the yield) are shown as FB-Price. 

Maturity PB-Price RBF-Price 

.5 0.9758 NA 

1 0.9523 0.9529 

2 0.9072 0.9025 

3 0.8602 0.8504 

5 0.7714 NA 

7 0.6823 0.6659 

10 0.5709 0.5619 

15 0.4049 0.4086 

20 0.2853 0.2763 

pricing formula in equation (3.24) is used to price the zero coupon bond in the out of sam

ple period i.e. first month of 1996 after estimating all the parameters using the data from 

1983 - 1995. The bond prices so obtained for the first trading day of January 1996 are 

shown in Table 4.19. Then the rolling window approach is taken and the network is trained 

using the data from second month of 1983 to first month of 1996 to price bonds in the 

second month of 1996. This is carried on till the out of sample pricing is done for the last 

month of the year 1999. 
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4.4.2 The Radial Basis Functions 

The first task at hand in the case of Radial Basis Functions (hereafter RBF) is to choose 

the non-linear function for the first layer. There has been extensive research in the literature 

that supports the result that the choice of the non-linear function does not affect the perfor

mance of the RBF network. However the performance of this network is highly sensitive 

to the choice of the centers. All the set of data points is a potential set of centers but as 

the number of data points increases it is fairly obvious that choosing all the data points 

as centers is not a reasonable choice. Whenever the training data is huge, to overcome 

such a problem some kind of clustering algorithm must be applied to the training data to 

reduce the number of deployed kernels (hidden neurons) and, at the same time improve the 

approximation ability of the network. In many applications including the studies by Mic

chelli (1986) and Powell (1987) these centers are chosen to be a subset of the data points. 

In some of the published literature the centers are arbitrarily chosen from the set of all the 

data points. Such a method is not a reasonable choice as it causes poor performance, a large 

size of the network and numerical ill conditioning. Numerical ill conditioning is caused by 

the near linear dependency due to some centers being too close. In essence the choice of 

centers is subject to the curse of dimensionality and the performance of the RBF network 

relies heavily on the choice of the centers. 

This study uses the orthogonal least squares algorithm as a solution to the center selec

tion problem (the algorithm was first suggested by Chen, Cowan, and Grant(1991)). The 

algorithm is explained in detailed in the Appendix B. For the RBF the number of param

eters to be estimated depends on the number of centers that are chosen from the set of all 

possible centers (the set of all values of the inputs in the training period). If the number of 

centers is c then the RBF has to estimate ( c + 2) number of parameters. 

To apply the RBF network to the pricing of zero coupon bonds a similar procedure 

as stated for the MLP is undertaken. The zero coupon bond prices of the two maturities 

(consistent with the HJM framework there is no market price of risk) on a monthly basis 
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are fed to the network for the time period January 1983 through December 1995 as inputs. 

During that time period the third maturity bond price that is to be forecast is also fed to the 

network as a target output. During the training period 1983 - 1995 based on the difference 

between the output of the network and the target value (explained in detail in Appendix B) 

the network estimates all the parameters. For the first window i.e. to price bonds on the 

first trading day of January 1996 the number of centers using the orthogonal least squares 

algorithm is found to be forty-eight. The number of parameters that need to be estimated 

are 50 (the 49 AS and the f3 in the gaussian function as given in equation (3.28)). Once 

the parameters are estimated using the data from January 1983 through December 1995 the 

pricing formula as given in equation (3.27) is used to price the zero coupon bond in the out 

of sample period i.e. January 1996. The different prices as predicted by the RBF network 

are shown in Table 4.20. This is repeated for all the maturity bond prices to be forecast dur

ing the out of sample period. Then the rolling window approach is taken and the network 

is trained using the data from February 1983 through January 1996 to price bonds on the 

first trading day of February 1996. This is carried on until the out of sample period is the 

first trading day of December 1999. 
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CHAPTERS 

The Hedging Applications 

The values of assets of financial institutions are sensitive to fluctuations in interest rates. 

Many of the major financial institutions are involved in the trading of interest rate deriva

tives and market making. This highlights the importance of the ability of a financial insti

tution to manage its exposure to fluctuating interest rates. The ability of a model to hedge 

a portfolio of zero coupon bonds would strongly indicate what type of a model can be used 

by a financial institution to hedge its exposure to fluctuating interest rates. A model that 

accurately hedges interest rate exposure for a portfolio of zero coupon bonds can be used 

to manage interest rate risk for a subset of financial institutions' activities. The study ad

dresses this issue by applying all the different models considered in the study to the hedging 

of two portfolios to test which one of them is able to better hedge a portfolio of zero coupon 

bonds of different maturities. 

The methodology used for the testing of the hedging effectiveness is based on the for

mation of theoretical hedge portfolios comprising zero coupon bonds of different maturi

ties and then comparing the change in hedge portfolio value with the change in value of the 

hedged portfolio. The methodology consists of two portfolios 

• A portfolio A to be hedged and 

• A portfolio B that is used to hedge the previous portfolio. 

The portfolio A to be hedged is a portfolio with fixed proportions invested in zero coupon 

bonds of different maturities. The proportions to be invested in the zero coupon bonds of 

portfolio B are determined using the sensitivities of the value of a zero coupon bond with 
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respect to the risk factors specific to a model. Beginning the first trading day of January 

1996 for a particular model the proportions to be invested in each of the bonds of portfolio 

B are determined using the parameters estimated for the model from the data (January 1983 

through December 1995) and the sensitivities as predicted by the model. On the first trading 

day of February 1996 the two portfolios A, and B are repriced. Then the returns on the two 

portfolios A, and B are calculated over the one month period January 1996 to February 

1996. The absolute value of the difference in the return of the two portfolios A, and B 

over the one month period is called the hedging error. If the position is completely hedged 

the difference ought to be zero. This process is repeated by rolling the window forward by 

each month i.e. using the data from February 1983 through January 1996 to estimate the 

parameters and forming the hedge portfolio Bin February 1996.· For the second window 

the hedge error is calculated by measuring the return on the two portfolios over the period 

February 1996 to March 1996. This process of rolling the window forward is repeated till 

the last window of hedge error measurement is from November 1999 to December 1999. 

The sample set of all the possible choices of the two portfolios to be hedged is quite 

large given the different maturity bonds that exist. For instance if one assumes that there 

are only 10 different maturities that are traded, then the total number of possible choices is 

(210 - 1) = 1023. 

A hedging strategy for a fixed income portfolio is primarily dependent on two factors 

• What type of unexpected changes in the yield curve can occur ? 

• How would these unexpected changes in the yield curve affect the values of the assets 

in the portfolio? 

To answer such questions traditionally the fluctuations in the term structure have been 

categorized as 

• Parallel shifts 

• Change in the slope or steepness of the yield curve and 
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• Change in the curvature of the yield curve. 

The two portfolios chosen for the testing methodology in the study possess assets that 

are particularly sensitive to different types of shifts in the yield curve. The study chooses 

two portfolios P-1 and P-11. P-1 is a portfolio formed of long positions in one-unit each 

of bonds of maturity 1, and 20 years and a short position in a bond of maturity 10 years. 

Portfolio P-1 is formed of long and short positions in bonds of mixed maturities. This 

portfolio's value is expected to be more sensitive to changes in the curvature of the yield 

curve.and the slope of the yield curve than the changes in the level of interest rates. The 

second portfolio chosen is P-11, a portfolio formed by taking long positions of one-unit each 

in bonds of maturities 10, 15, and 20 years. This portfolio's value would be very sensitive 

to the levels of the interest rates (especially at the long end of the yield curve) as well as 

being sensitive to the slope and curvature of the yield curve. 

To get an idea about how the values of the two portfolios react to the different types 

of shifts of the yield curve the study identifies different instances . in the out of sample 

period January 1996 through December 1999 when there were shifts in the yield curve that 

can be categorized as parallel shifts, change in steepness and change in curvature. The 

change in the values of the portfolios P-1 and P-11 over the three instances would indicate 

the sensitivities of the portfolio to different types of shifts in the yield curve. 

In the sample period from January 1996 to February 1996 the term structure exhibits a 

parallel shift. The Figure 5 .1 illustrates this parallel shift. 

From October 1997 to November 1997 the term structure exhibits a change in steepness. 

The Figure 5.2 illustrates this change in steepness. 

From August 1998 to September 1998 the term structure exhibits a twist in the yield 

curve. Figure 5.3 illustrates this change. During this period there were parallel shifts at the 
\ 

short end of the term structure (less than 2 years) and changes in both the steepness and 

curvature of the term structure for maturities greater than 2 years. 

The values of the portfolios P-1 and P-11 to be hedged are 
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Figure 5.1: Parallel Shift 

VP-I= pl+ p20 _ plO, (5.1) 

and 

VP-II = plO + p15 + p20. (5.2) 

Where pi is the price of a bond with i years left to maturity. VP-I and VP-II denote 

the values of the portfolios P-1 and P-11. The change in the value of the portfolios during 

the three sample periods of parallel, steepness and curvature shifts are shown in Table 

5.1. As anticipated the portfolio P-11 is more sensitive to changes in the levels of the term 

structure that is evident from the change in value of portfolio P-11 during the first time 

period (01/96 - 02/96 when there was a parallel shift in the term structure)-6.7481 that is 

approximately 33 times the change in the value of portfolio P-1 during the same time. Also 

the portfolio P-1 chosen due to its sensitivity to the change in the curvature of the yield 

curve is evident from the change in the value of portfolio P-1 during the third time period 

(08/98 - 09/98). Also the results from Table 5.1 strongly indicate that the two portfolios 
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Figure 5.2: Steepness Shift 

Table 5.1: Changes in the Portfolio's Value 

The monthly change in the value of the portfolio to be hedged in percentage are calculated. 

Time LlV(P-1)% LlV (P-11)% 

01/96-02/96 

10/97-11/97 

08/98-09/98 

0.2112 

1.2718 

4.3269 

-6.7481 

0.8638 

4.4264 

P-1 and P-11 are equally sensitive to changes in the slope and curvature of the term structure 

but P-11 is significantly more sensitive to changes in the levels of interest rates than portfolio 

P-1. 

The following assumptions have been made to test the hedging effectiveness . 

• The value of the hedge portfolio and the portfolio to be hedged is matched at the 

beginning of every month 

• The portfolio is rebalanced every month 
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Figure 5.3: Curvature Shift 

• The transaction costs are assumed to be negligible 

• There are no restrictions on short selling and assets are infinitely divisible 

The rest of the analysis with respect to hedging effectiveness is explained by consider

ing only portfolio P-1. The analysis is exactly similar when considering the portfolio P-11 

except the composition of the hedged portfolio is different. 

5.1 The Equilibrium Models 

5.1.1 The CIR Model 

The Cox, Ingersoll, and Ross (1985) (hereafter CIR) model considered here is a one 

factor model with the short term interest rate as the single risk factor. The objective of 

the hedging strategy is to create a hedge portfolio whose return due to a change in the risk 

factor is identical to the return on the hedged portfolio. The hedge portfolio must contain 

two assets to hedge the risk. To form a hedge portfolio is again as difficult as choosing 

a portfolio to be hedged. For instance from a choice of 10 maturities a portfolio of two 

93 



securities can be picked in 45 ways. The hedge portfolio picked consists of proportions in

vested in two bonds of 2 and 3 years to maturity. The portfolios of other combinations such 

as 2 and 7 years to maturity, 3 and 7 years to maturity were tried and the results were not 

significantly different. But the author admits that it is impossible to claim that the results 

are invariant to all possible choices of the hedge portfolio. 

Let Xi be the proportion invested in a zero coupon bond with i years to maturity and pi 

be the price of the bond with maturity i, where i = 2, 3. Taking the partial derivative of the 

equation (5.1) on both sides 

V. = pl + p20 _ plO 
r r r r (5.3) 

The constraint on the portfolio weights of the hedge portfolio is that the value of the 

portfolio to be hedged and the hedge portfolio should have the same value at time t, that 

implies 

(5.4) 

where Pf defines the partial derivative of the Bond price of maturity i with respect to 

the short term interest rate. Since the purpose of the hedge portfolio is to hedge the risk 

of the portfolio from time t to t + tlt, the return on the two portfolios in this time period 

should be the same. This would imply 

X p2 + X p3 = pl + p20 _ plO 
2r 3r r r r (5.5) 

The functional form of the price of a bond in the CIR model is given by equation (3.10). 

The proportions to be invested in the two and three year maturities of the hedge portfolio 

can be solved for using the equations (5.4) and (5.5). This yields x2 and x3 as 
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(5.6) 

and 

-{ [v -1if] } 
X3 - [ p 3 _ p~;l] (5.7) 

The partial derivative of the price of the bond with respect to the short term rate can be 

obtained from the functional form of equation (3.10) i.e. 

Based on the parameters estimated from the estimation window of 1983 - 1995 the 

x's as described above are estimated and the return on the two portfolios is measured over 

the period January 1996 to February 1996. This process is repeated on the first business 

day of each month through December 1999. This approach produces forty-seven monthly 

observations of hedge performance. 

To produce the first observation of hedge performance the data on the short term interest 

rates from February 1983 to January 1996 is used to estimate the parameters of the interest 

rate process. Using these parameters the sensitivities of the bond prices are calculated and 

are used to calculate the proportions invested in the bonds of the hedge portfolio. In Febru

ary 1996 the hedge portfo~io is marked to market using the bond prices of the two and three 

year maturities and the portfolio to be hedged is marked to market using the bond prices 

of 1, 10 and 20 year maturities. From January to February the returns on the two portfolios 

are calculated in percentage and the absolute difference between the two returns is called 

hedging error and used as a measure of hedging performance. 
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5.1.2 The LS Model 

In the case of the Longstaff and Schwartz (1992) (hereafter LS) model there are two risk 

factors short term interest rate rt and its volatility a. The hedge portfolio must contain three 

bonds to hedge these risks. The hedge portfolio used comprises of different proportions 

invested in three zero coupon bonds of 2, 3, and 7 year maturities. The hedging error again 

is defined as the difference in the return on the portfolio to be hedged and the return on the 

hedge portfolio. 

Let xi be the proportion invested in a zero coupon bond with i years to maturity and pi be 

the price of the bond with maturity i, where i = 2, 3, and 7. Taking the partial derivative of 

the equation (5.1) on both sides first with respect tor and a yields 

V, = pl + p20 _ plO 
r r r r (5.8) 

V = pl + p20 _ plO 
CT CT CT CT (5.9) 

The constraint on the hedge portfolio proportions is that the return on the portfolio to 

be hedged and return on the hedge portfolio should be the same, which implies 

pl+ p2D _ plD 

pl+ p2D _ plD 
r r r (5.10) 

pl+ p20 _ plD 
CT CT CT 

Solving the set of equations (5.10) for the values of x 2 , x3 and x 7 gives the proportions 

to be invested in each of the assets. The values are 

_ p2 p3 p7 + p2 p7 p3 + p3 p2 p7 _ p7 p2 p3 + p7 p3 p2 _ p3 p7 p2 
CT r CT r CT r CT r CT r CT r 
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_p2p3p7 + p2p7p3 + p3p2p7 _ p7p2p3 + p7p3p2 _ p3p7p2 
u r u r u r u r u r u r 

The partial of the price of the bond with respect to the short term rate and its volatility 

can be obtained from the functional form of equation (3.14) as 

and 

Using the parameters estimated from the estimation window of February 1983 - Jan

uary 1996 the hedge portfolio proportions as described above are calculated and the hedge 

portfolio is formed. 

5.2 The Heath Jarrow and Morton Models 

5.2.1 The HJM-RS Model 

For the Heath farrow and Morton (hereafter HJM) model with varying spot rate volatil

ity (hereafter HJM-RS) the yield of a bond with a certain maturity is a function of the two 

state variables, integrated variance and the ex-post forward premium. These state variables 

are unobservable. Though the state variables are unobservable the sensitivity of a bond's 

price to each state variable is observable at a point in time t. Using the equation (3.20) the 

first partial of a bond price with respect to the first state variable (integrated variance cp(t)) 

is 
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where 

1 /3(m) _ -(1 - e-i.m); 
K, 

</J(t) = lot a}(, t)ds; 

'lf;(t) = f (0, t) - r(t). 

This can be rewritten as 

8Bt(t + m) = B (t )(-!/32 ( )) 
8¢(t) t +m 2 m (5.12) 

Similarly the partial of the bond price with respect to the second state variable '!f;(t) is 

8Bt(t + m) 
a'lf;(t) = Bt(t + m)(/3(m)) (5.13) 

The hedge portfolio must contain three bonds to hedge these risks. The hedge portfolio 

contains three zero coupon bonds with maturities 2, 3, and 7 years. 

Let Xi be the proportion invested in a zero coupon bond with Ti years to maturity and Pi be 

the price of the bond with maturity Ti, where i = 1, 2, and 3. Taking the partial derivative 

of the equation (5.1) on both sides first with respect to </J(t) and '!f;(t) yields 

v; P l p20 plO ,p(t) = ,p(t) + ,p(t) - ,p(t) (5.14) 

V. P l p20 plO 
,j.,(t) = ,j.,(t) + '1/J(t) - ,j.,(t) (5.15) 

The dependence of the two variables on t will be omitted for simplicity of presentation. 

The hedge portfolio proportions are chosen so that the return on the portfolio to be hedged 

and return on the hedge portfolio are equal i.e. 
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pl+ p20 _ plO 

PJ + PJ0 -PJ0 

PJ +PJ0 -PJ0 

x2PJ + x3PJ + X7 PJ 

x2PJ + X3PJ + x1PJ 

(5.16) 

Solving the set of equations (5.16) for the values of x2 , x3 and x7 gives the proportions 

to be invested in each of the assets. The values are 

X7 = 

The partial of the price of the bond with respect to the state variables are substituted 

from equations (5.12) and (5.13). Based on the parameters estimated from the estimation 

window ending in January 1996 the hedge portfolio proportions as described above are cal

culated and the hedge portfolio is formed. 

5.2.2 The HJM-GV Model 

For the Heath Jarrow and Morton (1992) (hereafter HJM) model with the generalized 

Vasicek volatility i.e. constant spot rate volatility (hereafter HJM-GV) the yield of a bond 

with a certain maturity is a function of the one state variable, the ex-post forward premium. 

This risk factor is unobservable. Though the state variable is unobservable the sensitivity of 

a bond price to the state variable is observable at a certain point in time t. The first partial 

of a bond price with respect to the state variable '¢(t) is 
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where 
1 

/3(m) = -(1 - e-t£m); 
K, 

a2 
ef>(t) = 2K, (1 - e-2,_t); 

'lj;(t) = f (0, t) - r(t). 

This can be rewritten as 

8Bt(t + m) 
a'lj;(t) = Bt(t + m)(/3(m)) (5.19) 

The hedge portfolio must contain two assets to hedge the risk. The hedge portfolio 

contains zero coupon bonds of 2 and 3 year maturities. 

Let xi be the proportion invested in a zero coupon bond with i years to maturity and pi 

be the price of the bond with maturity i, where i = 2, and 3. Taking the partial derivative 

of the equation ( 5 .1) on both sides first with respect to 'ljJ ( t) yields 

TT pl p20 plO 
V '1/J(t) = '1/J(t) + '1/J(t) - '1/J(t) (5.20) 

The hedge portfolio proportions are chosen so that the return on the portfolio to be 

hedged and return on the hedge portfolio are equal i.e. 

pl+ p20 _ plO (5.21) 

Solving the set of equations (5.22) for the values of x2 and x3 gives the proportions to 

be invested in each of the assets. The values are 
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X3 = 

VPJ-P3V,t, 

P2PJ-P3PJ 

V,t,P2 -VP$ 
p2 PJct) - p3 PJ 

(5.22) 

The partial of the price of the bond with respectto the state variable is substituted from 

equation (5.18). Based on the parameters estimated from the estimation window ending 

in January 1996 the hedge portfolio proportions as described above are calculated and the 

hedge portfolio is formed. 

5.3 The Network Models 

5.3.1 The MLP Network 

For the MLP and RBF networks the two risk factors are the two inputs that are given to 

the network, P·5 and P 5 where pi denotes the price of a zero coupon bond with maturity 

i years. The objective of the hedging strategy is to hedge the risk due to those risk factors. 

The hedge portfolio must contain three bonds to hedge these risks. The hedge portfolio 

contains three zero coupon bonds with maturities 2, 3, and 7 years. 

Let Xi be the proportion invested in a zero coupon bond with i years to maturity and pi 

be the price of the bond with maturity i, where i = 2, 3, and 7. Taking the partial derivative 

of the equation (5.1) on both sides first with respect to P·5 and then with respect to P 5 

yields 

TT pl p20 plO vp.5 = p.5 + p.5 - p.s 

V: P l p20 plO 
u = p5 + p5 - p5 
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The constraint on the hedge portfolio proportions is that the return on the portfolio to 

be hedged and return on the hedge portfolio should be the same, which implies 

pl+ p20 _ plO 

P l p20 plO p.5 + p.5 - p.5 

P l p20 plO p5 + p5 - p5 

(5.25) 

Solving the set of equations (5.25) for the values of x1, x2 and x3 gives the proportions 

to be invested in each of the assets. The values are 

-P3 Pts Vp.s + P3VpsPt.s - P7 Pls Vps + P7 Pts Vp.s - V PtsPt.s + V PlsPts 
-P2 PtsPt.s + P 2 PtsP;.s + P3 PtsPls - P7 PtsP;.s + P7 P;sPt.s - P3 PtsPt.s 
-P2PtsVp.s +P2VpsPls +P7PtsVp.s +Pt.sPtsV-VpsPfo.sP7 -VPt.sPts 

-P2P;sPt.s + P2P;.sPts + P3PtsPt.s - PtsP;.sP7 + PtsPt.sP7 - Pt.sP3Pts 
-PlsPts V + P 2 Pt.s Vps - P 2 Pts Vp.s + Pt.sPts V + PtsP3Vp.s - Pt.sP7Vps 

-P2P;sPls + P2PtsP;.s + P3PtsPt.s - P7PtsP;.s + P7P;sPt.s - P3PtsPls 

From the training algorithm in the Appendix A the backpropagation at the last iteration 

gives the derivatives of the output w.r.t. the weights and biases using chain rule in equations 

(A.4) and (A.5). Using the same algorithm (based on backpropagation) the derivatives with 

respect to the inputs are found by substituting the partial of the net input with respect to 

the weights and biases with the partial of the net input with respect to the inputs. These 

derivatives are used as the sensitivities of the prices of the bonds (used as outputs) w.r.t. the 

prices of the two target maturity bonds. 

Based on the network trained from the estimation window of February 1983 - January 

1996 the x's as described above are estimated and the hedge portfolio is formed. 
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5.3.2 The RBF Network 

For the radial basis function (hereafter RBF) networks just like in MLPs, the two risk 

factors are the two inputs that are given to the network. So the complete procedure for the 

hedging is exactly the same as that for the MLP and it differs only in the derivatives that 

are substituted from the training algorithm. 

The partial derivative of the network output with respect to the network input that is 

required for the calculation of the hedge portfolio proportions are calculated using equation 

(5.26) using the same notation as used by equation (3.27) for the pricing of bonds. 

aJr(x) = I: Ai. acp(llx - Cill) 
ax i=l ax 

(5.26) 

The partial of the gaussian function cp with respect to the input is calculated using the 

. relation 

(5.27) 

5.4 Traditional Hedging Measures 

5.4.1 Duration Based Hedging 

Traditionally Macaulay's duration has been used to hedge a portfolio of zero coupon 

bonds. Duration based hedging is very simple to implement as compared to the model 

based hedging suggested so far. It is an empirical question if the extra complexity involved 

in the implementation of the model based hedges improves hedge performance relative to 

duration based hedging. 

The hedge errors for the duration based hedging are constructed in a similar fashion. 

The hedge portfolio must contain two zero coupon bonds to hedge the risk. The hedge 

portfolio contains two zero coupon bonds with maturities 2, and 3 years. If the value and 
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the durations of the two portfolios (hedge portfolio and the portfolio to be hedged) are to 

be matched, then this would imply 

pi +P20 _ p10 (5.28) 

1P1 + 20P20 - lOP10 

Since the duration of a zero coupon bond is its maturity and a duration of a portfolio of 

bonds is the weighted average of the durations of the individual bonds. Solving the set of 

equations 5.28 for the values of x2 and x3 yield their values as 

3(P1 + p20 _ p10) _ (lP1 + 20p20 _ 10P10) 
X2 = p2 

(1P1 + 20P20 - 10P10) - 2(P1 + P 20 - P 10 ) 
X3 = p3 

Consistent with all the other testing procedures the hedge portfolio proportions are 

calculated on the first trading day of January 1996 and the hedging error is calculated in 

February 1996. 

5.4.2 The Principal Component Analysis 

Principal components analysis (hereafter PCA) has also been used to hedge fixed in-

come portfolios. Though PCA is not as simple as Macaulay's duration it is simpler than 

all the model based hedges to implement. The study compares the hedge errors from PCA 

with the other model based hedges. If PCA performs better, then given it's simplicity, a 

hedging strategy based on PCA would be preferable. 

The estimation procedure for the PCA is explained in Appendix C in detail. In the 

case of the factors extracted by principal component analysis it turns out that the hedging 

strategy can be designed in a simple way. By construction, the factors are all independent of 

one another and hence they are not correlated to one another. The change in a zero coupon 
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interest rate Yt, for maturity t, is related to the factor shocks, Fi where i = 1, 2, ... m (mis 

the number of factors) 
m 

dyt = L Li,tFi 
i=l 

The change in the value of a portfolio of interest rate-sensitive cash flows, P is a function 

of changes in each interest rate indicated by 

dP = 
M 8P M 

L adYt = I:(-t)CFt exp(-tyt)dyt 
t=I Yt t=I 

t,_ [tCFt exp(-tyt ~ Li,tFil . 

Dividing throughout by P and rearranging gives 

dP 
p -f [t twtLi,tl Fi 

i=l t=l 
m 

-I:Si~ 
i=l 

The Si measures the sensitivity of the portfolio to the ith factor. The factor sensitivities 

combine linearly. So to devise a hedging strategy on a general level 

N 

sr = I:xjsf, 
j=l 

where the Xj are the proportions invested in each security. The hedging strategy in this case 

comprises the choice of the hedge portfolio proportions such that the factor sensitivities of 

the portfolio to be hedged and the factor sensitivities of the hedge portfolio are identical. 

The factors are estimated using the procedure explained in Appendix C and are shown 

in Table 5.2 for the last window of December 1999. The data on the changes in the yields 

for the maturities .25, .5, 1, 2, 3, 5, 7, 10, 15, and 20 years is used from December 1986 to 

November 1999. 

The percentage of the variance explained by each of the three factors in the last window 

i.e. for the period December 1987 to November 1999 are shown in Table 5.3. 
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Table 5 .2: The Three Principal Components 

The three principal components for the maturities .25, .5, 1, 2, 3, 5, 7, 10, 15, and 20 years 

using the data from December 1986 to November 1999 on the change in yields are stated. 

Maturity Component 1 Component2 Component3 

.25 0.297 0.6851 0.1613 

.5 0.2913 0.3851 0.2499 

1 0.3121 0.057 0.36 

2 0.31 -0.1965 0.3262 

3 0.3008 -0.3076 0.2668 

5 0.3055 -0.3132 0.1094 

7 0.2929 -0.2865 0.0045 

10 0.3055 -0.1438 -0.23 

15 0.289 -0.0703 -0.3385 

20 0.2794 -0.0084 -0.3828 

Table 5.3: Explained Variance 

The explained variance as a proportion of the total due to each principal component based 

on the eigen values of the variance covariance matrix of the change in yields for all the 

maturities are stated. 

Factors Explained Variance Cumulative Explained Variance Unexplained Variance 

Factor 1 

Factor 2 

Factor 3 

.8359 

.0987 

.0306 
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.8359 

.9346 

.9652 

.1641 

.0654 
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Figure 5.4: Principal Components 

The results in Table 5.3 suggest that the first factor explains 83.59 percent of the total 

variance of the changes in the yields for all the bonds considered in the last window. The 

second factor explains 9.87 percent of the total variance and the two factors together explain 

93.46 percent of the total variance. The third factor individually explains only 3.06 percent 

of the total variance. 

The plot of the three factors versus the time to maturity of the zero coupon bonds 

as shown in Figure 5.4 clearly indicates that the first factor affects all maturities equally. 

This factor has been associated with changes in term structure levels by Litterman and 

Schienkman (1991). The second factor is related to the changes in the steepness of the term 

structure and the third factor is related to the changes in the curvature of the term structure. 

From the Figure it is evident that to some extent the second factor and the third factor do 

affect the steepness and curvature of the yield curve respectively. For the purpose of this 

study if the three factors of the PCA are actually able to capture the three different types 

of unexpected shifts in the yield curve, levels, steepness, and curvature then a hedging 

strategy based on the principal components analysis should perform the best whenever all 
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three types of shifts in the yield curve occur. 

Based on the principal components estimated from the estimation window of January 

1983 through December 1995 the hedge portfolio proportions as described above are cal

culated to form the hedge portfolio in January 1996. In February 1996 the hedging errors 

are measured and this window is rolled forward till December 1999. 
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CHAPTER6 

Results 

6.1 The Pricing Applications 

For the Cox Ingersoll and Ross (1985) (hereafter CIR) model the parameters of the 

short rate process 1,,, (), and a in equation (3.9) are calculated from the parameters of the set 

of equations ( 4.1) using the set of equations ( 4.2). The parameters of the set of equations 

(4.1) are estimated using Generalized Method of Moments. The proxy used for the short 

term rate is the unsmoothed Fama and Bliss (1987) (hereafter FB) yield extracted for a 

bond that matures in . 25 years. An additional measure the market price of interest rate risk 

is needed to price a unit discount bond using the CIR model. The ask price (implied by 

the ask discount rate) of Treasury Bills maturing in one year from the first trading day of 

each month beginning January 1996 till December 1999 is used. The market price at each 

date is implied by minimizing the squared difference between the CIR predicted price for 

the Bill using parameters estimated for that date and the actual price. On the first trading 

day of January 1996 the parameters of the model are estimated using the data on the short 

term rate from January 1983 through December 1995. Given the short term rate and the 

market price of risk on the first trading day of January 1996 zero coupon bonds of different 

maturities are priced using the parameters estimated and equation (3.10). 

For the Longstaff and Schwartz (1992) (hereafter LS) model the stochastic processes 

of short term .rate and its volatility given by equations (3.11) and (3.12) are proxied by 

a discrete GARCH model as in the set of equations ( 4.5). On the first trading day of 

January 1996 the parameters of the model are estimated using the data on the short term 

rate from January 1983 through December 1995. The proxy used for the short term rate 
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is the unsmoothed Faina and Bliss (1987) (hereafter FB) yield extracted for a bond that 

matures in .25 years. The market price of risk used for the LS model on a particular date 

is the same used for the CIR model for that particular date. Given the short term rate, 

the GARCH estimate of volatility as predicted by the estimated GARCH model, and the 

market price of risk on the first trading day of January 1996 zero coupon bonds of different 

maturities are priced using the parameters estimated and equation (3.14). 

In the case of Heath Jarrow and Morton (1992) (hereafter HJM) models the data on the 

changes in the forward rates for the 10 maturities (.25, .5, 1, 2, 3, 5, 7, 10, 15, and 20 years) 

for the time period January 1995 to December 1995 are used to estimate the parameters 

of the equation (4.10), for the HJM model with Ritchken and Sankarasubramanian (1995) 

(hereafter HJM-RS) restrictions and equation (4.19) for the HJM model with a constant 

spot rate volatility i.e. generalized Vasicek (hereafter HJM-GV) model. Change in forward 

rates as defined here for a particular maturity m is the forward rate measured form maturity 

bond in December minus the spot rate for them maturity bond in January. Using the data 

on the changes in the forward rate of the two benchmark maturities (.5 and 5 yr.) for the 

month of January 1996 and the estimated parameters, the change in forward rates for all 

the other maturities are calculated. Change in forward rates for all the other maturities are 

in tum converted into bond prices for different maturities. 

Using 13 years of data on the whole term structure for HJM would be tantamount to 

using 1248(12 x 13 x 8) observations as opposed to 156 in the equilibrium models. This 

imposes the restriction that the cross sectional variance covariance matrix of the change in 

forward rates of different maturities is constant through time from January 1983 through 

1995. These restrictions on the variance covariance structure of the changes in yields of 

different maturity bonds over a period of 13 years are not consistent with the model leading 

to non-convergence of the likelihood functions of the HJM models to a unique maximum. 

As a result the HJM models use only one year's data on the whole term structure as com

pared to equilibrium models that use 13 years of data but only on one point on the term 
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structure (short term rate). 

For the Network models the data on the changes in the forward rates for the 2 bench-

mark maturities (0.5 and 5 years)over the period of January 1983 through December 1995 

are used to train the networks to be implemented for the first trading day of January 1996. 

On the first trading day of January 1996 using the trained network and the changes in for

ward rates for the two benchmark maturities from December 1995 to January 1996, the 

changes in forward rates for all the other maturities are predicted. These are converted into 

bond prices for maturities .25, .5, 1, 2, 3, 5, 7, 10, 15, and 20 years. 

The difference between the price as predicted by a model and the price implied by the 

FB yield for a particular maturity is defined as the pricing error. Then the window is rolled 

over by throwing out January of 1983 and including the January of 1996 to predict prices for 

February of 1996. This process is repeated to produce forty-eight pricing error observations 

till December 1999. The vector of forty-eight pricing errors is used to construct the Mean 

Absolute Deviation (hereafter MAD) and Root Mean Square Error (hereafter RMSE) for 

each maturity. The MAD and the RMSE for the different maturities over the forty-eight 

windows are presented in Table 6.1 and Table 6.2. The errors are in cents on a bond with a 

face value of one-dollar. 

To compare the models amongst one another and determine if the differences are sta-

tistically significant, the modified Diebold Mariano (1995) (hereafter MDM) statistic is 

calculated. 

For a pair of models in a set of a step ahead pricing error, let the errors be (e1t, e2t) 

where t = 1, ... , 48. In this case the pricing performance is judged on the squared error 

function g ( e) = e2 . The null hypothesis of equality of expected pricing performance is 

E[g(e1t) - g(e2t)] = 0 

The Diebold Mariano statistic (1995) for such a case is 
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Table 6.1: Mean Absolute Deviation (cents) 

The mean absolute deviations are calculated for the six models during the sample period 

January 1996 through December 1999 for the forty~eight months. The errors are in cents 

on a bond with a face value of one-dollar. 

Maturity CIR LS HJM-RS HJM-GV MLP RBF 

.25 0.0183 0.0011 0.0198 0.0204 0.0177 0.0196 

1 0.1149 0.3118 0.0804 0.0862 0.0718 0.1163 

2 0.4474 0.9456 0.1007 0.2081 0.0872 0.2617 

3 0.9434 1.5500 0.1020 0.3404 0.0919 0.4537 

7 5.2787 3.6664 0.6116 0.9697 0.6207 0.7857 

10 8.5037 3.9415 0.5275 0.9906 0.4677 1.0694 

15 8.8293 6.1221 2.5784 2.8044 2.6478 1.9553 

20 8.8113 6.1042 0.9606 1.3274 1.0116 1.2383 

Table 6.2: Root Mean Squared Error(cents) 

The root mean squared errors are calculated for the six models during the sample period 

January 1996 through December 1999 for the forty-eight months. The errors are in cents 

on a bond with a face value of one-dollar. 

Maturity CIR LS HJM-RS HJM-GV MLP RBF 

.25 0.0205 0.0012 0.0247 0.0246 0.0215 0.0250 

1 0.1424 0.3538 0.1018 0.1116 0.0874 0.1557 

2 0.5969 1.0692 0.1279 0.2622 0.1222 0.3966 

3 1.3533 1.7762 0.1361 0.4225 0.1334 0.8615 

7 7.1748 4.1186 0.6626 1.2140 0.6784 1.8906 

10 10.9092 4.4966 0.6713 1.2547 0.6099 1.8906 

15 11.0637 6.6277 2.8708 3.1703 2.9557 3.6718 

20 11.2179 6.5897 1.2689 1.7072 1.3001 1.7561 
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where 

dt = g(e1t) - g(e2t), 

- 1 48 

d= 48 Ldt 
t=l 

48 

V(d) ~ (48)2 ~(dt - d)2 

Under the null hypothesis (that the expected value of the difference between the squared 

errors of the two models is zero) the statistic Sdm has an asymptotic standard normal dis

tribution. Harvey, Leybourne and Newbold (1997) suggest an approximately unbiased es

timator of the variance of d which is 

S - [n+l-2h+n-1h(h-1)] 112 s 
mdm - dm n 

(6.1) 

Where h is the number of steps ahead forecast and n is the number of observations. For 

this study h is 1 and n is forty-eight. In this application the MDM statistic can be compared 

with critical values from the Student's t distribution with forty-seven degrees of freedom 

rather than the standard normal distribution. 

The comparison of term structure models is done using the MDM statistic in two 

phases. In the first phase the MDM test is performed within each class of models Equi-

librium (CIR vs. LS), HJM (HJM-RS vs. HJM-GV), and Neural Networks (MLP vs. 

RBF). In phase two the superior models from each class are compared against one another. 

The MDM statistic for each of the three categories Equilibrium models, HJM models 

and Network models are presented in Table 6.3, Table 6.4 and Table 6.5 respectively. The 

differences of the squares of the error are calculated in the way suggested by the nomen-

clature of the comparison. For instance the statistic for the CIR-LS model is calculated by 

subtracting the square of the error for the LS model from that for the CIR model. This im-

plies that if the statistic is positive the errors for CIR model were greater than the errors for 

LS model and vice versa. The null hypothesis for the tests is that the difference between the 
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squared errors of the two models is zero and the alternate hypothesis is that the difference 

is different from zero. These values can be compared to critical values from Student's t 

distribution with forty-seven degrees of freedom, to gauge the statistical significance. 

Table 6.3: MOM Statistic(Equilibrium Models) 

The MDM statistic is calculated for all the maturities using equation (6.1) for the equilib

rium models CIR and LS and the sample period January 1996 through December 1999 for 

the forty-eight months. (* 1 % level,** 5% level,*** 10 % level) 

Maturity CIR-LS 

.25 6.972* 

1 -7.333* 

2 -4.340* 

3 -2.001 ** 

7 2.493* 

10 3.541 * 

15 2.975* 

20 3.322* 

The results from Table 6.3 show that for maturities 2 and 3 years CIR model performs 

significantly better than the LS model at a level of 1 % and 5% respectively8• Whereas the 

LS model outperforms the CIR model for maturities 7, 10, 15, and 20 years at a level of 

1 %. This is not surprising given the structure of the two models. CIR model is a single 

factor (3 month yield) model whereas the two factor LS model specifies both the 3 month 

yield and its volatility as risk factors. This leads to the poor performance of the CIR model 

in pricing bonds of longer maturities. A surprising finding in Table 6.3 is that the CIR also 

misprices the .25 year bond significantly when compared to the LS model. Both the CIR 

8The 1 year bond result is not considered because the CIR model uses the 1 year bond price to extract the 

market price of interest rate risk 
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and LS model have the short term rate (the yield on a .25 year bond) as an input but the 

LS model also has the volatility of the short term rate as the second input. For the .25 year 

bond the results indicate that a model that considers the short rate volatility does better than 

the one that does not. Neither equilibrium model is clearly superior for all maturities, so 

both the models are taken to phase two for further comparisons. 

Table 6.4: MDM Statistic(HJM Models) 

The MDM statistic is calculated for all the maturities using equation (6.1) for the HJM 

models HJM-RS and HJM-GV and the sample period January 1996 through December 

1999 for the forty-eight months.(* 1 % level, ** 5% level, *** 10 % level) 

Maturity RS-GV 

.25 0.124 

1 -2.151** 

2 -4.775* 

3 -4.788* 

7 -3.730* 

10 -3.965* 

15 -1.556 

20 -3.360* 

The results in Table 6.4 show that for all maturity bonds except the .25, 1, and 15 year 

bonds the HJM-RS model significantly outperforms the HJM-GV model at a level of 1 %. 

HJM-RS model outperforms HJM-GV model in the case of 1 year bond at a level of 5%. In 

this category clearly the HJM-RS model outperforms the HJM-GV model. These findings 

are consistent with the findings of Bliss and Ritchken (1996). HJM-GV model implies 

constant spot rate volatility whereas the HJM-RS allows for the variability of the spot rate 

volatility with time. The statistically smaller pricing errors of HJM-RS model are consistent 

with evidence that the spot rate volatility is not constant. 

115 



Table 6.5: MDM Statistic(Network Models) 

The MDM statistic is calculated for all the maturities using equation (6.1) for the network 

models MLP and RBF and the sample period January 1996 through December 1999 for the 

forty-eight months. (* 1 % level, ** 5% level, *** 10 % level) 

Maturity RBF-MLP 

.25 0.988 

1 1.866*** 

2 1.666*** 

3 1.476 

7 1.120 

10 1.736*** 

15 0.708 

20 1.344 

The results in the Table 6.5 indicate that on average, the pricing errors of an RBF 

network are greater than those for an MLP network. But the difference is significant at 

only the 10% level for 1, 2, and 10 year maturities. In this category the MLP network 

emerges as the winner in terms of it ability to price bonds. Different types of Neural 

Networks are suitable to model different types of data. This implies that an MLP network 

(using Bayesian Regularization as the training algorithm) is better suited to capture the 

dynamics of the term structure of interest rates than an RBF network (using the orthogonal 

least squares training algorithm). 

During phase two the term structure models CIR, LS, HJM-RS, and MLP are compared 

against one another. The results for the comparison of CIR, HJM-RS and MLP models are 

shown in Table 6.6. 

The first column of Table 6.6 indicates that the MLP network performs significantly 

better than the CIR model for the 3, 10, 15, and 20 year bonds at a level of 1 %. The market 
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Table 6.6: MDM Statistic (CIR, HJM-RS, and MLP) 

The MDM statistic is calculated for all the maturities using equation (6.1) for the three 

matched pairs of CIR-MLP, HJMRS-MLP, and HJMRS-CIR and the sample period January 

1996 till December 1999 for the forty-eight months. (* 1 % level, ** 5% level, *** 10 % 

level) 

Maturity CIR-MLP HJMRS-MLP HJMRS-CIR 

.25 -0.423 1.882*** 1.411 

1 -3.946* 1.915*** 4.101 * 

2 0.948 0.393 -0.820 

3 3.128* 0.132 -3.129* 

7 2.459** -0.549 -2.536** 

10 3.522* 1. 733*** -3.504* 

15 3.020* -2.261 ** -3.062* 

20 4.209* -0.765 -4.215* 

117 



price of risk used for the CIR model was implied from the 1 year treasury bonds and hence 

it is not surprising that the CIR model prices the 1 year bond the best. The CIR model 

being a single factor model imposes restrictions on the yield curve that all movements in 

the different interest rates are perfectly correlated. This indicates that the MLP network 

succeeds in capturing the imperfect correlation between the movements of interest rates of 

different maturities. 

The second column of Table 6.6 implies that the MLP performs significantly better than 

the HJM-RS model for the .25, 1, and 10 year bonds at a level of 10%. The HJM-RS model 

outperforms the MLP network significantly only for the 15 year bond. At this stage it is 

appropriate to mention that the Neural Networks were trained using the data such that it is 

consistent with the HJM category models. In other words the inputs to the network were not 

learnt from any kind of training of the network. They were decided even before the design 

of the network, to make the informational set used by the network consistent with that of 

the HJM models. This implies that this might not be the best possible performance of MLP 

network trained using Bayesian Regularization. Despite this, the network performs better 

than the HJM-RS model. The better performance of the MLP network than the HJM

RS model strongly indicates that a non-parametric approach using the MLP (trained by 

Bayesian Regularization) can be effectively applied to the modelling of the term structure 

of interest rates. 

The third column of Table 6.6 indicates that the HJM-RS model outperforms the CIR 

model significantly for the 3, 10, 15, and 20 year bonds at 1 % significance level. Analogous 

to the CIR and MLP comparison the CIR outperforms the HJM-RS model for the 1 year 

bond at the 1 % significance level. 

When compared to the LS model the MLP and HJM-RS models both have significantly 

smaller pricing errors than the LS model at a level of 1 % for all except the 3 month securi

ties. This is not surprising because the 3 month yield is an input to the LS model and hence 

the LS model prices it the best. These statistics are reported in Table 6.7. 
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6.2 

Table 6.7: MDM Statistic (LS, HJM-RS, and MLP) 

The MDM statistic is calculated for all the maturities using equation (6.1) for the matched 

pairs LS-MLP and HJMRS-LS and the sample period January 1996 till December 1999 for 

the forty-eight months. (* 1 % level,** 5% level, *** 10 % level) 

Maturity LS-MLP LS-HJMRS 

.25 -5.7917* -5.2189* 

1 7.4801 * 7.1671* 

2 8.3082* 8.2925* 

3 8.3078* 8.2948* 

7 8.6883* 8.6607* 

10 7.8486* 7.7767* 

15 9.0003* 9.0545* 

20 9.9742* 9.9482* 

The Hedging Applications 

Relative hedging performance is measured using two portfolios P-1 and P-11 to be 

hedged. P-1 is a portfolio with long positions of one-unit each in a 1 year and 20 year 

bonds and a short position of one-unit in a 10 year bond. P-11 is a portfolio with long 

positions in 10, 15, and 20 year bonds. 

For the CIR model the hedge portfolio contains bonds with maturities 2 and 3 years. 

For the LS model the hedge portfolio contains bonds with maturities 2, 3, and 7 years. In 

the case of HJM-RS model the hedge portfolio contains bonds with maturities 2, 3, and 7 

years. For the HJM-GV model the hedge portfolio contains bonds with maturities 2 and 3 

years. For the Network models the hedge portfolio contains bonds of maturities 2, 3 and 7 

years. 

The same estimation windows as used in the measurement of price errors are considered 

to estimate the hedge portfolio proportions. The only difference is that to form a hedge 
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Table 6.8: Hedging Errors 

In February 1996 the hedging error for a particular model is measured as the difference in 

return of the hedge portfolio and the portfolio to be hedged over the period January 1996 

to February 1996. The two portfolios to be hedged are P-1 and P-Il. P-1 is a portfolio of 

one-unit long positions in each of 1 year and 20 year bonds and one-unit short position in 

10 year bond. P-II is a portfolio of one-unit long positions in each of the 10, 15, and 20 

year bonds. The mean and variance of the absolute value of this difference over the period 

of February 1996 to December 1999 i.e. forty-seven months are calculated. The errors 

are in percentages i.e. an error of 0. 7286% implies a difference in the returns on the two 

portfolios of 0.007286. 

Statistic CIR LS HJMGV HJMRS MLP RBF PCA2 

Mean(P-1) 0.6189 1.726 0.7626 0.6496 0.5986 2.4288 0.6580 

Mean(P-11) 1.5084 1.8858 1.6287 0.7841 0.8250 2.5655 1.0892 

Var.(P-1) 0.653 5.2828 0.905 0.591 0.237 5.505 0.659 

Var.(P-11) 1.361 5.6309 1.395 0.685 0.389 9.213 1.519 

PCA3 

1.6044 

1.6524 

7.729 

3.835 

portfolio in January 1996 the data from February 1983 to January 1996 is used. Then the 

first hedging error is measured in February 1996. This leads to forty-seven windows for 

hedging as opposed to forty-eight in the case of pricing. The difference of the return on the 

hedge portfolio and the return on the portfolio to be hedged is defined as the hedging error. 

In the case of hedging not only the mean of the hedging error but also the variance would be 

of interest to a practitioner. Duration and Principal Components Analysis (2 and 3 factor) 

models are used to compare with Equilibrium, HJM, and Network models as an indicator 

of how well the models capture different facets of the term structure such as the changes 

in the level, steepness, and curvature of the term structure. The mean and variances of the 

hedging errors over the forty-seven windows sample for all models are stated in Table 6.8. 

Two criteria are used to compare the performance of any two models. Firstly if the 

mean of the hedging error for the model is significantly less than the other model then the 
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model with the lower mean is said to have performed better. Secondly the one with the 

lesser variance is said to be better. 

From the results in Table 6.8 it is evident that the models with the least mean and 

variance for the two portfolios to be hedged are HJM-RS and MLP network. Amongst the 

CIR and LS models CIR has lesser mean and variance for both the portfolios. Amongst 

the HJM-GV and HJM-RS models the HJM-RS model has a lesser mean and variance. 

Amongst the MLP and RBF models clearly MLP has lesser mean and variance of for both 

the portfolios. The results clearly indicate that the models HJM-RS and MLP perform the 

best in terms of the means and variances of the hedging errors. Though these models have 

the least hedging errors it is not clear from the results of Table 6.8 if the differences between 

any two models are statistically significant or not. 

The term structure shift in 1998 offers the opportunity to evaluate model performance 

and the sensitivity of the estimation procedures to market shocks. The shift in the term 

structure in latter half of 1998 consisted of changes in all three aspects of the yield curve, 

level, steepness, and curvature. Given such a shock it behooves to compare the performance 

of the models during the pre-shock period (1996 - 97) versus their performance during the 

post-shock period (1998 - 99) to gauge how well each of these models reacts to such 

unanticipated shocks to the term structure. The hedging performance of the models in the 

first two years (1996 - 97) and in the last two years (1998 - 99) are shown in Table 6.9. 

From the Table(6.9) it is evident that the PCA3 model works well from February 1996 

through December 1997 in hedging portfolio P-1. From the fifth column of Table 6.9 it is 

evident that the average hedging errors of the PCA3 model increase by 651. 75% which is 

the maximum rate of increase when compared to all the other models. In the second period 

since the data from each recent month is also added to the data that is used to compute 

the principal components (rolling window approach) the incorporation of the data for the 

latter half of 1998 deteriorates the performance of the PCA3 model. From Table 6.10 the 

findings are repeated when applied to the hedging of portfolio P-11. The PCA3 model has 
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Table 6.9: Split Hedging Errors (Portfolio P-1) 

The mean and variance of the hedging errors over the periods I and II are calculated. The 

portfolio to be hedged is P-I. P-1 is a portfolio of one-unit long positions in each of 1 

year and 20 year bonds and one-unit short position in 10 year bond. The period I is from 

February 1996 to December 1997 and period II is from January 1998 to December 1999. 

The errors are in percentages i.e. an error of 0.5185% implies a difference in the returns on 

the two portfolios of 0.005185. The fifth column of change in means is the change in the 

average hedging error from period I to period II in percentage. 

Statistic Mean (I) Variance(!) Mean(II) Variance(II) ~ means 

CIR 0.4096 0.0923 0.8194 1.1328 100.04 

LS 1.6473 7.7075 1.8016 3.1811 9.37 

HJM-GV 0.5667 0.2433 0.9503 1.5014 67.68 

HJM-RS 0.4565 0.1122 0.8346 1.0023 82.82 

MLP 0.5528 0.1725 0.6425 0.3056 16.22 

RBF 2.6854 8.8791 1.6621 1.9814 -38.11 

PCA2 0.4421 0.0779 0.8649 1.1531 95.66 

PCA3 0.3707 0.0855 2.7867 12.3955 651.75 

DUR 0.4744 0.2119 1.1025 1.5994 132.38 
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Table 6.10: Split Hedging Errors (Portfolio P-11) 

The mean and variance of the hedging errors over the periods I and II are calculated. The 

portfolio to be hedged is P-11. P-His a portfolio of one-unit long positions in each of the 

10, 15, and 20 year bonds. The period I is from February 1996 to December 1997 and 

period II is from January 1998 to December 1999. The errors are in percentages i.e. an 

error of 0.5185% implies a difference in the returns on the two portfolios of 0.005185. The 

fifth column of change in means is the change in the average hedging error from period I 

to period II in percentage. 

Statistic Mean (I) Variance(!) Mean(II) Variance(II) ~ means 

CIR 1.1602 0.7310 1.8421 1.7849 58.772 

LS 0.6735 0.5124 1.6162 2.4544 139.98 

HJM-GV 1.8625 0.8700 1.8625 1.8403 34.51 

HJM-RS 0.5880 0.2023 0.9720 1.1002 65.29 

MLP 0.8646 0.3767 0.9385 0.8436 8.55 

RBF 3.5622 17.4372 3.1317 28.3251 -12.09 

PCA2 0.5417 0.3337 1.6139 2.1336 197.90 

PCA3 0.6495 0.3618 2.6136 5.3545 302.37 

DUR 0.8633 0.3326 1.3593 1.0237 57.44 
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the highest rate of increase in percentage of errors (302.37%) from pre-shock period to post

shock period. The significant impact of outliers on PCA3 model hedging performance was 

illustrated by Nunes and Webber (1997) who argued that leaving the jumps in the data set 

when calculating covariance of yield changes does deteriorate PCA3 hedge performance. 

James and Webber (2000) suggest it is necessary to remove the jumps before estimating a 

PCA model. 

Though the optimality of the PCA model is not dependent on normality, if normality 

assumption is true then the principal component loadings and the scores become maxi

mum likelihood estimators with the additional desirable property of asymptotic efficiency. 

Alternatively one can say that unbiased, asymptotically efficient estimates are obtained 

using principal components analysis when the data is generated by multivariate normal 

distribution. PCA model is sensitive to departure from the assumptions of normality of 

the underlying state variables (changes in yields of different maturities in this application), 

homogeneity of sample and missing data. PCA is also sensitive to the changes in the vari

ances of the components (due to the embedded homoskedasticity assumption). Since the 

PCA analysis utilizes Euclidean norms and inner products it is expected to be more sen

sitive to outliers (non-normal) and the larger the outlier, the affect is disproportionately 

greater. 

Surprisingly in the case of RBF model the hedging errors go down. This is because 

this type of a network is by design a locally receptive network. This implies that the data 

point (that has the shock) responds only when the out of sample data point is close to it 

otherwise it does not. So the behavior of the yield curve at a particular instance of time 

does not determine the future performance unless there is a similar shock in the future. 

Though from the results it might appear that this is a desirable property but it is not the 

case. An RBF type of network would imply that if there is a shock of similar magnitude in 

the future to the benchmark maturities (inputs that are O. 5 and 5 years) the rest of the curve 

would behave in a similar way (if that point in the estimation data set explained a certain 
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amount of variance of the errors of the network that is greater than the tolerance value set 

during the training period). In practice the term structure of interest rates does not possess 

such properties of regularity and hence it is not a desirable property. 

Analogous to the testing done in the case of pricing of the bonds the hedging effective

ness is also compared in different phases. 

• In phase I the MDM test statistic is used to determine the model generating superior 

hedge performance within the three classes of term structure models. Phase I MDM 

test statistics are reported in Table 6.11. 

• In phase II the MDM test statistic is used to determine the model generating superior 

hedge performance amongst all model classes. Phase II test statistics are reported in 

Table 6.12. 

• In phase III the MDM test statistic is used to compare term structure model hedge 

performance with duration based hedge performance. Phase III MDM test statistics 

are reported in Table 6.13. 

• In phase IV the MDM test statistic is used to compare term structure model hedge 

performance with two factor Principal Component Analysis hedge performance. Phase 

IV test statistics are reported in Table 6.14. 

• In phase V the MDM test statistic is used to compare term structure model hedge 

performance with three factor Principal Component Analysis hedge performance. 

Phase V test statistics are reported in Table 6.15. 

The first column in Table 6.11 indicates that CIR model generates significantly smaller 

hedge errors than the LS model at the 1 % significance level for the portfolio P-I but the 

difference is not significant for the portfolio P-II. Also from Table 6.8 the variance of the 

CIR model is substantially less than that of LS model for both the portfolios. This is an 

interesting finding because the CIR model is easier than the LS model to implement and it 
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Table 6.11: Hedge Errors (The three classes of models) 

The MDM statistic is calculated for the different models using equation (6.1) for the 

matched pairs CIR-LS, HJMGV-HJMRS, and MLP-RBF in the sample period February 

1996 to December 1999 for the forty-seven months. The two portfolios to be hedged are 

P-1 and P-11. P-1 is a portfolio of one-unit long positions in each of 1 year and 20 year bonds 

and one-unit short position in 10 year bond. P-11 is a portfolio of one-unit long positions in 

each of the 10, 15, and 20 year bonds.(* 1 % level, ** 5% level, *** 10 % level) 

Statistic CIR-LS HJMGV-HJMRS MLP-RBF 

MDM (P-1) -1.944*** 1.540 -2.774* 

MDM (P-11) -1.465 4.047* -2.336** 

outperforms the LS model when used to hedge a portfolio of zero coupon bonds with short 

duration. One must be cautious while interpreting these results because of the methodology 

used to implement the LS model in this study. In this study the market price of risk for the 

LS model was implied using a bond of one year maturity and then that value of the market 

price of risk was used to price all the other bonds. This is in contrast to what the authors 

Longstaff and Schwartz (1993) suggest. LS suggest implying the term structure parameter 

which includes the market price of risk for each maturity and then use that value to price 

contingent claims. 

In a term structure hedging application one would expect a model that has an appro

priate specification for the forward rate volatility to perform better than a model that does 

not. The HJM-RS model outperforms the HJM-GV model at a level slightly above 10 per

cent for the portfolio P-1 and a level of 1 % for the portfolio P-11. The second column in 

Table 6.11 indicates that the specification suggested by HJM-RS model (spot rate volatility 

is varying with time) produces smaller hedging errors than HJM-GV (constant spot rate 

volatility). In the case of Network models the hedge error results are consistent with the re

sults from evaluation of pricing errors. The MLP network is able to hedge the fixed income 

portfolios P-1 and P-11 better than an RBF network. 
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Table 6.12: Hedge Errors (CIR, HJM-RS, and MLP) 

The MDM statistic is calculated for the different models using equation (6.1) for the 

matched pairs CIR-HJMRS, HJMRS-MLP, and MLP-CIR in the sample period February 

1996 through December 1999 for the forty-seven months. The two portfolios to be hedged 

are P-I and P-II. P-I is a portfolio of one-unit long positions in each of 1 year and 20 year 

bonds and one-unit short position in 10 year bond. P-II is a portfolio of one-unit long 

positions in each of the 10, 15, and 20 year bonds. (* 1 % level, ** 5% level, *** 10 % 

level) 

Statistic 

MDM (P-1) 

MDM (P-11) 

CIR-HJMRS HJMRS-MLP CIR-MLP 

0.261 

4.178* 

0.799 

0.469 

0.742 

3.056* 

The results in the first and third columns of Table 6.12 indicate that on average the 

HJM-RS and MLP models generate smaller average hedge errors (not significant) than the 

CIR model for the portfolio P-1 and the difference is significant at a level of 1 % for the 

portfolio P-11. The significant deterioration of the performance of the CIR model when 

used to hedge portfolio of zero coupon bonds of long duration (P-11) is clearly illustrated in 

Tables 6.11 and 6.12. P-11 contains long positions in three long term bonds (which the CIR 

model misprices the most) and hence has a longer duration. For instance in the case of first 

window the duration of portfolio P-1 is 1.42 whereas the duration of portfolio P-11 is 13.87. 

The CIR model uses only information from the time series of the short term rate (the 3 

month PB yield in this study) during the estimation period. Given the fact that CIR model 

does not take into account the dynamics of long term rates it is expected to misprice the 

long term bonds the most. This is illustrated in the results of the pricing errors of the CIR 

model as shown in Tables 6.1 and 6.2 that increase as the maturity of the bond increases. 

In contrast the HJM-RS model incorporates the variance covariance matrix of the interest 

rates of different maturities during the estimation period and the MLP network is fed with 

the long term rate as a target output during the estimation period. The fact that HJM-RS and 
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Table 6.13: Hedge Errors (CIR, HJM-RS, MLP, Duration, PCA2, and PCA3) 

The MOM statistic is calculated for the different models using equation (6.1) for the 

matched pairs of duration based hedging with PCA2, PCA3, CIR, HJMRS, and MLP each, 

in the sample period February 1996 to December 1999 for the forty-seven months. The two 

portfolios to be hedged are P-1 and P-11. P-1 is a portfolio of one-unit long positions in each 

of 1 year and 20 year bonds and one-unit short position in 10 year bond. P-11 is a portfolio 

of one-unit long positions in each of the 7, 10, 15, and 20 year bonds. (* 1 % level, ** 5% 

level,*** 10 % level) 

Statistic DUR-PCA2 DUR-PCA3 DUR-CIR DUR-HJMRS DUR-MLP 

MOM (P-1) 1.6321 

MOM (P-11) -0. 7651 

-1.4707 

-2.0289** 

1.861 *** 1.587 

-2.3221 ** 1.3129 

1.198 

2.3622** 

MLP models take into account how the long term rates behaved in the estimation period 

leads to lesser pricing errors as compared to the CIR model when applied to the pricing of 

long term bonds. This was illustrated by the measurement of pricing errors in Tables 6.1 

and 6.2. The MOM test statistics in the second column of Table 6.12 indicate that the MLP 

network has lesser hedging errors than the HJM-RS model on average for both portfolios 

but the differences are not significant. 

Table 6.13 introduces three new models, Duration, two factor PCA (hereafter PCA2), 

and three factor PCA (hereafter PCA3) models. The first column indicates that the differ

ences between the PCA2 and duration based models are not significant for both portfolios 

P-1 and P-11. The difference between the Duration and PCA3 models indicates that the 

Duration model has lesser hedging errors than the PCA3 model on average for the port

folio P-1 and for portfolio P-11 the difference is significant at a level of 5%. The findings 

of Table 6.13 are counterintuitive given the evidence from the findings of Litterman and 

Scheinkman (1991) (hereafter LS) and Bliss(1997). From the results of Table 6.9 and 6.10 

the mean hedge errors for both portfolios in the case of PCA2 and PCA3 models are lesser 

than the mean hedge errors in the case of Duration model for the time period before the 
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shock of 1998 i.e. for the years 1996 and 1997. These findings are in accordance with the 

findings of LS and Bliss. The hedge errors for both PCA2 and PCA3 models increase in the 

after shock period of 1998 and 1999 and are higher than the hedge errors for Duration mod

els. The data used by LS are the weekly Treasury prices from February 22, 1984, through 

August 17, 1988 and the data used by Bliss are FB yields from November 1982 through 

December 1995. In both the cases the data did not have shocks of the nature of August 1998 

which can be categorized as outliers. The CIR model ( one factor model)has significantly 

lesser hedging errors than the duration based hedges for portfolio P-1 at a level of 10%. It 

is interesting to see that for portfolio P-11 the results are reversed exactly i.e. the hedging 

errors for CIR model are significantly higher than for ihe duration based model at a level 

of 5%. This is in conformance with the findings of the CIR model's performance relative 

to other models. The CIR model does not do a good job at all in hedging portfolio P-11 that 

comprises bonds of maturities 10, 15, and 20 years. The HJM-RS model has smaller mean 

hedging errors than the duration based hedges and the differences are not significant for 

the portfolios P-1 and P-11. Relative to the MLP network also duration has hedging errors 

greater than the MLP network and the differences are not significant for portfolio P-1 but 

are significant for portfolio P-11 at a level of 5%. Both the HJM-RS model and the MLP 

network model outperform the traditional Duration based models. 

In phase IV the two factor PCA2 model is introduced and compared with all the other 

models in terms of hedging of the two portfolios P-1 and P-11. From the Table 6.14 it is 

evident that the HJM-RS model and MLP network have lesser hedging errors than the 

PCA2 model but the differences are not significant for portfolio P-1.but for portfolio P-

11 HJM-RS model has significantly less hedging errors at a level of 5 % and MLP has 

significantly less hedging errors at a level of 10 %. Also the difference between the CIR 

and the PCA2 model is not significant for portfolios P-1 and P-11. 

From the first column of Table 6.15 hedging errors of CIR model are less than the PCA3 

model but the differences are not significant for both the portfolios P-1 and P-11. The PCA3 
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Table 6.14: Hedge Errors (CIR, HJM-RS, MLP, and PCA2) 

The MDM statistic is calculated for the different models using equation (6.1) for the 

matched pairs PCA2-PCA3, PCA2-CIR, PCA2-HJMRS, and PCA2-MLP in the sample 

period February 1996 through December 1999 for the forty-seven months. The two port

folios to be hedged are P-1 and P-11. P-1 is a portfolio of one-unit long positions in each of 

1 year and 20 year bonds and one-unit short position in 10 year bond. P-11 is a portfolio of 

one-unit long positions in each of the 10, 15, and 20 year bonds. (* 1 % level, ** 5% level, 

' *** 10 % level) 

Statistic PCA2-PCA3 PCA2-CIR PCA2-HJMRS PCA2-MLP 

MOM (P-1) -1.5723 

MOM (P-11) -2.4180**' 

-0.9425 

-1.4296 

0.8960 0.8292 

2.7216** 1.7376*** 

Table 6.15: Hedge Errors (CIR, HJM-RS, MLP, and PCA3) 

The MDM statistic is calculated for the different models using equation (6.1) for the 

matched pairs PCA3-CIR, PCA3-HJMRS, and PCA3-MLP in the sample period Febru

ary 1996 till December 1999 for the forty-seven months. The two portfolios to be hedged 

are P-1 and P-11. P-1 is a portfolio of one-unit long positions in each of 1 year and 20 year 

bonds and one-unit short position in 10 year bond. P-11 is a portfolio of one-unit long po

sitions in each of the 7, 10, 15, and 20 year bonds. (* 1 % level, ** 5% level, *** 10 % 

level) 

Statistic PCA3-CIR PCA3-HJMRS PCA3-MLP 

MOM (P-1) 1.5840 

MOM (P-11) 1.5169 

1.5884 

2.7191 * 
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models when compared to the equilibrium model CIR, the only information that is used 

by the CIR model from the term structure is short term rate. Whereas the PCA method 

uses the information on the whole term structure. So shocks to term structure in estimation 

sample will necessarily have greater affect on PCA models. 

The MLP network also performs better than the PCA3 model and the difference in 

the hedge errors for the two models from Table 6.15 is insignificant for portfolio P-I and 

is significant at a level of 5% for portfolio P-11 . In comparison with the PCA method 

the network models use only two benchmark maturity yields as inputs. This serves to 

reduce impact of term structure shocks on network performance. In comparison to the 

PCA3 model the MLP model's hedging errors increase only by 16.22% and 8.55% for the 

portfolios P-I and P-11 respectively as illustrated in Tables 6.9 and 6.10. The objective 

function used to train the MLP network serves to dampen the impact of outliers. The 

objective function, equation(A.18) is the sum of the squared errors and squared weights 

weighed inversely with their corresponding variances. In contrast the PCA method utilizes 

only the variance covariance matrix (squared errors). Due to this the hedge errors of the 

MLP network are not as sensitive to term structure shocks as are the PCA models. 

In the case of the HJM-RS model and PCA3 model the difference is statistically in

significant for portfolio P-I but is significant for portfolio P-11 at a level of 1 %. It is inter

esting though that HJM models use similar information and also make similar assumptions 

as the PCA models and still are significantly less sensitive to shocks than the PCA method. 

The reasons for this are that the PCA method combines the factors linearly and is there

fore more sensitive to shocks than the HJM models that combine the state variables in a 

non-linear fashion. Rebonato (1996) finds that " ... any yield curve model that uses principal 

components as driving factors is constrained to displaying a sigmoid-like correlation struc

ture. This feature is not a result of the particular assumptions of the specific models, but 

a general consequence of the low dimensionality of these approaches". Rebonato argues 

that it is very difficult to get an exponentially declining correlation structure of the instan-
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taneous forward rates for maturities ranging from 1 through 10 years using PCA model 

with 2 or 3 factors. The HJM-RS model imposes an exponentially decaying forward rate 

volatility structure. This restriction imposes an exponential like correlation structure on 

the instantaneous forward rates in these models. The ability of HJM-RS model to explain 

the exponential correlation structure amongst the instantaneous forward rates explains the 

better performance of the HJM-RS models when compared to the PCA models in terms of 

hedging applications. 

6.3 A Sub Sample 

A term structure model is often gauged by its flexibility to capture different types of 

unexpected shifts in the yield curve. A term structure model A can be said to capture 

different facets of the term structure better than another model B if A produces smaller 

hedge errors when applied to a portfolio of zero coupon bonds in a situation when the term 

structure suffers a shock. The term structure is said to suffer a shock when all three aspects 

of the yield curve, level, steepness, and curvature undergo a change. To substantiate the 

findings that the HJM-RS and the MLP models are able to capture more facets of the term 

structure of interest rates (such as twists etc.) than the other models, a sub-sample of this 

time period is investigated. During the latter half of 1998 a host of events triggered shifts 

in the yield curve that can be classified as twists. 

In the last week of August 1998 Russia announced the terms of a $40 billion forced 

debt restructuring. Russia was on the brink of a financial collapse at this time. Many 

international investors, disappointed by the treatment of foreign bondholders by Russia 

dumped foreign stocks and expressed their confidence in U.S. dollar and Treasury bonds. 

By October 31st the 30-year Treasury bond fell to 5.33 percent, the lowest level since 

October 1968. The yield curve became almost flat at that time. 

The hedging performance of different.models is analyzed during the time period July 

1998 through December 1998 to judge which of these models is able to best capture the 
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Table 6.16: Russian Crisis (Portfolio P-1) 

The hedging errors (absolute value of the difference between the return on the hedge port

folio and the portfolio to be hedged during the last month) as a percentage of the average 

pricing error (over the whole sample period of January 1996 through December 1999) for 

the six models CIR, HJM-RS, MLP, Duration, PCA2, and PCA3 during the time period 

July 1998 through December 1998 are presented. The portfolio to be hedged is P-1 con

taining one-unit long positions in each of 1 year and 20 year bonds and one-unit short 

position in 10 year bond. 

Date CIR LS HJM-RS MLP Duration PCA2 PCA3 

980731 0.30 1.09 0.46 1.15 0.49 0.58 2.71 

980831 0.91 0.87 1.04 0.98 0.84 0.57 1.44 

980930 8.32 5.15 7.41 0.43 7.84 7.85 1.11 

981030 1.39 1.17 1.40 2.92 0.81 1.04 1.59 

981130 2.67 1.99 2.62 0.32 2.21 2.96 0.74 

981231 2.29 2.24 2.53 1.40 1.37 2.54 2.20 

dynamics of the term structure during this period. Tables 6.16 and 6.17 contain the hedging 

errors (the difference in the returns of the hedge portfolio and the portfolio to be hedged) 

as a percentage of the average pricing error ( over the whole sample period of January 1996 

through December 1999) for models identified as producing superior hedge performance 

in the previous section. 

The results from the Table 6.16 and Table 6.17 clearly indicate that the pricing errors of 

all the models were high on September 30th. But the MLP network and HJM-RS models 

have the least hedging errors as compared to all the others. These findings indicate that an 

MLP network and HJM-RS model can be used to hedge a bond portfolio in an environment 

where not only the level of the term structure but also its slope and curvature are changing. 

Amongst the two models HJM-RS and MLP, the MLP network produces lesser hedging 

errors during the period. 
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Table 6.17: Russian Crisis (Portfolio P-II) 

The hedging errors (absolute value of the difference between the return on the hedge port

folio and the portfolio to be hedged during the last month) as a percentage of the average 

pricing error (over the whole sample period of January 1996 through December 1999) for 

the six models CIR, HJM-RS, MLP, Duration, PCA2, and PCA3 during the time period 

July 1998 through December 1998 are presented. The portfolio to be hedged is P-II con

taining one-unit long positions in each of the 10, 15, and 20 year bonds. 

Date CIR LS HJM-RS MLP Duration PCA2 PCA3 

980731 1.55 1.07 0.19 0.17 1.74 1.34 3.61 

980831 1.06 1.89 1.65 2.62 0.25 2.16 0.42 

980930 3.74 4.36 5.33 0.49 1.21 5.48 5.52 

981030 1.21 0.52 2.23 2.19 2.59 0.69 3.50 

981130 1.69 3.01 4.65 2.55 2.24 4.52 4.68 

981231 0.26 1.50 1.05 0.11 0.06 1.16 0.44 
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CHAPTER7 

Summary and Conclusions 

The accuracy of parametric bond pricing models is highly dependent on the parametric 

specification of the underlying risk factors. In the non-parametric pricing approach the data 

are allowed to determine the pricing relationship with few restrictions on the parametric 

specification of the underlying risk factors. 

This study's investigation of zero coupon bond pricing and hedging over the period 

1996 through 1999 window illustrates that the Heath Jarrow and Morton model with the 

restrictions of Ritchken and Sankarasubramanian (1995) (hereafter HJM-RS) and the multi 

layer perceptron (hereafter MLP) produce statistically smaller price and hedge errors. The 

equilibrium models start with the assumptions about the economy and then develop pro

cesses for the risk factors. Particularly the Cox, Ingersoll, and Ross (1985) (hereafter CIR) 

model uses the parameters of the short term rate process and the Longstaff and Schwartz 

(1992) (hereafter LS) model uses the parameters of the short term rate process and the short 

term rate volatility's process to determine bond prices of all maturities. HJM-RS model's 

feature that it uses the information of the whole yield curve along with it's flexibility (in 

terms of its specification of the spot rate volatility and the.two state variables) lead to its 

smaller price and hedge errors than the CIR and LS model. The study also finds that the 

CIR model's hedge errors increase as the duration of the portfolio is increased. The non

parametric approach to the modelling of term structure of interest rates using MLP with 

Bayesian Regularization (hereafter BR) captures the dynamics of the term structure of in

terest rates well despite the fact that its information set is restricted to the one used by the 

HJM models. 
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Another interesting finding relates to the performance of the MLP network vs. the 

radial basis function (hereafter RBF) network. Amongst the Network models the MLP 

outperforms the RBF network. The performance of the RBF network, its characteristics and 

the training algorithm used here ( orthogonal least squares) suggest that the RBF network 

trained with this algorithm is not the right choice for an application to the pricing or hedging 

of bonds, whereas MLP with BR algorithm is more appropriate for such an application. 

The most common problem with the non-parametric estimation procedures is that they 

tend to overfit the data. In other words the estimation works very well for in sample data but 

does not work well for the out of sample data. The BR algorithm used to train the MLP net

work uses an objective function that penalizes both squared errors and squared weights of 

the network ( complexity of the network). The results of the study suggest that the BR algo

rithm minimizes the overfitting problem. The outperformance of the MLP network relative 

to the RBF network can be attributed to either the BR algorithm or the success of the MLP 

network as a whole to the RBF network as a whole for a term structure application. Further 

investigation is required to pinpoint which one of the two reasons is actually contributing to 

the better performance of the MLP network. The MLP network uses BR algorithm whereas 

RBF uses orthogonal least squares. In this particular application the number of parameters 

for the MLP network were 89 whereas the RBF network had 50 parameters. As a result 

the training times for the MLP network were much greater than the RBF networks. On a 

Pentium-III 933MHz processor with 252 MB of RAM the MLP network took 50 seconds 

to train each network (for a particular window) whereas the RBF took only 15 seconds to 

train each network. 

The evidence from the previous chapter implies that the model that produces the least 

pricing errors from the parametric pricing category is HJM-RS and its counterpart in the 

non-parametric pricing category is the MLP network. Amongst these two models the HJM

RS produces greater pricing errors. This is despite the fact that the inputs to the Network 

were chosen such that they were consistent with the information set of the HJM models. 
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This implies that the network has been able to learn the relationship between the risk factors 

as specified by the HJM framework and the term structure of interest rates. This ability of 

the network models as demonstrated by this and other studies (Hutchinson, Lo, and Poggio 

(1995)) is one of the major advantages of network models. Till date in the financial markets 

there are many assets whose relationship with the underlying risk factors is yet not known 

exactly. Other potential neural network applications include the pricing of interest rate and 

other options, prediction of exchange rates, credit scoring, and prediction of credit card 

default rates. The outperformance of the MLP over the HJM-RS model also implies that 

the HJM-RS model can be improved. Approaches to improve the HJM-RS model identified 

by this study include a relaxation of the assumption that the errors in the measurement of 

the yields are distributed i.i.d., and inclusion of another stochastic factor besides the single 

stochastic short rate. 

The relative performance of the models used in hedging applications is consistent with 

bond pricing applications though the differences are not significant. The models HJM

RS, and MLP perform better than the traditional Duration based models and models based 

on principal components analysis. This indicates that in addition to parallel shifts of the 

term structure, these models can be used to effectively hedge against changes in the term 

structure's steepness and curvature. 

The principal components analysis model with three factors (hereafter PCA3) model 

was introduced because the three components correspond closely to levels, steepness and 

curvature of the yield curve. The HJM-RS model and the MLP network both produce 

significantly smaller hedge errors than the PCA3 model. 

The PCA3 model is found to be very sensitive to jumps in the yield curve relative to 

all the other models considered. This is clearly evident from the results of Tables 6.9 and 

6.10 where the PCA3 model has the highest rate of increase (651.75% and 302.37%) in 

the hedge errors from the pre-shock period to the post-shock period for both portfolios. 

A PCA3 model is specifically sensitive to departure from the assumptions of normality 
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of the underlying state variables, homogeneity of sample and missing data. PCA3 model 

is also sensitive to the changes in the variances of the components ( due to the embedded 

homoskedasticity assumption). Since the PCA analysis utilizes Euclidean norms and inner 

products it is expected to be more sensitive to outliers (non-normal) and the larger the 

outlier, the affect is disproportionately greater. 

To summarize the conclusions of the study 

• The HJM-RS model and the MLP Network model outperform the CIR model, LS 

model, and HJM-GV model in the pricing and hedging of zero coupon bonds. 

• An MLP network with the training algorithm of Bayesian Regularization captures 

the dynamics of the term structure of interest rates better than an RBF network with 

Orthogonal Least Squares algorithm. 

• The models MLP network, and HJM-RS on an average produce smaller hedge errors 

with lesser variability when compared to the Duration based hedges. 

• The MLP network and HJM-RS model produce statistically smaller hedging errors 

than application of three factor principal components. The hedge performance of 

PCA3 model is more sensitive to shocks to the yield curve than the hedge perfor

mance ofMLP and HJM-RS models 

• The MLP network and theHJM-RS model produce the smallest hedge errors than all 

the other models during the Russian crisis of August 1998. 

• Overall a non-parametric approach using a Multi Layer Perceptron (with the Bayesian 

Regularization) can be added to the vast set of approaches to the modelling of term 

structure of interest rates and can be effectively applied to the pricing and hedging of 

zero coupon bonds. 

Though every attempt has been made to implement models in a consistent fashion, input 

data series and estimation periods are not identical for all models considered. The equilib-

138 



rium models and network models use data from 1983 - 1995 for the first window whereas 

the HJM models use the data from 1995. Furthermore HJM models utilize estimation data 

for all maturities. 

The conclusions of this study can be a result of the usage of the different data sets. 

But due to the unique estimation procedure of each of the three approaches neither can 

the estimation period for the HJM models be increased nor the estimation period for the 

equilibrium models and the network models be decreased. The study reports tests of joint 

hypotheses. 

Based on this study the possible areas of further research are as follows 

• Extensive testing of the hedging performance of one model versus the other using 

portfolios of coupon bonds and other interest rate derivatives. This would provide 

information on what model is able to hedge a fixed income portfolio using interest 

rate derivatives. 

• Change the algorithm used in the training of the RBF network to analyze if such a 

network is able to capture the dynamics of the term structure 

• Change the way the HJM-RS model is implemented by considering a two factor two 

state variable model and compare its performance with respect to other models. 
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APPENDIX A 

The Algorithm for the Training of MLP 

The first procedure to train the MLPs was evidently found in Werbos[1974]. The algorithm was 

rediscovered in the 80's independently by Rumelhart, Hinton and Williams[l986], Parker[l985] and 

Cunn[1985]. The Backpropogation (hereafter backprop) algorithm is based on the steepest descent 

or steepest ascent algorithm based on the objective of whether the function is to be minimized or 

maximized. Generally the objective function is to minimize squared errors and hence the algorithm 

used is steepest descent. 

As discussed in the chapter, theoretical framework, for the MLPs the outputs of one layer are the 

inputs to the next layer. The following note on the backprop is based on the discussion in Hagan, 

Demuth and Beale[1996]. Let the number of neurons in an MLP be Sand the number of layers be 

M, and the number of inputs be R. The functional form to describe the output input relation can be 

written as 

(A.1) 

for 

rn = 0,1,2, ... ,Jvf 

The inputs of the data are initially fed to the first layer. That is 

ao =p 

This provides the initial condition for the recursive set of equations (A.l). The outputs to the last 

layer of the network are the network outputs: 

The algorithm is based on the objective of minimizing a mean squared error function that is usually 

known as a mean squared error performance index. In this algorithm the inputs are provided to the 

network and the outputs are compared to the targets from the data that determine proper network 

behavior as 

where Pq, q = 1, ... , Q is an input to the network and tq is the target output for the input. At every 

step as each input is applied to the network the parameters are updated using the target outputs. The 
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network parameters are adjusted so as to minimize the sum of squared errors given as 

Q Q 
F(x) = L e~eq = I:(tq - aq)'(tq - aq) 

q=l q=l 

where x is a vector of all the network weights and biases, tq is a vector of target outputs of the 

proper network, aq is the vector of outputs of the network, and eq is the vector of the error terms 

that is the difference between the target output and the actual output of the network. The algorithm 

starts with a stochastic approximation to the error function by replacing it with the error on the latest 

target and later on updating the parameters at each iteration. The expectation of the squared error is 

replaced by the squared error at iteration k as 

ft(x) = e(k)'e(k) = (t(k) - a(k))'(t(k) - a(k)) 

The steepest descent algorithm applied to approximate the mean squared error is 

wD(k) - a a°!., 
Z,J 

wi:n. (k + 1) z,J (A.2) 

(A.3) 

where the first index of the weights and the biases denote the neuron they correspond to, and the 

second index corresponds to the respective input. The superscript corresponds to the layer they 

belong to. The parameter a is often termed as the learning rate. 

At this stage it turns out that the partials are to be estimated at each iteration. For this purpose 

efficient use of the chain rule of calculus is made. If it were a single layer, the partial could be 

computed directly since the error is a direct function of the weights of the layer. But in an MLP, the 

error is not a direct function of the weights of the hidden layers. Using the chain rule the equations 

(A.2) and (A.3) can be written as 

aft 
awi:n. 

z,J 

aft 
abr 

aft anr --x--ani:n awi:n.' z z,J 
(A.4) 

aft anr 
an r_n X abr.n ' 

z z 
(A.5) 

where n'f denotes the net input to layer m's neuron i. The terms on the right hand side of these 

equations can be computed easily since the output is a function of the net input to the layer and the 

net input is a direct function of the weights and biases of that layer. The net input to layer m is given 

by 

j=l 

This implies 
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Let 
m- aft 

8 i = !l m' un-
i 

The term s is derived from the sensitivity of F to changes in the ith element of the net input vector 

in layer m. With this the equations (A.4) and (A.5) can be rewritten as 

aft 
sl"!ta'f!!-1 

awm. i J 
i,J 

aft 
sl"!t 

abl"!t i 

i 

Now the complete algorithm can be summarized as 

In matrix notation 

wl"!t.(k + 1) wl"!t.(k) - asl"!ta'f!!-1 i,J i,J i J 

b7t(k + 1) = b7t(k) - asr 

wm(k) - asm(am-1) 1 

bm(k) - asm 

(A.6) 

(A.7) 

(A.8) 

The next task in this algorithm is to calculate the so called sensitivities sm at each layer. The 

sensitivity at each layer is computed from the sensitivity at the next layer. To derive the sensitivities 

the Jacobian matrix 

(A.9) 

is used. Each term in the Jacobian matrix denotes 

an~+l 
i 

a ("'sm w~+lam + b~+l) !) m 
--'--L.,_l=_l_i_,l __ l ___ i -~ _ wm+l ~ 

anrri - i,l anrri 
J J 

(A.10) 

= w~:-f-1 aJm(nf) = w~.+l jm(nTf!) 
i,J anrri i,J J ' 

J 

(A.11) 

where 

f·m( m) = aJm(nf) 
nJ !) m 

unj 

The equation (A.10) is true since all the other outputs, corresponding to all the neurons except the 

one for which l = j are independent of the net input to neuron j i.e. nf. The derivatives will all be 

154 



zero except the one that has l = j. Hence the Jacobian can also be written as 

a m+l 
n = wm+1Fm(nm) 
anm ' 

where 

0 

0 0 

0 

0 

Now all the sensitivities can be obtained by the following recurrence relation 

(A.12) 

(A.13) 

To be able to solve for all the sensitivities using the recurrence relation above, the initial condition 

or the sensitivity at the final layer is to be calculated. To calculate sM it is nothing but the partial of 

the performance function (sum of squared errors) w.r.t. the net input at the Mth layer. 

Also 

This implies 

Written in matrix notation this would mean 

Given the above set of operations the weights and biases are updated using 

(A.14) 

(A.15) 

at the kth iteration. 

The backpropagation as described is just a steepest descent algorithm. Such algorithm converges 

most of the times but usually is found to be quite slow and hence is not efficient. As a consequence 

some variations of the same are usually used rather than the pure steepest descent with backpro

pogation algorithm. 
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The steepest descent requires calculating the second derivatives. Other procedures such as the Gauss 

Newton method do not require calculating second derivatives. In the steepest descent method the 

weights or biases (vector x) are updated with the relation 

where Ak is the Hessiangkis the gradient. The gradient can be written in matrix form as 

'V F(x) = 2J'(x)e(x), (A.16) 

where 
8e1 (X) 8ei(X) 8e1 (X) 

8x1 8x2 OXn 

8e2(X) 8e2(X) 8e2(X) 

J(x) = 8x1 8x2 OXn (A.17) 

8eN(x) 8eN(X) 8eN(X) 
8x1 8x2 OXn 

is the Jacobian matrix and e(x) is a vector of the error terms. Similarly Hessian matrix can be 

expressed in the matrix form as 

'V2 F(x) = 2J' (x)J(x) + 2S(x) 

where 
N 

S(x) = L ei(x)'V2ei(x) 
i=l 

If the term S(x) is assumed to be small the Hessian can be approximated as 

'V2 F(x) ~ 2J' (x)J(x) 

Using this as the approximation to the Hessian and the term in equation (A.16) as the gradient then 

the steepest descent is converted into the Gauss Newton method. In this procedure at times it might 

be difficult to invert the matrix H = J' J. For such reasons the modification G = H + µI is made to 

the Hessian such that it becomes positive definite and the matrix is invertible. This updating of the 

Hessian algorithm is the Levenberg-Marquardt algorithm and it is a combination of steepest descent 

and Gauss Newton. Asµ is increased, the algorithm approaches the steepest descent algorithm with 

a small learning rate and asµ approaches zero the algorithm approaches the Gauss Newton method. 

In the neural networks literature the generalization error is referred to the error that the network 

produces on the unseen data. The objective in general is to produce networks with good general

ization. For the network to generalize, the number of parameters of the network should be less than 

the number of data points. One way to improve generalization is regularization. In regularization, 

the performance index is not only a function of sum of squared errors but also a function of the sum 
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of squares of the network weights. This way regularization constrains the network complexity. An 

example of the performance index would be 

F = aSe + f3sw (A.18) 

In this if a » (3 then the network's training emphasizes more on the sum of squared errors 

and the network drives the errors smaller. At the same time if a « (3 the network's function is 

much smoother (smaller weights) at the expense of network errors. To implement regularization the 

primary task is to set the parameters a and (3. 

David Mackay[1992] has done extensive work on the application of Bayes' rule to optimizing reg

ularization and neural networks. Some of the major results of his work that is relevant to bayesian 

regularization are presented. 

In a Bayesian set up the weights of the network are assumed to be random variables. Once the data 

are available, the density function for the weights of the network are updated according to Bayes' 

rule that says 

f( ID /3 M) = J(D\w, (3, M)J(w\a, M) 
w ,a, ' J(D\a,(3,M) (A.19) 

where D is the data set, M is the neural network model used, and w is the vector of network weights. 

The density J(w\a, M) represents the prior knowledge of the distribution of the weights before any 

data is collected. The density J (D\w, (3, M) represents the likelihood function of the data points 

given the weights of the network. And the density f (D\a, (3, M) is a normalization factor that 

ensures that the density function integrates to 1. If it is assumed that the noise in the data set has 

a Gaussian distribution and also the weights of the network are distributed Gaussian, the density 

functions can be written as 

J(D\w, /3, M) 
1 

Ze(/3) exp(-f3Se) 

f(w\a,M) 
1 

Zw(a) exp(-aSw) 

where Ze(/3) = (II/ (3)nl2 and Zw(a) = (II/a)N/2 . If these densities are substituted in equation 

(A.19) 

J(w\D, a, (3, M) 
ZwTaYW) exp(-(f3Se + aSw)) 

J(D\a, (3, M) 
1 

ZF(a, /3) exp(-F(w)) 

(A.20) 

(A.21) 

In this Bayesian scenario the optimal weights should maximize the posterior probability f (w\D, a, (3, M). 

Also minimizing the regularized function F = (f3Se + aSw) is equivalent to maximizing the pos

terior probability. 
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The next step is to apply Bayes' rule to optimizing the parameters a and /3. Again using Bayes' rule 

f( /3 1
D M) = f(Dla, /3, M)f(a, /3IM) 

a, . : ' J(DIM) (A.22) 

or in words 
P . Likelihood x Prior 

osterior = E 'd . 
vi ence 

If a uniform prior density f (a, /3IM) is assumed for the parameters a and /3, then maximizing 

the posterior is achieved by maximizing the likelihood function f (Dia, /3, M). At this point it is 

worth noting that the likelihood function is the normalization factor for equation (A.19). Since all 

the densities are Gaussian so is the posterior density of equation (A.19) shown in equation (A.21). 

Solving the equation (A.19) for the normalization factor 

J(f(Dla, /3, M)) = f(Dlw, /3, M)f(wla, M) 
wlD,a,/3,M 

_ [~exp(-/3Se)] [~exp(-aSw)] 

ZF(~,/3) exp(-F(w)) 

Zp(a, /3) exp(-f3Se - aSw) Zp(a, /3) 
= Ze(f3)Zw(a) exp(-F(w)) Ze(/3)Zw(a) 

(A.23) 

(A.24) 

In equation (A.24) the terms Ze(/3) and Zw(a) are known but Zp(a, /3) is unknown. This can 

be estimated using a Taylor series expansion. It can be safely assumed that the objective function 

will have a quadratic form near the minimum point. So F(w) can be expanded using Taylor series 

expansion around the minimum point of the posterior density wmp (mp stands for most probable), 

where the gradient is zero. Now solving for the normalizing constant yields 

(A.25) 

where His the Hessian matrix of the objective function i.e. f3"v2 Se + a"v2 Sw, By substituting the 

value of Zp in equation (A.23) the optimal values of a and /3 can be solved for using first order 

conditions. This yields 

,.,,mp = 'Y d /3mp - n - 'Y 
uc S ( ) an - 2Sw(wmP) 2 e wmp (A.26) 

where 1 = N - 2amPtr(HmP)-1 is called the effective number of parameters, and N is the total 

number of parameters in the network. The parameter I is a measure of how many parameters in the 

neural network are effectively used in reducing the error function. 

At this stage another question that arises is about the estimation of the Hessian matrix of the function 

F(w). Foresee and Hagan[1997] suggest a Gauss Newton approximation to the Hessian. The 

following are the steps required for the Bayesian optimization of the regularization parameters, 

with the Gauss Newton approximation to the Hessian. 
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1. Initialize a, (3 and the weights. 

2. Take one step of the Levenberg-Marquardt algorithm to minimize the objective function 

F(w) = f3Se + aSw. 

3. compute the effective number of parameters 1 = N - 2amPtr(irnP)-1 making use of the 

Gauss Newton approximation to the Hessian available in the Levenberg-Marquardt training 

algorithm that implies 

H = v'2 F(w) ~ 2(3J'J + 2alN 

where J is the Jacobian matrix of the training set errors. 

4. compute new estimates for the objective function parameters amp= 28e(~mp) and 13mp = 
n-:y 

5. Now iterate steps 1 through 3 until the algorithm converges. 

The default values used for the training algorithm are as follows 

• Maximum number of epochs to train the network - 100 

• The adjustment parameterµ in the Levenberg-Marquardt algorithm - 0.005 

• The factor used to decrease the µ whenever required - 0.1 

• The factor used to increase the µ whenever required - 10 

With this the complete algorithm that would be used for the MLP is the Gauss Newton approxima

tion to the Bayesian regularization. 

The mean absolute deviations and root mean squared errors for the MLP model during the 

sample period January 1996 till December 1999 for the 48 months are presented in tables A.1 and 

table A.2 respectively for the network MLP when the number of iterations is changed. 

Since the reduction in the error after the first 100 iterations is almost insignificant the results 

used in the study are the ones with the number of iterations set to 100. 

The mean absolute deviations and root mean squared errors for the MLP model during the 

sample period January 1996 till December 1999 for the 48 months are presented in tables A.3 and 

table A.4 respectively for the network MLP when the value of the Levenberg-Mauquardt algorithm 

parameter µ is changed. 

Again since the results for a particular value of µ are not different for another value of µ the 

value ofµ chosen for the study is the value of 0.005. 

Another issue that arises in global optimization techniques like the one used to train the MLP 

is whether the network converges to the same solution when one starts the training algorithm with 

different random starting values. To analyze how sensitive the results of the network are to different 
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Table A.1: Mean Absolute Deviation(variable i) 

The mean absolute deviations are calculated for the MLP model during the sample period 

January 1996 till December 1999 for the 48 months. This is done for different values of i 

where i denotes the number of iterations in the training algorithm. The errors are in cents 

on a bond with a face value of a dollar. 

Maturity i = 100 i = 200 i = 300 i = 400 

.25 0.0177 0.0177 0.0177 0.0177 

1 0.0718 0.0721 0.0721 0.0721 

2 0.0872 0.0873 0.0873 0.0874 

3 0.0919 0.0898 0.0897 0.0896 

7 0.6207 0.6206 0.6207 0.6207 

10 0.4677 0.4681 0.4685 0.4685 

15 2.6478 2.6496 2.6490 2.6491 

20 1.0116 1.0093 1.0092 1.0092 
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Table A.2: Root Mean Squared Error(variable i) 

The root mean squared errors are calculated for the MLP model during the sample period 

January 1996 till December 1999 for the 48 months. This is done for different values of i 

where i denotes the number of iterations in the training algorithm. The errors are in cents 

on a bond with a face value of a dollar. 

Maturity i = 100 i = 200 i = 300 i = 400 

.25 0.0215 0.0215 0.0215 0.0215 

1 0.0874 0.0876 0.0876 0.0876 

2 0.1222 0.1223 0.1223 0.1224 

3 0.1334 0.1314 0.1314 0.1314 

7 0.6784 0.6783 0.6783 0.6783 

10 0.6099 0.6110 0.6114 0.6114 

15 2.9557 2.9569 2.9563 2.9563 

20 1.3001 1.2979 1.2978 1.2978 
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Table A.3: Mean Absolute Deviation(variable µ) 

The mean absolute deviations are calculated for the MLP model during the sample period 

January 1996 till December 1999 for the 48 months. This is done for different values ofµ 

whereµ denotes the Levenberg-Marquardt algorithm parameter. The errors are in cents on 

a bond with a face value of a dollar. 

Maturity µ = 0.003 µ = 0.004 µ = 0.005 µ = 0.006 µ = 0.007 

.25 0.0176 0.0174 0.0177 0.0178 0.0176 

1 0.0739 0.0731 0.0718 0.0727 0.0728 

2 0.0822 0.0871 0.0872 0.0833 0.0869 

3 0.0911 0.0913 0.0919 0.0933 0.0945 

7 0.6172 0.6179 0.6207 0.6267 0.6271 

10 0.4671 0.4742 0.4677 0.4693 0.4575 

15 2.6269 2.6560 2.6478 2.6587 2.6577 

20 0.9862 0.9998 1.0116 0.9972 0.9744 

162 



Table A.4: Root Mean Squared Error(variable µ) 

The root mean squared errors are calculated for the MLP model during the sample period 

January 1996 till December 1999 for the 48 months. This is done for different values ofµ 

whereµ denotes the Levenberg-Marquardt algorithm parameter. The errors are in cents on 

a bond with a face value of a dollar. 

Maturity µ = 0.003 µ = 0.004 µ = 0.005 µ = 0.006 µ = 0.007 

·.25 0.0215 0.0212 0.0215 0.0217 0.0215 

1 0.0898 0.0886 0.0874 0.0891 0.0899 

2 0.1064 0.1199 0.1222 0.1141 0.1205 

3 0.1234 0.1302 0.1334 0.1341 0.1360 

7 0.6770 0.6770 0.6784 0.6824 0.6821 

10 0.6022 0.6077 0.6099 0.6194 0.5937 

15 2.9293 2.9748 2.9557 2.9781 2.9741 

20 1.2667 1.2743 1.3001 1.2988 1.2647 
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starting values the study starts the training of the networks during the first out of sample date with 

100 different starting values selected randomly. The first out of sample date is the first trading day of 

January 1996 and the network uses the data on the yields of bonds with .5, and 5 years to maturity, 

from January 1983 through 1999. The different sum of squared errors for the maturities .25, 1, 2, 

3, 7, 10, 15, and 20 when the network is randomly initialized with 100 different starting values are 

shown in Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, and A.1 respectively. 
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Figure A.1: Sum of Squared Errors (3 month yield) 

The Figure shows the sum of the squared errors during the in sample period of January 

1983 through December 1995 for the 3 month maturity yield. The network is started 100 

times with different random initial values for the weights and biases and the sum of squared 

errors is plotted. 

The different values of the changes in yields for the maturities .25, 1, 2, 3, 7, 10, 15, and 20 

when the network is randomly initialized with 100 different starting values are shown in Figures 

A.9, A.10, A.11, A.12, A.13, A.14, A.15, and A.9 respectively. 

Using the 100 different randomly selected initial values for the weights to train the same net

work the results from the figures above show that the final output of the network is not significantly 

different by using different starting values. Though every trained network's weights do not corre

spond so closely to one another as do the final output and the sum of squared errors. This is evident 

by looking at the variability of 7 out of 89 weights of the network for 3 month maturity on the first 

trading day of January 1996 as shown in the Table A.5. 
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Figure A.2: Sum of Squared Errors (1 year bond) 

The Figure shows the sum of the squared errors during the in sample period of January 

1983 through December 1995 for the bond with 1 years to maturity. The network is started 

100 times with different random initial values for the weights and biases and the sum of 

squared errors is plotted. 
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Sum of squared errors (2 year bond) 
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Figure A.3: Sum of Squared Errors (2 year bond) 

The Figure shows the sum of the squared errors during the in sample period of January 

1983 through December 1995 for the bond with 2 years to maturity. The network is started 

100 times with different random initial values for the weights and biases and the sum of 

squared errors is plotted. 
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Figure A.4: Sum of Squared Errors (3 year bond) 

The Figure shows the sum of the squared errors during the in sample period of January 

1983 through December 1995 for the bond with 3 years to maturity. The network is started 

100 times with different random initial values for the weights and biases and the sum of 

squared errors is plotted. 
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Sum of squared errors (7 year bond) 
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Figure AS: Sum of Squared Errors (7 year bond) 

The Figure shows the sum of the squared errors during the in sample period of January 

1983 through December 1995 for the bond with 7 years to maturity. The network is started 

100 times with different random initial values for the weights and biases and the sum of 

squared errors is plotted. 
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Figure A.6: Sum of Squared Errors (10 year bond) 

The Figure shows the sum of the squared errors during the in sample period of January 1983 

through December 1995 for the bond with 10 years to maturity. The network is started 100 

times with different random initial values for the weights and biases and the sum of squared 

errors is plotted. 
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Sum of squared errors (15 year bond) 
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Figure A.7: Sum of Squared Errors (15 year bond) 

The Figure shows the sum of the squared errors during the in sample period of January 1983 

through December 1995 for the bond with 15 years to maturity. The network is started 100 

times with different random initial values for the weights and biases and the sum of squared 

errors is plotted. 
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Sum of squared errors (20 year bond) 
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Figure A.8: Sum of Squared Errors (20 year bond) 

The Figure shows the sum of the squared errors during the in sample period of January 1983 

through December 1995 for the bond with 20 years to maturity. The network is started 100 

times with different random initial values for the weights and biases and the sum of squared 

errors is plotted. 
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Figure A.9: Output in the form of change in yields (3 month yield) 

The Figure shows the output in the form of change in yields for the 3 month maturity during 

the first trading day in January 1996 using the data on the yields from January 1983 through 

December 1995. The network is started 100 times with different random initial values for 

the weights and biases and the output in the form of change in yields is plotted. 
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Output in the form of change in yields (1 year bond) 
100 

90 

80 

70 
0 

~ 
0 
~ 60 
C. 
E 

"' <I) 

"' 50 
.£ 
>, 

" C: 40 " :, 
CT 
~ 
u. 

30 

20 

10 

0 
-6 -4 -2 0 2 4 6 

Output in the form of change in yields 

Figure A.10: Output in the form of change in yields (1 year bond) 

The Figure shows the output in the form of change in yields for the 1 year maturity bond 

during the first trading day in January 1996 using the data on the yields from January 1983 

through December 1995. The network is started 100 times with different random initial 

values for the weights and biases and the output in the form of change in yields is plotted. 
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Figure A.11: Output in the form of change in yields (2 year bond) 

The Figure shows the output in the form of change in yields for the 2 year maturity bond 

during the first trading day in January 1996 using the data on the yields from January 1983 

through December 1995. The network is started 100 times with different random initial 

values for the weights and biases and the output in the form of change in yields is plotted. 
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Figure A.12: Output in the form of change in yields (3 year bond) 

The Figure shows the output in the form of change in yields for the 3 year maturity bond 

during the first trading day in January 1996 using the data on the yields from January 1983 

through December 1995. The network is started 100 times with different random initial 

values for the weights and biases and the output in the form of change in yields is plotted. 
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Figure A.13: Output in the form of change in yields (7 year bond) 

The Figure shows the output in the form of change in yields for the 7 year maturity bond 

during the first trading day in January 1996 using the data on the yields from January 1983 

through December 1995. The network is started 100 times with different random initial 

values for the weights and biases and the output in the form of change in yields is plotted. 
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Figure A.14: Output in the form of change in yields (10 year bond) 

The Figure shows the output in the form of change in yields for the 10 year maturity bond 

during the first trading day in January 1996 using the data on the yields from January 1983 

through peceinber 1995. The network is started 100 times with different random initial 

values for the weights and biases and the output in the form of change in yields is plotted. 
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Figure A.15: Output in the form of change in yields (15 year bond) 

The Figure shows the output in the form of change in yields for the 15 year maturity bond 

during the first trading day in January 1996 using the data on the yields from January 1983 

through December 1995. The network is started 100 times with different random initial 

values for the weights and biases and the output in the form of change in yields is plotted. 
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Figure A.16: Output in the form of change in yields (20 year bond) 

The Figure shows the output in the form of change in yields for the 20 year maturity bond 

during the first trading day in January 1996 using the data on the yields from January 1983 

through December 1995. The network is started 100 times with different random initial 

values for the weights and biases and the output in the form of change in yields is plotted. 
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Table A.5: Weights of the network 

The weights of the network (7 out of 89) for 3 month maturity are shown for 50 random 

restarts. 

Restart No. wl w2 w3 w4 .w5 w6 w7 

-0.3842 0.3903 0.3928 0.3767 0.3928 -0.3778 0.3913 

2 -0.4038 0.3988 -0.3833 -0.3997 -0.8808 0.3926 -0.3928 

-0.3876 -0.3899 0.39 -0.3899 0.3864 -0.39 -0.3896 

4 0.2473 0.2461 -0.2473 0.247 -0.2471 -0.2473 -0.2473 

5 0.3945 0.395 -0.395 -0.395 0.3951 -0.3946 -1.0215 

6 -0.3894 -0.3885 0.3894 -0.3895 0.3869 -0.3894 -0.3865 

7 0.4002 0.4012 -0.3994 0.4051 0.4051 0.4016 -0.3987 

-0.2486 -0.2554 0.2429 0.1612 0.2637 0.1441 0.214 

0.2512 -0.2025 -0.2499 0.2425 0.2426 -0.2081 0.2524 

10 1.1061 -0.3915 -0.3939 1.0218 0.3703 -0.3932 -0.3668 

11 -0.3894 0.3894 0.3894 -0.3894 -0.3813 -0.3878 -0.3889 

12 -0.2277 0.2288 0.8659 0.2335 -0.2361 -0.2361 -0.236 

13 -0.263 0.2769 -0.2138 -0.2788 0.2746 -0.0635 0.1303 

14 -1.1056 0.3939 -0.3944 -0.3938 -0.3943 0.3944 0.3944 

15 0.1061 -0.2346 0.0713 0.2433 0.2593 1.0405 -0.2582 

16 0.3466 0.3458 0.346 -0.3432 0.0998 0.0045 -0.3424 

17 -0.3918 -0.3918 -0.3886 -0.391 0.3866 0.3909 0.3919 

18 -0.1713 0.2419 0.2419 -0.194 0.2382 0.1688 0.2401 

19 0.1773 -0.1827 0.2335 -0.2205 0.2518 -0.2426 -0.2502 

20 -0.3281 -1.0122 -1.4185 -0.3255 0.3035 0.3235 0.3276 

21 0.3987 0.3983 -0.3988 -0.3988 0.3988 0.3987 0.3988 

22 -0.3726 -0.4116 0.4117 1.1696 -0.4117 0.3812 0.4116 

23 -0.2326 1.0399 0.239 0.2388 -0.239 0.2391 -0.2321 

24 0.3945 -0.3929 0.388 0.3944 -0.3944 -0.3945 0.3885 

25 0.2587 0.2557 0.2224 -0.2584 -0.2388 0.8676 0.177 

26 -0.867 0.2416 0.2425 0.2373 0.2371 -1.3279 0.242 

27 0.2253 -0.0974 0.2724 -0.2775 -0.2773 -0.1459 0.2671 

28 -0.2639 -0.2616 -0.2641 -0.2628 -0.18 0.1534 0.098 

29 -0.3929 0.3824 0.3613 -0.3902 0.3929 0.3929 1.0216 

30 0.2362 0.2364 -1.3281 -0.2326 -0.2362 0.2195 -0.2167 

31 0.4391 0.4391 -0.4391 -0.4391 -0.4391 0.4391 0.4391 

32 -0.3261 -0.3262 -0.326 0.3262 -0.3162 -0.3228 0.3244 

33 1.106 -0.3899 0.386 -0.3874 -0.3896 -0.3896 0.3896 

34 0.392 -0.3895 -0.3925 0.3923 0.3889 -0.3927 -0.3871 

35 0.3897 -0.3849 -0.3895 0.3897 0.3879 0.3897 -1.0218 

36 -0.3888 0.3888 -0.3888 -0.3888 0.3888 -0.3888 0.3871 

37 0.3897 -0.3897 -0.3897 -0.3896 0.3897 -0.3898 -0.3825 

38 -0.2529 -0.2528 0.2527 0.2527 -0.2528 -0.2514 0.2528 

39 0.2505 0.2488 0.2209 -0.2333 0.2483 -0.2.178 -0.2503 

40 0.3931 -0.3931 0.3931 -1.1062 0.3897 -0.3931 -0.3931 

41 -0.3889 0.3849 0.3891 0.3864 0.3891 1.172 0.3884 

42 -0.1765 -0.1659 0.2802 0.0452 0.2358 -0.2416 0.2794 

43 0.2142 0.1055 -0.1945 0.2622 0.2292 0.2376 -0.2042 

44 -0.3881 -0.3884 -0.3888 0.3887 -0.3882 -0.3888 -0.3883 

45 -0.3905 0.3905 0.3883 -0.3901 -0.3905 0.3884 -0.3627 

46 -0.4391 -0.439 -0.4391 0.4389 -0.4391 1.2791 0.4391 

47 -0.3893 -0.3888 0.3894 -0.3892 -0.3893 -0.3893 -0.3893 

48 -0.2069 -0.2572 -0.2364 0.2641 0.2615 -0.2635 -0.2636 

49 -0.3985 -0.352 0.3985 -0.3986 -0.3983 -0.3986 0.8794 

50 1.0402 -0.2465 -1.3279 0.2314 0.1577 0.8669 -0.2432 
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APPENDIXB 

The Algorithm for the Training of RBF 

A fixed center in the Radial Basis Function (hereafter RBF) corresponds to a given regressor 

in a linear regression model and the selection of centers is regarded as a problem of subset model 

selection. The algorithm is a method used as a forward regression procedure to select a suitable set 

of centers (regressors) from a large set of candidates. At each step the increment to the explained 

variance of the desired output is maximised. 

For a RBF There are four choices for the fixed non-linear functions that are as follows: 

• The thin plate spline function: 

cp(v) = v2 log(v) 

• The Gaussian function : 

cp(v) = exp ( ;
2

) 

• The multi quadratic function: 

cp(v) = Jv2 + 132 

• The inverse multi quadratic function: 

Once the choice of the non-linear function is made, the next step in the designing of the first 

layer of the RBF network is the choice of the centers. At the beginning the whole set of data 

points are potential centers. But it is computationally quite complex to choose all the data points 

if the number of data points are large. So some people choose centers arbitrarily. This can lead 

to poor performance of the network because most of the time it does not satisfy the criterion that 

the centers should span the entire input space. Under such circumstances one could experience 

ill conditioning and techniques such as singular value decomposition have to be used. The 

study uses an orthogonal least squares algorithm to select the centers in order to get an adequate 

and parsimonious RBF. The hidden layer of the RBF performs a fixed non-linear transformation of 

the inputs and the outer layer of the RBF linearly combines the outputs from the hidden layer using 

certain weights. The only adjustable parameters are the weights of the linear combiner in the second 
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layer which can be chosen using a special case of linear regression model. The special case of the 

regression model considered is 

d(t) = LPi(t)Oi + E(t). (B.1) 

Where the dis the desired output and is also called the dependent variable in the regression terminol

ogy, the (Ji are the set of parameters, Pi(t) are known as the regressors which are the fixed non-linear 

transformation of the input which can be any of the non-linear functions discussed above. But for 

the purpose of this study the chosen function is the Gaussian function. At this point the problem of 

choosing the potential centers can be looked at as a potential subset selection of significant regres

sors from the set of all possible choices (the whole data set). The orthogonal least squares learning 

algorithm used in the study is as follows. Fort = 1 to N (N to begin with is all the potential centers 

i.e. all data points, 156 in this study) the equation (B.1) is rearranged in matrix notation to get 

d = PO+E (B.2) 

where 

d = [d(l) ... d(N)]', 

p = [p1,, ·PM], 

Pi [pi(l) ... Pi(N)]', 1 ~ i ~ M 

() = [01 ... OM]', 

and 

E = [E(l)". E(N)]'. 

The set of vectors Pi form a set of basis vectors, and the least squares solution to the set of equa

tion (B.1) satisfies the condition that p{j represents the expected value of the desired output d or 

in other words p{j is the projection of d onto the space spanned by these basis vectors. So the 

square of this projection indicates the part of the variance that is explained by the regressors. since 

different regressors are generally correlated so it is difficult to quantify the explained variance due 

to each regressor. The algorithm essentially involves transforming the set of basis vectors into a set 

of orthogonal basis vectors which makes it possible to quantify the individual contribution to the 

explaining of the variance of the dependent variable. 

The regression matrix P is first decomposed into 

P=WA 

Where 
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A= O O 

1 l¥(M-l)M 

0 0 0 1 

Where A is an M x M unit upper-triangular matrix and 

is an N x M matrix with orthogonal columns Wi that satisfy 

W'W=H 

where H is a diagonal matrix with elements hi as 

N 

hi= w~wi = L wi(t)wi(t), 1 ~ i ~ M 
t=l 

The space spanned by these orthogonal vectors is essentially the same space spanned by the 

vectors Pi. So the linear regression equation rewritten for this set of orthogonal basis vectors is 

d=Wg+E 

The least squares solution to (B.3) is found by minimizing the squared errors given by 

SE 

=> SE 

=> SE 

(d- Wg)'(d- Wg) 

(d - g'W')(d - W g) 

d' d - 2g'W' d + g'W'W g 

Taking the first partial of SE w.r.t. g and equating it to zero 

Solving for g 

oSE = -2W' d + 2gW'W = 0 
og 

(B.3) 

It can be verified by looking at the second derivative that it is positive as it is just 2W'W. So the 

above estimate of g minimizes the squared errors and similarly for the space spanned by the vectors 

Pi the estimate of () is given by 

() = (P' P)-1 P' d (B.4) 
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As P =WA and W'W = H, so substituting the same in the equation (B.4) 

{) ((W A)'W A)-1 (W A)'d 

=* {) (A' HA)-1(A'W'd) 

By premultiplying both sides of the above equation with (A' HA) 

A'HAO = A'W'd 

Substituting H = W'W in the estimate of g 

Substituting in equation (B.5) 

=*Hg= W'd 

A'HAO = A'Hg 

*AO= g 

(B.5) 

So the quantities {) and g satisfy the triangular system as stated above. At this stage the study 

uses the well known classical Gram-Schmidt method that computes one column of A at a time and 

orthogonalizes P as follows. At every step k the kth column is made orthogonal to all the previous 

k - 1 orthogonalized columns and the procedure is repeated fork = 2, ... M. Since the columns 

of W are all orthogonal to one another the sum of squared errors of d can be written as 

M 

d'd = Lg;w~wi + E' E 
i=l 

which implies that if d is the desired output or the dependent variable after its mean has been 

subtracted, the variance of d(t) is given by 

M 

N-1d' d = N-1 L g;w~wi + N-1 E' E 
i=l 

So the term N-1 I:f:!:1 g;w~wi is that part of the total variance of the dependent variable d that is 

explained by the regressors and N-1 E' Eis that part of the variance that is unexplained. Thus an 

error reduction ratio due to Wi can be defined as 

2 T [ l _ 9i Wi Wi 
err i - (d'd) , (B.6) 

This ratio is essentially what turns out to be a simple and effective means to seek a subset of signif

icant regressors in a forward regression manner. 
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The process starts by assuming the first column of W to be the first column of P and the 

maximum error reduction ratio is computed by taking the following steps 

Now find 

Select 

= Pi 

gf = 

[err]i 

(wi)'d 
(wi)'wf 
(gi)2(wi)'wf 

d'd 

[err]i1 = max[err]l, 1 ~ i ~ M, i =/- i1, ... ,i =/- ik-l 

W -wi1 -p· 1 - 1 - i1 

After the first step from the second step onwards, fork ~ 2, for 1 ~ i ~ M, and i =I- i1, ... i =I- ik-l, 

[err Ji 

And 

[err]i1 = max [err]i, 1 ~ i ~ M, i =/- i1, ... , i =/- ik-l 

Now select 

The procedure is repeated and performed till the tolerence limit is reached, i.e. 

1 - aJ;!c5i[err]1 < p 

The tolerance parameter p is an important instrument in balancing the accuracy and the complexity 

of the final network. The actual value of the tolerance used in the study is 0.001. 
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APPENDIXC 

Principal Components Analysis 

Let p be a vector of variables, Xt. The principal component analysis is applied to the change 

in yields for any two consecutive months of different maturities. For the first window the monthly 

change in yields for the maturities (.25, 1, 2, 3, 5, 7, 10, 15, and 20 years) from January 1983 through 

1995 are used. Hence Xt would be the change in yields observed at time t for p different maturities. 

Let T be the number of observations taken (for the purpose of the first window and for all other 

windows it is 155). It is assumed that these observations are linearly related tom, m < p, underlying 

unobserved factors by the following relation: 

(C.l) 

where the dimensions of the matrices are 

X-µ Txp, 

L = mxp, 

F - Txm, 

€ Txp, 

E(X) = µ, 

E(Ft) = 0, 

E(Et) = 0, 

cov(Ft) = E(FtFD = I(m x m), 

cov(Et) = E(Et€~) = 1/J(p X p). 

where 1/J is a diagonal matrix that has zeros as all the off diagonal elements. The Fts are called 

factors at a certain time t and F is a matrix of the factors over the whole time period T and the Ls 

are called the factor loadings. 

The task at hand is the estimation of the factors from the equation (C.l) whose structure implies that 

~ = E[(X - µ)'(X - µ)]=LL'+ 1/J 

At this point the first m principal components of the estimated variance-covariance matrix, ~ are 

used to construct L. Then 1/J is estimated from ~ - LL' by setting the off diagonal elements to 

186 



zero. The solution L is not unique. If T is any orthogonal matrix, then L* = LT is also a solution 

because 

~ = L * L *' + 'If; = LTT' L' + 'If; = LIL' + 'If; = LL' + 'If;. 

The rotation also affects the factors but does not affect the 'If;. This in turn permits the rotation of the 

original solution until the factor loadings have meaningful economic interpretation. 

C.1 The Two-Factor Model 

The rotation matrices in the case of the two-factor model are 

· [ cos(}i sin(}i l 
Tl= 

- sin (h cos (h 

cos(h l 
sin 02 

Since Tl and T2 are orthogonal their product T = Tl.T2 is also orthogonal. So T is the 

orthogonal matrix used to rotate the matrix L and the parameters 01 and 02 are estimated using a 

non-linear optimizer to minimize the variance of the first column of L*. This gives the final principal 

components matrix L*. 

C.2 The Three-Factor Model 

The rotation matrices in the case of the three-factor model are 

cos 01 sin 01 0 

Tl = - sin 01 cos 01 0 

0 0 1 

T2= 0 1 0 

1 0 0 

T3 = 0 cos 03 sin 03 
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Since Tl, T2 and T3 are orthogonal their product T = Tl.T2.T3 is also orthogonal. So Tis 

the orthogonal matrix used to rotate the matrix L and the parameters (Ji, (h and Oa are estimated 

using a non-linear optimizer to minimize the variance of the first column of L *. This gives the final 

principal components matrix L *. 
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APPENDIXD 

Summary Statistics of the Estimates 

Table D.1: CIR Estimates(Equation (3.9)) 

The parameters of the short rate process as specified in set of equations (4.1) and esti

mated by GMM. The parameters of the short rate process as specified in equation (3.9) 

are calculated using the set of equations (4.2). The summary statistics of the parameters 

of equation(??) are stated. These parameters are summarized over the out of sample time 

period January 1996 through December 1999. 

Statistic () 

Maximum 0.0277 5.6098 0.1221 

Minimum 0.0041 3.5122 0.0985 

Median 0.0111 4.6178 0.1061 

Table D.2: LS Estimates(Equation (4.5)) 

The summary statistics of the parameters of the variance equation of the discrete GARCH 

model as in the set of equations ( 4.5) are stated. These parameters are summarized over the 

out of sample time period January 1996 through December 1999. 

Statistic /30 

Maximum 0.0000002960 0.0000764000 0.4726 · 0.6082 

Minimum 0.0000000105 0.0000153000 0.2298 0.2726 

Median 0.0000000105 0.0000203000 0.4045 0.4893 
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Table D.3: HJM-GV Estimates(Equation (4.22)) 

The summary statistics of the parameters of the equation (4.18) are stated. These param

eters are summarized over the out of sample time period January 1996 through December 

1999. 

Statistic 

Maximum 0.0967 0.0867 0.8622 

Minimum -0.0389 0.0553 0.1474 

Median -0.0178 0.0659 0.2711 

Table D.4: HJM-RS Estimates(Equation (4.14)) 

The summary statistics of the parameters of the equation (4.10) are stated. These param

eters are summarized over the out of sample time period January 1996 through December 

1999. 

Statistic K, rJ 

Maximum 0.1952 0.0582 

Minimum 0.1127 0.033 

Median 0.1494 0.0414 

Table D.5: Hedging Errors (Summary Statistics) 

The summary statistics of the absolute value of the hedge errors produced for the portfolio 

P-I for all the models considered are presented. Portfolio P-I consists of one-unit long 

positions in 1 year and 20 year bonds and one-unit short position in a 10 year bond. The 

hedge errors are summarized over the out of sample time period February 1996 through 

December 1999. 

Statistic CIR LS HJM-GV HJM-RS MLP RBF DUR PCA2 PCA3 

Max. 0.0359 0.1406 

Min. 0.00006 0.0008 

0.0602 

0.0001 

0.0481 

0.0004 

0.0219 0.0957 0.0624 0.0628 0.0402 

0.0003 0.0004 0.0002 0.00003 0.0004 

Med. 0.0052 0.0404 0.0047 0.0045 0.0048 0.0128 0.0058 0.0091 0.0051 
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Table D.6: Hedge Portfolio Proportions (Summary Statistics) - CIR 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2 and 3 years to maturity according to the CIR model are presented. The portfolio 

is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions in 1 year 

and 20 year bonds and one-unit short position in a 10 year bond. The hedge portfolio 

proportions are summarized over the out of sample time period February 1996 through 

December 1999. 

Statistic x2 X3 

Maximum 3.20 0.60 

Minimum 0.14 -2.61 

Median 1.57 -0.87 

Table D.7: Hedge Portfolio Proportions (Summary Statistics) - LS 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2,3, and 7 years to maturity according to the LS model are presented. The portfolio 

is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions in 1 year 

and 20 year bonds and one-unit short position in a 10 year bond. The hedge portfolio 

proportions are summarized over the out of sample time period February 1996 through 

December 1999. 

Statistic x2 X3 x1 

Maximum 83.26 138.34 24.78 

Minimum -102.79 -106.92 -36.37 

Median 27.84 -33.81 6.72 
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Table D.8: Hedge Portfolio Proportions (Summary Statistics) - HJM-GV 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2 and 3 years to maturity according to the HJM-GV model are presented. The 

portfolio is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions 

in 1 year and 20 year bonds and one-unit short position in a 10 year bond. The hedge 

portfolio proportions are summarized over the out of sample time period February 1996 

through December 1999. 

Statistic X2 X3 

Maximum 2.84 1.65 

Minimum -0.79 -2.23 

Median 0.89 -0.15 

Table D.9: Hedge Portfolio Proportions (Summary Statistics) - HJM-RS 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2, 3 and 7 years to maturity according to the HJM-RS model are presented. The 

portfolio is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions in 1 

year and 20 year bonds and one-unit short position in a 10 year bond. The hedge portfolio 

proportions are summarized over the out of sample time period February 1996 through 

December 1999. 

Statistic 

Maximum 4.35 -2.82 0.73 

Minimum 3.33 -4.38 0.10 

Median 3.50 -3.09 0.21 
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Table D.10: Hedge Portfolio Proportions (Summary Statistics) - MLP 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2,3, and 7 years to maturity according to the MLP model are presented. The 

portfolio is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions 

in 1 year and 20 year bonds and one-unit short position in a 10 year bond. The hedge 

portfolio proportions are summarized over the out of sample time period February 1996 

through December 1999. 

Statistic X2 X3 X7 

Maximum 43.10 27.55 5.44 

Minimum -20.99 -47.66 -5.79 

Median 1.34 -0.32 -0.31 

Table D .11: Hedge Portfolio Proportions (Summary Statistics) - RBF 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2,3, and 7 years to maturity according to the RBF model are presented. The 

portfolio is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions 

in 1 year and 20 year bonds and one-unit short position in a 10 year bond. The hedge 

portfolio proportions are summarized over the out of sample time period February 1996 

through December 1999. 

Statistic X2 X3 X7 

Maximum 17.68 16.84 6.10 

Minimum -15.05 -17.90 -9.34 

Median 0.49 0.31 -0.08 
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Table D.12: Hedge Portfolio Proportions (Summary Statistics) - Duration 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2 and 3 years to maturity according to the Duration model are presented. The 

portfolio is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions 

in 1 year and 20 year bonds and one-unit short position in a 10 year bond. The hedge 

portfolio proportions are summarized over the out of sample time period February 1996 

through December 1999. 

Statistic X2 X3 

Maximum 1.37 1.13 

Minimum -0.33 -0.65 

Median 0.78 -0.04 

Table D.13: Hedge Portfolio Proportions (Summary Statistics) - PCA2 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2,3, and 7 years to maturity according to the PCA2 model are presented. The 

portfolio is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions 

in 1 year and 20 year bonds and one-unit short position in a 10 year bond. The hedge 

portfolio proportions are summarized over the out of sample time period February 1996 

through December 1999. 

Statistic X2 X3 X7 

Maximum 9.54 -4.77 4.91 

Minimum 4.37 -13.15 0.91 

Median 5.61 -6.67 1.79 
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Table D.14: Hedge Portfolio Proportions (Summary Statistics) - PCA3 

The summary statistics of the proportions to be invested in the portfolio of zero coupon 

bonds of 2,3,5, and 7 years to maturity according to the PCA3 model are presented. The 

portfolio is used to hedge portfolio P-1. Portfolio P-1 consists of one-unit long positions in 1 

year and 20 year bonds and one-unit short position in a 10 year bond. The hedge portfolio 

proportions are summarized over the out of sample time period February 1996 through 

December 1999. 

Statistic x2 X3 xs x1 

Maximum 4.11 -0.01 0.58 0.89 

Minimum 

Median 

1.85 -3.84 

2.40 -1.43 
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APPENDIXE . 

Pricing Errors - RMSE (Sub-Periods) 

Table E.1: Pricing Errors - Root Mean Squared Error(Jan. 1996 - Dec. 1996) 

The Root Mean Squared Errors produced by the different models considered for bonds of 

different maturities during the sub sample from January 1996 through December 1996 are 

presented. 

Maturity CIR LS HJM-GV HJM-RS MLP RBF 

.25 0.0228 0.0012 0.0200 0.0194 0.0177 0.0239 

1 0.1594 0.3912 0.0865 0.0641 0.0727 0.1011 

2 0.6249 1.2525 0.3333 0.1574 0.1091 0.1914 

3 1.4413 2.1738 0.5202 0.1524 0.0952 0.2285 

7 7.7547 5.2212 1.6835 0.9176 0.9678 0.9463 

10 10.9113 6.1808 1.5117 0.5556 0.5984 0.4449 

15 11.4582 7.7719 2.7175 1.9456 2.0315 1.8245 

20 13.3716 7.4848 1.5499 1.0033 1.0509 0.9825 
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Table E.2: Pricing Errors - Root Mean Squared Error(Jan. 1997 - Dec. 1997) 

The Root Mean Squared Errors produced by the different models considered for bonds of 

different maturities during the sub sample from January 1997 through December 1997 are 

presented. 

Maturity CIR LS HJM-GV HJM-RS MLP RBF 

.25 0.0235 0.0013 0.0259 0.0241 0.0216 0.0253 

1 0.1246 0.3937 0.1264 0.1082 0.0727 0.0887 

2 0.4795 1.2241 0.2393 0.0916 0.0614 0.1414 

3 1.3102 1.9938 0.3910 0.1116 0.0866 0.1439 

7 7.7734 4.3387 1.0436 0.5900 0.5571 0.4819 

10 11.6666 4.7791 1.0371 0.2521 0.2762 0.3070 

15 10.8937 5.9604 2.0026 1.6985 1.6595 1.5701 

20 8.9157 5.4656 1.1425 0.7475 0.7353 0.7983 

Table E.3: Pricing Errors - Root Mean Squared Error(Jan. 1998 - Dec. 1998) 

The Root Mean Squared Errors produced by the different models considered for bonds of 

different maturities during the sub sample from January 1998 through December 1998 are 

presented. 

Maturity CIR LS HJM-GV HJM-RS MLP RBF 

.25 0.0174 0.0012 0.0231 0.0238 0.0235 0.0305 

1 0.1369 0.2197 0.0816 0.0838 0.0792 0.1090 

2 0.8704 0.4889 0.1854 0.1372 0.1359 0.1381 

3 1.8343 0.7489 0.2849 0.1538 0.1371 0.1489 

7 8.3423 1.5130 0.7512 0.4567 0.40933 0.9631 

10 12.6398 1.5302 0.9704 0.8533 0.7598 0.7171 

15 13.9458 3.8008 3.2506 2.9157 2.9477 4.2911 

20 13.9849 5.2395 2.4836 2.0711 2.0695 0.8814 
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Table E.4: Pricing Errors - Root Mean Squared Error(Jan. 1999 - Dec. 1999) 

The Root Mean Squared Errors produced by the different models considered for bonds of 

different maturities during the sub sample from January 1999 through December 1999 are 

presented. 

Maturity CIR LS IDM-GV IDM-RS MLP RBF 

.25 0.0175 0.0010 0.4533 0.0301 0.0177 0.0229 

1 0.1466 0.3799 0.9744 0.1363 0.0727 0.1172 

2 0.2173 1.1255 1.5019 0.1159 0.1091 0.1601 

3 0.4080 1.8326 1.9312 0.1217 0.0952 0.1894 

7 3.9697 4.4134 3.3869 0.5979 0.9678 0.6529 

10 7.8174 4.1825 3.5282 0.8379 0.5984 0.6901 

15 6.7210 8.0826 6.5103 4.2182 2.0315 4.4016 

20 7.0355 7.7684 3.9776 0.7649 1.0509 0.9125 
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APPENDIXF 

Pricing Errors - MAD (Sub-Periods) 
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Table F.1: Pricing Errors - Mean Absolute Deviation(Jan. 1996 - Dec. 1996) 

The Mean Absolute Deviation Errors produced by the different models considered for 

bonds of different maturities during the sub sample froni January 1996 through Decem-

her 1996 are presented. 

· Maturity CIR LS HJM-GV HJM-RS MLP RBF 

.25 0.0199 0.0012 0.0170 0.0164 0.0146 0.0178 

1 0.1402 0.3618 0.0671 0.0514 0.0618 0.0792 

2 0.5388 1.1669 0.2813 0.1195 0.0879 0.1359 

3 1.0138 2.0076 0.4586 0.1103 0.0708 0.1509 

7 5.4790 5.0367 1.4518 0.8890 0.9310 0.9031 

10 8.2275 6.0098 1.3209 0.4168 0.4549 0.3517 

15 9.2890 7.6113 2.4213 1.8459 1.9351 1.7767 

20 10.9267 7.0809 1.2275 0.7724 0.8136 0.6976 

Table F.2: Pricing Errors - Mean Absolute Deviation(Jan. 1997 - Dec. 1997) 

The Mean Absolute Deviation Errors produced by the different models considered for 

bonds of different maturities during the sub sample from January 1997 through Decem-

her 1997 are presented. 

Maturity CIR LS HJM-GV HJM-RS MLP RBF 

.25 0.0213 0.0013 0.0210 0.0184 0.0166 0.0180 

1 0.0949 0.3567 0.1014 0.0859 0.0596 0.0756 

2 0.4327 1.1520 0.1974 0.0798 0.0533 0.1122 

3 1.0626 1.8721 0.3203 0.0866 0.0626 0.1090 

7 5.6531 4.0876 0.8855 0.5665 0.5342 0.4553 

10 8.5978 4.4594 0.8811 0.1914 0.2110 0.2215 

15 8.5960 5.7088 1.8043 1.6662 1.6244 1.5156 

20 8.0944 5.2318 1.0155 0.6613 0.6552 0.7256 
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Table F.3: Pricing Errors - Mean Absolute Deviation(Jan. 1998 - Dec. 1998) 
I 

The Mean Absolute Deviation Errors produced by the different models considered for 

bonds of different maturities during the sub sample from January 1998 through Decem-

ber 1998 are presented. 

Maturity CIR LS HJM-GV HJM-RS MLP RBF 

.25 0.0152 0.0011 0.0194 0.0190 0.0187 0.0200 

1 0.1077 0.1869 0.0652 0.0681 0.0618 0.0633 

2 0.6293 0.3970 0.1479 0.1157 0.0969 0.1313 

3 1.4098 0.5692 0.2346 0.1214 0.1140 0.1732 

7 6.4703 1.3177 0.6663 0.4153 0.3936 0.4997 

10 10.0776 1.3107 0.6138 0.7730 0.6490 0.8663 

15 11.3304 3.1702 2.9133 2.6361 2.6892 2.6772 

20 10.9587 4.4123 2.0972 1.7912 1.8143 2.0031 

Table F.4: Pricing Errors - Mean Absolute Deviation(Jan. 1999 - Dec. 1999) 

The Mean Absolute Deviation Errors produced by the different models considered for 

bonds of different maturities during the sub sample from January 1999 through Decem-

ber 1999 are presented. 

Maturity CIR LS HJM-GV HJM-RS MLP RBF 

.25 0.0167 0.0010 0.0240 0.0256 0.0208 0.0255 

1 0.1168 0.3420 0.1110 0.1162 0.1041 0.0816 

2 0.1888 1.0664 0.2058 0.0878 0.1107 0.1033 

3 0.2874 1.7513 0.3479 0.0899 0.1203 0.1268 

7 3.5125 4.2236 0.8855 0.5754 0.6241 0.7607 

10 7.1119 3.9863 1.1464 0.7287 0.5558 0.6246 

15 · 6.1019 7.9982 4.0787 4.1656 4.3425 4.2247 

20 5.2656 7.6917 0.9694 0.6175 0.7635 0.7461 
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APPENDIXG 

Measures of Duration considered by Gultekin and Rogalski (1984) 

The different measures of duration considered by Gultekin and Rogalski (1984) (hereafter GR) 

are as follows 

Dl = [P(~)] lam tC(t)exp[-R(t)t]dt 

D2 [P(~)] lam tC(t)R(t) exp[-R(t)t]dt 

D3 [P(~)] lam t2C(t)R(t)exp[-R(t)t]dt 

D4 [P(~)] lam t ln(t)C(t)R(t) exp[-R(t)t]dt 

D5 = [P(~)] lam t2C(t) exp[-R(t)t]dt 

D6 = ( exp [P(~)] lam C(t) ln(l + at) exp[-R(t)t]dt) 

Where P ( m) is the market value of a bond with maturity m at some instant of time, C ( t) is 

the cash flow received at t, R(t) is the spot rate associated with each cash flow, and a in D6 is a 

measure of the variability of long-term yields relative to short-term yields. 

D7 was proposed by Cox, Ingersoll, and Ross (1979) (hereafter CIR) by assuming that the 

instantaneous nominal spot rate dr follows a first-order auto-regressive process 

dr = fJ(µ - r)dt + cr.,/rdt. 

Using the spot rate process CIR express the duration D7 as 

where 

a-1 [x] 

P(t) 

D7 = a-i ['EC(t)P(t)G(t)] 
C(t)P(t) 

2 1(2 1r-fJ) -coth- -+--
'Y "(X "( 

F(t) exp[-rG(t)] 

202 



F(t) 
= [ 21 exp[(, + (3 - 1r)t/2) ] (2{3µ)/(u 2

) 

(, + (3 - 1r )[exp( ,t) - 1] + 21 

G(t) -

'Y = 

2 

[/3 - 1r +, coth(,t/2)) 

[(/3 _ 1r)2 + 2a2]1/2 

and 1r is the liquidity premium. 
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