
INCREMENTAL TRAINING ALGORITHMS FOR

NONLINEAR NEURAL NETWORKS

By

ROGER L. SCHULTZ

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1986

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 2002

INCREMENT AL TRAINING ALGORITHMS FOR

NONLINEAR NEURAL NETWORKS

Thesis Approved:

Thesis Adviser

('~!J ~

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Martin Hagan, for the generous help, encouragement and

patience he has extended to me while teaching me so much. I would also like to thank my

other committee members Dr. Carl Latino, Dr. Eduardo Misawa and Dr. George Sheets for

their helpful suggestions and assistance. Many thanks also go to Meng Fun and Orlando

De Jesus, two friends who have alway had good suggestions and a willingness to help.

I would also like to thank the management of Halliburton Energy Services for sup

porting and encouraging me in this work. I would especially like to thank Kent Beck, B.N.

Murali, Harry Smith and Syed Hamid for their support.

I would like to express my deep appreciation to my wife, Annette, for her years of

patience, loving support; and encouragement. Many thanks also go to my children Riley,

Bailey, Aubrey and Wesley who have often had to endure my absence due to my pursuit of

this endeavor. Finally, I wish to thank my parents for the encouraging example they have

set, and for always supporting me in all that I do.

iii

TABLE OF CONTENTS

CHAPTERl
INTRODUCTION ... 1

CHAPTER2
BASIC BATCH OPTIMIZATION TECHNIQUES ... 7

Introduction .. 7
The Method of Steepest Descent ... 9
Steepest Descent Example (Batch Processing) .. 11
Newton's Method .. 16
Newton's Method Example ... 21
Gauss-Newton Method .. 25
Gauss-Newton Method Example ... 26
Levenberg-Marquardt Method ... 29
Levenberg-Marquardt Example .. .31
Linear Least-Squares ... 34
Nonlinear Least-Squares ... 36

CHAPTER3
STANDARD INCREMENTAL OPTIMIZATION TECHNIQUES40

Introduction .. 40
Method of Steepest Descent (On-line Processing)41
Steepest Descent Example (On-line Processing)42
Recursive Least-Squares .. 4 7
Recursive Gauss-Newton Method ... 52
Recursive Gauss-Newton Method Example .. 55
Extended Kalman Filter ... 58
Chapter Summary .. 67

CHAPTER4
UNDERDETERMINED LINEARIZED LEAST-SQUARES TRAINING 68

Introduction .. 68
Overdetermined Linear Least Squares Solution (Review) 69
Underdetermined Linear Least Squares Solution 72
Nonlinear Least-Squares for the Overdetermined Case (Review) 74
Nonlinear Least-Squares for the Underdetermined Case 75
Neural Network Training Using the ULLS Method with Matrix
Inversion .. 78
Recursive Underdetermined Linearized Least Squares (RULLS) Training
Algorithm ... 80
Numerical Stability of the RULLS Algorithm .. 89
Chapter Summary .. 89

iv

CHAPTERS
INCREMENTAL LEVENBERG-MARQUARDT OPTIMIZATION 91

Introduction .. 91
Recursive Levenberg-Marquardt Equations .. 92
RecJlfsive Levenberg-Marquardt Using Matrix Inversion Lemma 96
Strategies for adjusting ... 101
Determining .. 107
RLMMIL Simulation Results .. 110
Recursive Levenberg-Marquardt with Caley-Hamilton Approximation.114
RLMCH Method Simulation Results .. 118
Chapter Summary '. .. 120

CHAPTER6
PERFORMANCE COMPARISON BETWEEN ULLS AND COMMON ON-
LINE TRAINING METHODS .. 122

Introduction .. 122
Test Case 1: Non-Recurrent Neural Network Training Using Simulated
Data .. 123
Test Case 2: Recurrent Neural Network Training Using Simulated
Data .. 131
Test Case 3: Neural Network Training Using Experimental Voice Data 135
Chapter Summary .. 137

CHAPTER 7
APPLICATION OF THE ULLS METHOD FOR DETECTING ROLLER-CONE
DRILL BIT FAILURE .. 139

Introduction .. 13 9
Problem Description .. 140
ANNP A Method Experimental Verification ... 146
Downhole Tool and Warning System Description 151
Chapter Summary .. 154

CHAPTERS
CONCLUSIONS AND RECOMMENDATIONS .. 155

Conclusions .. 155
Recommendations .. 159

REFEREN CES ... ~ ... 162

V

LIST OF TABLES

Table 1 Computational requirements for the RULLS algorithm 87

Table 2 Computational Requirements for Recursive LM Update (MIL) 99

Table 3 Computational Requirements for Full Recursive LM Update 100

Table 4 Comparison of One-Step and Incremental Matrix Inversion Lemma 106

Table 5 Training Method Performance Comparison .. 125

Table 6 Jacobian Terms Performance Comparison .. 128

Table 7 Jacobian Terms Performance Comparison (Recurrent Network, Fixed Weights)
... 133

vi

LIST OF FIGURES

Figure 1 Example Nonlinear Neural Network ... 12

Figure 2 Squared-Error Performance for Batch Steepest Descent Example 13

Figure 3 Weight Trajectories for Batch Steepest Descent Example 13

Figure 4 Weight Trajectories for 2-Weight Steepest Descent Example 14

Figure 5 3-D Weight Trajectories for 2-Weight Steepest Descent Example 15

Figure 6 Weight Trajectories Contour Plot for 2-Weight Steepest Descent Example 15

Figure 7 Example Nonlinear Neural Network .. 21

Figure 8 Squared-Error Performance for Newton's Method Example 22

Figure 9 Weight Trajectories for Newton's Method Example .. 23

Figure 10 Weight Trajectories for 2-Weight Newton's Method Example 24

Figure 11 3-D Weight Trajectories for 3-Weight Newton's Method Example 24

Figure 12 Weight Trajectories Contour Plot for 2-Weight Newton's Method Example .. 25

Figure 13 Squared-Error Performance for Gauss-Newton Example 27

Figure 14 Weight Trajectories for Gauss-Newton Example ... 28

Figure 15 Weight Trajectories for 2-Weight Gauss-Newton Example 28

Figure 16 3-D Weight Trajectories for 3-Weight Gauss-Newton Example 29

Figure 17 Weight Trajectories Contour Plot for 2-Weight Gauss-Newton Example 29

Figure 18 Squared-Error Performance for Levenberg-MarquardtExample31

Figure 19 Weight Trajectories for Levenberg-Marquardt Example 33

Figure 20 Weight Trajectories for 2-Weight Levenberg-Marquardt Example 33

vii

Figure 21 3-D Weight Trajectories for 3-Weight Levenberg-Marquardt Example34

Figure 22 Weight Trajectories Contour Plot for 2-Weight Levenberg-Marquardt Example
.. 34

Figure 23 Example Nonlinear Neural Network .. .43

Figure 24 Squared-Error Performance for On-line Steepest Descent Example44

Figure 25 Weight Trajectories for On-line Steepest Descent Example44

Figure 26 Weight Trajectories for 2-Weight On-line Steepest Descent Example45

Figure 27 3-D Weight Trajectories for 2-Weight On-line Steepest Descent Example46

Figure 28 Weight Trajectories for 2-Weight On-line Steepest Descent Example46

Figure 29 Squared-Error Performance for Recursive Gauss-Newton Example56

Figure 30 Weight Trajectories for Recursive Gauss-Newton Example 56

Figure 31 Weight Trajectories for 2-Weight Recursive Gauss-Newton Example 57

Figure 32 3-D Weight Trajectories for 3-Weight Recursive Gauss-Newton Example 58

Figure 33 Weight Trajectories Contour Plot for 2-Weight RGN Example 58

Figure 34 Computation Requirement Comparison for ULLS and RULLS Algorithms ... 88

Figure 35 Computational Requirements for Single Recursive LM Update 100

Figure 36 Comparison of One-Step and Incremental Matrix Inversion Lemma 106

Figure 37 Example RLMMIL System Identification Training Problem 111

Figure 38 Squared-Error Performance for RLMMIL, RGN and Steepest Descent 112

Figure 39 Trajectory of during training (full case) ... 113

Figure 40 Squared-Error Performance for RLMMIL, RGN and Steepest Descent 114

Figure 41 Error Associated with Cayley-Hamilton Inverse Approximation 119

Figure 42 Three-Layer Feedforward Neural Network (Test Case 1) 123

viii

Figure 43 Mean Squared-Error for Three Training Algorithms 124

Figure 44 Squared-Error vs. Flops for Three Training Methods 126

Figure 45 Effect of Jacobian Window Size On ULLS Performance (Non-Recurrent
Network) ... 127

Figure 46 Slow Sinusoidal Parameter Change with ULLS Training 129

Figure 4 7 Rapid Sinusoidal Parameter Change with ULLS Training 130

Figure 48 Three-Layer Recurrent Neural Network (Test Case 2) 131

Figure 49 Effect of Jacobian Window Size On ULLS Performance (Recurrent Neural
Network) ... 132

Figure 50 Effect of Jacobian Window Size On ULLS Performance 134

Figure 51 Non-contaminated Voice Signal ... 135

Figure 52 Contaminated Voice Signal.. ... 136

Figure 53 Speech Prediction Performance (ULLS, RGN and Steepest Descent) 137

Figure 54 Roller-Cone Drill Bit Bearing Failure Detection .. 142

Figure 55 Schematic of ANNPA Drill Bit Failure Detection Scheme 143

Figure 56 Adaptive Neural Network Predictor (ANNPA Method) 143

Figure 57 Failure Indications (ANNPA) Method .. 145

Figure 58 Experimental Test Setup ... 147

Figure 59 Acceleration (no bearing damage) .. 148

Figure 60 Squared Prediction Error (no bearing damage) ... 149

Figure 61 Acceleration (moderate bearing damage) ... 149

Figure 62 Squared Prediction Error (moderate bearing damage) 150

Figure 63 Acceleration (heavy bearing damage) ... 151

ix

Figure 64 Squared Prediction Error (heavy bearing damage) ... 151

Figure 65 Open Port Failure Indication : .. 152

Figure 66 Downhole Tool Schematic .. 153

Figure 67 Open-Close Signaling Operation .. 154

X

Chapter 1

INTRODUCTION

The objective of this research is to develop new optimization algorithms which are

suitable for the adaptive real-time training of multilayer neural networks. For many years

linear adaptive modeling has been used to solve numerous real-time filtering and controls

problems [5]. In recent years the use of neural networks has become widespread in many

areas of application. This includes the areas of adaptive filtering and control [24].

The use of neural networks in these types of applications gives rise to some unique

difficulties both in real-time computational burden and in tracking performance. In filter

ing and controls applications it is common to use a tapped-delay [2] input structure. Tra

ditionally, this input structure can create tens, to hundreds of inputs. In a linear filter

structure (i.e. finite impulse response [2]) the number of parameters to be adjusted during

adaptation is roughly equal to the number of inputs. If a linear filter structure is used, this

number of parameters does not present a real-time implementation problem when using

standard training algorithms such as LMS (least mean square) [5], or RLS (recursive least

squares) [3]. It is sometimes desirable to replace a linear filter with a nonlinear multilayer

neural network because of the potential for increased performance by the neural network.

If a fully connected multilayer neural network is used with a typical tapped-delay input

structure this can result in a relatively large number of weights which must be adjusted in

1

a real-time manner. Each neuron in the first layer of the network causes a 100% increase

in the number of parameters as compared to a linear filter with the same number of inputs.

This increase in the number of parameters can sharply increase the computational burden

for implementation. The nonlinear, multilayer characteristics of a neural network require

additional computation for the calculation of the function derivatives needed for training.

The steepest descent algorithm can be used for online training of neural networks, but the

performance does not match that of higher-order training methods which use approximate

second-order derivatives in computing parameter updates. When higher-order training al

gorithms such as RGN (recursive Gauss-Newton) or EKF (extended Kalman filter) are

used, the computational burden of these methods when applied to models having a large

number of parameters, can be excessive. This is the motivation for this research. The de

sire is to develop new training algorithms which offer improved performance or reduced

computational burden.

The contributive work presented in this thesis can generally be placed into two cat-

egones.

• Underdetermined linearized least squares optimization

• Recursive Levenberg-Marquardt algorithms

The objectives and a summarization of the work performed in each of these catego

ries is provided below.

Underdetermined Linearized Least Squares

In this work an optimization algorithm based on the underdetermined least squares

solution was developed. By using the underdetermined solution, it is possible to adjust a

2

larger number of parameters than there are samples available. The resulting computations

involve smaller matrix manipulations and thus make the method more suitable for "on

line" implementation than most of the overdetermined solution methods. A fully recursive

form of the algorithm was developed which does not require direct matrix inversion. A

comparison was made between the ULLS algorithm and the recursive Gauss-Newton algo

rithm which showed that dramatically fewer floating point operations are required for the

ULLS algorithm than the RGN algorithm while comparable performance can be achieved.

Recursive Levenberg-Marquardt Algorithm

A major portion of this research effort was the development of a recursive form of

the Levenberg-Marquart algorithm. The excellent performance of the batch LM algorithm

was a strong motivation for the effort expended to develop an incremental "on-line" version

of the algorithm. Many different approaches were taken in the effort to develop a recursive

LM algorithm.

Success was found in the application of the standard matrix inversion lemma used

many times at each iteration, to account for the effect of the additional diagonal matrix

terms required by the LM algorithm. Computational analysis of the algorithm showed that

the recursive form requires less computation than any of the direct matrix inversion tech

niques except Gaussian Elimination. However, it has also been shown that if only a portion

of the diagonal terms are adjusted at each time step, the new recursive LM algorithm main

tains good performance but requires significantly less computation than using any of the

direct matrix inversion methods. Further improvement can be made in the recursive algo-

3

rithm by developing a method of choosing which diagonal terms to adjust at a particular

time step.

In order to discuss the new training methods to be presented here, it is necessary to

examine some of the standard optimization methods used in training neural networks.

These methods can be placed in two main categories. These are "batch" optimization al

gorithms and incremental optimization algorithms. Batch algorithms compute model pa

rameters using all available data, all at once. This set of data is usually used repeatedly in

"epochs", making a collective adjustment to the model parameters. Batch algorithms are

presented in Chapter 2 and are demonstrated using a simple neural network training exam

ple. These algorithms are very important because they are the starting point for most incre

mental or recursive optimization algorithms.

In Chapter 3, incremental optimization algorithms are presented. Some are recur

sive, in that the current computation relies on a result from the previous time-step for the

same computation for the present time-step. A common characteristic of all these algo

rithms is the computation of a parameter update at each time step These algorithms have

largely been developed as incremental versions of corresponding batch algorithms. One

exception to this is the Extended Kalman Filter which was developed directly from the stan

dard Kalman filter which was originally formulated as a recursive algorithm. It is impor

tant to study these algorithms to gain insight into the mathematical development of

recursive algorithms from batch forms.

During the review of the least squares algorithm, the concept of using the underde

termined [4] least squares solution for training neural networks was considered. This is the

4

subject of Chapter 4. A complete development of the underdetermined least squares solu

tion for linear functions is given. This is followed by the development of an extension for

use with nonlinear functions. This method is then further developed into a neural network

training algorithm. The use of the underdetermined solution has the advantage of making

it possible to update more parameters than there are samples available. This training algo

rithm is the primary focus of this research.

One of the batch optimization methods covered in Chapter 2 is the Levenberg-Mar

quardt algorithm. This algorithm has been used very effectively in training multilayer neu

ral networks. The success of this algorithm as a method for training neural networks is the

motivation for the new work presented in Chapter 5. In Chapter 5 two different approaches

for developing a recursive form of the Levenberg-Marquardt algorithm are presented. This

algorithm was developed as a modification to the recursive Gauss-Newton algorithm. The

mathematical form of the batch algorithm does not lend itself well to the development of a

recursive algorithm. One of the new methods presented in Chapter 5 relies on an inverse

approximation and the other uses the matrix inversion lemma [3] to compute a required in-

verse.

In Chapter 6 performance comparisons are made between the new ULLS (underde

termined linearized least squares) training method and two common training methods. The

two methods selected for comparison are the steepest descent method and the RGN (recur

sive Gauss-Newton) method. Comparisons are made based on squared-error performance

and computational complexity. Three different test problems are used in the comparison.

The test problems include a three-layer multilayer feedforward network, a three-layer mul-

5

tilayer recurrent network using dynamic backpropagation and an example in which the var

ious methods are used to restore a noisy speech signal. Both qualitative and quantitative

comparisons are made.

In Chapter 7 a real-world application in which the ULLS algorithm is used is pre

sented. In this application a neural network is used in the detection of failures in oilwell

drill bit bearings. A description of the method is given as well as experimental results using

real test data.

In the final chapter, conclusions based on the work presented here and recommen

dations for future work are provided.

6

Chapter 2

BASIC BATCH OPTIMIZATION TECHNIQUES

Introduction

In all function minimization methods the task is to find the appropriate unknown

function parameters 0 which minimize the function. In the training of neural networks, the

function to be minimized is a cost function which usually contains one or more squared-

error terms. The error is the difference between a desired set of network outputs and the

actual network outputs. The "function parameters" to be optimized are the neural network

weights, which determine the network output.

Methods for numerical minimization involve iteratively updating the estimates of

the parameters which minimize a function F(0n). In searching for the optimum 0, a new

estimate may be represented as a combination of the previous estimate summed with a in-

cremental change as in

0 1 = 0 +~0
n+ n noPt (1)

The problem is to find the series of incremental adjustments ~en which will lead to the

function minimum. The basic parameter adjustment equation (Eq. (1)) is the same for

all numerical minimization techniques. The difference in the various methods lies in the

method of choosing ~en. The incremental adjustment ~en is determined by a search di-

7

rection and a step size which controls the size of the parameter adjustment in the search di-

rection, as in

(2)

In Eq. (2), a. is a positive constant step size, and the vector Pn is the search direction. The

choice of the search direction is typically based on information obtained from previous it

erations. The step size is often adjusted in response to some convergence criteria, but is

sometimes fixed, depending on the specific method. All the numerical optimization meth

ods which will be discussed in this chapter can be placed in one of two categories. These

categories are:

1. Methods which utilize function gradient (first-order derivative) values only.

2. Methods which utilize function gradient and Hessian (second-order derivative).

Methods of the first type are in general less computationally intensive than methods which

use higher-order terms. Methods which use only first-order derivatives also tend to be more

readily implemented recursively. These methods also tend to converge less quickly than the

methods which use both gradient and Hessian values [1]. In this chapter four methods

which use only first-order derivatives will be presented. One of these first-order methods

is the basic steepest descent method. Two other methods which use only first-order deriv

atives but approximate the higher-order Newton's method will also be discussed. These are

the Gauss-Newton method and the Levenberg-Marquardt method. Newton's method will

also be presented. A simple illustrative example showing the parameter trajectories for each

of the methods will be presented as well.

8

The Method of Steepest Descent

One common and widely used numerical minimization method is known as the

steepest-descent or gradient-descent method [2]. This method uses only first-order deriva-

tives of the function to be minimized. As described earlier, an equation of the form

(3)

is used to iteratively search for the minimum point of the function to be minimized. In Eq.

(3) a is a small positive number so the problem is to determine a search direction Pn which

will cause F(®n + 1) to be smaller than F(®n). To examine this problem it is helpful to

look at the first-order Taylor series expansion of the function to be minimized. The first-

order Taylor series expansion of F(®n + 1) can be written as:

F(®n + 1) = F(®n + apn) ~ F(®n) + a V F(e{le = e Pn
n

Where VF(8) is the gradient:

~F(8)
881

~F(8)
VF(®)= 882

- 8-F(®)
8®M

(4)

(5)

It is obvious upon examination ofEq. (4) that the inner product V F(e{l9 = 9 Pn which
n

appears in Eq. (4) must be negative in order for the new function value to be less than the

previous function value. It is desirable to find the search direction which will produce the

9

biggest decrease in F. When the search direction is precisely the negative of the gradient

the inner-product is most negative. Therefore the steepest decent search direction is the

negative of the gradient. With this notion we can modify Eq. (3) 'in the following way:

(6)

Eq. (6) represents the steepest decent method.

For estimating the parameters of an unknown function, we often use the sum-of-the-

squared-errors performance function:

N
2 T

F(®) = L e1 (®) = e (8)e(®) (7)

j = 1

where: e(®) = [t- a(®)] (8)

In Eq. (7), e(®) represents the error, t represents the target, and a(®) represents the ap-

proximation function output. This problem is known as the classic least-squares problem

[1], which can be linear or nonlinear depending on the type of approximation function used.

To minimize Eq. (7), we adjust the parameters of the function to minimize the dif-

ference between the target outputs for a given set of inputs, and the function outputs for the

same set of inputs. This minimization can be accomplished by applying the gradient meth-

od. The gradient ofEq. (7) can be expressed as:

(9)

or,

JO

e1 (8) 8e1 (8) + ei(S) Bez(®)+ ... + eN(S) Be~S)
881 881 881

8e1 (8) 8e2(8) BeN(S)
V F(S) = 2 el (8) 882 + ez(S) 882 + ... + eN(S) 882 (10)

The process of training a multilayer nonlinear network using steepest descent can best be

illustrated by way of an example which will be given in the following section.

Steepest Descent Example (Batch Processing)

Suppose we have the network that is shown in Figure 1. For this example the net-

work has 1 input, 1 nonlinear layer, and a linear output layer which produces a single out-

put. The nonlinear activation functions are log-sigmoid functions which are described by

equations (11) and (12) below.

f(n) = 1
1 + e-n

(11)

d~f(n) = 1 -n[l - 1 -n]
l+e l+e

(12)

There are three parameters, w1, w2 and w3 which must be adjusted to appropriate values
'

using the steepest descent method.

11

Figure 1 Example Nonlinear Neural Network

Test data were generated by setting and fixing all the network weights to known val-

ues, then applying a set of inputs and recording the corresponding outputs. The steepest de-

scent method was then applied to the same network structure with the three unknown

weights initialized to small random numbers.

This example will demonstrate how steepest-descent can be used to determine the

"unknown" network weights which will provide an input/output relationship which match-

es the test data. It is possible for there to be multiple solutions to the problem, so it should

be expected that the network weights will not always converge to exactly the same values

as those contained in the network used to generate the test data.

In the context of function minimization, the idea here is to minimize the sum of the

squared errors function given by Eq. (7) and repeated here for convenience.

N
2 T

F(S) = L e1 (8) = e (S)e(S) (13)

j=l

There are 3 unknown network weights (represented by 8) which must be adjusted to min-

imize Eq. (13). For this example a set of 100 input/output pairs were used in training the

network. This data set was processed using the batch steepest descent algorithm. The three

12

unknown weights were initialized to small random numbers before training was performed.

Figure 2 shows a plot of the sum of the squared errors as a function of epoch number. The

trajectories of the unknown weights are shown in Figure 3. In this plot it can be seen that

after 100 epochs of training the weights have essentially converged

10-' '----'---'--~-_._-~-~--'-----'---'-----'
0 10 20 30 40 50 60 70 80 90 100

Epoch Number

Figure 2 Squared-Error Performance for Batch Steepest Descent Example

1.5

~ 0.5

-~
I
t 0

~

-1

-1.5

Weight Trajectories For Random Initialization

w m w ~ ~ ~ ro w oo ®
Epoch Number

Figure 3 Weight Trajectories for Batch Steepest Descent Example

13

In the next part of this example, all but two of the network weights were fixed, and these

two weights were adjusted using the steepest descent method. Having only two weights to

adjust allows for graphical representation of the training process. The network weights

were set to 2.5, 3.0, and-1.5 to generate the training data. Training data was then generated

as described previously. The network weights were then initialized to -4.5, 3.0 and-4.5 and

weights w1 and w3 were adjusted using the steepest descent method, while w2 was held

fixed at its original value. In this case we should expect to see the weights return to the val-

ues used in generating the training data. Indeed, when the training was performed, the

weights converged on the original values, as shown in Figure 4. Three-dimensional and

contour plots of the weights traversing the squared-error surface are shown in Figure 5 and

Figure 6.

Weight Trajectories When One Weight Is Constrained

-4

-s~~-~-~~-~-~-~~-~~

0 10 20 30 40 50 60 70 80 90 100
Epoch Number

Figure 4 Weight Trajectories for 2-Weight Steepest Descent Example

14

Weight TraJectol)' W'hen One Weight Is Constrained

150

100

50
-5

w1

Figure 5 3-D Weight Trajectories for 2-Weight Steepest Descent Example

Weight TraJectOI)' W'hen One Weight Is Constrained

w1

Figure 6 Weight Trajectories Contour Plot for 2-Weight Steepest Descent Example

Figure 5 illustrates how the steepest-descent trajectory must stay "close" to the error

surface in order for the parameter adjustments to reduce the error. This limits the size of the

weight adjustment which can be made when using this method. In Figure 6 we can see that

15

the weight trajectory progresses rapidly in the early steps, but then becomes relatively slow

near the minimum point. This makes sense because the gradient becomes very small near

the minimum. The algorithm relies on multiplying a small learning rate times the gradient

to compute parameter adjustments making adjustments, close the minimum point, very

small.

Newton's Method

Another approach to function minimization is known as Newton's Method [2]. In

Newton's method, a second order Taylor series expansion of the function to be minimized

is used to approximate the function. This quadratic approximation is then minimized. The

second order Taylor series expansion of a function F(8 n + 1) can be written as:

Tl 1 T 2 F(®n + 1) = F(®n + ~®n):::; F(®n) + V F(8) 0 = en ~en+ 2~®n V F(8) 10 = en ~en

(14)

The second-order partial derivative of the function with respect to the unknown function

parameters which appears in Eq. (14) can be expanded as:

2 2 2
__j__F(8) 8 F(8) 8 F(8)
8ef 8818®2 .. 88188M

2 2 2
2 8 F(8) - 8-F(E>) 8 F(8)

V F(8) = 8828®1 8e; 88288M " (15)

2 2 2
8 F(®) 8 F(®) - 8-F(E>)

8E>M8e1 8®M8e2 8ei

Taking the gradient ofEq. (14) and setting the result equal to zero results in the following

equation:

16

(16)

Eq. (16) can be rearranged in the following way to provide a means for calculating the op-

timum parameter adjustment to minimize the quadratic approximation to the function

F(0).

(17)

Of course, in the general case, the function F(0) will not be quadratic, and will not

be minimized in one step. The basic idea of Newton's method is to use the second order

Taylor series approximation to the function at each iteration until a minimum is reached.

This process can be described by the following equation:

0 = 0 +il0 n + 1 n n0 Pt
(18)

For neural network training, the function to be minimized is the sum of squared-er-

rors function:

N
2 T

. F(0) = L e1 (0) = e (0)e(0) (19)
j=l

where: e(0) = [t- a(0)] (20)

In Eq. (20) e(0) represents the vector of function errors or vector of differences between

the target output vector t, and the network output vector a(0).

This minimization ofEq. (19) may be accomplished using Newton's method. Eq.

(19) is a function of the network parameters, so it can be minimized with respect to the net-

work parameters. In order to apply Newton's method to Eq. (19) we must use Eq. (17) and

17

Eq. (18). The gradient ofEq. (19) with respectto the unknown parameters can be expressed

as:

(21)

or,

8e (0) 8e (0) 8e (0)
e (0) 1 + e (0) 2 + ... + e (0) N 1 80 2 80 N 80 1 1 1

8e1 (0) 8e2(0) 8eN<0)
V F(0) = 2 el (9) 80 + e2(9) 8 + · ·· + eN(0)

... 2 02 802

8e (0) 8e (0) 8e (0)
e (0) 1 - + e (0) 2 . + ... + e (0) N 1 80 2 80 · N 80 M M M

(22)

Eq. (22) can be rewritten as:

8e1 (0) 8e2(0) 8eN(0)

801 801 ... 801

8e1 (0) 8e2(0) 8eN(0)
V F(0) = 802 802 . . . 802

(23)

or

T
V F(0) = 2J (0)e(0) , (24)

where

18

8e1 (0) 8e1 (0) 8e1 (0)

881 882 80M

8ez(0) 8e2(0) 8e2(0)
J= 881 882 88M

8eN(0) 8eN(0) 8eN(0)

881 882 88M
(25)

J is commonly known as the Jacobian matrix [2]. Notice that the elements of the Jacobian

matrix contain the first derivatives of the error with respect to each of the unknown function

parameters.

In order to use Eq. (17), the Hessian matrix V2 F(0) must be calculated. It can be

written as:

(8e1(0)8e1(0) + ...) ... (... + 8eN(0)8eN(0))
881 801 80M 881

(8e1 (0)8el (0)) (8eN(0)8eN(0))
V2F(0) = 2 881 882 + + 88M 882

(26)

19

Eq. (26) can be conveniently re-written in a more compact form as:

(27)

The matrix J is the Jacobian matrix as defined before, and the matrix U is the matrix con-

taining the higher-order terms of V2 F(0). Rewriting Eq. (18), Eq. (17), Eq. (27) and Eq.

(24) we can summarize Newton's method for the squared error function error function as:

e = e +i1e n + 1 n n0Pt (28)

2 -1 Tl
i1®nopt = -[V F(0) le= e) V F(0) 9 = ®• (29)

V2 F(0) = 2JT(0)J(0) + 20(0) (30)

T
V F(0) = 2J (0)e(0) (31)

or,

T -1 T
®n+ 1 = ®n-[J (0)J(0) + U(0)] J (0)e(0) (32)

with the matrices J and U defined previously in Eq. (26) and Eq. (27).

Newton's method usually performs much better than steepest descent near the func-

tion minimum, where the gradient may be very shallow [l]. This increase in performance

ofNewton's method is costly in terms of computational intensity. It takes many more float-

ing operations for one iteration of Newton's method than is required for a single steepest

descent iteration. The calculation of the terms needed to construct the Hessian matrix de-

fined in Eq. (26) and the computation or the inverse of the Hessian account for the great

increase in computational burden associated with Newton's method. The second-order de-

rivatives contained in the U(0) matrix in Eq. (27) are particularly troublesome, because

20

these terms cannot be expressed as combinations of first-order derivatives, as is the case

with the terms of JT (E>)J (E>) in the same equation. A mutilayer nonlinear network training

example using Newton's method follows.

Newton's Method Example

Suppose we have the same example network that was trained previously using

steepest descent. The network is shown again for convenience in Figure 7. For this exam

ple the network has 1 input, 1 nonlinear layer, and a linear output layer which produces a

single output.

Figure 7 Example Nonlinear Neural Network

To perform Newton's method, Eq. (32) was used. This process was performed for

20 epochs. Figure 8 shows a plot of the sum of the squared errors versus epoch number. The

three unknown weights were initialized to small random numbers before training was per

formed.

21

10~

10~

10 12 14 16 18 20
Epoch Number

Figure 8 Squared-Error Performance for Newton's Method Example

The trajectories of the unknown weights as training progresses are shown in Figure

9. In this plot is can be seen that after 20 epochs of training the weights have converged.

Notice how much faster Newton's method converges for this example than steepest descent

did.

In the next part of this example, all but two of the network weights were fixed, and

the two weights adjusted using Newton's method. The network weights were set to 2.5, 3.0,

and -1.5 to generate the training data. The network weights were then initialized to

4.5, 3.0 and-4.5, and weights w1 and w3 adjusted using the Newton's method, while w2 was

held fixed at its original value. In this case we should expect to see the weights return to the

values used in generating the training data. Indeed when the training was performed, the

weights converged on the original values as shown in Figure 10. Again notice how fast the

weights converged. Three-dimensional and contour plots of the weights traversing the

22

squared-error surface are shown in Figure 11 and Figure 12. Notice in Figure 11 that the

trajectory "cuts" through the error surface and jumps to a new location without being con-

strained to the error surface as is the case with steepest descent. It can be seen in Figure 12

how few steps are needed with Newton's to method approach the optimum weights for min-

imizing the error.

~
3

2.5

-~ 1.5
:;;
-§,

~ 1

0.5

Weight Trajectories For Random Initialization

\'-------
-0.5 -- -·- - -- --- -

0 10 12 14 16 18 20
Epoch Number

Figure 9 Weight Trajectories for Newton's Method Example

23

Weight Trajectories When One Weight Is Constrained

10 12 14 16 18 20
Epoch Number

Figure 10 Weight Trajectories for 2-Weight Newton's Method Example

800

600

400

200

Weight TraJectory When One Weight Is Constrained

w1

Figure 11 3-D Weight Trajectories for 3-Weight Newton's Method Example

24

Weight Trajectory When One Weight Is Constrained

15

10

'11 0 ..,_____ :
________________ , ____________ -_--------o..J. _____________________________________ _

-5

.10-------

-151---------------

-15 -10 -5 0
w1

10 15

Figure 12 Weight Trajectories Contour Plot for 2-Weight Newton's Method Example

Gauss-Newton Method

The Gauss-Newton method [2] is one of a group of minimization methods which

are based on Newton's method, but have been modified to reduce the computation burden

associated with calculating the Hessian matrix (Eq. (26), Eq. (27)). Recall that for New-

ton's method the parameter adjustments are:

(33)

where:

V2 F(0) = 2JT(0)J(0) + 2U(0) (34)

The elements of the Jacobian matrix J contain only first derivatives. These terms

can be calculated relatively easily. On the other hand, the elements of U include second

derivatives, which add a new level of complexity and computational burden to the Hessian

matrix determination. If the higher-order terms contained in U are considered to be neg-

25

ligibly small, then V2 F(0) can be approximated as shown in Eq. (35) by simply omitting

these terms.

2 T
V F(0):::; 2J (0)J(0) (35)

This modification yields the Gauss-Newton method, which only requires the computation

of first-order derivatives, greatly reducing the computational requirements of Newton's

method. The iterative Gauss-Newton algorithm can be summarized as:

0 1 = 0 +~0
n + n noPt

(36)

2 -1 Tl ~0 = -[V F(0)J _] VF(0) _
nOPT 0 - 0n 0 - 0n

(37)

2 T
V F(0):::; 2J (0)J(0) (38)

T
V F(0) = 2J (0)e(0) (39)

or,

T -I T
0n+ 1 = 0n-[J (0)J(0)] J (0)e(0) (40)

Gauss-Newton Method Example

The Gauss-Newton method was applied to the same example network shown in

Figure 7 that was trained using steepest descent and Newton's method in the previous ex-

amples. 20 iterations of the algorithm were performed. Figure 13 shows a plot of the sum

of the squared errors versus epoch number. The three unknown weights were initialized to

small random numbers before training was performed.

26

Squared-Error Performance
100 ,------~-----.----------,,-----~

5 10
Epoch Number

15 20

Figure 13 Squared-Error Performance for Gauss-Newton Example

The trajectories of the unknown weights as training progresses are shown in Figure 14. In

this plot is can be seen that after 20 epochs of training the weights have converged. Notice

how the Gauss-Newton method converges with approximately the same speed as Newton's

method, but much faster than steepest descent.

To further illustrate the Gauss-Newton method all but two of the network weights

were fixed, and these two weights were adjusted using the method. The network weights

were set to 2.5, 3.0, and-1.5 for generating training data. The network weights were then

initialized to -4.5, 3.0 and -4.5, and weights w1 and w3 were adjusted using the Gauss-New-

ton method, while w2 was held fixed at it's original value. As training progressed, the

weights converged on the original values as shown in Figure 15. The trajectory for the

weights are similar to those for Newton' method. Three-dimensional and contour plots of

the weights traversing the squared-error surface are shown in Figure 16 and Figure 17. No-

tice in Figure 16 that the trajectory is similar to Newton's method.

27

3

2.5

Q) 2
"CJ
.a
"i::
g' 1.5

::§;

I 1

0.5

0

WeightTrajectories For Random Initialization

' '

_____ ., __ _

,
,,'

'

, , ' '
' '

' ' '

5 10 15 20
Epoch Number

Figure 14 Weight Trajectories for Gauss-Newton Example

Weight Trajectories When One Weight Is Constrained

14

12

10

Q) 8 "CJ
.a
"i::

6 en
OJ

::§;

:!:: 4 en

~ 2
--- --- --------

0

-2

-4

2 4 6 8 10 12 14 16 18 20
Epoch Number

Figure 15 Weight Trajectories for 2-Weight Gauss-Newton Example

28

WeightTrajectory When One Weight Is Constrained

-20
1000

500

w1

Figure 16 3-D Weight Trajectories for 3-Weight Gauss-Newton Example

Weight Trajectory When One Weight Is Constrained

15

10

5

~ 0
--- ------------- ----- -------- ------~~-~---------

.J- - -

-5 G- -- :

-1oic------------

-15--------

-15 -10 -5 0
w1

5 10 15

Figure 17 Weight Trajectories Contour Plot for 2-Weight Gauss-Newton Example

Levenberg-Marquardt Method

The Levenberg-Marquardt method [2] is a variation of the Gauss-Newton method

in which the Hessian matrix is approximated by

2 T
v' F(0) ~ 2J (0)J(0) + 2µ1 (41)

29

Using Eq. (41) we can summarize the equations used in the Levenberg-Marquardt method

as:

e 1 = e +~e n+ n nopt (42)

2 -1 Tl ~e = -[V F(®)I _] VF(®) _
nOPT e - en e - en (43)

2 T
V F(®) ~ 2J (S)J(~) + 2µ1 (44)

T
VF(®) = 2J (S)e(S) (45)

or,

T -1 T
®n+ 1 = ®n-[J (S)J(S) + µI] J (S)e(S) (46)

The µ/ term in Eq. (44) and Eq. (46) has some interesting effects on the parameter

update computation. In the Gauss-Newton method, in which there is no µI term,

JT(S)J(S) may not be invertible. The JT(S)J(S) + µI matrix will be invertible ifµ is

. made large enough [2]. Additionally, as µ is increased, the weight update approaches the

steepest descent method with small learning rate. This is a very nice quality in that the

steepest descent method will always produce a decrease in the sum of the squared-errors if

the learning rate is small enough. On the other hand, as µ is decreased, the Levenberg-Mar-

quardt algorithm approaches the Gauss-Newton method, which under favorable conditions

converges faster than steepest descent.

In the Levenberg-Marquardt algorithm, µ starts out set to a small number. If the

sum of the squared-errors does not decrease, then µ is multiplied by a number greater than

1. This adjusts the algorithm towards steepest descent. This process is repeated until the

30

sum of the squared-errors decreases. If the sum of the squared-errors decreases, µ is divid-

ed by a number greater than 1. This adjusts the algorithm towards Gauss-Newton, which is

generally faster than steepest descent. A mutilayer nonlinear network training example us-

ing the Levenberg-Marquardt method follows.

Levenberg-Marquardt Example

The Levenberg-Marquardt algorithm was applied to the network shown in Figure

7, which was trained in the previous examples. Again, 20 epochs of the algorithm were per-

formed. Figure 18 shows a plot of the sum of the squared errors versus epoch number. The

three unknown weights were initialized to small random numbers before training was per-

formed.

Squared-Error Performance
100 .--------,-------r-------,,------,

10-5

10·20 ~---~---~---~---~
0 5 10

Epoch Number
15 20

Figure 18 Squared-Error Performance for Levenberg-Marquardt Example

The trajectories of the unknown weights as training progresses are shown in Figure

19. In this plot is can be seen that after 20 epochs of training the weights have converged.

31

Notice how the Levenberg-Marquardt method converges with approximately the same

speed as Newton's method did for this example, but much faster than steepest descent did.

Next, all but two of the network weights were fixed, and the two weights adjusted using

Levenberg-Marquardt. The network weights were set to 2.5, 3.0, and -1.5 to generate the

training data. After initializing network weights to -4.5, 3.0 and -4.5, weights w1 and w3

were adjusted while w2 was held fixed at it's original value. As expected, when the training

was performed, the weights converged on the original values as shown in Figure 20. The

trajectory for the weights are similar to those for Newton' method. Three-dimensional and

contour plots of the weights traversing the squared-error surface are shown in Figure 21 and

Figure 22. Notice in Figure 21 jumps to anew location as with the Newton and Gauss-New

ton methods.

For the example problem shown here, Newton's method, Gauss-Newton and Lev

enberg-Marquardt all exhibit very similar performance. This is most likely because of the

simplicity of the problem.

32

3

2.5

a, 2
i:::,

:a ·c
~ 1.5
2
.l:!
-~ 1
$

0.5

0 --·
' '

WeightTrajectories For Random Initialization

, ' ,

-0.5 c......._.:...==--==-=-=-c..:-=-=-:...:-=-===-=-=-=--=-=-=-====-=-=-=-=---=-=-=
0 5 10 15 20

Epoch Number

Figure 19 Weight Trajectories for Levenberg-Marquardt Example

Weight Trajectories When One Weight Is Constrained

14

12

10

a, 8 i:::,

:a ·c
6 0)

Ol
2
.l:! 4 0)
"ffi
$ 2

- ---------- ---

0

-2

-4

2 4 6 8 10 12 14 16 18 20
Epoch Number

Figure 20 Weight Trajectories for 2-Weight Levenberg-Marquardt Example

33

WeightTrajectoryWhen One Weight Is Constrained

-20
1000

500

0

w1

Figure 21 3-D Weight Trajectories for 3-Weight Levenberg-Marquardt Example

WeightTrajectoryWhen One Weight Is Constrained

15

10

5

~ 0
---- ------- --- -- ------------ --- ----~-.r- ~~-------

__._ - -
-5 0---- - :

-10 t,--------------

-15 ~------ --

-15 -10 -5 0
w1

5 10 15

Figure 22 Weight Trajectories Contour Plot for 2-Weight Levenberg-Marquardt Example

Linear Least-Squares

One common method of estimating the unknown parameters of linear functions is

the method oflinear least squares [3]. In this method the function to be minimized is the

familiar sum-of-squared-errors function given as:

34

N
2 A T A A

F(E>) = L e1 (0) = e (E>)e(E>) (47)

j=l

A A

where: e(E>) = [t-a(E>)] (48)

A

In Eq. (47) the vector e(E>) represents the difference between a vector of desired outputs

A

t, and vector of outputs a(0) , produced by a linear function of the form,

A A A

a(n) = E>1g1 (n) + E>2g2(n) + ... + E>MgM(n) (49)

n

where 0 is a vector of parameter estimates, and g 1 (n), g 2 (n), ... , g M(n) are scalar inputs.

These scalar inputs can be nonlinear functions of other systems inputs, as with radial basis

function neural networks [4].

lfwe substitute Eq. (49) for all index values (1 ... n ... N) into Eq. (48) and use Eq.

(47), the following equation results:

where:

" " T "
F(E>) = [t-GE>] [t-GE>]

gl(l) gi(l) ··· gM(l)

G = gl (2) gi(2) ... gM(2)

Eq. (50) can be rewritten as:

n T T A AT T A

F(E>) = t t-2t Ge+e G GE>

35

(50)

(51)

(52)

Taking the gradient ofEq. (52) with respect to 8 yields:

~ T T T ~

VF(E>) = -2[t G] + 2G G0 (53)

To find the parameters which minimize Eq. (52), we set the gradient equal to zero and solve

for 8 . The resulting least squares estimate is

(54)

Eq. (54) is only valid when the number of measurements available exceeds the num-

ber of parameters to be estimated. This situation is known as the overdetermined case [4].

When there are fewer measurements available than there are parameters to be estimated the

situation can be described as the underdetermined case [4]. The solution to the underdeter-

mined case is the central theme for a later chapter and will not be discussed further here.

Notice that, unlike the other minimization methods which have been discussed, the

least-squares method is not iterative, but is solved in one step using a direct approach. This

method is very useful in estimating unknown parameters in functions whose outputs are lin-

early related to the unknown parameters. This constraint renders this method oflimited use

in training neural networks, which often produce outputs which are not linearly related to

the unknown network weights.

Nonlinear Least-Squares

The least-squares method may be used in minimizing nonlinear functions by first

linearizing the function about a nominal set of parameter values, then applying the standard

least-squares equations to calculate an incremental parameter adjustment. This process is

repeated until a specified convergence criteria has been satisfied. This modification of the

36

least-squares method is known as the linearized least-squares method or the iterated least-

squares method [3].

A development of the iterated least-squares method begins with the familiar equa-

tion,

N

F(0)
2 A T A A L e1 (0) e (0)e(0) (55)

j= 1

A A

where: e(0) [t-a(0)] (56)

which has been explained in the preceding sections. Now suppose that a(0) is a vector of

outputs of a nonlinear function of known inputs and unknown function parameters 0, and

t is a vector of desired outputs. Now we must linearize a(0). The incremental change in

the vector of function outputs for an incremental adjustment in the function parameters is

represented by Eq. (57).

A A

a(0n + 1) a(0n + 80n) (57)

In Eq. (57), 80n is the vector ofincremental adjustments of the estimated parameters. Tak-

ing the first-order Taylor series expansion of Eq. (57) produces Eq. (58).

" " " T"
a(0n+d~a(0n)+[J(0n)le=e] 80n

n
(58)

where:

37

T

(59)

In Eq. (59) M is the number of unknown parameters, N is the number of input/target-output

data pairs, and n is the index which corresponds to the iteration of data set presentation.

Using Eq. (58), Eq. (55) can be written as:

(60)

Rewriting Eq. (60) in terms of the function output error we have:

(61)

Rearranging Eq. (61) we have:

~

Taking the vector derivative of Eq. (62) with respect to 68n yields:

(63)

To find the changes in the parameters which minimize Eq. (62), we set the gradient equal

~

to zero and solve for 68n. The resulting linearized least-squares estimate of the incremen-

tal parameter adjustment is

(64)

38

In essence, the least-squares solution to the linearized system is computed about the

current set of parameter estimates to find the appropriate vector of parameter adjustments,

which are then used in Eq. (65) to compute an updated vector of parameter estimates.

A A A

®n + 1 = ®n + B®n (65)

Eq. (64) can be inserted into Eq. (65) to obtain:

(66)

In a manner similar to the other methods presented in this chapter, Eq. (66) is ap-

plied repeatedly to a set of input/output data until some convergence criteria is satisfied.

Note that Eq. (66) is equivalent to Eq. (40) for the Gauss-Newton Method.

39

Chapter3

STANDARD INCREMENTAL OPTIMIZATION TECHNIQUES

Introduction

The purpose of this chapter is to present several numerical optimization techniques

in which parameter updates are made each time a new data point becomes available rather

than in a batch manner. This type of processing is desirable in "on-line" applications such

as adaptive control, signal processing and system identification.

In Chapter 2 several methods of batch optimization were presented. In batch opti-

mization all data is collected then processed simultaneously to compute a parameter update.

The methods which will be presented here all have the characteristic of performing the

computation of parameter updates each time a new sample is obtained. Some "on-line"

methods use the parameter updates from the previous time-step to compute the updates at

the current time-step making these methods recursive in nature.

All the "on-line" methods presented here use Eq. (1), rewritten below for conve-

nience, to update the parameters 8 .

®n+l = ®n+~e
nOPT

(67)

The difference in the methods lies in how ~®n . is computed. A notable difference be-
oPr

tween "on-line" methods and batch methods lies in the number of times Eq. (67) is applied

40

to obtain a comparable level of optimization. In general, many more iterations ofEq. (67)

are required for "on-line" optimiza,_tion than for batch optimization.

The development of "on-line" or recursive forms of the methods of Steepest De-

scent, Linear Least Squares and Gauss-Newton will be given in this chapter. The formula-

tion of the "on-line" methods will be presented as extensions of the development of the

batch methods presented in Chapter 2. Additionally, a discussion of the Extended Kalman

Filter (EKF) and its use in training neural networks will be presented. There are many· op-

timization methods which are essentially modifications of the methods which will present-

ed. Only the basic methods will be considered here. Illustrative examples in which the

steepest descent, and recursive Gauss-Newton methods are applied to a simple neural net-

work training problem will be given. A training example for the EKF algorithm will be

omitted because of its equivalence to the recursive Gauss-Newton method. A training ex-

ample using the linear recursive least-squares (RLS) algorithm will not be presented be-

cause the method is not suitable for training nonlinear neural networks.

Method of Steepest Descent (On-line Processing)

The most commonly used real-time optimization method is probably the steepest

descent algorithm, in which an approximate gradient is used. This algorithm has been used

successfully in many applications. The "real-time" version of the steepest descent algo-

rithm can be written as:

A

®k+I = ®k-a[VF(®)le=e) (68)

The derivation ofEq. (68) was given in Chapter 2. Notice in Eq. (68) that an approximate

gradient has replaced the true gradient in the batch steepest descent update algorithm given

41

by Eq. (6). This modification was first proposed by Widrow and Hoff [5]. They showed

that the expected mean squared errbr for a series of data can be estimated as the squared

error at a particular point in the data. This means that the gradient in a series of data can be

estimated by the gradient at a particular point in the data. If an estimate of the gradient for

each point in a series of data is made in this way, and the result for all points summed, the

result will be equivalent to a batch computation of the gradient for the series of points. This

type of gradient estimation over a series of data is known as a stochastic gradient compu-

tation. This makes it possible to use the gradient associated with the error at each point in

a series of data to compute parameter updates. Therefore, in Eq. (68) the index k does not

indicate an epoch number, but a sample number in a series of data. A neural network train-

ing example illustrating the use of the on-line steepest descent method will be presented in

the next section.

Steepest Descent Example (On-line Processing)

For this example we will use the same network used for the batch training examples

of Chapter 2. This network is shown in Figure 23. This example network has 1 input, 1

nonlinear layer, and a linear output layer which produces a single output. The nonlinear ac-

tivation functions are log-sigmoid functions which are described by Eq. (11) and Eq. (12).

There are three parameters, w1, w2 and w3 which must be adjusted to appropriate values
'

using the on-line steepest descent method.

42

Figure 23 Example Nonlinear Neural Network

Test data were generated as in the previous examples by setting and fixing all the

network weights to known values, then applying a set of inputs and recording the corre

sponding outputs. The on-line steepest descent method was then applied to the same net

work structure with the three unknown weights initialized to small random numbers.

For this example a set of 1000 input/output pairs were used in training the network. This

data set was processed using the on-line steepest descent algorithm.

Figure 24 shows a plot of the squared error as a function of sample number. The

trajectories of the unknown weights are shown in Figure 25. We can see that the weights

take a "noisy" path as the trajectories converge towards their final values. This is because

the individual weight adjustments are based on estimates of the true gradient as described

in the previous section. These small adjustments are in error on an individual basis, but as

a whole converge to the proper values quite well.

43

SquaA!:d· Error Performance

10·'0

10··,~~-~-~-~-~-~-~~-~-~
o ~ ~ ~ a ~ ~ ~ ~ ~ =

Sample Number

Figure 24 Squared-Error Performance for On-line Steepest Descent Example

Weight Trajectories For R;;mdom Initialization

~ ~ ~ a ~ ~ ~ ~ ~ =
Sample Number

Figure 25 Weight Trajectories for On-line Steepest Descent Example

A second simulation was run for this example network in which all but two of the

network weights were fixed, and then only these two weights adjusted. The network

weights were set to 2.5, 3.0, and -1.5 to generate the training data. The network weights

were initially set to -4.5, 3.0 and -4.5 and weights w 1 and w3 adjusted while w2 was held

44

fixed at its original value. By constraining the network in this way we should force the

weights to return to the values used in generating the training data.

As expected, when the training was performed, the weights converged on the orig-

inal values, as shown in Figure 26. Again, we see "noisy" weight trajectories because of

the stochastic gradient used with this method. Three-dimensional and contour plots of the

weights traversing the squared-error surface are shown in Figure 27 and Figure 28.

Weight Trajectories Vlihen One Weight Is Constrained

-g

i-1
.I! f

-2

-3

-5~--'--~-~~-~-~-~--'--~~
0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

E:poch Number

Figure 26 Weight Trajectories for 2-Weight On-line Steepest Descent Example

45

Weight Trajectory Vlshen One Weight Is Constrained

160

100

-6
60

-1 -2 .J .. -6
w3

w1

Figure 27 3-D Weight Trajectories for 2-Weight On-line Steepest Descent Example

W@ight Trajectory Vlshen One Weight Is Constrained

Figure 28 Weight Trajectories for 2-Weight On-line Steepest Descent Example

Figure 27 and Figure 28 show results similar to those obtained when this example

was worked using the batch steepest descent method. The only noticeable difference is the

slightly erratic weight trajectory path produced by the on-line algorithm.

46

Recursive Least-Squares

In this section a recursive method of computing the least squares solution to a linear

function parameter estimation problem will be presented. Although this method is not suit-

able for training nonlinear neural networks, the development of this algorithm is the basis

for many important recursive algorithms which are used in training nonlinear neural net-

works. For this reason the development of the recursive least-squares (RLS) algorithm will

be presented in detail in this section. There will be no RLS example as it is only applicable

to linear estimation.

~

The idea for the recursive algorithm is to use the parameter estimate 0 produced

by the previous (n-1) samples along with the data associated with the sample taken at time

A

(n) to produce a new estimate of 0 . Having done this, we will have an algorithm which is

suitable for on-line linear estimation. To begin the development of a recursive least squares

algorithm for the single output case, we start with the batch linear least squares solution de-

veloped in Chapter 2 (Eq. (54)) which is:

(69)

In Eq. (69) G is an N by M matrix of function inputs, where N is the number ofinput/output

A A

pairs used in estimating 0, and Mis the dimension of 0. G is defined in Eq. (51).

For many applications it is common to incorporate a weighting matrix into the fa-

miliar sum-of-squared-errors function. The result is

T A A

F(E>) = e (E>)We(E>) (70)

47

~ ~

where: e(8) = [t-a(8)] (71)

The introduction of the weighting matrix W into Eq. (70) results in the well-known

Weighted Least-Squares solution [3], which is

(72)

W is symmetric and positive definite and is usually a diagonal matrix. A common choice

for W is given in Eq. (73) for the single output case .

. .
2

W= ... y 00
0 y 0

... 0 0 1

(73)

If Jyl < 1 , the most recent measurements are weighted more heavily than past ones. This

choice of W effectively introduces a "forgetting" factor into the weighted least-squares so-

lution. The importance of including a forgetting factor in the least-squares solution will be-

come more apparent as the development of a recursive least-squares algorithm progresses.

Consider the situation where a current parameter estimate has been computed, and

a new measurement has just become available. Starting now with Eq. (72) we can develop

a recursive weighted least-squares algorithm. Eq. (72) can be rewritten as

E>(k) = [G(k/W(k)G(k)f1G(k/W(k)t(k) (74)

~

Now express 8(k) as

E>(k) = P(k)G(k/W(k)t(k) (75)

where

48

P(k) = [G(k/W(k)G(k)f1 (76)

Rearranging the terms in Eq. (75) results in

G(k/W(k)t(k) = P-1(k)®(k) (77)

Each new measurement adds an additional row gT(k), to G(k/. The number of

elements in gT(k) is equal to the number of function parameters. Appending gT(k) to

G(k)T adds an outer product matrix to [G(k)T W(k)G(k)]. This allows Eq. (76) to be re-

written as

(78)

where y is the scalar shown in Eq. (73).

Eq. (75) can be rewritten as

®(k+ 1) = P(k+ l)[g(k+ l)yt(k+ 1) + P-1(k)®(k)] (79)

where t(k + 1) is the function output target at index k+ 1. This equation can be rearranged

as

®(k+ 1) = ®(k)+K(k+ l)[t(k+ 1)-gT(k+ l)®(k)] (80)

where

K(k+ 1) = P(k+ l)g(k+ l)A (81)

and

(82)

49

Eq. (80), Eq. (81) and Eq. (82) represent a recursive formulation of the weighted

least squares solution. The implementation of these equations proceeds as follows:

P-1(k+ 1)----) P(k+ 1)----) K(k+ 1)----) S(k+ 1)

In order to implement this recursive formulation, it is necessary to invert

P-1 (k + 1) . Performing this inversion is computationally intensive, and is therefore unde-

sirable. Fortunately, we can use the well-known Matrix Inversion Lemma [3] to avoid hav

ing to perform this inversion. A statement of the matrix inversion lemma follows.

Matrix Inversion Lemma

If the matrices A, B, C, and D satisfy the equation

(83)

where all matrix inverses are assumed to exist, then

(84)

A detailed proof of the matrix inversion lemma may be found in [3].

To avoid inverting P-1 (k + 1), we can apply the matrix inversion lemma to Eq.

(82) to obtain

P(k+ 1) = P(k)-P(k)g(k+ l)[gT(k+ l)P(k)g(k+ 1)+(1/y)f1gT(k+ l)P(k)

(85)

This still requires the inversion of [gT(k + 1)P(k)g(k + 1) + (1 /y)] , but in the single

output case this is a simple scalar. Even in the case of multiple outputs the size of the matrix

which must be inverted is equal only to the number of function outputs. Generally, the

number of function outputs will be much smaller than the number of parameters. Remem-

50

ber that the implementation of the RLS algorithm without the use of the matrix inversion

lemma requires the inversion of a matrix which has a size proportional to the number of

parameters. The combination ofEq. (80), Eq. (81) and Eq. (85) comprise an efficient im-

plementation of the RLS algorithm which may be written as

E>(k+ 1) = E>(k)+K(k+ l)[t(k+ 1)-gT(k+ l)E>(k)] (86)

where

K(k+ 1) = P(k+ l)g(k+ l)y (87)

and

P(k+ 1) = P(k)-P(k)g(k+ l)[gT(k+ l)P(k)g(k+ 1) + (1/y)f1 gT(k+ l)P(k)

(88)

The recursive RLS algorithm can be used for parameter estimation in multiple out-

put functions. The development is similar to that for the single output case. The RLS equa

tions for the multiple output case are

E>(k+ 1) = E>(k) + K(k+ l)[tik+ 1)-gT(k+ l)E>(k)] (89)

where

K(k+ 1) = P(k+ l)g(k+ l)y(k+ 1) (90)

and

P(k+ 1) = P(k)-P(k)g(k+ l)[gT(k+ l)P(k)g(k+ l)+y(k+ lf1f 1gT(k+ l)P(k)

(91)

51

For the multiple output case gT(k + 1) is a rectangular matrix. The number of rows in

gT(k+ 1) is equal to the number of function outputs, and the number of columns is equal

to the number of function parameters. y(k + 1) is a diagonal matrix with the forgetting fac-

tor y on the diagonal. The size of y(k + 1) is equal to the number of function outputs.

t(k + 1) is the vector of function output targets at index k + 1.

The implementation ofEq. (86), Eq. (87) and Eq. (88) or Eq. (89), Eq. (90) and Eq.

(91) proceeds as follows:

A

P(k) ~ K(k+ 1) ~ E>(k+ 1) ~ P(k+ 1)

P(k) is usually initialized to a diagonal matrix oflarge numbers, and is often periodically

reset during operation to ensure numerical stability. The RLS algorithm is only suitable for

use with functions which have outputs which are linearly related to the parameters. In the

next section we will see how the development presented here for the RLS algorithm leads

directly to recursive form of the Gauss-Newton method which is applicable to nonlinear pa-

rameter estimation.

Recursive Gauss-Newton Method

In Chapter 2 the batch Gauss-Newton method was presented. In this section a re-

cursive form of the Gauss-Newton method (RGN) will be presented. It was shown that the

linearized least squares method is equivalent to the Gauss-Newton method and therefore

the separate development of a recursive linearized least-squares algorithm is not necessary.

As with the RLS algorithm, it will be shown than an efficient form of the RGN method

which utilizes the matrix inversion lemma can be developed.

52

Recalling from Chapter 2, the parameter update equation for the batch Gauss-New-

ton method is

T -1 T
®n+ 1 = ®n-[J (8)J(8)] J (8)e(8) (92)

where J is the Jacobian matrix and e(8) is the function output error. The index n in Eq.

(92) refers to the data epoch number. Now suppose we rewrite Eq. (92) in a form where it

is assumed that the Jacobian matrix and error vector are functions of the parameters, and

where all elements of the equation are indexed in terms of sample number instead of epoch

number. The result is

@(k+ 1) = 8(k)-[JT(k)J(k)f1 JT(k)e(k) (93)

The parameter update in Eq. (93) is

(94)

Ifwe add a weighting matrix as described previously in the section on the RLS algorithm

to Eq. (94) we have

~®(k) = -[JT(k)W(k)J(k)f 1 JT(k)W(k)e(k)

If the weighting matrix in Eq. (95) is of the form (for the single output case)

. '
2

W(k) = ... y O 0
0 y 0

... 0 0 1

past values will eventually be "forgotten", and recent values heavily weighted.

53

(95)

(96)

A close examination ofEq. (95) reveals that its form is exactly the same as Eq. (74)

which is the batch solution to the linear weighted least squares problem. This means that

the development of a recursive method of computing Eq. (94) can proceed in exactly the

same way as was shown in the last section for the RLS solution. The details of this devel-

opment will not be presented here but can easily be deduced by reviewing the previous sec-

tion. The recursive Gauss-Newton (RGN) method may be summarized as

0(k+ 1) = 0(k)-~0(k+ 1) (97)

~0(k+ 1) = ~0(k) + K(k+ l)[e(k+ l)-{(k+ 1)~0(k)]

where

K(k+ 1) = P(k+ l)j(k+ l)y(k+ 1) (98)

and

P(k+ 1) = P(k)-P(k)j(k+ l)[jT(k+ l)P(k)j(k+ l)+y(k+ lf1f 1{(k+ l)P(k)

(99)

InEq. (97), Eq. (98), and Eq. (99) jT(k+ 1) is the matrix containing the newest rows of the

Jacobian matrix, y(k + 1) is a diagonal matrix with the forgetting factory on the diagonal

and e(k) is a vector of function output errors. The number ofrows contained in { (k + 1)

is equal to the number of function outputs. The size of y(k + 1) is equal to the number of

function outputs. The implementation ofEq. (86), Eq. (87) and Eq. (88) proceeds as fol-

lows:

54

-
P(k) ~ K(k+ 1) ~ ~S(k+ 1) ~ S(k+ 1) ~ P(k+ 1)

As in the standard RLS algorithm, P(k) is usually initialized to a diagonal matrix

of large numbers, and is often periodically reset during operation to ensure numerical sta-

bility. The use of the RGN algorithm will now be illustrated by way of a simple neural net-

work training example.

Recursive Gauss-Newton Method Example

In this section the RGN method will be demonstrated by using the algorithm to train

the example network shown in Figure 23. Training data was generated by fixing the net-

work weights and applying random inputs. The network weights were then initialized to

small random values and the recorded training data presented during an adaptive training

sess10n.

Figure 29 shows a plot of the sum of the squared errors for 1000 data points. Notice

how much more quickly the error is reduced for the RGN method when compared to the

Steepest descent method (Figure 24). It is also notable how much lower the squared error

is after 1000 points than was achieved with the steepest decent method. Figure 30 shows

the trajectories of the weights during the training session. As expected, the weights con-

verge to final values much more quickly than was demonstrated with the steepest descent

method (Figure 25). The "noisy" trajectories result from the stochastic approximation of

the gradient used at each iteration.

55.

Squared-&ror Perfonnanoe
10• ~~-~-~-~-~~-~-~-~~

10~

10·"

10···

10"'~~-~-~-~~~~-~-~-~~
0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Sample Number

Figure 29 Squared-Error Performance for Recursive Gauss-Newton Example

-2

.3

Weight Trajectories For Random lnitianzation

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Sample Number

Figure 30 Weight Trajectories for Recursive Gauss-Newton Example

To improve the graphical illustration of the RGN method, all but two of the network

weights were fixed, and these two weights were adjusted using the method. Fixed network

weights of 2. 5, 3. 0, and -1. 5 were used to generate training data. As in previous examples,

the network weights were then initialized to -4.5, 3.0 and -4.5, and weights w1 and w3 were

56

adjusted using the RGN method, while w2 was left at its original value. The resulting

weight trajectories can be seen in Figure 31. The results show fast, stable convergence for

this problem. Three-dimensional and contour plots of the weights traversing the squared-

error surface are shown in Figure 32 and Figure 33. Notice in Figure 33 that the trajectory

goes directly to the minimum point without following the gradient.

Weight Trajectories \.Ohlen One Weight Is Constrained

················-e,;···=· -· --------------,

.4

.5 ~~-~-~~-~-~-'--~--'------'
D 1 DD 200 300 400 500 600 700 800 900 1000

Epoch Number

Figure 31 Weight Trajectories for 2-Weight Recursive Gauss-Newton Example

57

Weight Trajectory \l'IJhen One Weight Is Constrained

.;·······.·····

... !

. 1· .. " .. : .. ". ······\

150

... ·f ~- -~·)
. · i : : :
. ! : : :

L. ~ i :
100

.5

50

.4 .5
w3

w1

Figure 32 3-D Weight Trajectories for 3-Weight Recursive Gauss-Newton Example

Weight Trajectory \l'IJhen One Weight Is Constrained

Figure 33 Weight Trajectories Contour Plot for 2-Weight RGN Example

Extended Kalman Filter

A very important algorithm which is widely used in control theory and signal pro-

cessing is the Kalman Filter [6]. The standard Kalman filter is described mathematically

58

in terms of state-space concepts applied to linear, discrete-time dynamical systems. Sayed

and Kailath [7] have shown that the Kalman filter provides a general framework for deriv

ing all of the known algorithms that comprise the least-squares family of adaptive filters.

The Extended Kalman Filter (EKF) algorithm was first applied to parameter esti

mation in linear, state-space systems containing missing parameters in the state transition

matrix and measurement matrix [8]. This work naturally led to the application of the EKF

for state and parameter estimation in nonlinear models including nonlinear neural net

works. Singha! and Wu [9] showed that the EKF algorithm could be used to train multi

layer-perceptron networks by treating the weights of the network as states in an unforced

nonlinear dynamical system. This approach leads to a training algorithm which is identical

to the recursive linearized least-squares algorithm which can be developed by applying the

matrix inversion lemma to the batch linearized least-squares update equation (Eq. (64),

Chapter 2). This result is stated by Pukorius and Feldcamp in [12]. Later researchers Mat

thews [10] and Williams [11] used the EKF algorithm to estimate both the states (node out

puts) and the weights in a neural network. Williams [11] work was directed at training

recurrent networks. This work was closely followed by Puskorius and Felkamp [12], [13],

[14], [15] who have performed extensive research on using the EKF to train recurrent net

works in a variety of adaptive control applications.

An important feature of the Kalman filter is that its solution is computed recursively

using the previous solution along with the most recent input data. This means that it is nec

essary only to store the last solution in a computer implementation of the algorithm. As

with the RLS algorithm, the Kalman filter solution can be arrived at with less computation

59

than computing a solution directly from past observed data. In this section a brief presen

tation of the Kalman filter for linear systems will be given and will be followed by a dis

cussion of the Extended Kalman Filtering (EKF) algorithm for use with nonlinear systems.

Finally, the application of the EKF algorithm to neural network training will be explained.

To begin our discussion of the Kalman filter, consider a linear, discrete-time dy

namical system described by the following equations:

1. Process Equation

x(k + 1) = <l>(k)x(k) + v 1 (k) (100)

InEq. (100) x(k) is a vector of system states and <l>(k) is aM-by-M state transition matrix

which relates the states of the system at time k to the states of the system at time k+ 1. v 1 (k)

is a M-by-1 vector which represents process noise. The vector v 1 (k) is generally consid

ered to be a zero-mean, white noise process which has a diagonal correlation matrix Q 1 (k) .

2. Measurement Equation

y(n) = C(k)x(k) + vz(k) (101)

In Eq. (101) C(k) is a N-by-M measurement matrix which relates the states, x(k) to the

outputs y(k). v2(k) is a N-by-1 vector which represents measurement noise. The vector

v 2(k) is generally considered to be a zero-mean, white noise process which has a diagonal

correlation matrix Qz(k).

The purpose of the Kalman filtering algorithm is to use all the observed data y(1),

y(2), y(3), ... , y(k) to compute minimum-mean-square estimates of the states x(m).

60

For the distinct cases of m >k, m = k and m < k the problem can be classified as prediction,

filtering or smoothing, respectively. In the work presented here, we will only be interested

in the prediction problem.

The Kalman filter is well-known and its derivation has been widely published. This

development will not repeated here, but is presented in detail by Haykin in [4]. The algo

rithm can be summarized as

where:

K(k) = <l>(k)P(k)C\n)[C(k)P(k)CT(k) + Qz(k)f1 (102)

x(k+ l lyk) = <l>(k)x(klYk-1) + K(k)[y(k)-C(k)x(klYk-1)] (103)

P(k+ 1) = <l>(k)[P(k)-<l>(k)K(k)C(k)P(k)]<l>T(k) + Q 1 (k) (104)

x(k)

y(k)

<l>(k)

C(k)

Q1(k)

Qz(k)

x(klYk-1)

K(k)

State vector at time k

Observation vector at time k

State transition matrix from time k to time k + 1

Measurement matrix at time k

Correlation matrix of process noise vector v 1 (k)

Correlation matrix of measurement noise vector v 2 (k)

Estimate of the state vector at time k given all past observations

Kalman gain at time k

P(k+ 1) Correlation matrix of the error in x(k + 1)

The implementation of the algorithm proceeds as:

61

P(k) ~ K(k) ~ x(k+ l lyk) ~ P(k+ 1)

The use of standard Kalman filtering algorithm for linear systems can be "extend-

ed" for use in state and parameter estimation problems involving functions in which the

states or parameters being estimated are related nonlinearly. This modified Kalman filter

ing algorithm is known as the Extended Kalman Filter (EKF) [3]. It is suitable for nonlin

ear systems of the form

x(k + 1) = <l>(k, x(k)) + v 1 (k) (105)

and

y(k) = C(k, x(k)) + vi(k) (106)

In Eq. (105), x(k) is a vector of system states and <l>(k, x(k)) is a nonlinear transition

function which relates the states of the system at time k to the states of the system at time

k+ 1. As in the linear case, v1 (k) is a M-by-1 process noise vector of zero-mean, white

noise which has a diagonal correlation matrix Q 1 (k). In Eq. (106), C(k, x(k)) is a non

linear measurement function which relates the states, x(k) to the outputs y(k). Again,

vi(k) is a N-by-1 vector of measurement noise which is generally considered to be a zero

mean, white noise and has a diagonal correlation matrix Q2(k).

The key idea behind the EKF algorithm is to linearize the state-space system de

scribed by Eq. (105) and Eq. (106) at each time instant around the current state estimate

x(k). Once the system is linearized, the standard Kalman filtering equations can be ap

plied.

62

The first step in the linearization process is to construct the linearized matrices giv-

enby

<l>(k) = o<l>(k. x(k))I
ox(k) A

X(k) = X(klyk)
(107)

and

C(k) = oC(k, x(k)) I
ox(k) A

X(k) = X{k!Yk-1)
(108)

The next step is to use the result ofEq. (107) and Eq. (108) in a first-order Taylor approx-

imationof <l>(k, x(k)), and C(k, x(k)) around x(klyk), and x(klyk- 1). The resulting

approximations for <l>(k, x(k)), and C(k, x(k)) are

<l>(k, x(k)) = <l>(k, x(klyk)) + <l>(k)[x(k)- x(klyk)] (109)

and

C(k, x(k)) = C(k, x(klYk- i)) + C(k)[x(k)-x(klYk- i)] (110)

Substituting Eq. (109), and Eq. (110) into Eq. (105), and Eq. (106) respectively, results in

a linearized system approximation which is

x(k+ 1) = <l>(k)x(k) + Vl (k) + [<l>(k, x(kJyk))- <l>(k)x:(kJyk)] (111)

and

y(k) = C(k)x(k) + vi(k) + [C(k, x(klYk- I))- C(k)x(klYk- I)] (112)

The system described by Eq. (111) and Eq. (112) is a linear system to which the

standard Kalman filtering equations (Eq. (102) - Eq. (104)) may applied. In doing this and

63

applying some matrix algebra we arrive at the extended Kalman filtering algorithm which

may be summarized as

where:

K(k) = P(k)CT(k)[C(k)P(k)CT(k) + Q2(k)f1

x(kJyk) = x(klYk- 1) + K(k)[y(k) - C(k, x(klYk-1))]

x(k+ 1 Jyk) = <I>(k, x(kJyk))

P(k+ 1) = <l>(k)[P(k)-K(k)C(k)P(k)]<l>T(k) + Q 1(k)

x(k) State vector at time k

y(k) Observation vector at time k

<l>(k, x(k)) Nonlinear state transition function

C(k, x(k)) Nonlinear measurement function

(113)

(114)

(115)

(116)

<l>(k) Linearized state transition matrix from time k to time k + 1

C(k) Linearized measurement matrix at time k

Q 1 (k) Correlation matrix of process noise vector v 1 (k)

Qi(k) Correlation matrix of measurement noise vector vi{k)

x(klYk- I) Estimate of the state vector at time k given allpast observations

x(kJyk) Estimate of the state vector at time k given all observations

K(k) Kalman gain at time k

P(k + 1) Correlation matrix of the error in x(k + 1)

64

The implementation of the algorithm proceeds as:

P(k) ~ K(k) ~ x(k+ l lyk) ~ x(klyk) ~ P(k+ 1)

The development of an EKF-based neural network training algorithm can now pro-

ceed by applying Eq. (113) - Eq. (116) to the nonlinear function F(®(k), p(k)) which rep-

resents a nonlinear neural network. We must first relate the components of the network to

the specific parts of the EKF algorithm. The weights ®(k), of the network are considered

"states" x(k), in the EKF algorithm, and the network function F(®(k), p(k)), which re-

lates the states to the output is considered the nonlinear measurement function C (k, x (k)) .

Because we know that the weights in a trained system model are constants, the state tran-

sition function <l>(k, x(k)) is a simple identity matrix.

Given these observations we can write the nonlinear state model for the neural net-

work in terms of the EKF algorithm as

®(k+ 1) = 8(k)+v1(k) (117)

and

t(k) = F(®(k), p(k)) + vi(k) (118)

In Eq. (118), F(®(k), p(k)) is a nonlinear function of the network parameters ®(k), and

inputs p(k). This function is the neural network model of the nonlinear system. The ap-

plication of the EKF algorithm to the system described by Eq. (117) and Eq. (118) yields

K(k) = P(k) aF T[aF P(k) aF T + Q (k)]-1
aek aek aek 2

(119)

®(k+ 1) = ®(k)+K(k)[t(k)-F(®(k),p(k))] (120)

65

where:

0(k)

t(k)

P(k+ 1) = P(k)-K(k)BF P(k)+Q 1(k)
B0k

Neural network weights at time k

Vector of desired outputs at time k

F(0(k), p(k)) Nonlinear network input/output function at time k

BF
B0k

K(k)

P(k+l)

Derivative of network outputs w.r.t. the weights

Correlation matrix of training noise in weight vector

Correlation matrix of noise in target vector

Kalman gain at time k

Correlation matrix of the error in 0(k + 1)

(121)

Notice that the form ofEq. (120) is similar to all the neural network update equa-

tions presented thus far, with the new weights being the sum of the old weights and the

product of an error and another term. The multiplying term K(k) involves a complete,

recursively computed derivative matrix BF , and an error correlation matrix
B0(1 ... k)

P(k + 1). The rows of the derivative matrix BF which are computed as BF at each
B0(1 ... k) B0k

iteration of the algorithm, may be computed using standard backpropagation for feedfor-

w~rd networks. (Dynamic backpropagation [16] must be used for recurrent networks.) The

order of the inversion in Eq. (119) is equal to the number of network outputs. This algo-

rithm is very similar to the recursive Gauss-Newton algorithm stated in Eq. (113) - Eq.

66

(116). In fact, it can be shown that the EKF and RGN algorithms are equivalent if the cor

relation matrices Q 1 (k), and Qz(k) are omitted from the EKF neural network training

equations, and a weighted training cost function defined by Eq. (70) and Eq. (73) is used in

the EKF development.

The numerical stability, convergence rate, and overall EKF algorithm performance

are effected by the choices of Q1 (k), and Qz(k). The Q1 (k) and Qz(k) matrices are

often "tweaked" for optimum performance on a problem by problem basis.

Chapter Summary

In this chapter several "on-line" methods of numerical optimization which may b.e

used for training neural networks have been presented: the on-line steepest descent method,

the recursive least-squares (RLS) algorithm, the recursive Gauss-Newton (RGN) method

and the extended Kalman filter. The development of all these algorithms, with the excep

tion of the extended Kalman filter, were derived by starting with batch processing methods

and making the methods recursive using matrix algebra. Most notably, the matrix inversion

lemma was employed to create recursive solutions to the least-squares algorithms. The

EKF-based algorithm was developed for training multi-layer-perceptron networks by treat

ing the weights of the network as states in an unforced nonlinear dynamical system, and

applying the standard EKF algorithm. Examples showing the application of the steepest

descent and RGN algorithms to training a simple nonlinear MLP network were presented.

The example data showed "noisy" weight trajectories due to the incremental nature of these

on-line methods.

67

Chapter4

UNDERDETERMINED LINEARIZED LEAST-SQUARES TRAINING

Introduction

In this chapter an efficient "on-line" method of training complex neural networks

which is based on the underdetermined linearized least squares solution will be presented.

Henceforth this method will be referred to as the ULLS method. The development of a re

finement to the ULLS algorithm which is a fully recursive algorithm requiring no matrix

inversion is also presented. This algorithm will be referred to as the RULLS algorithm. A

mathematical development and discussion of the algorithms will be presented in this chap

ter.

First-order, stochastic gradient descent methods can be used in training neural net

works adaptively, but they often exhibit poor performance when used with complex (i.e.

nonlinear, recurrent) network structures. Standard higher-order optimization methods,

such as the Gauss-Newton method or the extended Kalman filter, are used to solve the lin

earized least-squares problem using the pseudo-inverse for the overdetermined case. These

methods generally perform much better than gradient descent methods, but involve numer

ical operations on square matrices which are proportional in size to the number of parame

ters in the network. In a typical filtering or control problem the tapped-delay line [2]

structure is used as the network input. If a fully connected neural network is used, the

68

tapped-delay can easily contain enough taps to necessitate having a large number of

weights. If a system incorporates multiple tapped-delay lines, as we often see in neural net-

work control applications [17], the number of weights required can be quite large and the

associated computational burden can be very demanding if "on-line" training is required.

The computational burden and memory requirement associated with training such a net-

work can be prohibitive when implementing one of the standard higher-order optimization

methods in a real-time system.

In this chapter a review of the linear least squares method for the overdetermined

case and a more detailed development of linear least squares for the underdetermined case

will be given. This development is then extended to the overdetermined and underdeter-

mined cases for linearized least squares parameter estimation for nonlinear functions. The

development of an incremental neural network training method which requires a matrix in-

version operation is presented. Simulations in which the ULLS and RULLS methods are

compared to both the on-line steepest descent and recursive linearized least-squares RLLS

algorithms will be provided in Chapter 6.

Overdetermined Linear Least Squares Solution (Review)

In Chapter 2 a development of the linear least squares method was given. Recall

that in this method the function to be minimized is the familiar sum-of-squared-errors func-

tion:

N

F(0)
2 A I e1 <®)

T A A

e (0)e(0) (122)

j = 1

A A

where: e(0) [t- a(0)] (123)

69

A

In Eq. (122) the vector e(S) represents the difference between a vector of desired outputs

A

t, and vector of outputs a(S), produced by a linear function of the form,

A A A

a(n) = 81g1(n)+82gz(n)+ ... +SMgM(n) (124)

- - A

where 8 1 ... 8 M are parameter estimates which form the vector S and

g 1 (n), g 2 (n), ... , g M(n) are scalar inputs. These scalar inputs can be nonlinear functions

of other systems inputs. If we substitute Eq. (124) for all index values (1 ... n ... N) into Eq.

(123) and use Eq. (122), the following equation results:

" " T "
F(S) = [t-GS] [t- GS] (125)

where:

gl(l) gz(l) ... gM(l)

G = gl (2) gz(2) ... gM(2) (126)

Eq. (125) can be rewritten as:

A T T T A

VF(S) = -2[t G] + 2G GS (127)

Taking the gradient of Eq. (127) with respect to S yields:

A T T T A

VF(S) = -2[t G] + 2G GS (128)

70

To find the parameters which minimize Eq. (128), we set the gradient equal to zero and

A

solve for 0 . The resulting least squares estimate is

(129)

As shown in Chapter 3, the Matrix Inversion Lemma [3] can be used to develop an

adaptive, recursive method of computing the solution to Eq. (129) which may be summa-

rized as:

0(k+ 1) = 0(k)+K(k+ l)[ttCk+ 1)-gT(k+ 1)0(k)] (130)

where

K(k+ 1) = P(k+ l)g(k+ l)y(k+ 1) (131)

and

P(k + 1) = P(k) - P(k)g(k + 1)[gT(k + 1)P(k)g(k + 1) + y(k + 1)-1 f 1 gT(k + 1)P(k)

(132)

Remember from Chapter 3 that y is a diagonal matrix with the forgetting factor y on the

diagonal which is necessary for adaptive training. The implementation ofEq. (130), Eq.

(131) and Eq. (132) proceeds as follows:

A

P(k) ~ K(k+ 1) ~ 0(k+ 1) ~ P(k+ 1) (133)

The solution ofEq. (129) or Eq. (130) is only valid when the number of measurements

available exceeds the number of parameters to be estimated. As stated in Chapter 2, this

'situation is known as the overdetermined case [4].

71

Underdetermined Linear Least Squares Solution

Now let us suppose that there are fewer measurements available than there are pa-

rameters to be estimated. This situation can be described as the underdetermined case [4].

When we have this situation, Eq. (129) cannot be used. The under-constrained nature of

this problem dictates that a single unique solution does not exist. To remedy this we must

constrain the problem sufficiently as to force a unique solution. Looking at Eq. (125) we

can see that if an ideal set of parameters exists then,

A

GE>= t (134)

A

and 0 represents a perfect solution to Eq. (134). A straight-forward way of finding a suit-

able solution to the underdetermined problem is to minimize the sum of the squared param-

eters, while enforcing the following constraint:

A

GE>= t (135)

A A

In other words, we want to perform the minimization with respect toe, and A., where 0 is

the vector of parameters and A. is a vector of Lagrange multipliers [19].

(136)

Eq. (136) can be rewritten as:

(137)

72

"
Taking the gradient ofEq. (137) with respect to ® and A and setting the result equal to

zero yields:

and,

Solving Eq. (138) for A we get,

" T
®+G1w=O

"
G®-t = 0

T -1 "
A= -[GG] G®

but from Eq. (139) we know that:

"
G® = t

Substituting Eq. (141) into Eq. (140) yields:

T -1
1w = -[GG] t

(138)

(139)

(140)

(141)

(142)

"
Eq. (142) can now be plugged into Eq. (138) and the result can be solved for® to show

that:

(143)

Eq. (143) is the solution to the underdetermined linear least squares problem. No-

tice that the matrix product which appears inside the inversion ofEq. (143) is an M x M

matrix where M is the number of sample contributions to the G matrix. The outer product

form ofEq. (143) does not lend itself to the insertion of a traditional exponential weighting

73

matrix to effect "forgetting" in adaptive applications. This structure also precludes the use

of the standard matrix inversion lemma for efficient recursive computation of [GGr]-1 .

These mathematical difficulties must be overcome in order to develop a useful and efficient

adaptive training algorithm. However, if a small window of sample contributions is used

in forming the G matrix, the size of the resulting matrix to be inverted in Eq. (143) is small.

This opens the possibility of computing parameter updates in "real-time" with fewer com-

putations than with the standard RLS algorithm for the overdetermined case. In the follow-

ing sections it will be shown that this type of algorithm can be extended for use with

nonlinear functions by linearizing these systems prior to applying the algorithm. The solu-

tion to the underdetermined case when applied to linearized nonlinear functions is the basis

for the neural network training method presented in this chapter.

Nonlinear Least-Squares for the Overdetermined Case (Review)

In Chapter 2 it was shown that the least-squares method may be used in minimizing

nonlinear functions by first linearizing the function about a nominal set of parameter val-

ues, then applying the standard least-squares equations to calculate an incremental param-

eter adjustment. This process is repeated until a specified convergence criteria has been

satisfied. Repeated here for convenience, the equations which describe the algorithm are:

(144)

A A A

en+ I = Sn + B@n (145)

or,

(146)

74

where,

A

0 is a vector of unknown function parameters

A

a(0) is a vector of outputs of a nonlinear function

A A

e(0) is a vector of errors between desired outputs t, and function outputs a(0)

A

J(0n) is the derivative of the function outputs w.r.t. the function parameters

B0n is the vector of incremental adjustments of the estimated parameters

In summary, the overdetermined least-squares solution to the linearized system is

computed about the current set of parameter estimates to find the appropriate vector of pa-

rameter adjustments which are then used to compute an updated vector of parameter esti-

mates.

Nonlinear Least-Squares for the Underdetermined Case

A linearized least squares solution can also be obtained for uriderdetermined non-

linear optimization problems. As was demonstrated in Chapter 2 for the overdetermined

case, linear perturbation equations can be obtained by approximating the nonlinear function

using a first-order Taylor series expansion. The same mathematical method previously de-

scribed in this chapter for the underdetermined linear least squares problem can be applied

to the linear perturbation equations to develop a linearized least squares solution for the un-

derdetermined case. We start with Eq. (61) (Chapter 2) rewritten here for convenience,

which results from substituting the first-order Taylor series approximation of the nonlinear

A

function a(0n) into the squared errors function.

75

(147)

Looking at Eq. (147) we can see that if an ideal a set of parameter adjustments ex-

ists then,

A A A

J(0n)60n = -e(0n) (148)

A

and 60n represents an exact solution to Eq. (148). Following a method similar to that used

in finding a solution to the underdetermined linear least squares case we minimize the sum

of the squared parameter adjustments, while enforcing the following constraint:

A A A

J(0n)60n = -e(0n) (149)

A A

In other words, we want to perform the minimization with respect to 0 and A. , where 0 is

the vector of parameters and A. is a vector of Lagrange multipliers [19].

This gives us:

(150)

Eq. (150) can be rewritten as:

(151)

A

Taking the gradient ofEq. (151) with respect to 60n and A. respectively and setting the

result equal to zero yields:

(152)

76

and,

A A A

J(0n)B0n + e(0n) = 0 (153)

Solving Eq. (152) for 'A we get,

(154)

but from Eq. (153) we know that:

A A A

J(0n)B0n = -e(0n) (155)

Substituting Eq. (155) into Eq. (154) yields:

(156)

A

This can now be plugged into Eq. (152) and the result can be solved for 0 to show that:

(157)

This result provides the incremental parameter update which can be used with the standard

update equations to complete the underdetermined linearized least squares optimization al-

gorithm which is:

A A A

0n + 1 = 0n + B0n (158)

(159)

As with the underdetermined linear least squares method, the size of the matrix

which must be inverted in Eq. (159) is dependent not on the number of parameters, but on

77

the number of measurements being considered. This is an interesting result. It means that

the method can potentially be used to train neural networks having large numbers of

weights, while only performing computations involving relatively small matrices, vectors

and memory blocks. This method will be applied in the next section to the training of non-

linear multi-layer neural networks.

Neural Network Training Using the ULLS Method with Matrix Inversion

In this section a method of using the underdetermined linearized least squares

(ULLS) approach to incrementally train nonlinear neural networks will be presented. The

~

method relies on applying Eq. (159), where the parameters 0 are the network weights and

~

the gradient matrix J(0n) is a windowed Jacobian matrix JuLLs, for the network. The

equation for a single update of the network weights can be written as:

T T -1
®n+l = ®n-a[JuLLSn [JuLLsnJULLSn] en] (160)

A slight modification to Eq. (159) appears in Eq. (160) with the addition of a, a small, pos-

itive scalar (0 < a ::;; 1) which multiplies the weight update. This additional term can be

adjusted to help stabilize the algorithm in much the same way it is used in the so-called

Damped Recursive Gauss-Newton algorithm [20].

The partial Jacobian matrix used in Eq. (160) can be assembled in many ways. A

simple method is to simply process "blocks" of the full Jacobian matrix which contain few-

er rows than columns so as to preserve the underdetermined state as each consecutive block

of data is processed. Each time a block is processed the weights are updated. Another

method of constructing the partial Jacobian matrix is to use a "moving window" of the full

78

Jacobian. The length of the window is set such that the number ofrows in the Jacobian

matrix window is less than the number of columns. As a new row of the Jacobian matrix

becomes available, it is added to the window, and the oldest row in the window is removed.

In this method the data is updated at each index in time to reflect a window of past mea-

surements. This update can be described by Eq. (161) below, where jn is the most recently

computed row in the Jacobian matrix.

~ Jn-M ~

JULLSn =
~ Jn-1 ~

~ Jn ~

(161)

Both of the methods described for assembling the partial Jacobian matrix cause the

algorithm to "forget" the effects of older measurements, making the method suitable for

adaptive network training. As stated previously, the required matrix inversion in Eq. (160)

is of order M, which is the number of measurements considered in the partial Jacobian ma

trix. This is of particular importance in training neural networks.

As stated previously, a fully-connected neural network can easily contain a large

number of weights. This is especially true in applications in which tapped-delay inputs are

used. A large number of weights can be required to accommodate the inputs from even a

modest length tapped-delay line. Unfortunately, tapped-delay lines are commonly used in

real-time operations where conventional recursive linearized least squares training of net

works containing a large number of weights is impractical because of computational re

quirements. These methods do not require direct inversion oflarge matrices, but do require

79

multiplication and addition operations on matrices which are of order N, the number of net-

work parameters. The ULLS method of training networks requires a direct matrix inver-

sion of order M, the number of measurements to be considered in the Jacobian matrix

window. If an efficient method such as Gaussian Elimination [19] is used to compute the

required inverse in Eq. (160) the number of floating point operations required for each sam-

ple is

flopsULLS = 2 3 2 1 2 -m +3m n--m +n+m
sample 3 2

(162)

In Eq. (162), mis the number of terms in the Jacobian matrix window, and n is the number

of parameters. This result indicates that it may be most appropriate to use relatively few

terms in the Jacobian matrix window when using the ULLS algorithm.

If we consider the case where only one term is considered in the Jacobian window,

we can see that this is essentially gradient descent with a variable learning rate. Consider

Eq. (160). If only one row is present in the Jacobian matrix window, the matrix product

J uLLsnJ uusn T becomes a vector product, which is simply a scalar. This scalar is multiplied

by J uLLsn T, which for the one term case is simply the gradient vector for one error with re-

spect to the weights. Therefore, the vector product J uLLsnJ uLLsn T simply acts as a varying

scalar which multiplies the gradient in exactly the same way the learning rate a does.

Recursive Underdetermined Linearized Least Squares (ROLLS) Training Algorithm

In this section, a modification to the ULLS algorithm which utilizes an exact, but

computationally efficient recursive method of computing the required inverse of

80

T
J uLLsnJ uLLsn will be presented. Henceforth, the method will be referred to as the RULLS

algorithm ..

Ifwe recall Eq. (160), rewritten here for convenience, we remember that a matrix

inversion is required when computing a weight update:

(163)

The development of a recursive algorithm for the computation of the inverse of

JuLLsnJuLLsn Twill allow for a fully recursive implementation ofEq. (163). For this <level-

opment a "moving window" of the Jacobian matrix will be assumed to incorporate a "for-

getting" mechanism as described previously. As a new row of the Jacobian matrix becomes

available, it is added to the window and the oldest row in the window is removed. In terms

of the incremental J uLLsnJ uLLsn T matrix, the requirement is to compute the inverse of a

square matrix moving down the diagonal of the JnJn T matrix which accounts for all time

steps up to n. The smaller J uLLsnJ uLLsn T matrix is of order M where M is the number of

samples to be considered in the underdetermined weight update at time n. Eq. (164) shows

how the incremental J uLLsnJ uLLsn T matrix is positioned within the J nJ n T matrix.

81

T h(n-M,1) ··· 1
1
7z(n-M,n-M) ··· h(n-M,~)~

1
-- T

H J J J ULLSn J ULLSn = HuLLSn
n= nn= :•

" I I

h(n,1) · · · : h(n,n -M) h(n,n) :
L- -~

(164)

At time n + 1, the J uLLsJ uLLs T matrix, or equivalently the HuLLs matrix will be

formed by moving the inner brackets shown in Eq. (164) down one position and to the right

one position within the Hn matrix. In order to evaluate Eq. (160), H;lLs must be evaluated

at each time step. When using the standard ULLS algorithm a standard full matrix inver-

sion is performed to evaluate H;lLs. As stated previously, the goal of the RULLS algorithm

is to evaluate H;lLS at each time step without performing a standard matrix inversion. In

order to accomplish this task, the Block Matrix Inversion Lemma [25] is employed. A state-

ment of the block matrix inversion lemma follows.

Block Matrix Inversion Lemma

If the matrices A, B, C, and D are respectively, an n x n, an n x m, an m x n, and an
m x m matrix, then

provided IAI * 0 and lo - CA-1BI * 0, and

82

-A-1B(D-CA-1B)-11
1 -1

(D-CA- B)

(165)

-(A-BD-1C)-1BD-1]

D-1C(A-BD-1C)-1BD-1 + D-1

(166)

provided IDI ;f:. Q and IA-BD-1cl ;f:. Q.

A detailed proof of the block matrix inversion lemma may be found in [25]. Fun [26] shows

a general method for order update and order downdate which is based on the block matrix

inversion lemma. Fun's method is the basis of derivation of the RULLS method which fol-

lows.

The RULLS algorithm requires that the HuLLs matrix and its inverse be "updated"
n

by one order to include the newest row of the Jacobian matrix, then "down-dated" by one

order to remove the oldest row in the Jacobian matrix window. The updated ULLS Jaco-

bian matrix Jup , which contains one more row than JuLLs , can be expressed as:
n+l n

J = [JULLSJ
UPn+I -; - -

Jn + I

(167)

Now define the matrix V n + 1 which is one order larger than the HuLLsn matrix as:

V = J JT
n+I UPn+I UPn+I

H J .T
ULLSn ULLSn J n + 1

• JT • .T
Jn+l ULLSn Jn+IJn+l

(168)

83

Eq. (165) may be used to compute v:~ 1 given H;JLSn from the previous time step

-1 -1 T T
by letting A equal HuLLs", B equal J uLLs)n + 1, C equal jn + 1J uLLs" and D equal

jn + 1j ~ + 1. The result is:

[

-1 -1 T T -l
HuLLsn + HuLLsn J ULLSn j n + 1 Yj n + lJ ULLSn HuLLsn

• T -l
-YJn + lJ ULLS HuLLs n n

(169)

where

y (. . T • JT H-1 J . T)-1
= Jn+ 1Jn+ 1- Jn+ 1 ULLSn ULLSn ULLsnJn+ 1 (170)

is a scalar quantity.

Eq. (169) results in the inverse of a portion of the JJT matrix at time n+ 1 which is

one order larger than desired and still reflects the unwanted presence of the oldest row of

the windowed Jacobian matrix. Now the contribution of the oldest row of the Jup ma-
n+1

trix must be removed in the computation of the desired H;JLS matrix which is required
n+1

for updating the weights at time n + 1.

The derivation of a "down-date" algorithm begins again with the block matrix in-

version lemma, but in the form shown in Eq. (166), repeated here for convenience.

Eq. (171) can be expressed as

-(A-BD-1Cf1BD-1 l
D-1C(A-BD-1C)-1BD-1 + D-1J

84

(171)

[~:r
where,

Eq. (172) can be expressed as

-1 -1
'I'= (A-BD C)

Eq. (174) can be rearranged to obtain

If 'I' is a scalar, Eq. (175) can be expressed as

(172)

(173)

(174)

(175)

(176)

From Eq. (172) we see that [_ff ;C j is simply the frrst column of [~ : r , [\if -VJB o-':

is the first row of[~ :r and \if is the upper left element of[~ :r. This makes it pos-

sible to compute»-' using only elements of rc :] '

85

Eq. (176) can now be used to compute H;ILS by letting [A Br1
equal v-n~ 1

n+I C nj

from Eq. (169). Plugging the appropriate values into Eq. (176) yields

-1
= Vn+l

-1
Vn+l(M+l,1}

-1 -1 / V {1 1) [J -1
Vn+1(l,l} ... Vn+1{l,MH) n+l •

(177)

A combination ofEq. (160), Eq. (169), Eq. (170) and Eq. (177) comprise the fully

recursive RULLS algorithm which is

y_ [•• T • JT H-1 J .T 1-1
n = JnJn-Jn ULLSn-1 ULLSn-1 ULLS.Jn+l

-1
= V -n

-1
vn (1, 1)

-1
vn (M+1,1)

86

(178)

(180)

(181)

The computational requirement associated with each part of the RULLS algorithm

is shown in Table 1. In Table 1, mis the number of terms in the Jacobian matrix window,

and n is the number of parameters. The level of computation required for the RULLS al-

gorithm is approximately an order less than is required for the ULLS algorithm. Figure 34

shows the impact the number of parameters and the length of the Jacobian matrix window

has on the number of floating point operations required for both the ULLS and RULLS

methods.

ROLLS Algorithm Computational Burden

Element
m = number of rows in JuLLS

n = number of parameters

rn 2
2m +2nm +2n

-1 vn 2
3m +2nm+2n+2m

-1
HuLLs.

2 m -2m

Wn+l
2 2m +2nm-m-n

Total 2
Sm + 6nm-m +n

Table 1 Computational requirements for the RULLS algorithm

87

<J)

§

~
2l.
0 5
1:: 10
·g_
Cl
C

~ -=

1---- ULLS I
~ RULLS

5 10 15 20 25 30 35 40 45 50
Number of Jacobian Tenns

Figure 34 Computation Requirement Comparison for ULLS and RULLS Algorithms

88

Numerical Stability of the ROLLS Algorithm

The RULLS algorithm was implemented using an INTEL Pentium 3 processor and

MATLAB programming software. Simulations were run to test the RULLS algorithm

against the standard ULLS algorithm on identical problems. These simulations revealed

that the RULLS algorithm suffers from numerical stability problems due to the finite pre

cision of the computer. The inverse computation required by the ULLS algorithm was

compared to the recursive inverse computation performed using the RULLS algorithm.

These results showed very similar inverse matrix values in the early iterations of both al

gorithms. As more and more iterations were performed, the inverse matrix values comput

ed using the RULLS algorithm slowly diverged from the true inverse matrix values

appearing in the ULLS computation. The values computed by the RULLS algorithm did

not rapidly "blow-up", but became incorrect enough to produce very poor training results.

Future research work could be performed to focus on a numerically stable RULLS algo

rithm.

Chapter Summary

A method for training neural networks on-line, using the solution to the underdeter

mined linearized least-squares problem, has been presented. A mathematical development

of the ULLS algorithm was given. The ULLS algorithm was then further refined to pro

duce the RULLS algorithm which is mathematically equivalent to the ULLS method, but

is recursive in nature, requiring no direct matrix inversion. The method shows good prom

ise for application in real-time systems because it allows weight updates to be made using

fewer measurements than weights in the network. It was shown that the method reduces to

89

gradient descent with variable learning rate if only one Jacobian term is considered. An

other variation on the algorithm which might be considered is to adaptively determine the

optimal trade-off between the number of Jacobian terms considered and the update rate (de

termined by overlap in the partial Jacobian windows) to obtain the highest performance for

a given computational capability. A comparison between the ULLS and RULLS methods

has shown that many fewer floating point operations are required for the RULLS method

than for the ULLS method. As we will see in Chapter 6, the number of measurements con

sidered for each weight update does have an impact on the algorithm performance as well

as the computational burden. The performance of the ULLS and RULLS algorithms are ex

amined and compared to other on-line training methods in Chapter 6.

90

Chapter 5

INCREMENTAL LEVENBERG-MARQUARDT OPTIMIZATION

Introduction

The Levenberg-Marquardt (LM) optimization algorithm has been proven to be one

of the most effective and useful methods of training neural networks. Because of the suc

cess of the LM method in neural network applications where batch processing is appropri

ate, it is natural to investigate the possibility of developing a recursive LM algorithm for

real-time applications. Interest in developing a recursive LM algorithm is evidenced by re

cent work by Stan and Kamen [21] on a block recursive LM algorithm. Ngia and Sjoberg

[22] have also recently published work on an approximate recursive LM algorithm. In this

chapter two new approaches to the development of a recursive LM algorithm will be pre

sented. The goal of both methods is to allow for parameter updates at each time step such

that if the same block of data is processed using the batch LM algorithm a similar result will

be obtained. A general development of the recursive LM equations will be presented first.

This development will be the starting point for both of the new recursive LM algorithms,

which only differ in the way in which matrix inversion is avoided in evaluating the recur

sive solution. The first method to be presented is the Recursive Levenberg-Marquardt with

Matrix Inversion Lemma (RLMMIL) method. A short section showing some simulation

results will follow the RLMMIL development section. The second method to be presented

91

is the Recursive Levenberg-Marquardt with Caley-Hamilton Inverse Approximation

(RLMCH) method. Simulation results for this method will also be presented in a short sec-

tion following the mathematical development of the RLMCH method. Conclusions will

be provided in a final section.

Recursive Levenberg-Marquardt Equations

The description of the LM method presented in Chapter 2 showed that the method

is a modification of the batch Gauss-Newton Method. The basic Gauss-Newton batch up-

date equation given in Chapter 2 is:

T -1 T
®n + 1 = ®n-[J (0)J(0)] J (0)e(0) (182)

In Chapter 3 it was shown that an incremental solution to Eq. (182) can be devd-

oped by using the Matrix Inversion Lemma [3] to avoid having to perform a matrix inver-

sion. A restatement of the matrix inversion lemma follows.

Matrix Inversion Lemma

If the matrices A, B, C, and D satisfy the equation

(183)

where all matrix inverses are assumed to exist, then

(184)

A detailed proof of the matrix inversion lemma may be found in [3]. It was shown in Chap-

ter 3 that the JT(0)J(0) term in Eq. (182) can be updated for each new data point by add-

ing an outer product matrix which is produced by multiplying the transpose of the new row

92

of the Jacobian matrix by itself. This is the form represented by Eq. (183) and thus Eq.

(184) can be used to recursively compute the inverse of JT(0)J(0).

If a diagonal matrix is added to JT(0)J(0) in Eq. (182) the result is the Leven-

berg-Marquardt algorithm. The Levenberg-Marquardt batch update equation given in

Chapter 2 is:

T -I T
®n + 1 = ®n-[J (0)J(0) + µI] J (0)e(0) (185)

To begin the development of the recursive Levenberg-Marquardt update equations,

the weight update at time n can be defined as:

(186)

Eq. (186) can be rewritten as:

(187)

where,

(188)

and,

(189)

Additionally, taking the inverse of both sides ofEq. (188) and Eq. (189) we have:

(190)

and,

(191)

93

The Jacobian matrix at time n + 1 is simply the Jacobian matrix at time n with one addition-

al row appended to account for the next time step at n + 1. Because of this the following

equation can be written.

(192)

In Eq. (192) jn + 1 is the new row of the Jacobian matrix associated with time n + 1. The

diagonal matrix ofEq. (191) can be expressed at time n + 1 as:

(193)

Inserting Eq. (192) and Eq. (193) into Eq. (191) yields:

(194)

Using Eq. (190), Eq. (194) can be rewritten as:

p-1 _ p-1 + .T • + ~ I
n + 1 - n ln + 1Jn + 1 µn + 1 (195)

To complete the development of the recursive LM algorithm Eq. (187) can be rearranged

to produce:

(196)

and,

(197)

but,

(198)

94

Substituting Eq. (196) into Eq. (198) and substituting the result into Eq. (197) yields:

(199)

where, from Eq. (195)

p-1 _ p-1 + .T • + Ji I
n+l - n ln+iln+l µn+l (200)

Eq. (199) and Eq. (200) can be used with the standard update equation given below,

(201)

to recursively compute Levenberg-Marquardt parameter updates.

The LM parameter update algorithm formed by Eq. (199), Eq. (200) and Eq. (201)

isoflittleusebecausea dim(®) inversionmustbeperformed to obtain Pn+ 1 inEq. (199).

The addition of the diagonal matrix inside the inversion in Eq. (185) makes recursive com-

putation of [JT(®)J(®) + µIf 1 by direct application of the matrix inversion lemma im-

possible. The problem arises in Eq. (200) where the liµn + 1 I matrix precludes the use of

the matrix inversion lemma for a one-step recursive computation of P n + 1 .

Eq. (199), Eq. (200) and Eq. (201) represent a starting point for the development of

the two recursive Levenberg-Marquardt algorithms which will be presented in the follow-

ing sections.

95

Recursive Levenberg-Marquardt Using Matrix Inversion Lemma

In this section a new method of evaluating the recursive LM algorithm given by Eq.

(199), Eq. (200), and Eq. (201) will be presented. The method avoids any direct matrix in-

version by using the matrix inversion lemma [3] to perform the update computations re-

quired to account for the presence of the diagonal matrix which is added to the Hessian

matrix in the Levenberg-Marquardt algorithm. The development of the algorithm follows.

We start by stating that goal of this method is to compute P n + 1 in Eq. (199) without

performing any matrix inversion or at least to reduce the inversion problem to a minimum.

Ifwe examine Eq. (200) we see that the form of this equation is almost suitable for appli-

cation of the matrix inversion lemma, as we saw in Chapter 3 in the development of the

Recursive Gauss-Newton method. The diagonal 11µn + 1 I matrix in Eq. (200) does not al-

low for a straight-forward recursive update of P n + 1 . However, another way to express

11µ1 is:

11µ1 =

1 0

0 1
: 11µ [1 o ... o o] + o 11µ [o 1 o ...
0

0 0

0

0
o] + ... + : 11 µ [o o . . . o 1]

0

1 (202)

Each term on the right-hand side ofEq. (202) is an outer product. Now consider Eq. (200)

as the sum of the P~1 matrix, the outer product j~ + dn + 1 and dim(®) outer products

which represent 11µn + 1 I as seen in Eq. (202). In this form P n + 1 can be computed recur-

sively by applying the matrix inversion lemma dim(®)+ 1 times without any matrix in-

96

version operations. For the single output case, where Mis the number of parameters, the

following sequence can be used to recursively compute the LM parameter update :

(203)

Then,

-p p·T [. p·T +l] -1
QI - n - nJn + 1 Jn + 1 nJn + 1 jn + 1 p n (204)

t
-1

1 1

0 0
+-1 Q2 = QI -QI [1 0 ... 0 0] QI [1 0 ... 0 0] QI Llµ

0 0

0 0

t (205)

-1
0 0

1 1
+-1 Q3 = Qz-Qz 0 [o 1 o ... o] Qz 0 [o 1 o ... o] Qz Llµ

0 0

(206)

-1
0 0

0 0
+-1 pn+I = QM+I -QM+I [0 0 ... 0 l]QM+l [oo ... 01]QM+1 Llµ

0 0

1 1

(207)
and,

97

(208)

and finally,

(209)

For the single output case, Eq. (203)- Eq. (209) can be evaluated without any matrix inver-

sion. This is the stated goal of this method and with respect to matrix inversion the objec-

tive of the method has been met.

We must remember that the reason for avoiding a matrix inversion is to reduce the

computational burden associated with updating the network parameters at each time step.

For this reason the computational requirements for the RLMMIL method must be consid-

ered and compared to simply performing an inversion of P:~ 1 to evaluate Eq. (199). Eq.

(204) is used to account for the recursive Guass-Newton update at each time step. If this

equation is evaluated in the most efficient way, and m is the number of parameters to be

adjusted, the following equation for computing the number of floating point operations per

sample required applies.

/fop = 3.5m2 + 2.5m + 2
sample

(210)

This result agrees withNgia and Sjoberg [22]. Each diagonal element of ~µnl inEq. (203)

is accounted for using Eq. (205) - Eq. (209). If the most efficient method of evaluating

each of these terms is used the following equation applies:

flop = m2 + 3m + 3
term

These results are summarized in Table 2.

98

(211)

Method flop

Recursive Jacobian 2
Update 3.5m + 2.5m + 2

Single ~µI Term 2
Update m + 3m + 3

Table 2 Computational Requirements for Recursive LM Update (MIL)

In order to compute a full RLMMIL update it is necessary to evaluate Eq. (204)

once and an equation of the form ofEq. (205) the same number of times as there are param-

eters to adjust. The total number of floating point operations required to evaluate P n + 1

recursively can be expressed as:

flop = 3.5m2 + 2.5m + 2 + m(m2 + 3m + 3) = m3 + 6.5m2 + 5.5m + 2 (212)
sample

A comparison of the result shown in Eq. (212) with several popular matrix inversion meth-

ods [19] which can be used to evaluate the inverse of P~~ 1 is summarized in Table 3.

Each of the methods shown in Table 3 requires O(m3) floating point operations for eval-

uation. All the methods require more computation than the RLMMIL method with the ex-

ception of the Gaussian Elimination Method (GE). Figure 35 shows graphically how for

a single recursive LM update, the different inversion methods compare as a function of the

number of parameters. The GE method requires 2/3 as many flops as the RLMMIL update.

This suggests that there is no numerical advantage in using the RLMMIL method as the GE

method requires fewer floating point operations.

99

Method flop/sample

2m
3

Gaussian Elimination --
3

4m
3

Householder Orthoganalization --
3

Modified Gram-Schmidt 2m
3

8m
3

Bidiagonalization --
3

Singular Value Decomposition 12m
3

Matrix Inversion Lemma 3
(Full ~µI Update) m

Table 3 Computational Requirements for Full Recursive LM Update

X 108 Computation Required for Various lm.ersion Methods
3.5~--~--~---~--~--~--~

3

V)
g- 2.5
!S

"' C
0

I 2
a.
0

~ 1.5
a..
g,
~ 1
u::

0.5

Singular Value Decomposition

Bidiagonalization

Modified Gram-Schmidt

Householder Orhogonalization

Incremental Matrix lm.ersion
Lemma Method

Gaussian Elimination

50 100 150 200
Number of Parameters

250 300

Figure 35 Computational Requirements for Single Recursive LM Update

100

However, the RLMMIL method incrementally updates the covariance matrix

P n + 1 , opening the possibility of updating P n + 1 over several or many time steps. This fea-

ture makes it possible to develop an approximate recursive Levenberg-Marquardt method

which requires an order of magnitude fewer computations at each time step than a method

performing a full i'.1µn + 1 I update. There are many different ways that the i'.1µn + 1 I update

can be implemented. Several methods for adjusting i'.1µn + 1 I will be discussed in the next

section.

Strategies for adjusting i'.1µ

In the preceding section a method of recursively performing LM parameter updates was de-

veloped. It was shown that a RLMMIL update which accounts for all the i'.1µn + 1 I terms

in Eq. (200) is computationally less efficient than using the Gaussian Elimination method

to perform the necessary matrix inversion. However, given that there are m parameters to

adjust, ifless than m diagonal terms in i'.1µn + 1 I are accounted for at each time step, far few-

er floating point operation are required at each time step. In other words, using the RLM-

MIL method the Hessian matrix can be updated at every time step using Eq. (204) and one

or more i'.1µn + 1 I terms can be updated at each time step using Eq. (205) - Eq. (207).

For instance, we can see from Table 2 that if only the Hessian update and one diag-

onal term update is made at each time step the resulting number of floating point operations

required is:

flop
sample

2 2 2
3.5m +2.5m+2+m +3m+3 = 4.5m +5.5m+5 (213)

101

This is approximately an order of magnitude less than the most efficient method of com-

puting the full update. After m time steps have passed, a full accounting of the ~µn + 1 I

terms will have been accomplished.

Updates corresponding to a particular location on the diagonal of the ~µn + 1 I ma-

trix can be made sequentially from the first row to the last, or can be randomly chosen, or

can be chosen in some other way. Additionally, m updates to the Hessian matrix will have

been made. The result of inverting the covariance matrix all at once using a true inverse

method will differ from the result obtained using the incremental update.

Due to the adjustment of the parameters at each time step in the incremental meth-

od, the rows of the Jacobian will be computed using a different set of parameters at each

time step. A constant set of parameters will be used if the full Jacobian matrix is assembled

prior to computing the Hessian matrix and then adding it to the ~µn + 1 I matrix before in-

version. It should be expected that if the parameter values are reasonably close to conver-

gence, then the elements of the covariance matrix obtained by incremental computation

should be fairly close to the values obtained using the true batch LM method. In this situ-

ation the parameters will not change dramatically over the m samples used to compute the

covariance matrix, so the incremental approximation should be fairly close to the true co-

variance matrix.

Another approach to making changes to ~µn + 1 I is to adjust only the most signif-

icant terms of ~µn + 1 I. In this method Eq. (200) must be rewritten as:

(214)

102

where,

Aµ1, n + 1

AM I Aµz,n+l I
u n+I = (215)

In Eq. (214) AMn + 1 I is a diagonal matrix containing values which represent the Leven-

berg-Marquardt diagonal matrix elements, but in this case each element can be different

from the other diagonal elements. This deviates from the true Levenberg-Marquardt algo-

rithm, but should still be effective. The challenge with this method is to decide which ele-

ment to adjust at a particular time step.

Now consider the case where more than one Aµn + 1 I or AMn + 1 I term updates are

made during a single time step. In this case, at each time step a Jacobian update is made

using Eq. (204) and several updates reflecting a subset of the Aµn + 1 I diagonal terms are

made using equations in the form of Eq. (205). It is logical to expect that if several terms

are considered at each time step, the approximation to the true covariance matrix will be

improved. This is because all the updates made at a single time step are made using a con-

stant set of parameters. This reduces the number of different sets of parameters used in the

course of computing a full covariance matrix update. At one extreme, only one Aµn + 1 I

term is considered at each time step. At the other extreme, all terms are considered, and the

true covariance matrix will be computed. As more terms are considered, a closer approxi-

mation to the true covariance matrix will result. This result makes it possible to expand the

number of Aµn + 1 I terms considered at each time step to match the available computation-

103

al capacity for a specific hardware platform or application allowing for maximum ef:ficien-

cy and performance.

Now, again consider the case where more than one L1µn + 1 I or AMn + 1 I term up-

date is made during a single time step. This time, rather than applying the matrix inversion

lemma m + 1 times to account for each of the t1µn + 1 I terms and the new Jacobian row, the

new Jacobian row and/or multiple t1µn + 1 I terms are simultaneously accounted for using

a "one-step" application of the matrix inversion lemma. The matrix inversion lemma is ap-

plied for the case where multiple outer product row updates are made at one time. From

Eq. (183) and Eq. (184), for the multiple-term update case, the A, B, C and D matrices are

defined as:

A=P n (216)

B = Pn+I (217)

t 1 0

0 1

C T
hn+ I .,. (218)

+
0 0

0 0

1 0 0

0 1 0
D t1µn + I (219)

0 0 1

L1µn + I
.;:.

where,

104

(220)

and

(221)

If n is the number of outer product terms accounted for by the C matrix, then a size

n inversion must be performed in order to evaluate Eq. (221). The question is whether or

not it is more efficient to compute P n + 1 updates simultaneously using the one-step version

of the matrix inversion lemma, or to incrementally apply the single outer product version

of the matrix inversion lemma multiple times.

Assume that the Gaussian Elimination method will be used to compute D from

D-1 as required for use in Eq. (221). The number of floating point operations required to

update one Jacobian matrix row and n L1µn + 1 I terms using the one-step application of the

matrix inversion lemma can be expressed as:

ffop 2 2 2 3 2 = m (2n + 3.5) + m(2n + 5n + 2.5) + -3(n + 3n + 3n + 1) (222)
sample

Eq. (222) indicates that when only a few outer product terms are considered at each time

step the impact is minimal. However, as the number of terms considered is increased the

impact of the n3 term has a great impact on the required number of floating point opera-

tions.

An interesting comparison between the one-step application of the matrix inversion

lemma and the incremental application of the matrix inversion lemma can be made. Table

4 compares the two methods by listing expressions for the required number of floating point

105

operations for each method as the number of outer product terms (n) considered is held con-

stant at several values.

Number of Diagonal
One-Step Matrix Inversion Incremental Matrix

Lemma Inversion Lemma
Terms Considered

(flop/sample) (flop/sample)

1 2
5.5m + 9.5m + 16/3

2
4.5m + 5.5m + 5

2 2
7.5m + 20.5m + 54/3

2
5.5m + 8.5m + 8

10 2
23.5m + 252.5m + 1331/3

2
13.5m + 32.5m + 32

50 l03.5m2 + 5252.5m + 132651/3
2

53.5m + 152.5m + 152

Table 4 Comparison of One-Step and Incremental Matrix Inversion Lemma

The comparison shown in Table 4 is represented graphically in Figure 36.

107 ~~--Co~m-pan_·so_n o_f o_ne-_st~ep_an_d ln_c,_em_ent_al ~Mat_nx_1"_"'1S~io_n L_em_m• ___ _

One-Step Matrix Inversion Lemma

106 Incremental Matrix Inversion Lemma

50 diagonal terms

10 diagonal terms __ _
__ / __ _

10' c__~ _ __L_ _ _L__ _ _L___L--L--_____..L-~--'----'---

0 10 m m ® m w m w oo oo
m (Number of Parameters)

Figure 36 Comparison of One-Step and Incremental Matrix Inversion Lemma

106

Table 4 and Figure 36 show that no matter how few terms are considered, it is always more

efficient to apply the matrix inversion lemma incrementally rather than in a "one-step"

fashion. For this reason the one-step approach will not be considered further.

Determining .1.µn

In the preceding section several strategies for adjusting .1.µn were considered. In

order for these algorithms to be useful, an effective method of determining an appropriate

.1.µn adjustment is required. In this section three possible methods for determining .1.µn

will be presented.

In the standard batch LM algorithm an entire set of data is processed by the neural

network using the current set of weights. The sum of the squared network output errors

(SSE) is computed and compared to the SSE which was computed using the same set of

data and the previous set of weights. If the SSE goes down, µn is decreased by a factor of

10, and the current set of weights is adjusted. If the SSE goes up, µn is increased by a factor

of 10, and the current set of weights is replaced by the previous set of weights. This process

is repeated until a reduction in the SSE is obtained.

In an on-line situation, only a relatively small window of previous input/output data

can practically be considered. Additionally, it is impractical to retain a set of input/output

'

data for repeated processing as we can with the batch Levenberg-Marquardt algorithm. In-

dividual data points can realistically only be considered a finite (one or maybe a few) num-

ber of times. For these reasons any recursive LM algorithm must incorporate a different
1

set of rules for determining adjustments to µn than those used for the batch algorithm.

107

One problem with real-time adaptive training applications is the fact that system

models and noise levels within the processed data change with time. This makes it rela

tively impossible to make adjustments to µn based entirely on changes in absolute error

levels. To illustrate this problem consider a simple method of determining ~µn. Suppose

a scheme for adjusting µn is devised in which a comparison between the error from one

point to the next is used to determine ~µn. If the error goes up, ~µn is negative. If the

error goes down, ~µn is positive.

Next suppose the network weights have stabilized and the mean squared error has

also stabilized. At this point, ~µn will tend to be positive because on the average a reduc-

tion in the error will not be possible due to noise. In this situation µn will effectively con

tinue to grow. Now suppose the process being modeled changes. The neural network

errors will become even larger, so the simple algorithm will .continue to increase µn even

though a reduction is probably required so a rapid adaptation to the new model can be

achieved. If µn is very large, there may not be a fast enough reduction in the MSE to cause

a corresponding reduction in µn making the adaptive training process ineffective.

One method for determining ~µn is to observe the MSE for a window of time prior

to adjusting µn, then observe the MSE for a non-overlapping window of time after apply-

ing ~µn. A comparison of the average squared error between the two windows of time can

then be made. If the MSE from one window of time to the next goes up, ~µn will be pos-

108

itive for the next window of data. If the MSE goes down, ~µn will be negative for the next

window of data. This method tends to filter out the effect of noise in the training data. This

method does not allow for continuous adjustment of µn at each time step.

Another approach for determining ~µn is to compare the square of the current error

measurement to a weighted sum of past squared errors (WSSE). This method allows for

adjustment of µn at each time step. The idea of this method is to compare the most recent

error to an exponentially weighted sum of all past measurements. The weighted sum of all

past squared errors can be expressed as:

(223)

where,

0<11.<l (224)

Computing the WSSE using Eq. (223) gives the highest weighting to the newest errors and

causes the oldest errors to be "forgotten".

In order to use Eq. (223) in an algorithm for determining ~µn a few adjustments

have to be made. Consider the geometric series [19]:

2 3 oo 1
l+q+q +q + ... +q = --

1-q
(225)

Using Eq. (225), we can approximate Eq. (223) (assuming the squared errors do not change

significantly after the algorithm has converged):

2 2 2 2 3 2n(l) e 111.+e 211. +e 311. + ... +e111. l::::: ---1
n- n- n- 1-A (226)

109

Eq. (226) indicates that after the neural network weights have converged the most current

error multiplied by a scaling factor is expected to equal the infinite power series of past er-

rors if the series contains enough elements. The factor 11, effectively determines how many

past errors are considered by Eq. (226). The smaller 11, is, the·fewer the effective number

of errors considered. "

Eq. (223) can be written for recursive computation in the following way:

(227)

Eq. (226) can be rewritten as:

e2(-1- -1) ~ WSSE 1 n l-11, n-
(228)

Eq. (226) can be used to develop a method for determining ~µn. If the left-hand side of

Eq. (228) is less than the right-hand side for the current sample, then a reduction in µn is

required. If the left-hand side is higher, then an increase in µn is required. The amount of

increase or decrease in µn can be a fixed, small amount, or can be made proportional to the

ratio of the two sides ofEq. (228). Eq. (227) can be used to recursively compute the re-

quired WSSE. Of course, other variations of this method could also be devised.

RLMMIL Simulation Results

In this section the RLMMIL method will be used to train a neural network in a sim-

ulated system identification problem. Figure 37 illustrates the problem.

110

Simulated y(n)
Unknown
System

u(n) e(n, E>)

Neural
Network y(n, E>)

Figure 37 Example RLMMIL System Identification Training Problem

The simulated unknown system is a 3-layer MLP neural network. The input is a

tapped-delay line of randomly generated data with a normal distribution. The hidden layers

contain log-sigmoid activation functions and the output layer is a single linear neuron. The

network had a total of 24 7 weights. Training data was generated by fixing the network

weights at random values and then running the network forward using the random input

data to generate the corresponding output data. The neural network to be trained has a sim-

ilar structure to the network used to generate the training data. Network training was per-

formed using the Steepest Descent, Recursive Gauss-Newton, and RLMMIL methods. The

RLMMIL method was applied using three different levels of µn updating. In one simula-

tion 20% of the of the Liµn term adjustments were made at each time step. In other simu-

lations 50% and 100% of the Liµn term adjustments were made at each time step. All of

the simulation runs were initiated with the same set ofrandom, small weights. Figure 38

shows the squared-error performance for each method. The plots shown in Figure 38 rep-

resents the 100-point moving average squared-error.

111

Comparison of Squared Enor for Steepest Descent, RGN and RLMMIL Methods

_,, __ ~. r ~ · ", Steepest Descent
l•r,.,..1-....-r v .. t\ - ,1-..,''-• -'wt,~, .,.1~, , , _

......... ' ,-

... ----·-·'··_.,, ____ ",·'·,, _, __ , __ , __

'"•~

\ ... \.,,(_~ecursive G-N

'"'' ,,_

RLMMIL (20% Update)/

RLMMIL (50% Update)

, _:'"''.:·-~ .. ,

RLMMIL (Full Update)

50 100 150 200 250 300 350 400
Sample Number

Figure 38 Squared-Error Performance for RLMMIL, RGN and Steepest Descent

Figure 3 8 shows superior performance for the RLMMIL method as compared to the

other methods tested. When the full Aµn update was made, the squared-error performance

at convergence was very good. When only 50% of the Aµn term adjustments were made,

the performance decreased considerably. Only a slight reduction in performance was ex-

perienced when the number of Aµn term updates was reduced from 50% to 20%.

During the simulation runs for the partial Aµn term update case, problems were en-

countered when the size of Aµn was too large. If Aµn was too large the algorithm would

''blow-up". Because only part of the diagonal Aµn terms were being adjusted, the magni-

tude of a portion of the terms on the diagonal might have become disproportionately large

or small, causing numerical problems with the recursive inversion equations. The size of

Aµn had to be decreased more and more as fewer Aµn term updates were made at each

time step. This effectively causes the method to become more and more like the RGN

112

method as fewer and fewer L:\µn updates are considered at each time step. This causes the

performance of the algorithm to become the same as RGN when very few terms are con-

sidered at each time step. We see evidence of this in Figure 38. As fewer terms are con-

sidered at each time step, the performance curves for the RLMMIL method become more

and more like that of the RGN method.

The WSSE method described in the previous section was used to determine the

L\µn adjustments. Figure 39 shows the trajectory for µn during the full update RLMMIL

simulation.

100 ,---,------,----D-,iag_ona_l M_u1t_ipli.-cat_ion_Te_nn--.(m_u) _-r-_---.-----,

Sample Number

Figure 39 Trajectory of µn during training (full L:\µn case)

Another consideration in evaluating the performance of an optimization algorithm

is convergence speed. Figure 40 shows an enlarged view of the performance curves at the

beginning of training. The fastest convergence is seen in the Recursive Gauss-Newton

curve. The error is reduced the faster, but the RLMMIL error curves quickly drop below

the RGN curve to a lower error level. The steepest descent method also has a more rapid

113

drop in the error curve the RLMMIL method, but shows poor ultimate convergence. More

simulation work should be performed to determine if a lower starting value for µn, or a

more rapid changes in µn can improve convergence speed for the RLMMIL method.

Comparison of Squared Enor for Steepest Descent, RGN and RLMMIL Methods
0.02~-~--~--~--~--~--~

0.018

0.016

I
~ 0.014
~

l
[0.012

g
w 0.01

I
/jf 0.006

~ :.
0.006

0.004

Steepest Descent
--,/_ ____

/

----------, / Recursive G-N
________ ,,,---- --------------------- ,,

~MIL (Full Update)

0.002c-_ _ _L_ __ _J_ __ _J_ __ ~ __ ~ __ ~

10 15 20 25 30
Sample Number

Figure 40 Squared-Error Performance for RLMMIL, RGN and Steepest Descent

Recursive Levenberg-Marquardt with Caley-Hamilton Approximation

In this section a second new method of evaluating the recursive LM algorithm given

by Eq. (199), Eq. (200), and Eq. (201) will be presented. The method avoids any direct ma-

trix inversion by using the matrix inversion lemma [3] in conjunction with the Cayley-

Hamilton Theorem [19]. The algorithm performs the update computations required to ac-

count for the presence of the diagonal matrix which is added to the Hessian matrix in the

Levenberg-Marquardt algorithm. The development of the algorithm follows.

As with the RLMMIL method the goal of this method is to compute P n + 1 in Eq.

(199) without performing any matrix inversion. Repeating Eq. (200) we have:

114

P-1 p-1 .T , + A I
n+ 1 = n + ln+ iln+ 1 L.lµn+ 1 (229)

Eq. (229) can be rewritten as:

(230)

The matrix inversion lemma can be applied to Eq. (230) using Eq. (183) and Eq. (184). The

result for the single output case is:

p - Q Q . T (. Q . T + 1)-1 . Q
n + 1 - n - nl n + 1 J n + 1 nl n + 1 J n + 1 n (231)

where,

(232)

The problem arises in computing Qn which requires a dim(0) matrix inversion. If Qn

can be adequately approximated, then is it possible to avoid the matrix inversion. One way

to approximate Qn is to use the Cayley-Hamiliton Theorem [19]. A statement of the Cay-

ley-Hamilton Theorem follows.

Cayley-Hamilton Theorem

If the matrix A is a square matrix having all eigenvalues with magnitudes less than or
equal to 1, then

(233)

Eq. (233) can be rewritten as:

(234)

and,

(235)

115

where A represents the eigenvalues of A-1 . Using matrix algebra Eq. (234) can be manip-

ulated to yield:

[I -A-1]-1 = (I+ A-1 + A-2 + A-3 + ...) (236)

Now, rewriting Eq. (232),

(237)

and,

(238)

If the form of the Cayley-Hamilton theorem given by Eq. (236) is applied to Eq. (238) the

result is:

or, expressed another way,

(240)

Eq. (239) is only valid if the magnitude of the eigenvalues of P:1 are greater than

1. The inverse computed using Eq. (239) can be approximated by considering only the first

few terms of the right-hand side. If a finite number of terms are used in the inverse approx-

imation, the RLMCH algorithm can be stated as:

(241)

116

P-1 p-1 .T • A I
n + 1 = n + Jn + 1Jn + 1 + L.lµn + 1 (242)

p - Q Q .T (' Q .T + 1)-1, Q
n + 1 - n - nJ n + 1 J n + 1 nJ n + 1 J n + 1 n (243)

where,

(244)

and,

(245)

where L is the number of Cayley-Hamilton terms considered.

Eq. (241) can be used with the standard update equation (Eq. (246) below), to com-

pute the weight updates.

(246)

Any of the methods described previously in this chapter may be used for determining the

Aµn + 1 adjustment.

117

RLMCH Method Simulation Results

In evaluating the RLMCH method the first step was to test the accuracy of the Cay

ley-Hamilton inverse approximation. A randomly generated dim(50), symmetric test ma

trix was generated. To this matrix a diagonal matrix with very small values was added. A

standard inversion routine was used to perform the inverse of this matrix. The inverted ma-

trix was then used as the initial P~1 matrix in Eq. (245). Eq. (245) was then applied repeat-

edly, each time increasing µn + 1 . At each iteration a sum-of-squared-error computation

between the elements of the true inverse and the elements of the Cayley-Hamilton approx

imation was computed. This test was repeated multiple times using a different number of

terms in the Cayley-Hamilton inverse approximation each time. Figure 41 shows the re

sults.

In this example, the C-H inverse approximation is stable for values of µ which are

greater than approximately 5. 9. Careful investigation has revealed that when µ falls below

a value close to 5.9 at least one of the eigenvalues of P~1 becomes less that 1 for this ex

ample. This violates the conditions under which the Cayley-Hamilton theorem is valid, and

the inverse approximation "blows-up". At this point the magnitude of the error increases

dramatically as Figure 41 illustrates. Whenµ is large enough, reasonable approximate in

verse results can be obtained. As the number of Cayley-Hamilton terms is increased, the

accuracy of the inverse approximation improves. If µ is large, and 5 or more C-H terms

are used, the inverse approximation is excellent. Unfortunately, it is desirable to use very

small values ofµ as the Levenberg-Marquardt algorithm converges.

118

10"'

Error Associated with Cayley-Hamilton ln'veJSe Approximation

-----10 C-H Terms
----- ~ 5 C-H Terms

3 C-HTerms
2 C-H Terms
1 C-HTerm

4 6 8 10
"MU" (Lewnberg Marquart Diagonal Value)

12 14

Figure 41 Error Associated with Cayley-Hamilton Inverse Approximation

The next step in testing the RLCH method was to apply the method to an example

problem. The same problem which was used to test the RLMMIL method was used to test

the RLCH method. This example problem is described in a previous section of this chapter.

Difficulties with this simulation arose immediately. The algorithm was unstable

because of the small value of µ which was used to initiate the algorithm. The small value

ofµ caused the P:1 to have at least one eigenvalue with a magnitude less than one, caus-

ing the algorithm to diverge. The initial value ofµ was increased until the algorithm would

start. With such a large value for µ training was very slow. When µ got close to a value

of about 100, the algorithm became unstable and diverged. The algorithm was then setup

such that µ could never fall below 150. This stabilized the algorithm, but caused training

performance to be worse than the results achieved using steepest descent training. After

many modifications were made to the LMCH algorithm with unsuccessful results, the de-

119

termination was made that the Cayley-Hamilton approximate inverse simply can't be used

with low enough values ofµ for the overall algorithm to be effective. For this reason, no

further work on the LMCH method is proposed.

Chapter Summary

The goal of the work presented in this chapter was to develop recursive versions of

the popular Levenberg-Marquardt algorithm for on-line training of neural networks. Re

cent papers by other researchers indicate that there is interest in recursive versions of the

LM method. The development of two recursive LM algorithms has been presented in this

chapter.

The first algorithm presented is the Recursive Levenberg-Marquardt with Matrix

Inversion Lemma (RLMMIL) method. In this method the matrix inversion lemma has been

used extensively to avoid having to perform a matrix inversion. It was shown that the

RLMMIL method requires an order of magnitude less computation when applied incre

mentally to account for the LM diagonal matrix terms at each time step. It was proposed

that if the correct diagonal term can be chosen for update, the method may be made very

efficient and effective. Simulation results showed that the RLMMIL method performed

better than the standard Recursive Gauss-Newton but at a higher computational cost. This

method shows good promise.

The second method presented in this chapter is the Recursive Levenberg-Marquardt

with Cayley-Hamilton (RLMCH) method. This method used both the matrix inversion

lemma and the Cayley-Hamilton theorem to compute the incremental Levenberg-Mar

quardt updates without performing a matrix inversion. Unfortunately this method did not

120

work well in simulations because of the validity of the Cayley-Harnilton inverse approxi

mation under the matrix conditions required for effective LM training.

121

Chapter 6

PERFORMANCE COMPARISON BETWEEN ULLS AND COMMON ON-LINE

TRAINING METHODS

Introduction

In this chapter a comparison between the ULLS method presented in Chapter 4 and

the Recursive Gauss Newton (RGN) and steepest descent methods presented in Chapter 3

will be made. Because the RGN and steepest descent methods are commonly used, they

have been chosen for comparison with the ULLS method. The performance comparison is

made with respect to squared-error reduction, tracking and computational complexity.

Three different simulation cases will be presented. In the first case all three meth

ods are used to train a three-layer feedforward network using simulated input/output data.

In the second case a recurrent network and dynamic backpropagation [23] are used. The

third case is a one-step-ahead prediction problem in which a feedforward three-layer net

work and actual digitized voice data are used.

The ULLS method is the only new training method included in this chapter. This

is because this method shows more promise than the other new methods described in Chap

ter 5 and consequently has been chosen as the best candidate for further research and re

finement.

122

Test Case 1: Non-Recurrent Neural Network Training Using Simulated Data

In this section simulation results for training a typical feedforward neural network

using the ULLS and two standard training methods will be compared. There will also be

results presented which show the impact on performance when various numbers of past

measurements are considered when training using the ULLS method.

The three methods which will be compared in this chapter are gradient descent, Re-

cursive Gauss Newton (RGN) and the underdetermined linearized least squares (ULLS)

method. The "moving window" technique of constructing the partial Jacobian matrix was

used with the ULLS method throughout the simulations. This method was described pre-

viously in Chapter 4. The performance of the training methods will be evaluated and com-

pared based on speed of convergence, squared-error performance after convergence, and

computational burden. The network used in this comparison was a three-layer nonlinear

network with 20 inputs, 10 log-sigmoid neurons in the first hidden layer, 3 log-sigmoid

neurons in second hidden layer, and a single linear output neuron. Figure 42 shows the

network structure used for test case 1.

Inputs Layer 1 Layer 2 Layer 3 Output

'Pi'

!Ox! 3xl !xi

Figure 42 Three-Layer Feedforward Neural Network (Test Case 1)

The network was fully connected and had a total of247 weights including biases.

Training data was obtained by fixing the network weights at random values and running a

!23

forward simulation using a tapped delay structure of random inputs. This data was then

used in the training simulations. For each training simulation the network weights were

initialized to the same set of small random numbers. The performance of the fixed learning

rate gradient descent method was optimized by running simulations with many different

learning rates. The comparisons which follow are based on the gradient descent results

when using the optimum learning rate. The implementation of the ULLS method used a

Jacobian matrix based on a window of 10 past measurements. All simulation results shown

here reflect this window size unless otherwise noted. Figure 43 shows the mean squared

error for a 200 point window computed at each index in the 3000 training points.

0
10

10·1

a..
Q

I::
~ -2 "C 10
~ a..
~ = O"
00 -3 = 10
~

:E
10

-4

-5
10

0 500 1000 1500 2000 2500 3000

Sample Number

Figure 43 Mean Squared-Error for Three Training Algorithms

We can see from Figure 43 that the gradient descent method converges more slowly

and finds a poorer solution than either the RGN method or the ULLS method. It can also

be seen that the RGN method converges to a lower mean-squared error than the ULLS

method. However, it is very significant that the ULLS method converges much more

124

quickly than the RGN method. This plot is typical for many different simulation runs using

different data sets and initial conditions. We can see from that the ULLS algorithm has

essentially converged within approximately 100 points as compared to 500 points for both

the Gradient Decent and RGN algorithms. This transient behavior is of great importance

in adaptive systems where the model is constantly changing. In this type of application, it

is often the case that so long as adequate squared error performance is maintained, conver-

gence speed is more critical than obtaining very small error.

The superior squared-error performance of the RGN and ULLS methods is paid for

in computational complexity as indicated in Table 5. The table entries have been computed

for each of the methods using all data up to the point of convergence for each individual

method. The point of convergence was selected by qualitatively examining the squared er-

ror plots.

Training
Mean Squared

Error Flops/Sample
Method (Conver2:ed)

Gradient
1.00 X 10"2 1.87 X 103

Descent

ULLS (10 Jaco-
1.97 X 104 1.19 X 105

bian Terms)

RGN 3.77 X 10"5 2.28 X 107

Table 5 Training Method Performance Comparison

These results indicate that with the methods considered, as we would expect, there

is improved ultimate squared-error performance as the computational complexity increas-

es. These results also reveal that during the period of adaptation between start and conver-

gence, the ULLS method is the least costly on a squared-error per floating point operation

basis.

125

Figure 44 is plot of mean squared-error vs. floating point operations. As before,

the mean squared error for a 200 point window is computed at each index. This plot shows

that the gradient descent method exhibits the fastest convergence on a floating point oper-

ations basis. However, as shown in Figure 43, the error level after convergence is signifi-

cantly higher than error levels produced by the RGN and ULLS methods. Notice that the

ULLS algorithm can drive the mean squared error much lower than the minimum error

achieved by the steepest descent algorithm with less than an order of magnitude increase in

required floating point operations.

-0

l:::: Gradient Descent
~ -1

110

= C"
00

= ~ i 10·2

-3 10 ~~~~~~~~~~~~~~~~~~
0.5 1.5 2 2.5 3 3.5 4 4.5

Floating Point Operations
5 5.5

6
x10

Figure 44 Squared-Error vs. Flops for Three Training Methods

The next set of simulation results reflect the effect of changing the size of the Jaco-

bian window used in the ULLS algorithm. The network structure and data set used for this

simulation were the same as for the previous simulations. The size of the Jacobian matrix

was varied from run to run. Figure 45 shows the squared-error performance when consid-

ering different Jacobian window sizes. It can be seen that, initially, increasing the size of

126

the Jacobian window has a significant effect on the algorithm performance. As the size of

the window is increased, the performance increases significantly in the beginning. In this

example there appears to be a point of diminishing returns as the window size is increased

to more than abo_ut 5 terms. Although not shown, there was little improvement in the

squared-error performance when more than about 10 measurements were used in the Jaco-

bian matrix window.

100 ..--------.----.----.------.------.--------,

Gradient Descent
/

1 TermULLS

RGN

10-5~-~--~--~--~--~-~
0 500 1000 1500 2000 2500 3000

Sample Number

Figure 45 Effect of Jacobian Window Size On ULLS Performance (Non-Recurrent Network)

Table 6 contains a summary of the ULLS algorithm performance and computation-

al requirements for these simulations. Note that the RGN algorithm requires roughly two

orders of magnitude more floating point operations than the ULLS algorithm when 10 Ja-

cobian terms are considered.

127

ULLS Jacobian
Mean Squared

Terms
Error Flops/Sample

(Convere:ed)

Gradient
1.00 X 10"2 1.87 X 103

Descent

1 1.02 X 10"2 3.08 X 103

2 1.03 X 10-3 7.45 X 103

5 3.38 X 10-4 3.22 X 104

10 1.97 X 10-4 1.19 X 105

RGN 3.77 X 10"5 2.28 X 107

Table 6 Jacobian Terms Performance Comparison

Figure 45 shows that the one-term case converges rapidly to the same solution as

the manually optimized steepest descent algorithm. This is an interesting and possibly use-

ful result for systems with limited computational power. The single-term implementation

provides excellent convergence performance while not even doubling the required compu-

tation. If only two terms are used there is a dramatic increase in performance for only a

four-fold increase in computational burden. This might also be an attractive improvement

for systems with limited computational capacity which currently use gradient descent train-

mg.

The next ULLS simulation was conducted to examine the performance of the algo-

rithm when the underlying model parameters are continually changing. In order to accom-

plish this, test data was generated using the same three-layer neural network structure used

previously, but this time the weights in the network were varied sinusoidally between two

sets of values. The results are shown in Figure 46. Here we can see that when more Jaco-

bian terms are used, the performance improves. This plot also shows that for this simula-

tion, there is little performance gained by using more than about 5 terms in the Jacobian.

128

The two-term ULLS MSE plot shows values which are about 25% lower than the

steepest descent trajectory, and the five-term ULLS solution is more than 50% lower when

the error becomes the largest. The RGN solution shows a very similar result to the best (10-

term) RGN solution.

200 Point MSE

0.045

0.04

0.035
lo;

= 0.03 lo;
lo;

~
0.025 -= ~

lo;
~

0.02 = C"
rl.l

= 0.015
~
~

~ 0.01

0.005

1000 1500 2000 2500 3000 3500

Sample Number

Figure 46 Slow Sinusoidal Parameter Change with ULLS Training

Note that the steepest descent and one-term ULLS MSE trajectories are very simi-

lar. This indicates that the algorithms are converging as in the static parameter case (Figure

45.) A faster rate of change in the parameters is necessary to observe the tracking capabil-

ities of the training algorithms.

Another run was made in which the model parameters were changing sinusoidally.

In this case the frequency of change in the parameters was increased from every 2000 sam-

ples to every 500 samples. It was hoped that the adaptive tracking capabilities of the algo-

rithms would be seen by making this change. The simulation was run in the manner

described previously. This time a moving 100 point mean-squared error was computed.

129

The results are shown in Figure 47. For this simulation we see different error trajectories

for the single term ULLS and steepest descent algorithms. Maximum squared-errors are

roughly the same for both, but each algorithm outperforms the other at various points in the

time-series. When 2 or more Jacobian terms are considered, using the ULLS method, max.,.

imum squared-error as well as minimum squared-errors are smaller than those obtained us-

ing either steepest descent or the RGN algorithm. The highest squared-errors occur with

the RGN algorithm. The change in parameters is apparently too fast for the algorithm to

track. This plot illustrates the potential for using the ULLS algorithm in certain cases to

obtain lower tracking errors while requiring far less computation than is required for the

RGN or other higher-order recursive methods.

...
Q
~
. I

'C
~ ... = = C"

00

= = ~

~

0.05

0.04

0.03

0.02

0.01

100 Point MSE

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600

Sample Number

Figure 47 Rapid Sinusoidal Parameter Change with ULLS Training

130

Test Case 2: Recurrent Neural Network Training Using Simulated Data

In this section simulation results for training a fully recurrent neural network using

the ULLS and two standard training methods will be compared. As in the previous section,

there will also be results presented which show the impact on performance when various

numbers of past measurements are considered when using the ULLS method.

The same three methods (ULLS, RGN and steepest descent) will be compared in

this section. The same type of simulations and comparisons made in the previous section

will be made in this section. The difference here is that the neural network being trained

has a recurrent structure and dynamic backpropagation is used to compute the required de-

rivatives. The "moving window" technique of constructing the partial Jacobian matrix was

used with the ULLS method throughout the simulations. The network used in the compar-

ison was a recurrent, three-layer nonlinear network with 10 nonrecurrent inputs, 10 recur-

rent inputs (20 inputs total), 6 log-sigmoid neurons in the first hidden layer, 3 log-sigmoid

neurons in second hidden layer, and a single linear output neuron. The recurrent input vec-

tor is formed by placing the output of the network into a tapped-delay-line. Figure 48

shows the network structure used for test case 2.

Output

Figure 48 Three-Layer Recurrent Neural Network (Test Case 2)

131

The network was fully connected between layers and had a total of 151 weights in-

eluding biases. Training data was obtained in the same manner described previously for

test case 1. As before, the implementation of the ULLS method used a Jacobian matrix

based on a window of past measurements. A simulation was run to study the performance

of the ULLS algorithm when different numbers of Jacobian terms are considered. The re-

suits are compared to the performance of the steepest descent and RGN algorithms in Fig-

ure 49.

400 Point MSE (Fixed Weights, Random Initialization, Recurrent Network)
10'

Steepest Descent
1 TermULLS

10-1
2TermULLS
5TermULLS

;..
lOTermULLS = ;..

;..

r;,p
"Cl
~
;..
cU = Cl"

00

= cU 10~ ~

~

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Sample Number

Figure 49 Effect of Jacobian Window Size On ULLS Performance (Recurrent Neural Network)

The results shown in Figure 49 are similar to those obtained for the non-recurrent

simulation example (Figure 45). The steepest descent algorithm had the poorest final error

performance and the ULLS method performed progressively better as more Jacobian terms

were considered. After about 5 Jacobian terms, the benefit of including more terms rapidly

diminished. The RGN performance was the best in terms of final convergence error. Both

the steepest descent method and the ULLS method converged more quickly than the RGN

132

method. In terms of computational burden, the steepest descent method had the least and

the RGN method had the most. Table 7 provides the computational requirement and mean-

squared error performance of each training algorithm.

ULLS Jacobian
Mean Squared

Terms
Error Flops/Sample

(Conver~ed)

Steepest
1.2752 X 10"2 4.4402 X 103

Descent

1 1.0201 X 10"2 4.9023 X 103

2 4.9341 X 10-3 7.3576 X 103

5 4.1395 X 10"3 2.1230 X 104

10 4.2018 X 10"3 4.4600 X 104

RGN 2.5150 X 10"3 1.3169 X 107

Table 7 Jacobian Terms Performance Comparison (Recurrent Network, Fixed Weights)

The next simulation was performed using the same recurrent network structure, but

the network weights were varied sinusoidally between two sets of values. The intent was

to study the tracking or adaptation capability of the different algorithms. Plots of a moving

200 point mean-squared error for each training method are shown in Figure 50. The highest

error was produced by the steepest descent algorithm. The one-term ULLS results are

slightly better but similar to those produced by steepest descent training. A dramatic im-

provement in squared error performance is seen with two-term ULLS training and even

more improvement is seen with five-term ULLS training. As we have seen in the previous

case, further improvement by using more terms in ULLS training is very small.

The squared-error performance delivered by the RGN method was better than that

produced by the one-term ULLS and steepest descent methods, but not as good as the two

and five-term ULLS results. It appears that the RGN method is not able to converge quick-

133

ly enough to adapt to the changing weights. We know from Table 7 and Figure 49 that if

the model parameters do not change, that the RGN squared-error performance is superior

to that of the ULLS method.

In all the simulations thus far, the RGN method has required approximately two or-

ders of magnitude more floating point operations to implement. This is particularly note-

worthy in this example, because the tracking performances of the 2 and 5 term ULLS

algorithms are considerably better than that of the RGN algorithm. As with the non-recur-

rent example presented previously, this example indicates that the ULLS method may offer

the potential for improvement where tracking performance is a critical consideration.

200 Point MSE (Sinusoidally Changing Weights, Recurrent Network)
10·1 ,----------,----,-------,----,------,--,---,---.---~~

1000 2000 3000 4000 5000 6000 7000 6000 9000 10000

Sample Number

Figure 50 Effect of Jacobian Window Size On ULLS Performance

134

Test Case 3: Neural Network Training Using Experimental Voice Data

As a final simulation example, a nonrecurrent neural network was used to extract a

voice signal which was contaminated with random noise. The idea was to predict the next

value in the digitized voice signal. Performance can be measured by computing the squared

error between the actual (non contaminated) signal and the prediction from the neural net-

work. The data was sampled at 8000 Hertz. The non-contaminated data plot can be seen

in Figure 51.

0.8

0.6
QI

"O = 0.4 ;::
C. e 0.2

<
] 0
.!::l
] -0.2

I,.,
0 z -0.4

-0.6

"Clean Voice Signal"

-a.a~-~-~-~-~-~-~---~-~
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample Number

Figure 51 Non-contaminated Voice Signal

Random noise was added to the sample voice signal. The contaminated voice signal

can be seen in Figure 52

135

~
"C = .-::: c.. e
<
"C
~

.!::l
-;
e
1-
0 z

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8
0

"Contaminated" Voice Signal"

1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample Number

Figure 52 Contaminated Voice Signal

The network used in this example is shown in Figure 42 and has been described in

a previous section. The ULLS, RGN and steepest descent training algorithms were used to

predict the signal using the data shown in Figure 52. The 200-point squared prediction er-

ror between the contaminated and non-contaminated signals is shown for each training

method in Figure 53. The results here are similar to those shown for previous simulations.

The prediction error was best for the RGN method for most of the time-series. The 2 and

4 term ULLS solutions are very similar to each other, and these are quite close to the RGN

solution. The one-term ULLS and steepest descent solution are fairly similar to each other.

In this example the difference in performance between the training methods evaluated is

much less than it was in the previous examples. This suggests that the ULLS method may

not offer large performance increases in every situation. The test results in the previous

sections suggest that there are certain types of problems which can benefit considerably

from the ULLS

136

training method.

0.05

S 0.04
~
"C t 0.03
cu
= Q"

rJ1 = 0.02
cu
~

~
0.01

200 Point MSE (Noisy Voice Signal Prediction)

Steepest Descent

1000 2000 3000 4000 5000 6000 7000 8000

Sample Number

Figure 53 Speech Prediction Performance (ULLS, RGN and Steepest Descent)

Chapter Summary

In this chapter, the Underdetermined Linearized Least Squares (ULLS) training

method was compared to the Recursive Gauss-Newton (RGN) and steepest descent training

methods. This comparison was made using three different neural network training prob-

lems. Simulated data was used for training both non-recurrent and recurrent 3 layer neural

networks. In one simulation experimental voice data with added noise was used in a one-

step-ahead prediction problem for extracting the "clean" voice signal. The performance

comparison has been made with respect to squared-error reduction, tracking and computa-

tional complexity.

Simulation results have shown that for training feedforward multi-layer neural net-

works, the ULLS method presented in Chapter 4 often exhibits faster convergence than ei-

137

ther steepest descent or Recursive Gauss Newton. The ULLS method also exhibits good

final convergence performance, although not as good as the Recursive Gauss Newton

(RGN) method. Additionally, the work shows that the ULLS method requires far fewer

computations per input sample than the RGN method. If only a few Jacobian terms are con

sidered, the ULLS method requires only a few times as many computations as the steepest

descent algorithm. In the simulations shown here, we saw that an order of magnitude re

duction in error is possible with the ULLS method over the steepest descent method with

only 3 or 4 times as many computations. Although the ULLS method is not capable of driv

ing the squared-error as low as the RGN method when the model parameters are not chang

ing, the ULLS method showed better tracking performance than the RGN method when the

model parameters are changing relatively quickly. The ULLS algorithm requires many

fewer computations to implement than the RGN method.

The ULLS method dramatically reduces the computational burden and memory re

quirements associated with standard higher-order on-line training methods. Further reduc

tion of the computational burden associated with the ULLS method may be possible if an

efficient method of computing the required inverse which appears in the algorithm is de

veloped.

138

Chapter 7

APPLICATION OF THE ULLS METHOD FOR DETECTING ROLLER-CONE

DRILL BIT FAILURE

Introduction

In this chapter a "real-world" application will be described in which the ULLS al

gorithm from Chapter 4 is used. Roller-Cone drill bits are a type of rock drilling bit used

by the petroleum industry in the construction of oilwells. The objective in this application

is to develop a reliable, inexpensive means of early detection and operator warning when

there is a roller cone drill bit failure. This system must be technically and economically suit

able for use in low-cost rotary land-rig drilling operations as well as high-end offshore drill

ing. The solution must include the ability to detect impending bit failure prior to

catastrophic damage to the bit, but well after the majority of the bit life is expended. In

addition to failure detection, the system must be able to alert the operator at the surface once

an impending bit failure is detected. The method developed has been proven using experi

mental test data obtained by running a surface test in which several bits were run to failure.

In this chapter a method in which a predictive neural network is used to detect im

pending drill bit failure will be described. The method must be suitable for "on-line" im

plementation in a low-power processor located close to the downhole bit assembly. A

description of the problem will be given first, followed by a description of the neural net-

139

work solution which was developed. Next,.the experimental setup used to collect test will

be described. Four tests were conducted to obtain experimental data to validate the chosen

detection method. In three of these tests bits were run until a failure was obtained. A de

scription of the test set-up and instrumentation for each of the tests is provided. Failure de

tection results for actual test cases will be presented next. A brief description of the method

used to signal the surface operator will appear next, followed by conclusions.

Problem Description

When drilling a well it is desirable to drill as long as possible without wearing the

bit to the point of catastrophic bit failure. Optimum bit use occurs when a bit is worn suf

ficiently that the useful life of the bit has been expended, but that wear is not so extensive

that there is a high likelihood of mechanical failure which might result in leaving a portion

of the bit in the well. Poor drilling performance, increased BHA (Bottom Hole Assembly)

wear, and more frequent debris recovery operations all result from continued drilling with

bits which are in the process of mechanical failure. A system capable of detecting the early

stages of bit failure, with the additional capability of warning the operator at the surface

would be of great value solving the problem of drilling to the point of catastrophic bit fail-

ure.

The first part of the problem is to detect a bit failure in progress. The solution that

was chosen utilizes a downhole sensor sub that contains accelerometers that monitor the

acoustic signals produced by the bit. The signals produced by the bit are processed by a

microprocessor contained in the sensor sub. An algorithm named the Adaptive Neural Net

work Prediction Analysis (ANNP A) method has been developed which is capable of pro-

140

cessing the bit signals and detecting a bit failure in progress. The ULLS algorithm is a

key component of the ANNP A failure detection algorithm.

Several methods of failure detection were considered. It appears that some work

has been done on placing sensors directly in the drill bit assembly to monitor the bit condi

tion. There is some merit in placing sensors in the bit assembly, but this methodology also

has some distinct disadvantages. The main disadvantage is the necessity ofredesigning ev

ery bit which will use the method. In addition to being costly, each new bit design will have

to accommodate the embedded sensors which might compromise the overall mechanical

design. A second disadvantage arises from the fact that sensor connections and/or data

transmission must be made across the threaded connection on the bit to a data processing

or telemetry unit. This is difficult in practice.

The ANNP A failure detection method can be considered an "indirect" method of

detection in which the sensors used to measure signals produced by the bit are located di

rectly above the drill bit in a special sensor/telemetry sub and not within the bit itself. Ad

ditionally, the measurements that are being made are not direct measurements of bearing

parameters (i.e. wear, position, journal temperature etc.), but of a symptom of bit failure

such as vibration. This type of arrangement has some very desirable features. The most

significant advantage of this method over other methods is the characteristic that this meth

od may be used with any bit without modifying the bit design in any way. This effectively

separates the bit design from the detection/warning system so the most desirable bit design

can be achieved without concern for the accommodation of embedded sensors. Figure 54

illustrates the physical arrangement of the sensors in relation to the bit.

141

/ Pipe Rotation

/Surface

Borehole

Earth

Drill Pipe

Sensors

Instrumented

~-~~- Threaded
Connection

Bit

Acoustic
Signals

Figure 54 Roller-Cone Drill Bit Bearing Failure Detection

In the ANNP A method, an adaptive neural network is used to process sensor signals

as part of an overall scheme to detect drill bit failure. Figure 55 shows a schematic of the

failure detection system. Sensor signals are received by the neural network, which uses

past signal measurements to predict the next sensor value.

142

Sensors

h==n---.i Predictive
Neural
Network

Prediction Errors

;, ,
Prediction
Error
Analyzer

Prediction Error Statistics

/. __
Failure
Detection
Algorithm

Failure? (Yes/No)

Telemetry
~--- System

Warning Signal
to Surface

Figure 55 Schematic of ANNP A Drill Bit Failure Detection Scheme

The neural network attempts to predict sensor readings one step ahead in time using

older sensor readings. Figure 56 shows the sensor data prediction scheme using a neural

network.

Sensor
Inputs

Neural
Network

Sl(n) S2(n) SJ(o)

Neural
Network
Prediction
Errors

Figure 56 Adaptive Neural Network Predictor (ANNP A Method)

143

The past sensor values are stored in a tapped-delay-line memory structure. These

values are then used as inputs to the neural network. The neural network then predicts the

next value expected from each of the sensors. The value predicted for each of the sensors

is then subtracted from the actual sensor readings to compute a prediction error. If the neu

ral network prediction is good, the computed prediction error will be small. If the predic

tion is poor, the prediction error will be high. The square of the prediction error is

computed and analyzed. If the signal being predicted is fairly repetitive (periodic) it is pos

sible to successfully predict future signal values. If there is a large random component in

the signal being predicted, or if the nature of the signal changes rapidly, it is difficult to suc

cessfully predict future signal values. The ANNP A method exploits this characteristic to

detect bit failures.

Under normal drilling conditions with a bit in good condition, the vibration in the

bit is fairly periodic with a significant random component added in. If a neural network

prediction is performed on a time-series of vibration measurements taken near the bit, there

will be a level of prediction error which does not change rapidly over a short period of time.

This is because the neural network will be capable of predicting much of the periodic vi

bration associated with the bit. However, random vibrations due to the drilling environment

such as rock type, fluid noise, etc. will not be predictable and will result in prediction errors.

Test data has shown that when a bearing in a cone starts to fail, it will generally emit bursts

of high-frequency vibration or will cause the cone to lockup. Either of these occurrences

will cause an abrupt and unpredictable change in the pattern of vibrations produced by the

bit. If the prediction error of a neural network that is being used to predict bit vibration is

144

monitored, momentary increases ("spikes") in the prediction error will be observed. These

observations can be used to detect roller cone bit failure. Figure 57 is an illustration of the

prediction error for normal running conditions and spikes in the prediction error related to

failures.

Failure Induced
Prediction Error ~

...
'tJ e Normal Running
f W Predict\on Error

C'IS C: ~ :s 0
CT·-

U, t,
C: ·-C'IS 't,
Cl) e
:E a.

Time

Figure 57 Failure Indications (ANNP A) Method

One way to determine if a failure is in progress is to look for spikes in the prediction

error which exceed a threshold value with an average frequency of occurrence that also ex-

ceeds a threshold frequency value. In other words if a high enough spike in the prediction

error occurs often enough this means there is a failure in progress. Another way to detect

failure is to monitor the standard deviation of the prediction error. If the standard deviation

gets large enough, a failure is indicated. In addition to monitoring a threshold value for the

prediction error it might be useful to monitor the change in prediction error. These methods

are examples of potential ways to analyze the neural network prediction error to detect bit

failure.

145

All signal processing must be performed at the drill bit in real-time. Limited pro

cessing capability and low available power make it important to use an efficient training

method such as the ULLS algorithm.

ANNP A Method Experimental Verification

To verify the validity of the ANNP A method, a neural network was trained using

the ULLS method to predict actual acoustic signals produced by a roller cone bit before and

during failure. Experimental data was collected from a laboratory test of an actual drill bit

in operation. In this section the performance results of the ANNP A method when applied

to experimental data will be presented. Experimental data was collected while using an ac

tual roller cone bit to drill into a cast iron target. Sensors were mounted to a sub directly

above the bit and a data acquisition system was used to record the sensor readings. Accel

erometers were attached to the sub directly above the bit. A tri-axial accelerometer was

used. The bit was held stationary and loaded vertically into the target while the target was

turned on a rotary table. Figure 58 shows a picture of the experimental test setup.

The sampling rate for most of the data recorded was 5000 hertz. Test data was re

corded at sample rates of 5000, 10,000, 20,000 and 50,000 hertz. A frequency analysis

showed that a very high percentage of the total signal power was below 2000 hertz. For

this reason and to reduce unnecessary data storage, a sample rate of 5000 hertz was used

for the series of tests.

An IADC class 117W 12-1/4" XP-7 bit was used for all tests. The test procedure

consisted of flushing the number 3 bearing with solvent to remove most of the grease and

then running the test bit with a rotational speed of 60 rpm and a constant load of 38,000

146

pounds. Cooling fluid was pumped over the bit throughout the test. Under these drilling

conditions the contamination level in the number three bearing was increased in steps.

Figure 58 Experimental Test Setup

This process continued until the number 3 bearing was very hot, and was beginning to lock

up. Baseline data with the bit in good condition and the bearing at a low temperature was

taken before any contamination was introduced to the bit. A section of the baseline (no

bearing damage) data is shown in Figure 59.

147

2

§
5
~ 0
Cl)

1
-1

-2

Acceleration (no bearing damage)

~~~~~~~~~~~~~~~~~~ 

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 
Time (sec) 

Figure 59 Acceleration (no bearing damage) 

A three-layer neural network containing log-sigmoid activation functions and a 20 

tap input structure was trained to predict the acceleration signal using the ULLS method. 

There were 5 neurons in the first layer, 3 neurons in the second layer, and one linear output. 

Three different neural networks were trained, each using a different axis of acceleration as 

a target. There results for each neural network were very similar. A sample of the resulting 

prediction error is shown in Figure 60. As Figure 60 reveals, the prediction error was fairly 

consistent and small when there was no beapng damage. 

Testing continued for several hours. Twice during the test a drilling mud mixture 

consisting of 1.4 liters of water, 100 grams ofbentonite and 1.1 grams of sodium hydroxide 

was pumped into the number 3 bearing area. After the addition of the mud and after ex-

tended drilling some bearing failure, occasional "spikes" in the accelerometer data indicat-

148 



3.5 

~ 3 s 
g 
w 2.5 

.§ 
I 2 

1 
"C 1.5 
IE 
~ 
& 1 

0.5 

Squared Acceleration Error (no bearing damage) 

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 
Time (sec) 

Figure 60 Squared Prediction Error (no bearing damage) 

ed early bearing failure. Figure 61 and Figure 62 show accelerometer data and the corre-

sponding neural network prediction error. In Figure 62 the "spikes" in the prediction error 

indicate early bearing failure. This was verified by close inspection of the bit. 

Acceleration (moderate bearing damage) 

"Squeaks"~ 
10 \ 

-5 

-10~~-~-~-~-~-~-~-~-~-~ 
1.5 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.6 

Time (sec) 

Figure 61 Acceleration (moderate bearing damage) 

149 



Squared Acceleration Error (moderate bearing damage) 

70 

'$; 60 

~ 50 
C: 
.Q 

} 40 

§ 
<( 30 

~ 
~ 
&20 

10 

0 JI ,.. ,. j "' i.iA 

1.5 1.51 1.52 1.53 1.54 1.55 1.56 
Time (sec) 

1.57 1.58 1.59 1.6 

Figure 62 Squared Prediction Error (moderate bearing damage) 

In the last phase of the test, drilling was halted and a solution of 1.4 liters of water, 

100 grams ofbentonite, 1.1 grams of sodium hydroxide, and about a gram of sand was 

pumped into the number 3 bearing area. Drilling resumed, and the bearing quickly began 

to show signs of increasing failure. The number 3 bearing began to produce steam as it 

heated up. Figure 63 and Figure 64 show the accelerometer data and prediction results for 

the data recorded under these conditions. 

The last test data was recorded after significant bearing wear. This data was record-

edjust prior to bearing lockup. The "squeaking" in the bearing is obvious in Figure 63. 

Numerous failure indications can be seen in Figure 64. It must be noted that the "slop" (in-

crease in bearing clearance) in the number 3 bearing is still very small. This means that a 

very definite failure detection was indicated long before catastrophic bearing separation. 

150 



50 

40 

30 

20 

§ 10 
§ 
~ 0 
Q) 

~ 
~ -10 

-20 

-30 

-40 

-50 
2 

I. 

Acceleration (hea"Y bearing damage) 

...- "Squeaks" --. 

• 
,.,, J, I .I .h ..• I 

I' , I ,. 
I 

... , 
I 

2.5 3 3.5 
Time (sec) 

Figure 63 Acceleration (heavy bearing damage) 

Squared Acceleration Error (hea"Y bearing damage) 
2500------~-----~-----~ 

~ 
g 

2000 

~ 1500 
0 

I 
~ 
~ 1000 

~ 
~ 
O' 

Cl) 

500 

o~~~--~~~---~'~--~-~~ 
2 2.5 3 3.5 

Time (sec) 

Figure 64 Squared Prediction Error (heavy bearing damage) 

Downhole Tool and Warning System Description 

In the first section the method of detecting bearing failure was described. In this 

section a method and apparatus for signaling the operator at the surface will be described. 

The general idea is the following. Under normal rotary drilling operations surface pump 

151 



pressure is applied to the drill string which creates a high-pressure jet via nozzles in the drill 

bit. This is also true when drilling is performed using a mud motor. A large pressure drop 

is present across the nozzles in the bit. For example, a pump pressure of 2500 psi might be 

applied to the drill string at the surface. This applied pressure will be seen at the bit, minus 

fluid friction and other pressure losses. So the flowing pressure drop across the bit might 

be around 1200 psi. If a non-restrictive port is opened above the bit, the flowing pressure 

within the entire system will be reduced. In other words, if a large port is opened above the 

bit, the 2500 psi applied at the surface will drop to say 1800 psi. This pressure drop can be 

used as a signal to the operator that the port has opened indicating a particular condition 

downhole such as a bearing failure. Figure 65 illustrates the process. 

OosedPort 

e / 
; 2500 ,_,~..,.,._.._,,_.. 

! 
ll. 
Cl 
.5 

Port Opens 

/ 

(Failure Detected) 

Open Port 

/ (Failwoloomti"" ·;: 
C 

B 
~ 1800 -----------------------

::::1 
u, 

Time(sec) 

Figure 65 Open Port Failure Indication 

The basic detection/warning system operation follows a sequence. First the sensor 

data is monitored while the drilling operation proceeds. The detection method previously 

described is used to detect a failure in progress. If a failure is detected a port is opened 

which causes a drop in the surface pump pressure. This drop in pressure can easily be seen 

152 



by the surface operator, serving as a warning that a failure is in progress in the bit. A sche-

matic of the downhole tool apparatus is shown in Figure 66. 

L...17r-----,.,u/ Fluid Bypass Ports 

t Sleeve (Valve) 

Actuator 

Detection Electronics 

Sensors 

Bit 

Figure 66 Downhole Tool Schematic. 

In this device, a sleeve valve can be opened and closed repeatedly to cause corresponding 

low and high pressure pumping pressure levels at the surface. A microprocessor or digital 

signal processor is used to implement the detection algorithm and monitor the sensors. Ad-

ditionally the processor will control the actuator, which open and closes the sleeve valve. 

It may be desirable in some cases to close the bypass valve after a certain delay, so normal 

drilling can proceed if desired. Figure 67 shows the surface pressure sequence associated 

with this type of operation. 

153 



I!! 
:I 2500 

I 
D. 
a, 

~ 
'C 
Q 

Closed Port Open Port Closed Port 
(Failure Indicatio/ 

i 1800 -------------------------- __ _. 

:I 
II) 

Time (sec) 

Figure 67 Open-Close Signaling Operation 

Chapter Summary 

During drilling operations it is important to avoid wearing a bit until catastrophic 

failure occurs, leaving a portion of the bit in the well. In this chapter a bearing failure de-

tection system which utilizes the ULLS algorithm to train a multi-layer neural network has 

been described. The ULLS algorithm is suitable for this application because of the limited 

computational capability at the bottom of the well where sensing equipment and the failure 

algorithm must operate in "real-time". This method has been tested with positive results 

using experimental data recorded during laboratory tests in which a drill bit was tested to 

the point of failure. 

This chapter also describes a relatively simple method of providing a surface indi-

cation to the operator that a failure has been detected. In this method surface pump pressure 

across the bit is altered to send information from downhole to the operator. 

154 



Chapter 8 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In early chapters, background information on standard optimization methods was 

presented. These methods have been used in one form or another to train neural networks. 

In Chapter 2, batch optimization methods were discussed. These batch training methods 

generally provide the basis for the development of most of the on-line or incremental opti

mization methods presented in Chapter 3. In most cases, simple examples were used to 

demonstrate each algorithm. This background material is necessary, as it has been the start

ing point for new algorithms which were developed during this research. 

The new results presented in this work can be separated into two parts. The first 

part is the development of the new Underdetermined Linearized Least Squares (ULLS) al

gorithm for training neural networks and a recursive form ofthis algorithm the Recursive 

Underdetermined Linearized Least Squares (RULLS) algorithm. In Chapter 7, the ULLS 

algorithm was applied to a real-world problem involving the detection of bearing failures 

in oilwell drill bits. 

The second new result includes one approximate and one more exact method for 

implementing the Levenberg-Marquardt algorithm recursively. 

155 



In a general sense, the objective of this work has been to develop new on-line, re

cursive algorithms for training neural networks for use in adaptive filtering and controls ap

plications. Specifically, one goal of the research has been to develop a recursive version of 

the well-known Levenberg-Marquardt algorithm. The motivation for this goal is the excel

lent performance given by the batch Levenberg-Marquardt algorithm. It is an attractive 

proposition for adaptive filtering and controls applications to have such an algorithm avail

able in an efficient, recursive form. The work on a recursive Levenberg-Marquardt algo

rithm led to a second primary research goal. This has been to develop a new training 

algorithm based on the underdetermined solution to the linearized least-squares case with 

improved performance and modest computational requirements. The need for an algorithm 

of this type is particularly noticeable in neural network filtering and controls applications 

where tapped-delay-lines and fully connected networks make it necessary to use many pa

rameters which must be adjusted at each time step. A method which allows for the adjust

ment of many parameters while only using a relatively small number of samples might 

prove to be efficient and useful in these applications. 

The main contribution of this work is the ULLS (underdetermined linearized least 

squares) algorithm and a recursive form of the RULLS algorithm. The application of the 

underdetermined solution to the training of neural networks appears to be a new method not 

previously noted in the literature. The basis for this algorithm is the standard linear least 

squares solution. The least-squares solution to the estimation of parameters for the under

determined (fewer parameters than samples) linear case was presented. It was then shown 

that by linearizing a nonlinear function such as a neural network, then applying the solution 

156 



to the linear underdetermined case, that parameter estimates for the nonlinear function 

could be made with fewer samples than parameters. This concept was developed into a 

method of training neural networks using a ''window" of past measurements to form a 

"moving" Jacobian matrix for use in the ULLS algorithm. This window of Jacobian terms 

provides a mechanism for "forgetting" past measurements, making the algorithm adaptive. 

The algorithm is particularly useful for on-line training of neural networks. In fil

tering and controls applications it is typical to use a tapped-delay-line input structure, 

When a linear function (i.e. a finite impulse response filter) is used, the number of param

eters which must be adjusted is equal to the number of inputs. In typical applications the 

number of"taps" or inputs can range from tens to hundreds in number. Now suppose the 

linear function is replaced by a fully-connected nonlinear neural network. For the same 

number of taps, the number of parameters increases at least 100% for each neuron in the 

first layer. Additional parameters which are associated with the other layers of the network 

are also added. If standard higher-order training algorithms such as Recursive Gauss-New

ton or Extended Kalman Filter are used, the size of the matrices which must be manipulated 

equals the number of parameters. When tapped-delay-lines are used with fully-connected 

neural networks the number of parameters can be prohibitively large for use with standard 

higher-order training algorithms. Problems arise with respect to both computational bur

den and memory requirements. The ULLS algorithm allows many parameters to be adjust

ed using only a few observations with reduced computational burden. 

157 



In test cases, the performance of the ULLS algorithm has been shown to be superior 

to the steepest descent method while only requiring modest increases in computational 

complexity and memory requirements. 

In order to make the ULLS algorithm even more efficient, a fully recursive form of 

the algorithm was developed using the block matrix inversion algorithm. The RULLS al

gorithm does not require the inversion of a matrix. However, numerical simulations of the 

RULLS algorithm revealed a susceptibility to numerical instability due to the finite preci

sion of a digital computer. This problem was examined, but unfortunately a simple solution 

was not discovered. 

The other contribution of this work was the development of a recursive form of the 

Levenberg-Marquardt batch optimization algorithm. The goal of this work was to develop 

a recursive LM algorithm which requires no direct matrix inversion thereby making the al

gorithm as computationally efficient as possible. Two different approaches were taken in 

this effort. 

The first method, called the RLMMIL (Recursive Levenberg-Marquardt Using Ma

trix Inversion Lemma) method, avoids any direct matrix inversion by using the matrix in

version lemma to perform the update computations required to account for the presence of 

the diagonal matrix which is added to the Hessian matrix in the Levenberg-Marquardt al

gorithm. In this method the matrix inversion lemma is applied once for every diagonal 

term added to the Hessian matrix. This means that if there are N parameters, the matrix 

inversion lemma must be applied N times. It has been shown in simulations that the solu

tion produced using the RLMMIL method is the same as the solution obtained by perform-

158 



ing the inversion directly. It was also shown that the computational requirements for a full 

update using the RLMMIL method are lower than all standard inversion techniques except 

Gaussian Elimination. However, if a partial update is made using the RLMMIL method in 

which a limited number of the diagonal LM terms are computed, the computational require

ment can be reduced by approximately an order of magnitude. The key here is deciding 

which term( s) should be updated. This refinement to the method was not completed, but 

this method shows much promise. 

A second approach was taken in developing a recursive Levenberg-Marquardt al

gorithm. The method avoids any direct matrix inversion by using the matrix inversion lem

ma in conjunction with the Cayley-Hamilton Theorem. The idea here was to approximate 

the required inverse by using a form of the Cayley-Hamilton theorem which fits the form 

of having a diagonal matrix added to the Hessian matrix as we see in the Levenberg-Mar

quardt algorithm. Unfortunately, the Cayley-Hamilton theorem only holds for certain ma

trix conditions which are usually violated as the algorithm converges. 

Recommendations 

There are a number of areas in which the present work could be improved. The new 

training algorithms developed in the course of this research all offer substantial opportunity 

for further refinement and improvement. 

Recursive Form of the ULLS Algorithm 

The Underdetermined Linearized Least Squares (ULLS) algorithm was shown to be 

an effective algorithm for training nonlinear networks. A recursive form of this algorithm, 

the RULLS algorithm was developed with the goal ofreducing the computational complex-

159 



ity of the ULLS algorithm. Unfortunately, the RULLS algorithm as it stands, suffers from 

numerical instability when implemented on a finite precision computer. There needs to be 

further work on the development of a numerically stable recursive version of the ULLS al

gorithm. One approach to this problem might be the development of an algorithm based 

on QR decomposition. 

Recursive Levenberg-Marquardt Using Matrix Inversion Lemma 

One of the major efforts in this work was the attempt to develop a recursive form of 

the Levenberg-Marquardt algorithm requiring no matrix inversion. Much progress was 

made in this area. The most promising recursive Levenberg-Marquardt algorithm devel

oped was a method which uses the matrix inversion lemma once for each diagonal term in 

the of L1µ1 matrix at each recursion. This implementation proved to be more computation

ally efficient than any of the standard inversion techniques except Gaussian Elimination. It 

was shown that if only a portion of the diagonal terms are accounted for at each iteration, 

the RLMMIL method could achieve great reductions in computational complexity. Be

cause the RLMMIL algorithm is set up to account for the diagonal terms individually, it is 

possible to adjust only the most significant diagonal terms during a given recursion. If it 

were possible to "pick" the most significant term or terms at each recursion a reduced set 

of adjustments made only on the most significant terms could be considered. This would 

result in a major reduction in the level required computation. In future work, a way of de

termining which diagonal terms are most significant would need to be developed. This, 

coupled with the method of making the adjustments shown in this work would comprise a 

160 



complete, efficient, recursive training method closely resembling the Levenberg-Mar

quardt method. 

161 



REFERENCES 

[1] L. Ljung, System Identification: Theory for the User, Prentice Hall, Engelwood Cliffs, 
N.J. 

[2] M. T. Hagan, H.B. Demuth and M. Beale, Neural Network Design, Boston: PWS Pub
lishing Co., 1996. 

[3] J.M. Mendel, Lessons in Digital Estimation Theory, 2nd ed., Prentice-Hall, Englewood 
CLiffs, N.J., 1995 

[4] S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice Hall, Upper Saddle River, N.J., 
1996. 

[5] B. Widrow, M.E. Hoff, "Adaptive switching circuits," 1960 IRE WESCON Convention 
Record, New York: IRE Part 4, pp. 96-104, 1960. 

[6] R.E. Kalman, "A new approach to linear filtering and prediction problems," Trans. AS
ME, J. Basic Eng., vol. 83, pp. 95-108. 

[7] A.H. Sayed and T. Kailath (1994). "A state-space approach to adaptive RLS filtering," 
IEEE Signal Process. Mag., vol. 11, pp. 18-60. 

[8] R.E. Kopp, and R. J. Orford. 1963. "Linear regression applied to system identification 
for adaptive control systems." A/AA J., Vol. 1, p. 2300. 

[9] S. Singal and L. Wu, "Training multilayer perceptrons with the extended Kalman al
gorithm," Advances in Neural Information Processing Systes 1. Denver 1988, D.S. 
Touretzky, Ed. SanMateo, CA: Morgan Kaufmann, 1989, pp. 133-140. 

[10] M. B. Mathews, "Neural network nonlinear adaptive filtering using the extended Kal
man filter algorithm," Proceedings of the International Neural Networks Conference, 
Paris 1990, vol. I,pp 115-119. 

[ 11] R. J. Williams, "Training recurrent networks using the extended Kalman filter," Inter
national Joint Conference on Neural Networks, Baltimore 1992, vol. IV, pp. 241-246. 

[12] G. V. Puskorius and L.A. Feldkamp, "Neurocontrol of nonlinear dynamical systems 
with Kalman filter trained recurrent networks," IEEE Transactions on Neural Net
works, vol. 5, no. 2, pp. 279-297, 1994. 

[13] G. V. Puskorius and L.A. Feldkamp, "Recurrent network training with the decoupled 
extended Kalman filter algorithm," Proceedings of the 1992 SPIE Conference on the 
Science of Artificial Neural Networks, Orlando, 1992, vol. 1710. pp. 461-473 

162 



[14] G. V. Puskorius and L. A. Feldkamp, "Automotive engine idle speed control with re
current neural networks," Proceedings of the 1993 American Control Conference, San
Francisco, 1993, pp. 311-316 

[ 15] G. V. Puskorius and L. A. Feldkamp, "Model reference adaptive control with recurrent 
networks trained by the dynamic DEKF algorithm," International Joint c;onference on 
Neural Networks, Baltimore, 1992, vol. II, pp. 106-113 

[16] K.S. Narendra, A.M. Parthasrathy, "Identification and Control for Dynamic Systems 
Using Neural Networks", IEEE Transactions on Neural Networks, vol. 1, 1990, pp. 4-
27 

[17] Medsker, L.R. and Jain, L.C., Recurrent Neural Network Design and Applications, 
CRC Press, New York 

[18] A. Bjorck, Numerical Method for Least Squares Methods, Siam, 1996. 

[19] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., John Hopkins, Balti
more and London 

[20] D. P. Bertsekas, "Incremental Least Squares Methods and the Extended Kalman Fil
ter", SIAM J. on Optimization, Vol. 6, 1996, pp. 807-822. 

[21] 0. Stan and E.W. Kamen, ''New block recursive MLP training algorithms using the 
Levenberg-Marquardt algorithm", International Joint Conference on Neural Networks, 
Washington D.C., 1999, vol. III, pp. 1672-1677. 

[22] L.S.H. Ngia and J. Sjoberg, "Efficient Training ofNeural Nets for Nonlinear Adaptive 
Filtering Using a Recursive Levenberg-Marquardt Algorithm", IEEE Transactions on 
Signal Processing, vol. 48, 2000, pp. 1915-1927. 

[23] W. Yang and M. T. Hagan, "Training recurrent Networks", Proceedings of the 7th 
Oklahoma Symposium on Artificial Intelligence, Stillwater, 226, 1993. 

[24] Lua, F.,Unbehaun, R.,Applied Neural Networks for Signal Processing, Cambridge 
University Press, 1997 

[25] K. Ogata, Discrete-time Control Systems, Prentice Hall, Englewood Cliffs, NJ, 1987. 

[26] Meng Hock Fun, Doctoral Thesis, Recursive Time and Order Update Algorithms for 
Radial Basis Function Networks, Oklahoma State Unversity, 2001 

[27] A.P. Christoforou and A.S. Yigit, "Dynamic Modelling of Rotating Drillstrings with 
Borehole Interactions", Journal of Sound and Vibration, Vol. 2, 1997, pp. 243-260. 

[28] P.N. Jogi, J.D. MacphersonandM. Neubert, "Field VerificationofModelDerivednat
ural Frequencies of a drill String", Proceedings Energy Sources Technology Confer
ence and Exhibition, ETCE99-6648, 1999. 

[29] G. Reisig, J. Sancho and J.D. Macpherson, "Downhole Diagnosis of Drilling Dynam
ics Data Provides New Level Drilling Process Control to Driller", SPE 49206, Septem
ber 1998. 

163 



[30] J.S. Henneuse, "Surface Detection of Vibrations and Drilling Optimization", !ADC/ 
SPE 23888, February 1992. 

[31] J.D. Macpherson, P.N. Jogi and J.E.E. Kingman, "Application and Analysis of Simul
taneous Near Bit and Surface Dynamics Measurements", IADCISPE 39397, March 
1998. 

[32] S.A. Zannoni, C.A. Cheatham, C-K.D. Chen and C.A. Golia, "Development and Field 
Testing ofaNewDownholeMWD DrillstringDynamics Sensor", SPE 26341, October 
1993. 

164 



VITA 

Roger L. Schultz }_ 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: INCREMENTAL TRAINING ALGORITHMS FOR NONLINEAR NEURAL 
NETWORKS 

Major Field: Electrical and Computer Engineering 

Biographical: 

Personal Data: Born in Stillwater, Oklahoma, on September 28, 1963, the son of 
R. D. and Emma F. Schultz. 

Education: Graduated from Stillwater High School, Stillwater, Oklahoma, in May 
1981; received Bachelor of Science degree in Mechanical Engineering and 
Master of Science in Mechanicl Engineering degree from Oklahoma State 
University, Stillwater, Oklahoma, in December 1986 and May 1988, respec
tively. Completed the requirements for the Doctor of Philosophy degree in 
Electrical and Computer Engineering at Oklahoma State University in De
cember 2002. 

Experience: Employed by REN Corporation as a Project Engineer from 1985 to 
1988; employed by Halliburton Services as a Design Engineer from 1988 
to 1989; employed by Halliburton Reservoir Services as Design Engineer 
from 1989 to 1993; employed by Halliburton Energy Services as a Research 
Engineer from 1993 to present. 

Professional Memberships: Member of Institute of Electrical and Electronic Engi
neers, and the Society of Petroleum Engineers. 


