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A MULTIVARIATE COMPARISON OF FLOWSHOP ALGORITHMS

CHAPTER 1

INTRODUCTION

Using a multivariate technique, this study will
examine and compare a number of flowshop heuristic
algorithms. This technique permits comparisons to be made on
the basis of multiple criteria. 1In addition, the effect of
the problem size on the,efficiency of the algorithms is
examined. Any interaction effect between the algorithms and
the problem sizes is investigated and taken into
consideration when interpreting other aspects of this study.
The computational efforts that the algorithms require to
solve the problemg are also compared and reported. It is
believed that these types of comparisons provide information
which practitioners can utilize in decisions concerning the
selection of heuristic algorithms to solve scheduling

problems,

Histortical Development
Since ancient timés, the need for scheduling tasks
and facilities has confronted man. Plato wrote about the

advaniages of the division of labor, and the Greeks practiced

1
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it extensively [30]. Plaﬁo mentions as an example, the
specialization involved in the production of shoes where some
workers became specialists in cutting the leather while
others specialized in stitching. If the specialization was
also applied to the repair of chariots and horse-drawn
vehicles, it would have been necessary to schedule these
vehicles through the various work centers in order to return

them to productive use as soon as possible.

The arrival of the Industrial Revolution brought
about a greater demand for efficiency. Improving the methods
of performing the tasks by utilizing the concepts of work and
motion study occupied the interest of many of the scientific
management'pioneers, the most notable of which were Frederick
Taylor and Frank Gilbre£h. Another pioneer of this era was
Henry Gantt, who invented the Gantt chart, which is used as
an aid in solving problems. This device is most frequently
used in &the constrhction industry and in project scheduling,
but can also be utilized in jobshop and flowshop scheduling.
Basically, this chart displays the sequence of the activities
ianlved in the project'and also represents their durations
on a horizontal scale, thus permitting an observer to
determine the duration of the entire project as well as the.

delays and slack embedded within the project. The activities

. in a flowshop can also be represented with a Gantt chart. A
flowshop exists when a batch of jobs are to undergo

processing on a number of machines, with the restriction that



jobs must be processed in the same technological order, i.e.
each job must first be processsed by machine 1, then by
machine 2 and so on. The batch assembly line is an example
of a flowshop where the jobs are identical. 1In other words,
each automobile, transistor radio, or mass-produced item
which leaves the assembly line is identical, In a machine
shop;~however, the jobs tend not to be identical. The
flowshop problem, therefore, is to sequence the batch of jobs
through the various machines so as to minimize some measure
of performance.

Initially, researchers concentrated on the goal of
determining the optimal schedule according to some criterion
of performance, which was usually the minimization of.
makespan [65,76,112)]. The most comprehensive manner in which
this can be done is to examine all possible schedules. This
is called complete enumeration, and its utility diminishes as
the number of jobs increases because the number of possible
schedules increases astronomically. Thus, the computational
effort involved becomes excessive, If there are n jobs to be
sequenced, then there are n! possible schedules to be
examined., For example, 4 jobs yield 24 possible schedules, 5
jobs yield 120, 6 jobs yield 720 and 10 jobs yield over
3,600,000 possible schedules, Ten jobs are a rather modest
number to be scheduled, but the calculations involved in
determining the optimal schedule would occupy a modern

high-speed computer for at least thirty minutes, a
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considerable aﬁd costly amount of time. It was therefore
necessary to develop techniques which required much less
computational effort.

~In 1954, Johnson. [65] developed. an algorithm. which
reduced computational effort considerably. In fact, the

computations required could be done by hand; His algorithm,
however, has very limited utility since it was designed to
solve problems with two machines and special cases with three
machines, Nevertheless, it was a very significant step in
reducing computational effort for these limited situations,

and it was one of the earlier attempts to use an analytical

model in the solution of the problem. Johnson was also
among the first to adopt makespan as a measure of
'performance, an action which was later emulated by the
majority of subsequent researchers.,

Other approaches soon followed. First, the integer
linear programming approach appeared in the late 1950's.
Listed among the authors in this field are Wagner [112],
Bowman [24] and Manne [76]. Conceptually, this method
appears to be very appealing, but results have indeed been
very disappointing. In order to formulate an n job problem
by this method, U4n equations are required along with
n-squared unknowns, Due to these relatively large numbers of
equations and unknowns which require a great many
computations, this technique has been somewhat abandoned.

Wagner [112) commented as follows:



As will be evident below, the model (integer
linear programming) in its present form is
computationally unwieldy except perhaps for

situations with a very few machines and a limited
numnber of items; in such cases, a frequently

recurring sequencing problem or one involving a

considerable financial sum might profitably be

solved by the method herein.
Gupta [48] also commented on the limited scope of this
approach. He pointéd out that Manne's suggestion for
generaliiing the fbrmulation in order to account for the
occasional lateness of jobs would lead to a reduction in the
chances of obtaining a feasible solution. Nevertheless, when
feasible solutions were obtained, they required less
computational effort than did complete enumeration.

The branch-and-bound method was introduced in 1965 in
two separate papers, one by Ignall and Schrage [64] and the
other by Lomnicki [73]. Since then, several variations of
this technique have appeared [13,75,87]. The major
differences have been in the bounding procedures, which are
designed to eliminape less efficient schedules from
" consideration, Some of the bounding procedures were studied
and compared by Baker [14]. The branch-and-bound method that
incorporates a backtracking procedure guarantees optimal
solutions. When this latter procedure is excluded, optimal
solutions may or may not be obtained. As p, the number of
jobs, and m, the number of machines, increase, the likelihood
of the pfoblem being solved by the branch-and-bound method

" decreases because an increase in p causes the number of

branchés to grow by a factor of 21, This growth eventually



begins to overburden the computer's capacity to carry ;ut the
number of needed computations within a reasonable period of
time, even for moderately-sized problems., So far, the sizes
of the problems solved by this technique have been small,
generally less than 12 jobs [u8,87].

The combinatorial search technique was introduced by
Dudek and Teuton [40] in 1564. This technique functions by
employing some form of dominance check to eliminate less
desirable partial sequences and then examining the remaining
small subset for the best partial sequence. Thus, the
elimination procedure reduces the search effort and leads to
optimal solutions. Since the original Dudek and Teuton
article, Smith and Dudek [100], McMahon [T74], Bagga and
Chakravarti [12], Baker [15], Szwarc [105,106], and Gupta
[53,55] have presented other methods, As the number of jobs,
n, increases, the combinatorial method demands a highly
disproportionate growth in the computational effort, a fact
which has led to the conclusion that its application is not
beneficial to problems containing more than nine jobs [55].

The foregoing techniques were effective in obtaining
solutions to the flowshop scheduling problem with a lesser
computational effort than if all possible schedules were

enumerated before selecting the best schedule according to

some criterion, As noted earlier, these techniques still
required considerable effort as the number of jobs increased

beyond ten. As a result, some researchers then turned their
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attention to heuristic techniques which, by definition, yield
"good" or "near optimal" solutions. Using these techniques
to obtain a solution saves computational effort., However,
the saving is accompanied by a decline in the quality of the
solution because the solutions are generally not optimal.
The heuristic approach seems to hold the most promise for an
economical but efficient solution to the scheduling problem.
As a result of the recent emphasis on this solution
technique, many heuristic algorithms have appeared in the
literature [1,36,37,44,50,54,58,72,84,85)]. These algorithms
can be placed in two broad categories: those which yield a
single solution and those which yield multiple solutions,
from which the best is chosen. Chapter 3 will discuss
algorithms from both categories in some detail.

A practitioner faced with the problem of écheduling a
number of jobs on several machines can therefore solve his
problem by selecting an algorithm from among the different
classes of algorithms. If he prefers an optimal solution,
then he can determine the schedule by such methods as
complete enumeration, combinatorial search, integer
programming, and branch-and-bound with backtracking. If a
less than optimal solution would be acceptable, then a
heuristic algorithm or branch~and-bound without backtracking
would yield the required solution. 1In order to select the
particular algorithm, the practitioner may need to know which

algorithm provides a solution with the least computational
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effort and what quality of solutions tﬁe algorithm provides,
Not much research has been done in this area. In the case of
the optimizing algorithms, Ashour [8] and Baker [14] have
compared a number of algorithms, but their selection of
algorithms was by no means exhaustive. Dannenbring [37] has
been the only researcher to have compared several heuristic
algorithms in the same study. Likewise, his selection was
not exhaustive, and many new algorithms have appeared since
his selection was made. In addition, when most researchers
reported a new algorithm, there was no uniformity in their
choices of algorithms with which they compared it
{1,7,50,54,58]. Unfortunately, the testing of these new
algorithms has been inconsistent, because each new algorithm
was tested using a different problem set (or tasks) ‘and on

different computers. It is therefore difficult to make
concrete statements about the comparative abilities of

heuristic algorithms which were not tested in the same study.
On thé other hand, the research by Ashour, Baker and
Dannenbring enables one to make concrete conclusions, because
the algorithms included in each study were tested under the
same conditions,

Other studies have addressed different issues. Gupta
[45,49,57] has used criteria other than makespan in studying
the flowshop problem. He has argued that, if economic
optimality is desired, makespan may not neceséarily be the

most appropriate measure of performance. Mellor listed
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several types of goals which a production department might
try to optimize [77]. He also advocated combining the
performance measures in order to more adequately reflect
thése goals.

In a recent study, Borovits and Ein-Dor [23]
introduced Kiviat Charts as a means of combining
multidimensional criteria to evaluate results derived from
employing four scheduling rules to soive jobshop problems.
The charts create a visual display of certain types of
results and can best be described in the words of the
authors, Borovits and Ein-Dor [23]:

These charts relate various aspects of system
performance allowing one to see at a glance
whether, in general, the system under consideration
is well utilized or not. We believe that this same
technique may be of value in evaluating job-shop
schedules,

The charts seem to require that the results be expressed in
relationship to ideal results and that visual judgements be
made in comparing results, The use of monetary
transformations of criteria was also done in this study as
well as in some studies by Gupta [45,49,57]. Intuitively,
this appears to be a very logical approach but,

unfortunately, cost data are seldom available,

Justification for This Study

As mentioned in the previous section, much of the
research on flowshop scheduling has focused on creating

algorithms and on comparing the results of algorithms, The



10

receht trénd has been to concentrate on heuristic algorithms,
To date, the most comprehensive comparison of heuristic
algorithms was done by Dannenbring [37]. His study, however,
did not include all of the heuristic algorithms available,
and since then, more algorithms that have produced good
results have appeared (['1,102].

The formulation of the flowshop problem and the
development of these algorithms have been done after a number
of assumptions and simplifications were introduced. These
assumptions and the formulation of the problem will be the
topic of Chapter 2, One simplification which has frequentiy
been adopted is the use of a single criterion of performance.
In the majority of the studies, inclﬁding Dannenbring's

comprehensive study, the minimization of makespan was used as

the criterion of performance. Since a production systenm
would be likely to have multiple goals, the results of.the
above studies would be of limited use to the managers of such
systems. |

The Kiviat Chart approcach of Borovits and Ein-Dor
{23] did not include the minimization of makespan as a
criterion of performance, but it produced a technique for
combining multidimensional criteria. 1It, however, requires
visual evaluation, which is rather imprecise.

There has been a notable absence of rigorous
experimental designs in past studies, Results were generally

obtained by simulating the performance of the schedules that
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the algorithms produced, with the simulations being
replicated a number of times. The results were then averaged
over the number of replications and comparisons were made
with these averaged figures. No attempts were made to attach
any statistical significance to the differences between the
results for the various heuristic algorithms.

In view of the above statements, it seems reasonable
that a study which, using a multivariate approach, compares
some of the better heuristic algorithms, permits multiple
performance criteria to be used, and permits one to make
statements about the statistical significance of the
differences in the results would indeed be a useful
contribution to the literature in this field of knowledge.
This study seeks to develop an analytical technique which
will integrate the multiple criteria of performance. A
multivariate analysis of variance model is used to permit
these criteria to be considered simultaneously and, at the
same time, any interaction effects between these criteria can
be investigated and taken into account. This technique,
therefore, will permit any comparison of algorithms to
provide more adequately the information needed by managers.
Additionally, statistical statements can be made about the
results because of the utilization of an experimental design
and a multivariate statistical method,

In this study, a number of heuristic algorithms that

gave promising results in former studies are compared. Two
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of the algorithms were selected from Dannenbring's study
since they consistently gave good results, while two others
were selected from recent articles on the basis of their
promising results. The fifth algorithm was developed by the
author for this study. Thus, as a secondary benefit, this
study compares the five algorithms using three measures of
performance:

1. Makespan

2. Machine Idle Time

3. Job Waiting Time
To the best of this author's knowledge, these algorithms have
never undergone such a comparison., Although this is not an
exhaustive study of all of the algorithms available, it does
compare some of the newer algorithms with the older ones and
brings'together some which have never been compared.

Dannenbring's research [37] suggested that the size
of the problem, which is measured by the combination of the
number of jobs and number of machines, had an effect upon the
efficiency of the algorithms, This study investigates this
effect with the algorithms under consideration. Results from
this portion of the study may provide knowledge which would
help in selecting the appropriate algorithm for any given
task.
The Jjustification for this study can therefore be

summarized as follows:
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It seeks to develop a multivariate model flexible
enough to integrate the multiple goals of a
production system in order to compare flpwshop
heuristicec algorithms. This comparison would permit
the selection of the most appropriate algorithm for
scheduling jobs through the system.
Using three criteria of performance, it compares
five algorithms, Some of these algorithms have
never been compared, and those which have been were
compared on the basis of a single criterion.
It investigates the effect of problem size on the
efficiency of the algorithms. This will assist in
the selection of the most appropriate algorithm for
the task,
It investigates the interaction effect between the
algorithms and the problem size.
It adopts an approach which utilizes a formal

experimental design and indorporates statistical

~techniques in the comparison of the data.

Post-analyses are also performed.

Statement of the Problenm

With the exception of one study, past research
articles have compared the performance of scheduling
algorithms on the basis of a single criterion. It has often
been mentioned ?hat in order for the scheduling theory to be

of use to the practitioner, an attempt should be made to
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approach the problem realistically [41,48]. Realism has been
lacking in comparing the performances of the heuristie |
algorithms. Most studies have used techniques which require
a single measure of performance. This has been convenient
but far from realistic because firms are more likely to
schedule jobs in order to achieve multiple goals. This study
attempts to introduce a more realistic approach\to comparing
the performance of heuristic algorithms; it develops a
multivariate model which would permit evaluations using
multiple criteria. It also investigates the effect of the
size of the problems on the efficiency of the algorithms, In
addition, this study investigates and takes into
consideration any interaction between the heuristic and
problem sizes. The computational times required by the
algorithms to solve particular problems are alsoc compared.

The research is carried out entirely in the
laboratory settins. Each algorithm is used to generate a
schedule, and the operation of the flowshop, utilizing the
schedule, is simulated on the computer. The performance
values are recorded and evaluated by a multivariate
statistical technique which was selected to compare the
algorithms' ability to generate good schedules. The
multivariate statistical technique is fully deseribed in
Chapter U4, where the full experimental design is presented.

Univariate statistical techniques are also used where
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appropriate, as in the comparison of the heuristic algorithms

using a single measure of performance.

The research described here attempts to answer the

following questions:

1.

Which of the heuristic algorithms being studied
produce the most efficient schedules? Efficiency
will be measured by the following three criteria of
performance:
a) Minimization of machine idle time
b) Minimization of job waiting time
¢) Minimization of the length of time
between the start of the first job and
the finish of the last job.
Given the above criteria of performance, which
algorithms are most likely to produce optimal

schedules?

Given a fixed problem size, as measured by the
number of jobs and the number of machines, which
heuristic algorithm requires the least
computational effort, determined by the amount of
time required for the computer's central processing
unit to perform the calculations?

Does the size of the problem affect the efficiency

of the heuristic algorithmé?

" Is there an interaction effect between the

heuristic algorithms and the problem sizes?
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Complete answers to all of the above questions may be

elusive, but this study makes diligent efforts to explore

them.

Limitations of This Study

No attempt is made to compare all of the algorithms
reported in previous studies. Instead, a limited number of
the algorithms are selected and compared.

The study is limited to a selected number of problem
sizes, It is necessary to limit the number of algorithms and
problem»sizes because of both the expense involved and the
limited computational capabilities of the electronic data

”

processing equipment,

The Organization of The Remainder of This Study
The flowshop scheduling problem is presented and

examined in Chapter 2. Here, the problem is formally
developed and the assumptions utilized in its formulation are
stated and discussed. Chapter 3 consists of a comprehensive
survey of the literature relevant to this research, The
experimental design and the research analytical tool; are
presented in Chapter U, The data are analyzed and the
results are discussed in Chapter 5. Chapter 6 consists of
both a summary of the results of this investigation and the

conclusions derived from the analysis.



CHAPTER 2 .

THE FLOWSHOP SCHEDULING PROBLEM

This chapter defines and formulates the flowshop
problem, The assumptions employed in ordér to formulate the
problem are also specified and discussed. Throughout this
chapter, an attempt is made to keep the theory and the
discussion as general as possible by using abstract terms.
Thus, when the term "job" is mentioned, it refers to an
entity on which a number of related tasks are to be
performed., An example of a job could be the engine of an
airplane, a patient undergoing.bests. or the processing of an
insurance c¢claim, Likewise, the term "machine" refers to a
work station or fa;ility ét which the processing is done on
the jobs. Such a work station could be a lathe, an x-ray

room, or a clerk's desk.

Definition of the Problem
In describing the flowshop problem, it would be

useful to think of some hypothetical production center where

there are m machines available. These machines are arranged

17



18

.

in a particular order and are numbered sequentiélly. They
are so ordered because of the technological requirement that
all jobs must undergo initial processing by the first
machine, then by the second machine, and so on. The flowshop
scheduling problem can therefore be defined as follows [54,
p. 12]:
"Given n jobs to be processed by m machines; the process
time of job a on machine m being T (a=1,2, . . .,n;
m=1,2, . . .,M), it is desired to find the order
(schedule) in which these n jobs should be processed on
the m machines so as to minimize a well defined measure
of production cost."
The Assumptions of the Flowshop Problem
On reviewing the literature on the flowshop problem,
it was found that a number of assumptions were utilized in
order to fbrmulate and solve the problems. The assumptions
fell into four categories and can be stated as follows [98,
p. 31:
1. Assumptions regarding the jobs:
a) All n jobs are available before processing
begins.
b) Each job is to be processed in the same
technological order.
¢c) Jobs are processed as soon as possible,
d) Jobs are to finish in the same order in

which they started. No passing is to be

allowed,
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e) A single job cannot be processed simul-
taneously by more than one machine.
- 2, Assumptions regarding the machines:
a) Only one machine of each type is available.
b) At the most, only one job at a time can be
processed on a specific machine,
3. Assumptions regarding processing times:
a) The processing times of each job are known
and are deterministie.
b) The processing times are independent of
sequence,
¢) [The] set-up and transportation time is
ineluded in the processing time,
4, Other assumptions:
a) In-process inventory is allowed.
b) n and m (the number of jobs and machines,
respectively) must be positive finite
integers.
An additional assumption, which is quite often employed but
was not stated above, requires that, once an operation is
started by a machine on a job, it should be continued without
ihterruption to completion, As stated earlier, these
assumptions have made possible the formulation and solutioﬁ
of the fio&shop scheduling problem, but at the same time
there has been a disadvantage inAusing some of them; they

have removed some degree of realism from the problem. For
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example, consider the first assudption, which states that all
of the jobs are available before processing begins. This
means that any of the n jobs could be chosen to undergo
processing first. Likewise, any of the remaining (n-1) Jjobs
could be chosen for the second position, and so on until all
of the jobs are sequenced, This assumption makes the
flowshop problem static, which is generally only true in the
very short run, In an actual situation, jobs would be more
likely to arrive in a random dynamic manner than in a batch.

Another assumption concerning the jobs reduires a job
to be processed as soon as a machine is available or as soon
as the job arrives at that particular machine. 1In practice,
this may not necessarily be most economical, It may be
possible to delay the processing of a job withﬁut delaying
the completion of the entire batech. Delaying the processing
until there are other jobs to be processed on the same
machine may result in a reduction of the operating cost of
the machine., For example, if one step in the processing of
all the jobs requires heating in a furnace, it might be more
economical to delay firing the furnace until enough jobs are
available so that they can be précessed sequentially, without
any time delay between Jobs,’providing that such a procedure
does not increase the overall completion time of the entire
bateh,

The assumption which restricts jobs to finishing in

the same order in which they started prevents the possibility
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of jobs passing each other, It ensures that the sequence of
jobs on each machine is the same, which means that the number
of possible schedules are limited to pn!. Without this

restriction, the number of possible schedules would have been

(n!)®, a much larger number.

The stipulation that a single job cannot be processed
simultaneously by more than one machine is somewhat
unrealistic for most. jobs, In actual practice, some jobs can
often be segmented into portions that can be processed
separately, or more than one machine can be utilized on the
job simultaneously. For example, an engine being repaired
can be segmented so that the compression system can be
maintained at the same time that the ignition system is being
reconditioned.

A similar assumption restricts a machine to
processing a single job at any one time. While this
restriction may be true for a numbgr of machines, like an
Xx-ray machine, it is not neces;arily universally true. The
modern digital computer is an example of a machine which
processes multiple jobs simultaneously. It does not wait
until processing is completed on one job before starting the
next one, On the contrary, it utilizes the technique called
multiprogramming, which permits the machine to interrupt
processing of a particular job in order to commence

processing on another job.
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An additional assumption states that there is only
one machine of each type available. This and the previdus
assumptions serve to limit the complexity of the mathematics
that would be nee;ed in formulating and solving the problem.

There are a number of assumptions associated with the
processing times. For the sake of convenience, the set-up
time incﬁrred in making preparations to process the job is
included in the processing time of the job. The time taken
to transport the job from the preceding machine is also
included in the processing time.

Another assumption states that'the processing times
are independent of the sequence in which jobs are-processed.
This assumption is somewhat ludicrous when the preceding
assumption is considered. Certainly, it would not be unusual
to find that the time taken to dismantle the machine after
processing job B and then to set it up in order to process
Job A would indeed differ from the time taken for these
operations if job A followed job C. Thus, the processing
time, which incorpor;tes the set-up time, would indeed be
different because the set-up times differ with the sequence.
This argument also exposes some lack of realism in the third
assumption, which states that the processing times of each

Jjob are known and are deterministic. This assumption

obviously ignores the effect of the sequence.

There are some uncategorized assumptions. First,

in-process inventory is allowed. This means that a job can
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wait in a queue until the machine becomes available to
process it. Without this assumption, a schedule would have
to be developed taking an additional restriection, no queuing,
into consideration. Another uncategorized assumption is the
requirement that a machine cannot interrupt processing one
job in order to work on another job., This is another
unrealistic assumption., Digital computers, operating in a
multiprogramming mode, usually process several jobs at the
same time by interrupting their processing of one job to
process another,

fhe ideal solution to the flowshop problem would be
one developed without the aid of many of these assumptions,
especially those which are unrealistic. Unfortunately,
models have not yet been developed to represent those
situations which exi§t Sefore simplification by the
assumptions. Attempits to relax some of these assumptions
have been few and fare. In keeping with the past practicé,
the flowshop problem will be formulated in the following

section with the aid of the assumptions,.

The Formulation of the Flowshop Scheduling Problem

When a flowshop heuristic algorithm is applied to the
scheduling problem, the éxpected outcome is a solution which
minimizes some measure of performance., This minimization of
a performance measure is generally considered as a surrogate
fér the minimization of production costs., In formulating the

problem, three measures of performance are considered. These
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are the makespan of the schedule, the machine idle time and
the job waiting time. As defingd earlier, makespan is the
'length of time which elapses between the start of processing
and the completion 6f processing on the batch of jobs. The
machine idle time is a measure of the time a machine is not
utilized between the completion of the processing of a job
and the arrival of the next job. On the other hand, job
waiting time measures the length of time a job waits in a
queue for processing to begin on a new machine after
processing has been completed on the previous machine. The

following notation will be used in the formulation of the

problem:
Tij = processing time of job i on machine ji
C(i,J) = the completion time of job i on machine j

Iim = the length of time machine m spends idle waiting
for job i
wim = the length of time job i spends in the queue
waiting to be processed by machine g.
Consider a batech of n jobs to be processed on m machines., 1If
8 denotes a subset of these jobs formed into a partial
sequence of length k, then this partial sequence can be
augmented by a single job i, which was not included in the
partial sequence, to form a new partial sequence, si, of
length (k+1).

By definition, the start of processing is time zero.

The completion time of the partial sequence, 8i, on machine j}
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can then be determined by the recursive relationship [40,54]:
(2.1) C(si,J):max[C(s,J);C(si.j-1)]+Tij
where C(s,0)=C(e,J)=0 for all s and J
if © is a null sequence.
The general expression‘above can then be used to

calculate the measures of performance as follows:

Makespan
If the last machine can be denoted by M and the last

Job in the sequence by N, then the makespan can be

represented as follows:
(2.2) C(sN,M)=max[C(s,M); C(SN,M=1)J+T yy
where 8 is a partial sequence of length k
and k equals N-1,.
The flowshop scheduling problem that uses makespan as

its measure of performance seeks to find that schedule which

minimizes C(sN,M).

Machine Idle Time
There are times when a machine m is idle because
there is no job waiting to be processed. The length of the
idle time, Iip, can be calculated as the difference between
the time at which processing is completed on the last job,
i-1, and the time of the arrival of the next job, i. Since
the transportation time of the job i is included in the

processing time, Tip, then the arrival time at a machine can

be considered to be the same as the time at which processing
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on that job was completed on the previous machine, p-1. The'.
machine idle time for machine m while waiting on job i can be
calculated as follows:

(2.3) Iimzc(si,m-1)-C(s,m)

When this is summed over all n jobs, the total machine idle
time for machine m is obtained. The sum for the entire

schedule is determined by summing the idle times for all of

the machines.

Job Waiting Time

" When job i

waits in a queue at machine m to be

processed, the job waiting time, W is measured by the

im’
difference in time between the finish of the preceding job,
i-1, on machine m and the finish of job i on machine p-1.
This is expressed as follows:
(2.4) Wim=C(s,m)-C(si,m-1)

Totaling this value over all jobs on all machines
produces the total waiting time for the entire schedule,

The above expressions, (2.2), (2.3) and (2.4), are
used to calculate the three measures of performance which are

used to evaluate the heuristic algorithms., These algorithms

are discussed in the next chapter.



CHAPTER 3

LITERATURE REVIEW

In the first chapter, the historical developments of
solving the flowshop problems were traced, beginning with the
optimizing techniques and ending with the heuristic methods,.
This chapter will review the 1iter#ture available on
heuristic flowshop algorithms, Although Johnson's algorithm
[65] is not a heuristic technique, this chapter will use it
as the starting point becaﬁse it was one of the‘first
reported effort; to solve the flowshop problem. In addition,
a number of algorithms [27,37] have incorporated modified
versions of the Johnson algoriéhm into their solution
procedures., The heuristic algorithms reviewed here have been
taken both from studies of the individual algorithm and from

comparative studies,

dJohnson's Algorithm
Perhaps the single most influential article on
flowshop scheduling was written by Johnson [65]. 1In it, he

deseribed an optimizing technique which was later called

27
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"Johnson's algorithm." The article was among the first to
focus on the flowshop problem, and it was alsoc among the
first to use makespan as a measure of performance. Since
then, many authors have adopted this measure of performance.
The article'described an algorithm'which yields

optimal solutions for problems with two machines and any
number of jobs. The processing times of each job on each
machine are utilized to arrive at soclutions. Let Tij
represent ﬁhe processing time of job i on machine j (note
j=10r 2). The jobs are then scheduled by the following
rule: 'job a precedes job b when

min {T

sz} £ min {T }.

at’ a2’Tb1
In actual practice, the processing times for all jobs
on all machines are examined and the job with the smallest
time selected. If the smallest time is on machine 1, the job
_is placed in the earliest available position; if the time
occurs on machine 2, it is placed in the latest available
position,
Two of the main advantages of this soclution technique
are its simplicity and its guarantee of an optimal
solution, - The solution can be reached manually. Johnson

provided theoretical proof for the technique and extended it

to special cases of the three machine problem.

Heuristic Algorithas
Palmer [85] developed the Slope Index Technique, one

of ﬁhe first heuristic algorithms for the flowshop problemnm,
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According to this method, a slope index is calculated for
each job, and then these indices are ranked in a decreasing
order, The ranked list of jobs is used as the Jjob schedule
for the flowshop. Palmer states that the basis of his
algorithm is assigning priority to jobs which have "the
strongest tendency to progress from short times to long times
in sequence of processes [85, p. 102]." The slope index for
each job i is calculated with the following functional
‘expression:
(3.1) 8121/2[-(m-1)Ti1-(m-3)Ti2. . '+(m-3)Ti,m-1+(m-1)Tim]
where m is the number of machines or processes

and Tij is the processing time for job i on machine j,.

This slope index method requires only a moderate

computational effort'and could easily be- executed manually.
Palmer tested his algorithm on 7 small problems, ranging in
size from U4 jobs by 3 machines to 9 jobs by 3 machines, The

processing times for these problems were the same as those

used by Storey and Wagner [103] who solved their problems
using an integer programming method. Palmer compared the
solutions obtained by his slope index method with the optimum
solution obtained by using makespan as the measure of
performance, His methods yielded solutions which had
makespan values ranging from 0% to 8.6% higher than the
optimal solutions. 1In one case, the slope index method
actually produced an optimal solution. Palmer also reported

his results in terms of the number of job interchanges in the
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schedule in order to arrive at the optimal schedule. These
ranged from 0 to 10. Furthermore, he investigated the
schedules yielded By ordering the slope indices in the
reverse pattern, arranging them in an increasing order. The
results these schedules yielded were very much inferior to
the previous results.

Page [84] developed three flowshop heuristic
algdrithms which were designed on the assumption that there
is some analogy between the scheduling problem and the
sorting problem in data processing. Thus, each algorithm is
based on one of the following sorting techniques: merging,
pairing, and exchanging. In applying the latter technique,
exchanging, either individual jobs or groups of jobs are
exchanged, Page used makespan as the measure of performance
when testing the three algorithms he developed. The sizes of
the problems he solved with his algorithms varied from 4 jobs
by 3 machines to 32 jobs by 8 machines.

An examination of the results obtained from the
solutian of these problems indicated that the algorithm based
on merging produced the best results., Makespan values for
this algorithm exceed the lower bound values for the same
problems by percentage deviations varying from 2% to 20%.

The algorithm based on pairing yielded the worst results with
percentage deviations varying from 4.4% to 28.5%. On the
other hand, this algorithm consumed the least computer time

in performing the computatiocons necessary to arrive at a
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schedule, Merging and exchanging required approximately the
same amount of time., Hence, the merging algorithm is
preferable to the exchange algorithm because its percentage
deviation results are superior. The choice between the
merging and pairing algorithms depends upon the manager'é
preference for either accurate results or the least
computational effort.

Ashour introduced the decomposition'method of job
scheduling in 1967 [6] and reported a modified version of
this technique in 1970 [7]. 1In brief, this method partitions
the batech of jobs inté subgroups, geﬁerally two, and the jobs
in each group are'sequenced by an optimizing technique. The
two sequenced groups are then recombined to form a single
schedule. The division into two groups reduces the amount of
computational effort., For example, determining the optimal
sequence for a single set of 10 jobs by the complete
enumeration technique would entail the examination of 10! or
3.6 million different sequences or permutations of the jobs,.
On the other hand, when the 10 jobs are divided into groups,
the number of sequences to be examined is reduced to
101/(515!) or 252 different sequences,

In tests of this technique, the number of jobs solved
varied from 6 to 40 while the number §f machines varied from
3 to 10, Problems with 6 or less jobs were also subjected to

complete enumeration of all sequences in order to obtain
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optimal solutions, while those with 7 or more jobs were
subjected to partial enumeration.

Ashour discovered that as the number of jobs in each
subgroup increases, the number of potential schedules
decreases. He cited the case of 6 jobs in a single group
that yielded 720 different schedules, whereas the same jobs,
divided intoc 2 groups of 3 jobs each, produced 20
arrangements. Further subdivision intoc 3 groups of 2 jobs
each increased the number of arrangements to 90. He also
found that as the number of jobs in each subgroup increases,
the range of schedule makespan values decreases, the maximum
ﬁchedule makespan value decreases, and the relative frequency
of the shortest schedule time increases. Thus, when the
nunber of Jjobs in each subgroup increases, better schedules
resﬁlt. in addition, hé found that the computational effort
required to obtain a soclution decreases with an increase in
the size of the subgroups. It therefore appears that
partitioning the jobs into two subgroups would tend to yield
better results and, at the same time, require minimal
computational effort.

Ashour compared the results obtained from solving 18
problems when the jobs were divided into two subgroups with
solutions obtained by partial enumeration, He found that the
decomposition approach yielded the better results, Ashour
also claimed that this techniqﬁe was superior to the rounded

linear programming method of Giglio and Wagner (U42].
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Perhaps the most attractive feature of this technique
is the subdivision of a large number of jobs into smaller
groups, which can then, using much less computational effort,
be sequenced by optimizing techniques. Gupta and Maykut [58]
took this technique one step further and arrived at the

heuristic decomposition technique.

The heuristic decomposition technique, introduced in
1973, is based on a modification of Ashourt's decomposition
approach and the job-pairing algorithm. The jobs are
partitioned into two subgroups. One subgroup is scheduled by
a technique which produces optimal schedules, while the
remaining subgroup is sequenced by a heuristic job-pairing
technique., The subgroups may contain an unequal number of
Jobs., The choice of the size of the subgroup to be scheduled
by the optimizing technique depends upon the amount of
computational effort which can be afforded in obtaining a

soclution, For a large number of jobs, it is likely that tbe

size of this subgroup would be smaller than the subgroup
sequenced by the job-pairing algorithm, because most

optimizing techniques require considerable computational

effort for subgroup sizes of 10 or greater.,

The job-pairing algorithm develops a schedule by
adding Jjobs, one at a time, to a partially-formed schedule.
The job selected for addition to the partial schedule is the
one which has the greatest potential to minimize the idle

time of the last machine in the process, The job-pairing
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procedure yields a partial schedule that is considered a
synthetic job by the heur;stic algorithm, 1In the overall
schedule of all jobs, this synthetic job precedes the partial
schedule determined by the optimizing technique. Gupta and
Maykut determined this placement of the synthetic job because
the job-pairing algorithm operates by attempting to minimize
the machine idle and processing time for the first pair of
jobs on the last machine. The minimization of idle timé on
the last machine automafically resulté in the minimization of
makespan [45].

The heuristic decomposition algorithm was tested on
360 problems, using a Univac 1108 computer and processing
times that were randomly generated from a uniform
distribution with a range from 0 to 99. The sizes of the
problems were small, varying from 6 jobs by 3 machines toc 12
jobs by 3 machines. The results were reported in efficiency
terms., Efficiency is defined as the ratio of the optimum
makespan value to the value obtained from the solution by the
algorithm. The results were compared with those reported in
Ashour's decomposition study [7]. This is not entirely a
direct comparison because Ashour obtained his processing
times from a uﬂiform distribution ranging from 1 to 30.
Compressing the range in this mannér reduces the span of
possible error [58].

Over the rangé of problems considered, the heuristio

decomposition technique produced slightly better results when
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efficiency was used as the measure of performance., It had
superior average efficiencies over 4 of the 9 problem sizes,
while Ashour's decomposition technique excelled over one
problem size, 7 Jjobs by 4 machines., Both heuristiec
algorithms had equivalent results over the remaining four
problem sizes. It should be noted that all of the
efficiencies were good, the worst being .90. The heuristic
decomposition method required considerably less computing
time in order to arrive at schedules., On the average, it
required less than 1/100 of the time required by Ashour's
method., For example, the largest problem, 12 jobs by 3
machines, required .0769 and 11.56 seconds for the respective
algorithms, The job-pairing algorithm saves a significant
amount of time because it needs considerably less time than
the optimizing technique to sche&ule one of the subgroups.

Since the heuristic decomposition technique appears
to produce solutions of high quality while consuming very
little computational time on the Univac 1108 computer, it has
been selected as one of the heuristic algorithms to bé
treated by the multivariate analysis of variance method in
this research study. .

Campbell, Dudek and Smith.[27] developed an algorithm
which has become a standard for comparison as demonstrated by
its inclusion in several studies since its initial ’

publication [1,37,5u]. In the remainder of this research
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study, this heuristic algorithm is referred to as the CDS
algorithm,

The CDS algorithm converts the single m-machine
problem to (m-1) artificial 2-machine problems. This is
achieved by calculating new processing times, Vij from the

original processing times, Tij, with the aid of the following

equations:

k _ k
K K
(3.3) Vio jZITi,m-j+l

where Vij the derived processing time for job i on

machine J

Tij = the original processing time for job i on
machine J '

k = the number of the problem (kél,z, e o« s+, m=1)

Thus, for each artificial problem, the processing
time for job i on machine 1, V?l, is determined by summing
the original processing times for job i on the first k
machines. Likewise, the processing time for job i on the
second machine, ng, is determined by summing the processing
times for job i on the last k machines. The (m-1) artificial
problems are then solved 1ndividua;ly with the Johnson
algorithm, yielding (m-1) solutions. In the end, the best
solution is selected.

Campbell, Dudek and Smith tested their algorithm over
a wide range of problems, a total of 340, and compared the
makespan results with the solution obtained by Palmer's slope

index heuristic algorithm, This comparison was done with
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problems of both small and large sizes. Processing times
were randomly obtained from a rectangular distribution with a
range of 1 to 99.

The small problems ranged from 3 jobs by 4 machines
to 6 jobs by 6 machines. A sample size of 20 problems was
used for each problem size. The optimal makespan solutions
for the problems were also determined, and the percentage
deviation of the heuristic algorithm solution values were
calculated. For all small problem sizes, the deviations for
the CDS algorithm were smaller, ranging from .12% to 2.56%
with an average of 1.38%. On the other hand, the
corresponding figures for Palmer's slope index algorithm were
2.68%, 6.52% and 4.58%.

These heuristfic algorithms were also used to solve 10
large problems varying in size from 20 jobs by 20 machines to
60 jobs by 30 machines. It was not feasible to determine
optimal solutions, so the results were reported in terms of
makespan values and the percentage improvement of the CDS
algorithm's results over the other algorithm's results. 1In
all cases but one, the CDS algorithm had lower makespan
values with percentages varying from 0.84% to 10.60%. 1In the
single case when the slope index algorithm performed better,
the problem was a 20 job by 20 machine problem and the

percentage improvement was -.34%,
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The CDS algorithm required more computer time to
arrive at solutions. This is not surprising because Palmer's
slope index method produced a single -sequence, and the'CDS
algorithm produced and evaluated (m-1) sequences. The CDS
algorithm is selected f&f inclusion in the multivariate study
described later in this research. It is selected because of
the excellent results it produced in all of the studies in
which it has appeared.

Gupta [50] designed a functional heuristic algorithm
which is somewhat similar to Palmer's slope index algorithm,.
He deécribed this algorithm as an extension of Page's analogy
of scheduling and sorting. It is claimed that computations
can be done manually for reasonably large problems. A
similar claim is made for the slope index algorithm.

Gﬁpta observed that both Page [84] and Bakshi and
Arora [16] showed that the Johnson algorithm [65] can be
represented by a functional expression, which is associated
with each job independent of the other jobs. When this
functional expression is evaluated for each job and the
resulting values sorted in ascending order, a schedule is
derived by substituting the corresponding jobs for the sorted
values., This expression, functionally equivalent to the
Johnson algorithm, is limited to the two-machine problem and
special cases of the three-machine problem. Thus, Gupta
extended this approach to the general m-machine problem by

developing a new functional expression:
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(3.4) f(i) = A
minimum (T, +T. )
1<m< (M=1) im "i,m+1
where: A =114if T1M$Ii1

==1 otherwise,

T-
im

M

the processing time of job i on machine m,

the last machine in the technological order.

Gupta tested pis functional heuristic algorithm by
comparing it with Palmer's slope index heuristic algorithm.
This comparison occurred over 243 problems, ranging in size
from 4 jobs by -4=machines to 100 jobs by 60 machines.

Problems with 8 jobs or less were considered small, and
optimal soclutions were determined for these problems. The
processing times used were generated from a rectangular
d;stribution with a range from 0 to 999.

The results for thé small problems were reported in
terms of the percentage deviations of the algorithm makespan
value from the optimal makespan value, The functional
heuristic algorithm had better results (smaller percentage
deviations) than the slope index heuristic algorithm for 157
of 195 problems solved. The latter algorithm was superior on
27 occésions, and there were 11 ties. The average percentage
deviations of the functional heuristic algorithm ranged from
3.4% for smaller 4 jobs by 4 machines problems to 10.6% for
the 8 jobs by 8 machines problems. The ‘range for the slope
index algorithm varied from 7.6% to 22.0%.

The functional heuristic algorithm maintained its

superiority with the large problems. The results of the
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large problems were reported as a ratio, calculated by
dividing the makespan value for the functional heuristic
algorithm by the makespan value of the slope index algorithm.
The average value of the ratio for each problem size was less
than 1, thus confirming that the funectional heuristic
algorithm had the smaller makespan value. Of the 48 problems
solved, the slope index heuristic algorithm had the better
solution for only U4 problems.

The times required for computing schedules by these
algorithms were very small indeed, and, in absclute terms,
differences were practically negligible., For example, on the
Univac 1108 computer, the 100 job problems required an
average of ,1490 and 71670 seconds for the functional and
‘slope index heuristic algorithms respectively.

Although Gupta's functional heuristic algorithm
produced better results than Palmer's slope index algorithm
over the wide range of problems solved, the average
percentage deviations were somewhat high for both algorithms.
Unfortunately, a direct comparison cannot be made with other
studies because the processing times were taken from a
distribution with an unusually large range of 0 to 999,

In another study, Gupta [54] introduced three
heuristic algorithms: Minit, Micot and Minimax. The author
stated that these were products of "several simplifications
and approximations of the combinatorial approach to flowshop

scheduling problems [54, p. 13]." All three algorithms were
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developed with the objective of minimizing the maximum
flowtime or makespan values,

The Minit algorithm develops a schedule by adding a
single job at a time.to a partial schedule, The job is
selected from among the unscheduled jobs on the basis of its

ability to minimize the idle time generated on the last (Mth

)
machine by the augmented partial schedule., Thus, if 4 is a
partial schedule and jpbs a and b are competihg to be added
to the partial Schedule, job a will be c¢hosen for
augmentation if:
Q(oa,M) ¢ Q(ob,M)

where: Q(oa,M) is the idle time associated with the

augmented schedule, o0a, on the last machine M,
The initial pa;tial schedule is formed from the pair of jobs
that generates the least idle time on the last machine.

The Micot heuristic algorithm is very similar to the
Minit heuristic algorithm, but they differ in that the Micot
heuristic algorithm seeks to minimize completion times on the
last machine. Hence,‘the augmented partial schedule, oca, is
considered more desirable than ob if:
CloasM) ¢ C(aob,M)

where: C(ca,M) is the completion time of

the augmented partial séhedule, ga , on the

last machine, M.

The Minimax hegristic algorithm bears some

resemblance to the Johnson algorithm., It determines



42

schedules by examihing the processing times for all jobs on
all machines and assigns the job that needs the least
processing time to the earliest available sequence position.
Conversely, the job that needs the greatest processing time
can be assigned to the latest available position. Thus, the
schedule can be developed from both ends.

Using 1200 problems ranging in size from 4 jobs by 3
machines to 7 jobs by 20 machines, these three algorithms
were then compared among themselves and with-the Campbell,
Dudek and Smith (CDS) heuristié algorithm. The processing
times were generated randomly from a rectangular distribution
with values ranging from 0 to 99, The quality of the
solutions was reported in efficiency terms as the ratio of
the value of the measure of performance for the optimal
solution to the value for the solution determined by the
algorithm., The two measures of performance used were mean
flowtime and maximum flowtime (or makespan).

Under the makespan criterion, the results of the
three proposed heuristic algorithms were inferior to those of
the CDS algorithm, ‘The Minimax heuristic algorithm produced
the worst results, with an average ratio for a problem size
as low as .85. On the other hand, the Minit heuristic
algorithm produced the best results of the proposed
algorithms, with average ratios ranging from .90 to .97. The

ratios for the CDS algorithm ranged from .95 to .99. As the
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size of the problems increased, the quality of the solutions
obtained by all 4 algorithms decreased.

When the mean flowtime criterion is considered, the
performances of the three proposed heuristic algorithms were
better than that of the CDS algorithm. The Minit heuristic
algorithm had consistently high ratios, generally above .95,
closely followed by the Micot heuristic algorithm, whose
solution quglities varied from .93 to .98. The results for
the Minimax heuristic aléorithm varied from ,90 to .97, while
those for the CDS algorithm fell to as low as .88. The
rankings do not reflect any success or failure of the
deliberate design embodied in these algorithms, for none of
the four algorithms were developed with the minimization of
-mean flowtime as a goal.,

When the computational times required by the Univac
1108 computer to prodqce a schedule are considered, the CDS
aigorithm consumed the most pime while the Minimix heuristic
algorithm utilized the least time, The time required
increases with both the number of jobs add the number of
machines for all four algorithms. In absolute terms, the
time requirements were small and should not influence the
choice of algorithms for problems of the small magnitudes
considered,

A heuristic algorithm which has recently appeared in
the literature was developed by Aggarwal and Stafford [1].

It was designed to minimize the makespan value of the
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resulting scheduie in a two-stage procedure. In the initial
stage, a tentative schedule is developed by a heuristic rule
that determines the jobs' positions in the sequence according
to the values of their processing times and the machine
locations. At fhe next stage, Jjobs in neighboring positions
are temporarily interchanged to determine if this action
leﬁds to an improvement in the makespan values. Beneficial
interchanges are made permanent. If the changes are not
beneficial, the jobs return to the status they had before the
interchange.

In regards to developing the initial tentative
sequence, the authors stated:

~

The logic of this algorithm is based on three
considerations: (1) machines located near the beginning
of the machine-sequence should process jobs in the
increasing 6rder of their processing times; (2) machines
located near the end of the machine-sequence should
process jobs in the decreasing order of their processing
times; and, (3) different job sequences for each machine
can arise from the above two conditions [1, p. 238].

In addition, the authors suggested a rule to be used for
resolving the conflict between two or more jobs competing for
the same position in the sequence. This rule selects the job
that forms the partial sequence which has the minimum
makespan value,

This heuristic algorithm, which will subsequently be

called the AS algorithm, was used to solve 200 small problems
and 500 larger problems. The sizes of the small problems

ranged from 3 jobs by 3 machines to 8 jobs by 8 machines,

while those for the large problems ranged from 10 jobs by 10
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machines to 100 jobs by 50 machines., Processing times were
randomly generated from a uniform ﬁistribution ranging from 1
to 99.

In the case of the small problems, the AS algdrithm
determined optimal solutions for 55% of the problems
attempted. The average percentage deviations of the
algorithm's makespan values from the optimum values were
calculated; these percentages proved to vary from 0% for the
3 jobs by 5 machines problems to 6,24% for the 8 jébs by 7
machines problems. The overall average was 3.64%. These

results were compared with those published in the report of

the CDS algorithm [27]..which alsc solved problems of similar
sizes and employed randomly selected processing times from a

distribution of the, same range. On examining the problenm

sizes the two algorithms had in common, the maximum
percentage deviations for both algorithms were the same

(5.8%), but the CDS algorithm had the lower percentage

deviation on 4 of the 7 problem sizes. However, it was
mentione& that the AS algorithm provided nearly .1% to 1%
better results for almost 50% of the problems, and that as
the problem sizes increase, the AS algorithm provides better
results [1]. The average percentage deviations over the

seven common problem sizes were 2.7% and 2.1% for the AS and
CDS algorithms, respectively.
The AS algorithm was clearly superior in terms of the

time required on the computer for the algorithm to determine
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a schedule. Although processing was done on different
computers--an IBM 360/67 for the AS algorithm and an IBM 7040
for the CDS algorithm—;the authors converted the CDS
algorithm times by taking into account the fact that the

former computer is approximately 12.3 times as fast as the

latter computer. As a comparison, the AS algorithm consumed
1.8 seconds in solving the 60 jobs by 7 machines problem,
whereas the CDS algorithm needed 8.8 conyerted seconds. The
largest problem solved by the AS algorithm was 100 jobs by 50
machines, and that required less than 32 seconds. From the
results, it appears that the computational times required by
the AS algorithm increases with the number of jobs and the
number of machines, The times required by the algorithms
.were very reasonable, and it is believed that the majority of
the time is consumed.in that portion of the algorithm which
interchanges neighboring jobs to check for better solutions,
According to the authors, the maximum improvement resulting
from this interchange effort never exceeded 4.2%,

Due to the closeness of its results with the CDS
algorithmfs performance, its ability to soelve large problems,
and its very modest time requirements for computations on the
computer, the AS algorithm is selected for inclusion in the

multivariate research study.

Comprehensive Studies on Flowshop Algorithms

The most complete study comparing heuristic

algorithms was done by Dannenbring [37]J. It included a
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number of the heuristic algorithms described earlier in this
chapter. These algorithms were the CDS algorithm, Palmer's
slope index algorithm, and Page's merging, pairing,
individual job exchange, and group Job exchange algorithms.
Dannenbring also developed three heuristic algorithms, which
were included in the study. To complete the group of
algorithms studied, he included the random search heuristiec
algorithm and a linear branch and bound procedure that does
not fall in the category.of heuristic algorithms. A
description of Dannenbring's algorithms appears in the next

section,

Dannenbring's Heuristic Algorithms

The three algorithms developed by Dannenbring are
related in that the second algorithm is developed from the
first, and the third is developed from the second by adding
improvement routines, Naming them in order of increasing
sophistication with their abbreviated names following in
parentheses, they are the rapid access (RA), the rapid access
with‘close order sea;ch (RACS), and the rapid access with
extensive search (RAES) heuristic algorithms. A description
of each algorithm follows.

TIhe rapid access (RA) heuristic algorithm, This
aléorithm is similar to the CDS algorithm in that an
m-ﬁachine problem is converted to a pseudo 2-machine problem.
The RA algorithm is different because it produces a single

2-machine problem which provides a solution quickly and
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easily, Also, in obtaining the new processing times for the
artificial 2-machine problem, it assigns weights to the

original processing times as follows:

m
(3.5) = ~§+1)T
Pig = 45, (m-3+10T,

' m

(3.6) P =z (T,
i2 j=1 ij
where T'j = the processing time for job i on
i
machine J for the original problem
Pij = the processing time for job i on

machine §J for the pseudo problem.
The new pseudo problem is solved using the Johnson algorithm,.
Rapid access with close order search (RACS),

Starting with the solution developed by the RA algorithm, an
improvement routineAis added which involves a search for a
better solution., This routine interchanges adjacent jobs,
The resulting schedule obtained from the transposition of a
single pair of adjacent jobs is called a neighbor. Thus, if
there are n jobs in a sequence, (n-1) neighbors will result
from transposing all pairs of adjacent jobs. Each neighbor
is examined for improvement in the measure of performance and

the best neighbor is selected as the schedule.

Rapid access with extensive search (RAES),

Continuing from where the RACS algorithm terminated, the RAES

uses the best neighbor to generate new neighbors. A search

is made among these neighbors for the neighbor which yields
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the greatest improvement. The process is repeated until the

newest neighbors fail to provide improved solutions.

Other Algorithms

The random sampling heuristic algorithm, This
technique, abbreviated the RS algorithm, develops schedules
by randomly selecting Jjobs for the various positions in the
schedule, 1Its greatest advantage is that it develops a
schedule inexpensively.

The linear branch and bound procedure. This
technique belongs to the class of implicit enumeration
teéhniques. Its inclusion in the comparison is useful
because it provides a direct eomparison‘across classes of
solution technidues. It schedules by a br;nching enumeration
approach, whereby the least attractive partial sequences are
curtailed by the use of lower bounds. One of the properties
which distinguishes between branch and bound techniques is

the method of obtaining bounds, The bounding approach used

in the procedure was developed by McMahon and Burton [14,75].

Testing Procedures
The heuristic algorithms were tested over 1580.
problems, with sizes ranging from 3 jobs by 3 machines to 50
jobs by 50 machines. Processing times were randomly
generated from a uniform distribution, with values ranging

from 0 to 99.
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Many measures of evaluation were used. The measure
that has the greatest similarity with other studies is called
the relative error (r). It is calculated with the following

expression:

(3.7) r = 100 [1-(MS/MSst)]
where MS

the makespan of the heuristic solution
Msst = the makespan of the evaluation standard.
It was noted that optimal solutions were determined
for 1509 test problems and estimates of the optimal solutions

for the remaining 71 problems were calculated by procedures

described in [36].

Results

The results of the small and large problems were
feported separately. Problems with 3, 4, 5 and 6 jobs were
considered small while those with 7, 10, 25 and 50 jobs were
labeled large. The relative err;r results of the small
'algorithms are displayed in Table 3,1. The abbreviated names

used in Table 3.1, but not mentioned previously are:

.M Page's merging algorithm

GE Page's group job exchange algorithm

IE Page's individual Jjob exchange algorithm
P Page's pairing algorithm

SI Palmer's slope index algorithm
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TABLE 3.1

RELATIVE ERRORS FOR SMALL PROBLEMS

Heuristic Algorithm Relative Error (r)
RAES 0.64%
RACS 1.30%
CDS 1.73%
M 1.74%
RS 2.03%
GE 2.72%
RA 3.65%
LBB 3.82%
SI 3.98%
P 4,38%
IE 4,99%

Average for all algorithms 2.82%

Source: Dannenbring [37].

From the relative error results, the RAES a}gorithm
provided the best performancé with a relative error of only
.64%, This algorithm is one of the three designed by
Dannenbring. The relative errors for his other algorithms
are 1.30% and 3.65%. 1t therefore appears that the
improvement routines added to the fundamental RA algorithm
improved it from a mediocre position to the best. Again, the
CDS algorithm proved to be a good performer, The results
agreed with a previous study, which found that the CDS
algorithm is superior to the slope index algorithm (SI) [27];
They also confirmed that Page's merging algorithm (M) is
better than his other algorithms. 1In Page's study [84], the

pairing algorithm (P) had the worst results, but in
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Dannenbring's study it is slightly better than the worst
algorithm, Page's individual job exchange (IE). It is also
noted that the linear branch'and bound procedures (LBB) did
not fare well.

The results for the large problems are displayed in
Table 3.2. Because optimal solutions for 71 of the larger
problems were estimated, the figures reported are estimated

relative errors.

TABLE 3.2

ESTIMATED RELATIVE ERRORS FOR LARGE PROBLEMS

Heuristic Algorithm Estimated Relative Errors

RAES 1.58%
RS 3.17%
CDS 4,11%
RACS 4,26%
M 4,68%
GE 5.68%
SI 6.18%
RA 6.61%
LBB 8.19%
P 8.,40%
1E 9.19%

Source: Dannénbring £3713.

An examination of Table 3.2 reveals that the relative
errors for the large problems are approximately twice the
magnitude of those for the small problems. This is true
probably because the samples remained the same or decreased
as the problem sizes increased. When the latter occurs, the

diversity of possible solutions increases., If a relatively
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. small sample is taken, then the mean values of the sample
could likely be distorted from the optimum values by outlying
solutions.

It is also noteworthy that many of the heuristic
algorithms are in approximately the same positions in the
rankings. Most notably, the RAES algorithm, the CDS
algorithm, the P algorithm and the IE algorithm have retained
their former 5ositions. There are few or no changes in the
rankings of the other algorithms, with the exception that the
RS algorithm has virtually exchanged positiéns with the RACS
algorithm. This suggests that for large problem sizes, the
RACS' single pass improvement routine is insufficient to
obtain an excellent solution, Multiple passes are needed.
Their -presence in the RAES algorithm is responsible for the
improvemenf in performance beyond that displayed by the RACS
algorithm, It is difficult to explain the sharp improvement
in the ranking of the RS algorithm. Dannenbring [37]
suggests that it may be due to the manner in which the sample
size parameter was selected.

Based on the results for both large and small
problems, it appears that those algorithms that contain
improvement routines (RAES, RACS) or those that produce
multiple solutions ffom which the best is selected (CDS, RS)
did better than those algorithms that produced a single
solution (RA, SI, P and LBB). An exception is the merging

algorithm (M) which produces a single solution. It performed
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better than the GE and IE algorithms, which produced multiplg
solutions,.
Computations for the algorithms were done on an IBM
360/91 computer add the computation times were reported. The

times averaged over all problems are displayed in Table 3.3.

TABLE 3.3

COMPUTATION TIMES FOR ALL PROBLEMS

Heuristic Algorithm Average Time(sec)
SI .008
RA ‘ .020
P .048
M .073
RACS .097
CcDhS . 162
GE .306
IE . 453
RAES 2.130
RS 9.778

LBB 15.293

Source: Dannenbring [37].

With the exception of the LBB algorithm, thése
algorithms which produced a single schedule consumed the
least time per problem., The RAES algorithm, the best
algorithm tested, required considerably more time than all of
the algorithms except the RS and LBB algorithms. The
considerable increasé is due to the use of the multiple pass
improvement routine,

From this study, it appears that the RAES and CDS

algorithms are the best performers in terms of solution
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quality and consistency. The RAES algorithm is therefore
selected for inclusion in the multivariate study on this

basis. The CDS algorithm has already been selected.

Other Comparative §Lg§lg§

There were two other comparative studies of flowshop
scheduling techniques. Unlike Dannenbring's study, they did
not emphasize heuristic algorithms. One of the studies
authored by Baker [14], did not include a single heuristic
algorithm,

Ashour's comparative evaluation, This was the first
study to compare flowshop algorithms that are varied in their
fundamental approaches to obtaining a solution. With the
exception of two algorithms, it c#n be said that the
algorithms belong to different classes of solution
techniques. The algorithms compared fall in the classes of
switeh and check (or combinatorial search) [40,100],
branch-and~-bound with and without backtracking [11,73],
rounded linear programming [42] and modified decomposition
[6,7). The latter technique is a heuristic algorithm and was
described earlier in this chapter. Ashour also classified
the techniques‘into two categories: optimal-producing and
suboptimal-producing. These names describe the type of
solutions yielded by the algorithms, The heuristic algorithm
is suboptimal-producing and was joined in this category by

the branch-and-bound without backtracking.
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The algorithms were tested over 550 problems, ranging
in size from 6 jobs by 3 machines to 12 jobs by 3 pachines.
It should be noted that the number of machines varied from 3
to 5. The processing times were randomly generated from a
uniform distribution'with a range of 1 to 30. Computations
were done on an IBM 360/50 computer. The results were
‘reported in terms of efficiencies, The quotient of the
makespan value of the optimal solution and the value for the
algorithm's solution is defined as the efficiency. The
results revealed that both the modified decomposition and the
branch-and-bound'without backtracking algorithms produced
solutions with similar efficiencies. Expressing the number
of optimal solutions produced as a percentage of the number
of problems attempted, the percentages for the algorithms
were U43% and 45%, respectively. The modified decomposition
algorithm, however, required about 5 times as much computer
time to arrive at a solution. This was actually less than
the time required py the optimal-producing algorithms.

It would not be appropriate to compare the results in
this study with the results in Dannenbring's study because
the linear branch-~-and-bound algorithms in each study used

different bounding procedures.

Baker's study, This comparative study did not

include any heuristic algorithms. It concentrated on
controlled-enumeration techniques for.determining minimum

makespan values. These consist of branch-and-bound and
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elimination methods. The branch-and-bound method views a
schedule development as a tree-like'process. It uses lower
bounds to select a branch to pursue, and at the same time,
curtails the enumeration oé other partial sequences. Since
there are several ways of arriving at a lower bound, Baker
compared the results derived from the various bounding
procedures.

In the case of the elimination techniques, a schedule
is developed by adding a job at a time to a partial schedule.
At all stages.of development of this schedule, ¢ertain
dominant subsets of jobs can be selected from all possible
subsets by applying rules that eliminate some of the subsets.
Only the dominant subsets are enumerated, therefore this
elimination technique reduces computational effort.

The results indicate that the branch-and-bound
techniques are more efficient than the elimination method.

It was found that a composite of two bounds produced better
schedules than a‘single bound. The study also confirmed the
extreme inefficiency of the elimination strategy in solving

problems of more than 9 jobs, as reported in [55].

Measures of Performancge

Most of the research mentioned in this chapter used
makespan as the measure of performance. A number of authors
[13.37,41;44,45.77] have suggested investigating other
criteria of performance. On the other hand, Manne [48,76]

defended the use of makespan by arguing that it is likely to
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be correlated with dollar costs. In other words, he
visualizes makespan as a surrogate for production costs,
Gupta [48] disputed this suggestion and, with the help of an
example, showed that Manne's argument is not always correct.
In addition, he states that:

The use of makespan as a criterion of optimality
considers the effect of idle times on the last machine
only. This implies that the makespan criterion does not
consider the importance of intermediate machines [45,

p. 2981].
Thus, if the last machine happens %o be inexpensive to own
and operate, while the intermediate machine is costly, the
makespan criterion would not appear to be appropriate because
it minimizes the idle time on the inexpensive machine rather
than on the more costly intermediate machine. Therefore,
Justifying the use of makespan as a surrogate for production
costs depends upon the strength of the relationships between
them.

"Elmaghraby [U41] commented that the use of a single
criterion of performance in the selection of‘the best
schedule is a simplification of managerial practices in
operating production systems, A list of possible system
goals which managers might seek to satisfy by good sequencing
of jobs was enumerated by both Elmaghraby [41] and Mellor

[77], who credited Beenhaker for its origin. Included in

these lists are the following criteria:

Relative to the facility (including men)

The minimization of idle facility investment
The minimization of facility set-up costs
The day-to-day stability of the work force
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Minimum materials handling costs
Maximum utilization of manpower
Maximum facility utilization

General flexibility
Reserve capacity for rush orders

Relative to the product
Minimum in-process inventory
Adherence to promised shipping dates
Maximum output (production rate)
Minimum raw material inventories
Minimum finished product inventories
Minimum investment inventories
Shortest makespan for certain products
Minimum obsolescence and deterioration
of products

The above is not an exhaustive list, but it
represents many of the factors that occupy the interest of
management. Mellor [77] added that a sequencing system with
the ability to c¢combine these factors operationally is yet to
be devised,

In the research field, Gupta and Dudek [57] attempted
to combine a few of the factors by a technique which utilizes
opportunity costs, 1In this process, operating cost, job
waiting cost, machine idle cost, and the penalty cost of late
jobs are calculated and summed to give the total opportunity

cost of the schedule. The criterion of performance in this

case is the minimization of total opportunity cost. Thus,

the total opportunity cost can be expressed as follows:

n M
(3.8) TC(S) = =z [ = (himskim+yimwim+ximrm)+pidi]
i=1 m=1
where him = setup cost per unit time for job i at
: machine m
skim = setup time of Jjob i at machine m if job k

precedes Jjob i in schedule S
Vim = waiting time for job i at machine m
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before processing starts

Wip = waiting cost per unit time for job i at
. machine m
xim =z idle time of machine m before job i arrives
for processing
Py = rate of return per unit time for machine m
Py = penalty cost per unit time for job i
di = lateness of job 1i.

In the above expression, there are a number of cost
coefficients, In his research, Gupta randomly generated the
values of these cost coefficients. Thus, the opportunity
costs values are highly dependent upon the generated cost
coefficients,

It was also indicated that by selecting certain
values for the parameter in the total opportunity cost
equation, an expression which represents the cost associated
with makespan can be obtained.

Gupta and Dudek specified eight criteria of
performance; These generally consisted of the component
costs of the total opportunity cost equation, combinations of
these components, and makespan.

A comparison of the criteria of performance was done
by randomly generating processing times for 180 small
problems, with 4 to 6 jobs and 4 to 6 machines, and 10 large
problems with 10 to 40 jobs and 10 to 40 machines. The |
processing times were obtained from a uniform distribution
varying from 0 to 999. The small problems were solved by
complete enumeration to obtain the optimal schedule according
to each criterion of performance. In the case of the large

prbblems, the solution by complete enumeration was not done
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in order to avoid the excessive computational effort.
Instead, schedules were generated by random sampling through
Monte Carlo simulation and the best solution according to
each criterion was selected. The opportunity cost Cijo of the
schedule associated Qith each criterion of performance, i,
was then determined, Let the opportunity cost for the |
schedule determined by the %total opportunity cost eriterion
be C10; the percentage deviation of the opportunity cost for
the ith griterion can then be calculated by the following
expression:

(3.9) d = Cio-C o ¥ 100; i=1,2, . . .8.

Cio

It was found that the criter;on defined by the
combination of job waiting cost and penalty cost came closest
to the performance of the total opportunity cost c¢riterion.
Next in order was the criterion formed by the combination of
Job waiting cost and machine idle cost., Alarmingly, makespan
was ranked sixth, below penalty cost and job waiting cost.
Thus, according to this research, makespan is not a good
surrogate for total opportunity cost.

The logic of the total opportunity cost approach is
sound, but the use of the generated costs doeg not permit onel
to determine fully the consequences for an actual production
system because the relative values of the generated costs may

not be the same as the relative values of the actual costs.

For instance, in this analysis it appears that the relative
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values of the costs permit job waiting costs and penalty
costs to be the nearest suboptimal criterion, With another
set of cost coefficients, the best suboptimal criterion may

be different. It may even be makespan!

Summary

The literature available on heuristic algorithms was
reviewed in this chapter. The articles that introduced the
algorithms were considered, as well as subseqﬁent reports in
which they appear. A few studies devoted to comparing
algorithms were also reviewed., From the studies examined, a
number of heuristic algorithms were recognized for their good
performances. Dannenbring's RAES algorithm was the most
outstanding while the CDS algorithm was a consistent
performer, A'number of the aléorithms described in the
review are selected for inclusion in the multivariate
analysis of variancé study.

The articles on criteria of performance were also
examined., . It appears that although many research studies
have adopted the minimization of makespan as their critefion
of performance, many authors are arguing that it may not
truly reflect what management practices. There were
suggestions that other criteria should be explored. It was
also suggested that managers use multiple criteria,
Therefore, there is need to use multiple criteria in research

studies [48].,
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RESEAKCH METHODOLOGY

This chapter describes the expérimental design which
was used in performing the research. The research was done
entirely in a laboratory environment. Considerable use was
made of the computer for performing simulations and
analyzing data., As in previous studies involving both the
jobshop and the flowshop broblems, simulation was used to
generate data for analysis because large numbers of -
real-life problems are not available to academicians.

A sound experimental design is a necessary foundétion
for meaningful scientific inquiry. 1In this study the
experimental design was divided into two categories of
planning: strategic and tactical. In strategic planning,
the experiment was designed to provide the necessary data.
Issues such gsﬁthe specification of fhe factors (independent
variables) to be studied were considered here. The
performance measures (dépendent variables) to be observed
were also identified at this stage of planning. Tactical

planning involved establishing the details for the

63
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performance of the experiments. These included the size of
the samples and the number of replications of the

experiment.

Strategic Planning
This investigation was limited to the following
factors:
1. Heuristic algorithms
2. Problem sizes
These factors were selected to conform, to some degree,
with previops studies, which were reported in the literature
[8,14,37] Also considered were other factors, including
the subdivision of the second factor into two separate
factors: the number of jobs and the number of machines. As
mentioned in the first chapter, problem size, by definition,

is measured by the combination of these two components.

Factors and Levels

Heﬁristic algorithms. Each of the five levels
specified for this factor is an algorithm designed to solve
heuristically the flowshop scheduling problem described in
Chapter 2., Four of the five algorithms have already
appeared in the literature while the fifth, RGES, was
designed espécially for this study, and is described in
Appendix A. The algorithms were selected on the basis of
their good performances in previous studies. The nzmes of

the five algorithms are as follows:
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1. Random generation with extensive search (KGES)
2. Heuristic decomposition (HD)
2, Rapid access with extensive search (RAES)
4, Campbell, Dudek and Smith (CDS)
5. Aggarwal and Stafford (AS)

The Gupta and Maykut study reported that the HD
algorithm produced better results than the pure
decomposition method [58]. The HD algorithm was therefore
selected on this basis as well as for the uniqueness of its
.approach. The RAES algorithm was selected for its superior
performance in solving both small and large problems in
Dannenbring's comprehensive study [37] of several heuristic
algorithms. Although the CDS heuristic algorithm aléq
appeared in the Dannenbring study [37] and was excelled by
RAES, it was still chosen because it performed well in that
study and in others [1,27,54] where it has been used as a
standard for comparison. A recent study compared the AS
heuristic algorithm with the CDS heuristic algorithm [1],
From the results, it was difficult to ascertain which
performed better, except in terms of computational effort,
where the AS heuristic algorithm was reported more
economical. .

To demonstrate the technique of each heuristic
algorithm, a schedule was developed manually for a small

problem, This is displayed in Appendix 3.



66

Problem sizes. In this investigation, problems with
ten or fewer jobs and ten or fewer machines were considered
small in size. Most of the past research has concentrated
on problems in this class, However, it is believed that
larger problems would tend to resemble those faced by
managers in realistic situations, especially with respect to
the number of Jjobs. Therefore, both large and small scale
problems were considered in this research.

Fifteen levels of this factor were selected for the
small problems. These levels were obtained by determining
all combinations of 4, 6, 8, 9 and 10 jobs with 4, 7 and 10
machines. Thus, the smallest problem size consisted of 4
jobs and 4 machines while the largest contained 10 Jobs and
10 machines,

The large problems had 20 levels obtained from all
combinations of 20, 40, 60, 60 and 100 jobs with 15, 20, 45
and 60 machines.,

It was reported in Dannenbring's article [37] that the
relative errors of the heuristic algorithms increased with
the number of jobs when the number of machines was held
constant, and also with the number of machines when the jobs
were held constant. It would therefore be reasonable to
expect the efficiency of a heuristic algorithm. to vary with
the problem sizes since problem size is measured by the
combination of jobs and machines. Hence, problem size was

studied as a factor.
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Measures of Performance

In developing a schedule, its d;signer usually
approaches the task with a number of goals in mind. Mellor
{771, Elmaghraby [41 ] and other writers [13,16] have
identified many of these goals. Associated with these goals
are measures of performance, which help to determine
objectively the degree to which these goals are being
achieved. 1In the majority of past research studies,
scheduling.was done to satisfy a single goal: the
minimization of makespan. As mentioned earlier, Gupta [45]
argued that the minimization of makespan did not necessarily
minimize bpportunity costs, and that a combination of
criteria of performance produced results which were nearly
6ptima1.

Despite these arguments, the minimization of makespan
was retained as one of the criteria of performance because
it has traditionally been used and because examining a Gantt
chart of even a simple flowshop problem suggests that
minimizing makespan also minimizes overall machine idle time
on the flowﬁhop line. 1t was simply assumed that one of the
criteria of performance is the fastest completion of
processing on a batch Qf jobs.

It was also aséumed that managers would like to keep
their machines utilized as fully as possible since more

utilization means more production, while machine idle time
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means no production. Therefore, the minimization of machine
idle time was used as ‘'a criterion of performance.

The Gupta and Dudek study [57] indicated that the
combination of job waiting cost and machine idle time cost
was the second best suboptimal comﬁination with respect to
the minimization of total opportunity cost. Taking this
into consideration, job waiting time was chosen as the third
measure of performance. While the job is waiting, costs are
incurred since it can be considered inventory in process.
Gupta and Maykut [58] demonstrated that there is some degree
of inverse proportionality between job waiting time and
machine idle time. Also, according to Gupta [45],
minimizing makespan is eqguivalent to minimizing idle time on
the last machine. Thus, there is some correlation between
all three measures of performance.

Multivariate analytical models are capable of taking
these correlations into consideration without providing
distorted results [114])]. On the contrary, if each measure
of performance is taken individually, distorted results
would be obtained because univariate analysis cannot take
correlation between response variables into account.

Job lateness was also considered, but rejected, as a
measure of performance. It is believed that, in practice,
due dates are determined in an arbitrary manner., 1In the
absence of any empirical data on the estimating behavior of

the individual who determines the due date for the delivery
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of the processed job, it would be difficult to arrive at a
meaningful due date by any of the possible alternative
methods. Since the due date, in combination with the
schedule time, determines whether a job is late, the
validity of the estimated job lateness would be
questionable. As a result, it was decided to abandon the

idea of using job lateness as a measure of performance.

TABLE 4.1

SMALL PROBLEMS

Heuristic Algorithm

Problem

Size 1 2 3 4 5

30 Vectors
bx4 of
M, I, W

4x7
10x10

In summary, there are two factors: heuristic
algorithms and problem sizes, The heuristic algorithm
factor has five levels while the problem size factor has 15
levels for the small problems énd 20 levels for the large

problems. There are three measures of performance, also
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called response variables; the values of these variables
appear as a vector in each cell. The sample size (number of
replications) is 30, thus yielding 30 vectors of performance
measures in each cell. An explanation of the choice of the
number of replications is given in the next section, which
describes tactical planning. The foregoing is represented

in Table 4,1.

Tactical Planning

Campbell, Dudek and Smith [27] stated that the uniform
distribution provided challenging problems, and other
studies [1,37,54,58] have also used this distribution for
generating processing times. Adopting this approach, the
processing times for the problems in thié research were
randomly generated from a uniform distribution, ranging from
0 to 99, inclusive. This range was chosen to provide some
measurable differences in the values of the performance
measures for the various algorithms.

A Lehmer-type random number generator was included in
the Fortran code preceeding the programmed heuristic
algorithms in order to generate the processing times for
each problem, Each of the algorithms was then used to solve
this ﬁroblem. A vector of observations was obtained from
the solution by each heuristic algorithm. Each vector was
plaéed in a cell associated with the heuristic algorithm.
The five vectors were considerea repeated measufes on the

same subject because they resulted from solving the same
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problem. This process was repeated until 320 vectors of
- observations were obtained for each cell., The matrix of
processing times for consecutive replications within a
single cell was generated using consecutive strings of
random numbers from the random number stream. For each
experimental group of subjects, a new random number seed was
used, thus ensuring that processing times were randomly
selected. (The random number seeds are recorded in Appendix
c.)

In the experiment, each heuristic algorithm solved the
same set of problems as the other algorithms., Thus,
repeated measures were obtained on the same subject. This
repeated measures approach has been the standard practice in
past research studies and was adopted here to conform with
past procedures, This means that the performance measures
for a particular heuristic algorithm will be correlated with
measures for other algorithms, thus creating dependence
between cells. On the other hand, the error variance is
reduced by removing one source of variation [ 69].

Multiple responses exist because data were obtained on
three variables from each solution. This experimental
design ecan the;efore be described as a multivariate repeated

measures, multi-response design,

Sample Size
The number of problems (replications) of a particular

size is called the sample size. The sample size was fixed
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at 30 so that it may be assumed that the distributions of
bo;h the sums and means.of the observations approximate a
normal distribution. This follows from the central limit
theorem, which suggests a sample size of 25 or more
observations to allow the assumption of normality when
little is known about the distribution of the observations
{31]. Fixing the sample size at thirty also ensured that
cell sizes for the multivariate model were equal. This
equality tended to minimize the adverse'effects of violating
the assumptions of equal variance-covariance matrices for

the multivariate analysis of variance model [ 69,109 ].

Source of Data

Data were obtaﬁned by using the computer to simulate
tﬁe operation of the flowshop. The simulation model of the
flowshop was programmed for the computer in Fortran. The
jobs were seguenced through the flowshop simulation model in
accordance with the schedule developed by the heuristic
algorithm while the values of the response variables were
calculated by a subroutine. These values are recorded by
the computer and returned as the output of the simulation
process.

The length of time requiréd by the computerized
heuristic algorithm to arrive at a schedule was measured and
recorded as data. The measurements were performed by a

subroutine that utilizes the internal clock of the computer,.
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Optimum makespan values of the measures of performance
were determined for the small problems by an implicit
enumeration method [1]. These values were compared with
those obtained for the algorithms in order to determine the

percentage deviation of the heuristic algorithm values.

The Multivariate General Linear Model

The multivariate general linear model was employed in
this multivariate analysis of variance of the multi-response
repeated measures and in the testing of the hypotheses using
the p-variate vectors of observations.' Considerable use was
made of the theoreticzl framework which appears in Timm
[108 ,109] and Carlson and Timm [28].

Assuming that each p-variate vector of observations
associated with a subject is multi-normally distributed with
common unknown variance-covariance, }, the entire collection
of N observations on the p dependent variables may be
'represented by the following expression:

(4.1) Y = XB + Eo

with expectation,

(8.2) E(Y) = XB
and variance,
(4.3) V(Y) = In 8z

where the symbol Q is the Kronecker or direct
product of two matrices.
In the above expressions,

Y is a NxP data matrix,
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X is a Nxq design matrix of known constants,
with linearly independent columns,
B is an unknown qgxp parameter matrix of
population means,
Eo is a Nxp random error matrix,
I_is an ;dentity matrix,
q is the number of conditions.
The unknown parameter vectors in the matrix B were
determined by the solution of the normal equatioﬁ:

(4.4) Xt X B = X'Y

ij’
of the variance-covariance matrix, g,. were obtained from the

The estimates were designated ﬁ. The unknown elements, ¢

sum of the squares and cross products (SSP) matrix due to
error. This matrix was derived using the expression:

(4.5) Se = Y'Y - Y' X E

Testing Linear Hypotheses
Using the multivariate linear approach, null hypotheses
can be expressed in the form:
(4.6) Ho ¢ CBA =T
where C is a vhxq matrix of rank vhgq
A is a pxt known real matrix of rank t£p
T is vhxt matrix of known constants
vh is the number of degrees of freedom
associated with the hypotheses
v_ 1is the number of degrees of freedom

associated with the error.



75
Before testing the hypothesis, computation of the sum
of squares and products matrices for the hypothesis, Ch, and
for the error, Qe, was done with the following expressions:

(4.7) Qh = (CBA - ryr(cex'x)"Ycn) ! (cBa -T)

(4.8) Qe A'!'[I-x(x'x)'lx']xA

Cetermining the truth of the null hypothesis was done
with a number of techniques which incorporate Qh and Qe.
They all utilized the roots of one of the following

characteristic equations:

(4.9) lah - aqel = 0
(4.10) lce - v(Qe + gh)l = o0
(4.11) lqh - g(Qh + Qe) = 0O

Jones [66 ] stated that it is necessary for Qe to be
nonsingular in order to obtain solutions of the
characteristic equations. The roots of equation (4.9) are
Arr A2y o . .,As, where they are ordered from largest to

).

smallest and s = min(vh,t

Ho was tested with Wilks' criterion [109 ], which is

calculated from the following equation:

8
(4.12) A= o_deed = W14t
|qe+ah| i=1 1
where A denotes Wilks' criterion and Ua(t,vh,ve) is
the lower percentage point of the U

distribution.
Ho was rejected at significance level g, if

(4.13) A< u“(t.vh,ve)
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The value of Wilks' criterion can be converted to an
F-statistic by using an expression developed by Rao and
reported in 34, p. 227.

Another test of HEo involved Pillai's trace criterion

(28], which was derived from the following expression:
' S s
(4. 14) v(s) - rrich(on+qe) 11 = Zei = z a

i=1 j=1 =2

T+x,
i

Using a significance level of o, Ho was rejected if
v(S)>v®¢s,m,n). 1In the preceding expression, m =
th-tl-1)/2, n =(ue-t-1)/2, s = min(vh,t), and V%(s,m,n) is
the critical constant taken from the upper percentage points
of the V distribution [109].

The Hotteling-Lawley Trace criterion [28] was also used
to test Ho. The formula for this criterion is

S
(4.15) uls) - Tr(gnee l) = 3 Ay
i=1

Ho was rejected vwhen ch)>an(s,m,n). A table of the
distribution of the eritical constant Uo%(s,m,n) is also
irovided in Timm [109].

Roy's largest root criterion {28] can also be used to
test Ho, The criterion, @, was determined by the following
expression:

(4.16) 9 = 11/(1+11)

The hypothesis was rejected if 6>6a(s,m,n). Critical values
were obtained from the distribution for the largest root,

which is provided in Timm [109].
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When s = 1, allhcriteria are the same, Eeyond that
value of s; there is a divergence. There is no clear
indication of which criterion is better. According to
Harris [61], the majority of texts and computer programs
report the Wilks' criterion for significance tests. Among
the reasons given is the ease with which the value of A can
be converted to an approximate F~-value, for which well
developed and extensive tables are readily available.
Tables for the other criteria are not as thorough and
ubiquitous. Jones [66.] stated that the power functions of
the criteria may depend upon the values of all the
pobulation roots. He stated that when more than one root is
large, Wilks' criterion has its greatest power, while at the
same time, Roy's largest root criﬁerion is at its minimum
power. On the other hand, the distribution of the roots of
the trace criteria has no effect on their power, He also
'mentioned that the advantage of the largest root criterion
is its ability to provide simultaneous confidence bounds for
several important parameters. According to Jones, one of
the virtues of the trace criterion is that knowing the
values of the characteristic equations' separate roots is
not necessary for performing tests., This is because the sum
of the roots,iki, is also equal to the sum of the diagonal

elements of matrix, Qth-l.
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The Hypotheses

The research hypotheses developed for this study sought
to investigate the comparative abilities of the various
heuristic algorithms in providing schedules. The hypotheses
were designed to facilitate testing by inferential
statistical methods. The hypotheses are stated as follows:

When multiple criteria of performance are used:

1. There is no interaction effect between the
heuristic algorithms and the size of the
problens.

2. The heuristic algorithms determine equally

efficient schedules,

(¥
.

There is no difference between the results
yielded by the various problem sizes,
Using a single criterion of performance:
4, Given a fixed problem size, the five heuristic
' "algorithms require an equal amount of
computatioﬁal effort, which is measured by the
amount of computer time needed to perform
the processing.
5. Adopting the minimization of makespan as
the criterion of performance, the five
heuristic algorithms are equally efficient.
6. Adopting the minimization of idle time as
the criterion of performance, the five

algorithms are equally efficient.
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7. Adopting-the minimization of job waiting time
as the criterion of performance, the five
algorithms are equally efficient.
Non-statistical test:
’8. For small problems, the heuristic algorithms

produce an equal number of optimal schedules.,

Analytical Procedures

As an initial step, the datea were summarized by
calculating the mean values of the response variables in
each cell. The format of these means appear in Table 4,2.
The mean values are graphed with a separate graph for. each
dependent variable. In the case of the small problems where
the optimal value for the dependent variable, makespan, has.
been determined, the average percentage deviation between
the values determined by the heuristic algorithm and the
optimal values is reported for each problem size and
heuristic algorithm. For both the small and the large
problems, the average ratio of the value of the dependent
variable for each algorithm to the same value for a
particular algorithm, RAES, is reported.

Because there were multiple response variables and
.repeated measures on each subject, the multivariate analysis
of v;riance technique was employed. This approach was
preferred rather than univapiate analysis with each
dependent variable because the latter technigque, unlike the

former, does not take into consideration any correlation



MEANS FOR REPEATED MEASURES DATA

TABLE 4,2

Performance
Measures Makespan Job Waiting Time Machine Idle Time
Heuristic
Algorithms 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
P
1Y Y1z (M3 (Mie (Y15 [M1e |M17 |18 |B19 |wp gofwy,an| ¥, 10| M1, 13 M1, 06 4,19
Problem
Sizes :
P [Pk | ¥x2 | M3 | P4 | “ks | Mke (M7 |Mk8 | Pkg Miki10{M 11 | Mk, 12| Mk, 13| ¥k, 14| ¥k, 15]
p *Pw1 [Mw2 M3 [Mes [Yws [Ywe [Yw7 [Mws [Mw9 |Mw,10]%w, 11| Y, 12{ "0, 13| ¥4, 14] Y, 15
w

*
w equals 15 and 20 for the small and large problems, respectively.

08
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between the dependent variables [60,61,51]. There is also
the danger of compounding the Type I error when multiple
univariate tests are done, because each univariate test is
designed to yield a significant result o X 100% of the time
when the null hypothesis is true [61]. Furthermore, the

assumptions for multivariate analysis of variance are not as
demanding as those for univariate analysis [108].

Profile analysis, an approach often used to analyze
multivariate repeated measures data in other studies
[21,32,35,61,82,108,109], was adopted for this study. 1In
order to accommodate multiple dependent variables in the
profile analysis framework, new depeﬁdent variables were
created by forming them from the combination of each former
dependent variable and each level of the factor, heuristic
algorithm. Thus, there were 15 new dependent variables and
each.eolumn in Table 4.2 contains information for a
particular new variable, Hence, the entry Mg represents the
mean value of the 30 observations in the cell for problem
size 1 (4 jobs X 4 machines) and for the new dependent
variable 1, which is formed from the former dependent

variable, makespan, and the first heuristic algorithm, RGES.

Testing of the Hypotheses
As stated earlier in this chapter's section on testing

linear hypotheses, accepting or rejecting hypotheses depended

upon the derived values of certain test criteria.
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This section discusses the procedures for testing the
hypotheses.

The test for interaction. The first hypothesis soughé
to determine whether or not there is a significant
interaction between problem size and heuristic algorithms.
It performed this determination by checking for parallelisnm
of the profiles. This check was done by developing
transformations on the data in Table 4.2, ana performing
one-way multivariate analysis of variance on the
transformations with the problem size as ihe only factor.
Thus, the 2lgebraic representation of the first hypothesis

being tested by profile analysis is:

W11 -u1s ] U1 -Uss | U151 'st,sw
Hi2 -Ma13 Hg2 -Hss Hiss2 ~“Hisss
Hiv -H13 Hew “~Hes His,s ~Hi1s,3
His ~-Hi3 Hes -Hes His,s ~Hi1s,3
His -~U1ie Hes -Uss Hiss6 ~“Hisss
Hol = Hi7 ~-Misg = ...=|Ug7 -Mlas = cee=|H1s5,57 ~U1s,8
His ~Hi1s Hage ~UHsgs His5,9 ‘U1s,s.
His10-HUys He,10-Hsge Hiss10-H1s,s
Hi,11"H1,13 He,11-Hg,13 His,11"H15,13
Hisi12-H1,13 Hg,12-He,13 His,12-H15,13
His14-H1513 Hg,148-He,y13 His,14"H1s,513
[H1515"H1,13) [M8,15-H8,y13) - (H15,15 H15,13)

In order to test this hypothesis using the multivariate
general linear model, it was necessary to specify the C, &
and T matrices for the expression, Ho: CEA =T, As already

indicated, the b matrix is a matrix of parameters which is
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represented by the matrix of means in Teble 4.2, For %the
small problem, the dimension of this matrix was 15x15 while
it was 20x1'5 for the large problems. The row dimension
represents the numbef of levels for the prcblem size factor
while the column dimension represents the number of new
dependent variables.,

The C matrix contains the contrasts. 1t 1s specified

below in 2z partitioned form:

where k = q-1 = v,

Ik is a kxk identity matrix

(the hypothesis degrees of freedon)

-1 is 2 column vector of minus ones
q = number of levels of the problem size factor.
The post matrix A, which enabled the development of
hypotheses among different response parameters [78], was

partitioned as follows:

A1i0 10

e

A =10 ia1i0
PR
0 {0 jA1

where 0 is a 5x4 matrix of zeros

and A1 is the 5xU matrix that is specified below.
[ 100 0]
0 1¢coO
At zletlatlatat

0010

[ 0 0 0 1]
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The above matrix was designed to facilitate comparisons
between the RAES 2lgorithm and all of the other neuristic
algorithms.

TheT matrix consisted of a kx1Z matrix of zeros, where
kK equals Vi the hypothesis degrees of freedom.

Thus, in testing fer interaction, the dimensions of the

matrices were:

Hol: C B A =T
(g-1)xq qxp px12 kx12

where g-1 = vh(equals 14 and 19 for the small &and

large problems, respectively)

and p = number of new dependent variables(i.e. 15)
Testing for the differences between heuristic

aleorithms. If parallelism was not tenable, the hypothesis

which tests differences between heuristic algerithms was as

follows:
Hil Uiz H1s
¥21 H23 . H25
us3i H33 H3s
Hy1 Hy3 Mys5
» 3 -
H1551 B15,2 Y155
Hisg H1s8 H1510
Ho2 = |Uo,g =, . . B |Ho,g =, , .2 |U2,10
H15s6 K158 Hiss10
Hisll H1,13 His15
H2,11 H2,513 H2s15
| H15511) H15,13] | 15515
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The matrices were of the form:

C is Iq, an identity matrix

A,B are the same matrices used for the
test of parallelism

T' is a gx12 matrix of zeros
where q = number of levels of the factor.
If parallelism was tenable, the matrices were as

follows:

C = (1/q,%/¢, « .+ .,1/0)
(1xq)

A,B are the same matrices used in the test
of parallelism.
I is a-1x12 matrix (or a vector) of zeros.

In algebraic form, the hypothesis is expressed as:

P% / 1 .g / W -g /
H q K q H q
1=1 il 1=1 i3 1=1 i5
Ho2 ;:1 / z / g /
02: H,./q =, . .3 T u,./q = .. .= M., q
1=1 i6 1=1 18 i=1 i,10
u, ./ LI o, o/
u q u q H q
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Testing differences between problem sizes. When
parallelism was not tenable, the parametric form of this

hypothesis was as follows:

- . . 1 - 1
11 Hgl H15s1
H12 Hg2 H15,2
H13 Hg3 H1553
Biy Hgy H15,4
H15 Hgs H15,5
Hle 1 ¥-1 H15s6
w17 Hg7 H15,7

Ho3 = |uis = .. .= |ugg ® . . o= iU15,8
H19 Hgg H1559
H1s10 Hgs10 H15510
His11 HEs11 H15511
H1,12 ¥g,12 His,12
H1,13 Hg»13 H15,13
Bl,1b Hgy1iu H1Sy 1k
L.111’15- 'ue,1§ _u15»1§

The following matrices were required for this test:
B,C are the same matrices as those used in the
test of parallelism
A is an 115 identity matrix
r is a (g-1)x15 matrix of zeros,
When parallelism was tenable, the matrices were as follows:
B,C are the same matrices as above
P is a(q-1)x3 matrix of zeros
A is a 15x% matrix which is partitioned

as follows:
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10 @
1 9

VAl

where Y1 is a column vector of 5 elements,

and 9

each being 1/5

each being zero.

is a ecolumn vector of § elements,

This hypothesis is represented in algebraic form as:

Ho3:

[ 5 / i
PR 5
g1 1

10
zu,./5
3=6 13

15

T u;./5
j=11 1

-

A s

L

i=1

5

z /5

Mij

10
Zy./5
g K

15

I u./5
j=11 53

W

L

j=1

5
z

10
I
i=6

15
z

j=1

15,3

15,3

15,3

/5

/35

/5

o

The computations for the above three hypotheses were

done by the Full Rank Multivariate Linear Model (FRMLM)

program which was reported by Carlson and Timm [28].

output from this program includes Wilks'

¢criterion,

multivariate F-statistic, and the trace criteria.

Univariate results,

F-statistic,

are also provided.

which include the univariate

the
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The remaining hypotheses. 1In testing the fourth
hypothesis, another analysis of variance was done. in this
case, only one dependent variable, the CPU time required for
-arfiving at schedules, was used. It is possible to use
univariate analysis of variance if the assumptions of
compound symmetry of the vériance-covariance_matrix are met,
Otherwise, it is safer to use multivariate analysis of
variance since this latter technique does not require the
assumption. 1In either case, an F-statistic was obtained and
the hypothesis of equal computational effort for all
heuristic algorithms was éejected if the F-statistic yielded'
from the sums of the squares for the hypotheses and errors
was-greater than the critical F-ratio for the significance
level spécified. " The F-test waé preferred because of its
robustness with respect to the required assumptions.

The fifth, sixth and seventh hypotheses were also bzsed
on a single response variable, and all of the comments made
on the previous hypothesis with respect to the selection of
a univariate or multivariate approach applied to each of
these hypotheses., Again, the F-statistic was used to accept
or reject eéch hypothesis.

The final hypothesis, which states that the heuristic
algorithms yield an equal number of optimal schedules, was
tested in a non-statistical manner by counting and comparing

the actual number of optimal schedules.
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In the above tests, an initial significance level of ,05
was chosen. On those occasions when it appeared that another
level would produce more useful results, the new level was

adopted and further investigation pursued.

Post Hoc Tests

If the hypothesis concerning the equality of the
heuristic algorithms was rejected, further analyses were done
to determine which algorithm was responsible for this lack of
equality. It was also possible that a subset, rather than
the total number of dependent variables, may have contributed
to this lack of equality. A numbér of writers
[60,61,66,107,109] have suggested post hoc tests when
multivariate hypotheses are rejected., Timm's discriminant

analysis approach [109] was used in this reseafch.

Summary

This chapter outlined the research methodology utilized
in performing the investigation, It specified the factors
and their levels, and it identified the measures of
performance: makespan, machine idle time and Jjob waiting
time. It also explained how data were obtained as an output
of computer simulation. The various analytical and testing
techniques were specified as well as the hypotheses which
were iested. The criteria required for the acceptance or

rejection of hypotheses were also indicated.



CHAPTER 5

ANALYSIS OF DATA AND RESULTS

This chapter reporté and discusses the experimental
investigation on the heuristic algorithms, The initial
section provides a summary of the results, This is followed
by a discussion of the data generated by the simulation model
of the flowshop and then by a statistical analysis of the

same data, The results of post hoc analyses are described.
Throughout the chapter the results are interpreted and

evaluated.

Sumpary of the Results
The results obtained from the testing of the

hypotheses are as follows:
A. When the three measures of performance are consid;red
simultaneously:
1« There is a significant interaction between the
problem sizes and heuristic algorithms which means

that some algorithms were more efficient at

a particular problem size.

90
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2. The five heuristic algorithms produce significantly
different results
3. The observations on the three performance measures
are Significantly different for the various
problem sizes,

B. The computational efforts, as measured by the CPU time,
are significantly different for the heuristic
algorithms.

C. When each perfofmance measure is considered separately,
the data generated by the heuristiec algorithms are
significantly different except in one batch of
comparisons,

D. The heuristic algorithms do not produce an equal number
of optimal solutions, 1In fact, there is a great

disparity among the numbers produced.

Desceription of Data Generated

A1l of the data were generated using the IBM 370/158
computer of the Computer Center, the University of Oklahoma,.
A total of 450 small problems and 600 large problems were
solved by each heuristic algorithm. The experiments were
designed so that ihe heuristic algorithms solved the same
problems, The data derived from these solutions included a
schedule and the CPU time required by the heuristic algorithm
to arrive at a solution. The resulting schedule was %then
evaluated by the simulation model of the flowshop which

yielded values of the performance measures. Thirty problems
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were solved for each problem size and the results were
averaged over all of the problems. The raw data on the
performance measures and CPU time are not reported here since
it is estimated that there are 9000 items for the small
problems, and 12,000 for the large problems. This would
involve dozens of pages of tables and would be too
voluminous. 1Instead, the mean values for each cell are
tabulated and reported in Appendices D and E for the small
and large problems, respectively. The means for the small
problems are‘plotted on graphs in Figures 5.1, 5.2 and 5.3,
with each figure representing a performance measure. The
corresponding graphs for the large problems appear in Figures
5.4, 5.5 and 5.6. There are several graphs in each figure so
each line is identified by a letter. These letters are
related to the various problem sizes in Tables 5.1 and 5.2
for the sﬁall and large jobs, respectively.

Although the graphs of the means of the makespan
values for the small problems reveal that the RAES heuristic
algorithm produced the lowest values, this heuristic
algorithm did not have a monopoly on these figures. At the
smallest problem sizes, the RGES algorithm matched its
results, and the values yielded by the AS and CDS algorithms
were also comparable. The closeness of the results of the AS
and CDS algorithms and the superior results of the RAES
algorithm confirmed the findings reported in earlier studies

[1,37]. An examination of the larger problems revealed that
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TABLE 5.1

CODES FOR THE SMALL PROBLEMS

Problem Letter Numerical Problem Letter Numerical
Size Code Code Size Code Code
4x4 A 1 8x7 H 8
4x7 B 2 8x10 I 9
4x10 C 3 9x4 J 10
6x4 D 4 9x7 K 11
6x7 E 5 9x10 L 12
6x10 F 6 10x4 M 13
8x4 G 7 10x7 N 14

10x10 0 15
TABLE 5.2

CODES FOR THE LARGE PROBLEMS

Problen Letter Numerical Problem Letter Numerical
Size Code Code Size Code Code
20x15 A 16 60x45 K 26
20x30 B 17 60x%60 L 27
20%45 C 18 80x15 M 28
20x60 D 19 80x30 N 29
40x15 E 20 80x45 0 30
40x30 F 21 80x60 P 31
40x45 G 22 100x15 Q 32
40%60 H 23 100x30 R 33
60x15 1 24 100x45 S 34
60x30 J 25 100x60 T 35
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FIGURE 5.1
MAKESPAN MEANS, SMALL PROBLEMS
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FIGURE 5.2
JOB WAITING TIME MEANS, SMALL PROBLEMS
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FIGURE 5.3
MACHINE IDLE TIME MEANS; SMALL PROBLEMS
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FIGURE 5.4
MAKESPAN MEANS, LARGE PROBLEMS
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FIGURE 5.5

JOB WAITING, TIME MEANS, LARGE PROBLEMS
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FIGURE 5.6
MACHINE IDLE TIME MEANS, LARGE PROBLEMS
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the RAES algorithm produced the lowest makespan values. In
general, the values produced by the CDS algorithm were not
much higher and were followed, in order of magnitude, by the
values for the RGES, AS and HD algorithms. At all problem
sizes, the HD algorithm produced the worst results.

When machine idle time is considered as the
criterion, a plot of the means for the small problems
indicates that; in general, the RAES algorithm produced the
best results. On a relatively small number of problem sizes,
the RGES, CDS and AS élgorithms took turns at produeing the
lowest values for this criterion. 1In the case of the large
problems, tﬁe RAES algorithm yielded the best results at all
problem sizes. With the exception of the HD algorithm and,
on occasions, the RGES and AS algorithms, the values produced
for this measure of performance were very similar in
magnitude. |

The machine idle times seem to vary much more
significantly with the number of machines than with the
number of jobs, This is demonstrated in Figure 5.3 by the
cluster of lines for various problem sizes when the number of
machines were held con;tant and the number of jobs varied.
For the small jobs, the machine idle times for the U4x4, 6x4,
8x4, 9x4 and 10x4 problems varied by a minimum of 77 units
for the RGES algorithm. On the other hand, the values fo;

the U4xl4, U4xT7 and 4x10 problem sizes varied by as much as
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2,526 units for the same algorithm, thus illustrating the

very strong influence of the number of machines.

The results for the job. waiting time criterion
displayed different patterns. The CDS algorithm tended to
produce results for the small problems that were definitely
worse than those for the RAES'and AS algoriihms., Its results
were, on the average, about equal éo those produced by the
RGES algorithm., On the other hand, there was a close
similarity between RAES' and AS' results. 1In the case of the
large jobs, the RAES algorithm once more produced the best
jJob waiting times. The next best results were yielded by the
CDS algorithm while the RGES apd AS algorithms had
observations that were approximately the same. In its
characteristic style, the values of the performance measure
for.the HD algorithm were inferior to those of the other
algorithms.

The job waiting times increased as the number of jobs
increased. A similar pattern was observed with an increase
in the number of machines, The variation of the job waiting
times with the number of jobs was more pronounced than with
the number of machines,

In general, the RAES algorithm produced the best
results for all ﬁhree measures of performance over all of the
problem sizes, When these values for the RAES algorithm were
divided by the corresponding values of the same performance

measure for another algorithm, the ratios obtained were found
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to be usually less than one., The average values of the
ratios are displayed in Tables 5.3 and 5.4. This again
illustrates that the RAES algprithm yvielded the lowe} values
for the performance measures,

The results for the small jobs are also expressed in
terms of percentage deviation of the makespan values from the
optimal values. They appear in Table 5.5. The optimal
values were determined using an implicit enumeration
technique [1]. No. attempt was made to produce the optimal
values for large problems because the implicit enumeration
algorithms needed, on the average, 31.5 minutes to solve a 10
jobs x 10 ﬁachines problem, This is a considerable quantity
of time when it is compared with a mean value of 0.039
seconds required by the CDS algorithm, which needs the least
timé. Clearly, even if sufficient funds were available, the
necessary CPU time to solve even one 100x60 problem for its
éptimal solution would not be available on any academic or
commercial computer; éven if this time were available, the
solution would not be known for several centuries hence,

The deviations again demonstrate the superior
performance of the RAES algorithm. The RGES algorithm also
produced good results with the smaller problem sizes. It
actually produced optimal solutions for all thirty
replications of the 4 jobs x 4 machines problems., This is .
explained by the fact that RGES randomly generates 25

different schedules, and one of the optimal schedules was
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TABLE 5.3

RATIOS AND MEAN CPU TIMES FOR SMALL PROBLEMS

Average Ratios P

Number Number Machine Job Average
of of Heuristic Idle Walting CPU
Jobs _ Machines Number®  Makespan Time Time Time®
4 4 1 1.001 .997 1.004 041

2 .930 .854 .962 .011
3 N/A N/A N/A .018
4 987 971 1.002 .009
5 <995 .991 1.012 .013
4 7 1 1.000 1.000 1.012 .052
2 946 .965 1.022 .017
3 N/A N/A N/A 024
4 999 1.010 1.066 .015
5 994 .993 1.046 .015
4 10 1 1,001 .993 1.009 .061
2 .925 .899 .927 .019
3 N/A N/A N/A .030
4 .995 .997 .995 .020
5 .995 .985 1.000 .017
6 4 1 .995 .983 1.020 .067
2 .885 .771 .963 .026
3 N/A N/A N/A .033
4 .969 .984 .979 .011
5 .981 .963 1,030 .018
6 7 1 .992 1.011 971 .083
2 .905 .884 .965 .026
3 N/A N/A N/A 046
4 .983 .978 1,005 .016
5 .993 .980 1,032 .023
6 10 1 +995 1.010 .994 114
2 924 .907 .979 .036
3 N/A N/A N/A .063
4 .989 .992 1.012 .023
5 .983 1.002 .997 .027

81=RGES; 2=HD; 3=RAES; 4=CDS; 5=AS

bRatio of the performance measure for the particular heuristic to the
similar value for the RAES heuristic.

CThe CPU time is measured in seconds.
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TABLE 5.3--Continued

Average Ratios P

Number Number Machine Job Average
of of Heuristic Idle Waiting CPU
Jobs  Machines Number? Makespan Time Time Time®
8 4 1 «977 .904 .969 .099

2 «906 .758 .945 .040
3 N/A N/A N/A .051
4 .980 931 .958 .012
5 .996 .983 1.022 .024
8 7 1 .972 .969 .956 .137
2 .892 .858 .951 047
3 N/A N/A N/A .071
4 .982 967 .968 .019
5 .975 .954 .983 .032
8 10 1 .990 1.001 .943 .186
2 .908 .877 947 .054
3 N/A N/A N/A .119
4 .989 .988 . .970 .027
5 .981 .985 1.026 .038
9 4 1 .979 940 .989 .113
2 .896 «743 .931 .083
3 N/A N/A N/A .057
4 .978 .938 .971 .013
5 .978 .929 1.011 .027
9 7 1 .979 .948 .972 .160
2 .884 .809 .902 .111
3 N/A N/A N/A .091
4 .971 947 .982 .021
5 .967 .937 1.022 .037
9 10 1 977 971 .975 .210
2 907 .883 .927 .120
3 N/A N/A N/A .129
4 .984 .982 .984 .030
5 .972 .956 1,003 047
10 4 1 .979 .210 .990 .138
2 .913 .736 .954 .099
3 N/A N/A N/A .066
4 973 .880 .952 014
5 .986 .899 1.025 .032
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TABLE 5.3--Continued

Average Ratios ©

Number Number Machine Job Average
of of Heuristic Idle Waiting CPU
Jobs _ Machines Number® Makespan Time Time Time®
10 7 1 .978 .990 .959 .206

2 .888 .815 .908 .121
3 N/A N/A N/A .109
4 .984 .961 .962 .023
5 .965 .955 1.010 .043
10 10 1 .976 .980 .936 +262
2 .899 .850 .904 . 144
3 N/A N/A N/A .146
4 .987 .997 .958 .03¢2
5 .982 .956 .987 .067
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TABLE 5.4

RATIOS AND MEAN CPU TIMES FOR LARGE PROBLEMS

Average Ratios b

Number Number Machine Job Average
of of Heuristic Idle Waiting CPU
Jobs Machines Number2 Makespan Time Time TimeC
20 15 1 .960 .951 .900 1.781

2 .855 .810 .929 .603
3 N/A N/A N/A 1.352
4 974 .964 .947 .165
5 .949 911 .948 .335
20 30 1 975 .986 .911 3.369
2 .882 .895 .961 1.095
3 N/A N/A N/A 2.977
4 .988 .988 .962 cbb4
5 .954 944 .928 .554
20 45 1 .980 .992 .906 5.176
2 .899 924 .938 1.563
3 N/A N/A N/A 4,380
4 .995 .999 .973 .861
5 .961 .970 .972 .814
20 60 1 974 .978 <917 5.942
2 .892 .920 .941 2.073
3 N/A N/A N/A 6.915
4 .992 .980 .980 1.406
5 .960 .957 .961 1.094
40 15 1 «948 .915 .927 9.578
2 .831 . 740 .907 3.482
3 N/A N/A N/A 9.184
4 .966 .915 <945 441
5 .928 .848 .956 1.433
40 30 1 .962 .964 .916 17.927
2 .854 .842 .901 6.496
3 N/A N/A N/A 18.184
4 .978 .970 . 945 1.146
5 .939 .909 <952 2,488

21=RGES; 2=HD; 3=RAES; 4=CDS; 5=AS

b

Ratio of the performance measure for the particular heuristic to the
similar value for BAES heuristic.

®The CPU time is measured in seconds.
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TABLE 5.4~—Continued

Average Ratios b

Number Number Machine Job Average
of of Heuristic Idle Waiting CPU
Jobs Machines Numberd Makespan Time Time Time¢
40 45 1 +969 .964 .921 27.017

2 .878 .881 .927 9.458
3 N/A N/A N/A 26.749
4 .983 .973 .953 2.065
5 .938 .923 .954 3.376
40 60 1 974 «972 «934 36.178
2 .892 .907 .929 12,257
3 N/A N/A N/A 37.327
4 .989 .985 .966 3.371
5 944 941 .955 4.263
60 15 1 .940 .864 .936 24,311
2 .827 .697 .918 10.788
3 N/A N/A N/A 24,865
4 .970 .909 .950 .877
5 .924 .819 .961 3.244
60 30 1 .956 .936 .937 52.691
2 .855 .820 .909 20,023
3 N/A N/A N/A 55.581
4 .981 . 949 .960 2.160
5 .920 .872 .939 6.297
60 45 1 .964 .958 .931 76.002
2 .876 .874 .908 29.686
3 N/A N/A N/A 86.619
4 .982 .971 +955 3.913
5 .933 .913 .935 9.159
60 60 1 .973 .977 .943 104.285
2 .890 <904 .917 38.808
3 N/A N/A N/A 114,137
4 .989 .983 . 969 5.976
5 .937 .920 «941 10.475
80 15 1 .947 .863 <954 47.398
2 .834 .675 912 24,504
3 N/A N/A N/A 51.503
4 .976 .919 .966 1.394
5 .922 .788 .961 5.806
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TABLE 5.4~--Continued

Average Ratios b

Number Number Machine Job Average
of of Heuristic Idle Waiting CPU
Jobs Machines Numbera Makespan Time Time TimeC
80 30 1 .955 .930 .950 103.242
2 .858 .822 .909 46.890
3 N/A N/A N/A 121.925
4 .980 .953 .966 3.399
5 .926 .873 .949 11.102
80 45 1 .961 .950 .943 160.388
2 .880 .876 .912 68.271
3 N/A N/A N/A 176.084
4 .982 .963 .969 5.965
5 .930 .913 .938 16.259
80 60 1 .969 .967 .938 219.561
2 .891 .900 .925 90.025
3 N/A N/A N/A 219.251
4 .987 .981 968 9.073
5 .939 .933 .950 22.246
100 15 1 .949 .850 .949 81.067
2 .853 .683 .908 46.514
3 N/A N/A N/A 82.166
4 .978 .909 .959 2.112
5 .923 .787 .956 8.869
100 30 1 .955 .918 .948 180.171
2 .858 .825 914 87.580
3 N/A N/A N/A 191.545
4 .980 957 .967 5.032
5 917 .861 .945 17.825
100 45 1 2962 .943 .944 292.479
2 .871 .862 .916 127.931
3 N/A N/A N/A 319.051
4 .985 974 .949 8.584
5 924 .900 .943 26.525
100 60 1 .964 .950 .940 384.466
s 2 .884 .876 .910 169.243
3 N/A N/A N/A 461.304
4 .981 965 .961 12.876
5 .926 .903 .930 37.001




TABLE 5.5

AVERAGE DEVIATIONS AND OPTIMAL SOLUTIONS FOR THE SMALL PROBLEMS

4 Machines 7 Machines 10 Machines
Number Heuristica Optimal Average % Optimal Average 7% Optimal Average %
of Jobs Number: Solutions Deviation Solutions Deviation Solutions Deviation
4 1 30 0.00 : 29 0.12 28 0.28
2 5 9.41 10 5.95 2 9.51
3 27 0.13 29 0.16 27 0.36
4 20 1.54 27 0.29 23 0.93
5 24 0.62 24 0.81 20 0.84
6 1 18 1.03 14 1.60 10 1.62
2 1 13.96 1 12.86 0 11.35
3 22 0.51 19 0.70 15 1.13
4 11 3.96 9 2.57 8 2.27
_ 5 12 2.55 16 1.49 9 2,98
8 1 4 4.67 1 4.94 2 3.38
2 1 16.49 0 16.27 0 15.03
3 14 2.14 10 1.92 6 2.26
4 8 4.39 2 3.85 1 3.43
5 10 2.69 2 4,60 2 4,31
9 1 1 4.67 1 4.39 3 5.11
2 0 17.03 0 16.94 0 14,02
3 8 2.32 6 2.14 3 2.60
4 3 4.77 1 5.23 3 4,28
5 3 4.82 3 5.77 0 5.66
10 1 2 3.60 4] 5.74 1 6.52
2 0 14.62 0 18.57 0 17.03
3 13 1.36 3 3.28 1 3.85
4 8 4.29 2 5.06 0 5.26
5 8 2.98 0 7.20 0 5.86

8)=RGES; 2=HD; 3=RAES; 4=CDS; 5=

60t
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among them., The chances of this occurring are quite
substantial since there are only 41 or 24 possible schedules
for a 4 jobs flowshop problem. The largest deviations are
associated with the HD algorithm,

The mean CPU times are plotted in Figures 5.7 and 5.8
using linear scales., Due Lo the concentration of the lines
at the smaller CPU times, these means are again plotted in
Figures 5.9 and 5.10 using logarithmic scales. The plots
indicate that there is a large variation in the CPU times
reﬁuired by the heuristic algorithms, For the small
problems, the CDS algorithm needed the least amount of time
to arrive at schedules while the RGES algorithm needed the
most time, The AS algorithm was also very economical with
time. The large amouﬁt of time required by the RGES
algorithm is due to its examination of several schedules., 1In
the initial phase, 25 schedules were randomly generated and
evaluated. This consumed a fair amount of time. The best of
the 25 schedules was selected, and attempts were made to
improve the schedu;e by interchanging neighboring jobs,., This
pair exchange technique required a considerable quantity of
CPU time. At the other extreme, the CDS algorithm, which
needed the least time, converts the problem into (m-1)
two-machine problems which individually require very little
time to be solved. The most attractive heuristic algorithm,
RAES, consuped a relatively large amount of time because of

the pair exchange routine employed in its second phase.
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FIGURE 5.7

CPU TIME MEANS, SMALL PROBLEMS
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FIGURE 5.8

CPU TIME MEANS, LARGE PROBLEMS
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FIGURE 5.9

CPU TIME MEANS, SMALL PROBLEMS
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FIGURE 5.10

CPU TIME MEANS, LARGE PROBLEMS
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Although the RGES algorithm was the largest consumer
of time in solving the small jobs, its time needs were
ﬁonsiderably less than that of the implicit enumeration
technique which produced the optimal values‘of the measures
of performance, As an example, this latter technique
réquired, on the average, 31.5 minutes to solve the 10x10
problem while the RGES algorithm required 0.262 seconds.

When the large problems were considered, a new
pattern emerged. The RAES heuristic algorithm replaced RGES
as the largest consumer of time., In fact, this algorithm
appears to be increasing its demand for CPU time at an
increasing rate as compared with the other algorithms. The
same can be said for the RGES algorithm, but to a smaller
degree. It a136 appearsvthat an incpease in the number of
machines deﬁands a correspondingly higher increase in CPU
time than is needed for an equivalent increase in the number
of jobs,

The results of regression analyses, relating the CPU
time to the number of jobs and number of machines, will be
reported for both the small and large problems later in this

chapter,

The Influence of Algorithm Design gg Performance
The differences in the results of the heuristic
algorithms are due mainly to their designs. The RGES
algorithm prbvided its best results at the smallest probiem

sizes because the chances of including the better schedules
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in the 25 randomly generated schedules are greatest at the
smallest problem sizes where the number of possible schedules
is small,

The HD algorithm produced the worst results. It is
believed that the job-pairing procedure is responsible for
this performance, As shown by Gupta and Maykut [58], this
procedure builds schedules by selecting jobs which minimize
the idle time of the last machine. This algorithm thus
creates much job waiting time because it delays jobs which do
not minimize the last machine's idle time, The jobs which
were delayed eventually contributed to the machine idle time
when they were processed. The causes of the machine idle
time also contribute to an increase in the makespan value,

- The RAES algorithm creates artificial two-machine
problems from m~ma§hine ﬁroblems by calculating new
processing times which are weighted sums of the original
processing times. Johnson's algorithm [65] is then applied
to the artificial two-machine problem to arrive at a schedule
which was subjected to an improvement routine., Although
Johnson's algorithm was specifically designed to give optimal
makespan solutions io the two-machine problem with actual
processing times, it also gave fairly good results in the
initial phase of the RAES algorithm using these pseudo
proceésing times. The CDS algorithm employed a similar
process of forming artificial two-machine problems and

solving them with Johnson's algorithm. The major differences
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between these two algorithms are that the CDS algorithm
produced multiple schedules from which the best is chosen and
the RAES élgorithm has.an improvement routine included. Both
of these algorithms produced the best results, Thus, it
would be reasonable to conclude that the features they had in
common contributed to their good performances and the
improvement routine enabled the RAES algorithm to surpass the
CDS algorithm.

The underlying logic of the AS algorithm is the
scheduling of jobs on machines early in the sequence in
increasing order of their processing times, and vice versa
for machines late in the sequence, This algorithm also
incorporates an improvement routine [1)]. The scheduling of
jobs ;ccording to the increasing order of their processing
times is intuitively ideal for minimizing the makespan value.

All of these heuristic algorithms were designed to
minimize the makespan values, Nothing can be said about
their abilities to minimize the other measures of performance
because minimum values of these measures were not calculated.
Any comments would therefore be limited to relative

comparisons between the values produced by the algorithms.

Multivariate Analvsis
The data generated from the flowshop simulations were
subjected to a number of multivariate tests. These included
multivariate analysis of variance, multiple discriminant

analysis and multivariate regression analysis. Of primary
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importance were the multivariate analysis of variance tests

since they served as a means of evaluating a number of the

hypotheses.

Multivariate Tests of the Hypotheses

From a review of the observations, it appears that
the RAES algorithm produced the smallest values for each
performance measure, which were considered the best results.
Furthermore, Dannenbring [37] found that RAES yielded the
best results in his earlier experiments. Consequently, the
tests of the first three hypotheses were performed in sugh a
manner that comparisons were made between the RAES algorithm
and the other algorithms., This was accomplished in the
design of the matrices which contained the contrasts,

The first three hypotheses were tested with the.aid
of the FRMLM computer program written by Carlson and Timm
[28]. A description of the results of these tests follows.

The interaction hypothesis (Hvpothesis 1). This
hypothesis postulated that there is no interaction effect
between the problem sizes and the heuristic algorithms.
Using the F-statistics obtained from the data collected, this
hypothesis was rejected for both the small and large
problems, The F-statistiecs were derived from the Wilks'
Lambda criterion using the conversion technique discussed in
Chapter 4, These statisties, as well as others derived from
the data, appear in Tablés 5.6 and 5.7, for the small and

large problems, respectively. Both F-statisties indicate
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TABLE 5.6

TESTS OF SIGNIFICANCE, SMALL PROBLEMS

Effect
Interaction Heuristic Problem Size
Wilks' Lambda .391 .136 .001
parameters 12,14,435 12,15,435 15,14,435
F approximation 2,511 5.259 20.359
degrees of freedom 168,3914 180,4024 210,4364
probability p<.0001 p<.0001 p<.0001
Lawley-Hotelling Trace 1.081 3.386 49.901
parameters (s,m,n) 12,.5,211 12,1,211 14,0,209
F approximation 2.716 7.941 99,361
degrees of freedom 168,5066 180,5066 210,5854
probability X .0001 p<.0001 X .0001
Pillai's Trace .830 1.374 2.475
parameters (s,m,n) 12,.5,211 12,1,211 14,0,209
F approximation 2,245 3.646 5.999
degrees of freedom 168,5220 180,5220 210,6062
probability P<.0001 p< 0001 p<.0001
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TABLE 5.7
TESTS OF SIGNIFICANCE, LARGE PROBLEMS

Effect
Interaction Heuristic Problem Size
Wilks' Lambda .023 .002 .000
parameters 12,19,580 12,20,580 15,19,580
F approximation 11.402 21.046 92.686
degrees of freedom 228,5831 240,5913 285,6734
probability p<.001 P<.001 X .001
Lawley-Hotelling Trace 8.267 43,242 3311.842
parameters (s,m,n) 12,3,284 12,3.5,284 15,1.5,282
F approximation 20.601 102.369 6555.510
degrees of freedom 228,6818 240,6818 285,8462
probability P¢ .001 P<.001 p<.001
Pillai's Trace 2,191 2.705 3.557
parameters (s,m,n) 12,3,284 12,3.5,284 15,1.5,282
F approximation 6.689 8.279 9.244
degrees of freedom 228,6972 240,6972 285,8700
probability p¢ -001 P« 001 p<.001
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that there is significant interaction at the .001 levei.
F-statistics were also derived from the Lawley-Hotelling
trace and the Pillai trace criteria using the conversion
equations provided on p. 143 of [18]. These derivations were
necessary because tables for the critical values of both
criteria were not readily available for the ranges of the
parameters employed. These F-statisties also indicate that
there is significant interaction between the two factors at
the same level of significance.

This significant interaction suggests that some
heuristic algorithms were more efficient at certain problem
sizes., In terms of profile analysis, these results state
that parallel profiles do not exist. A superficial
examination of the plots of the means of the dependent
variables (or performance measures) for the small problems
revealed that the lines connecting the points for the various
problem sizes are roughly parallel., When the graphs in
Figure 5.1 were thoroughly scrutinized, it was discovered
that, for the makespan means, the line label%ed F (which
represents problem size, 6 jobs x 10 machines) intersects the
line labelled K (which represents problem size, 8 jobs x 7
machines). On further examination, it was observed that the
line labelled A is not parallel to the line labelled D;
neither is the line labelled B parallel to the line labelled
G. On the graphs of the job waiting means in Figure 5.2, the

lines labelled K and M intersect. Also, it is clear that
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lines I and J are not parallel, The lines labelled I and L
intersect on the graphs of the machine idle time means in
Figure 5.,3. The line labelled B is clearly not parallel to
the neighboring lines labelled E, H, K and N. The examples
mentioned are not an exhaustive account of the lines which
are not parallel., There are many other examples, The
deviationé from parallelism are, however, very small and
could only be detected by keen observation or by a very
sensitive test, The multivariate analysis of variance test
for interaction deteéted the lack of parallelism., The high
sensitivity of this test was due to the large number of
degrees of freedom which were derived from the number of
levels in the factors and the number of observations.

There was also a significant interaction effect for
the large problems., The multivariate F-statistic obtained
for the test was significant at the .001 level, The graphs
of the means of the performance measures (or dependent
variables) exhibited less variation than those for the small
problems. The intersection of lines occurred only on the
graphs of the makespan means in Figure 5.4, Nevertheless,
the test with its large numbef of degrees of freedom was
sensitive enough to identify the lack of parallelism.

A significant interaction demands that caution must
be exercised in testing the remaining hypotheses, A repeated
univariate approach should be cautiously‘interpreted because

this technique does not take into consideration the fact that
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the factors are confounded. A multivariate approach has
therefore been adopted for tests of differences in
heuristies, and in the problem sizes. This approach was
described in Chapter 4,

The test of differences in heuristic algorithms
(Hypothesis 2). This hypothesis postulated that the
heuristic algorithms produce schedules which are equally
efficient, The results for the small jobs rejected this
hypothesis, They yielded F-~statistics, derived from all
three criteria, which were significant at the ,001 level.
Similar results were obtained for the large jobs. These
results for the small and large problems are displayed in
Tables 5.6 and 5.7, respectively.

From the .graphs of the means of the dependent
variables, it is clear that there is no equality of
performances among the heuristic algorithms. The HD
algorithm clearly produced results which were inferior to
those of other algorithms., 1Its observations on the dependent
variabies were always the largest. The lines joining the
means of the observations for the various algorithms have
wavy patterns, This suggests that the average values varied
among the algorithms. A horizontal line would indicate
pérfect equality. At this stage, it seems that in addition
to the HD algorithm, both the AS and RGES algorithms
contributed to the variation, With é few exceptions, it

appears that the results for the RAES and CDS algorithms were



124

quite close., A thorough identification of the factors
causing this lack of equality will be done in the post hoec

tests,

Testing of the differences in the problem size
(Hypothesis 3). As anticipated, there were significant .

differences in the levels of this factor. Agazin, due to the
limited range of the tables of the various distributions
available, the test of significance was limited to the
derived F-statistics. The respective values of the
F-statistics were significant with a probability value of
less than .001. These results for both the small and large
problems are displayed in Tables 5.6 and 5.7, respectively,
The plots of the means for each dependent variable at
each problem size are particularly deceptive when used to
assist in any interpretation of the differences in results.
This difficulty is due to the scale which was selected to
accommodate all of the problems, defined as being large, in
the same figure. For example, the ratio of the job waiting
time value for the RAES algorithm to the same value for the
RGES algorithm at the 20 jobs x 15 machines problem size is
.900. An examination of the graph reveals that the line
Joining the values for these algorithms appears to be a
horizontal straight line which erroneously suggests that the
algorithms have equal job waiting times., Hence, the ratios
in Tables 5.3 and 5.4 would be more reliable than the graphs

of the mean values in providing information. From these
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tables, it appears that at the smallest problem sizes, the
ratios are high, As the problem sizes become larger, the
ratio becomes smaller, indicating that the efficiency of the
other algorithms declined with respect to the efficiency of
the RAES algorithm. These ratios are plotted in Figures 5.11
to 5.16. |
This hypothesis states that the heuristic algorithms need an
equal amount of computational effort to arrive at schedules,
In this research study, the CPU time required to perform the
computations was used as a measure of the computational
effort. This hypothesis was rejected for both the small and
large problems. The analysis of the data was done using the
MANOVA program distributed by the CLYDE computing services
[4], and an experimental design descfibed by Nicewander [82]
for repeated measures with one dependent variable, 'Although
only one dependent variable is involved in this analysis, a
multivariate approach is taken since thé use of a univariate
approach requires that the assumption of compound symmetry be
met [108]. The values of the resulting F-statisties for both
the large and small problems led to the rejection of the
hypothesis since they exceeded the critical values for a
significance level of .001,

When the tabulated average CPU times in Tables 5.3
and 5.4 and the graphs of them in Figures 5.7 and 5.8 were

examined, it was very clear that the CPU times required by
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FIGURE 5.11
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FIGURE 5. 12

JOB WAITING TIME RATIOS,SMALL PROBLEMS

a0

1?.

50

20

IP.

RATIOAS
9.90

9.60

9.30

(X10-1)

g0

[l ! 1 4 [
]

9.

5. 00 1.00 2.00 3. i, 00 5. 00

ao
HEURISTIC ALGORITHM?

%#See Table 5.1 for interpretation of letter codes
%1=RGES; 2=HD; 3=RAES; 4=CDS; 5=AS



128

FIGURE 5.13
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FIGURE 5.14
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FIGURE 5.15
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FIGURE 5.16
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the algorithms were definitely different. As the problen
sizes grew larger, the differences increased--especially
between the algbrithms which needed the most and the least

CPU time,

Univariate Comparison of the Heuristic Algorithms

In this section, the heuristic algorithms are
compared, taking each dependeht variable individually.
Univariate F-statistics, provided by the FRMLM program [28]
as a by-product, are used to perform these comparisons., The
comparisons take the form of comparing each heuristie
algorithm with the RAES algorithm. Thus, four comparisons

are done and an F-statistic is reported for each one.

Univariate Tests of The Hypotheses
Makespan as the criterion of performance (Hypothesis
5). From the results in Tables }.8 and 5.9, it can be
concluded that each heuristic algorithm'produced makespan
values which were significantly larger than those produced by

the RAES algorithm,

TABLE 5.8
MAKESPAN COMPARISONS, SMALL PROBLEMS

Comparing Degrees of
RAES With F-Value p-Value Freedom
RGES 5.718 P<.0001 15,435
HD 45,707 P<.0001 15,435
cDs 5.225 P<.0001 15,435

AS 5.637 P<.0001 15,435
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TABLE 5.9
MAKESPAN COMPARISONS, LARGE PROBLEMS

Comparing Degrees of
RAES With F-Value p=-Value Freedom
RGES 150.8 P<.0001 20,580
HD 904.0 P<.0001 20,580
cDS 52.0 P<.0001 20,580
AS 315.8 P<.0001 20,580

These results agree with the findings which were reporfed by
Dannenbring [37] in those cases where the two studies have
comparisons in common. The patterns in the graphs of the
makespan means also confirm these findings, but with a lesser
degree of certainty. This is especially true when making a

distinction between the results for the CDS and RAES

algorithms,
Machine idle time as a eriterion of performance

(Hypothesis 6). The results from the test of this hypothesis
are displayed in Table 5.10 and 5.11 for the small and large

problems, respectively.

TABLE 5.10
MACHINE IDLE TIME COMPARISONS, SMALL PROBLEMS

Comparing Degrees of

RAES With F=Value p=-Value Freedon
RGES . 2.793 . 0004 15,435
HD 37.874 P<.0001 15,435
cDhS 2.624 .0008 15,435
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TABLE 5.11

-

MACHINE IDLE TIME COMPARISONS, LARGE PROBLEMS

Comparing : . Degrees of
RAES With F=Value p=-Value Freedon
RGES 4o.4 P<.0001 20,580
HD 278.6 P<,0001 20,580
CDS 22.7 P<.0001 20,580
AS 150.2 P<.0001 20,580

They reveal that the other heuristic algorithms produced
machine idle times that were significantly larger than those
of RAES for both the small and large problems. The
probabilities that thesg differences occurred b§ chance are
extremely small, the largest being .0008. These results
substantiated the information that was concluded from the
plots of the machine idle time means, which did not produce
horizontal lines. This evidence was also supplied in a
different form by the ratios between the RAES algorithm and
the other algorithms, which are recorded in Tables 5.3 and
5.4 and plotted in Figures 5.13 and 5.16. 1In genefal, véry
few of the ratios were close to 1.0.

Job walting time as the criterion of performance
gﬁzgothesis 7). The results of this analysis appear in
Tables-5.12 and 5.13 for the small and large problems,

respéctively.
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TABLE 5.12

JOB WAITING COMPARISONS, SMALL PROBLEMS

Comparing ' Degrees of
RAES With. F-Value p-Value Freedom
RAES 4,719 P<.0001 15, 435
HD 8.054 P<.0001 15,438
TABLE 5.13

JOB WAITING COMPARISONS, LARGE PROBLEMS

Comparing Degrees of
RAES With F.Value p~-Value Freedom
RGES 131.5 P<.0001 20,580
HD 251.8 P<,.0001 20,580
CDS 80.1 P<.0001 20,580
AS 129.1 P<.0001 20,580

When the large problems are considered, all of the
other heuristic algorithms produced job waiting times which
were significantly larger than those yielded by the RAES
algorithm, fhe probability that this occurred by chance is
less than .0001. The same can be said for the small problemé
except in the case of the AS algorithm. The F-value
calculated in the comparison with this latter algorithm was
.759 with 15 and 435 degrees of freedom. When this was
compared with the F-~distribution value, it was concluded that

the difference between the results of the AS and RAES
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algorithm was not significant since there was a probability
of .7238 that this difference occurred by chance. This
result is corroborated by the data in Table 5,3 where the
ratios between the two algorithms are very close to 1,0. The
plots of the means on the graphs in Figure 5.2 for the small
problems also concur with this finding. The wavy nature of
the remainder of the graphs in the same figure indicates that

the remaining algorithms produced results that differed,

Non-statistical Tests
Hypothesis 8. This hypothesis states that the

heuristic algorithms produce an equal number of optimal

schedules, Hypothesis 8 is limited to the small problenms
since it was not feasible to determine optimal schedules for

the large problems. The number of optimal schedules yielded

by each algorithm for each problem size is recorded in Table
5.5. It can be concluded that the likelihood of producing an

optimal schedule decreases with an increase in the problem

size., This is‘exbected because the larger the problem size,
the‘larger the number of possible schedules, and thus, the
smaller the probability of an optimal schedule being yielded
by a method which does not consider all possible schedules.
The aggregate number of optimal schedules over all of

the problem sizes are recorded in Table 5. 14,
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TABLE 5.14

THE AGGREGATE NUMBER OF OPTIMAL SCHEDULES

-

Heuristic Algorithm Number
RGES 144
HD 20
RAES 203
CDS ' 126
AS 133

In kegping with all of the other comparisons, the
RAES algorithm determined the largest number of optimal
schedules while the HD algorithm produced the least. The
numbers determined by RGES were greater than those determined
by CDS and AS in that order, but there was not a very
substantial difference between the quantities produced by

these three algorithms.

Post Hoc Analysis
When a hypothesis is rejected using a multivariate

analysis of variance technique, further investigation can be
done to determine which dependent variables contributed to

the rejection. 1In this research study, generalized

discriminant analysis was used to perform this task. The
correlation between the derived variable and the generalized
discriminant functions, called discriminant or cannonical
variates, was used to identify the dependent variables most
responsible for the rejection of the hypothesis, Cannonical

variates are those linear combinations of dependent variables
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which are most sensitive to deviations from the null
hypothesis [28]. They maximize the variation in the
hypothesis sums of squares Qh relative to the error sums of
squares Qe [109]. They were obtained through eigenvectors
from the determinantal equation which was defined in Equation
4,9, The coefficients of the dependent variables in the
cannonical variates are called standardized discriminant
‘coefficients when they are calculated under the condition
that the within group variance of the discriﬁinant scores is
unity f109]. Thus, the coefficients of the variables appear
in comparable units which permits statements to be made about
their relative influence on dependent variables [66].

The number of cahnonical variates were the same as
the number of roots obtained from the determinantal equation.
Bartlett's chi-squared statistic [28] was used to test egoh
cannonical variate for its statistical significance with
respect to its ability to discriminate,

The discriminant analysis was performed using derived
variables Xij's, which are defined in Table 5.15, where each
xij represents the difference between the RAES and another

algorithm for one of the original dependent variables.
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TABLE 5.15
DERIVED VARIABLES

Original Dependent Variable

RAES vs. Makespan Job Waiting Time Machine Idle Time
RGES X1 X5 X9
HD X2 X6 X10
CDS X3 X7 X11

AS X4 X8 x12

~The discriminant analysis technique used in this
study is due to Bargmann and Porebski and is deseribed in

Timm [109]. 1In this approach, the correlation between the

derived variable and the discriminant function is used as an.‘

indication of the ability of that variable to cause a
rejection of the hypothesis, There is a direct relationship
between the'strength of the correlation and the ability to
cause the rejection.

This technique is preferred over those which use the
values of the standardized discriminant coefficients because
any correlation among the dependent variables affects the
interpretation of these standardized discriminant

coefficients [66,109].

The Interaction Hypothesis

It was reported earlier in this chapter that the

hypotheses postulating no interaction between the factors
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were rejected. The results from the discriminant analyses of
the data were used to explore the cause of the rejections,

Small gzghlgmg: The coefficients and correlations
for the discriminant functions, which were significant

according to Bartlett's chi-squared statistic, are recorded
in Table 5.16. Functions with probabilities greater than .05
were considered not significant; therefore, only two

functions are reported.

TABLE 5.16

DISCRIMINANT ANALYSIS, SMALL PROBLEMS

Derived Standardized Coefficients Correlations
Variable Function 1 Funection 2 Function 1 Function 2

X1 .001 .012 <174 .507

X2 -.002 .015 .437 .539
x3 -0015 -.01u 0035- -3“8
xu 0003 -0007 . 186 0337
X5 .002 .000 . 316 . 319
X6 -,.000 .001 .263 . 465
X7 .000 .002 . 136 . 485
X8 -.000 -,003 .068 .034
X9 -.004 -,000 .088 . 369
x10 ooou -0003 07"’5 0137
X111 -,001 .002 .076 .283
X12 .001 .003 .276 . 340

Function 1 Function 2

Chi~-squared 409.,1 216.1
daf 168 143
Probability p<.0001 p<.0001
% Variance 51.6% 17.9%

The interpretation of the results is done using the

Bargmann and the Porebski approaches reported by Timm [109].
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From the first function, which accounted for 51.6% of the
variance, the largest correlations were .T745, .437, .316,
.,276 and .263, which were associated with the derived
variables X110, X2, X5, X12 and X6. According to Table 5. 15,
these were formed from HD, HD, RGES, AS and HD algorithms,
respectively. Thus, the variation between RAES and HD for
all three original dependent variables contributed to the
rejection of the interaction hypothesis, The variation
between RAES and RGES for job waiting time and RAES and AS
for machine idle time also contributed to the rejection.
However, the HD algorithm was the most prominent contributor
to the rejection since the two largest correlations are
associated with it.

The second discriminant function is associated with
the roots of the determinantal equation remaining after the
largest root is eliminated. The correlations between each
variable and the discriminant functibn indicate that the
variables X2 and X1 were the best discriminators. The X2
variable was derived from the differences between the HD and
RAES algor}thms, while X1 was derived from RAES' difference
with RGES. In both cases, the original dependent variable
was makespan.
| Large Problems. The standardized discriminant
coefficients and the correlations between the discriminant
function and each derived variable are reported in Table 5.17

for the large problems. Although Bartlett's chi-squared
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statistic indicated that the first four variates are
significant at a 0.05 significance level it was decided to
report only the first two because the third and fourth

accounted for only 5.4% and 1.2% of the variation.

TABLE 5.17
DISCRIMINANT ANALYSIS, LARGE PROBLEMS

Derived Standardized Coefficients Correlations
Variable Function 1 Function 2 Function 1 Function 2

x1 1001 3003 -0378 1109
X2 -.003 .002 -.785 .052
X3 004 .001 -.207 . 067
X4 -.002 -.000 -.618 -.086
X5 -.000 -.000 -.534 -.053
X6 -.000 . 000 -.809 .098
X7 -0000 .000 -0u22 -061
X8 -.000 -.000 -.598 -. 100
X9 .000 .000 -.249 -.207
X10 .000 -.000 ~-. 475 -.660
X1 -.000 -.000 . -.160 -.173
X12 -.000 -.000 -.423 -.522

Funcetion 1 Function 2

Chi-squared 2192 1157
df 228 198
Probability p<.0001 p<.0001
% Variance 59.2% 31.1%

According to the resuits from the first discriminant
function, variables X6, X2, X4, X8 and X5 were mostly
responsible for the rejection of the null hypothesis,
Variables X6 and X2 were obtained from the HD algorithm,

while variables X4 and X8 were derived from the AS algorithm.

Variable X5 is associated with the RGES algorithm. These
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variables were derived from either makespan or job waiting
time. Many of the standardized coefficients were zero, but
it is believed that this is due to the program being written

to provide only 3 places of decimal thus eliminating the

significant digits in the remaining portion of the number.
The correlations associated with the second
discriminant function indicate that derived variables X10 and
X12 are mostly responsible for the rejection, Variable X10
is associated with the HD algorithm while variable X12 is
derived fﬁom the AS algorithm. They are both related to the

machine idle time. This discriminant function explained 31%

of the variance.

The Difference in Heuristic Algorithms

This section investigates the cause of the rejection
of the hypothesis on equal performances by the heuristic
algorithms. The discriminant coefficients and the
correlations used in this analysis were obtained as a
by-product of the multivariate analysis of variance done by
the FRMLM program. They are displayed in Table 5.18 for the
small problems and Table 5,19 for the large problenms.

Small problems. Although 12 cannonical variates were
obtained in the output from the computer program, only the
results of the first two are reported because they account

for more than 87% of the variance. The third variate is
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statistically significant given a significance level of .05,
but it accounts for only 4% of the variance. The remaining

variates were not significant.

TABLE 5.18
DISCRIMINANT COEFFICIENTS, SMALL PROBLEMS

Derived Standardized Coefficients Correlations

Variable Function 1 Function 2 Function 1 Function 2
X1 00U -,014 -.231 .099
X2 -.019 ,021 -.772 . 196
X3 .008 .009 -.,232 241
Xy .003 -.007 -.286 .06U4
X5 -.001 -.001 -.218 -.143
X6 -,001 -.000 -.298 .015
X7 .001 .000 -.203 . 102
X8 -.000 -.,001 -,002 -.073
x9 0001 .003 -0133 0086
x10 0002 --005 -.693 -0350
X11 -,000 .002 -.161 - 119
X112 -,002 .000 -,251 -,059

Function 1 Funetion 2

Chi-squared 869 310

df 180 154

Probability p<.0001 p<.0001

% Variance 7% 10.6%

Variables X10, X2 and X6 have the strongest
correlation with the discriminant function. These variables
were constructed from the differences between the RAES and HD

algorithms for each original dependent variable., Thus the

results for the RAES algorithm on all three dependent
variables were significantly different from those for the HD

algorithm. The variable associated with HD and makespan, X2,
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had the greatest contribution towards the rejection of the

hypothesis, The plots of the means in Figure 5.1 verified

these findings. The values for the HD algorithm are
undoubtedly larger than those for the other algorithms. The
second discriminant function which is orthogonal to the first

is most strongly correlated to variables X10 and X2. These

variables are also strongly correlated to the first

discriminant function. Thus, further evidenée is obtained
that the HD algorithm yielded results which were different
from those of the other algorithms.

found in Table 5,19,

The results for these pﬁoblems are

TABLE 5.19

DISCRIMINANT COEFFICIENTS, LARGE PROBLEMS

Derived Standardized

Variable Coefficient . Correlations
X1 .001 -.365
X2 --007 -0901
X3 .004 -,212
Xy -,002 -.527
X5 -,000 -.325
X6 .000 -. 440
X7 -,000 -.251
X8 .000 -.307
X9 .000 - 177
X10 .000 -.469
X11 -,000 -.130
X112 -,000 -.336

Chi-squared = 3725

df = 240

Probability = p<.0001

% Variance

89
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The first four cannonical variates were significant,
given é .05 significance level., Only one was reported
because it accounted for 89% of the variance. From the
information provided, there is a very strong correlation
between the discriminant function and the variable X2. This
indicates that the difference bétween the data for the RAES
and the HD algorithms on the makespan variable was
significant, thus making it inappropriate to state that the
algorithms produce the same results. The variables X4, X6
and X10 were also among those which contributed to the
rejection of the hypothesis. The variable X4 was formed from
the difference between the RAES and AS algorithms with
makespan as the dependent variable, while variables X6 and
X10 were formed from the RAES and HD algorithms with job
waiting time and machine idle time as the dependent
variables. An examination of the plots of the means for the

large problems in Figures 5.4 to 5.6 corroborates these

results.

Regression Analysis
There is considerable similarity between the anal§sis
of vafiance and the regression analysis techniques. Since
the former technique was the 'major tool in this research
study, it was decided to use regression analysis to
investigate the predictive relationship between the dependent
and the independent variables of this study. In the initial

phase, the dependent variables were taken collectively and
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regressed on the independent variables using a multivariate
regression technique. 1In the second phase, the CPU time
variable was regressed upon thé independent variables, using

multiple linear regression analysis where possible.

Multivariate Regression Analysis

The computations for the multivariate regression
analyses were done by the BMDP6R computer program [38].
Makespan, job waiting time and machine idle time were the
three dependent variables which were regressed on the
independent variables, number of jobs and number of machines.
The output from the computer program included the regression
coefficients, t-statistics and significance tests.

Small problems. The regression coefficients for the
.small problems appear in Table 5.20., The t-statisties for
the regression coefficients are displayed in Table 5.21. The
significance levels (two-tails)'for the t-ststistics are also
included in this table.

According to the figures in Table 5.21, the constant
terms and the coefficients in the regression equations are
significantly different from zero because the absolute values
of the t-statistics are all larger than two. The
significance levels (two-tails) for the t-.statistics also
verify this conclusion. . The F-statisties and the
accompanying information also indicate that the regression

equations are significant. The computer output stated that
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there is no correlation between the independent variables,

thus indicating an absence of multi-colinearity.

TABLE 5.20

REGRESSION COEFFICIENTS FOR SMALL PROBLEMS

Independent Dependent Variables

Varibles Makespan Job Waiting Time Machine Idle Time
Intercept -134.,2 -1972.2 -2082.4

Jobs 58.6 B33, 1 59.1
Machines 69.1 86.2 4g7.1
F-statistic 9616.3 8736.7 11558.3

df 2 and 2247 2 and 2247 2 and 2247
Significance p<.000 p<.000 p<.000

TABLE 5.21

t-STATISTICS FOR REGRESSION COEFFICIENTS, SMALL PROBLEMS

Independent Dependent Variables

Variables Makespan Job Waiting Time Machine Idle Time
Intercept -19.25(.000)% -59,51(.000) -56.47(.000)
Jobs 82.84(.000) 128,93(.000) 15.81(.000)
Machines 111.22(.000) 29.18(.000) 151.22(.000)

®*Numbers in parentheses denote the significance levels
(two-tails) for the t-statistics
The values of the regression coefficients suggest
that the number of machines have a greater influence on the
amount of makespan and machine idle times. In the case of
the job waiting times, the number of jobs has the greater

influence, These findings are also available in the plots of



149

the mean values for the dependent variables in Figures 5.1,
5.2 anﬂ 5.3. For example, each plot of the makespan means
for the 10 jobs x U machines problems (plots on the line
labeled M) needed less time than the plots for the 4 jobs x
10 machines problems (plots on the line labeled C). The same
observations can be made on the plots of the machine idle
time means., This statement is, however, not true for the
plots of the job waiting means.

Large problems. The large problems yielded
mnultivariate regression equations which were similar to those
obtained from the sméll problems., The regression

coefficients and F-statistics are reported in Table 5.22.

TABLE 5.22

REGRESSION COEFFICIENTS FOR LARGE PROBLEMS

s s s . R T R R R RE==——bBbE€? ] e ———
—_ ——— —— —_————————

Independent ' Dependent Variables
Variables Makespan Job Waiting Time Machine Idle Tinme

Intercept -590.2 -150,782.0 -79,258.0
Jobs 67.8 4,736.5 , 483.9
Machines 79.7 1,274.9 3,706.9
F-statisties 53,190.3 33,804.5 30,845.2

df 2 and 2,997 2 and 2,997 2 and 2,997
Significance p<.000 p<.000 p<.000

The t-statistics for the regression coefficients are
tabulated in Table 5.23. The significance levels (two-tails)

for the t-statistics are also included in this table.
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TABLE 5.23
t-STATISTICS FOR REGRESSION COEFFICIENTS, LARGE PROBLEMS

Independent Dependent Variables

Variables Makespan Job Waiting Time Machine Idle Time
Intercept -25.4(.000)% -89.2(.000) -95.5(.000)
Jobs - 267.7(.000) 256.8(.000) 53.4(.000)
Machines 186.4(.000) 41.0(.000) 242.6(.000)

¥*Numbers in parentheses denote the significance levels
(two-tail) for the t-statistics

The t-statistics indicate that the regression coefficients
are all significantly different from zero. The regression
equations are also significant because they yielded
F-statistics that are greater than the critical F—values.for
the reported degrees of freedom. 1In aqdition, the output of
the computer program reported that there was no correlation
between the independent variables.

These results therefore lead to conclusions similar
to those for the small problems. They can also be verified
by examining the plots of the means of the dependent
variables in Figures 5.3, 5.4 and 5.6, especially with
respect to the relative values of the regression
coefficients,

General considerations. The multivariate regression

equations reported in the preceding sections can be used to
predict values of the dependent variables. These equations

were derived from data for all of the heuristic algorithms.
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The accompanying statistical tests suggest that these
equations are sound. Nevertheless, more exact equations were
possible if the data used had been limited to a particular

heuristic algorithm.

Regression Analysis With the CPU Times

The small problem. A crude plot of a small portion
of the data for the small problems suggested that there was a
linear relationship between the CPU time and the number of
Jobs, This was followed by a multiple regression analysis of
thg CPU times on the number of jobs and the number of
machines, This analysis was done for each heuristic
algorithm. 1In general, it can be concluded that a multiple
linear regression model fits the data for the small proBlems,
The r-squared value of»the models for the various heuristic
algorithms varied from .66 for the AS algorithm to .82 for
the HD algorithm. This analysis was done with the GLM
procedure of the SAS statistical package [18]. The
regression equations for the various heuristic algorithms are
reported in Table 5.24, From these equations, it appears
that the number of jobs has a greater effect on the CPU time
than the number of machines for all heuristic algorithms
except the CDS algorithm.

The various test statisties associated with the
regression equations for the CPU times demonstrate that the
équations are statistically sound and would be good

predictors of the CPU times required by the various heuristic
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algorithms for various problem sizes within the range of the

small problems.

TABLE 5.24

CPU REGRESSION EQUATIONS, SMALL PROBLEMS

Heuristic

Algorithm Regression Equation¥* R F-value PR>F
RGES T=-.140+.025J+.012M .79 816 .0001
HD T=-.096+.018J+.004M .82 1052 .0001
RAES T==-.095+.014J+.009M .67 456 .0001
CDS T=z=.011+.002J+.003M .80 880 .0001
AS T=-.026+.005J+.003M .66 436 .0001

¥T=CPU Time J=Number of Jobs M=Number of Machines

The t-statistics for the equations in Table 5.24 are
reported in Table 5.25. Their values indicate that the
intercepts and independent variables are all statistically

significant at the .0001 level,.

TABLE 5.25

t-STATISTICS FOR THE SMALL CPU REGRESSIONS

Heuristic Independent Variables®*

Algorithm Intercept dJd M
RGES -20.3(.0001) 35.00(.0001) 20.2(.0001)
HD -24.2(.0001) 44,63(.0001) 10.7(.0001)
RAES -16.9(.0001) 24.70(.0001) 17.4(.0001)
CcDS -13.9(.0001) 20.00(.0001) 36.9(.0001)
AS -13,1(.0001) 25.10(.0001) 15.5(.0001)

#J=Number of Jobs MzNumber of Machines
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The large problems. Multiple linear regression of

the CPU time on the two independent variables, the number of
Jobs and the number of machines, did not yield good results.
The r-squared values were extremely low, mostly near .26. A
crude plot of a portion of the data revealed that the
relationship between the CPU times and the number of jobs was
not linear, The shape of the curve suggested that second
degree terms might contribute toward a more accurate
description of the relationship. Terms consisting of the
-second degree of the original independent variables were then
added to the original equation and the regression analysis
was repeated using the Stepwise Procedure of the SAS
statistical package [18] with the quadratic terms redefined
as linear variables, These definitions appear as a footnote 

at the end of Table 5.26,

TABLE 5.26

CPU REGRESSION EQUATIONS, LARGE PROBLEMS

Heuristic
Algorithm Regression Equation# R2 F-value PR>F

RGES T=-8,00+7.,2M=.03JM+.11JJ-.04MM .79 441,.8 .0001

HD T==-3.7J+3.5M~-,.02JM+,.05dJ~-,02MM .86 719.4 ,0001
RAES T==8.7J4+7.5M=.05JM+.12JJ-.03MM .79 458.0 .,0001
CDs T=-,21J+.16M-,0007JM+.0029JJ .88 1071.5 .0001

$T=CPU Time J=Number of Jobs M=Number of Machines JM=JxM
'Jd=dxJ MM=MxM
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Considerable improvement in the r-squared values was
obtained as a result of this action., These new values variéd
from .79 to .88. They are displayed in Table 5.26 along with
the regression equations and other statisties. The
t-statistics for all of the independent variables appearing
in the equations are reported in Table 5.27.

The t-statisties confirm that the variables inecluded
in the equations are all significantly different from zero.
The F-ratios and the r-squared values indicate ihat the
equations are statistically sound and that they would be good
predictors of CPU time within the range of problem sizes
considered.

TABLE 5.27

t-STATISTICS FOR THE LARGE CPU REGRESSIONS

Heuristic Independent Variables®

Algorithm Jd M -JM Jd MM
RGES 22, L4%% 16.5 6.6 27.1 5.0
HD 30.0 23.0 9.4 36.1 8.0
RAES ' 22.1 15.8 8.7 27.6 3.7
CcDS 27.6 46.7 6.9 28.5 0.0
AS 26.7 20.4 7.8 32.7 6.4

®J=Number of Jobs M=Number of Machines JM=z=JxM
Jd=dxJ MM=MxM
¥%¥Non-zero t-values were significant at the ,0001 level

Implications for Managers

The analysis of the data generated for this research
proved that the RAES algorithm produced the best results for

all three dependent variables., These findings were confirmed



155

by multivariate analysis of variance, graphical analysis and
ratio analysis. The statistical techniques were very
sensitive and therefore detected minute differences. Thus,
although the RAES produced the best results, the ratios
reported in Table 5.3 and 5.4 indicated that at certain
problem sizes, some of the other algorithms produced
comparable results. On the other hand, it was clear that the
HD algorithm produced by far the worst results and should be
abandoned from further consideration over the range of
problem sizes studied. Similarly, the conclusions about
RAES' superior performance are also limited to the range of
problems studied because the levels of broblem size were
fixed by the researcher,

When the CPU'time required by the heuristic
algorithms is considered, the RAES algorithm becomes less
attractive since it is a large consumer of time, especially
at the large problem sizes. The CDS algorithm needed
considerably less CPU time to arrive at solutions which were
slightly inferior to those of the RAES algorithm, 1t should
be noted that the CDS algogithm did not show very prominently
in the discriminant analysis when causes for the lack of
equality of the results from the heuristic algorithms were
being explored.

Thus, in comparing heuristic algorithms, managers
should not focus solely on the values of the dependent

variable, but should also consider the computer time needed
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by the heuristic algorithm to arrive at solutions. Perhaps a
manager who is interested in minimizing the use of CPU time
could select the CDS algorithm over the RAES algorithm and

obtain results which are almost as good for a much smallér

expenditure of time,

Much of the statistical analysis proceeded with the
knowledge that there was interaction between the two factors.
Plots of the data indicated that the interaction was very
slight although it was recognized by the sensitive
statistical technique used in this research. The
multivariate procedure for investigating differences between
the levels of the two factors was reported by Timm [109] who
stated that parallelism, or a lack of interaction, was not a
necessary condition for its use. 1It, however, requires
caution in interpreting the results.

The sensitivity of the analytical technique for
comparing heuristic algorithms also needs careful
consideration. It.may discriminate between the heuristic
algorithms on the basis of minute differences which may be of
much less importance than factors not included in the
analysis.

All of the statistical tests were confirmed in a
crude manner by géaphical analysis, Graphical analysis,
however, lacks the pfecision of statistical analysis and

would not be a good substitute for statistical analysis.
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There are certain decisions which cannot be made by
this technique. 1In particular, when there are choices to be
made based on ﬁanagement's utilities for particular
variables, this technique cannot substitute for the manager.
It can assist him in providing facts but cannot make the
decision. An example of this occurred in a preceding
paragraph when the issue was the choice between the RAES
algorithm which produced the best values for the performance
measures and the CDS algorithm which produced slightly worse
values but used much less CPU time. The choice between these
two algorithms depends upon the manager's utility for both
the CPU time and the best results, These utilities are not

incorporated into this analytical technique,



CHAPTER 6
SUMMARY AND CONCLUSIONS

The initial portion of this chapter consists of a
summary of the research study described in the first five
chapters., This is followed by the conclusions which were
drawn from the results of the investigation., A number of
recommendations about topics and directions for future
studies are presented in the third and final section gf the

chapter.

ummpar

The general nxm flowshop scheduling problem was
studied in this research, Five heuristic algorithms were
used to solve a number of flowshop problems and the results
were compared using three measures of performance. The
following are the names of heuristic algorithms which were
employed:

Random Generation with Extensive Search (RGES)

Heuristic Decomposition (HD)

Rapid Access with Extensive Search (RAES)
Campbell, Dudek and Smith (CDS)
Aggarwal and Stafford (AS).

158
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The three measureé of performance were:
Makespan
Job waiting time
Machine idle time.

The.rééearch design consisted of a two-factor
experiment, with the heuristic algorithms as one factorland
the problem sizes as the other factor. The experiments were
designed to test for the equality of the results for the
levels of each factor using both the univariate and
multivariate analysis of variance techniques. 1In addition,
graphical methods and ratio analysis were used to supplement
the analysis of variance techniques, Post hoc analysis,

using the multiple discriminant analysis technique, was used

to isolate the causes of the differences in the effect of

the levels of the factors,

The'research was carried out entirely in a
laboratory setting. Iq conformance with previous studies,
one source of variance was eliminated by submitting the same
probléms to each heuristic algorithm. This, however,
resuited in a lack of independence between the levels‘of the
factor and, as a result, it became ﬁecessary to adopt a
profile analysis approach to the multivariate analysis of
variance technique.

Because of the laboratory nature of the research,
the processing times for each job on each machine were

randomly generated and were gathered into a matrix., This

matrix was submitted to a computerized version of each
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heuristic algorithm which used ‘it to arrive at a schedule.
The schedule was then simulated through a computerized model
of a flowshop and the values of the performance measures
were obtained as output. Due to the simulation approach and
the random nature of the processing times, the simulation
was repeated 29 times, each time using a new matrix of
processing times. This provided a sample size of 30, which,
according to the Central Limit Theorem [31], satisfies the
requirement under which statistics based on the normal
distribution can be used.

The sizes of the problems solved varied considerably
and, as a result, were.divided into two categories: sméll
problems and large problems., The small prbblems consisted
of 10 or less jobs and 10 or less machines. The largest
problem solved had 100 jobs and 60 maehines. There were 15
problem sizes for the small problems and 20 for the large
problems,

The values of the performance measures as well as
the CPU times required by each algorithm to solve the
flowshop problems were collected and the mean values were
determined for each problem size, These mean values were
then plotted on graphs for each performance measure and for
the CPU times, Ratios of the values of each pebformance
measure for each algorithm to the corresponding value for
the RAES algorithm were also determined, averaged and

plotted on graphs. The data was then subjected to the
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analysis of variance procedure. It was also subjected to
regression analysis in order to develop predictive equations
for the dependent variables, the performance measures and

the CPU times, given the number of jobs and the number of

machines,

Copclusions

Many of the conclusions are drawn ffom the
statistical tests of the hypotheses. In addition, there are
other conclusions which pertain to the heuristic algorithms
and the analytical techniques which were employed., It was
concluded that:

1. - There was a significant difference in the values
of the performance measufes Yielded by the heuristic
algorithms. It was observed from the data  that thé RAES
algorithm produced the best overall results for the range of
problems studied, On the other hand, the HD algorithm
yielded the worst results. The post hoc multiple
discriminant analysis clearly identified the HD algorithm as
the major cause for the differences in the measures of
performance for the heuristic algorithms., The plots of the
means of the performance measures as well as the ratios of
these measures for the heuristic algorithms also confirm
these conclusions,

2. When univariate analysis of variance wés used,
each algorithm produced results which were significantly

different from the results of the RAES algorithm, wbich
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produced the best overall figures. There was one
exception--the AS algorithm matched RAES' performance over
the small jobs when job waiting time was the measure of
performance,

3. There was a significant difference in the
results produced at the various problem sizes. It was noted
that as the problem sizes increased, the efficiency of the
heuristic algorithms slowly decreased.

4, The heuristic algorithms required significantly
different amounts of CPU time to produce a schedule. .The
CDS algorithm always required the least amount of time to
produce a schedule., The RGES algorithm generally consumed
the greatest amount of time, except in the case bf the 100
jobs problems where the RAES algorithm became the greatest
consﬁmer of time. There is a considerable difference in the
time requirements between the CDS algorithm and the RGES or
RAES algorithms., The time requirements of the AS algorithm
were smaller than those for all of the other algorithms
except CDS. They were, however, distinctly different from
CDS' time consumption,.

5. Although the values of the dependent variables
for the CDS algorithm were inferior to the corresponding
values for the RAES algorithm, the differences were very
small and sometimes hardly distinguishable on the graphs.
On the other hand, the CDS algorithm required considerably

less CPU time than the RAES algorithm to develop schedules,
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Therefore, the RAES algorithm produces slightly better
values at the cost of a considerable increase in CPU time.
Thus, the cﬁoice between these two algorithms would depend
upon the goals of the managef, the availébility of computer
processing time, and the manager's preference for either the
best solution or obtaining solutions withlvery little
consumption of computer time.

6. The RAES algorithm produced more optimal
solutions than the other algorithms. The HD algofithm
yielded the least while the RGES, AS, and CDS algorithms
detgrmined a similar number of optimal solutions. The
optimal solutions occurred mostly at the smaller problem
sizes., The RGES algroithm produced optimal solutions for
all 30 replications at the smallest problem size.

7. The number of machines had a considerably
greater effect on the machine idle times than the number of
jobs. The reverse was also true for the job waiting times,
When makéspan was the measure of performance, thg number of

machines had a slightly greater effect than the number of
Jobs.,

8. The multivariate analysis of variance approach
provided comparisons with statistical precision. When
combined‘with multiple discriminant analysis, it enabled one
to identify the causes of the differences bet;een the
results for thé levels of the factofs. This technique

indicated differences that were sometimes difficult to
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recognize from the graphs because they were obscurred by the
scale. Due to its precision, this approach proved to be an
improvemeni over the previous methods of comparison.

9. The regression equations, relating the CPU time
required by each heuristic algorithm to the number of Jjobs
and the number of machines, were statistically significant
for both the small and the large problems. The
t-statistics, r-squared values and F-ratios for the
regression lines were all significant. Their values

suggested that these equations had good predictive

qualities,

Recommendations for Future Studies

1. Since the HD heuristic algorithm produced
inferior results over the range of problems studied, it
should be eliminated from future studies, Both the CDS and
AS algorithms yielded better results with a much smaller
consumption of CPU time. The RGES algorithm also produced
better results than the HD algorithm but should also be
eliminated over the range of problem studied, except for the
100 job problems. This is justified because the algorithm
was the highest consumer of CPU time for prob;ems with 80 or
less jobs while its schedules were generally not the best

except at the very smallest problem sizes where they were

comparable with RAES'.
2. This study should be repeated with the above

eliminations in effect. The remaining algorithms should be
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further investigated because each one was outstanding at
some particular sub-range of problem sizes. Thus, narrowing
the range of problem sizes might lead to more useful
information.

3. Other heuristic algorithms should be
investigated and compared with the RAES, CDS and AS
algorithms. For example, algorithms by Stinson [102], and
Krone and Steiglitz [72], among others, produced interesting
results in the articles in which they were reported. These
and others which appeared in the literature too late for
inclusion in the study are worthy of consideration.

4, Additional performance measures shoqld be
considered. For example, mean flowtime was used in a study
reported by Gupta [54], and the results produced were
different from the results for makespan. In that study, the
CDS algorithm was not very effiéient according to the mean
flowtime criterion. 1If possible, actual costs should also
be used which would permit production cost to be used as a
criterion., This is the most ideal criterion since it is a
true measure of business performance.

5. Since the improvement routine helpéd the RAES
algorithm to produce better results than its predecessors,
RA and RACS, it is believed that the CDS could be made to

produce even better results by appending an improvement
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routine to it. This may even enable it to surpass the
performance of the RAES algorithm.

6. Although a very broad range of problem sizes
was covered in this research, it is recommended that even
larger problem sizeg be investigated., It was noticed that
at the largest sizes investigated, there were changes in the
efficiencies of the heuristic algorithms. For example, the
RAES algorithm needed more CPU time than the RGES algorithm
to arrive at solutions. At all other problem sizes, the
reverse was true, Thus, as noted earlier, algorithms behave
differently at different problem sizes.

7. In this study, a number of regression equations
were developed to relate the dependent variables and CPU
times to the number of jobs and the number of machines. Thg
equations for predicting the dependeht variables were
developed from the combined déta for all of the heuristic
algorithms, If this analysis is repeated with the data for
each algorithm processed separately, then the equations
developed would provide more accurate predictions because
each equation pertains to a parﬁicular heuristic algorithm,.

8. ;n future research, fewer levels for the problen
size factor should be used. This would reduce the high
sensitivity exhibited by the multivariate analysis of
variance teehnique‘in this study because of a corresponding

reduction in the degrees of freedom. This approach would
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certainly raise the numerical value of the significance
level at which interaction first occurs,

9. In this study, no test was done to check for the
equality of the variance-covariance matrices. 1Instead, the
equality was assumed because of the robustness of the
multivariate technique towards violation of the assumption.
ThiQ assumption, however, could be relaxed by actually
testing for the equality of the variance-covariance
matrices,

10. Similarly, a test of multivariate normality was
not done but, instead, the guidelines of the Central Limit
Theorem were followed in selecting a sample size Af 30 in
order that the sums and means of the observations.may be
assumed to follow a normal distribution. This assumption
could also be relaxed by actually testing for multivariate

normality.
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APPENDIX A
DESCRIPTION OF THE RGES HEURISTIC ALGORITHM

The RGES heuristic algorithm arrives at a solution in
two phases. In the first phase, 25 different schedules are
randomly generated and the schedule with the least makespan

value 1s selected. 1In order to find a schedule with a lower
makespan value, this selected schedule is then subjected to a
neighbor exchange improvement routine very similar to that
employed by the RAES heuristic algorithm [37]. Hence, this
algorithm is explicitly directed towards finding the schedule
with the lowest makespan value,

The first phase is performed.with the aid of a
Lehmer~-type random number generator. Jobs are randomly
selected for each position in the schedule by using a
randomly selected number to generate a job number. A routine
is incorporated to check whether or not the job selected for
the ith position has been assigned to a preceding position.
If it has, the selection procedure is repeated so that

another job can be selected for the ith position. After

1717
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all of the jobs are sequenced by filling the available
positions, the makespan value for the schedule is calculated.
An additional 24 schedules are similarly generated and the
schedule with the least makespan value is selected to proceed
to the next phase.

The second phase consists of attempts to improve the
schedule by interchanging adjacent jobs. If there are n

Jobs, then (n~-1) new schedules, which are called neighbors,

are formed by interchanging the (n-1) pairs of adjacent jobs.

The neighbors are then evaluated and the neighbor with the
smallest makespan value is selected for imprbvement if its
value. is smaller than the value for its parent schedule. The
neighpor selected for improvement is then subjected to the

improvement routine and the process is repeated until the

' point is reached when the makespan values for the neighbors

cease to be lower than that for the parent schedule. At this

point, the best heuristic solution for technigue has been

obtained and the. search process is terminated.



APPENDIX B
MANUAL SOLUTIONS BY THE HEURISTIC ALGORITHMS

The solution technique of each heuristic algorithm is
demonstrated by developing a schedule from the following
matrix of processing times. This matrix was rahdomly

generated for a 6 job by 4 machine problem.

Machine Job Number

Number 1 2 3 y 5 6
i . U7 75 28 9l 19 64
2 20 2 76 85 23 78
3 63 78 99 98 99 15
y 1 Th 42 83 28 18

Random Generation with Extensive Search Algorithm (RGES)
Initially, 25 schedules are randomly generated and
their makespan values are evaluated. The typical schedules

are:

Schedule Makespan
2=6~1-5-3-} 679
jupel=3=5=2 ‘ 705

The schedule which yields the least makespan value is
selected. This schedule is 5-3-4-2-6-1 and its makespan

value is 514 time units. This schedule is then subjected to
179
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an improvement routine which forms neighbors by temporarily
interchanging a pair of adjacent jobs. The new schedule is
called a neighbor and if there are n jobs, then (n-1)

neighbors can be formed. Thus, the neighbors derived from

the above initial schedule are:

Schedule Makespan
3=5=l4-2-6-1 576
Selja3a2-6-1 : 566
5=3=2=4~6~1 583
5=3=lab2~1 514
Be3al=-2-1-6 563

Typically, the neighbor which has the least makespan
value is selected and then subjected to the improvement
routine to form new neighbors. The process is repeated until
the new neighbors fail to improve the solution. This has
occurred in this solution because the best neighbor yielded a
makespan value of 514 which is the same as the value for its
predecessor. Thus, the search is terminated.

ﬂgﬁni§&Lg_Qgggmngglﬁlgn_Angzihhg_Lﬂni

This technique partitions the Jobs into 2 groups.

One group is scheduled by an bptimizing algorithm while the
other group is séquenced by a Jjob-pairing algorithm. The
sizes of the groups depend upon the number of jobs which one
can afford to solve by the optimizing algorithm. 1In this
case, the two groups will each have three Jobs.

Since there are less than 12 jobs in the group, the
Job-pairing algorithm determines the initial pair of jobs by

selecting that pair which minimizes the sum of the first Jjobs?
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processing time and the machine idle time on the last machine
for the pair. Since there are 6 jobs and any job can be in
the first position, there are 30 different pairs to be
considered. The pair which yielded the smallest sum was:
5-6
This sequence is augmented by that job which forms the
partial sequence that minimizes the machine idle time on the
last machine. Thus, each of the remaining jobs is tried in
position 3 in order to identify that job. 1In this particular
problem, job 1 was selected and the partial schedule became:
5-6-1

The idle times for the partial schedules are:

Partial Schedule Idle Time
5=b=1 198
5-6=-2 238
5=6~3 293
5-6-4 317

This partial schedule forms a synthetic job which is
placed in the first position. The remaining jobs are then
scheduled by an optimizing algorithm, the implicit
enumeration technique [1]. The minimum makespan value was
obtained from the following sequence:

3-4-2
Thus, combining both sequences, the overall schedule is:
5=6=1=3=4-2

which has a makespan value of 611 time units.
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Rapid Access with Extensive Search (RAES) Algorithm
This technique develops a pseudo two-machine problem
from the m-machine problem and solves the former using
Johnson's algorithm [65). New processing times are derived
for the two-machine problem by using equations 3.5 and 3.6.

They are displayed in the following matrix:

Machine - Job Number
Number 1 2 3 4 5 0
1 375 656 580 910 371 538
2 280 689 645 890 474 337
Ex. Whenm = 4
J 1 2 3 y
n=j+ 1 y 3 2 1
Tij 47 20 63 1
(m=-Jj+1)xTy: 188 60 126 1
Sum ¢ 375

., Johnson's algorithm forms a schedule from the above
matrix by successively selecting the least processing time
under consideration and assigning the associated job to the
earliesﬁ available position if the time occurred on the first
machine, or the latest available position if it occurred on
the second machine. For example, the smallest processing
time is 280 for job 1| on machine 2, theréfore Job 1 is
assigned to the latest available position. The processing
times for job | is then removed from consideration and the
procedure is repeated. ‘The s%hedule derived from this
procedure is:

5-3-2~4-6-1

This has a makespan value of 583 time units.
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In the second phase, the improvement routine which
was used in the RGES algorithm to generate neighbors is

employed. The following neighbors were generated:

Schedule Makespan
3e5-2-U=6-1 580
5=2-3=l4-6-1 518
Sw3=la2-b=-1 514
5e=3=2-6=4-1 547
5=3=2=lU-1-6 518

The neighbor 5-3-l4-2-6-1 generated the least makespan valu
This is the same solution as the one yielded by the RGES
algorithm. This is therefore'a terminal solution because
was found, as in the case of the RGES algorithm, that new

neighbors do not improve the solution.

m ] n rithm D

This algorithm develops (m-1) pseudo two-machine
problems from the m-machine prbblem and solves them.using
Johnson's algorithm., The schedule which yields the least
makespan value is reported as the solution.

The new processing times for the pseudo two-machin
problems are obtained from equations 3.2 and 3.3. The new
processing times matrix for the (m-1) problems is as

follows:

Problem 1

Machine Job Number
Number i 2 3 4 5 6
1 b7 75 28 94 19 64

2 ! Th 42 83 28 18

e.

it

€



Broblem 2

Problem 3

The solutions to these problems

Problem

1
2
3
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Machine Job Number

Number 1 2 3 ) 5 [
1 67 117 104 179 b2 142
2 64 152 141 181 127 33

Machine Job Numher

Number 1 2 3 Yy 5 6
1 110 95 193 277 141 157
2 84 194 217 266 150 111

Sequence

are:

Makespan

514
518
514

The best schedule is yielded by bseudo problems 1 and 3. The

schedule is:

Its makespan value is 514,

5-3-2-U4=6-1

Aggarval and Stafford Algorithm (AS)

This algorithm consists of a 2 phase procedure. 1In

the first phase, jobs are assigned priority positions on the

machines in the first half of the process based on the

increasing order of their processing times.
the latter half of the process,

decreasing order of the processing times.

are therefore as follows:

For machines in
assignments are based on the

The assignments
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Machine Position in Preferred Job Sequence
Number 1 2 3 4 5 )
]
]
1 5. 3 1 ) 6 2 y
2 i t.5_ ___2_41.3 6 &
3 3 TTTVTTZTTTTTTIT L6
i y 2 3 1 5 6 )

The matrix of job numbers is fhen partitioned into 4 sectors.
The jobs bounded by the broken line ih the NW and SE sectors
have top priority for assignment to the positions under which

they fall. Thus, the jobs are allocated to the positions as

follows:
Position Jobs Competing Job Selected
1 5 5
2 3,5 3
3 1,2 1
4 2,5 2
5 1,6 6
6 1 y

When more than one job competes for a position, the job that
formed the partial sequence which yields the lowest makespan
value is selected., Thus, job 1| was selected over job 2 for
position 3 because the partial sequence 5-3-1 has a smaller
makespan value than partial sequence 5-3-2. Their respective
values are 304 and 392. Positions 2, 4, 5 and 6 were filled
by default.

This initial sequence is then subjected to an
improvement routine by having the jobs in positions i and
141 compete for position i, This is done by forming

partial schedules and then determining the makespan values of
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these partial schedules. The process is repeated until no

improvement is obtained in a pass.

The results are tabulated as follows:

Pass No, 1
Position Competing Sequences Makespan Winner 1Interchange

1 5-3 282 5 No
3=-5 303

2 5-3=~1 304 3 No
5-1-3 345 )

3 5=3-1=2 455 2 Yes
5-3-2-1 393

4 5=3=2~1=-6 473 6 Yes
5=3=2=6~1 411

5 5=3=2«6=-1=1 593 y Yes
5=3=2-6-4-1 547

6 5=3=2=6-4~1 547

1! (by default)
Since jobs were interchanged in the first pass, a
second pass is made. The results are presented in a more

condensed form as follows:
Pass No, 2

Position Jobs Competing Makespan Values Winner Interchange

1 5 vs 3 282 vs 303 5 No
2 3 vs 2 392 vs 360 2 Yes
3 3 vs 6 378 vs U452 3 No
y 6 vs 4 556 vs 517 4 Yes
5 6 vs 1 518 vs 518 None No
Schedule yielded: 5-2-3-4-6-1 or 5=2-3-U4~1-§
Pass ‘No. 3

Position Jobs Competing Makespan Values Winner Interchange

1 5 vs 2 293 vs 322 5 No
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The other positions will be the same as those derived from
the 2nd pass; therefore no improvement is obtained from this
pass and a terminal solution has been determined.
The schedule is either 5-2-3-4-6-1
or 5-2=3-4-1-6

both yielding a makespan value of 518.



APPENDIX C
'RANDOM NUMBER SEEDS FOR

PROCESSING TIMES

Problem Size Random Number Seeds
4xy 243,246,735
4x7 6,665,554, 441
4x10 4,781,121
6x4 9,547,312,571
6x7 45,387,111
6x10 4,500,002,241
8xll 7’755’8839333
8x7 5,274,125,937
8x10 3,521,785’337
9xl 9,477,711, 111
9x7 4,445,556,235
9x10 321,456,789
10x4 6,666,666,663
10x7 4,466,882,221

10x10 453,777
20x15 1,311
20x30 5,741,221
20x45 4,000,521
20x60 5,234,777,799
- 40x15 ' 10,055,333
40x30 11,115
40x45 4,422,000,099
40x60 77,785
60x15 8,607,341
60x30 12,365
60x45 31“72'3587715
60x60 24,577
80x15 19,221,941
80x30 7,700,000, 111
80x45 888,173
80x60 18,571, 741
100x15 1,002,009,753
100x30 3,004,001,357
100x45 2,468,775
100x60 3,697,531

188



189

APPENDIX C --Continued

RANDOM NUMBER SEEDS FOR RGES

Problem Size Random Number Seeds
4xy . 7,546,210,001
bx7 2,531,475, 441
§x10 7,821,452,223
6x4 7,621,563,889
6x7 4,112,257,7173
6x10 ' 3,322,541,781
8x4 6,655,366,621
8x7 5,54“,321,851
8x10 7,568,423,819
9xl 7,531,467,951
9x7 5,283,738, 121
9x10 9,173,284,511

10x4 6,734,257,111
10x7 , 2,145,632, 177
10x10 6,655,897,981
20x15 77
20x30 500,535
20x45 2,040,722,999
20x60 5,662,244,111
40x30 223,333
u0x45 6963313979777
40x60 963,377
60x15 9,850,000,237
60x30 ’ 632,669
60x45 52,251,595
60x60 1,000,251,597
80x15 19,421,949
80x30 666,777
80x45 90,232,199
80x60 3912011971
100x15 4,812,163,357
100x30 5,101,520, 411
100x45 _ 6,121,873



APPENDIX D

MEANS OF VARIABLES, SMALL PROBLEMS

NUMBER NUMBER JOB MACHINE

OF OF HEURISTIC WAITING IDLE
JOBS MACHINES ALGORITHME@ MAKESPAN TIME TIME CPU TIME
y y 1 389. 370. 376. 0.0414
y. 4 2 419. 395. 441, 0.0112
4 y 3 390. - 370. 373. 0.0179
y 4 L} 395. 369. 386. 0.0093
y y 5 391. 370. 378. 0.0128
4 7 1 572. 485. 1459, 0.0518
4 7 2 608. 511. 1530. 0.0167
y 7 3 572. 489. 1460. 0.0245
y 7 4 573. 4p2. 1445, 0.0146
y 7 5 576. 473, 1471, 0.0154
y 10 1 756. 548 . 2902. 0.0605
y 10 2 819. . 608. 3207. 0.0190
y 10 3 757. 540 . 2879. 0.0303
4 10 4 761. 554, 2890. -0.0198
y 10 5 760. 542, 2928. 0.0173
6 y 1 493. 936. 453, 0.0665
6 4 2 556. 1014 . 577. 0.0258
6 y 3 b91, 94y, 4ys5, 0.0325
6 y y 507. 981. 456 . 0.0110
6 y 5 501. 927. 470. 0.0181
6 7 1 677. 1166. 1531. 0.0832
6 7 2 743, 1178. 1757. 0.0256
6 7 3 671. 1119. 1545, 0.0456
6 7 i 684. 1119. 1582. 0.0162
6 7 5 677. 1087. 1579. 0.0226
6 10 1 872. 1236. 3152. 0.1135
6 10 2 941, 1279. 3533. 0.0360
6 10 3 868. 1221. 3189. 0.0625
6 10 y 878. 1218. 3212. 0.0234
6 10 5 683. 1239. 3188. 0.0271
8 y 1 615. 1751. 425, 0.0987
8 4 2 669. 1802. 516 . 0.0402
8 y 3 601. 1680. 381. 0.0509
8 y 4 614, 1773. 413, 0.0124
8 4 5 605. 1664, 401.. - 0.0240
8 7 1 817. 2044, 1612. 0.1371
8 7 2 893. 2088. 1837. 0.0472
8 7 3 795. 1943, 1560. 0.0710
8 7 4 809. 2016. 1611. 0.0195
8 7 5 814, 1988. 1642, 0.0323
8 10 1 1034, 2372. 3466 . 0.1855
8 10 2 1129. 2366. .3972. 0.0536
8 10 3 1022. 2208. 3470. 0.1190
8 10_ [

1034, 2295. 3518. 0.0275
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APPENDIX D--Continued
MEANS OF VARIABLES, SMALL PROBLEMS

NUMBER NUMBER JOB MACHINE
OF OF HEURISTIC WAITING - 1IDLE
JOBS MACHINES ALGORITHM® MAKESPAN TIME TIME CPU TIME
8 10 5 1043, 2161. 3535. 0.0382
9 4 1 648. 2131, 435, 0.1128
9 4 2 710. 2300. 556. 0.0826
9 4 3 634. 2096. 4oy, 0.0570
9 y y 649. 2175. 436. 0.0132
9 4 5 6u49. 12084, s, 0.0273
9 7 1 855. 2546. 1675. 0.1595
9 7 2 950. 2802. 1982. 0.1109
9 7 3 837. 2466. 1595. 0.0913
9 7 4 862. 2521. 1681. 0.0210
9 T 5 867. 2423. 1696 . 0.0374
9 10 1 1083. 2885. 3585. 0.2097
9 10 2 1170. 3070. 3948. 0.1205
9 10 3 1058. 2788. 3471. 0.1285
9 10 4 1075. 2844, 3541. 0.0300
9 10 5 1088. 2796. 3640. 0.0469
10 u 1 696. 2593. B30. 0.1379
10 4 2 750. 2709. 544, 0.0994
10 y 3 682. 2565. 393. ' 0.0664
10 y y 701. 2699. 438. 0.0138
10 4 5 693. 2501. 430. 0.0318
10 7 1 906. 3109. 1669. 0.2061
10 7 2 1001. 3342. 2029. 0.1205
10 7 3 886 . 2969. 16U46. 0.1088
10 7 y 900. 3093. 1720. 0.0227
10 7 5 918. 2977. 1729. 0.0425
10 10 1 1147. 3563. 35617. 0.2618
10 10 2 1247. 3707. 4117, 0.1437
10 10 3 1119, 3297. 3489. 0.1463
10 10 y 1134, 3445, 3513. 0.0387
10 10 5 1140. 3349, 3658. 0.0672

®1=RGES; 2=HD; 3=RAES; 4=CDS; 5=4S



APPENDIX E

MEANS OF VARIABLES, LARGE PROBLEMS

NUMBER NUMBER JOB MACHINE
OoF OF HEURISTIC WAITING IDLE

"JOBS MACHINES ALGORITHM2@ MAKESPAN TIME TIME CPU TIME
20 15 1 2133. 15637. 9782. 1.7815
20 15 2 2395. 15142, 11498. 0.6031
20 15 3 2046. 14012. 9290. 1.3525
20 15 y 2101. 14812, 9639. 0.1649
20 15 5 2158. 14821. 10204. 0.3351
20 30 1 3159. 19625. 37258. 3.3694
20 30 2 3492. 18639. 41065. 1.0946
20 30 3 3078. 17855. 36696. 2.9770
20 30 y 3114. 18610. 37177, 0.444Y
20 30 5 3229. 19280. 38916. 0.5542
20 45 1 4146. 22679. 80362. 5.1756
20 45 2 4521. 21888. 86234. 1.5633
20 45 3 4o62. 20486. 79631. 4.3797
20 45 b 4o82. 21063. 79771. 0.8607
20 45 5 4229. 21141, 82150. 0.8144
20 60 1 5129. 24956, 138839. 5.9420
20 60 2 5599. 24370. 147685, 2.0728
20 60 3 4994, 22837. 135714, 6.9151
20 60 ) 5037. 23330. 138520. 1.4061
20 60 5 5202. 23816. 141923. 1.0943
4o 15 1 3364, 58393. 12007. 9.5782
40 15 2" 3838. 59660. 14920. 3.4815
40 15 3 3188. 54046. 10971. 9.1843
4o 15 4 3299. 57252. 12022. 0.4410
4o 15 5 3439. 56620. 12971, 1.4332
4o 30 1 4558. 70799. 44759, 17.9269
4o 30 2 5137. 71996. 51215. 6.4955
4o 30 3 4384, 64790, 43088. 18.1837
4o 30 4 4483, 68656. 44470, 1.1459
40 30 5 41670. 68120. yhys, 2.4884
4o 45 1 5646. 79956. 96109. 27.0170
40 45 2 6232. T9u441. 105151, 9.4581
4o 45 3 5470, 73510. +92632. 26.7491
4o 45 4 5565. 77158. 95230. 2.0647
4o 45 5 5830. 77159. 100497, 3.3762
40 60 1 6666 . 86766. 162433. 36.1783
o 60 2 7284, 87300. 1T7H4055. 12.2574
40 60 3 6494, 80976. 157802. 37.3267
ko 60 ) 6566. 83928. 160299. 3.3709
40 60 5 6883, 84828. 167789. 4.2627
60 15 1 4559, 126956. 14391. 24.3108
60 15 2 5184. 129482. 17682. 10.7876
60 15 3 4285. 118732. 12418, . 24.8647
60 15 h 4420. 125073, 13683. 0.8767

192



193

APPENDIX E--Continued

MEANS OF VARIABLES, LARGE PROBLEMS

NUMBER NUMBER JOB MACHINE
OF OF HEURISTIC WAITING IDLE
JOBS MACHINES ALGORITHM2® MAKESPAN TIME TIME CPU TIME
60 15 5 u642, 123721. 15201. 3.2443
60 30 1 5876. 148930. 51399. 52.6908
60 30 2 6576 . 153474, 58690. 20.0235
60 30 3 5620. 139426. 48060. 55.5813
60 30 y 5730. 145212, 50711. 2.1602
60 30 5 6108. 148551, 55173. 6.2971
60 45 1 7039. 166312. 107025. 76.0022
60 45 2 7752. 170515. 117418. 29.6856
60 45 3 6785. 154664, 102440, 86.6194
60 45 ] 6911. 162037. 105532, 3.9134
60 45 5 7278. 165624, 112224, 9.1589
60 60 1 8159. 180081. 180535. 104.2851
60 60 2 8921. 185196. 194957, 38.8078
60 60 3 7941. 169689, 176263. 114.1369
60 60 I 8034. 175259, 179417, 5.9762
60 60 5. 8473. 180503. 191676. 10. 4755
80 15 1 5761. 219074, 16072. 47.3982
80 15 2 6541. 229048. 20572. 24.9037
80 15 3 5456, 208881. 13861. 51.5034
80 15 i} 5592.  216346. 15147. 1.3940
80 15 5 5919. 217502. 17681. 5.8063
80 30 1 . 7151. 253199, 57079. 103.2424
80 30 2 7960. 264610. 64705. 46.8903
80 30 3 6830. 240377. 53067. 121.9248
80 30 i 6973. 248879. 55736. 3.3992
80 30 5 7379. 253283. 60898. 11.1021
80 45 1 8424, 281558. 119412. 160.3882
80 45 2 9206. 291213. 129461. 68.2706
80 45 3 8095. 265556. 113308. 176.0837
80 s i 8245, 274009. 117715. 5.9653
80 45 5 8708. 283313. 124211. 16.2585
80 60 1 9580. 307176. 198489. 219.5613
80 60 2 10413. 311539. 213266. 90.0250
80 60 3 9279. 288061. 191834. 219.2510
80 60 4 9398. 297564. 195675. 9.0730
80 60 5 9879. 303372. 205579. 22.2463
100 15 1 6971. 338556. 17811. 81.0668
100 15 2 7767. 353914, 22234, 46.5136
100 15 3~ 6616. 321309. 15138, 82.1661
100 15 1} 6769. 335204, 16660. 2.1123
100 15 5 T174. 336229. 19285. 8.8689
100 30 1 8379. 385197. 62453. 180.1T714
100 30 2 9326. 396291. 69u468. 87.5800
100 30 3 8000. 364973. 191.5453

57274.
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APPENDIX E--Continued

MEANS OF VARIABLES, LARGE PROBLEMS

NUMBER NUMBER , - JOB MACHINE
OoF OF HEURISTIC WAITING IDLE

JOBS MACHINES ALGORITHM@ MAKESPAN TIME TIME CPU_TIME
100 30 Yy 8166. 377615. 59848. 5.0319
100 30 5 8732. 386514. 66615. 17.8245
100 45 1 9698. 425371. 128632. 292.4789
100 45 2 10715. 438575. 140816. 127.9308
100 45 3 9327. 401561. 121226. 319.0515
100 45 ) 9468. 14549, 124491, 8.5838
100 45 5 10092. 425777. 134792. 26.5248
100 60 1 10916. 454859. 211856. 384.4664
100 60 2 11911, 470045. 229849. 169.2427
100 60 3 10525. 427329. 201243. u461.3044
100 60 y 10733. 444810. 208589. 12.8760
100 60 5 11369. 459740, 222895. 37.0008

21=RGES; 2=HD; 3=RAES; U4=CDS; 5=AS



