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PREFACE 

The morphological change exhibited by Campylobacter jejuni and its influence on 

detection methodology was investigated in two parts: 1) methodology to manage this 

occurrence within the :framework of detection of C. jejuni in food systems, and 2) the 

relationship between membrane fatty acid composition and the morphology of C. jejuni. 

I wish to give enormous thanks to my committee members: Dr. P. Larry 

Claypool; Dr. Elizabeth Droke; Dr. Christina Dewitt and Dr. Stanley Gilliland. Also, I 

wish to convey a sincere thank you to my family, friends, colleagues and students. 
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CHAPTER I 

INTRODUCTION 

Campylobacter jejuni is proving to be the leading cause of food borne illness in 

the world. Billions of dollars are spent each year on illnesses directly related to the 

consumption of food and water contaminated with this organism. Since the early 1970's 

the quest for understanding this organism has been made more difficult by its well­

documented morphological changes. These changes have been linked to environmental 

stress factors such as incubation time, atmosphere, temperature, oxidation, and nutritional 

intricacies. Differences are also apparent among and within species. The morphology 

change begins with the organism in its classic spiral rod shape and then through an 

unknown mechanism the cells may straighten, shrink, elongate or curl resulting in a 

plethora of rod and round shapes. Often this morphological transition is linked with a 

loss of culturability, detectability or perhaps viability. The challenge is best described by 

the question: "Have we lost our ability to detect this organism or has this organism lost its 

ability to grow? And furthermore, if it has lost its ability to grow, is it still alive?" This 

very confusing phenomenon is discussed in terms of the "viable nonculturable" (VNC) 

state. When in this state, the organism remains alive but will not grow in agar or liquid 

media. If the VNC form is potentially pathogenic, then standard detection and 

enumeration techniques may underestimate the risk of infection from Campylobacter spp. 

At present, this complex interrelationship has not been sufficiently explained. So, instead 
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of focusing on detection of these wayward forms of Campylobacter, this dissertation 

addresses (1) management of this phenomenon within the context of detection of C. 

jejuni in food, and (2) the relationship between cellular fatty acid composition and 

morphology of C. jejuni. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

History 

The documentation of Campylobacter began as early as 1886 with sketches and 

notes published by Theodor Escherich, in which he described an organism found in the 

colons of infants who died of what was then called "cholera infantum" (Skirrow and 

Butzler 2000). There was little to add until a period in the early 20th century (1909 thru 

1919) when sheep and cattle veterinarians became aware of a vibrio-like organism that 

was linked to spontaneous abortions. It was called Vibrio jejuni at the time and also was 

linked to devastating cases of diarrhea in cattle termed "winter dysentery." In 1963, the 

genus Campylobacter was proposed and the first distinctions were made between 

Campylobacter fetus and Campylobacter bu/bus (now called Campylobacter sputorum) 

(On 2001). It was several 11'.).ore years before the distinction between the genera 

Campylobacter and Vibrio became accepted universally. In 1972, facilitated by 

advancements in media/isolation procedures, researchers successfully isolated 

Campylobacter from human feces (Skirrow and Butzler 2000). Only after this event, 

could the real accounting or risk assessments for Campylobacter begin. 

Taxonomy 

On (2001) reviewed the taxonomic status of the genus Campylobacter and 

identified 16 species and 6 subspecies. They are Campylobacter mucosa/is, 
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hyointestinalis, fetus, lanienae, concisus, showae, rectus, sputorum, hominis, gracilis, 

upsaliensis, helveticus, coli, Zari, andjejuni. Campylobacter hyointestinalis is comprised 

of two subspecies (hyointestinalis and lawsonii), C. fetus has two subspecies (fetus and 

venerealis), C.jejuni has two subspecies (doylei andjejuni), C sputorum is comprised 

two biovariants (sputorum, paraureolyticus and faecalis), and C. coli has only one variant 

(hyoilei). The genome of Campylobacter is reported as being relatively small consisting 

of 1.6-17 Mbp with a GC ratio around 30% (Simbert 1986; Ketley 1997; Kelly 2001). In 

this review, there is mention of both C.jejuni and C.fetus supsp.jejuni. These are one 

and the same, but the names used in the original publications are retained. 

Campylobacteriosis 

One of the earliest and largest reported outbreaks of enterocolitis attributed to 

Campylobacter occurred in 1978 when approximately 3000 people were sickened. The 

source was a community water supply (Vogt and others 1982; Tauxe and others 1988). 

Today, Campylobacter is the most common bacterial pathogen in both the United States 

and abroad (Friedman and others 2000). Within the genus, C. jejuni is responsible for the 

majority of Campylobacter enteritis cases in humans (Ketley 1997; Altekruse and others 

1999; Skirrow and Blaser 2000). 

Infection with Campylobacter begins by ingestion of the bacteria, passage 

through the stomach, and colonization in the distal ileum and colon (Ketley 1997; 

Skirrow and Blaser 2000). Reports indicate that very few (500-800) organisms are 

required for infection (Ketley 1997; Skirrow and Blaser 2000). The average incubation 

period is 3 .2 days and mild symptoms are usually experienced for 3 to 4 days (Skirrow 

and Blaser 2000). Colonization is facilitated by the organism's motility and ability to 
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detect chemical gradients in the intestines (Ketley 1997). Following colonization, the 

organism may remain in the mucus or adhere to epithelial cells and become invasive 

(Ketley 1997; Skirrow and Blaser 2000). 

Symptoms are minor in many cases, resulting in abdominal discomfort, diarrhea, 

fever, headache and dizziness. Serious consequences of infection may also arise in that 

C. jejuni is often associated with incidence of Guillian-Barre Syndrome (GBS). Infection 

with Campylobacter may stimulate an auto-immune response in the body resulting in 

acute neuromuscular paralysis due to demyelination (inflammation and subsequent 

damage to myelin) (Buzby and Roberts 1997; Altekruse and others 1999; Skirrow and 

Blaser 2000; Hadden and Gregson, 2001). Damage to myelin (an insulating layer of cells 

over the peripheral nerves) may lead to loss of axial, cranial, respiratory and peripheral 

muscle activity, leading to substantial immobility (Buzby and Roberts 1997). Epithelial 

translocation (traversing the epithelial cell barrier) followed by intracellular survival and 

activities are possible precursor mechanisms for this disease (Ketley 1997). 

Campylobacter jejuni enteritis occurred in 13-72% ofGBS cases reported between 1984 

and 2001 (Hadden and Gregson, 2001). Buzby and Roberts (1997) estimated the costs 

associated with GBS approached $1.3 billion, and when combined with the other 

consequences of food borne illness associ3:ted with Campylobacter the yearly costs 

approached $5.6 billion. 

Surveillance of Campylobacter transmission began with only eight states in the 

US in 1982 and by 1983 thirty-one states joined in the effort to track outbreaks. The 

initial goals of the laboratories monitoring the occurrence of Campylobacter were to 

describe the epidemiology, detect and investigate the outbreaks, and to speculate on 
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future research needs (Tauxe and others 1988). In the first five years of surveillance, the 

group reported a total of 41,343 isolates to the Centers for Disease Control. Of those that 

were identified, 99% were C. jejuni. The predominant remaining pathogens that were 

identified were C.fetus and C. coli (Tauxe and others 1988). In the following years until 

1986, there were a reported 11 water borne and 45 food borne outbreaks predominantly 

due to C. jejuni. Of the early food borne outbreaks, the largest percentage was attributed 

to raw milk, followed by poultry (Klein and others 1986). Between 1992 and 1994, of21 

outbreaks in England and Whales, contaminated water (n=6) was the most common 

source of outbreaks followed by unpasteurized milk (n=3), poultry (n=2), 

shellfish/poultry (n=l), pasteurized milk (n=l), bird pecked milk (n=l), meat products 

(n=2) and unknown (n=5) (Peabody and others 1997; Frost 2001). 

The handling and/or consumption ofraw chicken may be one of the leading 

routes for sickness related to Campylobacter (Yu and others 2001; Rosenquist and others 

2002). Jorgensen and others (2002) evaluated raw, whole chickens for Campylobacter 

and Salmonella and found that 83% of the chickens were positive for Campylobacter 

(Salmonella was only present in 25% of the samples). The other sources that have played 

significant roles have been consumption ofraw milk, contaminated water and contact 

with pets (Tauxe and others 1988). Campylobacter are commonly associated with the 

intestinal tracts and ultimately feces of many animals and transferred to the animal food 

product via cross contamination during the slaughter process (Ketley 1997; Rosenquist 

and others 2002). Campylobacter has been reported to exist in swine in higher numbers 

than either Salmonella or Yersinia species (Borch and others 1996). Borch and others 

(1996) also reported on a Danish study that evaluated the feces of 600 pigs from more· 
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than 152 herds. Ninety-six percent of the fecal samples were positive for Campylobacter. 

Following the animals through slaughter and processing yielded 66% Campylobacter 

positive isolates on the carcasses before chilling, 14% one day after slaughter and 0.5% 

on the further processed products (ham). Cattle are also significant carriers of 

Campylobacter spp. Wesley and others (2000) found that fecal shedding of C. jejuni 

occurred in 38% of the samples. A Swedish study reported 85% of cattle fecal samples 

positive for Campylobacter (Borch and Arinder 2002). Kramer and others (2000) 

isolated Campylobacter from the following retail meats: chicken portions (n=l65; 83%), 

lamb liver (n=70; 73%), ox liver (n= 52; 54%) and pig liver (n=71; 72%). 

Of 111 outbreaks associated with Campylobacter spp. between the years 1978 and 

1996, 99 were attributed to food while the remaining 12 were attributed to contaminated 

water sources (Friedman and others 2000; Food Safety Authority of Ireland 2002). The 

increasing prevalence of human Campylobacter infections can be clearly seen in 

Denmark. From 1980 to 1997 the number of infections rose from 1034 to 2666 

registered cases annually. And in the year 2000, more than 4000 cases of 

campylobacteriosis were reported (Josefsen and others 2002). They estimated that the 

real incidence was probably twenty times higher due to lack of attention paid to milder 

symptoms. During this same period (1994), Norway and Sweden reported 1050 and 

5529 registered human cases of food borne illness due to C. jejuni and C. coli (Borch and 

others 1996). Japan has reported more than 5000 cases each year between 1982 and 1999 

(Ono and Yamamoto 1999). An estimated five million incidents of bacterial food borne 

illness occur each year in the United States and of those, 2.4 million cases per year are 

related to Campylobacter spp. (Mead and others 1999). Of these, 17.3 % result in 
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hospitalization and 5.5% result in death (Mead and others 1999). There has been little 

evidence suggesting that transmission of Campylobacter may occur via person-to-person 

contact (Buzby and Roberts 1997). 

To summarize, the most common risk factors related to food borne illness due to 

Campylobacter spp. are consuming or handling undercooked or raw poultry, consuming 

contaminated water, consuming raw or under-pasteurized milk or dairy products, and 

contact with pets (i.e., cats, dogs, birds) that are shedding Campylobacter spp. (Food 

Safety Authority of Ireland 2002). 

Characteristics 

Campylobacter are generally characterized as Gram negative, nonsporeforming, 

microaerophilic, pathogenic, spiral-rod shaped bacteria with single polar flagellum that 

allows motility in diverse niches (Simbert 1986; Park 2002). In the spiral-rod form, the 

organism moves by using one or multiple flagella with a corkscrew type action. This 

motility, and the ability to detect chemical changes in the intestines, facilitates the 

process of infection (Ketley 1997). The flagella may help the organism move and/or 

proliferate in the mucous layer of the stomach and large intestines. They have a unique 

attraction to fucose, a monosaccharide found in glycoproteins and cell wall 

polysaccharides, and a major constituent ofmucin (Hugdahl and others 1988; Park 2002). 

Morphology 

Campylobacter jejuni is known to undergo substantial morphological changes in 

broth and on agar media. Under various conditions, the organism may change from a 

Gram negative, spiral rod possessing a flagellum, to a round, semi-round, donut, or 

coccoid morphology, which may be Gram variable ( observed in our laboratory). In 
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addition, there are a variety of intermediate forms. This morphological shift may be the 

result of various environmental stress factors placed on the organism in sub-optimal 

conditions. 

Bacteria undergo, as do other living organisms, changes throughout their life 

cycle that are associated with age. With Campylobacter, it is difficult at times to separate 

the effect of culture age and the associated morphological changes from other 

environmental stress (i.e., nutrient availability) factors that challenge the culture. Ng and 

others (1985) used scanning electron microscopy to study the morphological forms of 

Campylobacter from a single colony-forming unit (CFU) selected from an agar medium 

after 48-72 hours of incubation. Photographs indicated that 1) the center of the CFU 

contained a population of coccoid/amorphous cells, 2) the intermediate region contained 

a number of "donut" or ring shaped cells with a hollow center, and 3) the outer periphery 

contained the normal spiral shaped cells associated with an actively growing culture. 

Perhaps this is an example of the confounding of culture age and nutritional status on 

morphology assuming a single cell produced the colony forming unit (CFU). 

As Campylobacter ages, it takes on different forms and many of those forms are 

smaller than those in original culture. This pleomorphic phenomenon brought on by 

various conditions has been characterized as "size reduction." Byrd (2000) indicates that 

there are two mechanisms by which a bacterium may reduce in size: 1) Multiple genomic 

cells do not increase in size before dividing but subsequently become smaller after each 

division coupled with the transfer of at least one copy of the genome. Several strains of 

Vibrio, Pseudomonas, Acinetobacter and Spirillum are noted to undergo this type of 

reductive process. 2) Cells reduce in size without cell division and hence no increase in 
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cell numbers. Through either of these two processes, the cells lose some characteristic 

that they once possessed that made them detectable on culture media. If the cells reduce 

in size and do not transfer the genetic material then they may in fact be dead. 

In contrast to size reduction in aged cultures mentioned by Byrd (2000), Griffiths 

(1993) observed increases in size of C. jejuni as cultures aged when grown in liquid 

culture. Cultures of the organism were grown in conical flasks continuously shaken 

(lOOrpm) at 37°C with a modified atmosphere. Samples were evaluated for total plate 

counts and morphology. Growth curves were typical with the traditional exponential 

phase, stationary phase (maximum log CFU/ml ~ 9.0), and death phase. Morphological 

changes corresponded with different growth phases. Short, spiral rods were predominant 

in the exponential phase followed by a pronounced increase in cell size. For the mid­

stationary phase there was an estimated 2-fold increase in size. In the late 

stationary/early decline phase, cells were 3 to 4 times longer than the original length, and 

the coccoid form was present. The late decline/death phase resulted in mostly coccoid 

forms. In the stationary phase there seemed to be a substantial increase in cell size 

preceded by cessation of septum formation, all of which leads to inhibition of cell 

division. 

Thomas and others (1999) evaluated the morphological changes of C. jejuni 

grown in broth culture over a 72-hour incubation period at 37°C. Two C.jejuni strains 

(NCTC 11168 and 11385) were initially grown on Columbia Blood Agar plates. Cells 

were collected and grown in a biphasic (agar/broth) culture system (Rollins and others 

1983) at 37°C for 24 hours in a modified atmosphere cabinet (5% 02, 5% CO2, 2% H2 

and nitrogen balance). This process was repeated (i.e., subcultured) and the new culture 

10 



was used to inoculate a final biphasic system incubated for 12 hours at 37°C. The liquid 

phase of this system was used to inoculate a single-phase broth system containing 100 ml 

of Nutrient Broth No. 2 (NB2). Samples were removed and examined for growth and 

morphological changes after 6, 12, 48 and 72 hours incubation at 37°C. 

Typical growth curves were described containing the standard logarithmic, 

stationary and decline/death phase. Maximum cell populations (~109 CFU/ml) were 

obtained within 24 hours. Scanning electron micrographs were used to examine 

morphological changes. The logarithmic phase was characterized by small helical, 

curved rods; the stationary phase had similar cells but 45% were larger, elongated, and 

less coiled; and the decline phase had 125% longer cells, many coccoid forms, and a loss 

of cellular integrity. Additionally, there were descriptions of localized cell expansions or 

what they called "blebs." These blebs appeared as specific budding points on the end of 

elongated cells. The authors suggest that this stage is intermediate to the formation of the 

coccoid form and once the "bleb" expands from the elongated "suspensor" cell it breaks 

off forming the coccoid and the suspensor cell may lose its cellular integrity. 

Analyses of the inner and outer membrane proteins revealed that protein synthesis 

was inhibited in the late stages of exponential growth by treating cells of C. jejuni with 

chloramphenicol. There were no banding differences between treated and untreated cells 

on SDS PAGE gels. In addition, no banding pattern differences were detected for the 

outer/inner membrane proteins of the coccoid, elongated, or spiral form. The authors 

reported that as the cells still elongated after treatment, even in the absence of protein 

synthesis, the morphological shift may be accomplished by the use of intracellular 
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reserves or cell stretching, and that the shift is not the result of an active reproductive 

process but that of a passive, degenerative one. 

Biochemistry 

Campylobacter do not utilize carbohydrates but derive energy from amino acids 

that have been deaminated to tricarboxylic acid (TCA) cycle intermediates, such as 

citrate, cis-aconitate, a-ketoglutarate, isocitrate, succinate, fumarate, malate, and 

oxaloacetate. Some strains hydrolyze casein, RNA and DNA. In addition, no acid or 

neutral end products are produced, lipase-activity is negative, gelatin and urea are not 

hydrolyzed, and nitrate is reduced. (Simbert 1986). 

Cell walls may contain galactose, glucose, mannose or a combination of the three 

(Simbert, 1986). Common fatty acids in the cells of this organism are listed as 

tetradecanoate (14:0), hexadecanoate (16:0), cis-9-hexadecanoate (16:19), cis or trans-9-

octadecanoate (18-1) and cis-9,10-methyleneoctadecanoate (19:0L\) (Blaser and others 

1980; Simbert 1986; Weyant and others 1996). Approximately 93 % of C. jejuni have 

phosphatase activity, and about 6% are positive for arylsulfatase. Antibiotic sensitivities 

due to chloramphenicol, dihydrostreptomycin, erythromycin, neomycin, oxytetractyclin, 

streptomycin, and tetracycline exist. Partial inhibition of growth may occur with 

novobiocin, penicillin, bacitracin, and polymyxin (Simbert 1986). 

Blaser and others (1980) identified several predominant fatty acids in strains of C. 

fetus using gas-liquid chromatography (Table 1). All 13 isolates of C.fetus subsp.jejuni 

contained a fairly high proportion ( 14 % ) of cis-9, 10-methyleneoctadecanoate ( 19 :OL\), but 

this acid was not found in any of the other subspecies tested. In addition, small amounts 
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of 3-hydroxytetradecanoic acid (3-0H 14:0) were detected in C.fetus subsp.fetus, 

intestinalis andjejuni strains at 6, 6 and 7% respectively (not shown in Table 1). 

Table 1. Cellular fatty acids in 29 human and animal isolates of Campylobacter 1. 

C.fetus Percentage of Total Fatty Acids 

subsp. 
16:19 18:19 (# of strains) 14:0 16:0 19:0~ 

fetus 
16 26 31 21 

(6) 

intestinalis 
13 25 28 28 

(10) 

jejuni (13) 12 13 29 25 14 

1Adapted from Blaser MJ, Moss, CW, Weaver RE. 1980. Cellular Fatty Acid 
Composition of Campylobacter fetus. J. Clin Microbiol 11 :448-451. 

Leaper and Owen (1981) used fatty acid proportions to describe the biochemical 

difference between C. fetus and what is now C. jejuni (Table 2). The latter was earlier 

classified as C. fetus supsp.jejuni. C. fetus supsp.fetus strains contained no detectable 

1.9:0~, but small amounts were reported for the C.fetus subsp. venerealis. No 3-0H 

14:0 was detected, in contrast to Blaser and others (1980). 
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Table 2. Cellular fatty acids in 50 human/animal isolates of Campylobacter1• 

Organism Percentage of Total Fatty Acids 

(# of strains) 
14:0 16:19 16:0 18:19 18:0 19:0~ 

C. fetus subsp. 
8.2 15.5 40.9 31.2 3.2 

venerealis (2) 

C. fetus subsp. 
4.9 12.7 34.2 35.6 

fetus (7) 

C. coli (9) 7.0 2.1 28.5 19.1 2.3 7.0 

C. jejuni (24) 7.8 3.0 32.7 26.0 1.8 7.8 

Campylobacter 3.6 4.0 38.2 44.8 2.9 
spp. (8) 

1 Adapted from Leaper S, Owen RJ. 1981. Identification of Catalase Producing 
Campylobacter Species Based on Biochemical Characteristics and Cellular Fatty Acid 
Composition. Current Microbiol 6:31-35. 

Hebert and others (1982) explored the cellular fatty acid composition of 128 

strains of Campylobacter by gas-liquid chromatography of which 89 were C.jejuni 

(Table 3). As reported by Blaser and others (1980), there were trace amounts of 3-0H 

14:0 (2-3%) and cis-9,12-octadecandienoate (18:2) (1 %) (not shown in Table 3). The 

authors identified the 19:0~ fatty acid as cis-11,12-methyleneoctadecanoic acid 

(lactobacillic acid). 

14 



Table 3. Cellular fatty acids in 89 strains of Campylobacter jejuni grouped according to 
similar composition. 

C.jejuni Percentage of Total Fatty Acids(%) 

(# of strains) 
14:0 15:0 16:19 16:0 17:0"' 18:1 9 18:0 19:0"' 

58 9 1 5 39 32 1 9 

11 12 2 6 39 1 17 1 18 

11 10 5 39 1 14 1 25 

3 22 2 12 30 1 20 1 9 

6 8 2 4 37 44 1 

1Adapted from Herbert GA, Hollis DG, Weaver RE, Lambert MA, Blaser MJ, Moss CW. 1982. 
Years of Campylobacters: Biochemical Characteristics and a Biotyping Proposal for 
Campylobacter jejuni. J Clin Microbiol 15: 1065-1073. 

As did Leaper and Owen (1981), Curtis (1983) also found four strains of C. coli 

contained amounts of the 19:0~ fatty acid comparable to those reported for C.jejuni 

(Table 4). Again, trace amounts were found of3-0H 14:0 ranging from 1.1 to 4.2%. 
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Table 4. Cellular fatty acids in 68 strains of Campylobacter1• 

Organism Total Fatty Acids(%) 

(# of 
strains) 12:0 14:0 15:0 16: 19 16:0 17:0A 18: 19 18:0 19:0A 

C. coli (4) 5.4 3.2 42.2 38.1 1.2 7.3 

C. jejuni ( 6) 7.2 3.5 37.1 39.1 1.1 9.9 

C. jejuni ( 6) 8.4 4.3 34.2 35.8 1.1 12.8 

C.fetus 
supsp.fetus 8.7 18.6 33.3 35.2 

(28) 
C.fetus 

supsp. 
11.6 21,0 37.6 27.4 venerealis 

(6) 
C.fetus 

subsp. 
8.4 14.8 33.9 37.2 venerealis 

(4) 

C.fetus 
2.8 .9 29.9 32.4 2.3 18.4 1.2 

(4) 

C.fetus (3) 3.8 11.2 .9 14.4 32.3 1.5 35.8 

C. sputorum 
6.6 8.8 24.3 25.4 31.5 

(1) 

C. sputorum 
subsp. 24.5 7.2 26.1 36.3 

bubulus (3) 
C. sputorum 

subsp. 
8.2 9.9 25.5 27.3 23.8 mucosalis 

(3) 

1 Adapted from Curtis MA. 1983. Cellular Fatty Acid Profiles of Campylobacters. Med Laborat Sci 
40:333-348. 

Moss and others (1984) examined 36 strains of Campylobacter and reported the 

presence of 19:0Li for C. jejuni and C. coli (Table 5). Larger amounts (3-8%) of 3-0H 

14:0 were found than were reported previously. The authors reported the presence of an 

18: 1 A 11 acid that accounted for a large percentage of the total fatty acids in the respective 
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strains as listed in Table 5. Perhaps this was actually the 18:19 fatty acid, common to 

many strains of Campylobacter, that usually occurs in the proportions reported for 

18: 1 l'l11 in this study. 

Table 5. Cellular fatty acids in 36 strains of Campylobacter1• 

Organism Percentage of Total Fatty Acids 

( # of strains) 
12:0 14:0 15:0 16:19 16:0 18:1 11 18:19 18:0 19:0~ 

C.jejuni (5) 8 3 4 36 21 1 2 18 

C. coli (5) .5 3 41 27 1 2 13 

C. laridis ( 6) 5 6 36 45 1 

C. fetus subsp 
8 17 33 32 1 1 

fetus (4) 
C. fetus subsp. 

venerealis 11 1 19 38 22 1 1 

(4) 
C. sputorum 

subpsp 21 7 31 27 1 1 
bulbulus (3) 
C. sputorum 

subsp. 19 1 7 31 25 2 1 
sputorum (2) 
C. sputorum 

supsp. 
10 12 1 14 26 11 4 3 mucosa/is 

(2) 

C. fecal is ( 5) 21 7 . 29 29 1 1 

1Adapted from Moss CW, Kai A, Lambert MA, Patton C. 1984. Isoprenoid Quininone Content and 
Cellular Fatty Acid Composition of Campylobacter Species. J Clin Microbiol 19:772-776. 

General growth requirements 

Outside the gastro-intestinal tract, Campylobacter are susceptible to 

environmental stresses that may affect their viability and morphology. According to 

Park (2002), analysis of the genome sequence for C.jejuni revealed that this species of 

17 



bacteria lacks several proteins required for adapting to changing environments. 

Escherichia coli for example, possesses the ability to produce eight separate oxidative 

stress response proteins while certain strains of Campylobacter only have four of these 

proteins. Likewise, C. jejuni only has the capability of generating one of four 

osmoregulation stress proteins, one out of three stationary phase proteins (starvation), one 

out of three quorum sensing stress proteins, one out of two global regulation stress 

proteins, and three out of five heat and cold shock proteins (Park 2002). While E. coli 

did not posses all possible stress proteins (20/26) it contained more than Campylobacter 

(11/26). To say that one protein is more effective for survival than another is, however, 

questionable. 

Campylobacter jejuni are sensitive to extreme cold or heat with a minimum 

growth temp of 32°C (unable to grow below 30°C) and an "optimal" growth temperature 

of 42°C -45°C (Doyle and Roman 1981; Park 2001). Reported optimal growth 

temperatures vary and may range from 37-45°C depending upon strain variations and 

growth conditions (Doyle and Roman 1981; Humphry 1989). The bacteria may remain 

motile, and metabolically active with the ability to produce ATP, at temperatures as low 

' 
as 4°C (Hazeleger and others 1998; Park 2002). It is unclear as to how, or if at all, the 

reproductive process takes place at or below 30°C. 

Campylobacter exhibit a greater sensitivity to pH than do most other food borne 

bacteria (Blaser and others 1980; Park 2002). The optimal pH range is between 6.5 and 

7.5 (Doyle and Roman 1981; Simbert 1986) and is strain dependant. 

These organisms are considered microaerophilic because some tolerate 0 2. It is 

common to use a mixture of 10% C02:85% N2:5% 0 2 to grow Campylobacter but ranges 
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of 3-15% 02, and 3-5% CO2 have been reported (Simbert 1986). In addition, enzymes 

such as catalase, oxidase and superoxide dismutase, and alkyl hydroperoxide reductase 

help the cells tolerate higher levels of 0 2 and still remain viable (Hoffman and others 

1979a 1979b; Simbert 1986; Park 2002). Some strains will grow anaerobically in the 

presence of fumarate alone, or in combination with formate and fumarate, and some will 

grow in the presence of 02 and fumarate (Simbert 1986). 

Campylobacter may also be stressed under different ~smotic conditions. Reezal 

and others (1998) examined the growth of Campylobacter on media with various 

osmolalities. Two methods were used to change the osmolality of the media: 1) simple 

dilution ( does not account for effect of nutrition deprivation) and 2) media reformulation 

(nutritional constituents undiluted, salt or glucose levels altered). The broth used 

contained 10g tryptone, 10g Bacto Peptone, 2 g Yeast Extract and 5.0 g NaCl per liter. 

The osmolality of full strength media was R:1250 mOsm, while that of the diluted and 

reformulated media was R:il 70 mOsm. Broth was dispensed in 5.5 ml portions into 12ml 

test tubes that were capped but still allowed gaseous interchange with a modified 

atmosphere (5%02, 10% CO2 and 85% Nz). Media with greater osmolality (R:1250 

mOsm) supported more growth than did those with lesser osmolality (R:1170 mOsm). 

There was, however, no difference between the diluted and reformulated media, 

suggesting that nutrient deprivation may not be responsible for the loss of culturability at 

decreased osmolality. 

One interesting competitive advantage that some strains of Campylobacter 

possess is the ability to use iron from hemin and hemoglobin obtained from the host 

(Pickett and others 1992; Park 2002). When iron sources are plentiful (i.e., when iron is 
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not bound by iron binding proteins), hemin and hemoglobin iron is easily captured by 

Campylobacter via microbial iron chelators called siderophores (i.e., ferrichrome and 

enterochelin) (Field and others 1986; Park 2002). In other instances, strains lacking in 

constituent siderophores have the ability to obtain iron compounds by scavenging 

siderophores produced by other bacteria (Baig and others 1986; Park and Richardson 

1995; Richardson and Park 1995; Park 2002). The ability of Campylobacter to 

adequately bind iron is not only essential for growth but may play a major role in the 

organism's ability to tolerate oxidative stress (van Vliet and others 2002). 

Factors Affecting Growth and Morphology 

In the laboratory, Campylobacter spp. are extremely sensitive to the environment 

in which they are grown. Many studies have examined the effects of gaseous 

atmosphere, temperature, their interaction, and pH on growth and morphology. There is 

wide variation, however, among studies in the techniques used, responses measured, and 

conclusions made. Although there are large variations in results and conclusions, both 

within and among publications, and results are tedious to discuss, this variability in 
l 

growth of Campylobacter is an important part of this dissertation. The following section 

of this review is intended, therefore, to provide some insight into the difficulties in 

culturing Campylobacter that impact the accuracy of current detection and enumeration 

methods. Because culture dynamics may differ between agar and liquid media, this 

discussion is divided accordingly. 
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Factors affecting growth on agar media 

Atmosphere 

Bolton and Coates (1983) evaluated the effects of 0 2 and CO2 concentration on 

growth of three strains of C.jejuni (NCTC 11168-biotype 1; NCTC 11392-biotype 2; and 

ATCC 3036); one strain of C. coli (NCTC 11352) and one other isolate noted as being 

nalidixic acid resistant thermophilic Campylobacter (NCTC 11353). The gas treatments 

were combinations of 0, 1.0, 2.5, 5.0, 10.0 and 15.0 % CO2 with <0.5, 1.0, 5.0, 10.0, 

15.0, and 21.0% Oz. Recovery medium was nutrient broth No. 2 (Oxoid CM67) 

combined with 2% agar and 5% lysed horse blood. Plate counts were determined after 

48-hours incubation at 42°C for all treatment combinations, but only relative Growth 

Indices were reported. C.jejuni (NCTC 11168 and 11392) were the most tolerant strains 

to high levels of 02 but growth did decline at 02 levels of 15% and higher. 

Campylobacter coli (NCTC 11353) grew at all 0 2 levels except the 21 % level. 

Campylobacter jejuni (ATCC 3036) was the next least tolerant in that it failed to grow at 

the 15 and 21 % 0 2 levels. The least tolerant strain was the nalidixic acid thermophilic 

Campylobacter that did not grow above 10% 0 2. Based on these results the authors 

concluded that the best atmosphere for growing these particular strains was 5-10% 0 2 

and 1-10% CO2. There were, however, no obvious differences based on CO2 

concentrations alone. This paper did not present statistical analyses, and treatment 

interactions were not described, thus it is not possible to draw conclusions about the 

optimum combination of 0 2 and CO2 levels for growth of Campylobacter. 
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Atmosphere and temperature interaction 

Wang and others (1983) collected fecal samples from 16 people known to be 

infected with C. jejuni. The isolation procedure took place under four different 

atmospheres (5, 10, 15 and 17 % 0 2) and two different incubation temperatures (37°C 

and 42°C). Response variables were plate counts (colony forming units, CFU/g) and 

colony diameters (mm). When plates were incubated in a 5% 0 2 environment, 16/16 

positive C. jejuni isolates were found at 42°C incubation temperatures and similarly, 

14/14 positive C. jejuni isolates were found when incubated at 37°C. Plate counts ranged 

from 104-108(average=106) and 104-107 (average=l06) CFU/g at 42°C and 37°C 

respectively. Colony sizes ranged from 2mm-spreader and 0.5-lOmm in size for the 

same temperatures. When the atmosphere was 10% 0 2 the number of positive cultures 

detected was the same as those at the 5% 0 2 levels at both temperatures. Plate counts and 

colony sizes at 42°C and 37°C were also very similar ranging from 103-108(average=l06) 

and 103-107 (average=l05) CFU/g and colony diameters of2-10mm and <.5-8mm for the 

respective incubation temperatures. Increasing the 0 2 level further (15% 0 2) had only a 

minor effect on number of positive isolates recovered from the fecal samples. At 42°C, 

all (16/16) isolates were recovered whereas at 37°C, most (11/13) were recovered. The 

reported plate counts and colony sizes for the two incubation temperatures (42 and 37°C) 

were 103-108(average=I06) and <10-108 (average=105) CFU/g and colony diameters of 

2mm-spreader and <.5-12mm for the respective incubation temperatures. The final 0 2 

concentration of 17% did not provide much more information other than all isolates 

(16/16) were recovered at the 42°C incubation versus 37°C where most (10/13) isolates 

were recovered. The plate counts and colony sizes were 103 -108 ( average= 105) and <10-
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107 (average=105) CFU/g and colony diameters of <0.5mm-spreader and <0.5-4mm for 

incubation temperatures of 42°C and 37°C respectively. Based on these results, the 

authors recommended that 42°C incubation should be used instead of 37°C when 

isolating Campylobacter. With such a large degree of variation, similarity in results at 

both temperatures, and the ambiguous meaning of the reported "spreaders," it is difficult 

to justify the authors' conclusion about the optimum temperature for Campylobacter. It 

appears that this publication is the basis of current recommended methodologies; i.e., 

FDA methods, which use a 42°C incubation temperature for the isolation of 

Campylobacter from food and water. 

Lee and others (1988) evaluated the ability of Campylobacter to grow on un­

supplemented brucella agar (George and others 1978) at various temperatures, 0 2 levels, 

media age, and media bisulfite content. C. jejuni ATCC 29428 and an 0 2 tolerant mutant 

(MC711-01) of this strain were prepared from cultures grown in brucella broth at 37°C 

(without agitation) under a modified atmosphere containing 6% 0 2• Less than 1 % of the 

organisms were in the coccoid form. The cultures were plated using 1) agar medium 

prepared from dehydrated Brucella media of various ages, 2) prepoured Brucella agar 

plates of various ages, and 3) freshly prepared Brucella agar with/without 0.01 % sodium 

bisulfite. Cultures were incubated at either 37 or 42°C in atmospheres containing 1.5, 

3.0, 6.0, 15.0, 21.0 or 26.0 %02• Both strains grew better when incubated at 42°C than at 

37°C. Campylobacter jejuni 29428, when grown at 42°C and 15%02, had 176 CPU/plate 

compared to no growth when incubated at 37°C. The mutant strain also grew somewhat 

better in 15%02 (168 CPU/plate) at 42°C compared to 37°C incubation (130 CPU/plate). 

Campylobacter jejuni 29429 was fairly tolerant to 0 2 levels of 15% but did not grow well 
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at the 21 and 26% levels. The mutant did well at all levels of 0 2 including 26%, if plated 

on fresh media. While evaluating the aerotolerance of these two strains, the authors 

noted large variation in their results. They found that the older the media the more varied 

the results (i.e., plate counts). 

The effect of aging dehydrated brucella media on microbial growth was examined 

in more detail (Lee and others 1988). Strains were plated on A) agar made from freshly 

opened brucella media, B) agar made from previously opened (2.5 months), un­

supplemented brucella media, and C) agar made from the previously opened brucella 

media supplemented with 0.01 % sodium bisulfite. At incubation conditions of 15% 

02/42°C, C. jejuni 29428 had 178, 32 and 224 CFU/plate for treatments A, B, and C, 

respectively. At incubation conditions of26% 0 2/42°C, the mutant C.jejuni MCI 1-01 

had 175, 1 and 179 CFU/plate for the media treatments A, Band C. Similar results were 

obtained from rehydrated brucella agar freshly prepared, aged 1.5 months, and aged 1.5 

months and supplemented with 0.01 % sodium bisulfite. To verify that the sodium 

bisulfite was indeed the ingredient responsible for increased 0 2 tolerance, the two strains 

were tested on D) freshly prepared brucella agar, E) brucella agar made from the 

individual ingredients including 0.01 % sodium bisulfite, and F) brucella agar made from 

the individual ingredients excluding sodium bisulfite. At incubation conditions of 15% 

0 2/42°C, C.jejuni 29428 had 183, 195 and O CFU/plate for treatments D, E, and F, 

respectively. At the incubation conditions of 26% 0 2/42°C, the mutant C.jejuni MCl 1-

01 had 156, 112 and O CFU/plate for the media treatments D, E and F, respectively. The 

presence of fresh sodium bisulfite in the media increased the apparent ability of both 

strains to tolerate 0 2, probably due to a decrease in 0 2 concentration in the media. The 
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difference in 02 tolerance between strains clearly demonstrates that this characteristic is 

genetic. The loss of sodium bisulfite from the aged media was due to oxidation to 

sodium sulfate in the presence of moisture and 0 2 in the aged/open media bottles. Even 

more interesting is that the mutant was a derivative from the ATCC 29428 strain 

suggesting the organism's ability to adapt to greater 0 2 concentrations. 

Factors affecting growth and morphology in liquid media 

The previous section demonstrates the sensitivity of Campylobacter to 0 2 

concentration and temperature, as well as variation among strains when grown under 

adverse conditions. The studies described above targeted the growth behavior of 

Campylobacter on agar plates in response to environmental stimuli. Cultures are grown 

( enriched) in broth or liquid media, however, when attempting to isolate Campylobacter 

from food and water. Therefore, growth requirements determined on solid agar plates 

should be interpreted with caution because culture dynamics may not be the same in 

broth versus agar media. The pre-enrichment and enrichment in steps recommended by 

the Food and Drug Administration (FDA) (see later section) incubate broth cultures at 

temperatures and 0 2 levels that may have been based on studies of growth in agar media. 

As the research to be presented in this dissertation targets the growth of Campylobacter 

in broth culture, the following section is intended to give some insight on the growth 

requirements of Campylobacter in a broth/liquid media, and on factors that may 

contribute to changes in morphology and culturability. 
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Atmosphere 

George and others (1978) evaluated various media types in order to improve the 

growth of various species of Campylobacter, focusing on their tolerance to 0 2 . 

Campylobacter was either plated directly on agar plates or grown in broth culture (50ml). 

Sixty-four isolates were grown in brucella broth at 37°C under microaerophilic conditions 

(6%02, 2.5%C02 and 92.5%N2). The cultures were then A) surface plated on either 1) 

brucella agar or 2) FBP agar (brucella agar supplemented with .025% EeS04·7H20, 

.025% sodium metab_isulfite and .025% sodium gyruvate) or B) inoculated into 50 ml of 

either 1) brucella broth or 2) FBP broth (brucella broth supplemented with .2% 

EeS04·7H20, .025 sodium metab_isulfite and .05% sodium 12.yruvate). Plates were 

incubated at 3 7°C for 4 days with atmospheres of either 6% 0 2, 1 7%02, or 21 %02 ( each 

with a constant level of CO2 (2.5%) with the remainder being N2. Broth cultures were 

grown statically at 37°C in milk dilution bottles (with no mention of bottle caps or 

closure apparatus). Actual plate counts were not reported but a relative Growth Index 

was used to evaluate the effects of the media supplements, atmospheric conditions and 

strain variations. The 64 strains were made up of C. fetus subsp. intestinalis (n=38); C. 

fetus subsp.jejuni (n=18); and C.fetus subsp.fetus (n=8). Of these three groups, C.fetus 

subsp.jejuni seemed to grow the best over all conditions, followed by C.fetus subsp. 

intestinalis and C.fetus supsp.fetus. Generally, FBP supplementation in growth media 

increased the overall ability of strains to grow at the higher 0 2 levels (17 and 21 % ), 

perhaps because the supplements acted as 0 2 sequestering agents. 
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All 18 strains of the C.fetus subsp.jejuni grew on both the plain brucella agar and 

the supplemented FBP agar. When the 02 concentration was increased to 17%, all 18 

strains grew on the supplemented FBP agar but only 13 strains grew on the brucella agar 

alone. This trend was the same for the 21 % 0 2 level, in that all 18 strains grew on the 

FBP agar but only 7 grew on the unsupplemented agar medium. One strain of C. fetus 

subsp. intestinalis was so sensitive to 0 2 that it would only grow in an atmosphere 

containing 1 % 0 2. Broth cultures grown in the presence of 21 % 0 2, also appeared to do 

better when grown in FBP broth. Of all the strains, 63 of 64 produced significantly turbid 

suspension after 72 hours incubation whereas 48 strains did not grow as well in 

unsupplemented broth. The use of turbidity values as an indicator of growth may not be 

as accurate due to the accumulation of dead cells and debris and the associated loss of 

culturability after 72 hours incubation at 37°C, but their use as a qualitative tool is 

acceptable. 

Rollins and others (1983) described a biphasic (agar/broth) culture system in 

tissue culture flasks (TCF) for the rapid cultivation of Campylobacter. The use of the 

TCF was not the focus of their methods, and TCF caps were not fitted with semi­

permeable membranes but were placed on "loosely." It is presumed that the authors were 

aware of the effect of the atmosphere in which the TCFs were incubated and thereby 

placed the caps accordingly. The authors were very careful in describing culture 

production and maintenance techniques. The experiments were performed in 25 cm2 

tissue culture flasks containing a biphasic media system ( a 4-ml solidified brucella agar 

layer with 6 ml ofbrucella broth on top). There were two biphasic media systems: 1) un­

supplemented brucella agar and broth, and 2) supplemented consisting ofbrucella agar 
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with 0.025% each of ferrous sulfate, sodium pyruvate and sodium metabisulfate, and 

brucella broth with 0.2%, 0.025%, and 0.05% of the above ingredients, respectively. 

There were four treatments consisting of the two systems incubated in either air or 

modified atmosphere (10%C02;5%02;85%N2): 1) unsupplemented system in air; 2) 

unsupplemented system in modified atmosphere; 3) supplemented system in air; and 4) 

supplemented system in modified atmosphere. Each treatment was incubated at 37 and 

42°C. Unfortunately, turbidity readings (OD62s) were the main response variable used to 

compare treatments, but qualitative assessment of their results are as follows. At the 

highest peak turbidity for all treatments, cells were mostly in the curved-rod form. The 

unsupplemented system in air needed a higher inoculum (> 105 CFU/ml) to attain the . 

same optical density as the unsupplemented system in modified atmosphere that was 

inoculated with much lower numbers (1-10 CFU/g). The supplemented system in air 

showed similar peak absorbencies to that of the unsupplemented system in modified 

atmosphere, suggesting that the supplement provided an increased aerotolerance. The 

supplemented system in modified atmosphere showed the higher peak absorbencies. The 

authors found that growth at 42 and 37 in this system were identical thus the higher 

temperature did not enhance growth. There was mention of cells adhering to the agar 

layer after removal of the broth. This may have lead to problems with enumeration 

because all colony-forming units may not have been recovered. In all cases, the authors 

were aware of the extent to which their cultures had changed morphology but they 

described this change as "gross contamination." We are now aware that this 

"contamination" might be the various forms of Campylobacter. Plate counts were 

alluded to, but those data were not shown, presumably due to the reported "large 
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variation" among duplicate plates. The authors stated that they were able to obtain 

consistently good growth in their biphasic media system. This is one of a few papers that 

addresses the difficulty and unpredictability of growing Campylobacter. Unfortunately, 

it has not been used or studied to the extent it deserves. 

Morgan and others (1987) worked with Campylobacter pylori in liquid media. 

Although this organism is now Helicobacter pylori (Vandamme 2000), these experiments 

may provide information relative to the growth characteristics of Campylobacter because 

the two organisms are closely related. Several experiments examined the use of reducing 

supplements incorporated into brucella broth as a means of enhancing the growth of C. 

pylori in liquid culture. C. pylori was grown in 1) brucella broth alone, 2) brucella broth 

plus Fetal Calf Serum (FCS), 3) brucella broth plus Vitox (Oxoid product: 67.4% w/w 

solution ofL-cysteine hydrochloride hydrate), or 4) brucella broth plus Vitox and FCS. 

In addition, the researchers evaluated shaking and stationary conditions on growth in 

liquid media. The isolates were initially grown on GCHI chocolate agar supplemented 

with various antibiotics. The plates were incubated for 3-5 days at 37°C in Gas Pak jars 

with modified atmosphere supplied from Campy-Paks. The gas generating envelopes 

(Campy-Paks) were replaced every 48 hours. Microscopic examinations were used to 

confirm morphology characteristics of inoculum. Broth studies were carried out using 10 

ml of the test broth in 50 ml sterile Erlenmeyer flasks fitted with a porous stopper or a 

loosely fitted screw cap. The cultures were incubated in a closed hood system flushed 

with a mixture of 1 O%C02, 5%02 and 85% N2. 

Unfortunately, no data were provided, but the authors stated that brucella broth 

plus Vitox (1 %) and FCS (10%) supported growth of the organisms only if shaken (150 
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rpm) and that if the cultures were grown statically, there were no detectable cells after 5 

days of incubation at 37°C. The authors suggested that it was imperative that gas be 

adequately dispersed throughout the broth medium. Brucella broth alone or containing 

Vitox did not support growth after 48 hours of incubation at 37°C. Prolonged (up to 5 

days) incubation resulted in a further loss of viability and an increased number of coccoid 

forms. Further experiments concluded that Vitox was not needed for the growth of C. 

pylori. Fetal Calf Serum was necessary at the 1 % level and anything less resulted in a 

loss of culturable cells. This particular supplement most likely acted as a reducing agent 

and provided the cultures with increased tolerance to 0 2. 

Morgan and others (1987) evaluated the growth of Campylobacter in liquid 

media. When the culture was grown statically at 37°Cin a Gas Pak jar with a modified 

atmosphere (Campy-Pak) the organism lost viability (plate counts) after 5 days of 

storage. Good growth could be achieved, however, when the broth culture was grown in 

a flask connected to a continuous gas system (10%C02, 5%02 and 85% N2) and shaken 

at 150 rpm. When inoculated with 102 -105 CPU/ml, it was possible to reach ~ 108 

CPU/ml after 24, 48 and 72 hours of incubation. This article points out the importance of 

an adequate gas supply coupled with a shaking motion for the successful culture of 

Campylobacter. 

Temperature 

Doyle and Roman (1981) isolated 5 strains of C. fetus supsp. jejuni from human 

stool samples and subsequently prepared them on blood agar plates (brucella agar and 5% 

defibrinated sheep blood). Plates were incubated for 3 days at 42°C in a modified 

atmosphere of 5% 02, 10% CO2 and 85% Nz. Cells were collected and placed into a 
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semisolid agar and incubated for 24 hours at 42°C. These cells were then transferred to 

500-ml flasks containing 100 ml ofbrucella broth supplemented with 0.3% sodium 

succinate and 0.01 % cysteine hydrochloride. Flasks were :flushed with the modified 

atmosphere and incubated 16-18 hours at 42°C in a gyrating water bath (100 

gyrations/min). These cells were used for growth studies after being diluted to 

approximately 6.0 x 103 CPU/ml. The growth studies were performed in 16x125mm test 

tubes with screw-capped tops with no mention of agitation. The pH of the media 

(brucella broth+ 0.1 % agar) was adjusted to various levels ranging from 3.0 to 9.5. 

Tubes were incubated at temperatures between 4 and 47°C. Samples were plated on 

brucella agar containing 5% sheep blood, and CPU/ml were used to measure responses. 

All five isolates grew well between pH 5.5 and 8.0. The authors were hesitant to identify 

a maximum or optimum pH, however, due to the confounding drop in pH levels brought 

on by the growing culture. 

Rates of growth for the 35 and the 37°C incubation were nearly identical. This 

was also true for the 42 and 45°C temperatures. The authors concluded that 42 and 45°C 

were optimal incubation temperatures, with 42°C being the best. According to the 

graphical presentation of CPU/ml, however, it appears that their conclusion was based on 

growth rates up to 24 hours. At that time, cultures incubated at either 42 or 45°C 

achieved populations similar(:::: 5.0 x 108 CPU/ml) to those obtained after 48 hours of 

incubation at 35 or 37°C. After 24 hours of incubation at 42 or 45°C, however, there was 

little further increase in numbers of CPU, and after 48 hours, CPU/ml declined. On the 

other hand, cultures incubated at 35 and 37°C continued to increase after 48 hours. At 72 

hours, the 42 and 45°C data points are about 1 log,cycle lower (::::1 .0 x 108 CPU/ml) than 
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those at 35 and 37 °Cc~ 1.0 x 109 CFU/ml). These observations suggest that at the higher 

temperatures there may be a decline in culturable Campylobacter after 24 hours. 

Extrapolating from the graph indicates that after 72 hours there were roughly 7.0 x 108 

CFU/ml and 3.0 x 109 CFU/ml when cultures were incubated at 35°C and 37°C, 

respectively. Based on these observations, it may be misleading to suggest that the 

optimum incubation temperature for broth is 42°C. 

Humphrey (1989) recovered C.jejuni from three naturally contaminated samples 

( chicken skin, chicken carcass scald water, and fresh river water) with and without a pre­

enrichment process. All three samples were pre-enriched in selective broth or non­

selective broth at 37°C for 4 hours, or not pre-enriched at all. There were 20 replications 

for each sample and pre-enrichment procedure. For the river water, scald tank water and 

chicken skin, respectively, the number of positive samples for the non-selective broth 

were 16, 18 and 10, selective broth 16, 14 and 12, and the non-pre-enriched 4, 8 and 6. 

Clearly the isolation rate was affected by enrichment procedure, but it is difficult to 

differentiate the effect of temperature and/or pre-enrichment since these two treatment 

combinations were not evaluated. It was shown that 37°C was a more favorable growth 

temperature for Campylobacter compared to 43°C. It is still unclear, however, as to the 

benefit of the "pre-enrichment period." The optimum time and temperature for 

enrichment are not yet fully understood. The authors, based on these findings, made the 

conclusions that a 4-hour pre-enrichment at 37°C is optimal for the isolation of 

Campylobacter. Again, some details were omitted from the paper by the authors "for 

clarity purposes" so some conclusions are presented without verifiable data. In closing, 

an interesting comment within the "Statistical Methods" section states "Despite every 
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effort to standardize media, growth and experimental conditions, there were, at times, 

variations in the response of the organisms to the stress treatments and in their subsequent 

growth patterns on the various media." 

The coccoid morphology of C. jejuni has been associated with lack of 

recoverability or the VNC form. Hazeleger and others (1995) indicated that the 

morphological shift from the rod to the coccoid was dependant upon temperature and 

nutrient availability. Campylobacter jejuni was inoculated into nutrient rich media (BHI­

brain heart infusion broth) and nutrient poor media (PPBS-50mM potassium phosphate 

buffer containing 0.85% saline and PPB-50 mM potassium phosphate buffer) and stored 

at 4, 12 and 25°C for various periods. Cells stored at 4°C remained culturable for a 

longer period of time for both the nutrient rich and poor media. Cells from the nutrient 

poor broth were culturable on plating media longer (70 days), however, than were those 

from the nutrient rich media (~25 days). The authors suggested that cells have a slower 

metabolic rate in the nutrient poor media than in nutrient rich media. An odd shift in 

detection occurred when cells were stored in PPB in that the 12°C temperature led to an 

increased detection period(> 40 days) compared to that at 4°C (~25 days) or 25°C (< 5 

days). The authors indicated that this was consistent with all strains tested. Later, 

Hazeleger and others (1998) determined that the minimum growth temperatures for two 

strains of C.jejuni (104 and 33560) occurred between 31 and 32°C. 

Holler and Martin (1998) evaluated the production of the coccoid morphology of 

C. coli SPlO (pig isolate) when stored at 4, 10, 20 and 37°C. Using light microscopy, the 

percentage of coccoid cells present after 51 days of storage at 4, 10, 20 and 3 7°C were 4, 
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7, 94 and 98% respectively. In addition, several different sizes of the coccoid form were 

identified. 

Thomas and others (2002) evaluated the morphological changes of 

Campylobacter spp. ( C. jejuni, C. coli and C. Zari) stored at 10 and 20°C in an aquatic 

model system. The model was a river sediment layer (50 mm) and the addition of fresh 

river water (150 mm depth) to a fermentation system. Morphological changes (visualized 

by light microscopy) were evident with increased storage time at both temperatures. By 

the third day, cells for all three species began to elongate (2.41 µm) two times greater than 

their initial size (1.19µm) and there were frequent occurrences of cells greater than 6µm 

for C. coli. It was noticed that C. jejuni and C. Zari lost their spiral shape more rapidly 

than C. coli. After 14 days of storage C. coli, C. jejuni and C. Zari contained 57, 53 and 

56 % coccoid forms when stored at 10°C and 71, 69 and 72% coccoidwhen stored at 

20°C respectively. All three continued to change and after 60 days of storage contained 

81, 73 and 76% coccoid form at 10°C and 91, 86, and 89 % coccoid form when stored at 

20°C for the three strains respectively. The remaining cells were described as a variety of 

spiral and elongated rods. 

Fatty acids are not only valuable for identification of Campylobacter, they may be 

useful in understanding membrane structure, fluidity and function with respect to the 

morphological shift from the rod to the coccoid form. The ability of organisms to adapt 

to temperature changes has been linked to changes in fatty acid structure and length. An 

inverse relationship has been proposed between temperature and the degree of 

unsaturation as well as fatty acid chain length (Linder and Oliver 1989; Eaton and others 

1981). Hazeleger and others (1995) determined fatty acid profiles of various forms of C 
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jejuni when grown at different temperatures. This objective was to determine if changes 

in fatty acids of different proportions reflected changes in the cytoplasmic membrane 

associated with the morphological shift from the rod to the coccoid form. Spiral 

suspensions (n=l l) were collected from cells grown in 500 ml volumes of brain heart 

infusion broth at 37°C for 20-28 hours. Coccoid suspensions were collected from cells 

that had formed at 4 (n=lO), 12 (n=lO) and 25°C (n=7). Fatty acid profiles of coccoid 

cells formed at the lowest temperatures (4 and I2°C) did not show marked differences 

from fatty acid profiles of the spiral cells. Coccoid cells that formed at 25°C, however, 

displayed different fatty acid profiles from those of the spiral cells. The authors reported 

a significant increase in hexadecanoate (16:0) and octadecanoate (18:0) with a 

concomitant decrease in tetradecanoate (14:0), cis-9-hexadecanoate (16:1) and the cyclic 

cis-9, 10-methyleneoctadecanoate (19:0'\ 

Linder and Oliver (1989) evaluated the fatty acid composition of Vibrio vulnificus 

when cells were stored for 26 days at 5°C. Vibrio exhibits similar morphological changes 

to that of Campylobacter in response to low temperatures. Fatty acid profiles from cells 

incubated at 5°C for 26 days showed little change in composition until the cells became 

nonculturable (24 days). At this time there was a concomitant decrease in 16:0 and 16:1 

and an increase in 19:0, 20:0 and 22:1 fatty acids. Saturated fatty acids increased from 49 

to 69.1 % and unsaturated fatty acids decreased from 45 to 17% of total fatty acids. In 

both studies, time/temperature/morphology treatment combinations were not completely 

tested. It is not possible to determine, therefore, whether cellular fatty acid profiles 

changed due to one or all of those variables. It is interesting that the same type of 

morphological changes occur in these two different organisms ( Campylobacter and 
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Vibrio) but temperature does not cause changes in fatty acid profiles in Vibrio as it does 

in Campylobacter. 

Atmosphere and temperature interaction 

Humphrey (1986) indicated that a pre-enrichment step of2 hours at 37°C is 

needed to recover C. jejuni from water and milk samples. He suggested that incubation 

temperatures higher than 3 7°C might not be advantageous for the recovery of injured 

cells or cells stressed by the addition of antibiotics during the enrichment process. Pre­

enrichment procedures recommended by FDA (Hunt and others 2001) for the isolation of 

Campylobacter are similar to those presented in this paper except that the FDA 

recommends 4hours at 37°C for dairy products. 

Humphrey (1989) investigated growth responses of temperature-injured C.jejuni 

as influenced by various media supplements and incubation temperatures. These results 

are applicable to the pre-enrichment process for the isolation of C. jejuni from food and 

water. Two strains of C. jejuni (B and F) were grown on Nutrient Agar (Oxoid No.2), 

harvested and subjected to high (50°C for 30 min) or low (-20°C for three days) 

temperatures in order to induce temperature-related cellular injury. Cultures were then 

plated on various selective agars containing quenching agents, hydrogen peroxide (H202) 

or rifampicin. Rifampicin is an antibiotic used in preenrichment and enrichment liquid 

media and plating media for isolation of Campylobacter. Hydrogen peroxide is thought 

to be toxic to cells due to its highly oxidative nature, and it may build up and eventually 

inhibit growth. There were no more details regarding this media or its preparation. 

Cold-injured cells were plated on agar containing either rifampicin or H202 and 

incubated at either 37 or 43°C. Un-injured cells were grown on nutrient agar at the two 
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temperatures for 24 hours, then plated on agar containing rifampicin or H20 2 and 

incubated at 37 or 43°C. The data were reported as IC50 values which are the 

concentration of either rifampicin (µg/ml) or H202 (µmol/L) required to inhibit 50% of the 

cells. When uninjured cells of C.jejuni strain B were incubated at 37°C and 43°C, the 

rifampicin ICso were 17.5 and 16.0 µg/ml, respectively, whereas if the cells were injured 

the ICso were only 10.6 and 7.5µg/ml. The effect of incubation temperature was even 

more pronounced with C. jejuni strain F. The IC5o of rifampicin for uninjured cells of C. 

jejuni strain F incubated at 37°C and 43°C was 12.5 and 5.1 µg/ml, respectively. Cold­

injured cells were greatly affected by rifampicin at both incubation temperatures but 

much more so at 43°C (IC50 = 1.4 µg/ml) than at 37°C (IC50 = 5.2 µg/ml). Similar results 

were obtained with C. jejuni strain B. The detrimental effect of H202 was also 

compounded with higher incubation temperatures. When uninjured cells of C. jejuni 

strain B were incubated at 37°C and 43°C, the IC50 ofH20 2 was 185 and 160 µmol/L, 

respectively, whereas with the cold-injured cells, the IC50 ofH20 2 was only 123 and 90 

µmol/L, respectively. Similar results were obtained with C. jejuni strain F. Uninjured 

cells incubated at 37°C and 43°C required 168 and 58 µmol/L H20 2 to inhibit 50% of the 

cells. Again, injured cells were greatly affected by H20 2 at both temperatures but much 

less at 37°C (78 µmol/L) than 43°C (31 µmol/L). Effects of quenching agents on 

subsequent growth of cold-injured C. jejuni strain F were presented graphically (no 

numerical data). Growth of cold-injured cells on nutrient agar containing 0 2 quenching 

supplements (blood, etc.) was about 7 times greater when incubated at 37°C than at 43°C. 

When cold-injured cells were grown on an unsupplemented agar, however, growth at 

37°C was 80 times greater than at 43°C. No data were shown for cells injured by heating 
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but the authors suggested that the effects were similar to those with frozen cells. These 

studies suggest that recovery of injured cells is much more likely at 37°C than at 43°C. 

Identification of the Viable Nonculturable (VNC) State 

The VNC state has been defined as that condition when organisms have for some 

reason lost their ability to grow on specific media (i.e., lost their culturability) but still 

remain viable. Techniques other than standard plating methodology must be used to 

identify the difference between living and dead bacteria. These methods can be divided 

into two main categories 1) in vitro biochemical assays and 2) in vivo passage models. 

In vitro biochemical assays 

The acridine orange direct count (AODC) staining technique uses 3,6-

bis( dimethylamino) acridinium chloride (Hobbie and others 1977) and has been used to 

detect total bacteria however, it cannot distinguish between live and dead cells (Huq and 

others 2000). The Direct Viable Count (DVC) method (Kogure and others 1979) was 

developed to detect living marine organisms. In the DVC method, cultures are first 

stimulated by the addition of yeast extract and then inhibited such that protein synthesis 

continues in the absence of DNA synthesis, resulting in enhanced cellular elongation. 

These cells are noted as being larger than normal and thus distinguishable from dead 

cells. 

Rollins and Colwell (1986) used three methods (plated counts, DVC, and AODC) 

to measure the survival and VNC state of C. jejuni over extended periods of time in 

artificial growth media and natural aquatic environment. The three media environments 

were placed in tissue culture flasks or Erlenmeyer flasks containing a biphasic 

(agar/broth) media, treated (filter-sterilized and aged) stream water, or natural stream 
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water. The vessels were kept stationary or shaken (150 rpm) and-incubated for various 

time periods at 4, 25 and 37°C. Both temperature and aeration impacted the culturability 

and detectability of Campylobacter. For example, a 50 ml sample of treated stream water 

was held stationary in a 125 ml Erlenmeyer flask at 4, 25 and 37°C. At 4°C, culturable 

(plate counts) C. jejuni were found 120 days after inoculation. Higher temperatures of 25 

and 3 7°C resulted in recovery of culturable organisms (plate counts) for only 28 and 10 

days respectively, clearly indicating the reduced culturablity when stored at higher 

temperatures. Based on glutamate utilization and CO2 evolution data at 27 and 37°C, 

higher metabolic activity at the higher temperatures may have caused of the loss of 

culturability. Rapid declines in plate counts were seen in the water microcosms (shaken 

at 150 rpm and stationary) as well as in the tissue culture flask/biphasic media system 

(shaken at 150 rpm). When the cultures were incubated at 37°C in the tissue culture 

flask/biphasic media system and not disturbed, counts remained high (~8.0 log10CFU/ml) 

for up to 12 days. It was not possible to determine whether or not any modified 

atmosphere was applied to the test samples. When comparing the three methods used for 

detection (plate counts, DVC and AODC), there was little difference between DVC and 

AODC numbers while plate counts rapidly declined. 

Medima and others (1992) found that 6 strains of C. jejuni stored in an aqueous 

environment at 15 and 25°C declined to <1 CFU/ml in 2-6 days. Six of 7 strains tested 

lost viability (DVC) as quickly as they lost culturability (plate counts) possibly 

suggesting that the use ofDVC as a tool to measure the VNC state is either strain 

dependant or not a reliable tool. 

39 



The DVC method was used for detection of temperature stressed cells of 

Campylobacter (Holler and Martin 1998). The objective was to determine if temporary 

cold stress affected cellular elongation following treatment with nalidixic acid. Cultures 

were grown in broth culture for 48 hours at 3 7°C. They were then diluted and stored for 

12 hours at 37°C or 48 hours at 4, 10 and 20°C. Various concentrations ofnalidixic acid 

were tested in order to determine the minimum inhibitory level. Cultures were then 

placed in buffer solution with the appropriate amount of nalidixic acid and incubated at 

37°C for various times and analyzed for DVC and plate counts. The level ofnalidixic 

acid needed for inhibition was different for each strain tested. In addition, cells that were 

stressed by low temperatures (i.e., 4, 10 and 20°C) did not elongate (respond to the yeast 

extract/nalidixic acid) as did those cells that were grown at 37°C and never exposed to 

lower temperatures. Therefore, the author concluded that the DVC assay might not be 

reliable if organisms have been injured. In order to use DVC it was necessary to know 

beforehand 1) concentration of nalidixic acid needed for each strain 2) what type of 

injury the organism experienced and to what extent. For all practical purposes this 

information is usually not clear. Furthermore, evaluation of cellular viability using a 

method such as this is very subjective. 

Bovill and Mackey (1997) held cells of C. jejuni in sealed-shaking flasks at 37°C 

for 4-6 weeks. The flasks were gassed with a 10%C02:85%N2:5%02 mixture on a 

continuous basis until the stationary phase of growth was reached (2.0 x 109 CPU/ml), 

then allowed to sit for 2-4 weeks until the counts reached 103 -106 CPU/ml. The cultures 

were then regassed with the above mentioned gas mixture and plate counts increased 

almost to their stationary phase level. The number of "vibroids" or rod shapes increased 
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dramatically upon regassing. The authors suggested that, because they did not form 

colonies on plates just prior to regassing, the cells may have been injured or in the VNC 

state, and that upon regassing those cells were resuscitated. There is, however, the 

possibility that a few viable-culturable spiral shaped cells remained in the system and 

grew upon re-gassing. These conditions however may just provide a means of retaining 

culturability rather than regaining it. 

. In vivo passage models 

In attempts to show that emergence of the coccoid form and the concomitant 

decline in detectable (plate counts) numbers is actually linked with the so called VNC 

form, several researchers have used animal models as indicators of viability. The use of 

animal models has given varied results. Medema and others (1992) pointed out that to 

fully realize the rate of transmission of C. jejuni and associated illnesses, the organisms 

must have the ability to regain their culturability under favorable conditions. Favorable 

conditions are found especially in the GI tracts of humans and other animals, as indicated 

by the greater rate of isolation from feces than from other sources. 

Two models of study were used by Medema and others (1992): 1) embryonated 

eggs, and 2) one-day old chicks. Embryonated eggs were inoculated with Campylobacter 

suspensions (<1 CFU/ml plate count and <0.1 CFU/ml MPN) and incubated for 7 days at 

37°C. Allantoic fluid was then plated on mCCDA for detection of culturable 

Campylobacter, but none were found. In the chicken model, eggs that were free of 

parasites, viral pathogens, various Salmonella spp. and mycobacteria were incubated and 

hatched under controlled/sterile conditions. One-day old chicks were orally dosed with 

C.jejuni (<0.1 CFU/ml plate count; <O .01 CFU/ml MPN; 6.0 x 106 CFU/ml AODC and 
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1.8 x 105 CFU/ml DVC). The chick's caecal contents were plated after 7 days and 

incubated at 37°C for 48 hours. Again, no colonies of Campylobacter were found on 

mCCDA plates. 

Cappelier and others (1999) used chicken and mouse models to examine the 

recovery of the VNC form from three strains of C. jejuni. Cells grown on agar plates 

were resuspended in 500 ml of filter sterilized water such that the final concentration of 

C. jejuni was approximately 108 CFU/ml. This water microcosm was incubated at 4°C 

for 30 days while shaking at 100 rpm in an attempt to produce VNC organisms. Viable 

and culturable cells were detected on spread plates while VNC cells were detected using 

microscopic examination of cells stained with 5-cyano-2,3-ditolyl tetrazolium chloride 

(CTC). This particular method distinguishes "metabolically" active cells through 

fluorescent microscopy. The dye is taken up by the cell, reduced by the electron 

transport system, and then fluoresces red. The cells showing the fluorescent CTC 

formazan crystals are thought to be still viable since cellular enzymatic activity has not 

stopped at the time of the assay. Animals were inoculated with 0.2 ml of the water 

suspension ( chicks) or 50ml of a concentrated cells suspension made from the 30 day old 

water microcosm (mice). For both models, there were both positive (similar volumes of 

C. jejuni inoculum-107 CFU/ml) and negative (similar volumes of sterile distilled water) 

controls. Chick caecal/intestine samples were taken on day 2, 4 and 7, resuspended in 

basal medium, and either plated directly or after enrichment. Mouse stomach and 

intestines were processed similarly after 4, 20 and 44 hours. The recovery rate for chicks 

inoculated with the VNC water microcosm was 1/69 (direct plating) and 8/69 (enriched 

sample). The positive control (chicks inoculated with 107CFU/ml viable and culturable 
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· C. jejuni) yielded 26 positive of 69 total ( direct plating) and 36 positive of 69 total 

( enriched sample). The mouse model yielded many more positive animals inoculated 

with the VNC water microcosm than the chick model. The results reported were for both 

direct plating and enrichment methods. When inoculated with the VNC microcosm there 

were 45/135 positive mice. Mice inoculated with the viable and culturable suspension 

were almost all positive (122 positive for C. jejuni of 126 total mice). Perhaps the higher 

rate of recovery for the mouse model was due to the administration of a concentrated cell 

suspension of the VNC water microcosm compared to the chick inoculum. 

The viability of C. jejuni and C. coli was studied by Ng and others (1985). These 

organisms were grown in broth for 24 hours at 3 7°C. The cultures of C. jejuni and C. coli 

contained 99% spiral shaped forms (9.14 and 9.28 log CFU/ml, respectively), and no 

coccoid shaped cells were observed by phase contrast microscopy. Plating resulted in 

8.41 and 8.49 log CFU/ml. These plates were incubated for 5, 7 and 10 days and on each 

day, cells were collected and made into standardized cell suspensions equivalent to a 

McFarland #2 standard. After 5 days of incubation, the predominant morphology was 

coccoid (109 coccoid/ml) and approximately 106-107 spirals/ml for both strains. Day 7 

cell suspensions again contained 1.0 x 109 coccoid/ml and 1.9 x 106 spirals/ml and 

resulted in 6. 7 x 105 CFU/ml when plated. After 10 days, the collective results showed 

2.2 x 109 coccoid and 5.6 x 106 spirals/ml with plate counts of 5.1 x 106 CFU/ml. 

Conclusions were that the loss ofroughly 102 CFU/ml can be associated with the high 

incidence of the coccoid form, suggesting that this form is not viable and that propagation 

requires the presence of the spiral morphology. 
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One possible route to solving the VNC problem associated with laboratory 

methods may be the development of a test that actually detects this form. That has not 

been done at this time. However, more importantly, with respect to research in the area 

of detection, a protocol is needed that addresses the VNC/morphology state such that we 

prevent the formation of the coccoid form and thus limit variability associated with its 

existence. We are dealing, in many cases with information from research that has had 

very little control over the cultivation of this organisin. Lack of controls in the beginning 

of experimentation may lead to questionable if not erroneous results and conclusions. 

Current Methodology for Isolation of Campylobacter from Food and Water 

The United States Food and Drug Administration through the Center for Food 

Safety & Applied Nutrition have created the Bacteriological Analytical Manual (BAM) 

detailing methodology for the detection of various organisms. Specifically, the detection 

of Campylobacter species in food and water (Hunt and others 2001) will be the focus of 

this section. The FDA methods are complicated, tedious and expensive. Most of the 

following text is a cursory summary of areas relevant to this paper. Further details of 

specific methodology can be found in the FDA Bacteriological Analytical Manual: 

Chapter 7: The Isolation of Campylobacter Species from Food and Water. 

Sample preparation 

Sample collection and preparation depends on the type of food product to be 

analyzed. In general, representative samples are weighed out in 25-gram portions (50 

grams for vegetables) and aseptically placed into appropriate enrichment vessels. These 

vessels may be either sterile stomacher bags (400 ml or larger), or 250-500 ml 

Erlenmeyer flasks. 
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Pre-enrichment 

The pre-enrichment/enrichment media are one and the same and consist of 

Campylobacter Enrichment Broth ( a.k.a. Bolton Broth) mixed with lysed horse blood and 

a mixture of antibiotics (sodium cefoperazone, trimethoprim lactate, vancomycin and 

cyclohexamide ). Pre-enrichment periods are either 4 hours (if sample age ::;; 10 days; 

dairy products) at 37°C or 5 hours (if sample age;?: 10 days; water; shellfish). The 5-hour 

pre-enrichment may be partitioned with 3 hours at 30°C and 2 hours at 37°C under 

microaerophilic conditions. During pre-enrichment, the broth/sample should be shaken 

either 50-60 rpm (bubbler system) or 175-200 rpm for gassed bags or flasks. If the 

bubbler system (non-shaking) method is used then the entire 5 hour pre-enrichment is 

done at 37°C. It is presumed that anaerobes may proliferate at 30°C and would interfere 

with the growth and isolation of Campylobacter. · 

Enrichment 

The enrichment period for shaking samples ( except shell fish and dairy products) 

is 23-24 hours. Shellfish should be incubated an extra 4 hours while dairy products 

should be incubated for 48 hours. The microaerophilic gas (5% 0 2, 10%C02 and 85% 

N2) must be supplied in both the pre-enrichment and the enrichment process. This may 

be accomplished by using a bubbler system which supplies gas in a continuous fashion or 

bags/flasks which can be gassed and sealed or placed inside a larger chamber (i.e., BBL 

Anaerobe Jar) that is charged with gas generated from envelopes or pouches (Campy.:. 

Paks or Anaerobe Paks) and then sealed. 

1) Bubbler system: Enrichments are placed into a double bag system (with a 

small amount of water between the bag containing the sample and the outside bag to 
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enhance heat transfer) and placed into support baskets. A pipet is inserted into the broth 

sample, bags are tightly cinched with a twist-tie, the pipet is connected to the gas system, 

and gas pressure is adjusted to 2-3 bubbles/sec entering the broth solution. This is 

commonly done in a water bath. 

a. Shaking: 50-60 rpms 

b. Non-Shaking: note pre-enrichment incubation specifications of 

time and temperature. 

2) Gassed and sealed metalized poly pouches, or evacuated and gassed Erlenmeyer 

flasks: On an individual basis, a pipet is inserted into the headspace above the sample 

broth, and gas is turned on until bag fills. This is repeated two times, ending with one 

last gas flush before sealing the bag. This is commonly done in an incubator with a 

shaking platform. Shaking should be done at 175-200 rpm. 

3) Anaerobe jar system: This type of system usually consists of various sizes of jars 

(BBL, Difeo, or Oxoid) that are specially designed to maintain a tight seal after being 1) 

flushed with gas or 2) charged with gas from special gas generating systems (i.e., Campy­

Pak). The former system has a gas valve fused into the jar such that the entire system, 

once sealed with the samples inside is evacuated and gassed several times ending with a 

final gas flush. The valve is pinched off and the system is incubated. If using the bag 

system for emichment, then it is specified that the bags are left open "loosely". If using 

an Erlenmeyer flask system it is presumed that the top of the flask is slightly closed in 

some way. There was a mention of a foam cap but the details of this were omitted. 

Needless to say, there should be some type of covering such that the modified 
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atmosphere can interact with the culture while somehow preventing contamination. The 

specific mention of shaking this type of system was not in the procedures. It can only be 

assumed that the shaking would be similar to that of the gassed and sealed metalized poly 

pouches or evacuated and gassed Erlenmeyer flasks and set at 175-200 rpm. 

Immediately following the pre-enrichment procedure, the temperature is raised to 

42°C except if C. fetus is suspected then temperature should remain at 37°C. If using the 

bubbler (non-shaking) method then the incubation time is 28-29 hours except in the case 

of shellfish, which are incubated for 48 hours. Additionally, if C. fetus is a target then 

samples should be incubated for 48 hours in any of the shaking method or 52 hours if 

using the bubbler (non-shaking) method. 

An important note in the procedures suggests that "if incubating in anaerobe jars, 

reduce the volume/flask or bag to 125 ml by dividing the enrichment into two parts." It is 

thought that the gas does not penetrate into a larger volume sufficiently to provide proper 

growth of Campylobacter. This statement suggests that a technique ( or methodology) 

that addresses this and other problems that affect the handling and management of 

Campylobacter is needed. 

Implications to Detection in Food and Water 

Understanding the route of infection by Campy/o.bacter is clouded by the 

production of the coccoid form and VNC state. The production of the coccoid form is 

dependant upon many interrelated factors, often stress related, and dominated by strain 

variation (Figure 1 ). It is unclear as to whether or not the coccoid form can cause disease 

on its own accord, must first revert back to the rod form, or is not an infectious entity. It 

is known that Campylobacter is ubiquitous in the environment and exists there in the 
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viable culturable (VC) state. It is not known, however, if this organism exists in viable 

nonculturable (VNC) or nonviable nonculturable (NVNC) states in the environment 

(Figure la). It is known that Campylobacter exists in the VC state in food and water. It 

is not known, however, if it exists in a VNC state in food and water (Figure lb). Finally, 

it is known that Campylobacter is in the VC state after ingestion and fecal shedding by 

either humans or animals. It is not known, however, if an organism in the VNC state can 

resuscitate and reenter the VC state, or if it passes harmlessly through the system in a 

NVNC state (see figure 3c). Testing for the presence of a VNC form (in vitro or in vivo) 

is usually confounded by not knowing for certain that there was not at least one organism 

in the VC state that was able to survive, adapt and grow when provided with a favorable 

environment. In addition, just because an organism is in the NVNC state, is it assumed 

that all metabolic processes cease? If they do not, then what validity can be placed on 

assays that measure cellular activity and link it to viability, or animal studies that 

inoculate with an assumed total VNC population? 

Culturable Campylobacter can be recovered from food and water as well as from 

infected humans and animals; however, in vitro studies indicate that the majority of 

growth on agar plates consists of the helical rod form while a variety of morphological 

forms are present in broth culture. Very little has been done with respect to growing 

Campylobacter in broth at optimum temperatures (35-42°C) and measuring both growth 

(plate counts) and morphological characteristics. It is important to keep in mind that time 

and temperature is extremely critical when growing Campylobacter for experimental 

purposes or isolating it from food or water. With this in mind, our efforts in this 

dissertation are focused more on the prevention of the formation of the coccoid form 
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(regardless of its viability) when working with in vitro analysis to detect C. jejuni in food 

products and water. 

Environment 
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Figure 1. Interface between Viable/Culturable, Viable/NonCulturable (VNC) or a 
NonViable/NonCulturable (NVNC) state of Campylobacter and the environment, 
food/water, or human/animal system as well as possible interfering or inducing factors. 
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ABSTRACT 

Growth and morphology of Campylobacter jejuni when grown under various 

conditions in Bolton broth at 37°C were studied. Enumeration was on campylobacter 

agar containing charcoal and deoxycholate (CCDA) using spiral-plating techniques. 

Percentages of coccoid cells were determined microscopically. Consistent growth and 

maintenance of the helical-rod form of C.jejuni was dependent upon (1) the type of 

growth vessel used and, more importantly, a relatively large surface-to-volume ratio 

(250mm2/ml); and (2) exposure to a modified atmosphere (10% CO2, 85% N2 and 5% 

0 2). When C. jejuni was incubated for more than 24 hours, there was a large percentage 

(36 to 75%) of transformation to the coccoid form and fewer colony-forming units 

compared to incubation up to 24 hours. Strains of the organism behaved differently with 

respect to subculturing. In general, however, two successive subcultures may be 

performed without a change in growth or morphology. Decreased concentrations of 

colony forming units of C. jejuni commonly attributed to the production of the "viable 

but non-culturable" form may also be due to cellular "clumping" as evidenced by 

scanning electron micro graphs. Clumping was associated with inadequate surface-to­

volume ratio and gas exchange in the growth medium. Techniques to improve growth 

and maintenance of C. jejuni in pure culture and detecting it in food products are 

described. 
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INTRODUCTION 

Campylobacter jejuni, first detected in humans in 1973, has been linked to 

millions of incidences of food-borne illnesses (Altekruse 1999). The Food and Drug 

Administration indicated that C. jejuni may be the leading cause of food borne illness in 

the United States (U.S. Food and Drug Administration 1992). The United States 

Department of Agriculture (USDA) estimated that the annual cost associated with 

Campylobacter infections ranged from $1.5 to $8.0 billion (Buzby and Roberts 1997). 

Campylobacter species are common inhabitants of the gastrointestinal tract of many 

domestic animals and thus food products of animal origin are frequently contaminated 

with C. jejuni. For example; live broilers, hens, turkeys and ducks harbor Campylobacter 

in the range of 105 -109 CPU/ g leading to the high incidence of illness due to the 

consumption or handling ofraw poultry or related products (Jacobs-Reitsma 2000). 

Illnesses associated with Campylobacter have been attributed to other undercooked 

meats, raw milk, and untreated water. Ingestion of only a few bacteria (500) may cause 

illness (Skirrow and Blaser 2000). 

Many researchers have reported difficulties growing Campylobacter in pure 

culture and suggested that it is even more difficult to isolate Campylobacter from food 

products (Rollins and others 1983, Rollins and Colwell 1986; Aquino and others 1996; 

Reezal and others 1998). Cells of Campylobacter undergo a morphological transition 

marked by the physical change from a helical rod shape to a coccoid shape (Moran and 
' 

Upton 1986; Griffiths 1993). The coccoid form may represent a viable but non-
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culturable (VBNC) state (Rollins and Colwell 1986; Saha and others 1991; Griffiths 

1993; Bovill and Mackey 1997). This transformation may occur when cultures are 

exposed to unfavorable atmospheres, temperatures, light, UV radiation, and hydrogen 

peroxide (Juven and Rosenthal 1985; Moran and Upton 1987). Furthermore, Griffiths 

(1993) indicated that C.jejuni, when grown in liquid culture, changed morphology at 

different stages of growth. Ng and others (1985) showed that different forms were 

present in different parts of a colony. They suggested that the center of the colony 

contained coccoid shapes while the perimeter contained mostly helical rods. Another 

"donut" shaped cell was attributed to a raised section of the same colony. A closely 

related organism, Helicobacter pylori, also exhibits this transformation, along with a 

marked cell wall modification (Costa and others 1999). Formation of the coccoid form 

also has been found in older cultures and related to variable growth conditions such as 

type of growth media and temperature (Jones and others 1991; Hazeleger and others 

1995, 1998; Reezal and others 1998; Jeffrey and others 2000). 

Adding to the intricacy of working with Campylobacter is a requirement for 

modified atmosphere for growth (Juven and Rosenthal 1985; Morgan and others 1987). 

The recommended atmosphere ranges from 3-15% oxygen and 2-10% carbon dioxide 

(Hodge and Krieg 1994; Ketley 1997). If oxygen concentrations become too high 

(>15%) there is a detrimental effect on Campylobacter. Hodge and Krieg (1994) 

indicated that C. jejuni 's tolerance of oxygen was dependent upon the type of growth 

media. They concluded that media high in protein sources should be avoided. When 

cultures of Campylobacter are subjected to an aerobic environment instead of a 

microaerophilic one, they quickly change to the coccoid form (Karmali and others 1981 ). 
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Another divergence that may add unnecessary variability is how cultures are 

prepared prior to use in experiments. Growing the culture in liquid media is necessary, 

however, in order to achieve a consistently active culture (Morgan and others 1987). 

Repeated and consistent subculturing of most microorganisms in liquid media prior to 

experimentation is desirable in order to provide maximum numbers and consistent 

behavior of the culture. It is not well documented what effect, if any, subculturing has on 

the growth and morphology of Campylobacter. Rollins and others (1983) suggested that 

subculturing may be problematic but did not expand on the discussion. Because the 

method under which Campylobacter is grown influences its physical transformation, 

culture methodology must be standardized in order to have accurate and repeatable 

results within and among laboratories. As growth of Campylobacter is so sensitive to 

environmental conditions, experiments often provide results that are more qualitative 

than quantitative. 

Currently, there are two views of the meaning of the viable but nonculturable 

state: 1) dead or 2) dormant and can be revived by exposure to favorable conditions 

(Jones and others 1991; Park 2002). In any case, once the organism changes 

morphology, enumeration and/or recovery from either broth media or food products 

become more difficult and subject to error. The objective of this study was to develop 

and evaluate improved methodology for growing C. jejuni. 
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MATERIALS & METHODS 

Source, Maintenance and Preparation of Cultures 

Two strains of C. jejuni (ATCC 29428 and 33560) were purchased from the 

American Type Culture Collection (ATCC; Manassas, Va, 20108). The strains were 

grown according to the ATCC directions using Bolton Broth (Oxoid LTD; Baskingstoke, 

Hamshire, England) at 3 7°C. The cultures were then vacuum dried and stored at -20°C 

until needed (stock cultures). 

Prior to each experimental replication, stock cultures were rehydrated in 10 ml of 

freshly prepared Bolton broth that was aseptically transferred into sterile 50 ml tissue 

culture flasks (TCF) (Falcon® Brand; Becton Dickinson Labware, Franklin Lakes, NJ) 

equipped with a vented cap (0.2 µm pore size). The re-suspended culture was incubated 

in a Gas-Pak chamber (BBL) which was charged with a mixture of CO2 (10%), 0 2 (5%) 

and N2 (85%) generated from a Campy-Pak (BBL® Campypak Plus; Becton Dickinson 

Microbiology Systems, Cockeysville, MD) microaerophilic gas generating system. The 

container was placed on an orbital benchtop shaker (Lab-Line®, Model 4626) set at 80 

rpm and incubated for 18 to 24 hours at 37°C. Prior to use, the cultures were Gram 

stained and examined microscopically to determine morphological integrity. 

Experimental Treatments and Procedures 

Effect of growth vessels 

Different sizes and/or shapes of growth vessels were used to determine effects of 

different surface-volume (S: V) ratios on the growth of C. jejuni and the formation of the 
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coccoid form. For the inoculum, each strain was spiral plated onto freshly prepared 

campylobacter agar with charcoal and deoxycholate (CCDA) (Oxoid LTD, Baskingstoke, 

Hampshire, England) plates and incubated for 48 hours at 37°C under modified 

atmosphere conditions (Campy-Pak) inside a Gas-Pak chamber. Well-isolated colonies 

of each strain were transferred to freshly prepared Bolton broth in separate tissue culture 

flasks and incubated for 18-24 hours under modified atmosphere conditions on an orbital 

benchtop shaker set at 80 rpm. Each resulting culture was diluted in fresh sterile Bolton 

broth to achieve approximately 3-4 log colony forming units/ml. The inoculated broth 

was aseptically dispensed as indicated in Table 6. 

All three treatment combinations for each strain were placed in one Gas-Pak jar, 

charged with the modified atmosphere (Campy-Pak), and incubated at 37°C with 

agitation. The cultures were removed from incubation after 18-24 hours and analyzed for 

plate count and morphology. Three replications of the above procedure were done on 

different days. 

Effect of incubation time 

The effect of incubation time on growth and extent of morphological change in C. 

Jejuni was determined when incubated at 37°C in the vented TCF. The procedure 

described above for Source, Maintenance and Preparation of Cultures was repeated 

for 24, 48, and 72-hour growth times for both strains. The cultures were removed from 

incubation at the appropriate time and analyzed for growth and morphology. There were 

three replications of the above procedure, and replications were done on different days. 
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Effect of modified atmosphere 

The objective was to determine the effect of atmosphere modification on the 

growth of the two strains of C. jejuni. For these experiments, cultures of the two strains 

of C. jejuni prepared as described in Source, Maintenance and Preparation of Cultures 

were used to inoculate TCF (3 for each culture) containing 10 ml of Bolton broth to 

achieve approximately 4-5 log colony forming units/ml. Two of the vented TCF (one for 

each culture) were sealed with silicon and Parafilm M® (American National Can; 

Neenah, Wis). These, along with one TCF (vented) for each strain were placed in a Gas­

Pakjar and charged with a Campy-Pak. The two remaining vented TCF (one for each 

strain) were placed along side the Gas-Pak jar onto the orbital shaker and incubated 18-24 

hrs at 37°C with agitation at 80 rpm. The samples were analyzed for the amount of 

growth and morphology. Five replications of the experiment were done on different 

days. 

Effect of subculturing 

To determine the effect of successive subculturing on growth and extent of 

morphological change in C. jejuni when incubated at 37°C in the vented TCF the 

procedure described above for Source, Maintenance and Preparation of Cultures was 

repeated for the original (0) culture for both strains. For successive subcultures, Bolton 

broth was inoculated at approximately 4-5 log colony forming units/ml. Successive 

subcultures 1, 2 and 3 were made after incubation for 18-24 hrs, under modified 

atmosphere at 3 7°C on an orbital benchtop shaker at 80 rpm. The samples were analyzed 

for amounts of growth and morphology. Three replications of the experiment were done 

on different days. 
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Analytical Procedures 

Enumeration 

In all cases, C. jejuni was enumerated using a spiral plater ( dwScientific; Don 

Whitley Scientific, Shipley, England). Appropriate dilutions were made using 0.1 % 

peptone dilution blanks followed by spiral plating onto pre-poured plates of a selective 

blood free agar (CCDA) containing no additional selective agents. Samples were plated 

in 50 µ1 aliquots in a logarithmic mode setting. Plates were inverted and incubated for 48 

hours at 37 °Cina Gas-Pak (BBL) chamber charged with a mixture of CO2 (10%), 0 2 

(5%) and N2 (85%) (Campy-Pak). Counts were made using an automatic plate reader 

(Protocol; Synoptics Ltd., Cambridge, UK) and related software. There were duplicate 

plates for each treatment combination, and a minimum of three readings was performed 

for each plate. Means of plate counts from duplicate plates for each treatment 

combination in each replication were used in statistical analyses. 

Determination of percentage coccoid cells 

Cells were prepared according to Bovill and Mackey (1997) and counted using a 

10 x 10 mm grid inserted into the eyepiece of a Nikon Eclipse 600. Percentages of 

coccoid cells were based on observation of 1000 cells. 
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Scanning electron microscopy 

Culture suspensions were centrifuged and washed repeatedly (3X) with sterile 

phosphate buffer. The cell pellet was resuspended in 0.2 ml of a mixture containing 4% 

paraformaldehyde, 0.1 % glutaraldehyde (lN) and phosphate buffer (0.1 M, pH 7.0), and 

stored at 2 °C until examined. Cells were washed three times with 0.1 M phosphate 

buffer solution, and placed onto polylycine-coated cover slips (Mazia and others 1975). 

After fifteen minutes, the excess was removed and the remaining cells were washed three 

times with 2% phosphate buffered glutaraldehyde. Following this, the samples were 

dehydrated using a 50, 70, 95 and 100% ethanol treatment (20 minutes for each 

treatment). Samples were critical point dried and placed on aluminum stubs. Each 

sample was sputter coated for 3 minutes with gold/palladium coat in a Balzer 010 

evaporator. Samples were observed using a JEOL JXM 6400 scanning electron 

microscope. 
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Statistical Methods 

The MIXED procedure of SAS (SAS® Institute Inc 1999-2001) was used to 

analyze the data in each experiment. Means were separated using the Least Squares 

Means and PDIFF options. 

Effect of growth vessels 

The experimental design was a split-plot in a randomized complete block design 

with a 2x3 factorial arrangement of treatments (main unit treatment factor= strain; sub­

unit treatment factor= growth vessel; block= replications). 

Model: Yijk = µ + ai + bk + dn( + Pj + apij + eijk 

Where Yijk = kth response of AiBj 

µ = overall mean 

ai = strain main effect (Ai) 

bk = block k effect~- N(O,crb2) 

dik = random error due to the kth experimental unit in Strain (Ai) 

Pj = growth vessel main effect (Bj) 

apij = strain*flask interaction effect 

eijk = subplot random error, eijk - N(O, cr/) 
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Effect of incubation time 

The experimental design was a split-plot in a randomized complete block design 

with a 2x3 factorial arrangement of treatments (main unit treatment factor= incubation 

time; sub-unit treatment factor= strain; block= replications). 

Where Yijk = kth response of AiBj 

µ = overall mean 

ai = incubation time main effect (Ai) 

dik = random error due to the kth experimental unit in Time (Ai) 

Pj = strain main effect (Bj) 

apij = incubation time*strain interaction effect 

eijk = subplot random error, eijk - N(O, cr/) 
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Effect of modified atmosphere 

The experimental design was a split-plot in a randomized complete block design 

with a 2x3 factorial arrangement of treatments (main unit treatment factor= strain; sub­

unit treatment factor= atmosphere; block= replications). 

Model: Yijk = µ + ai + bk + dik + Pj + apij + eijk 

Where Yijk = kth response of AiBj 

µ = overall mean 

ai = strain main effect (Ai) 

dik = random error due to the kth experimental unit in Strain (Ai) 

pj = atmosphere main effect (Bj) 

apij = strain*atmosphere interaction effect 

eijk = subplot random error, eijk - N(O, o/) 
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Effect of subculturing 

The experimental design was a split-plot in a randomized complete block design 

with a 2x4 factorial arrangement of treatments (main unit treatment factor= subculture; 

sub-unit treatment factor= strain; block= replications). 

Where Yijk = kth response of AiBj 

µ = overall mean 

ai = subculture main effect (Ai) 

dik = random error due to the kth experimental unit in subculture (Ai) 

pj = strain main effect (Bj) 

apij = subculture*strain interaction effect 

eijk = subplot random error, eijk ~ N(O, cr/) 
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RES UL TS & DISCUSSION 

Effect of Growth Vessels 

There was a tendency for an interaction (p=0.099; Table 7) in that There was no 

difference in amount of cell growth between strains but there were differences among 

vessels (p<0.0001) and a tendency for an interaction (p=0.099; Table 7). With both 

strains, there was less growth in test tubes (TT) than in either tissue culture flasks (TCF) 

or Erlenmeyer flasks (EF) (p<0.03). There was no difference in amount of cell growth 

between TCF and EF with strain 29428 but with strain 33560, growth was less in EF than 

TCF (p<0.03). 

Improved growth with vented TCF may be related to the relatively large 

surface:volume (S:V) ratio available for growth (250 mm2/ml) especially when compared 

to a standard TT (150 mm length, 14 mm diameter). In the TT containing 10 ml of broth 

the surface-to-volume ratio is only 15.4 mm2/ml. Thus, growing the culture in a 

traditional test tube may not be optimum due to the lack of surface-to-volume ratio 

needed by the culture to maximize atmosphere exchanges. When using an Erlenmeyer 

flask (EF), growth may be better due to the larger surface:volume ratio, however capping 

or closing the flask in order to minimize contamination may still lead to inadequate gas 

exchange. The vented TCF has a screw-top cap that contains a semi-permeable 

membrane (<0.2µm pore size) providing efficient gas exchange while preventing 

contamination. 
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In preliminary studies, we found it desirable to slowly agitate the culture ( about 60-

90rpm), which enhances the gas exchange by increasing the mixing of the medium within 

the TCF. Need for agitation was alluded to in previous research where Campylobacter 

was grown in broth in culture jars and continuously agitated under microaerophilic 

conditions (Griffiths 1993). The authors assumed this allowed enough oxygen to be 

incorporated into the media. It may also provide a means to reduce the build up of toxic 

oxygen byproducts (i.e., hydrogen peroxide). Moran and Upton (1987) showed that the 

build-up of hydrogen peroxide and subsequent dissociation products enhanced the 

development of the coccoid form. They associated this conversion with the lack or loss 

of the superoxide dismutase enzyme commonly found in actively metabolizing cells. 

There was no difference in percentage of coccoid forms between strains and there 

was a tendency for differences among vessels (p=0.119) with no interaction (Table 7). 

For both strains, the percentage of coccoid cells increased significantly from 6.8 and 4.5 

in TCF to 3 LS and 24.8 in TT for strains 29428 and 33560, respectively (p<0.05). 

Percentage of coccoid cells found in EF was intermediate between TCF and TT. 

It is desirable to prevent the morphological shift from the rod to the coccoid form. 

Our research indicates that a higher numbers of CFU of Campylobacter are obtained with 

the majority of the morphology of cells in the rod shape, when using the vented TCF 

compared to test tubes (Table 7). Optimal conditions can be attained while maintaining 

the integrity of the culture, maximizing culture activity and consistency of growth by 

using a vented TCF. Rollins and others (1983) indicated a biphasic culture system 

containing brucella agar and brucella broth, supplemented with ferrous sulfate, sodium 

metabisulfite and sodium pyruvate, and incubated under a gas mixture of 5 %02, 10% 
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CO2 and 85% N2 was best for growth of the organism. They used TCP but did not 

compare to growth in other vessels and concluded that the key to successful growth was 

the media used. Additionally, it is also important to address the atmospheric gas 

exchange and adequate surface-to-volume ratios for improved growth. In our research, 

TCFs with vented closures when used with media specific for Campylobacter (i.e., 

Bolton Broth) led to drastically improved culture integrity and growth compared to other 

systems. When using other common types of growth vessels, (i.e., TT or EF) the 

percentage coccoid forms increased while numbers of colony forming units decreased, 

hence producing the perceived viable but nonculturable (VNBC) cells. 

Effect of Incubation Time 

There were differences in plate counts between strains (p=0.014) and incubation 

times (p<0.0001) but no interaction (Table 8). After 48 hours incubation, there was a 2.0 

and 3.2 log reduction compared to those at 24 hours for strains 29428 and 33560, 

respectively. Counts were further decreased by 3.4 and 5.8 log cycles after 72 hours for 

both strains, respectively. Even though there was no interaction (p=0.186), the difference 

between strains became greater at the two longer incubation times (72 hours). 

Strains tended to be different in percentages of coccoid forms (p=0.089) and there 

were differences for each among incubation times (p<0.0002) (Table 8). The 

morphology of both strains changed markedly with increasing incubation time. After 24 

hours of incubation, the percentage of coccoid cells was approximately 13 and 10% for 

strains 29428 and 33560, respectively. After 48 and 72 hours the coccoid form 

increased to 36 and 52%, respectively, for strain 29428, and 56 and 75%, respectively, 

for strain 33560. It is important to realize the extent of morphological changes of C. 

72 



jejuni over time. These data suggest that excessive incubation periods (greater than 24 

hours) do not support the maintenance of viable cells detectable by plate count. Based on 

our findings, the optimum incubation time when working with C. jejuni appears to be 24 

hours or less. 

Effect of Modified Atmosphere 

There was an interaction between strain and atmosphere for cell growth (p=0.022; 

Table 9). For both strains, growth was greatest for VM, intermediate for NVM, and least 

for VA. The interaction occurred in the NVM treatment, where growth of strain 29428 

was less than that of strain 33560 (p<0.05). There was no difference between strains in 

percentage of coccoid form, but a large difference among atmospheres (p<0.0001). 

There was no difference between NVM and VA but both treatments resulted in large 

increases (p<0.0001) in percentage of coccoid forms compared to VM. 

Both strains responded in a similar fashion to changes in atmosphere with respect 

to growth and the production of coccoid form. Counts were greatest when grown in 

vented TCF in the modified atmosphere environment (VM) compared to either non­

vented flasks (NVM) or vented flasks in an air environment (VA). In addition, the 

formation of the coccoid form was dramatically higher when the strains were not exposed 

to the modified atmosphere (treatments NVM and VA). C. jejuni 29428 transformed 

77% when grown in a non-vented TCF (NVM) and 94% when grown in a vented TCF 

exposed to air (VA). C. jejuni 33560 responded in a similar fashion with 89% 

transforming to the coccoid in non-vented TCF (NVM) and 84 percent in air (VA). 

From these data, it is apparent that Campylobacter requires modified atmosphere 

during growth. The ideal atmosphere according to the literature is 3-15% oxygen and 2-
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10% carbon dioxide. If, however, oxygen concentrations become too high (>15%) there 

is a detrimental effect on Campylobacter (Hodge and Krieg 1994). Our findings support 

these reports. 

Effect of Successive Subculturing 

There was an interaction between strain and subculture for growth (p<0.0001; 

Table 10). Growth of both strains remained the same for two successive subcultures. 

The amount of growth in 24 hours for strain 33560 was over 2 log cycles lower in the 

third successive subculture than in subcultures 1 and 2. Strain 29428 did not exhibit any 

decline in growth in the third subculture compared to the first two. There was an 

interaction between strain and subculture with respect to formation of the coccoid form 

(p=0.0026; Table 10). Strain 29428 appeared to be fairly stable in terms of percentages 

of coccoids (7% after two subcultures and 15% upon the third subculture). However, for 

strain 33560, the percentage of coccoid forms (45%) increased significantly after the 

second subculture (p<0.06) and even more after the third subculture (86% coccoid). It 

appears that there is a tendency for percentage coccoid to be related to growth; however, 

it is interesting to note that upon the second successive subculture, strain 33560 

maintained relatively high numbers (9.57 log CFU/ml) even though it transformed to 

45% of the coccoid form. This may suggest that transformation to the coccoid form does 

not necessarily result in loss of viability that is associated with the VBNC aspect of C. 

jejuni. 
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Morphological Observations 

The "classic" morphologies of helical rod and coccoid forms of C. jejuni are 

illustrated in Figure 2-A. We have, however, observed many other cell forms/shapes. 

Based on scanning electron micrographs it appears that the helical rod produces either at 

the very least one coccoid cell and then generates a "spent" cell/debris (Figure 2-B), or a 

multitude of cells that become massed together into what may result in only one colony­

forming unit (Figure 2-C and D). These other forms may explain some of the reported 

loss of viability previously attributed to the production of the viable but nonculturable 

coccoid form. Some of these forms are similar to those reported earlier (Ng and others 

1985; Thomas and others 1999) but include other forms that have not been documented 

previously. 

75 



CONCLUSION 

The growth and maintenance of C. jejuni is enhanced by the use of vented tissue 

culture flasks (TCF) in conjunction with an atmosphere of 10% CO2, 5% 0 2 and 85% N2 

compared to test tubes and Erlenmeyer flasks. Improved growth and decreased 

appearance of coccoid cells with vented TCF may be related to the surface-volume ratio 

of growth media. In addition, the TCF's screw-top cap contains a semi-permeable 

membrane (<0.2µm pore size) allowing for increased gas exchange while preventing 

contamination. It also helps ensure that the pathogen is not inadvertently spread to other 

samples or to the person conducting the assays. A modified atmosphere (10% CO2, 5% 

0 2 and 85% N2) was needed for adequate growth and maintenance of the helical-rod form 

when using TCFs. Incubation time of C. jejuni in vented TCF was also critical. 

Incubation for 24 hours produced higher counts and fewer coccoid cells than did longer 

times of incubation. When incubation was 48 or 72 hours, however, counts decreased 

and C. jejuni transformed to a large percentage of coccoid cells. There was a strain-to­

strain variation in response to subculturing. Strain 29428 did not show any loss in 

viability or great increase in percentage coccoids after three successive subcultures when 

grown in TCF under a modified atmosphere (10% CO2, 5% 0 2 and 85% N2). Strain 

33560 drastically declined in growth following the third subculture, and transformed to 

45 and 86% coccoid after the second and third subculturing respectively. The 

combination of vented TCF, modified atmosphere,::;; 24-hour incubation time and limited 
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subculturing is critical to the maintenance of viable cultures and improved enumeration 

methodology. Deviations from these procedures may give rise to an increase in the 

viable but nonculturable state of Campylobacter. A recommended enumeration protocol 

is in the Appendix. 
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APPENDIX 

Protocol for Growing Campylobacter jejuni at 37°C 

1. Remove stock culture and aseptically transfer into freshly prepared ( <2days) 
sterile Bolton Broth in vented tissue culture flask. 

2. Place flask into GasPak chamber and charge with modified atmosphere 
(CampyPak). (10% CO2, 5%02 and 85%N2) 

3. Quickly seal chamber and place on orbital benchtop shaker (80 rpm for small 
(50ml) flasks and 60 rpm for larger (250ml) flasks. Broth should gently move 
inside flask but not wet the semi-permeable membrane in the vented cap. 

4. Limit incubation time to no more than 24 hours. 

5. Remove culture and plate (spiral-platea) immediately onto freshly prepared 
CCDA platesb. 

6 .. Incubate plates inverted for at least 48 hours in a GasPak chamber charged with 
modified atmosphere (CampyPak). (10% CO2, 5%02 and 85%N2) 

7. Remove plates and aseptically select a well-isolated colony and transfer to freshly 
prepared ( <2day) sterile Bolton Broth in a vented tissue culture flask. This is the 
recommended starting culture for pre-planned experiments. 

8. Repeat steps 2-4 c. 

9. Always check for morphological integrity of culture. If large percentages of 
coccoid forms are present discard and re-isolate. 

aSpiral-plating techniques and associated low plating volumes (50 µ1) are 
advantageous for elimination of colony "spreading" and irregularity. 

bPlates should be allowed to dry (inverted) for 1-2 days. If excessive moisture is 
present allow longer drying. Check plates for contamination. 

cunless strain behavior is well known, do not subculture more than twice from the 
original culture. Make serial dilutions of the culture so that the inoculum level is 
approximately 104-105 CFU/ml. 
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Table 6. Growth vessels related surface:volume (S:V) ratios used for evaluating the 
growth of C. jejuni. 

Container 

TCF 

EF2 

TT3 

Volume of Broth 

(ml) 

10 

10 

10 

S:VRatio 

(mm2:ml) 

250 

139 

15 

1Falcon Tissue Culture Flask (50ml, 0.2µm vented cap). 
2Pyrex Erlenmeyer Flask (50ml, perforated aluminum foil cap). 
3Fisherbrand Test Tube (150mm length, 14mm diameter, loosely fitted screw cap). 
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Table 7. Growth and morphological changes of two strains of Campylobacter jejuni 
incubated in Bolton broth with different surface to volume ratios in a modified 
atmos here environment at 37°C for 24 hours. 

C. jejuni Growth S-V Ratio Growth Morpholog 

strain (ATCC) 

29428 

33560 

SEM 

p values: 
Strain (S) 

Vessel (GV) 
S*GV 

Vesse11 

TCF 

BF 

TT 

TCF 

BF 

TT 

(mm2/ml) (Log CFU/ml) 

250.0 9.43ab 

138.5 9.19bc 

15.4 8.25d 

250.0 9.68a 

138.5 9.13c 

15.4 8.12d 

0.0974 

(df=9.l 7) 

.825 
<.0001 

.099 

1TCF: Falcon.Tissue Culture flask (size: 50ml, .2µm vented cap). 
BF: Pyrex Erlenmeyer flask (size: 50ml) 
TT: Fisherbrand test tube (size: 150mm length, 14mm diameter) 

(% Coccoid) 

6.8e 

12.8ef 

31,5f 

4.5e 

16.3ef 

24.8f 

7.095 

(df=l2) 

.824 

.119 

.881 

2S-V Ratio: .Surface-Volume Ratio of the various vessels calculated based on 10 ml 
media volume 

3Data are the means from three replications. 
4Standard Error of the Mean (SEM) and associated degrees of freedom ( df) for 

S*GV. 
5Standard Error of the Mean (SEM) and associated degrees of freedom (df) for GV. 
abed Interaction (S*GV) means without a common letter in superscript groups are 

different (p < 0.03). 
ef Vessel (V) means within strain without a common letter in superscript group are 

different (p <0.05) 
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Table 8. Growth and morphology of two strains of Campylobacter jejuni grown in 
tissue culture flasks 1 and incubated for 24, 48 and 72 hours in modified 
atmosphere at 37°C. 

Growth2 Morphology2 C. jejuni strain Incubation 

(ATCC) Time (hrs) (Log CFU/ml) (% Coccoid) 

29428 24 8.91 a 13.0 

48 6.92b 35.7e 

72 5.48c 51.8e 

33560 24 8.69a 9.5 

48 5.51 b 55.6e 

72 2.85c 74.8e 

SEM3 0.432 6.14 

(df= 12) (df = 12) 

p values 
Strain (S) 0.014 0.089 
Time (T) <0.0001 <0.0002 

S*T 0.186 0.286 
1Falcon Tissue Culture flask (size: 50ml, .2µm vented cap) containing 10 ml 

Bolton broth. 
2 Data are the means from three replications. 
3Standard Error of the Mean (SEM) and associated degrees of freedom (df) for T. 
abc Time (T) means within strain without a common letter in superscript groups are 

different (p < 0.0001). 
de Time (T) means within strain without a common letter in superscript groups are 

different (p < 0.07). 
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Table 9. Growth and morphology of two strains of Campylobacter jejuni grown in 
tissue culture flasks 1 exposed to different atmospheric environments at 37°C for 
24 hours. 

C. jejuni strain 

(ATCC) 

29428 

33560 

SEM 

P values 
Strain (S) 

Atmosphere (A) 
S*A 

Atmosphere 

VM 

NVM 

VA 

VM 

NVM 

VA 

Growth 

(Log CFU/ml) 

8.50a 

4.68b 

2.82d 

9.27a 

7.58c 

3.30d 

0.4684 

(df= 22.3) 

.015 
<.0001 

.022 

Morphology 

(% Coccoid) 

8.2e 

76.i 

93.5[ 

18.9e 

88.6f 

83.9f 

4.235 

(df = 24) 

.422 
<.0001 

.801 
1Falcon Tissue Culture flask (size: 50ml, .2µm vented cap) containing 10 ml 
Bolton broth. 
2 Atmospheres were: 

VM = Vented tissue culture flask in modified atmosphere chamber containing a modified atmosphere 
(10% CO2, 85% N2 and 5% Oz). 
NVM = Non-vented tissue culture flask in modified atmosphere chamber. 
VA = Vented tissue culture flask exposed to air (no modified atmosphere). 

3 Data are the means from five replications. 
4Standard Error of the Mean (SEM) and associated degrees of freedom (df) for 

S*A. 
5Standard Error of the Mean (SEM) and associated degrees of freedom (df) for A. 
abed Interaction (S * A) means without a common letter in superscript groups are 

different (p <.05). 
ef Atmosphere (A) means within strain without a common letter in superscript 

groups are different (p = <.0001). 
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Table 10. Growth and morphology of two strains of Campylobacter jejuni grown in 
tissue culture fl.asks 1 and subcultured three times (24 hour intervals) from original 
culture in modified atmosphere at 37°C. 
C. jejuni strain SubCulture Growth2 Morphology2 

(ATCC) (Log CPU/ml) (% Coccoid) 

I (29428) 

II (33560) 

SEM3 

p values 
Strain (S) 

Subculture (SC) 
S*SC 

0 ( original) 

1 

2 

3 

0 ( original) 

1 

2 

3 

9.64a 

9.64a 

9.44a 

9.60a 

9.22a 

9.41a 

9.57a 

7.25b 

0.173 

(df= 14.6) 

<.0001 
<.0001 
<.0001 

1Falcon Tissue Culture flask (size: 50ml, .2µm vented cap). 
2 Data are the means from three replications. 

7.6a 

6.0d 

7.0d 

15.5d 

7.4d 

13.1 a 

45.le 

86.le 

9.92 

(df = 11.2) 

.0479 

.0004 

.0026 

3Standard Error of the Mean (SEM) and associated degrees of freedom ( df) for 
S*SC. 
ab Interaction (S*SC) means without a common letter in superscript groups are 

different (p < 0.0001). 
de Interaction (S*SC) means without a common letter in superscript groups are 

different (p < 0.06). 
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A B 

C D 

Figure 2. Scanning electron micro graphs of Campylobacter jejuni in the helical-rod and 
coccoid forms (A), the production of the coccoid form (B), and intermediate forms and 
cell clumping (C) and (D). 
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ABSTRACT 

Morphology and fatty acid profiles of Campylobacter jejuni (ATCC 29428 and 

33560) during growth under various gaseous atmosphere conditions in Bolton broth at 

37°C for 72 hours were studied. Enumeration was on campylobacter agar containing 

charcoal and deoxycholate (CCDA) using spiral-plating techniques. Percentages of 

coccoid cells were determined microscopically. Following extraction, fatty acids were 

methylated and relative amounts of each compound was measured by gas 

chromatography. Most variation in percentage coccoid cells and fatty acid profiles were 

due to strains however, treatments often contributed to variability within strains. For 

strain 29428, there were no differences in percentages of coccoid cells (12 to 21 %) for 

any gaseous treatments. Plate counts were similar among treatments (7 to 8 log CFU/ml) 

with exception of cells exposed to air ( 4 log CFU/ml). Predominant fatty acids in strain 

29428 were 16:0 (33.8 to 39.6%) and 18:19 (35.7 to 42.4%); intermediate fatty acids (1.9 

to 11.5%) were 14:0, 16:1 9, and 19:0'\ minor fatty acids found in cells from all 

treatments (0.4 to 3.0%) were 11 :0, 12:0, 15:0 and 18:0; and 17:0~were detected in some 

treatments (0 to 0.4%). Percentages of coccoid cells in strain 33560 were greater than for 

strain 29428, and varied among treatments (13 to 87%). Plate counts varied among 

treatments and were least (2 log CFU/ml) when cells were exposed to air. Predominant 

fatty acids in strain 33560 were 14:0 (19.8 to 31.4%), 16:0 (26.2 to 33.8%), and 19:0~ 

(18.3 to 21.9%); intermediate fatty acids (3.7 to 11.1 %) were 16:19, 17:0~, and 18:1 9; and 
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minor fatty acids (0.4 to 1.8%) were 11:0, 12:0, 15:0, and 18:0. Using correlation 

analysis and stepwise regression to evaluate the data, no apparent relationships were 

found to exist between percentages of coccoid cells and amounts of individual fatty acids 

either among or with strains. 
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INTRODUCTION 

Campylobacter jejuni is a principal bacteriological agent for food borne illness in 

the U.S and abroad (Ketley 1997; Altekruse and others 1999; Skirrow and Blaser 2000). 

Poultry products, milk, and water are the primary vehicles for transmission to humans 

(Tauxe and others 1988; Jacobs-Reitsma 2000;Yu and others 2001; Rosenquist and 

others 2002). Millions of dollars are spent each year on illnesses due to this pathogen 

(Buzby and others 1997), not to mention costs related to testing food and water products 

for its presence. Detection of Campylobacter is often hampered by a morphological 

transformation from the characteristic helical-rod form to a round-coccoid form (Moran 

and Upton 1986; Aquino and others 1996). The rate of transformation is dependant upon 

many factors, including age, species, growth temperature, growth atmosphere, incubation 

time, subculturing, osmotic stress, and gaseous interchange between the atmosphere and 

media as affected by surface to volume ratio or sparging. (Rollins and others 1983; Juven 

and Rosenthal 1985; Moran and Upton 1987; Hodge and Krieg 1994; Reezal and others 

1998; Chapter III). 

Campylobacter are classifieds as Gram-negative bacteria. Their cell wall 

structure consists of a capsule, outer membrane, periplasmic space, peptidoglycan layer, 

and finally the cytoplasmic membrane (Vandemark and Batzing 1987). The outer 

membrane is essentially a lipid bilayer attached to the peptiglycan layer. Structural 

components include lipopolysaccharides and lipoproteins. The latter attaches the bilayer 
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to the peptidoglycan layer. Alternating N-acetylglucosamine and N-acetylmuramic acid 

molecules make up a two dimensional backbone, tetrapeptide tails are attached to the N­

acetylmuramic acid molecules, and amino acids link these tails together (V anDemark and 

Batzing 1987). The lipid fraction (fatty acids) in this structure has been extracted and 

used to identify species and strains. In general, cellular fatty acid profiles can be unique 

to a given organism and may be used for the identification of Gram-negative bacteria 

(Weyant and others 1996). 

Blaser and others (1980) identified six fatty acids within three strains of 

Campylobacter (C.fetus susp.fetus; C.fetus supsp. intestinalis; C.fetus subspjejuni). 

They are: tetradecanoate (14:0); 3-hydroxytetradecanote (3-0H 14:0); cis-9-

hexadecenoate (16: 19); hexadecanoate (16:0); cis-9-octadecanoate/trans-9-octadecanoate 

(18:19); and cis-9,10-methyleneoctadecanoate (19:0'\ The 19:0'6· fatty acid was reported 

only in C.fetus subsp.jejuni. Similar fatty acid profiles were reportedby Leaper and 

Owen (1981) with the exception that 3-0H 14:0 was not detected. Alternatively, small 

amounts of octadecanoate (18:0) were found in C. coli and C. jejuni. The 19:08 was 

found in C. fetus subsp. venerealis, C. coli and C. jejuni. A very comprehensive study 

reported on the biochemical characteristics of C. jejuni included the fatty acid profile of 

89 strains (Hebert and others 1982). The predominant fatty acids were 16:0 (30-39%), 

18:19 (14-32%) followed by 19:08 (9-25%) and 14:0 (8-22%). Trace amounts (1-2%) 

were found for 15:0 (pentadecanoate), 17:08 (cis-9,10-methylenehexadecanoate) and 18:0 

fatty acids. An additional fatty acid (dodecanoate,12:0) was reported by Curtis (1983) in 

C.fetus (3.8%), C. sputorum (6.6%), and C. sputorum subsp. mucosa/is (8.2%). The 
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presence of this fatty acid in C. sputorum subsp. mucosa/is was confirmed by Moss and 

others (1984) and accounted for 10% of the total fatty acid composition of the cells. 

In addition to identifying Campylobacter strains, fatty acid profiles may be useful 

in understanding membrane structure with respect to the morphological shift from the rod 

to the coccoid form. An organism may adapt to changes in temperature by altering its 

cell envelope with respect to fatty acid structure and length. Inverse relationships have 

been reported between temperature and level of unsaturated fatty acids and cell size 

(Linder and Oliver 1989; Eaton and others 1981). Linder and Oliver (1989) evaluated the 

fatty acid composition of Vibrio vulnificus when cells were stored for 26 days at 5°C. 

Vibrio exhibits similar morphological changes to that of Campylobacter and the 

production of the coccoid form. Fatty acid profiles from cells incubated at 5°C for 26 

days showed little change until the cells became nonculturable (24-days). At this time 

there was a concomitant decrease in 16:0 and 16:1 and an increase in 19:0, 20:0 and 22:1 

fatty acids. In addition, saturated fatty acids increased approximately 20% while 

unsaturated fatty acids declined 28%. This study indicated that in Vibrio the 

morphological change to the coccoid form was correlated with changes in membrane 

fatty acid composition. 

Hazeleger and others (1995) determined the fatty acid composition of various 

forms of C. jejuni when grown at different temperatures. No differences in fatty acid 

profiles were found between spiral-rod cells and coccoid cells formed at the lowest 

temperatures of 4 and 12°C. On the other hand, in the coccoid cell suspension at 25°C, 

there was a significant increase in 16:0 and 18:0 fatty acids with a concomitant decrease 

in 14:0, 16:1 and 19:0~ compared to the cell suspension containing mostly rods. In a 
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similar study, HolJer and others (1998) evaluated C. coli at 4, 10 and 20°C. Little change 

was detected in cells incubated at either 4 or 10°C. In contrast to Hazeleger and others 

(1995), however, cells incubated at 20°C for 72 hours (predominantly coccoid) showed 

an increase in 19:0"" from 3.8% to 20.6% and a concurrent decrease in 18:1 9 fatty acid. 

Little change was noted for the two lower temperatures. It is interesting that the same 

type of morphological changes occur in these different organisms (Campylobacter and 

Vibrio) but temperature does not elicit the same response in membrane fatty acids. 

In order to more clearly define the relationship between morphological changes 

and cell membrane structure, we evaluated the morphology and fatty acid profiles of two 

strains of C. jejuni grown under various gaseous conditions at 37°C for 72 hours. 
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MATERIALS & METHODS 

Source, Maintenance and Preparation of Cultures 

Two strains of C. jejuni (ATCC 29428 and 33560) were purchased from the 

American Type Culture Collection (ATCC; Manassas, Va, 20108). The strains were 

grown according to the ATCC directions using Bolton Broth (Oxoid LTD; Baskingstoke, 

Hamshire, England) at 3 7°C. The cultures were then vacuum dried and stored at -20°C 

until needed (stock cultures). 

Prior to each experimental replication, stock cultures were rehydrated in 10 ml of 

freshly prepared Bolton broth that was aseptically transferred into sterile 50 ml tissue 

culture flasks (TCF) (Falcon® Brand; Becton Dickinson Labware, Franklin Lakes, NJ) 

equipped with a vented cap (0.2 µm pore size). The inoculated broth was incubated in a 

Gas-Pak chamber (BBL), which was charged with a modified atmosphere of CO2 (10%), 

02 (5%) and N2 (85%) generated from a Campy-Pak (BBL® CampyPak Plus; Becton 

Dickinson Microbiology Systems, Cockeysville, MD) microaerophilic gas generating 

system. The container was placed on an orbital bench top shaker (Lab-Line®, Model 

4626) set at 80 rpm and incubated for 18 to 24 hours at 37°C. Prior to use, the cultures 

were Gram stained and examined microscopically to determine morphological integrity. 

In all cases, cells were greater than 92% rods. 
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Experimental Treatments and Procedures 

To produce cell suspensions of C. jejuni containing various percentages of the 

coccoid morphology each strain was grown under seven different conditions (Table 11) at 

37°C for 72 hours. To prepare inocula, each strain was spiral plated onto freshly 

prepared campylobacter agar with charcoal and deoxycholate (CCDA) (Oxoid LTD, 

Baskingstoke, Hampshire, England) and incubated for 48 hours at 3 7°C under modified 

atmosphere conditions CO2 (10%), 0 2 (5%) and N2 (85%) generated from a Campy Pak 

(BBL® Campypak Plus; Becton Dickinson Microbiology Systems, Cockeysville, MD) 

inside a Gas-Pak chamber. Well-isolated colonies of each strain were transferred to 

freshly prepared Bolton broth in separate tissue culture flasks and incubated at 37°C for 

18-24 hours under modified atmosphere conditions (Campy Pak) on an orbital bench top 

shaker set at 80 rpm. Each resulting culture was used to inoculate 200 ml volumes of 

fresh sterile Bolton broth for each of seven treatments. The vented tissue culture flask 

(TCF) and the partially vented Erlenmeyer flask (EF-P) were placed in individual Gas­

Pakjars, charged with the modified atmosphere (Campy-Pak), and incubated in a 37°C 

incubator with agitation (80rpm). The other five Erlenmeyer flasks were incubated either 

with no gas (EF-S-N), or with one of four gas treatments using a continuous bubbler 

system similar to that described in the FDA-Bacteriological Analytical Manual (Hunt and 

others 2001). The gases were Air (A), Blood Gas (BG), and two A plus BG 

combinations, 50 parts A to 10 parts B (EF-A/BG) and 50 parts BG to 10 parts A (EF­

BG/ A). Flasks were incubated in a 3 7°C water bath/shaker (Precision Reciprocal 

Shaking Bath; Model 66802; Chicago, Ill) at 60 rpm. In order to collect enough cells for 

fatty acid analyses from all treatments, it was necessary to incubate for 72 hours. Flask 
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contents were analyzed for total plate counts, morphology and fatty acids. The 

experiment was replicated three times. 

Analytical Procedures 

Enumeration 

In all cases, C. jejuni was enumerated using a spiral plater ( dwScientific; Don 

Whitley Scientific, Shipley, England). Appropriate dilutions were made using 0.1 % 

peptone dilution blanks followed by spiral plating onto prepoured plates of a selective 

blood free agar (CCDA) containing no additional selective agents. Samples were plated 

in 50 µ1 aliquots in a logarithmic mode setting. Plates were inverted and incubated for 48 

hours at 37°C in a Gas-Pak (BBL) chamber charged with a mixture of CO2 (10%), 0 2 

(5%) and N2 (85%) (Campy-Pak). Counts were made using an automatic plate reader 

(Protocol; Synoptics Ltd., Cambridge, UK) and related software. There were duplicate 

plates for each treatment combination, and a minimum of three readings was performed 

for each plate. Means of plate counts from duplicate plates for each treatment 

combination in each replication were converted to log10 CFU/ml and used in statistical 

analyses. 

Determination of percentage coccoid cells 

Cells were prepared according to Bovill and Mackey (1997) and counted using a 

10 x 10 mm grid inserted into the eyepiece of a Nikon Eclipse 600. Percentages of 

coccoid cells for each sample were based on observation of 1000 cells. 
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Determination of percentage fatty acids 

Cellular fatty acid profiles were determined by lipid extraction, saponification and 

methylation (Weyant and others 1996). The fatty acid methyl esters (FAME) were 

analyzed on a Hewlett-Packard 5890 Gas Chromatograph equipped with an autosampler, 

a flame ionization detector and a capillary SPB™-1 column (30 m x 0.25 µm tube 

thickness; Supelco; Bellefonte, PA). The run conditions used were 150°C for 2 min, 

followed by increments of 4°C/min until the injector/detector temperature reached 250°C. 

The split ratio was 1 :50 with the carrier gas being helium (0.7 ml/min) and the injection 

volume was 2µ1. Peak identification was accomplished by comparison of retention times 

with a reference standard of specific bacterial FAME (Supelco, #47080-U, Bellefonte, 

PA). The percentage of each acid was calculated from the ratio of the area of its peak to 

the total area of all peaks. 

Statistical Methods 

General Linear Models (GLM), Pearson Correlation Coefficients (CORR), and 

Regression (REG) procedures of SAS (SAS® Institute Inc 1999-2001) were used to 

analyze the data. Cocco id counts, as a percentage of total cell counts, plant counts, and 

individual fatty acid peak areas, as a percentage of total peak areas, were analyzed with a 

model including strain (n = 2), treatment (n = 7), and the strain by treatment interaction. 

As there were large differences between strains, and several interactions, the data also 

were analyzed within strain with only treatment in the model. Treatment means within 

strain were separated using the Least Significant Difference (LSD) with alpha= 0.065. 

Correlation and stepwise regression procedures were used to investigate the relationships 
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between percentages of the coccoid form and fatty acids of individual replicates, both 

among and within strains. 
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RES UL TS & DISCUSSION 

The overall model accounted for a large proportion of the variability (p <0.0001, 

R2 > 0.73) for all dependent variables except the 11:0 (p=0.0928) and 15:0 (p=0.1326) 

fatty acids (Table 12). There were also strain differences (p <0.04) for all variables 

except 11 :0 and 15:0 fatty acids. There were treatment differences (p <0.05) for all 

variables except the 12:0 and 15:0 fatty acids, but a tendency (p=0.0698) for treatment 

differences with the 15 :0 fatty acid. 

There were strain*treatment interactions (p ~ 0.05) only for% coccoid, and the 

16:0, 17:0'", 18:1, and 18:09 fatty acids (Table 12). In all cases, the effect of strain 

accounted for most of the variation in fatty acid profiles (8 out of 10), plate counts, and % 

coccoid. Therefore, it would be misleading to present main effect means even if there are 

no interactions. 

Morphology 

For strain 29428, there were no differences (p=0.7037) in the percentage coccoid 

(10.0-20.6%) cells formed after 72 hours of incubation at 37°C (Table 13). There were 

however, treatment differences (p=0.0206) in coccoid formation for strain 33560 (Table 

14). When the cultures were grown in a partially vented Erlenmeyer flask (EF-P) with a 

modified (M) atmosphere of 10%C02; 5%02; 85%N2 the coccoid form accounted for 

only 13% of the total cells. When cells were grown in a tissue culture flask with similar 

modified (M) atmosphere, the coccoid form accounted for 86.6% of the cells (Table 14) 
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as illustrated in Figure 3. The other treatments were not very different ranging from 

3 7 .1 % to 4 7. 7% coccoid forms. The large differences may be attributed to the stage of 

growth the organism was in at the time of harvest. Based on earlier findings (Chapter 

III), the growth rate in the TCF is much faster (max population in 24 hours or less) than 

in all other treatments. Therefore, after 72 hours incubation the culture (TCF) probably 

entered the late stationary or early death phase resulting in more coccoid cells. We 

believe that the production of coccoid cells may be confounded with growth rate. 

Preliminary studies dictated the incubation time of 72 hours for all treatments in order to 

produce an adequate cell mass for all assays. 

Plate Counts 

When strain 29428 was grown for 72 hours at 37°C there was little difference in 

culturable numbers of cells based on CFU/ml due to treatment, with one exception (Table 

13). Cells grown in an Erlenmeyer flask with a continuous supply of air (EF-B-A) had 

lower (p<0.065) numbers of culturable cells ( 4.22 log CFU/ml) on agar plates than did 

any of the other treatments (range of7.30-8.33 log CFU/ml). Strain 33560 responded to 

EF-B-A treatment similarly with only 2.28 log CFU/ml detected on agar plates (Table 

14). The other treatments ranged from 5.93 to 8.40 log CFU/ml. For both strains (29428 

and 33560) the highest numbers (8.33 and 8.40 log CFU/ml, respectively) on agar plates 

occurred in the partially vented Erlenmeyer flasks in the modified gas (EF-P) treatment. 

Again, we do not know the extent to which the culture had progressed in the growth 

cycle. In some instances (i.e., EF-P) the culture may not have entered the stationary 

phase whereas in other cases (i.e., TCF) the organism may have been beyond the 

stationary phase of growth and entered into the death phase. 
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It is interesting to note that, for strain 33560 in TCF, even though 86% of cells 

were in the coccoid form, the plate counts remained high (7 .26 log CFU/ml). Several 

reports correlate the presence of the coccoid form with a decline in colony forming units 

thus indicating the formation of viable nonculturable (VNC) cells (Ng and others 1985; 

Moran and Upton 1986; Rollins and Colwell 1986; Park +002). This does not appear to 

be the case in the present study. 

Fatty Acid Profiles 

This experiment was designed to produce an array of coccoid forms to determine 

ifthere was a relationship between fatty acid profiles and change in morphology 

exhibited by Campylobacter. This was accomplished such that the strains ranged in 

percent coccoid cells from 10.0% to 86.8%. Again, the fatty acid profiles were unique to 

strain and will be discussed accordingly. 

The 16:0 and 18:19 fatty acids were predominant in strain 29428 (Table 13). The 

concentration of these fatty acids ranged from 33.78% to 39.62% for the 16:0 and 

35.71% to 42.36% for 18:19• The 14:0, 16:1, and 19:0~ fatty acids were intermediate in 

concentration (1.91 to 11.47%). The smallest concentrations were found for 11 :0, 12:0, 

15:0 and 18:0 fatty acids (0.41 to 2.12%), while trace amounts (0.0 to .38%) were found 

for the 17:0~ fatty acid in some treatments. There were treatment (p<.01) effects among 

5 of 10 of the fatty acids (14:0,16:1 9,16:0,18:19 and 18:0) and a tendency (p=.0897) for 

difference in the 19 :O~ fatty acid as a consequence of treatment. Precision of analysis 

within treatments was high as indicated by the standard error of the means (SEM, Table 

13). 
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Strain 33560 had three (14:0, 16:0 and 19:06) predominant fatty acids with 

concentrations ranging from 19.83-31.44%, 26.15-33.84%, and 18.32-21.89%, 

respectively. This was followed by the 16:19, 17:0\ and 18:19 fatty acids with 

concentrations ranging from 3.71 to 11.07%. The concentrations of the remaining fatty 

acids (11:0, 12:0. 15:0, and 18:0) ranged from 0.40 to 1.82%. There were significant 

(p<0.062) treatment effects among 6 of 10 of the fatty acids (11 :0,14:0,16: 19,17:06 ,18:1 9 

and 18:0) and a tendency (p<0.085) for difference in the 15:0 and 16:0 fatty acids. 

Again, precision of analysis within treatments was high as indicated by the standard error 

of the means (SEM, Table 14). 

To some extent, our findings agree with fatty acid profiles reported previously for 

Cjejuni (Blaser and others 1980, Leaper and Owen 1981; Hebert and others 1982; Curtis 

1983; Moss and others 1984; Weyant and others 1996). In general, these similarities are 

the presence ofthe19:06 fatty acid and predominance of the 16:0 fatty acid. On the other 

hand, to our knowledge, occurrence of the 11 :0 and 12:0 fatty acids has not been reported 

for C. jejuni. The 11 :0 and 12:0 fatty acids occurred in both strains with 33560 having 

slightly greater (p < 0.0001) concentrations of the latter fatty acid (Table 12). The 17:06 

has been reported to occur at the 1 % level ( or not at all) in C. jejuni (Hebert and others 

1982). In this study, the 17:06 fatty acid was detected in greater (p <0.0001, Table 12) 

concentrations (3.84-7.60%) in strain 33560 than in 29428 (0.0-.38%). This fatty acid 

was not detected in 4 of the 7 treatments applied to strain 29428, whereas in strain 33560 

this fatty acid was present in all cases. This difference between treatment effects within 

strain is reflected in the strain by treatment interaction for the 17:06 fatty acid (p <0.0001, 

Table 12). 
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Hazelegar and others (1995) identified the two saturated straight-chain fatty acids 

(14:0 and 16:0) and two monounsaturated fatty acids (16:1 9 and 18:19), in addition to the 

cyclopropane acid (19:0'1), as the predominant fatty acids occurring in the rod form of C. 

jejuni. We tested the same strain (ATCC 33560) that was used by Hazelegar and others 

(1995). The treatment that produced the most coccoid cells (86.8%) had greater or equal 

concentrations of the above mentioned fatty acids compared to our treatment that 

produced the least number of coccoid cells (13.0%). · 

Our comparison of percentage coccoid form with individual or combinations of 

fatty acids did not indicate any relationships among strains ( data not shown) or within 

strains (Table 15). Including squared, cubic, and quadratic terms in regression equations 

did not improve the fit, nor did the use of combinations of fatty acids. We cannot, based 

on our evaluation of two strains in this study, support a hypothesis that there are any 

significant relationships between fatty acid profiles and the rod or coccoid form. In 

addition, because the treatments used in this study contributed to the variation seen within 

strain, we conclude that fatty acid profiles lack accuracy as a tool for either identification 

purposes or explaining the biochemistry relating to the morphological changes exhibited 

by Campylobacter jejuni. The methodology used to grow Campylobacter should be 

standardized in order to investigate these relationships further. 
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CONCLUSION 

There were considerable differences in coccoid formation and fatty acid profiles 

due to strain variation and to a lesser extent gas/ growth treatment. C. jejuni ATCC 29428 

appears to be much more stable with respect to morphological integrity than C. jejuni 

33560. No correlations could be made between percentage of coccoid morphology and 

fatty acid percentages. 
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Table 11. Containers and gas treatments used for the growth of C. jejuni. 

Treatment Container Atmosphere 

1 Tissue Culture Flask CampyPak5 

2 Erlenmeyer Flask-Loose Cap2 Campy Pak 

3 Erlenmeyer Flask-Sealed3 

4 Erlenmeyer Flask 4 Blood Gas6 

5 Erlenmeyer Flask4 Air 

6 Erlenmeyer Flask 4 Air & Blood Gas 

7 Erlenmeyer Flask4 Air & Blood Gas 

1TCF=Tissue Culture Flask (Coming 500ml, 0.2µm vented cap). 
2Pyrex Erlenmeyer Flask (500 ml; loose cap). 
3Pyrex Erlenmeyer Flask (500 ml; sealed cap). 
4Pyrex Erlenmeyer Flask (500 ml; sparged with air and/or blood gas). 
5Campy Paks (5%02; 10%C02 and 85%N2). 

6Blood Gas (5%02; 10%C02 and 85%N2). 
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Gas Flow (ml/min) 

Blood 

Air Gas 

5.2 

5.2 

4.1 1.0 

1.0 4.1 



Table 12. Individual General Linear Models Procedure (GLM) statistics. 

Overall 
Source Variables (Pr>F) 

Model 
Dependent 

(Pr>F) R2 Strain Trt Str*Trt 
Variable 

Coccoid (%) <.0001 .74 <.0001 .0162 .0160 

Log CFU/ml <.0001 .73 .0362 <.0001 .7462 

11:0 .0928 .46 .5042 .0498 .2543 

12:0 <.0001 .73 <.0001 .3555 .3092 

14:0 <.0001 .93 <.0001 .0019 .3464 

15:0 .1326 .43 .3723 .0698 .3412 

16:19 <.0001 .83 <.0001 <.0001 .2215 

16:0 <.0001 .84 <.0001 .0012 .0328 

17:0"" <.0001 .98 <.0001 <.0001 <.0001 

18:1 <.0001 .99 <.0001 .0014 .0277 

18:09 <.0001 .79 .0003 <.0001 .0500 

19:0"" <.0001 .95 <.0001 .2293 .9040 
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Table 13. Percentage coccoid cells, final plate counts, and cellular fatty acid composition of Campylobacter jejuni (ATCC 
29428) grown under different atmospheric conditions for 72 hours. 

Plate 
Percentage(%) of Total Fatty Acids1 

Treatment Coccoid1 Counts1 

(Log 
Container2 Gas2 (%) CFU/ml) 11:0 12:0 14:0 15:0 16:19 16:0 17:0,:\ 18:19 18:0 19:0,:\ 

TCF M 17.9a 7.39a 0.94a 0.52a 8.90b 2.12a 3.91 be 36.21b 0.38a 39.16b 1.4gb 6.37a 

EF-P M 20.6a 8.33a 1.34a 0.67a 5.45c 1.38a 1.91d 39.62a o.ooa 39.48b 3.02a 7.12a 

EF-S N 12.2a 7.63a 0.67a 0.44a 11.47a 0.91a 3.50c 39.34a o.ooa 35.71c 1.23bc 6.74a 

EF-B A 11.7a 4.22b 1.14a 0.70a g_g4ab 1.60a 5.10a 33.78c o.ooa 40.03ab 0.62c 7.09a 
...... ...... ...... EF-B BG 10.oa 7.30a 0.78a 0.43a 8.79b 0.79a 3.or 38.76a o.ooa 40.14ab 1.65b 5.58a 

EF-B A/BG 15.4a 7.75a 0.65a 0.41a 8.96b 1.41 a 4.94ab 33.98c 0.20a 41.62ab 1.23bc 6.60a 

EF-B BG/A 10.8a 7.39a 0.72a 0.46a 10.26ab 0.96a 4.07abc 35.20bc 0.20a 42.36a 1.20bc 4.57a 

SEM3 5.03 0.74 0.27 0.11 0.87 0.44 0.41 0.71 0.17 1.00 0.22 0.61 

p values: 
.7037 .0325 .4911 .3854 .0086 .3895 .0011 <.0001 .5696 .0095 <.0001 .0897 TRT (T) 

abcMeans in the same column without a common letter in superscript groups are different (p<.065). 
1Data are the means from three replications. 
2 For container and gas treatment descriptions see table 1. 
3Standard Error of the Mean (SEM); associated degrees of freedom ( df=6) for treatment (T). 
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Table 14. Percentage coccoid cells, final plate counts, and cellular fatty acid composition of Campylobacter jejuni (ATCC 33560) 
grown under different atmospheric conditions for 72 hours. 

Plate 
Percentage of Total Fatty Acids1 

Treatment Coccoid1 Counts1 

(%) 
(Log 

Container2 Gas2 CFU/ml) 11:0 12:0 14:0 15:0 16:19 16:0 

TCF M 86.Ba 7.26ab 0.56c 0.84a 23.57bc 1.50a 5.41ab 31.66a 

EF-P M 13.0c 8.40a 1.57ab 1.63a 19.83c 0.59a 4.09c 33.84a 

EF-S N 37.1bc 7.10ab 0.72c 1.40a 27.40ab 0.40a 3.71c 30.65a 

EF-B A 40.3bc 2.28c 0.72c 1.33a 24.44bc 1.78a 5.99a 29.50a 

EF-B BG 45.?b 5.93b 1.69a 1.75a 26.?0ab 1.82a 4.77bc 27.23a 

EF-B A/BG 47.?b 7.29ab 0.81c 1.28a 22.86bc 0.99a 6.49a 30.58a 

EF-B BG/A 38.6bc 5.99b 0.83bc 1.71a 31.44a 0.72a 6.13a 26.15a 

SEM3 11.4 0.66 0.26 0.29 2.26 · 0.37 0.39 1.69 

p values: 
.0206 .0004 .0463 .3547 .0576 .0732 .0009 .0845 TRT(T) 

Means in the same column without a common letter in superscript groups are different (p<.065). 
1Data are the means from three replications. 
2 For container and gas treatment descriptions see table 1. 
3Standard Error of the Mean (SEM); associated degrees of freedom (d:f-=6) for treatment (T). 
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9.20ab 0.86bc 

11.0?a 1.59a 

6.04c o.aobc 
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20.58a 
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18.32a 
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Table 15. Pearson Correlation Coefficients (r) and probability levels (prob>jrl) 
between coccoid percentages and individual fatty acids for C. jejuni 29428 and 
33560. 

C.jejuni 
29428 33560 

Variables r (Prob>jrl) r (Prob>lrl) 

11:0 .09 (.69) -.14 (.54) 

12:0 -.14 (.53) -.28 (.21) 

14:0 -.41 (.07) .03 (.90) 

15:0 .10 (.66) .24 (.29) 

16:19 -.03 (.88) .27 (.24) 

16:0 .08 (.73) -.10 (.68) 

17:08 .56 (.01) .24 (.30) 

18:1 .06 (.78) -.08 (.74) 

18:09 .29 (.20) -.28 (.22) 

19:08 .08 (.74) -.03 (.90) 
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Figure 3. Campylobacter j ejuni 33560 in the helical-rod and coccoid 
forms (A), the production of the coccoid form (B). 
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