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Chapter 1 

Introduction 
• • • • • • • • • • • • • • • • • 

In 1962, C. A. Petri developed a modeling tool for the analysis of dis­

crete event dynamic systems (DEDS), which has since then been called 

Petri nets. The utility of Petri nets for describing and studying concur­

rent, asynchronous, distributed, and stochastic systems has been widely 

recognized [46, 41]. Petri nets provide a strong mathematical basis for 

studying these systems, along with a simple yet powerful graphical rep­

resentation. As Murata [41] says, 

" ... Petri nets can be used by both practitioners and theoreti­
cians. They provide a powerful medium of communication 
between them ... " 

Petri nets provide an elegant way ofrepresenting a DEDS in terms of 

its events, and the conditions affecting and affected by those events. Petri 

nets have been successfully used in the analysis of both the structural and 

behavioral properties of a variety of DEDS. For example, Petri nets have 

been used to analyze software systems [55], distributed database systems 

[54], communication protocols [12], manufacturing systems [11], compiler 

& operating systems [1], formal languages [35], and logic programs [42]. 

Underlying many of the successful applications is the ability of Petri nets 

to determine if there exists a sequence of events that would transform 

the system state from the current one to a desired one, and it is the well 
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knownreachability problem. Reachability, though decidable, is still a NP­

complete problem [18]. Algorithms with polynomial time complexity to 

determine reachability are not available for a general Petri net model. 

In fact, even sufficient conditions for reachability short of enumerating 

the state space are yet to be determined for a general Petri net. Some 

special net structures have been identified, which when present facilitate 

the identification of sufficient conditions for reachability. Acyclic Petri 

nets are a class of nets for which necessary and sufficient conditions for 

reachability exist. It has been shown that the existence of a non-negative 

integer solution to the state equations governing the net dynamics is a 

necessary and sufficient condition for reachability in acyclic nets [25]. 

The objective of this research is to explore the development of reach­

ability analysis techniques for a general Petri net. Towards this end, a 

formal transformation procedure is developed, to expand a Petri net into 

an acyclic net, and hence, enable the use of known sufficient conditions 

for reachability that are available for acyclic Petri nets. Though this re­

sult is appealing, it has a restriction in that it requires a priori informa­

tion about the number of stages of expansion. Hence, this research also 

explores means to determine the required number stages of expansions 

for a given reachability problem. These issues would become apparent in 

later discussions. In light of these new results, this research also explores 

some problems related to reachability such as sub-marking reachability 

and deadlock avoidance. Some potential applications of the new results 

are also presented. The order due date determination problem is studied 

by developing Petri net modeling constructs and formulating the order 

due date determination problem as a reachability problem. 

Next, Petri nets are introduced with the objective of establishing the 
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notation used in later chapters. Some of the basic properties of a Petri 

net needed in later discussions are presented as well. 

1.1 Basic Definitions and Notations 

A Petri net is a directed bipartite graph, with two types of nodes called 

places and transitions, and directed arcs connecting the places to tran­

sitions and vice versa. An arc is associated with a non-negative integer 

called its multiplicity. In Petri net models of DEDS, a place represents 

a condition, and a transition represents an event. Events represented by 

transitions can be immediate (instantaneous) or timed ( see Section K.), 

the execution of which is controlled by tokens. Tokens reside in places, 

and their movement from one place to another captures the dynamics 

of the system. The movement of tokens is regulated by transitions and 

the directed arcs connecting the places and transitions. The marking of 

a Petri net is the number of tokens in each of its places1. Graphically, 

places are represented by circles, transitions by bars and tokens by dots. 

Definition 1.1.1 A Petri net is a 5-tuple, PN 
where 

1. P = {p1,P2, ... ,Pm} is a set of m places 

2. T = {ti, t2, ... , tn} is a set of n transitions 

(P, T, F, W, Mo), 

3. F ~ (P x T) U (T x P) is a set of directed arcs connecting places 
and transitions 

4. W : F - {1, 2, 3, ... } is a weight function2 that assigns a positive 
integer to all the directed arcs in F, and 

5. Mo : P - {O, 1, 2, ... } is the initial marking. 

1The terms "marking'' and "state" could be used interchangably 
2The default arc weight is 1, and is often not indicated in graphical representations 
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The weights of arcs from place Pi to transition t1 and from transition 

t1 to place Pi is represented by w(pi, t1) and w(tj,Pi), respectively. The 

pre and post-sets of transition t E T are •t = {plw(p, t) > O} and t• = 

{plw(t,p) > O}, respectively. Similarly, the pre and post-sets of place 

p E Pare •p = {tlw(t,p) > O} and p• = {tlw(p, t) > O}, respectively. 

The state of a Petri net is the marking M : P - {O, 1, 2, ... }, a non­

negative, integer-valued vector that gives the number of tokens in each 

place. The i th component of the marking vector, denoted by M(pi), 

represents the number of tokens in place Pi· The dynamic behavior of 

DEDS is captured in a Petri net model by changing the marking vector 

in accordance with the transition enabling and firing rules. 

Example 1.1.1 Consider the Petri net with four places and three tran­
sitions shown in Figure 1.1. The pre-set of place Pl is •p1 = { t3}, 
while its post-set is Pi = { t1}. Similarly, the pre-set of transition t1 is 
•t1 = {Pl,P3}, while its post-set is ti = {p2}. Note that the arc weights 
of one are not shown. 

Figure 1.1: A Petri net example 
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Definition 1.1.2 A transition t is said to be enabled in marking M, if 
all the places in its pre-set have at least as many tokens as the weights of 
the arcs connecting those places to the transition, i.e., ifVp E •t, M(p) ~ 
w(p, t), then the transition t is said to be enabled. 

In a given marking M, the set of all enabled transitions_ are repre­

sented by I'(M). An enabled transition ti E r(M), may or may not 

fire. 

Definition 1.1.3 Firing an enabled transition changes the token distri­
bution by removing as many tokens as the arc weights from all its pre-set 
places and adding as many tokens as the arc weights to all its p,ost-set 
places, i.e., by firing t E r(M), the change in token distribution from 
M to M is given by, 

{ 
M(p) - w(p, t), 

M(p) = M(p) + w(t,p), 
M(p), 

V p E •t 
V p Et• 
V p (/. et U t•} 

(1.1) 

Example 1.1.2 Consider the chemical reaction: 2H + 0 ---+ H20. 
This reaction could be modeled by a Petri net whose places represent the 
availability of hydrogen, oxygen, and water. The transition represents the 
chemical reaction. A weight of two for the arc connecting the place repre­
senting hydrogen and transition representing the chemical reaction would 
impose the condition that two atoms of hydrogen are required for the re­
action. Figure 1.2(a) shows the Petri net before executing the transition, 
while Figure 1.2(b} shows the Petri net after executing the transition {41}. 

These changes in the state of the system can be represented in an 

algebraic form using the state equation given by, 

(1.2) 
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Figure 1.2: A Petri net model of a chemical reaction 

where, A= [aij] is them x n incidence matrix, and Uk E IJtn is the firing 

count vector or the control vector. The firing count vector by definition is 

a non-negative integer vector, with the /h element indicating the num­

ber of times transition ti is to be fired. The incidence matrix describes 

the place to transition marking relationship in terms of the arc weights 

connecting them, and the (i,j) th entry is given by aij = a0 - at, where 

at = w(Pi, ti) and a0 = w(tj,Pi), The control vector uk is a vector of 

(n -1) zeroes and an entry of one in the /h position indicating that the 

transition ti fires at the kth firing. Note that in the incidence matrix, 

self-loops3 would not be reflected. 

Definition 1.1.4 A Petri net is said to be pure if it does not have any 
self-loops, i.e., in a pure Petri net, 'vp E P, {•p n p•} = 0. 

Whenever the state equation is discussed in this dissertation, it is 

assumed that the net model is pure. Note that a net model can be made 

pure by adding a dummy transition and a dummy place. 

3a place in both the pre-set and post-set of a transition constitutes a self-loop 
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1. 2 Properties of Petri nets 

The analysis of a system modeled by a Petri net is facilitated by two 

types of properties - those which depend on the initial marking called 

the behavioral properties, and those which are independent of the ini­

tial marking called the structural properties. A more detailed discussion 

on these properties can be found in an excellent survey paper by Mu­

rata [41]. 

1.2.1 Behavioral Properties 

Behavioral properties depend on the initial marking of the net, imply­

ing that for the same Petri net different initial markings could lead to 

different behavioral properties. 

A. Reachability Reachability is one of the basic properties for study­

ing the dynamic behavior of any DEDS. A marking Md is said to be 

reachable from a given initial marking Mo, if there exists a sequence 

of transition firings that transforms Mo to Md. A firing sequence is 

denoted by, 

(1.3) 

and the marking Md is said to reachable from Mo by a, which is denoted 

by Mo[a >- Md. Given an initial marking Mo, the set of all reachable 

markings is denoted by 'R(M 0 ), which is the set of all markings generated 

by all valid transition firing sequences represented by .C(Mo). 

The reachability problem can now be restated as one of finding if 

Md E 'R(M0 ). It has been shown that the reachability problem is 
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indeed decidable although it takes exponential space and time to verify 

in the general case [36), [29), [33). For restricted classes of Petri nets, 

reachability is decidable in polynomial time, further discussion of which 

is deferred to Chapter 2. 

B. Coverability A marking of a Petri net is said to be covered if 

there exists another marking such that, for all places, the number of 

tokens in a place in the second marking is greater than or equal to the 

number of tokens in the same place in the covered marking, i.e., M is 

said to be covered by M' if Vp E P, M'(p) 2'.: M(p). 

C. Boundedness A Petri net is said to be bounded if the number 

of tokens in each place does not exceed a finite number for any marking 

reachable from the initial marking, i.e., if Vp E P, M(p) S k for every 

ME 'R(M0 ). A Petri net which is I-bounded is said to be safe. 

D. Liveness A Petri net is said to be live (or equivalently Mo is 

said to be live for the Petri net) if from any marking M E 'R(M 0 ) it 

is ultimately possible to fire any transition either immediately or after 

progressing through a sequence of transition firings. 

E. Reversibility A Petri net is said to be reversible in an initial 

marking if from each reachable marking from the initial marking, it is 

possible to reach the initial marking, i.e., VM E 'R(M 0 ), Mo E 'R(M). 

1.2.2 Structural Properties 

Structural properties are those that depend only on the topology of the 

net, and are independent of the initial marking. Hence, these properties 
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can often be characterized as a function of the incidence matrix. 

F. Structural Boundedness A Petri net is said to be structurally 

bounded if it is bounded for any finite initial marking, i.e., for any finite 

initial marking Mo, \:/ME R(M0 ), :lk < oo: M(p) < k, \::Ip E P. 

G. Conservativeness A Petri net is said to be conservative if for 

any finite initial marking, the weighted of sum of tokens in all the 

places is a constant in all its reachable markings, i.e., :ly E In : \:/M E 

R(M0 ), MTy = Mi y = k. However, the weighted sum might be differ­

ent for different initial markings. 

H. Place Invariant A set of places of a Petri net is called its place 

invariant if the weighted sum of tokens in those places remains a constant 

in all the reachable markings, i.e., y E Im is a place invariant if \:/M E 

R(M0 ), MT y = k. 

I. Transition Invariant A set of transitions of a Petri net is called 

its transition invariant if there exists a sequence of firings of those tran­

sitions which would reinitialize the marking, i.e., y E In is a transition 

invariant if :la E .C(Mo) : (lai = LY) I\ (M[a >- M). 

J. Structural Liveness A Petri net is said to be structurally live if 

there exists a live initial marking for the Petri net. 
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1.3 Modified Petri nets 

The power of Petri nets in modeling and analyzing DEDS has motivated 

researchers to incorporate additional modeling capabilities. Some of the 

widely used extensions are as follows. 

K. Timed Petri nets The notion of time is not explicitly used in the 

basic definition of a Petri net (see Definition 1.1). The need for modeling 

time in performance analysis was the motivation for the development of 

timed Petri nets by Ramchandani [48]. In a timed Petri net, an enabled 

transition can be fired only after a certain time lag. This time to firing 

an enabled transition could be either deterministic or stochastic. If the 

times to fire enabled transitions are exponentially distributed, then the 

Petri net can be translated into an equivalent Markov chain model [52]. 

This transformation has been widely used for performance evaluation of 

DEDS. 

L. Colored Petri nets Jensen [26] developed colored Petri nets as 

a means for developing compact models of large systems. The com­

pactness is achieved by merging all the analogous places/transitions in 

a model into a single place/transition, and associating colors to places, 

transitions, and tokens to distinguish among the various elements [52]. 

The transition enabling and firing rules are now defined with respect 

to colors. Some of the popular applications of colored Petri nets include 

automated production systems, communication Petri nets, and workflow 

analysis [52, 27, 11]. 
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1.4 Document Outline 

The rest of this document is structured as follows: 

• In Chapter 2, various streams of research activities related to reach­

ability analysis in literature are reviewed. The specific categories 

covered are (1) the representation of the reachability set of a Petri 

net, (2) necessary and sufficient conditions for reachability, (3) 

heuristic procedures for deciding reachability, and ( 4) unfolding 

techniques based on a graph branching process. The research con­

ducted as part of this dissertation is related to the necessary and 

sufficient conditions for reachability. 

• In Chapter 3, an acyclic transformation technique is developed 

that converts a general Petri net into an acyclic Petri net. The 

relationship between the reachable states of the original net and 

the transformed net is established. In fact, it is shown that ev­

ery state in the original Petri net has a corresponding state in the 

acyclic transformed net. Also, the relationship between the tran­

sition firing sequences of the original and transformed Petri nets is 

established. 

• The acyclic transformation technique developed in Chapter 3 can 

be used for any arbitrary Petri net. If the transformation is exe­

cuted for say 10 stages, then all the markings that can be reached 

by firing transitions at most 10 times in the original Petri net will 

have a corresponding marking in the transformed Petri net. How­

ever, when the required number of transition firings is not known 

for a given reachability problem, the acyclic transformation pro-
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cedure is open ended. Hence, in Chapter 4 issues related to de­

termining the required number of stages of expansion by acyclic 

transformation are discussed. Specifically, two methods that could 

potentially help in determining the required number of stages, or 

minimize the complexity involved in determining the number of 

stages are proposed. 

• Next, in Chapter 5 some of the problems related to the reachability 

problem are studied. First, the sub-marking reachability problem 

is discussed. It is shown that the sub-marking reachability problem 

could be reduced to a full marking reachability problem or simply 

the reachability problem, which has been the topic of discussion 

thus far. A given sub-marking reachability problem is reformu­

lated as a reachability problem. The second problem studied is 

the deadlock avoidance problem; this is done in light of the new 

reachability results contributed by this research. 

• An application of reachability analysis in a discrete part manufac­

turing environment is presented in Chapter 6. The order du~ate 

quotation problem is formulated as a reachability problem. More 

importantly, special modeling constructs are developed for this pur­

pose that enable the systnesis of an acyclic Petri net model. 

• Finally, a summary of the dissertation research that highlights the 

major research contributions is presented in Chapter 7. Future 

research directions are identified in light of the new findings. 
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Chapter 2 

The Reachability Problem 
• • • • • • • • • • • • • • • • • 

Summary 

This chapter reviews literature related to the analysis of the reacha­
bility problem. Literature reveals four different strategies: (1) con­
struction of the reachability graph, (2) reachability criteria for special 
classes of nets, (3) heuristic procedures, and ( 4) net unfolding. After 
reviewing the reachability analysis approaches, the objectives of this 
dissertation research are presented. 

2.1 Introduction 

Reachability and coverability are very basic Petri net properties that are 

used in establishing properties such as boundedness and reversibility. 

Definition 2.1.1 The Reachability Problem. Given a Petri net PN and 
a marking Md, the reachability problem determines if Md E R(Mo). 

Definition 2.1.2 The Coverability Problem. Given a Petri net PN and 
a marking M, the coverability problem determines if :3M' E R(Mo) 
Vp E P, M'(p) ~ M(p). 

Another way to reformulate these two problems is to determine if 

there exists an effective description of the set of all reachable states 

[36]. It has been shown that there cannot be any reasonable closed and 
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effective representation for the set of all reachable states for a general 

Petri net [2, 22]. The implication of these results is that for a general 

Petri net, the reachability and coverability problems can be solved only 

by generating the reachability graph and the coverability graph, which 

involves an exhaustive enumeration of all possible transition firings in 

each marking. 

2.2 Different Approaches to the 

Reachability Problem 

2.2.1 Reachability Graph 

Given a Petri net PN, this approach generates as many new markings 

as the number of enabled transitions in the initial marking Mo. At each 

of these new markings, firing the enabled transitions would result in a 

different marking, thus resulting in a graph with Mo as the root. This 

graph would grow indefinitely if the net is unbounded. Hence, to keep 

the graph from growing indefinitely, a special symbol 'w' is introduced, 

which can be thought of as "pseudo-infinity". This 'w' has the following 

special properties for each integer n, w > n, w ± n = w, and w 2 w [28]. 

Using this short-hand notation a reachability graph can be constructed 

using Algorithm 1. If the w symbol is absent in any of the markings 

generated, then it is called the reachability graph, and if present, the 

graph takes the name of coverability graph. 

The coverability /reachability graph constructed using Algorithm 1 

can be used for studying behavioral properties of Petri nets as follows: 
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Definition 2.2.1 A Petri net is bounded with respect to an initial mark­
ing Mo, iff the pseudo-infinity symbol does not appear in its coverability 
graph. 

Definition 2.2.2 A Petri net is reversible with respect to an initial 
marking Mo iff every node in the coverability graph is in a directed cir­
cuit containing Mo. 

Require: Petri net PN, initial marking Mo 
1: Label the marking Mo as new 
2: while new markings exist do 
3: Select a new marking M 
4: if the set of enabled transitions in marking M is null then 
5: Label the marking M as deadend 
6: else 
7: if the marking M is identical to any marking generated thus 

far then 
8: Label the marking M as old 
9: else 

10: for all markings M' generated by firing an enabled transition 
at marking M do 

11: if there exists an already generated marking M" : M" =fi 
M' such that Vp E P,M'(p) ~ M"(p) then 

12: set M'(p) = w whenever M'(p) > M"(p) 
13: label M' as new and add it to the graph 
14: end if 
15: end for 
16: end if 
17: end if 
18: end while 

Algorithm 1: Reachability graph construction [11] 

In the process of developing a bounded graph of the set of all reach­

able states by using 'w', valuable information on the actual markings 

would have been lost, and hence, the graph cannot be used for solving 

the reachability problem. However, even if the pseudo-infinity symbol 
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'w' is not present, the graph construction approach is not of much practi­

cal use for solving the reachability problem because of the computational 

burden. Algorithm 1 essentially enumerates all possible transition firings 

in all reachable states and this contributes to the computational burden. 

It has been shown that the reachability problem is indeed decidable al­

though it takes exponential space and time to verify in the general case 

[36, 29, 33]. 

2.2.2 Reachability Criteria 

The objective of this approach is to develop reachability criteria that are 

independent of the reachability graph. The state equation representation 

of Petri nets (equation 1.2) is especially useful for this purpose. Suppose 

Md is reachable from Mo by firing a sequence of transitions, then 

M1 = Mo +Au1 

M2 = M1 +Au2 

Adding the above equations, 

Mo+Au 

(2.1) 

(2.2) 

where u = I:,".j=1 Ui, and the lh entry denotes the number of times 

transition ti must fire. Note that the firing count vector u does not 

contain any information about the firing sequence. This equation can be 

rewritten as Au= .6.M, where .6.M = Md-Mo. Given a Petri net PN, 

and a marking Md, if Md E 'R(Mo), then the set of linear equations 

( equation 2.2) must have a non-negative integer solution. This gives rise 
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to a necessary condition for reachability (Theorem 2.2.1). This is only 

a necessary condition because, in solving the state equation for a given 

pair of Md and Mo, their actual identities are lost in the expression 

LiM = Md - Mo. Note that multiple pairs of Md and Mo can give rise 

to the same LiM. However, the contrapositive of the necessary condition 

gives a sufficient condition for non-reachability (Corollary 2.2.1). 

Theorem 2.2.1 If Md is reachable from Mo in a Petri net PN, 
then there exists u E In : Au = LiM. 

Corollary 2.2.1 In a Petri net PN, the marking Md is not reachable 
from Mo if LiM does not span the columns of the incidence matrix A. 

Proof: If Au = LiM holds, then rank[A] = rank[A I LiM]. This 

implies that LiM is a linear combination of the columns of the incidence 

matrix A. Therefore if LiM is not a linear combination of the columns 

of A, rank[A] -:j:. rank[A I LiM]. Hence ~u E In : Au = LiM, and 

Md ~ 'R(Mo). D 

Though a sufficient condition for reachability in a general Petri net is 

yet to be realized, sufficie~t conditions exist for restricted sub-classes of 

Petri nets. Next, some of the known sufficient conditions for reachability 

are presented. 

2.2.2.1 Marked Graphs 

Definition 2.2.3 A marked graph is a Petri net in which each place 
has exactly one input transition and one output transition, i.e., in a 
marked graph l•PI = IP•I = l. 

Marked graphs represent conflict-free concurrent systems and are 

very amenable to analysis. Algorithms are available for determining 
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the liveness and safeness of marked graphs, and for solving the reach­

ability problem. However, by their nature they have limited modeling 

power [26]. 

2.2.2.2 Free Choice Nets 

Definition 2.2.4 A free choice net is a Petri net in which every arc 
from a place is either a unique outgoing arc or a unique incoming arc to 
a transition, i.e., in a free choice net Vt, t' E T, t =f t', •t n •t' =f 0 ==;, 

1·t1 = 1 = 1·t11. 
This class of Petri nets are said to allow controlled conflicts [11]. By 

definition, in a free choice net, all the enabled transitions would have 

the same input places. This retains the control over the transition that 

fires next. Hence, they are called free choice Petri nets. Free choice 

nets that are live, bounded, and acyclic are known to have polynomial 

time algorithms to decide reachability [10]. However, for live and safe 

free choice nets, it has been shown that reachability problem is NP­

complete [16]. 

2.2.2.3 Acyclic Petri nets 

Definition 2.2.5 A Petri net having no directed circuit is called an 
acyclic Petri net. 

For an acyclic Petri net it can be shown that the existence of a non­

negative integer solution to the state equation (equation 2.2) is necessary 

and sufficient for reachability of Md from Mo [25]. 

Theorem 2.2.2 In an acyclic Petri net PN, Md E R(Mo) iff 
there exists a non-negative integer solution u satisfying ~M = 
Au. 
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2.2.3 Heuristic Procedures 

In the absence of reachability criteria for a general Petri net, the con­

struction of the reachability graph and searching through the nodes of the 

graph seems to be the only approach for deciding reachability. Heuristic 

techniques have been developed that try to tackle the time complexity 

of the search process. These heuristic procedures can be divided into 

ones that generate portions of the reachability graph and those that do 

not. Search procedures such as genetic algorithms are examples of the 

latter [50), while graph search procedures are examples of the former [32). 

2.2.3.1 Genetic Algorithm Approach 

Genetic algorithms were formally introduced in the 1970s by John Hol­

land at the University of Michigan. They are inspired by the mechanism 

of natural selection - a biological process which prefers stronger individ­

uals in a competing environment. To use a genetic algorithm, a solution 

to a problem is represented as a genome ( or chromosome). The genetic 

algorithm then creates a population of solutions and applies genetic op­

erators such as mutation and crossover to evolve the solutions in order 

to find the best one [34]. 

The three most important aspects of using genetic algorithms are: (1) 

definition of the objective function, (2) definition and implementation of 

the genetic representation, and (3) definition and implementation of the 

genetic operators (mutation and crossover). 

Takahashi et al. [50] have proposed a genetic algorithm based reach­

ability analysis procedure in which the three aspects mentioned above 

are represented as follows: 
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Figure 2.1: Subsequence exchange crossover (SXX) 

Genetic representation: Genetic representation for a given firing count 

vector u E In : Au = .6.M is a transition sequence CJ : [[CJ[[ = 

I:;=l Ui. The set of all transition sequences for a given firing count 

vector is denoted by C. Note that f(M) ~ C. 

Objective function: The objective function, also termed as the fitness 

function, is defined as f : C---+ I. For a transition sequence CJ E C, 

the value of j(CJ) defines the number of transitions fired succes­

sively from an initial marking. The value of the fitness function is 

maximized iff Md is reachable from Mo [50]. 

Genetic operators: The subsequence exchange crossover (SXX) ge­

netic operator is used to create new genes (transition sequences), 

which exchanges a subsequence in one parent string with a sub­

sequence in another parent string. As shown in Figure 2.1, SXX 

allows the exchange of a subsequence of Parent 1 for a subsequence 

of Parent 2 subject to the condition that the same number of each 

unique transition is exchanged. 

Having defined the three components of the genetic algorithm, the 
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reachability is decided using Algorithm 2. 

Require: u E In : Au = fi.M 
l: Initialization: Create an initial population of transition sequences. 

Calculate the fitness values of those strings. 
2: Selection: Choose a pair of strings randomly. 
3: repeat 
4: Crossover: Apply SXX to the chosen pair of strings(parents) and 

make new strings(children). Calculate the fitness val­
ues of the children. 

5: Selection: According to the fitness value, select the top two strings. 
6: until Fitness value for one of the strings is maximized or time allo­

cated has expired. 

Algorithm 2: Genetic algorithm for the reachability problem [50] 

2.2.3.2 Graph Search Algorithm 

A significant amount of work on the reachability problem appears in re­

lation to scheduling [32]. The sample scheme discussed in this section 

formulates a scheduling problem using a Petri net model, and employs 

global search by limiting the search space with the use of heuristic func­

tions. Optimal or near optimal feasible schedules are generated in terms 

of transition firing sequences. The Petri net model of a system cap­

tures all possible evolutions of the system through its markings, which 

is represented in the reachability graph. Hence, theoretically it should 

be possible to determine the optimal path by searching the reachability 

graph. 

The heuristic procedure for searching the reachability graph with­

out generating it completely is based upon a graph search algorithm 

called A* [44, 45]. This procedure uses an evaluation function to expand 

the search along those sectors of the graph which are most promising. 

The evaluation function defined in terms of a marking M is f(M) = 

• 21 • 



g(M) + h(M), where g(M) is the current lowest cost obtained from the 

initial marking (Mo) to the current marking (M), and h(M) is an es­

timate of the cost from the current marking (M) to the final marking 

(Md)- Hence, f(M) is an estimate of the total cost from the initial 

marking(Mo) to the final marking(Md), 

1: Put the initial marking Mo on the list OPEN 
2: while OPEN list is populated do 
3: Remove the first marking M from OPEN and put M on the list 

CLOSED 
4: if M is the final marking then 
5: construct the optimal path from the initial marking to the final 

marking and terminate 
6: else 
7: Find the enabled transitions of marking M 
8: Generate the successor marking M' for each enabled transition 
9: Compute g(M') for each successor marking M' 

10: for all successor M' of M do 
11: if M' is already in OPEN list then 
12: direct it along the path yielding the smallest g(M') 
13: else if M' is already in CLOSED list then 
14: direct it along the path yielding the smallest g(M') 
15: else 
16: calculate h(M') and f(M') and add M' to the OPEN list 
17: end if 
18: Reorder OPEN list in the increasing magnitude of f 
19: end for 
20: end if 
21: end while 

Algorithm 3: Graph search algorithm [32] 

2.2.4 Net Unfolding 

This unfolding technique has its origins in the unfolding of a rooted graph 

into a tree. The unfolding technique is a partial order semantics and is 
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also referred to as the branching process [15, 43]. This approach received 

a boost with the work done by McMillan [37]. The application of this 

technique has been extensively explored in the literature [17, 18, 39]. 

Partial order semantics describes the behavior of the net by its maximal 

branching process, also called the maximal unfolding of the system. If 

the net is unbounded, its maximal unfolding is also unbounded. McMil­

lan [37] shows a way for computing a finite initial part of the maximal 

branching, in which every reachable marking of the system is represented. 

This is called the finite complete prefix. This was later made more ef­

ficient by Esparza, Romer and Vogler [17]. Though the finite complete 

prefix has complete information on the set of all reachable states, they 

are deeply embedded in the unfolding. This can be a source of significant 

computational burden. However, when the net is bounded these unfold­

ings can be effectively used for analysis. Once the finite complete prefix 

has been generated, multiple methods can been applied for determin­

ing reachability: branch and bound techniques [37], linear programming 

algorithms [38], and graph theoretic methods [39] are some examples. 

A branching process of a net is a special kind of net called the occur­

rence net. The occurrence net is an acyclic directed graph, and hence, the 

transitive closure of the flow relation defines the partial order between 

nodes. An occurrence net has the following properties: 

• The net is acyclic, 

• The net is free of forward conflict, meaning that the size of the 

pre-set of all the places is either zero or one, 
\ 

• No event in the net is in conflict with itself, and 
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• Every node in the net is finitely preceded. 

An occurrence net could be constructed for a Petri net using Algorithm 4. 

For an unbounded net this branching process could proceed without any 

natural termination. Also, for a cyclic Petri net the branching process 

could extend infinitely. However, for bounded Petri nets, even when they 

are cyclic, it is possible to terminate the branching process called the 

prefix, and preserve all the information about reachable markings. This 

prefix is called the net unfolding. There are a number of techniques for 

determining these cut-off points [37, 17], and they are evaluated by their 

ability to restrict the size of the unfolding without losing information on 

the reachable markings. 

2.3 Research Goals 

The main goal of this research is to develop the ability to efficiently de­

cide reachability in a general Petri net. The reachability graph with the 

w notation (Section 2.2.1) provides a means to efficiently describe the 

set of all reachable states of a system. The heuristic techniques (Sec­

tion 2.2.3) provide a means to efficiently search through the reachability 

graph. These search procedures, though efficient, are not conclusive 

in deciding reachability. The necessary and sufficient conditions (Sec­

tion 2.2.2) provide a means for deciding reachability conclusively, but 

only for certain sub-classes of Petri nets. The unfolding technique (Sec­

tion 2.2.4) can been efficiently used for only bounded Petri nets. Hence, 

the major objective of this research is to develop a technique for deter­

mining reachability in a general Petri net by building on the existing 

approaches. 
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Require: Petri net PN 
1: Copy all the marked places of the Petri net into the occurrence net 
2: repeat 
3: Choose a transition t E T 
4: Find the pre-set of the chosen transition 
5: if the same pre-set has not been chosen earlier then 
6: if none of the selected places are in conflict or precedence rela-

tionship then 
7: for all places in the pre-set of the chosen transition do 
8: Find a copy in the occurrence net 
9: if copy found then 

10: Mark it with a token 
11: Make a copy of the transition in the occurrence net 
12: Connect the transition with its pre-set 
13: Make a copy of the the post-set of the transition and 

connect them with the transition 
14: end if 
15: end for 
16: end if 
17: end if· 
18: until Ad Infinitum 

Algorithm 4: Petri net unfolding process [37) 
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The research described in this document takes the route of determin­

ing sufficient conditions for reachability in a general Petri net. Toward 

this end, an acyclic transformation technique is developed that converts 

a given Petri net into an acyclic Petri net with known necessary and suffi­

cient conditions for reachability. This dissertation research also explores 

some reachability related problems, namely, the sub-marking reachabil­

ity problem and deadlock avoidance in light of the new research results 

related to reachability. Finally, a novel application of the Petri net reach­

ability problem to the order due date determination problem in a discrete 

part manufacturing system is explored. 

The various research objectives can be stated as follows. 

Reachability in general Petri nets: The objective is to develop a 

reachability analysis technique for a general Petri net. The ap­

proach is similar in spirit to the unfolding technique, but the re­

sulting net falls into the class of Petri nets for which necessary and 

sufficient conditions for reachability are known. 

Problems related to reachability: The objective is to analyze prob­

lems that are related to the reachability problem in light of the 

new research results related to reachability in general Petri nets. 

Specifically, the sub-marking reachability problem and the dead­

lock avoidance problem are explored. 

Application of reachability: The objective is to explore novel appli­

cations of the reachability problem in a manufacturing environ­

ment. The order due date determination problem in a discrete 

part manufacturing environment is formulated as a reachability 

problem. 
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The research conducted to address these three objectives are pre­

sented in the following chapters. 
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Chapter 3 

An Acyclic Transformation Technique 
• • • • • • • • • • • • • • • • • 

Summary 

A new approach to the Petri net reachability problem is presented in 
this chapter. For an acyclic Petri net, it has been shown that the exis­
tence of a non-negative integer solution to the system state equation 
is necessary and sufficient for reachability. An acyclic transformation 
is presented in this chapter that expands any given general Petri net 
into an acyclic net. This makes a general Petri net amenable for 
analysis using the reachability criteria for acyclic nets. The practical 
issues involved in executing this transformation are also discussed. 

3.1 Introduction 

The main idea behind the acyclic transformation is to expand a Petri net 

into multiple stages, with the places in the 1st stage forming the input 

for the 2nd stage and so on. This converts any arbitrary Petri net into 

an acyclic Petri net, thus enabling the applicability of known sufficient 

conditions for reachability in acyclic nets to any arbitrary Petri net. By 

this process, if the net expansion has been performed up to N stages, 

then all the states that could be reached by firing a maximum of N tran­

sitions are readily available. In fact, as the discussions in the following 

sections would reveal, this procedure also gives a straightforward method 
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for finding the transition firing sequences contained in N -stage expan­

sion. This technique could be used for any arbitrary Petri neL However, 

the major issue that needs to be addressed is in bounding the number 

of stages N that is sufficient for deciding a specific reachability problem, 

which is the topic of the following chapter. We restrict the presentation 

in this chapter to the exposition of the acyclic transformation procedure. 

3.1.1 Net Expansion 

The net expansion procedure is at the heart of the acyclic transformation 

approach. The basic idea is to expand the Petri net into multiple stages, 

which is accomplished by replicating the places with one set of places 

forming the input places for the transitions, and the other forming the set 

of output places. This ensures that there are no directed circuits in the 

net. In addition, fictitious transitions are added between "equivalent" 

places to transfer any additional tokens that might be left over. This 

would make them available for the next stage of the net. These additional 

transitions are called "transporters," and are graphically represented by 

two parallel bars. At any given stage, one or more or all of the conflict 

free transitions could be fired. 

The following example explains the net expansion process. The prefix 

of 1 (i.e., 1X) is used to denote a one-stage expansion. 

Example 3.1.1 Consider the Petri net shown in Figure 3.1{a). This 
net has four places and three transitions. For a one-stage expansion of 
the net, the four places are replicated. For a transition, say ti in the 
original net, the pre-set is •ti = {p1,p3}, and the post-set is ti = {P2}. 
In the expanded net, the transition ti represented by 1t11 has the following 
pre and post-sets: •1t11 = {1P11, JP13} and 1ti1 = {1P22}, where JPll, JP13, 
and JP22 can be regarded as equivalent to Pl, p3, and P2, respectively, in 
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Figure 3.1: One-stage net expansion example 

the original net. This accomplishes the net expansion. Next, to trans­
port any left over tokens from the current stage to the next stage, the 
four transporters 1c1i, 1 ::; i ::; 4 are introduced. A complete one-stage 
expansion is shown in Figure 3.l{b). 

The following definition formalizes this idea for a one-stage expan­

sion. 

Definition 3.1.1 Given a Petri net PN, its one.:..stage expanded net is 
a 7-tuple, 1PN = (1P, 1T, 1C, 1F, 1G, 1W, 1Mo), where 

1. 1P = {1P11, lP12, · · · , lPlm, 1P21, 1P22, ... , 1P2m} is a set of 2m places 

2. 1T = {itu, 1t12, · · · , 1t1n} is a set of n transitions 

3. 1C = {icu, 1c12, · · · , 1c1m} is a set of m transporters 

4. 1F ~ (1P x 1T) U (1T x 1P) is a set of directed arcs connecting the 
places and transitions 

5. iG = {iP x 1C} U {iC x 1P}, is a set of directed arcs connecting the 
places and transporters, which move the unconsumed tokens from 
the current stage to the next stage 
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6. 1W : 1F ---+ {1, 2, 3, · · · } is a weight function1 which assigns a posi­
tive integer to all the directed arcs in 1F such that, 

(a) w(lPli, 1t1j) = w(pi, tj), Vw(Pi, tj) > 0 

{b) w(1t1j, 1P2i) = w(tj,Pi), Vw(tj,Pi) > 0 

and 

7. 1Mo : 1P---+ {O, 1, 2, ... } is the initial marking such that, 

. _ { Mo(i) 1 $ i $ m 
iMo(i) - 0 (m + 1) $ i $ 2m 

Within the expanded net, the execution is very similar to that of 

any Petri net. The transition enabling and firing rules (Definitions 1.1.2 

& 1.1.3) · still hold good. From the definition, it can be observed that 

the expansion task is to separate the input arcs (places to transition) 

from the output arcs (transition to places). The incidence matrix of the 

one---stage expanded net can now be defined in terms of the original Petri 

net. 

Given a Petri net PN, the incidence matrix of the one---stage expanded 

net of 2m x (n+m) ((input places, output places) x (regular transitions, 

transporters from input places to the output places)) dimension is 1A = 

[1aij], and the typical entry of the incidence matrix, 1aij, is given by, 

% V ( i $ m), (j S n) if aij < 0 

a(i-m)j V(m + 1 $ i S 2m), (j Sn) if aij > 0 

-1 V(i$m),(n+l$j$n+m)ifi=j 
(3.1) 

1 V(m+l$i$2m),(n+l$j$n+m) 

if i = j 
0 otherwise 

1the default arc weight is 1, and is often not indicated in graphical representations 
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The incidence matrix of the expanded net can also be represented in 

terms of the original Petri net as, 

(3.2) 

This expansion procedure can be easily extended to multiple stages. 

An N-stage expansion of the net utilizes the output places of the previ­

ous stage as the input places for the current stage. It can also be thought 

of as placing multiple one-stage expansions one after the other, which is 

best illustrated by the structure of the incidence matrix. The required 

number of stages of expansion is determined by the specific reachability 

problem. The discussion on this is deferred until Chapter 4. 

Definition 3.1.2 Given a Petri net PN, the incidence matrix of its N­
stage expanded net is, 

A- 0 0 0 0 -I 0 0 0 
A+ A- 0 0 0 I -I 0 0 
0 A+ A- 0 0 0 I 0 0 

NA= (3.3) 

0 0 0 A+ A- 0 0 I -I 
0 0 0 0 A+ 0 0 0 I 

The dimension of NA is (N + l)m x (Nn + Nm). 

Having introduced the notion of net expansion, the utility of it in 

the reachability analysis of a Petri net is discussed next. The following 

two issues have to be addressed before using the expanded net for the 

reachability analysis of a given net. 

Relationship between the reachability sets: The problem is to es­

tablish the relationship between the set of all reachable states in 
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the given Petri net, and in its N'-stage expanded net, and vice 

versa. 

Integrity of the transition firing sequences: The second issue is to 

establish the equivalence or relationship between the transition fir­

ing sequences in the given Petri net, and in its N'-stage expanded 

net. 

3.1.2 Relationship between the Reachability Sets 

The net expansion scheme can be effectively used for reachability analysis 

only if it can be shown that for every reachable marking in the given net, 

there exists an equivalent marking in the expanded net. 

Consider a Petri net PN. Let M1 be the system state after firing 

an enabled transition ti. In its one-stage expanded net equivalent 1PN, 

the transition ti would be represented by 1t1j- Note that if ti E r(Mo), 

then 1t1j E I'(1Mo), in other words if transition ti is enabled in marking 

Mo, then the equivalent transition 1t1j in the one stage expanded net is 

also enabled in the equivalent marking 1Mo. The resulting marking by 

firing the enabled transition 1t1j in 1PN can be represented as, 

(3.4) 

where, Ut is the firing count vector for the transitions, Uc is the firing 

count vector for the transporters, and Z(m) is a vector of zeros of length 

m. 
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The relationship between the resulting marking M1 of the original 

Petri net PN and that of its expanded equivalent is discussed next. 

Mi Mo+Au 

= Mo+(A-+A+)u 

(Mo+ A-u) + (Z(m) + A+u) (3.5) 

Equation 3.5 shows that every legal marking of PN that could be reached 

as a result of firing a single transition can be decomposed into two compo­

nents namely, (Mo+ A-u) and (Z(m) + A+u). These two components 

constitute the markings of the input and output places of the transi­

tions in the expanded net after firing the equivalent transition as given 

by Equation 3.4, assuming that none of the transporters needs to be 

fired (i.e., Uc = 0). The firing count vector for the transporters can be 

determined by the number of tokens left in the input places after the 

transitions have been fired, and it can be determined by, 

(3.6) 

Now the resultant marking of the expanded net can be determined as, 

( 
Mo+ A-ut - !(Mo+ A-ut) ) 

1M1 = 
Z(m) + A+ut +!(Mo+ A-ut) 

(Mo+ (A~+ A+).,) 
(3.7) 

where the marking of the output places of the transitions are the same as 

the markings of the places of the original net in marking M1. However, 

not all the markings of the original net have an equivalent marking in the 

one-stage expanded net. This following example would help illustrate 

these ideas. 
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Figure 3.2: Reachability trees for the one-stage net expansion example 

Example 3.1.2 Consider the Petri net shown in Figure 3.1(a) and its 
one-stage expanded equivalent in Figure 3.1 (b}. Given an initial marking 
of Mo = {1, 0, 1, O} for the original net, the equivalent initial marking 
for the one-stage expanded net is 1Mo = {1, 0, 1, 0, 0, 0, 0, O} (see defi­
nition 3.1.1). For these initial markings, the corresponding reachability 
trees are shown in Figure 3. 2. It can be verified from the marking legends 
of the reachability tree that the marking 1M1 of the one-stage expanded 
net is equivalent to the marking Mi of the original Petri net. However, 
there exists no equivalent marking in the one-stage expanded net for the 
other marking M2 of the original net. 

Marking Legend 
Original Petri net One-stage expanded net 
Mo {1, 0, 1, O} 1Mo {1, 0, 1, 0, 0, 0, 0, O} 
M1 {O, 1, 0, O} 1M1 {O, 0, 0, 0, 0, 1, 0, O} 
M2 {0,0, 1, 1} 

Table 3.1: Marking legend for the reachability trees in Figure 3.2 

The markings of the original net that have no equivalent markings in 
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the one--stage expanded nets are the ones that can be reached by firing 

two or more one transitions. A multi-stage expansion would capture 

these relationships. For an N-stage expanded net, the state equation 

can be rewritten as, 

NMd Mo+NAu 

A- 0 0 0 -I 0 0 

A+ A- 0 0 I -I 0 

0 A+ A- 0 0 I 0 
Mo+ 

0 0 0 A- 0 0 I 

0 0 0 A+ 0 0 0 

( Ut(l) Ut(2) Ut(N) Uc(l) Uc(N - 1) 

Mo+ A-ut(l) - uc(l) 

Z(m) + A+ut(l) + A-ut(2) + uc(l) - uc(2) 

Z(m) + A+ut(2) + A-ut(3) + uc(2) - uc(3) 

Z(m) + A+ut(N - 1) + A-ut(N)+ 

Uc(N - 1) - Uc(N) 

Z(m) + A+ut(N) + Uc(N) 

0 

0 

0 

-I 

I 

Uc(N) )T 

(3.8) 

where the components of the firing count vector ut(i), 1 :::; i :::; N and 

uc( i), 1 :::; i :::; N are the transition firing counts of transitions and trans­

porters at each stage, respectively. Each row of the above decomposition 

represents the markings of places at each stage. The state equation of 
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the original net can be decomposed as, 

Md=Mo+Au 

=Mo+ (A-+ A+)(u1 + u2 + · · · + uN) 

=Mo+ A-u1 

+ A+u1 + A-u2 

+ A+u(N-1) + A-uN 

+ A+uN 

=(Mo+ A-u1) + (Z(m) + A+u1 + A-u2)+ 

(Z(m) + A+u2 + A-u3) + · · · + (Z(m) + A+u(N-1)+ 

A-uN) + (Z(m) + A+uN) 

= NMd(l : m) + NMd(m + l : 2m) + · · · + 

NMd(Nm+l :Nm+m) 

(3.9) 

where X(x : y) refers to the elements of vector X from position x to 

position y. 

The above expansion of the state equations shows the relationship 

between the reachability sets of a net and its generic expansion. The 

firing count vector for the transporters for any stage i can be expressed 

in terms for the firing counts of the transitions as, 

(3.10) 

Substituting the firing counts of the transporters in the state equation 

• 37 • 



of the expanded net (Equation 3.8), 

Mo+ A-ut(l) - (Mo+ A-ut(l)) 

A+ut(l) + A-ut(2) +(Mo+ A-ut(l)) - (M1 + A-ut(2)) 

A+ut(2) + A-ut(3) + (M1 + A-ut(2)) - (M2 + A-ut(3)) 

A+ut(N -1) + A-ut(N) + (M(N-2) + A-ut(N - 1)) -

(M(N-l) + A-ut(N)) 

= 

A+ut(N) + (M(N-l) + A-ut(N)) 

0 

0 

0 

0 

Mo+ A(ut(l) + ut(2) + · · · + ut(N)) 

(3.11) 

To summarize, in the original net every marking that is reachable 

from the initial marking by firing a sequence of N transitions has an 

unique equivalent marking in the N-stage expanded net. Also, firing 

sequences of the original Petri net are preserved in the expanded Petri 

net. In fact, at each stage, by firing only one transition, the solution to 

the state equation of the expanded Petri net delivers the transition firing 

sequence also. At each stage, multiple transitions that are not in conflict 

could be fired. Hence, the following Theorem 3.1.l. 
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Theorem 3.1.1 Consider a Petri net PN and its N-stage ex­
panded net NPN. For every reachable marking in the original 
net, 

1. there exists an N such that there is a unique equivalent marking 
in the N -stage Petri net, i.e., 

2. the transitionfiring sequences that connect the equivalent mark­
ings in the original net and the expanded net are equivalent, 
i.e., 

Proof: Refer to the above discussions. 

The above theorem establishes the relationship between a given Petri 

net, and its expan~ed version using the acyclic transformation. 

3.2 Sufficient Condition for Reachability 

The net expansion scheme developed in the previous sections converts a 

general Petri net into an acyclic Petri net. Also, the previous sections 

shown that all markings that could be reached in the original Petri net 

by firing transitions at most N times have equivalent markings in the 

N-stage expanded Petri net (Theorem 3.1.1). Hence, in a general Petri 

net, a marking Md is reachable if there exists a positive integer N such 

that the equivalent marking NMd is reachable in the expanded acyclic 

Petri net NPN. Thus, the sufficient condition for reachability in a general 
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Petri net can be formalized as follows. 

Theorem 3.2.1 In a general Petri net PN, a marking Md E 

R(Mo), iff there exists a positive integer N such that the state 
equation of the N -stage expanded Petri net NMd = NMo + NAu 
has a non-negative integer solution. 

Proof: Refer to the above discussions. 

If the required number of stages for a reachability problem can be 

determined exactly or at least bounded, then the above Theorem 3.2.1 

can be used to determine reachability in a general Petri net. This is the 

subject of the discussions in the next chapter. 

• 40 • 



Chapter 4 

Reachability Analysis Using Net 

Expansion 
• • • • • • • • • • • • • • • • • 

Suminary 

The acyclic transformation expands any given Petri net into an 
acyclic net with a specified number of stages. In order to utilize the 
expansion procedure for reachability analysis, the number of stages 
for expansion needs to be determined. In this chapter, issues related 
to the determinination of the number of stages are discussed, and 
ways of reducing the complexity in computing the same are explored. 

4.1 Introduction 

The acyclic transformation in conjunction with Theorem 2.2.2 can be 

used for the reachability analysis of a general Petri net if the number 

of stages of net expansion could be bounded. In certain situations, the 

problem context could provide an upper bound for net expansion. For 

example, in Petri net models used for machine scheduling, the number 

of jobs would dictate the required number of stages. In the absence of 

such a direct insight from the problem context, the model is expected to 

provide that insight. However, gaining such an insight on bounding the 

net expansion is not easy. In the following sections, the issues involved 
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in determining the number of net expansion stages are discussed. Also, 

ways of reducing the computational complexity are developed. 

4.2 Reachability Analysis Using Net Expansion 

In the previous chapter, the relationship between the reachable markings 

of the original Petri net and its expansion was discussed. However, one 

parameter that still needs to be determined is the number of stages 

of net expansion. Knowledge of the required number of stages of net 

expansion, or an upper bound on the same is essential to transform the 

reachability problem of any given Petri net into a reachability problem 

for the expanded Petri net. The reachability problem (Definition 2.1.1) 

can be restated in terms of the expanded net as, 

Definition 4.2.1 Given a Petri net PN and a marking Md, the reacha­
bility problem determines if for some positive integer N, NMd E 'R(NMo), 
where NMo and NMd are the equivalent initial and final markings for 
the expanded net NPN. 

Definition 4.2.1 redefines the reachability problem of any given Petri 

net into an equivalent problem for an acyclic net. Theorem 2.2.2 provides 

the sufficient condition for reachability in an acyclic net. Simply restated, 

the_ existence of a non-negative integer solution for the state equation is a 

necessary and sufficient condition for reachability in an acyclic net. The 

acyclic transformation presented earlier has reformulated the reachability 

problem of a general Petri net such that the results available for the 

acyclic net could be used for deciding the reachability. The one open 

question is the determination of the number of stages of net expansion. 
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For a given reachability problem, if the firing count vector1 is known, 

then the number of stages can be bounded by the sum of the firing 

counts of the transitions, i.e., N :::; ~j=l Uj. This is an upper bound 

because, at any given stage, the conflict-free transitions could be fired 

simultaneously. Thus, for a given firing count vector the reachability in a 

general Petri net could be decided without developing/searching the en­

tire reachability tree. Theorem 3.1.1 in conjunction with Theorem 2.2.2 

ensures that if there exists no non-negative integer solution to the state 

equation of the N-stage expanded acyclic net, then the marking is not 

reachable with the given firing count vector or any firing count vector 

that adds to N. This is true because the firing count vector is used only 

for bounding the number of stages of net expansion. 

Example 4.2.1 Consider the Petri net shown in Figure 3.J(a). The 
state equation of this net has a solution of the form (a, a, a - 1) for 
both (Md,Mo) = ({0,0,0,1},{1,0,0,0}) and (Md,Mo) = ({0,0,1,1}, 
{ 1, 0, 1, 0}). For all integer values of a ~ 1, the transition firing count 
vector is non-negative and integer, satisfying the necessary condition 
for reachability stated in Theorem 2. 2.1. However, reachability can be 
ascertained only by searching the reachability tree. 

A two-stage expansion of the net would show that the state equation 
is inconsistent2 for (Md,Mo) = ({0,0,0,1},{1,0,0,0}). In the case of 
(Md,Mo) = ({0,0,1,1},{1,0,1,0}), the solution to the state equation 
consists of firing the transition ti once in the first stage and transition 
t2 once in the second stage, and none of the transporters need to be fired. 

However, in some situations the transition firing count vector can­

not be determined exactly by solving the state equation (Equation 2.2). 

The structure of the state equation introduces certain issues related to 

uniqueness of the solution that need to be addressed while using it for 

1a non-negative integer vector that is as long as the. number of transitions, with 
each entry representing the number of times a transition needs to be fired 

2there exists no non-negative firing count vector that satisfies the state equation 
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determining the number of stages of net expansion. In the following 

sections of this chapter, the use of the solution to the state equation as 

a means of bounding the net expansion is discussed. Finally, the algo­

rithmic structure for reachability analysis using net expansion is docu­

mented. 

4.3 Spurious Solutions and Reachability 

The system state equation is a linear transformation of u E In into 

~M E Im. The range of this transformation is the subspace gener­

ated by ~M, and is the subspace of Im spanned by the columns of A. 

Thus, the dimension of the range is the maximum number of linearly 

independent columns of A, also called the rank of the incidence matrix 

A. 

In Section 2.2.2, the necessary condition for reachability based on 

the rank of the incidence matrix was discussed which can be restated 

as ~ [A] = ~[AI ~M]. This condition checks for the existence of a 

solution to the system state equation. However, .depending on the size 

of the incidence matrix and its rank, the solution to the system state 

equation can be either unique or infinite in number. The system state 

equation can be classified into one of the six categories shown in Table 

4.2. 

When ~(A) = m = n (§1) and ~(A) = n < m (§3), the system 

state equation has a unique solution. In all the other cases, the system 

state equation has a infinite number of numerical solutions [51]. If the 

state equation has an unique solution, then there is no ambiguity in the 

number of stages for net expansion. However, if the state equation does 
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Exactly determined system §1. IR(A) = m = n 
§2. IR(A) < m = n 

Over determined system §3. IR(A) = n < m 
§4. IR(A) < n < m 

Under determined system §5. IR(A) = m < n 
§6. IR(A) < m < n 

Table 4.2: State equation classification 

not have a unique solution, then the number of stages for net expansion 

cannot be determined definitely just by solving the state equation. This 

ambiguity is because the solution to the state equation would have one 

or more free variables. Different numerical values for the free variables 

would result in different firing count vectors, and hence, different values 

for the required number of stages. The following example illustrates 

these issues. 

Example 4.3.1 Consider the Petri net shown in Figure 4.1, with an 
initial marking of Mo = {1, 0, 0, 0, 0, 0, O}. The problem is to determine 
if the desired final marking of Md = {O, 0, 0, 0, 0, 1, 1} is reachable from 
the given initial marking. If the acyclic transformation is to be used for 
deciding reachability, then the number of stages of expansion has to be 
determined first. The state equation for this net can be classified as a 
rank deficient exactly determined system (§2). The incidence matrix has 
a rank of five, two less than the maximum possible. Hence, the general 
solution to the state equation u = { a1, a2, a1, a1, a2, a2, a1 + a2 - 1} has 
two free variables. Different numerical values would give different firing 
count vectors, and hence different net expansion stages. 

The issue to be addressed is the determination of appropriate numer­

ical values for the free variables. Then the reachability problem could be 

decided using the acyclic transformation with the number of stages equal 

to the sum of the transition firing counts determined using those numer­

ical values for the free variables. The next few sections contain ways of 
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Figure 4.1: Petri net example to demonstrate spurious solutions to state 
equation 

reducing the number of free variables and consequently, the complexity 

in determining the appropriate number of net expansions. In order to ad­

dress this issue, 8: more detailed examination of the source of degeneracy 

in the state equation is carried out. This is followed by the development 

of some potential ways to reduce the degeneracy under certain situations. 

4.3.1 Source of system degeneracy 

The linear dependence among the vectors of the incidence matrix re­

duces its rank such that it is less than the maximum permissible rank, 

resulting in the introduction of free variables in the solution to the state 
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equation. This increases the complexity of searching the state space. 

The discussions in the following sections are directed towards eliminat­

ing these linear dependencies, if possible, and analyzing the impact of 

such a modification. 

The linear dependency among the places (transitions) is called place 

(transition) invariant in Petri net terminology. As previously mentioned 

in Section 1.2.2, the weighted sum of all the tokens in a place invariant 

set remains the same in all possible markings, while firing the transitions 

in the transition invariant set returns the net to the original marking. 

The presence of invariant sets are crucial for the correctness of a model 

(system) due to its influence on system properties such as boundedness 

and reversibility. Ironically, with regard to the solution of the system 

state equation, the presence of invariant sets is detrimental. A formal 

definition of place and transition invariant sets is presented in Defini­

tions 4.3.1 and 4.3.2. 

Definition 4.3.1 An m x 1 non-negative integer vector x E snm is 
called a place invariant or ?-invariant if, 

(4.1) 

Definition 4.3.2 An n x 1 non-negative integer vector y E snn is 
called a transition invariant or T-invariant if, 

Ay = o (4.2) 

A P-invariant set is denoted by 1r, and the set of all place invariant 

sets of a Petri net is denoted by II. 

It is often mentioned in literature that there are (m-JR(A)) minimal 

P-invariant sets in a Petri net PN with m places [11]. However, investi­

gations into the reasons for rank deficiency revealed a discrepancy in this 
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statement. The reason for this discrepancy is due to the non-negativity 

requirement on the place invariant set as specified in Definition 4.3.1. 

The following example elucidates the issues involved. 

Example 4.3.2 Consider the Petri net shown in Figure 4- 2. This net 
has 8 places and 8 transitions. In this net there are no P-invariant sets, 
i.e., 

~x:ATx = 0, Xi~o, i={l,2, ... ,m} 

But the rank of the incidence matrix for the Petri net is IR(A) = 7. For 
xT = [O, -1, 0, 1, 1, 0, 1, OJ, AT x = 0, and hence the !III -# m - IR(A). 
Thus the number of P-invariant sets of a Petri net is not always the 
difference between the number of places and the rank of the incidence 
matrix. 

Figure 4.2: An illustration for place invariant analysis 

As the example illustrates, the reason for the discrepancy in the 

relationship connecting the number of P-"invariants and the rank of the 
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incidence matrix is the non-negativity restriction in the definition of the 

P-invariant sets (Definition 4.3.1). Hence, the concept of extended place 

and transition invariant sets is introduced [47]. 

Definition 4.3.3 An m x 1 integer vector x E :rm is called the extended 
place invariant or ExP-invariant if, 

ATx = 0 (4.3) 

Definition 4.3.4 Ann x 1 integer vector y E :rn is called the extended 
transition invariant or Ex T-invariant if, 

Ay = o (4.4) 

The extended place and transition invariant. sets are nothing but the 

null spaces along the row and column spaces, respectively. These null 

spaces introduce degeneracy, and hence free variables in the solution to 

the state equation. When ~(A) = m < n, the solution to system state 

equation would have free variables, in spite of having a full rank incidence 

matrix. However, when the rank is less than the maximum permissible 
I 

(§2, §4, & §6) due to the nullity along the row or column space, the 

null space introduces additional free variables. If the null space can be 

eliminated, then there will be no introduction of free variables in the 

solution to the state equation. If the null space could be eliminated or 

partially reduced, the impact of it on the system dynamics needs to be 

understood. In the next section, methods for breaking the nullity are 

explored for the purposes of solving the state equation. 

4.4 Invariant Free Petri Net 

The null space in the sub-space spanned by the rows of the incidence 

matrix (ExP-invariant) has the special property that the weighted sum 
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of the tokens remains a constant in all the reachable markings of the 

Petri net. If this token balan~e could be broken or destabilized, then the 

place invariant would become void implying that the null space would 

reduce along one of the dimensions. The token balance could be broken 

by increasing the arc weights of one of the arcs incident into one of the 

places in the place invariant set. However, this would leave additional 

tokens in the place, and thus altering the state space of the system. This 

necessitates that these additional tokens be removed by some means. 

Adding sink transitions to the destabilized places is an option. These 

transitions that are used to remove the additional tokens are termed 

as stabilizers. Though this approach would reduce the null space, the 

effective number of free variables would remain unchanged due to the 

addition of the sink transition. Hence, in order for the approach of 

destabilizing the place invariant set to be effective, the null space should 

reduce faster than the introduction of any additional dimension. The 

following example would help illustrate these issues. 

Example 4.4.1 Consider the following Petri net with 7 places and 6 
transitions defined as follows: 

Directed arcs: F ~ (P x T) U (T x P), expressed in terms of the pre 
and post sets of the places are,. 

Place pre-sets: •p1 = {t3}, •p2 = {t1}, •p3 = {t2}, •p4 = {t2}, 
•q1 = {t1,t2,r2}, •q2 = {ri}, •q3 = {r3} 

Place post-sets: Pi = {ti}, p2 = {t2}, P3 = {t3}, P4 = {ti}, 
qi= {ri}, q2 = {t1,t2,r3}, q3 = {r2} 

Arc weights: w(p, t) = w(t,p) = 1, 'v'(p x t) I\ (t x p) E F 
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The ExP-invariant sets are, 

1r1 {1, 0, 1, -1, 0, 0, O} 

1r2 {O, 1, 0, 1, 0, 0, O} 

'lr3 {0,0,0,0,1,1,1} 

The place invariant set 1r1 could be destabilized by changing w(t3,p1) = 2. 
This would increase the mnk of the incidence matrix by one. However, 
if a sink transition on place Pl is introduced to remove any additional 
tokens, the maximum permissible mnk changes from 6 to 7. Hence, the 
number of free variables in the state equation would remain the same. 

As the example illustrates, independent introduction of sink transi­

tions to stabilize the places in the ExP-invariant that was destabilized 

(by changing the arc weights leading into the places) does not help in re­

ducing the number of free variables in the solution to the state equation. 

The introduction of additional dimensions, and hence the number of free 

variables could be slowed if the accumulated tokens in multiple .desta­

bilized places could be removed simultaneously. Hence, the objective 

should be to have a common stabilizer for multiple. destabilized places. 

Two possible ways of achieving this objective are, 

Utilizing the base transitions: In this approach, instead of introduc­

ing additional sink transitions to remove additional tokens, the 

possibility of using the transitions that are part of the actual Petri 

net themselves is explored. The column space is maintained a con­

stant while reducing the null space along the row space. However, 

note that this introduces additional conditions to be satisfied for 

the transitions affected to be enabled. 

Multi purpose sink transitions: In this approach, multiple destabi­

lized places are to be stabilized by a single sink transition, which 

• 51 • 



ensures that the drop in the row null space is faster than the in­

crease in the column space. 

Both these procedures depend on the knowledge of the firing count 

relationship among the transitions. It is not the knowledge of exact 

firing count vector that is essential, rather relationship in terms of the 

free variables. Because these procedures rely on the firing count vectors, 

they are very specific to a reachability problem. The conditions to be 

satisfied for each of the above two approaches to be effective are discussed 

next. 

4.4.1 Utilizing Base Transitions 

As the name suggests, the transitions that are already part of the Petri 

net are evaluated for use as transitions that remove the additional tokens 

accumulated. If a transition has to qualify for this purpose, then the 

firing count of that transition has to be equal to or a multiple of the 

firing count of the transition that destabilizes the place. Suppose in 

a Petri net place Pi is destabilized by increasing the weight of the arc 

incident from transition tj to place Pi, for a transition tj, to qualify 

as a stabilizer for place Pi, the firing count of transition tjl should be 

equal to or a multiple of transition tj. If this condition is satisfied, 

then any additional tokens left behind by transition t j could be removed 

by transition tjl. Additionally for the transition tj, to be acceptable, 

transitions tj and tj, should not be part of the same ExT-invariant. If 

this condition is violated, then the destabilization of the place does not 

help in increasing the rank of the incidence matrix. 

Note that by using transition lj, as the stabilizer for the destabilized 
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place Pi, the enabling condition for the transition tjl has been changed. 

This additional condition on the transition will be satisfied if the transi­

tion tj, is fired only after the transition tj has fired. The characterization 

of these transitions is one of the problems that needs to be investigated 

further. 

The following example should help illustrate this technique. 

Example 4.4.2 Consider the Petri net defined in Example 4.4.1. For 
this Petri net, ·consider the reachability problem which seeks to determine 
if Md= {0,0,10,1,0,0,1} is reachable from Mo= {10,0,0,1,0,0,1}. 
The maximum permissible rank is 6 for this Petri net, and it has a rank of 
4. Since there are 6 transitions, and the incidence matrix has a rank of 4, 
the solution to the state equation will have 2 free variables. The general 
solution to the state equation for the set of markings specified above is 
u = { a, a, a-10, ,6, ,6, 2a+ ,6}. This Petri net has 3 ExP-invariant sets, 
given by II= {ai,a2,ai,a2 - ai,a3,a3,a3}; and 2 ExT-invariant sets, 
given by I' = {bi, bi, bi, 2bi + b2, b2, b2}. Place P2 could be destabilized 
by setting w(ti,P2) = 2. This would mean that every time transition 
ti is executed, two tokens would be added to place P2 instead of one. 
This additional token has to be removed in order to maintain the system 
dynamics. The candidate transition for acting as stabilizer for place P2 
would be transition t2 since both ti and t2 have the same firing counts. 
However, it is not valid because, both the transitions ti and t2 are part 
of the same ExT-invariant set. 

4.4.2 Multi-purpose Sink Transitions 

In this technique, additional sink transitions are added to the Petri net 

to act as stabilizers. While adding these additional sink transitions, they 

are linked to multiple destabilized places that are part of different ExP­

invariant sets. This requires that the destabilized places have exactly the 

same number of additional tokens or even multiples of additional tokens. 

In order to reduce the number of free variables in the solution to state 
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equation, a newly added sink transition should act as a stabilizer for at 

least two destabilized places. 

Note that the destabilization of places and the addition of stabilizers 

changes the set of all reachable markings in the Petri net. However, all 

reachable markings of the original Petri net will be part of the reacha­

bility set of the modified Petri net. This can be verified by imposing the 

condition that the additional tokens that destabilize the places would 

be moved from those places only through the stabilizers. Hence, all 

the markings in the original Petri net have equivalent markings in the 

modified net. 

The following example should help illustra~e this technique. 

Example 4.4.3 Continuing the Example 4.4.2, places P2 and p3 could be 
destabilized by setting w(t1,P2) = 2 and w(t2,p3) = 2. Places P2 and p3 
are part of different ExP-invariant sets. Note the choice of transitions 
that destabilize the places. In the solution to the state equation, both 
have the same firing count, and hence would leave the same number of 
additional tokens. These places could now be stabilized by a common 
stabilizer. 

4.4.2.1 Summary 

Both methods provide ways to reduce the number of free variables in the 

solution to the state equation. Though it is desirable to remove all the 

free variables from the solution, it may not be possible. However, the 

reduction in the free variables count does reduce the uncertainty in the 

solution. For a specific reachability problem analysis, the free variables 

are to be assigned various numerical values iteratively to determine the 

number of stages of net expansion. The following section formalizes these 
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ideas into an algorithm for reachability analysis. 

4.5 Reachability Analysis Using Net Expansion 

Revisited 

At this stage, approaches discussed in this chapter and the previous chap­

ter are combined to determine reachability in a general Petri net, and 

presented in an algorithmic form (Algorithm 5). In the algorithm, the 

solution to the state equation of the original Petri net and the invariant­

free version of the same are used to determine the number of stages of 

net expansion by acyclic transformation. Once the number of stages is 

determined, the expanded version of the net is developed and checked for 

reachability using the necessary and sufficient condition for reachability 

in acyclic Petri nets. 

Since the required number of stages for conclusively determining 

reachability may not be known or bounded due to the existence of free 

variables in the solution to state equation, Algorithm 5 may terminate 

without a conclusion. Hence, further research is required to bound the 

required number of stages for a reachability problem. 
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Require: In a Petri net determine if Md E R(Mo) 
1: Find the general solution to the state equation Md - Mo= Au 
2: Reduce the number of free variables in the solution by converting it 

into invariant-free Petri net 
3: if The invariant-free net has a unique solution to state equation 

then 
4: Add the elements of the unique solution to determine the required 

number of stages of net expansion 
5: Using acyclic transformation build the expanded acyclic Petri net 
6: if state equation of the acyclic expanded Petri net has non-

negative integer solution then 
7: marking Md is reachable from Mo 
8: else 
9: marking Md is not reachable from Mo 

10: end if 
11: else 
12: repeat 
12: Set free variables in the general solution to state equation to in­

creasing non-negative integer values and determine a candidate 
number of stages for net expansion 

13: if state equation of the acyclic expanded Petri net has non-
. negative integer solution then 

14: marking Md is reachable from Mo 
15: else· 
16: marking Md is not reachable from Mo 
17: end if 
18: until Marking is determined to be reachable or time allocated has 

expired 
19: end if 

Algorithm 5: Reachability Using Acyclic Transformation 
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Chapter 5 

Some Related Problems 
• • • • • • • • • • • • • • • • • 

Summary 

In this chapter, two problems that are closely related to the reach­
ability problem are studied. First, in the submarking reachability 
problem, the desired final marking is specified for only a subset of 
the places. The relationship between the submarking reachability 
problem and the regular reachability problem is established. Next, 
the implications of the new reachability results in tackling the dead­
lock avoidance problem are discussed. 

5.1 Submarking Reachability 

Whereas, in the reachability problem studied thus far, a complete speci­

fication of the final marking is available, in the submarking reachability 

problem the fina:l marking is specified for only a subset of the places. 

There has been published work related to submarking reachability of 

marked graphs starting with the article by Kumagai et al. [30]. For a 

marked graph, Kumagai et al. provide an approach for constructing a 

marking with the specified submarking that may or may not be reachable 

from the given initial marking. This work was later expanded to study 

the relationship of the sub-marking reachability problem with network 

programming problems [7]. The results presented in this section build 
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on these ideas and extend the theory of submarking reachability to a 

general Petri net. 

Definition 5.1.1 The Submarking Reachability Problem. Given a Petri 
net PN, and marking for a subset of the places Md(Pc) : pc E pc C P, 
the submarking reachability problem determines if there exists a marking 
M E 'R.(Mo) with the specified token distribution Md(Pc) for the places 
pc E pc_ 

The places for which a final token distribution is specified are called 

controlled places (Pc), while the rest are called free places (Pf). Similarly, 

the transitions that are incident on any of the controlled places are called 

controlled transitions (Tc), while the rest are called free transitions (Tf). 

These notions are formally defined below [7]. 

Definition 5.1.2 Controlled and Free Places. A place pc is said to be 
controlled in a given final marking Md if Md(Pc) is defined. A place pf 
is said to be free in a given final marking Md if Md(Pc) is not defined. 

Definition 5.1.3 Controlled and Free Transitions. A transition tc is 
said to be controlled in a given final marking Md if at least one of the 
places incident on the transition is in the set of cdntrolled places, i.e., if 
{•tcutc•}nPc-=/- {0}, then tc is said to be controlled. If {•tcutc•}nPc = 
{0}, then tc is said to be a free transition. 

Using these basic categorization of places and transitions, the rela­

tionship between the sub-marking and full-marking reachability prob­

lems is established. 

5.1.1 SubM Petri Net 

Let there be me controlled places (me =I pc I) and nc controlled tran­

sitions (nc =I Tc I), and mf free places (mf =I pf I) and nf free 
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transitions (nf =I Tf I). Note that m = mc+mf and n = nc+nf. This 

classification of places and transitions partitions the incidence matrix as 

follows: 

A (
Ace O ) controlled 

Afc Alf free 
(5.1) 

where Ace is an me x nc matrix corresponding to the relationship between 

places and transitions that are controlled, while Afc and Alf are ml x nc 

and ml x nf dimensioned matrices corresponding to the relationship of 

free places as influenced by controlled and free transitions, respectively. 

With these partitions of the incidence matrix, the state equation can be 

rewritten as 

(5.2) 

where uc and uf are the firing counts of controlled and free transitions, 

respectively. The above state equation can be rearranged as follows: 

where If is an identity matrix of dimension ml x ml. 

By observing the rearranged state equation (Equation 5.3), it can be 

seen that the new incidence matrix corresponds to a Petri net with m 

places and n + ml transitions, where the additional ml transitions are 

sink transitions on the free places of the original Petri net. This net is 

called as the SubM Petri net, and is formally defined as follows. 
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Definition 5.1.4 SubM Petri Net. Given a Petri net PN and desired 
token distribution in a subset of the places of the Petri net, the incidence 
matrix of its SubM Petri Net sPN of dimension m x (n + ml) is, 

As = ( 0 Ace O ) 
-Jf Afc Alf (5.4) 

The reachability set of the SubM Petri net is denoted by 'R:5 (Mo). 

Next, the submarking reachability criteria are defined in terms of its 

SubM Petri net. 

5.1.2 Submarking Reachability Criteria 

In a SubM Petri net, the sink transitions on the free places could be used 

to remove any tokens that might be accumulated in them. Assuming that 

in the reachability set of the original Petri net there exists a marking 

with the desired token distribution on the controlled places, the tokens 

in the free places if any could be removed with the sink transitions. 

Except for the sink transitions on the free places the net structure of 

both the original Petri net and its SubM derivative are identical. Other 

than removing any tokens in the free places, the sink transitions cannot 

affect the system dynamics in any way. In fact, if the sink transitions 

are never executed, the reachability set of the original Petri net and its 

SubM derivative would be identical. Hence the following Lemma. 

Lemma 5.1.1 Given a Petri net PN, every marking in the 
reachability set of the Petri net has an equivalent marking in its 
SubM Petri net's sPN reachability set with the same token distri­
bution, i.e., 'v'M E 'R.(Mo), :3M5 E 'R.5 (Mo) : 'v'p E P, M 5 (p) = 
M(p) 
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However, the converse may not be true. In other words every reach­

able marking of SubM Petri net may not have an equivalent marking in 

the reachability set of its parent net. For the purposes of submarking 

reachability, the converse is not relevant. 

Utilizing the functionality of the sink transitions, the submarking 

reachability problem of the original Petri net can be posed as a reacha­

bility problem in its SubM Petri net. When the tokens in the free places 

are removed by the sink transitions leaving the free places empty, the 

submarking reachability problem of the original Petri net is equivalent 

to reachability of a marking with zero tokens in the free places and iden­

tical token distribution in the controlled places of the SubM Petri net. If 

a given submarking is reachable, then the associated token distribution 

of the free places in the original Petri net would be the firing counts 

of the sink transitions on the free places in the SubM Petri net. This 

equivalence of the reachability problem is formalized next. 

Theorem 5.1.1 A specified submarking Md is reachable in a 
Petri net PN if in the associated SubM Petri net sPN the mark­
ing M;j E 'R.5 (Mo), where \/pc E pc,Md(Pc) = M;j(pc) and 
\;/pf E pf, M;j(pf) = O. 

Theorem 5.1.1 provides a means for deciding submarking reachability 

by posing it differently. Discussion in the previous chapters shows that 

deciding reachability is not straightforward for all situations, and hence, 

a transformation procedure is introduced to utilize known reachability 

results. More specifically, much emphasis is laid on a class of Petri nets 

called the acyclic Petri nets. It is of interest to note here that if the 

original Petri net is acyclic, introduction of the sink transitions for the 
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free places does not alter the acyclic nature. The sink transitions do not 

introduce any loops and an acyclic Petri net retains this property with 

the addition of the sink transitions. 

Property 5.1.1 Preservation of the acyclic net structure. If a 
Petri, net PN is acyclic, then any of the associated SubM Petri, net is 
also acyclic. 

The above property of the SubM Petri net, allows the use of known 

necessary and sufficient condition of reachability for acyclic nets (Theo­

rem 2.2.2). 

5.2 Deadlock Avoidance Problem 

Deadlock avoidance is concerned with avoiding deadlock states of the 

system, and initiating automatic recovery procedures when a deadlock 

cannot be avoided. The deadlock avoidance problem is known to be 

NP-complete [21]. It has been shown to be recursively equivalent to the 

reachability problem [9]. 

Deadlock prevention problem is closely associated with the deadlock 

avoidance problem. Deadlock prevention is concerned with falsifying 

one or more of the necessary conditions for deadlock. It is a static policy 

and it generally results in poor resource utilization. The deadlock avoid­

ance techniques counter the poor resource utilization by using dynamic 

resource allocation policies. 

The deadlock avoidance policies try to determine if by allocating a 

resource to a requesting proces the system would get into deadlock sit­

uations. More often, the deadlock states might be deeply embedded in 

the state space, and may not be readily apparent if we were to only look 
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for deadlock states as a result of allocating a resource. An approach 

to/ deadlock avoidance is to restrict the number of processes that can 

simultaneously request a resource [3]. Though this approach guarantees 

to avoid all deadlocks, it is very conservative, meaning, it could unnec­

essarily restrict safe resource allocations. Another approach to deadlock 

avoidance is the n-step look ahead logic proposed by Viswanadham et 

al. [53]. Theoretically, if the number of look ahead steps are not bounded, 

then it would be possible to avoid all deadlocks. However, this is practi­

cally infeasible. When n is limited, this algorithm cannot guarantee the 

avoidance of all deadlock states. 

This restriction on the number of look-ahead steps can be elimi­

nated if it is possible to perform reachability analysis. The basic idea 

here is to determine if after allocating the resource to a process, the 

system can reclaim the resource. If this can be established, then the 

impact of allocating the resource is none with regards to deadlock. For 

a Petri net model, this can be formulated as a submarking reachability 

problem, which as the discussions in the previous section show, in turn 

can be formulated as a full-marking reachability problem. The acyclic 

transformation and related techniques provide a promising avenue for 

reachability analysis in general Petri nets, and hence could have an im­

pact on the deadlock avoidance problem also. A detailed investigation 

is required for practical application of this approach. 

Example 5.2.1 Consider a simple production system (See Figure 5.1) 
consisting a load-unload station, a single-machine work station, and an 
AGV for transporting parts between them /53, 19}. Further, there are no 
buffers in the system, the raw parts are always available, and the AGV 
can carry only one part at a time. There are two deadlock states in this 
system: 
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Deadlock state 1: The AGV with a raw part is waiting to load it on 
the machine that has a finished part. 

Deadlock state 2: The AGV has been assigned to carry a finished part 
from the machine, while the machine which is empty is waiting for 
a raw part. 

A szmplified Petri net model of this system is shown in Figure 5.2, 
with the explanation for the nodes in Table 5.1 {19}. The reachability 
graph of this reduced Petri net is given in Figure 5.3. The marking 
legends are given in Table 5.2. The marking Ms corresponds to the 
above defined deadlock state 1, while the marking M 7 corresponds to the 
above defined deadlock state 2. 

Prom the reachability graph, it can be seen that the system enters a 
deadlock state if the AG V is assigned to pick up a raw part from the load­
unload station, when a part is already being processed by the mdchine. 
Also, if the AGV is assigned to pick up a finished part from the machine 
when the machine is empty, the system enters a deadlock state. 

The key resource allocation decision is taken when the place A3 is 
marked. The place A3 is marked in the markings M2 and M4. In both 
these markings, the transitions t3 or t4 can be fired. In order to avoid 
deadlock, when the system is in the marking M2, transition t3 needs to 
be fired, and in marking M4, the transition t4 needs to be fired. This 
information was obtained by analyzing the reachability graph. However, 
such an analysis may not be always possible. 

Assuming that the reachability graph is unavailable, when the system 
is in marking M2, the two possible resource allocation decisions corre­
sponding to transitions t3 and t4 need to be evaluated. By firing the 
transition t3 the system enters marking M3. From this marking a sub­
marking reachability problem is solved in which the final desired marking 
has the place A3 marked again. This problem is solved by using the 
acyclic transformation technique and the SubM Petri net modification. 
Using these two transformations, it can be verified that there exists a 
marking in which the resource allocation decision can be made again. 
However, if the transition t4 is fired, the place corresponding to resource 
allocation decision will not be marked again. Hence, in state M 2, the 
transition t4 should not be fired. 
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Figure 5.1: Deadlock avoidance: An illustration 

Figure 5.2: Reduced Petri net model for the system in Figure 5.1 
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Figure 5.3: Reachability graph for the Petri net model in Figure 5.1 

W1 Machine waiting for AGV to load raw part 
W2 Machine waiting for AGV to unload finished part 
A1 AGV waiting for raw part 
A2 AGV waiting at machine to load raw part 
A3 AGV waiting for resource allocation decision 
A4 AGV waiting to unload finished part from machine 
t1 Load raw part on the AGV and move the AGV to the machine 
t2 Load raw part on the machine from the AGV 
t3 Decision: AGV to wait for finished part at the machine 
t4 Decision: AGV to wait for raw part at the load-unload station 
t5 Unload finished part from the machine on to the AGV 

Table 5.1: Explanation for the places and transitions in the Petri net in 
Figure 5.2 
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Marking/Place Wi W2 Ai A2 A3 A4 
Mo 1 0 1 0 0 0 

Mi 1 0 0 1 0 0 

M2 0 1 0 0 1 0 

M3 0 1 0 0 0 1 
M4 1 0 0 0 1 0 

Ms 0 1 1 0 0 0 
M6 0 1 0 1 0 0 
M1 1 0 0 0 0 1 

Table 5.2: Marking legend for the reachability graph in Figure 5.3 
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Chapter 6 

An Application of Reachability Analysis 

in Discrete Manufacturing 
• • • • • • • • • • • • • • • • • 

Summary 

The reachability problem lends itself very well for decision problems 
involving discrete optimization. This relationship is utilized to for­
mulate the due date quotation problem in a discrete manufacturing 
environment as a reachability problem. To facilitate this, Petri net 
constructs for modeling a production system are developed. The 
advantage of following the Petri net reachability approach for this 
problem is that the analysis also provides an operational road map 
for the system. 

6.1 Introduction 

The increasing availability of system wide inventory information with the 

implementation of supply chain integration software is enabling manu­

facturing enterprises to respond quickly with due date and price quotes. 

These advanced order processing methodologies are being necessitated 

for online buy and sell systems also. The Web interface makes the pro­

cess of buying and selling easier for the consumers by enabling them to 

easily check among the competitors. Hence, decision support systems 

that quote realistic due dates and prices are needed. There is a growing 
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interest in real-time decision making based on the current state of the 

system to deal with custom orders of small sizes. Hence, a real-time 

decision support system would have to coordinate the lead time quota­

tion decisions with scheduling and inventory management systems. The 

decisions would have to take into account the uncertainties in the in­

ventory and the production system and the current state of the system. 

The importance of accounting for the current system status and uncer­

tainties was first noted by Conway [8]. This was much before the advent 

of technology that makes it possible. The approach developed in this 

chapter addresses the due date quotation problem that accounts for the 

current state of the production system. 

Typically, due dates are determined by adding a certain multiple 

of the flow time's standard deviation to the steady state expected flow 

time [23]. The steady state approach works well for stable environments 

with large lot sizes. However, this approach falls short in a dynamic en­

vironment with increasing product variety and small lot sizes. There are -

a number of order due date quoting algorithms in the job-shop schedul­

ing literature based on a number of assignment rules and control meth­

ods [5, 24, 13]. These typically do not consider the current state of the 

system. The performance improvements to be gained by considering the 

system status are well documented in literature [14, 4, 31]. This leads 

to the classification of order due date assignment policies as those that 

consider current system status and those that do not consider the current 

system status [5, 40]. The research described in this chapter, belongs to 

the category that considers the current system status. 

A mathematical programming model is the underlying structure of 

most due date assignment models in the literature. Recently, models 
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that dynamically allocate and reallocate resources have been developed. 

However, in the operational phase, materials are released to the shop 

floor based on a production plan, with very little or no guidance to 

achieve operational objectives as decided by the model. To overcome 

this shortcoming, an integrated approach to the due date assignment 

problem is proposed. This approach, in addition to supporting due date 

decisions, provides an operational road map to achieve those objectives. 

Traditionally, the application of Petri nets to manufacturing systems 

has been in the area of supervisory control to prevent the system from 

entering deadlock states [19, 6, 53], and scheduling in flexible manufac­

turing systems [32, 49]. In general, reachability analysis forms the basis 

of such applications. It is shown here that the reachability analysis lends 

itself well for due date quotation decision support systems also. The cur­

rent state of the production system is mapped to the initial state of its 

Petri net model. Any new order is transformed into an appropriate de­

sired state definition, and reachability analysis is used to determine if 

there exists a sequence of events that makes the order completion pos­

sible. In addition to addressing the decision problem, the analysis also 

provides an operational road map. 

The rest of the chapter is organized as follows. A description of the 

Petri net constructs suitable for a due date quoting model is presented in 

Section 6.2. The use of these constructs for due date analysis is discussed 

in Section 6.3. The modeling approach and the research issues ahead 

are discussed in Section 6.3. 
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6.2 Due Date Quoting Petri Net Model 

A Petri net modeling approach is described in this section, which can be 

used to determine what orders to accept and to recommended order com­

pletion times to facilitate due date negotiations. The models developed 

are for a given plant configuration, the set of currently accepted orders 

and their quoted due dates, and penalty for violating those quoted due 

dates. The model balances the resource requirements for the currently 

accepted orders with that of the new orders and forms the basis of an 

approach to determine the optimal way of processing those orders. The 

approach presented here does not consider the future demand to come. 

However, it is to be noted that consideration of future demand would 

make the resulting solution more robust. This is due to the evaluation 

of the trade-offs not only with the currently accepted orders, but also 

with demand to come. This restriction has been placed since the thrust 

of this chapter is to explore a new comprehensive approach to the due 

date quoting system. 

For the purposes of this analysis, it is assumed that the order process­

ing time at a resource is known. It has been widely acknowledged that 

for decisions over a relatively short time horizon, the processes though 

stochastic by nature can be deemed to be deterministic [20]. 

6.2.1 Notation and Problem Description 

The due-date problem is analyzed here in a myopic setting. The model 

develops and delivers a production plan based on the current system sta­

tus. The granularity of the production plan is directly a function of the 

granularity of the model. Let{()) and(()) represent the set of newly arrived 
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orders and the previously accepted orders in the system, respectively. 

The set of resources in the production system is given by lit Let the 

processing time of the k th processing step of order i be specified by the 

parameter µf k. The mapping function Mi ( k) E ~ specifies the resource 

to be used in the kth processing stage of order i; N(j) <;;; {OU O} spec­

ifies the set of all orders to be processed by resource j; and R(i) <;;; ~ 

specifies the set of all resources required for processing order i. Let 

m =I {OU O} I, nj =I N(j) I, o =I~ I, and Si =I R(i) I-
Each order i E ((]) has a committed due date of Ti. The penalty of 

not satisfying the committed due date is given by the unit cost function 

Pi (penalty for each time the order i is delayed beyond the promised due 

date). The revenue gain from an order i E { ([)) U ((])} is given by h 

6.2.2 Modeling Constructs 

In this section, two modeling constructs that can be used to build the 

model of a system for the purpose of due date quotation analysis are 

introduced. The first construct models a resource, while the second con­

struct is used to track the performance of the system. These constructs 

use the notion of a stage. Whenever a resource completes processing an 

order, the resource is said to have passed from one stage on to the next. 

Alternatively, a resource processes only one order at any of its "stages". 

Hence, in the model, a resource has as many stages as the number of or~ 

ders that need processing at that resource. Using this notion of a stage, 

the two Petri net modeling constructs are defined next. 
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6.2.2.1 Resource Construct 

The Petri net model of a resource has as many stages as there are orders 

that need processing at that resource. At each stage, the construct is 

so designed that only one order could be processed. However, at each 

stage, any of the orders ready to be processed by the resource can be 

selected for processing. This gives rise to five types of places and three 

types of transitions: 

Places: 

• Places to indicate that an order is available to be processed 

by a resource at each of i.ts stages. 

• Places to indicate the availability of the resource to process 

an order. 

• Places to indicate that an order is being processed by the 

resource at each of the stages. 

• Places to indicate that an order has arrived at the resource, 

but is yet to complete its required processing. 

• Places to indicate that an order has completed its required 

processing at the resource. 

Transitions: 

• Transitions that indicate the start of processing of an order by 

a resource in a stage. If an order to be processed along with 

the resource is available, this transition would be enabled, and 

the firing of this transition would indicate the start .of order 

processing by the resource. 
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• Transitions that indicate the completion of processing of an 

order by a resource in a stage. When the place corresponding 

to order processing by the resource is populated, this transi­

tion would be enabled, and the firing of this transition would 

indicate the completion of the order processing. 

• Transitions that move an unprocessed order from one stage 

to another. This transition is essential because, at any given 

stage of a resource, only one order can be processed. It might 

be better to process order A ahead of B when both are com­

peting for the resource, and these transitions would be used 

to move B to the next stage of the resource. 

The combination of these places and transitions gives rise to the 

following sub-constructs, which are then assembled to form the resource 

construct. 

Start Processing Sub-construct: In this sub-construct (see Figure 

6.1), a waiting order and available resource enables the transition 

that indicates the start of order processing by the resource. By 

executing the transition, the order and resource are matched, and 

the place indicating the progress of order processing is populated. 

End Processing Sub-construct: Here, when an order is being pro­

cessed by a resource, the transition corresponding to the comple­

tion of order processing is enabled (see Figure 6.2). When fired, 

the places corresponding to processed orders and availability of the 

resource are populated. 
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Figure 6.1: Start processing sub-construct 

Figure 6.2: End processing sub-construct 
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Figure 6.3: Order movement sub-construct 

Order Movement Sub-construct: This sub-construct contains tran­

sitions that would be used to move the processed and unprocessed 

orders through to the next stage (see Figure 6.3). This makes an 

unprocessed order available for processing by the resource at one 

of its following stages. 

Definition 6.2.1 The Petri net construct of a resource j E R is a 3-
tuple, RPNj = ( Pj, Tj, Fj), where 

1. Pj = {Plj,P2j,P3j,P41,P4j} is a collection of place sets, where 

(a) Plj = {pl11;j,Pl21,j, ... ,Plm1,j,Pl12,j, ... ,Plmni,i' 
pll{nj+l),j, · · · ,Plm(nj+l),j} 

is a set of m(nj + 1) places, with plil,j indicating order i's 
availability to be processed by resource j at resources 's l th 
stage, and the (nj + l)th stage corresponds to a finished order 
at resource j 

(b) P2j == {p21,j, p22,j, ... , p2ni ,j} is a set of nj places, with p21,j 
indicating the availability of resource j at stage l 

{c) P3j = {p3n,j,P321,j, ... ,P3ml,i,P312,j, · · · ,P3m(nj-1),j, 
p31nj,j,P32nj,j, · · · ,P3mnj,j} 

is a set of mnj places, with p3il,j indicating order i being 
processed by resource j at its l th stage 
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(d) P4j = {p4~,j,p4;,j, · · · ,p4:n,j} is a set of m places, with p4~,j 
indicating the presence of unprocessed order i in resource j 

(e) P4j = {p41,j,P42,j, · · · ,P4m,j} is a set of m places, with p4i,j 
indicating the completion of processing of order i in resource 
j 

2. Tj = {Tlj, T2j, T3j} is a collection of transition sets, where 

(a) Tlj = {tln,j, tl21,j, ... , tlm1,j, tl12,j, ... , tlm(nrl),j, 
tllnj,)' tl2nj,j, · · ·, tlmnj,J} 

is a set of mnj transitions, with tlil,j indicating the start of 
processing of order i by resource j at its lth stage 

(b) T2j = {t211,j, t221,j, ... , t2ml,j, t212,j, ... , t2m(nj-1),j, 
t2lnj ,j, t22nj ,j, ... , t2mnj ,j} 

is a set of mnj transitions, with t2il,j indicating the comple­
tion of processing of order i by resource j at its lth stage 

(c) T3j = {t3n,j, t321,j, ... , t3ml,j, t312,j, · · · , t3mni,j} is a set of 
mnj transitions, with t3il,j indicating the movement of order 
i in stage l of resource j to stage ( l + l) of resource j 

3. Fj ~ (Pj x Tj) U (Tj x Pj) is a set of directed arcs connecting the 
places and transitions, expressed in terms of the pre and post sets 
of the places p E P are as follows. 

(a) pl:z,j = {tlil,j, t3il,j}; pl:nj,J = {tlinj,j}; p2l,j = Tlj; p3:l,j = 
{ t2il,j}; 

(b) •plil,j = t3i(l-l),j; •plil,j = { t2il,j', t2i2,j', · · · , t2inJ ,j'}, where 

j' = Mi(k - 1), nj, =J N(j') J and j = Mi(k); •p21,j 
{0}; •p2z,j = {t21(l-l),j, t22(Z-l),j, · · · , t2m(l-1),j}; •p3il,j 
{tlil,j};9p4i,j = {t2il,j, t2i2,j, · · · , t2inj,j}; 
p4~7j = { tlil,j, tli2,j, · · · , tlinj ,j} 

6.2.2.2 Performance Tracking Construct 

The resource construct is designed to capture the operational states of 

a resource. However, the decisions related to the operational plan need 
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to be taken by considering the system performance implications of the 

sequence. For this purpose, the performance tracking construct that con­

siders the relative trade-offs between the different orders to be processed 

is developed. 

System performance is determined by tracking the time spent by the 

orders in the system. In the resource construct, the place p4i,i E P4j 

would be marked if the order i has finished its processing in resource 

j. If an order is waiting to be processed by the resource j, then one 

of the places in plil,j E Plj and the place p4~,j E P4'.i will be marked. 

This observation is used in accounting for the order waiting times in a 

resource. 

Places: 

• Places to track the time spent by an order at a resource. 

• Places to track the processing time of an order in a resource 

as waiting time for the other orders in line to be processed by 

the resource. 

Transitions: 

• Transitions that evaluate the tardiness of an order by applying 

the cost function that, 

- If the order has been already accepted, it compares the 

committed completion time with its new estimated com­

pletion time under the new plan being developed. 

In Petri net terminology, this construct is defined as follows. 
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Definition 6.2.2 The performance tracking construct of all the orders 
is a 4-tuple, PPN = (P,T,Fp, Wp), where 

1. P = {P5, P6, P7, P8, P9} is a collection of places where 

(a) P5 = {p51,p52, · · · ,P5m,p5*} is a set of m + 1 places, where 
p5i keeps track of the time spent by order i before its comple­
tion and p5* is a place that tracks the overall system perfor­
mance 

(b) P6 = {P61, P62, · · · , P6n} is a collection of sets of places, 
where P6j = {p612,j,p613,j, · · · ,p61ni,J} is a set of nj places, 
where the place p6ii' ,j, i =I- i' in conjunction with the place p4~,j 
is used to determine the contribution of the processing time of 
order i' towards the waiting time of order i 

(c) P7 = {p71,p72, · · · ,P7m} is a set of m places, where p7i is 
used to represent the current promised due date of order i 

{ d) P8 = {p81, p82, · · · , p8m} is a set of m places used for deter­
mining the cost of any delays for order i 

{e) P9 = {p91,P92, · · · ,P9m} is a set of m places, where p9i is 
used to represent the revenue from order i 

2. T = {T5, T6, T7, T8, T9, TlO} is a collection of transitions where 

(a) T5 = {T51,T52,··· ,T5n} is a colletion of sets of transitions, 
where T5J = {t512,J, t51a,J, · · · , t51n1 ,J, t521,J, t523,J, · · · , t5nj(nrl),J} 
is a set of nj ( nj - 1) transitions where t5ii' ,j used to evaluate 
the waiting time contribution of order i' for order i at resource 
j 

(b) T6 = { t61, t62, · · · , t6m} is a set of m transitions which is used 
to determine the difference between the current order due date 
and the promised order due date, if any 

{c) T7 = {t71,t72, ... ,t7m} is a set ofm transitions which will 
be used, when for order i, the promised order due date is later 
than the current due date of the order 

( d) T8 = { t81, t82, .. · , t8m} is a set of m transitions which will 
be used, when for order i, the current due date is later than 
the promised due date 
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(e) T9 = {t91,t92,··· ,t9m} is a set ofm tmnsitions which will 
be used for determining the cost for any delays for order i 

(f) TIO= {tI01,tI02,··· ,tIOm} is a set ofm tmnsitions which 
will be used for determining the net revenue from order i 

3. Fp ~ (P5 x T) U (T x P5) is a set of directed arcs connecting the 
places and tmnsitions expressed in terms of the pre and post sets 
of the places p E P5 as 

(a) p4'i,j• = {T5r5 .,t6i}; p7i = {t6i,t7i}; p5i = {t6i,t8i}; p8i = 
{t9i};p9! = {t9:, tIOi} 

{b} •p6ii',j = {t2i'l,j,t2i'2,j,""" ,t2i'nj,j}; •p4'i,j = {T5r8 i,t6i} 
•psi = {T5ri, T5r2 , • • • , T5rs.}; •psi = { t8i}; p5* = {TIO} 

' 
where rk = Mi(k) 

4. WP : Fp ---+ {l, 2, 3, ... } is a weight function that assigns a positive 
integer to all directed arcs in Fp, and is defined as follows 

WP ( t5ii' ,j, p5i) 

Wp(t8i, p8i) 

µf,k, where Mi,(k) = j 
pi 

Note that without any loss of generality, µfk and Pi can be assumed 

to be integer valued. 

6.2.3 Construct Properties 

The resource and performance tracking constructs have some important 

structural properties that are exploited for "optimizing'' due date deci­

sions in the next section. 

Property 6.2.1 The resource and performance tmcking constructs are 
acyclic. 

This is a very important property that the constructs possess, be­

cause acyclic Petri nets are one among the classes of nets for which both 

necessary and sufficient conditions for reachability are known. As discus­

sions in an earlier chapter (Chapter 2) indicate, for an acyclic Petri net, 
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the existence of a non-negative firing count vector for the state equation 

is sufficient for reachability. Hence, the acyclic nature of the constructs 

enable the use of known reachability results. 

Property 6.2.2 The set of places (Plj(i) U P3j(i)) where PXj(i) ~ 
PXj: Vpxi'l,j E PXj(i),i = i', forms a place invariant set. 

The implication of this property is that, whenever an order enters 

the confines of a resource, its presence will be indicated at either one of 

the waiting areas of a stage Plj(i) or processing areas P2j(i). If one 

of these places is marked, then it indicates the fact that the order has 

already arrived at the resource. When the order is processed, the places 

in the set P4j would be marked. Hence, when places in both the sets 

have been marked, it indicates that the order has already arrived at the 

resource and has been processed by it. 

6.2.4 Modeling Illustration 

Next, the process of modeling of a due date quotation problem using the 

Petri net constructs defined above is illustrated. 

Example 6.2.1 Consider a production system with two orders (Q) 
{01} and O = {02}. The orders 01 require processing by resources 
R1 and R2 in that order, while 02 needs to be processed by resource R2 
and R1 in that order. The resource construct for resource R1 is as shown 
in Figure 6.4. The construct has two stages because both the orders re­
quire processing by resource R1. A portion of the performance tracking 
construct is as shown in Figure 6.5. Specifically, the portion depicted in 
this figure represents the performance tracking mechanism for order 01. 

From the graphical model of resource construct of resource R1 in Fig­
ure 6.4 it can be seen that at each stage there is a set of places to hold 
orders as input for that stage {plil,1). Also, there is a set of places to hold 
the orders after being processed by the resource. If the order is processed 
by the resource at its lth stage, then the transitions tlil,1 and t2il,1 are 
executed. If an order is not processed by the resource at stage l, then the 
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order can be moved to the next stage using transition t3il,l · The places 
p4i,l are used to count the number of times an order is processed by the 
resource. This is essential to ensure that a processing step of an order 
is executed only once. The utility of this would be more apparent in the 
next section while discussing the optimization using reachability analysis. 

In the performance tracking constructs depicted in Figures 6. 5, 6. 6, 
and 6. 7, the place p51 is used to keep track of the time spent by order 
01 in the system before completion. The places p4~,j is used to deter­
mine if an order has reached resource after passing through the previous 
processing step. The place p4i,J tracks an order that has completed its 
processing requirements in resource j. The first two parts of the per­
formance tracking constructs shown in Figures 6. 5, and 6. 6 together 
track the total waiting time for an order in a ~source. When the order 
has been processed completely, the place p51 would represent the total 
time spent by the order in the system. Using this information, the per­
formance tracking construct in Figure 6. 7 computes the overall system 
performance using the revenue from the order and penalty based on the 
promised due date, if any. 

6.3 Problem Formulation 

The resource construct and the performance tracking construct defined 

in Section 6.2.2 provide the capability to model the process as well 

as the performance trade off among the different orders in the system. 

For a given collection of orders, the different resource orders are con­

structed and are merged such that for a given order, the output from 

the last stage of eh processing step becomes the input to the first stage 

of the k + l th processing step of the order. With the Petri net model 

thus constructed, the due date assignment problem can be translated 

into a reachability problem such that all the orders are completed with 

the maximum number of accumulated tokens in the system-wide perfor­

mance tracking place p5*. In the mathematical programming world this 
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Figure 6.4: Example - Resource construct 
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Figure 6.5: Example - Performance tracking construct 1 

Figure 6. 6: Example - Performance tracking construct 2 
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Figure 6. 7: Example - Performance tracking construct 3 

is equivalent to the maximization of the objective function. Next, the 

due date quotation problem is formulated in terms of the reachability 

terminology. 

6.3.1 Due Date assignment as a reachability problem 

The current state of the system is represented by marking the appropri­

ate places of the Petri net model. From this given state, the problem 

is to determine the sequence of processing steps that would change the 

system state to one in which all the orders have been processed with max­

imum number of tokens in place p5*. The due date quotation problem 

formulated as a reachability problem is defined as follows. 

• 85 • 



Definition 6.3.1 Given a Petri net model of a due date assignment 
problem defined by a collection of resource constructs and performance 
tracking constructs, determine a transition firing sequence u E .C(Mo) 
that maximizes Md(p5*) such that Mo[a >- Md where, 

1. Initial Marking: 
Mo(pli1,j) = 1, Vi E {OU O}, where j = Mi(l); 
Mo(p21J) = 1, Vj E IR; 
AU other places are empty . 

. 2. Final Marking: 
Md(Plini,j) = 1, Vi E {OU O}, where j = Mi(si); 
Md(p5*) = M*, where M* is the total cost of the processing plan 
specified by u 

Md(p4.:,j) = 1, Md(P71) = Ti, Md(P9i) = Ii All other places are 
empty. 

Note that in the case of partially completed orders that are currently 

in the system, the processing times are adjusted for the remaining pro­

cessing times. 

A suitable process plan for a given set of orders has to be determined 

iteratively so that the net revenue of executing the process plan given 

by the marking Md(p5*) is maximized. The m~king in place p5* is 

indicative of the net revenue from processing the orders (revenue minus 

cost associated with the processing plan, which in turn is a function 

of the order completion times). Hence, a process plan that leads to the 

maximum number of markings in the place p5* is desirable. The iterative 

process of identifying the best process plan would be aided if the number 

of tokens in the place p5* could be bounded. If none of the orders incurs 

any cost in the process plan, then the number of tokens in p5* would be 

sum of all the revenues from processing the orders. Hence the iterative 

process could be set up to begin with Md(p5*) = Z:::i Ji, and decrease 
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Md(p5*) by one for each iteration if a valid firing sequence is not found. 

The reader is referred to the discussions in the earlier chapters that deal 

with the actual mechanics of reachability analysis (see Chapters 3 & 4). 
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Chapter 7 

Summary and Research Contributions 
• • • • • • • • • • • • • • • • • 

Summary 

This chapter summarizes the major research findings and the re­
search problems that were brought to the forefront by this disserta­
tion research. The areas that need to be explored in future research 
activities are also discussed. 

7.1 Summary 

The main research goal of this dissertation is to explore approaches for 

deciding reachability in general Petri nets. A formal introduction of the 

reachability problem is provided in Chapter 2. Also, Chapter 2 reviews 

the various approaches for deciding reachability that are available in 

published literature. In Chapter 3, a new acyclic transformation tech­

nique is developed that enables the application of the known sufficient 

condition for reachability in acyclic Petri nets to general Petri nets under 

certain conditions. Specifically, the application of the suffi.dent condi­

tion of reachability in acyclic Petri nets to any general Petri net with 

known firing count vector is discussed. Further, the issues involved in 

using this approach for Petri nets with unknown firing count vectors are 

presented. Chapter 4 discusses the challenges in obtaining a firing count 
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vector for a general Petri net reachability problem. More specifically, 

the presence of the free variables in the solution to state equation is the 

source of uncertainty in determining the firing count vector. Chapter 4 

also explores ways to reduce the number of free variables in the solution 

to the state equation. 

Chapter 5 presents some of the extensions of the reachability results 

to related problems. First, the sub-marking reachability problem is dis­

cussed. The notion of a SubM Petri net for the purpose of sub-marking 

reachability analysis is introduced. The relationship of the sub-marking 

reachability problem to a full-marking reachability problems in its SubM 

Petri net is established. The preservation of the acyclic nature of a net 

in its SubM format is shown. Chapter 5 also includes discussions on the 

impact of the reachability results on deadlock avoidance problems. 

Finally, an application of the reachability analysis in the discrete 

part manufacturing environment is presented in Chapter 6. Petri net 

modeling constructs for the du~ate quotation problem are developed, 

and these lay the foundations for a new approach to this important 

problem. It is especially valuable because, the reachability analysis based 

approach provides an operational road map for the production system 

in addition to recommending due dates for the orders. 

7.2 Research Contributions 

The major contribution of this research is the development of a new 

acyclic transformation technique using net expansion that enables the 

use of the sufficient condition for reachability in acyclic Petri nets in 

the context of a general Petri net under certain conditions. This acyclic 
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transformation approach converts any general Petri net into an acyclic 

Petri net of a given number of stages. The net result is that for a general 

Petri net reachability problem, if the number of events that changes 

the current state to the desired state is known, the sufficienct condition 

for the reachability problem can be stated in terms of a related acyclic 

Petri net. In addition, the acyclic transformation based net expansion 

technique has the added advantage of directly delivering the transition 

firing sequence. 

Another significant contribution of this research is in showing the 

relationship between the sub-marking reachability problem and a full 

marking reachability problem. Specifically, a SubM Petri net is defined 

that can be used to formulate the sub-marking reachability problem of 

the original Petri net as a reachability problem of the SubM Petri net. 

Further, the SubM Petri net retains the acyclic property of the original 

Petri net. 

The various research contributions are summarized below: 

• The known sufficient condition for reachability for acyclic Petri 

nets. ( a sub-class) is made applicable to all Petri nets under cer­

tain conditions with the introduction of an acyclic transformation 

approach. 

• Introduced some experimental approaches to reduce the uncer­

tainty in determining the transition firing count vectors for a reach­

ability problem. 

• Established a relationship between the sub-marking reachability 

problem and a full-marking reachability problem. In fact, it is es­

tablished that the sub-marking reachability problem of a Petri net 
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could be reformulated directly as full marking reachability problem 

of its SubM Petri net. 

• Modeling constructs are developed for formulating the due-date 

quotation problem in a discrete part manufacturing environment 

as a Petri net reachability problem. This lays the foundation for a 

new, comprehensive approach to the due date quotation problem. 

7 .3 Future Research Directions 

Practical application of the acyclic transformation approach depends on 

our ability to exactly determine or bound the required number of stages 

of net expansion. The work on invariant-free Petri nets in Chapter 4 is a 

step in that direction. Specifically, two approaches for reducing the null 

space of the incidence matrix are presented. This has a direct implication 

on the number of free variables in the solution to the state equation, and 

hence, on bounding the required number of stages of net expansion. The 

application of these two approaches, namely (1) use of base transitions 

as stabilizers, and (2) multi-purpose sink transitions as stabilizers need 

to be explored further. This research characterized their use based on 

the general solution to the state equation. Another approach could be 

categorize their usage for specific classes of Petri nets. 

On the application of reachability analysis, a novel application to the 

due date quotation problem in a manufacturing system is explored. In 

addition to recommending order due dates, this approach has the added 

advantage of directly providing the operational road map for the sys­

tem. The power of Petri nets provides the capability to model different 

business situations as well. An example of such a business situation is 
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when order A needs to be given priority over order B. Research has been 

initiated in this direction by defining Petri net modeling constructs for 

this problem. 

The directions for future research can be summarized thus: 

• Exploration of invariant free Petri nets for bounding the required 

number of stages of expansion for a reachability problem, and any 

new approaches intended for this purpose. 

• Testing the Petri net modeling constructs developed herein for the 

order due date quotation problem in practical situations. 

- The modeling constructs assume that the order processing 

times are deterministic. Modifications to the constructs to 

handle stochastic processing times would be a valuable future 

research effort. 

- Computational studies using these modeling constructs would 

increase their potential applicability in factory decision sup­

port systems. 
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