
AN ACYCLIC TRANSFORMATION TECHNIQUE FOR

THE REACHABILITY ANALYSIS OF PETRI NETS

By

PARTHASARATHY RAMACHANDRAN

Bachelor of Engineering
University of Madras

Madras, India
1994

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
DECEMBER 2002

AN ACYCLIC TRANSFORMATION TECHNIQUE FOR

THE REACHABILITY ANALYSIS OF PETRI NETS

Thesis Approved:

"

• ii •

Acknowledgments
• • • • • • • • • • • • • • • •

I wish to express my sincere thanks to:

my adviser Dr. Manjunath Karnath for his encouragement,
guidance and continued efforts at keeping me focused;

the doctoral committee members, Dr. David B. Pratt, Dr.
Kenneth E. Case, and Dr. Hon Shiang Lau for their
valuable inputs to this dissertation; and

family and friends for their support and encouragement.

Also, I would like to express my gratitude to the Center for Computer
Integrated Manufacturing and the School of Industrial Engineering and
Management at Oklahoma State University for the generous financial
support they provided during the course of this dissertation. Specifically,
I would like to acknowledge the funding from two NSF grants: A Mod­
eling Environment to Support Rapid Reconfiguration of Manufacturing
Systems (DMI-9400572) and Curriculum for Integrating Manufacturing
Enterprise Decisions (EEC-9527493).

Oklahoma State University

December 2002

PARTHASARATHYRAMACHANDRAN

iii

Table of Contents
• • • • • • • • • • • • • • • •

Chapter 1 Introduction
1.1 Basic Definitions and Notations .
1.2 Properties of Petri nets

1.2.1 Behavioral Properties ..
A. Reachability
B. Cover ability
C. Boundedness
D. Liveness ...
E. Reversibility

1.2.2 Structural Properties
F. Structural Boundedness
G. Conservativeness ..
H. Place Invariant . . .
I. Transition Invariant
J. Structural Liveness

1.3 Modified Petri nets
K.
L.

1.4 Document Outline

Timed Petri nets .
Colored Petri nets

Chapter 2 The Reachability Problem
2.1 Introduction
2.2 Different Approaches to the

Reachability Problem . . .
2.2.1 Reachability Graph.
2.2.2 Reachability Criteria .

2.2.2.1 Marked Graphs
2.2.2.2 Free Choice Nets .
2.2.2.3 Acyclic Petri nets

2.2.3 Heuristic Procedures
2.2.3.1 Genetic Algorithm Approach
2.2.3.2 Graph Search Algorithm

2.2.4 Net Unfolding .
2.3 Research Goals

iv

.....

1
3
7
7
7
8
8
8
8
8
9
9
9
9
9

10
10
10
11

13
13

14
14
16
17
18
18
19
19
21
22
24

Chapter 3 An Acyclic Transformation Technique 28
3.1 Introduction 28

3.1.1 Net Expansion 29
3.1.2 Relationship between the Reachability Sets 33

3.2 Sufficient Condition for Reachability 39

Chapter 4 Reachability Analysis Using Net Expansion 41
4.1 Introduction · . . . 41
4.2 Reachability Analysis Using Net Expansion 42
4.3 Spurious Solutions and Reachability 44

4.3.1 Source of system degeneracy 46
4.4 Invariant Free Petri Net 49

4.4.1 Utilizing Base Transitions . . 52
4.4.2 Multi-purpose Sink Transitions . 53

4.4.2.1 Summary 54
4.5 Reachability Analysis Using Net Expansion Revisited 55

Chapter 5 Some Related Problems
5.1 Submarking Reachability ..

5.1.1 SubM Petri Net
5.1.2 Submarking Reachability Criteria.

5.2 Deadlock Avoidance Problem

Chapter 6 An Application of Reachability Analysis in Discrete

57
57
58
60
62

Manufacturing 68
6.1 Introduction 68
6.2 Due Date Quoting Petri Net Model 71

6.2.1 Notation and Problem Description 71
6.2.2 .Modeling Constructs 72

6.2.2.1 Resource Construct . . . 73
6.2.2.2 Performance Tracking Construct 77

6.2.3 Construct Properties . 80
6.2.4 Modeling Illustration 81

6.3 Problem Formulation 82
6.3.1 Due Date assignment as a reachability problem 85

Chapter 7 Summary and Research Contributions
7.1 Summary
7.2 Research Contributions ..
7.3 Future Research Directions

• V •

88
88
89
91

List of Tables
• • • • • • • • • • • • • • • •

Table Page

3.1 Marking legend for the reachability trees in Figure 3.2 35

4.2 State equation classification 45

5.1 Explanation for the places and transitions in the Petri net
in Figure 5.2 . 66

5.2 Marking legend for the reachability graph in Figure 5.3 67

vi

List of Figures
• • • • • • • • • • • • • • • •

Figure

1. 1 A Petri net example
1.2 A Petri net model of a chemical reaction .

2.1 Subsequence exchange crossover (SXX).

3.1 One-stage net expansion example

Page

4

6

20

30
3.2 Reachability trees for the one-stage net expansion example 35

4.1 Petri net example to demonstrate spurious solutions to
state equation 46

4.2 An illustration for place invariant analysis 48

5.1 Deadlock avoidance: An illustration ... 65
5.2 Reduced Petri net model for the system in Figure 5.1 65
5.3 Reachability graph for the Petri net model in Figure 5.1 66

6.1 Start processing sub-construct 75
6.2 End processing sub-construct . 75
6.3 Order movement sub-construct 76
6.4 Example - Resource construct . 83
6.5 Example - Performance tracking construct 1 84
6.6 Example - Performance tracking construct 2 84
6.7 Example - Performance tracking construct 3 85

vii

'J
9'{

!)1

PN
m

n
p

t
•p, p•

"t, t•
M

M(p)
r(M)
A
a

.C(M)

1?,(M)

II
u

I
Z(m)
XT

JXI

Nomenclature
• • • • • • • • • • • • • • • •

Set of all Integers
Set of all Real numbers
Set of all Natural numbers

A Petri net
Number of places
Number of transitions
A place.
A transition
Pre-set and post-set of place p

Pre-set and post-set of transition t
A vector representing the number of tokens in all the places of a
Petri net; also referred to as a marking
Number of tokens in place pin marking M
Set of enabled transitions in marking M
Incidence matrix of a Petri net
A valid transition firing sequence
Set of all valid transition firing sequences from
marking M
Set of all reachable markings from marking M
by following all (valid) transition firing sequences in .C(M)
A place invariant set of a Petri net
The ~et of all place invariant sets of a Petri net
A transition firing count vector

An identity matrix
A zero vector of dimension m

Transpose of vector x

Cardinality of set X
X(x: y) Elements of vector X from position x to position y

/\ Logical AND
V Logical OR

viii

Chapter 1

Introduction
• • • • • • • • • • • • • • • • •

In 1962, C. A. Petri developed a modeling tool for the analysis of dis­

crete event dynamic systems (DEDS), which has since then been called

Petri nets. The utility of Petri nets for describing and studying concur­

rent, asynchronous, distributed, and stochastic systems has been widely

recognized [46, 41]. Petri nets provide a strong mathematical basis for

studying these systems, along with a simple yet powerful graphical rep­

resentation. As Murata [41] says,

" ... Petri nets can be used by both practitioners and theoreti­
cians. They provide a powerful medium of communication
between them ... "

Petri nets provide an elegant way ofrepresenting a DEDS in terms of

its events, and the conditions affecting and affected by those events. Petri

nets have been successfully used in the analysis of both the structural and

behavioral properties of a variety of DEDS. For example, Petri nets have

been used to analyze software systems [55], distributed database systems

[54], communication protocols [12], manufacturing systems [11], compiler

& operating systems [1], formal languages [35], and logic programs [42].

Underlying many of the successful applications is the ability of Petri nets

to determine if there exists a sequence of events that would transform

the system state from the current one to a desired one, and it is the well

1

knownreachability problem. Reachability, though decidable, is still a NP­

complete problem [18]. Algorithms with polynomial time complexity to

determine reachability are not available for a general Petri net model.

In fact, even sufficient conditions for reachability short of enumerating

the state space are yet to be determined for a general Petri net. Some

special net structures have been identified, which when present facilitate

the identification of sufficient conditions for reachability. Acyclic Petri

nets are a class of nets for which necessary and sufficient conditions for

reachability exist. It has been shown that the existence of a non-negative

integer solution to the state equations governing the net dynamics is a

necessary and sufficient condition for reachability in acyclic nets [25].

The objective of this research is to explore the development of reach­

ability analysis techniques for a general Petri net. Towards this end, a

formal transformation procedure is developed, to expand a Petri net into

an acyclic net, and hence, enable the use of known sufficient conditions

for reachability that are available for acyclic Petri nets. Though this re­

sult is appealing, it has a restriction in that it requires a priori informa­

tion about the number of stages of expansion. Hence, this research also

explores means to determine the required number stages of expansions

for a given reachability problem. These issues would become apparent in

later discussions. In light of these new results, this research also explores

some problems related to reachability such as sub-marking reachability

and deadlock avoidance. Some potential applications of the new results

are also presented. The order due date determination problem is studied

by developing Petri net modeling constructs and formulating the order

due date determination problem as a reachability problem.

Next, Petri nets are introduced with the objective of establishing the

• 2 •

notation used in later chapters. Some of the basic properties of a Petri

net needed in later discussions are presented as well.

1.1 Basic Definitions and Notations

A Petri net is a directed bipartite graph, with two types of nodes called

places and transitions, and directed arcs connecting the places to tran­

sitions and vice versa. An arc is associated with a non-negative integer

called its multiplicity. In Petri net models of DEDS, a place represents

a condition, and a transition represents an event. Events represented by

transitions can be immediate (instantaneous) or timed (see Section K.),

the execution of which is controlled by tokens. Tokens reside in places,

and their movement from one place to another captures the dynamics

of the system. The movement of tokens is regulated by transitions and

the directed arcs connecting the places and transitions. The marking of

a Petri net is the number of tokens in each of its places1. Graphically,

places are represented by circles, transitions by bars and tokens by dots.

Definition 1.1.1 A Petri net is a 5-tuple, PN
where

1. P = {p1,P2, ... ,Pm} is a set of m places

2. T = {ti, t2, ... , tn} is a set of n transitions

(P, T, F, W, Mo),

3. F ~ (P x T) U (T x P) is a set of directed arcs connecting places
and transitions

4. W : F - {1, 2, 3, ... } is a weight function2 that assigns a positive
integer to all the directed arcs in F, and

5. Mo : P - {O, 1, 2, ... } is the initial marking.

1The terms "marking'' and "state" could be used interchangably
2The default arc weight is 1, and is often not indicated in graphical representations

• 3 •

The weights of arcs from place Pi to transition t1 and from transition

t1 to place Pi is represented by w(pi, t1) and w(tj,Pi), respectively. The

pre and post-sets of transition t E T are •t = {plw(p, t) > O} and t• =

{plw(t,p) > O}, respectively. Similarly, the pre and post-sets of place

p E Pare •p = {tlw(t,p) > O} and p• = {tlw(p, t) > O}, respectively.

The state of a Petri net is the marking M : P - {O, 1, 2, ... }, a non­

negative, integer-valued vector that gives the number of tokens in each

place. The i th component of the marking vector, denoted by M(pi),

represents the number of tokens in place Pi· The dynamic behavior of

DEDS is captured in a Petri net model by changing the marking vector

in accordance with the transition enabling and firing rules.

Example 1.1.1 Consider the Petri net with four places and three tran­
sitions shown in Figure 1.1. The pre-set of place Pl is •p1 = { t3},
while its post-set is Pi = { t1}. Similarly, the pre-set of transition t1 is
•t1 = {Pl,P3}, while its post-set is ti = {p2}. Note that the arc weights
of one are not shown.

Figure 1.1: A Petri net example

• 4 •

Definition 1.1.2 A transition t is said to be enabled in marking M, if
all the places in its pre-set have at least as many tokens as the weights of
the arcs connecting those places to the transition, i.e., ifVp E •t, M(p) ~
w(p, t), then the transition t is said to be enabled.

In a given marking M, the set of all enabled transitions_ are repre­

sented by I'(M). An enabled transition ti E r(M), may or may not

fire.

Definition 1.1.3 Firing an enabled transition changes the token distri­
bution by removing as many tokens as the arc weights from all its pre-set
places and adding as many tokens as the arc weights to all its p,ost-set
places, i.e., by firing t E r(M), the change in token distribution from
M to M is given by,

{
M(p) - w(p, t),

M(p) = M(p) + w(t,p),
M(p),

V p E •t
V p Et•
V p (/. et U t•}

(1.1)

Example 1.1.2 Consider the chemical reaction: 2H + 0 ---+ H20.
This reaction could be modeled by a Petri net whose places represent the
availability of hydrogen, oxygen, and water. The transition represents the
chemical reaction. A weight of two for the arc connecting the place repre­
senting hydrogen and transition representing the chemical reaction would
impose the condition that two atoms of hydrogen are required for the re­
action. Figure 1.2(a) shows the Petri net before executing the transition,
while Figure 1.2(b} shows the Petri net after executing the transition {41}.

These changes in the state of the system can be represented in an

algebraic form using the state equation given by,

(1.2)

• 5 •

Figure 1.2: A Petri net model of a chemical reaction

where, A= [aij] is them x n incidence matrix, and Uk E IJtn is the firing

count vector or the control vector. The firing count vector by definition is

a non-negative integer vector, with the /h element indicating the num­

ber of times transition ti is to be fired. The incidence matrix describes

the place to transition marking relationship in terms of the arc weights

connecting them, and the (i,j) th entry is given by aij = a0 - at, where

at = w(Pi, ti) and a0 = w(tj,Pi), The control vector uk is a vector of

(n -1) zeroes and an entry of one in the /h position indicating that the

transition ti fires at the kth firing. Note that in the incidence matrix,

self-loops3 would not be reflected.

Definition 1.1.4 A Petri net is said to be pure if it does not have any
self-loops, i.e., in a pure Petri net, 'vp E P, {•p n p•} = 0.

Whenever the state equation is discussed in this dissertation, it is

assumed that the net model is pure. Note that a net model can be made

pure by adding a dummy transition and a dummy place.

3a place in both the pre-set and post-set of a transition constitutes a self-loop

• 6 •

1. 2 Properties of Petri nets

The analysis of a system modeled by a Petri net is facilitated by two

types of properties - those which depend on the initial marking called

the behavioral properties, and those which are independent of the ini­

tial marking called the structural properties. A more detailed discussion

on these properties can be found in an excellent survey paper by Mu­

rata [41].

1.2.1 Behavioral Properties

Behavioral properties depend on the initial marking of the net, imply­

ing that for the same Petri net different initial markings could lead to

different behavioral properties.

A. Reachability Reachability is one of the basic properties for study­

ing the dynamic behavior of any DEDS. A marking Md is said to be

reachable from a given initial marking Mo, if there exists a sequence

of transition firings that transforms Mo to Md. A firing sequence is

denoted by,

(1.3)

and the marking Md is said to reachable from Mo by a, which is denoted

by Mo[a >- Md. Given an initial marking Mo, the set of all reachable

markings is denoted by 'R(M 0), which is the set of all markings generated

by all valid transition firing sequences represented by .C(Mo).

The reachability problem can now be restated as one of finding if

Md E 'R(M0). It has been shown that the reachability problem is

• 7 •

indeed decidable although it takes exponential space and time to verify

in the general case [36), [29), [33). For restricted classes of Petri nets,

reachability is decidable in polynomial time, further discussion of which

is deferred to Chapter 2.

B. Coverability A marking of a Petri net is said to be covered if

there exists another marking such that, for all places, the number of

tokens in a place in the second marking is greater than or equal to the

number of tokens in the same place in the covered marking, i.e., M is

said to be covered by M' if Vp E P, M'(p) 2'.: M(p).

C. Boundedness A Petri net is said to be bounded if the number

of tokens in each place does not exceed a finite number for any marking

reachable from the initial marking, i.e., if Vp E P, M(p) S k for every

ME 'R(M0). A Petri net which is I-bounded is said to be safe.

D. Liveness A Petri net is said to be live (or equivalently Mo is

said to be live for the Petri net) if from any marking M E 'R(M 0) it

is ultimately possible to fire any transition either immediately or after

progressing through a sequence of transition firings.

E. Reversibility A Petri net is said to be reversible in an initial

marking if from each reachable marking from the initial marking, it is

possible to reach the initial marking, i.e., VM E 'R(M 0), Mo E 'R(M).

1.2.2 Structural Properties

Structural properties are those that depend only on the topology of the

net, and are independent of the initial marking. Hence, these properties

• 8 •

can often be characterized as a function of the incidence matrix.

F. Structural Boundedness A Petri net is said to be structurally

bounded if it is bounded for any finite initial marking, i.e., for any finite

initial marking Mo, \:/ME R(M0), :lk < oo: M(p) < k, \::Ip E P.

G. Conservativeness A Petri net is said to be conservative if for

any finite initial marking, the weighted of sum of tokens in all the

places is a constant in all its reachable markings, i.e., :ly E In : \:/M E

R(M0), MTy = Mi y = k. However, the weighted sum might be differ­

ent for different initial markings.

H. Place Invariant A set of places of a Petri net is called its place

invariant if the weighted sum of tokens in those places remains a constant

in all the reachable markings, i.e., y E Im is a place invariant if \:/M E

R(M0), MT y = k.

I. Transition Invariant A set of transitions of a Petri net is called

its transition invariant if there exists a sequence of firings of those tran­

sitions which would reinitialize the marking, i.e., y E In is a transition

invariant if :la E .C(Mo) : (lai = LY) I\ (M[a >- M).

J. Structural Liveness A Petri net is said to be structurally live if

there exists a live initial marking for the Petri net.

• 9 •

1.3 Modified Petri nets

The power of Petri nets in modeling and analyzing DEDS has motivated

researchers to incorporate additional modeling capabilities. Some of the

widely used extensions are as follows.

K. Timed Petri nets The notion of time is not explicitly used in the

basic definition of a Petri net (see Definition 1.1). The need for modeling

time in performance analysis was the motivation for the development of

timed Petri nets by Ramchandani [48]. In a timed Petri net, an enabled

transition can be fired only after a certain time lag. This time to firing

an enabled transition could be either deterministic or stochastic. If the

times to fire enabled transitions are exponentially distributed, then the

Petri net can be translated into an equivalent Markov chain model [52].

This transformation has been widely used for performance evaluation of

DEDS.

L. Colored Petri nets Jensen [26] developed colored Petri nets as

a means for developing compact models of large systems. The com­

pactness is achieved by merging all the analogous places/transitions in

a model into a single place/transition, and associating colors to places,

transitions, and tokens to distinguish among the various elements [52].

The transition enabling and firing rules are now defined with respect

to colors. Some of the popular applications of colored Petri nets include

automated production systems, communication Petri nets, and workflow

analysis [52, 27, 11].

• 10 •

1.4 Document Outline

The rest of this document is structured as follows:

• In Chapter 2, various streams of research activities related to reach­

ability analysis in literature are reviewed. The specific categories

covered are (1) the representation of the reachability set of a Petri

net, (2) necessary and sufficient conditions for reachability, (3)

heuristic procedures for deciding reachability, and (4) unfolding

techniques based on a graph branching process. The research con­

ducted as part of this dissertation is related to the necessary and

sufficient conditions for reachability.

• In Chapter 3, an acyclic transformation technique is developed

that converts a general Petri net into an acyclic Petri net. The

relationship between the reachable states of the original net and

the transformed net is established. In fact, it is shown that ev­

ery state in the original Petri net has a corresponding state in the

acyclic transformed net. Also, the relationship between the tran­

sition firing sequences of the original and transformed Petri nets is

established.

• The acyclic transformation technique developed in Chapter 3 can

be used for any arbitrary Petri net. If the transformation is exe­

cuted for say 10 stages, then all the markings that can be reached

by firing transitions at most 10 times in the original Petri net will

have a corresponding marking in the transformed Petri net. How­

ever, when the required number of transition firings is not known

for a given reachability problem, the acyclic transformation pro-

• 11 •

cedure is open ended. Hence, in Chapter 4 issues related to de­

termining the required number of stages of expansion by acyclic

transformation are discussed. Specifically, two methods that could

potentially help in determining the required number of stages, or

minimize the complexity involved in determining the number of

stages are proposed.

• Next, in Chapter 5 some of the problems related to the reachability

problem are studied. First, the sub-marking reachability problem

is discussed. It is shown that the sub-marking reachability problem

could be reduced to a full marking reachability problem or simply

the reachability problem, which has been the topic of discussion

thus far. A given sub-marking reachability problem is reformu­

lated as a reachability problem. The second problem studied is

the deadlock avoidance problem; this is done in light of the new

reachability results contributed by this research.

• An application of reachability analysis in a discrete part manufac­

turing environment is presented in Chapter 6. The order du~ate

quotation problem is formulated as a reachability problem. More

importantly, special modeling constructs are developed for this pur­

pose that enable the systnesis of an acyclic Petri net model.

• Finally, a summary of the dissertation research that highlights the

major research contributions is presented in Chapter 7. Future

research directions are identified in light of the new findings.

• 12 •

Chapter 2

The Reachability Problem
• • • • • • • • • • • • • • • • •

Summary

This chapter reviews literature related to the analysis of the reacha­
bility problem. Literature reveals four different strategies: (1) con­
struction of the reachability graph, (2) reachability criteria for special
classes of nets, (3) heuristic procedures, and (4) net unfolding. After
reviewing the reachability analysis approaches, the objectives of this
dissertation research are presented.

2.1 Introduction

Reachability and coverability are very basic Petri net properties that are

used in establishing properties such as boundedness and reversibility.

Definition 2.1.1 The Reachability Problem. Given a Petri net PN and
a marking Md, the reachability problem determines if Md E R(Mo).

Definition 2.1.2 The Coverability Problem. Given a Petri net PN and
a marking M, the coverability problem determines if :3M' E R(Mo)
Vp E P, M'(p) ~ M(p).

Another way to reformulate these two problems is to determine if

there exists an effective description of the set of all reachable states

[36]. It has been shown that there cannot be any reasonable closed and

13

effective representation for the set of all reachable states for a general

Petri net [2, 22]. The implication of these results is that for a general

Petri net, the reachability and coverability problems can be solved only

by generating the reachability graph and the coverability graph, which

involves an exhaustive enumeration of all possible transition firings in

each marking.

2.2 Different Approaches to the

Reachability Problem

2.2.1 Reachability Graph

Given a Petri net PN, this approach generates as many new markings

as the number of enabled transitions in the initial marking Mo. At each

of these new markings, firing the enabled transitions would result in a

different marking, thus resulting in a graph with Mo as the root. This

graph would grow indefinitely if the net is unbounded. Hence, to keep

the graph from growing indefinitely, a special symbol 'w' is introduced,

which can be thought of as "pseudo-infinity". This 'w' has the following

special properties for each integer n, w > n, w ± n = w, and w 2 w [28].

Using this short-hand notation a reachability graph can be constructed

using Algorithm 1. If the w symbol is absent in any of the markings

generated, then it is called the reachability graph, and if present, the

graph takes the name of coverability graph.

The coverability /reachability graph constructed using Algorithm 1

can be used for studying behavioral properties of Petri nets as follows:

• 14 •

Definition 2.2.1 A Petri net is bounded with respect to an initial mark­
ing Mo, iff the pseudo-infinity symbol does not appear in its coverability
graph.

Definition 2.2.2 A Petri net is reversible with respect to an initial
marking Mo iff every node in the coverability graph is in a directed cir­
cuit containing Mo.

Require: Petri net PN, initial marking Mo
1: Label the marking Mo as new
2: while new markings exist do
3: Select a new marking M
4: if the set of enabled transitions in marking M is null then
5: Label the marking M as deadend
6: else
7: if the marking M is identical to any marking generated thus

far then
8: Label the marking M as old
9: else

10: for all markings M' generated by firing an enabled transition
at marking M do

11: if there exists an already generated marking M" : M" =fi
M' such that Vp E P,M'(p) ~ M"(p) then

12: set M'(p) = w whenever M'(p) > M"(p)
13: label M' as new and add it to the graph
14: end if
15: end for
16: end if
17: end if
18: end while

Algorithm 1: Reachability graph construction [11]

In the process of developing a bounded graph of the set of all reach­

able states by using 'w', valuable information on the actual markings

would have been lost, and hence, the graph cannot be used for solving

the reachability problem. However, even if the pseudo-infinity symbol

• 15 •

'w' is not present, the graph construction approach is not of much practi­

cal use for solving the reachability problem because of the computational

burden. Algorithm 1 essentially enumerates all possible transition firings

in all reachable states and this contributes to the computational burden.

It has been shown that the reachability problem is indeed decidable al­

though it takes exponential space and time to verify in the general case

[36, 29, 33].

2.2.2 Reachability Criteria

The objective of this approach is to develop reachability criteria that are

independent of the reachability graph. The state equation representation

of Petri nets (equation 1.2) is especially useful for this purpose. Suppose

Md is reachable from Mo by firing a sequence of transitions, then

M1 = Mo +Au1

M2 = M1 +Au2

Adding the above equations,

Mo+Au

(2.1)

(2.2)

where u = I:,".j=1 Ui, and the lh entry denotes the number of times

transition ti must fire. Note that the firing count vector u does not

contain any information about the firing sequence. This equation can be

rewritten as Au= .6.M, where .6.M = Md-Mo. Given a Petri net PN,

and a marking Md, if Md E 'R(Mo), then the set of linear equations

(equation 2.2) must have a non-negative integer solution. This gives rise

• 16 •

(

to a necessary condition for reachability (Theorem 2.2.1). This is only

a necessary condition because, in solving the state equation for a given

pair of Md and Mo, their actual identities are lost in the expression

LiM = Md - Mo. Note that multiple pairs of Md and Mo can give rise

to the same LiM. However, the contrapositive of the necessary condition

gives a sufficient condition for non-reachability (Corollary 2.2.1).

Theorem 2.2.1 If Md is reachable from Mo in a Petri net PN,
then there exists u E In : Au = LiM.

Corollary 2.2.1 In a Petri net PN, the marking Md is not reachable
from Mo if LiM does not span the columns of the incidence matrix A.

Proof: If Au = LiM holds, then rank[A] = rank[A I LiM]. This

implies that LiM is a linear combination of the columns of the incidence

matrix A. Therefore if LiM is not a linear combination of the columns

of A, rank[A] -:j:. rank[A I LiM]. Hence ~u E In : Au = LiM, and

Md ~ 'R(Mo). D

Though a sufficient condition for reachability in a general Petri net is

yet to be realized, sufficie~t conditions exist for restricted sub-classes of

Petri nets. Next, some of the known sufficient conditions for reachability

are presented.

2.2.2.1 Marked Graphs

Definition 2.2.3 A marked graph is a Petri net in which each place
has exactly one input transition and one output transition, i.e., in a
marked graph l•PI = IP•I = l.

Marked graphs represent conflict-free concurrent systems and are

very amenable to analysis. Algorithms are available for determining

• 17 •

the liveness and safeness of marked graphs, and for solving the reach­

ability problem. However, by their nature they have limited modeling

power [26].

2.2.2.2 Free Choice Nets

Definition 2.2.4 A free choice net is a Petri net in which every arc
from a place is either a unique outgoing arc or a unique incoming arc to
a transition, i.e., in a free choice net Vt, t' E T, t =f t', •t n •t' =f 0 ==;,

1·t1 = 1 = 1·t11.
This class of Petri nets are said to allow controlled conflicts [11]. By

definition, in a free choice net, all the enabled transitions would have

the same input places. This retains the control over the transition that

fires next. Hence, they are called free choice Petri nets. Free choice

nets that are live, bounded, and acyclic are known to have polynomial

time algorithms to decide reachability [10]. However, for live and safe

free choice nets, it has been shown that reachability problem is NP­

complete [16].

2.2.2.3 Acyclic Petri nets

Definition 2.2.5 A Petri net having no directed circuit is called an
acyclic Petri net.

For an acyclic Petri net it can be shown that the existence of a non­

negative integer solution to the state equation (equation 2.2) is necessary

and sufficient for reachability of Md from Mo [25].

Theorem 2.2.2 In an acyclic Petri net PN, Md E R(Mo) iff
there exists a non-negative integer solution u satisfying ~M =
Au.

• 18 •

2.2.3 Heuristic Procedures

In the absence of reachability criteria for a general Petri net, the con­

struction of the reachability graph and searching through the nodes of the

graph seems to be the only approach for deciding reachability. Heuristic

techniques have been developed that try to tackle the time complexity

of the search process. These heuristic procedures can be divided into

ones that generate portions of the reachability graph and those that do

not. Search procedures such as genetic algorithms are examples of the

latter [50), while graph search procedures are examples of the former [32).

2.2.3.1 Genetic Algorithm Approach

Genetic algorithms were formally introduced in the 1970s by John Hol­

land at the University of Michigan. They are inspired by the mechanism

of natural selection - a biological process which prefers stronger individ­

uals in a competing environment. To use a genetic algorithm, a solution

to a problem is represented as a genome (or chromosome). The genetic

algorithm then creates a population of solutions and applies genetic op­

erators such as mutation and crossover to evolve the solutions in order

to find the best one [34].

The three most important aspects of using genetic algorithms are: (1)

definition of the objective function, (2) definition and implementation of

the genetic representation, and (3) definition and implementation of the

genetic operators (mutation and crossover).

Takahashi et al. [50] have proposed a genetic algorithm based reach­

ability analysis procedure in which the three aspects mentioned above

are represented as follows:

• 19 •

Figure 2.1: Subsequence exchange crossover (SXX)

Genetic representation: Genetic representation for a given firing count

vector u E In : Au = .6.M is a transition sequence CJ : [[CJ[[=

I:;=l Ui. The set of all transition sequences for a given firing count

vector is denoted by C. Note that f(M) ~ C.

Objective function: The objective function, also termed as the fitness

function, is defined as f : C---+ I. For a transition sequence CJ E C,

the value of j(CJ) defines the number of transitions fired succes­

sively from an initial marking. The value of the fitness function is

maximized iff Md is reachable from Mo [50].

Genetic operators: The subsequence exchange crossover (SXX) ge­

netic operator is used to create new genes (transition sequences),

which exchanges a subsequence in one parent string with a sub­

sequence in another parent string. As shown in Figure 2.1, SXX

allows the exchange of a subsequence of Parent 1 for a subsequence

of Parent 2 subject to the condition that the same number of each

unique transition is exchanged.

Having defined the three components of the genetic algorithm, the

• 20 •

reachability is decided using Algorithm 2.

Require: u E In : Au = fi.M
l: Initialization: Create an initial population of transition sequences.

Calculate the fitness values of those strings.
2: Selection: Choose a pair of strings randomly.
3: repeat
4: Crossover: Apply SXX to the chosen pair of strings(parents) and

make new strings(children). Calculate the fitness val­
ues of the children.

5: Selection: According to the fitness value, select the top two strings.
6: until Fitness value for one of the strings is maximized or time allo­

cated has expired.

Algorithm 2: Genetic algorithm for the reachability problem [50]

2.2.3.2 Graph Search Algorithm

A significant amount of work on the reachability problem appears in re­

lation to scheduling [32]. The sample scheme discussed in this section

formulates a scheduling problem using a Petri net model, and employs

global search by limiting the search space with the use of heuristic func­

tions. Optimal or near optimal feasible schedules are generated in terms

of transition firing sequences. The Petri net model of a system cap­

tures all possible evolutions of the system through its markings, which

is represented in the reachability graph. Hence, theoretically it should

be possible to determine the optimal path by searching the reachability

graph.

The heuristic procedure for searching the reachability graph with­

out generating it completely is based upon a graph search algorithm

called A* [44, 45]. This procedure uses an evaluation function to expand

the search along those sectors of the graph which are most promising.

The evaluation function defined in terms of a marking M is f(M) =

• 21 •

g(M) + h(M), where g(M) is the current lowest cost obtained from the

initial marking (Mo) to the current marking (M), and h(M) is an es­

timate of the cost from the current marking (M) to the final marking

(Md)- Hence, f(M) is an estimate of the total cost from the initial

marking(Mo) to the final marking(Md),

1: Put the initial marking Mo on the list OPEN
2: while OPEN list is populated do
3: Remove the first marking M from OPEN and put M on the list

CLOSED
4: if M is the final marking then
5: construct the optimal path from the initial marking to the final

marking and terminate
6: else
7: Find the enabled transitions of marking M
8: Generate the successor marking M' for each enabled transition
9: Compute g(M') for each successor marking M'

10: for all successor M' of M do
11: if M' is already in OPEN list then
12: direct it along the path yielding the smallest g(M')
13: else if M' is already in CLOSED list then
14: direct it along the path yielding the smallest g(M')
15: else
16: calculate h(M') and f(M') and add M' to the OPEN list
17: end if
18: Reorder OPEN list in the increasing magnitude of f
19: end for
20: end if
21: end while

Algorithm 3: Graph search algorithm [32]

2.2.4 Net Unfolding

This unfolding technique has its origins in the unfolding of a rooted graph

into a tree. The unfolding technique is a partial order semantics and is

• 22 •

also referred to as the branching process [15, 43]. This approach received

a boost with the work done by McMillan [37]. The application of this

technique has been extensively explored in the literature [17, 18, 39].

Partial order semantics describes the behavior of the net by its maximal

branching process, also called the maximal unfolding of the system. If

the net is unbounded, its maximal unfolding is also unbounded. McMil­

lan [37] shows a way for computing a finite initial part of the maximal

branching, in which every reachable marking of the system is represented.

This is called the finite complete prefix. This was later made more ef­

ficient by Esparza, Romer and Vogler [17]. Though the finite complete

prefix has complete information on the set of all reachable states, they

are deeply embedded in the unfolding. This can be a source of significant

computational burden. However, when the net is bounded these unfold­

ings can be effectively used for analysis. Once the finite complete prefix

has been generated, multiple methods can been applied for determin­

ing reachability: branch and bound techniques [37], linear programming

algorithms [38], and graph theoretic methods [39] are some examples.

A branching process of a net is a special kind of net called the occur­

rence net. The occurrence net is an acyclic directed graph, and hence, the

transitive closure of the flow relation defines the partial order between

nodes. An occurrence net has the following properties:

• The net is acyclic,

• The net is free of forward conflict, meaning that the size of the

pre-set of all the places is either zero or one,
\

• No event in the net is in conflict with itself, and

• 23 •

• Every node in the net is finitely preceded.

An occurrence net could be constructed for a Petri net using Algorithm 4.

For an unbounded net this branching process could proceed without any

natural termination. Also, for a cyclic Petri net the branching process

could extend infinitely. However, for bounded Petri nets, even when they

are cyclic, it is possible to terminate the branching process called the

prefix, and preserve all the information about reachable markings. This

prefix is called the net unfolding. There are a number of techniques for

determining these cut-off points [37, 17], and they are evaluated by their

ability to restrict the size of the unfolding without losing information on

the reachable markings.

2.3 Research Goals

The main goal of this research is to develop the ability to efficiently de­

cide reachability in a general Petri net. The reachability graph with the

w notation (Section 2.2.1) provides a means to efficiently describe the

set of all reachable states of a system. The heuristic techniques (Sec­

tion 2.2.3) provide a means to efficiently search through the reachability

graph. These search procedures, though efficient, are not conclusive

in deciding reachability. The necessary and sufficient conditions (Sec­

tion 2.2.2) provide a means for deciding reachability conclusively, but

only for certain sub-classes of Petri nets. The unfolding technique (Sec­

tion 2.2.4) can been efficiently used for only bounded Petri nets. Hence,

the major objective of this research is to develop a technique for deter­

mining reachability in a general Petri net by building on the existing

approaches.

• 24 •

Require: Petri net PN
1: Copy all the marked places of the Petri net into the occurrence net
2: repeat
3: Choose a transition t E T
4: Find the pre-set of the chosen transition
5: if the same pre-set has not been chosen earlier then
6: if none of the selected places are in conflict or precedence rela-

tionship then
7: for all places in the pre-set of the chosen transition do
8: Find a copy in the occurrence net
9: if copy found then

10: Mark it with a token
11: Make a copy of the transition in the occurrence net
12: Connect the transition with its pre-set
13: Make a copy of the the post-set of the transition and

connect them with the transition
14: end if
15: end for
16: end if
17: end if·
18: until Ad Infinitum

Algorithm 4: Petri net unfolding process [37)

• 25 •

The research described in this document takes the route of determin­

ing sufficient conditions for reachability in a general Petri net. Toward

this end, an acyclic transformation technique is developed that converts

a given Petri net into an acyclic Petri net with known necessary and suffi­

cient conditions for reachability. This dissertation research also explores

some reachability related problems, namely, the sub-marking reachabil­

ity problem and deadlock avoidance in light of the new research results

related to reachability. Finally, a novel application of the Petri net reach­

ability problem to the order due date determination problem in a discrete

part manufacturing system is explored.

The various research objectives can be stated as follows.

Reachability in general Petri nets: The objective is to develop a

reachability analysis technique for a general Petri net. The ap­

proach is similar in spirit to the unfolding technique, but the re­

sulting net falls into the class of Petri nets for which necessary and

sufficient conditions for reachability are known.

Problems related to reachability: The objective is to analyze prob­

lems that are related to the reachability problem in light of the

new research results related to reachability in general Petri nets.

Specifically, the sub-marking reachability problem and the dead­

lock avoidance problem are explored.

Application of reachability: The objective is to explore novel appli­

cations of the reachability problem in a manufacturing environ­

ment. The order due date determination problem in a discrete

part manufacturing environment is formulated as a reachability

problem.

• 26 •

The research conducted to address these three objectives are pre­

sented in the following chapters.

• 27 •

Chapter 3

An Acyclic Transformation Technique
• • • • • • • • • • • • • • • • •

Summary

A new approach to the Petri net reachability problem is presented in
this chapter. For an acyclic Petri net, it has been shown that the exis­
tence of a non-negative integer solution to the system state equation
is necessary and sufficient for reachability. An acyclic transformation
is presented in this chapter that expands any given general Petri net
into an acyclic net. This makes a general Petri net amenable for
analysis using the reachability criteria for acyclic nets. The practical
issues involved in executing this transformation are also discussed.

3.1 Introduction

The main idea behind the acyclic transformation is to expand a Petri net

into multiple stages, with the places in the 1st stage forming the input

for the 2nd stage and so on. This converts any arbitrary Petri net into

an acyclic Petri net, thus enabling the applicability of known sufficient

conditions for reachability in acyclic nets to any arbitrary Petri net. By

this process, if the net expansion has been performed up to N stages,

then all the states that could be reached by firing a maximum of N tran­

sitions are readily available. In fact, as the discussions in the following

sections would reveal, this procedure also gives a straightforward method

28

for finding the transition firing sequences contained in N -stage expan­

sion. This technique could be used for any arbitrary Petri neL However,

the major issue that needs to be addressed is in bounding the number

of stages N that is sufficient for deciding a specific reachability problem,

which is the topic of the following chapter. We restrict the presentation

in this chapter to the exposition of the acyclic transformation procedure.

3.1.1 Net Expansion

The net expansion procedure is at the heart of the acyclic transformation

approach. The basic idea is to expand the Petri net into multiple stages,

which is accomplished by replicating the places with one set of places

forming the input places for the transitions, and the other forming the set

of output places. This ensures that there are no directed circuits in the

net. In addition, fictitious transitions are added between "equivalent"

places to transfer any additional tokens that might be left over. This

would make them available for the next stage of the net. These additional

transitions are called "transporters," and are graphically represented by

two parallel bars. At any given stage, one or more or all of the conflict

free transitions could be fired.

The following example explains the net expansion process. The prefix

of 1 (i.e., 1X) is used to denote a one-stage expansion.

Example 3.1.1 Consider the Petri net shown in Figure 3.1{a). This
net has four places and three transitions. For a one-stage expansion of
the net, the four places are replicated. For a transition, say ti in the
original net, the pre-set is •ti = {p1,p3}, and the post-set is ti = {P2}.
In the expanded net, the transition ti represented by 1t11 has the following
pre and post-sets: •1t11 = {1P11, JP13} and 1ti1 = {1P22}, where JPll, JP13,
and JP22 can be regarded as equivalent to Pl, p3, and P2, respectively, in

• 29 •

Figure 3.1: One-stage net expansion example

the original net. This accomplishes the net expansion. Next, to trans­
port any left over tokens from the current stage to the next stage, the
four transporters 1c1i, 1 ::; i ::; 4 are introduced. A complete one-stage
expansion is shown in Figure 3.l{b).

The following definition formalizes this idea for a one-stage expan­

sion.

Definition 3.1.1 Given a Petri net PN, its one.:..stage expanded net is
a 7-tuple, 1PN = (1P, 1T, 1C, 1F, 1G, 1W, 1Mo), where

1. 1P = {1P11, lP12, · · · , lPlm, 1P21, 1P22, ... , 1P2m} is a set of 2m places

2. 1T = {itu, 1t12, · · · , 1t1n} is a set of n transitions

3. 1C = {icu, 1c12, · · · , 1c1m} is a set of m transporters

4. 1F ~ (1P x 1T) U (1T x 1P) is a set of directed arcs connecting the
places and transitions

5. iG = {iP x 1C} U {iC x 1P}, is a set of directed arcs connecting the
places and transporters, which move the unconsumed tokens from
the current stage to the next stage

• 30 •

6. 1W : 1F ---+ {1, 2, 3, · · · } is a weight function1 which assigns a posi­
tive integer to all the directed arcs in 1F such that,

(a) w(lPli, 1t1j) = w(pi, tj), Vw(Pi, tj) > 0

{b) w(1t1j, 1P2i) = w(tj,Pi), Vw(tj,Pi) > 0

and

7. 1Mo : 1P---+ {O, 1, 2, ... } is the initial marking such that,

. _ { Mo(i) 1 $ i $ m
iMo(i) - 0 (m + 1) $ i $ 2m

Within the expanded net, the execution is very similar to that of

any Petri net. The transition enabling and firing rules (Definitions 1.1.2

& 1.1.3) · still hold good. From the definition, it can be observed that

the expansion task is to separate the input arcs (places to transition)

from the output arcs (transition to places). The incidence matrix of the

one---stage expanded net can now be defined in terms of the original Petri

net.

Given a Petri net PN, the incidence matrix of the one---stage expanded

net of 2m x (n+m) ((input places, output places) x (regular transitions,

transporters from input places to the output places)) dimension is 1A =

[1aij], and the typical entry of the incidence matrix, 1aij, is given by,

% V (i $ m), (j S n) if aij < 0

a(i-m)j V(m + 1 $ i S 2m), (j Sn) if aij > 0

-1 V(i$m),(n+l$j$n+m)ifi=j
(3.1)

1 V(m+li2m),(n+ljn+m)

if i = j
0 otherwise

1the default arc weight is 1, and is often not indicated in graphical representations

• 31 •

The incidence matrix of the expanded net can also be represented in

terms of the original Petri net as,

(3.2)

This expansion procedure can be easily extended to multiple stages.

An N-stage expansion of the net utilizes the output places of the previ­

ous stage as the input places for the current stage. It can also be thought

of as placing multiple one-stage expansions one after the other, which is

best illustrated by the structure of the incidence matrix. The required

number of stages of expansion is determined by the specific reachability

problem. The discussion on this is deferred until Chapter 4.

Definition 3.1.2 Given a Petri net PN, the incidence matrix of its N­
stage expanded net is,

A- 0 0 0 0 -I 0 0 0
A+ A- 0 0 0 I -I 0 0
0 A+ A- 0 0 0 I 0 0

NA= (3.3)

0 0 0 A+ A- 0 0 I -I
0 0 0 0 A+ 0 0 0 I

The dimension of NA is (N + l)m x (Nn + Nm).

Having introduced the notion of net expansion, the utility of it in

the reachability analysis of a Petri net is discussed next. The following

two issues have to be addressed before using the expanded net for the

reachability analysis of a given net.

Relationship between the reachability sets: The problem is to es­

tablish the relationship between the set of all reachable states in

• 32 •

the given Petri net, and in its N'-stage expanded net, and vice

versa.

Integrity of the transition firing sequences: The second issue is to

establish the equivalence or relationship between the transition fir­

ing sequences in the given Petri net, and in its N'-stage expanded

net.

3.1.2 Relationship between the Reachability Sets

The net expansion scheme can be effectively used for reachability analysis

only if it can be shown that for every reachable marking in the given net,

there exists an equivalent marking in the expanded net.

Consider a Petri net PN. Let M1 be the system state after firing

an enabled transition ti. In its one-stage expanded net equivalent 1PN,

the transition ti would be represented by 1t1j- Note that if ti E r(Mo),

then 1t1j E I'(1Mo), in other words if transition ti is enabled in marking

Mo, then the equivalent transition 1t1j in the one stage expanded net is

also enabled in the equivalent marking 1Mo. The resulting marking by

firing the enabled transition 1t1j in 1PN can be represented as,

(3.4)

where, Ut is the firing count vector for the transitions, Uc is the firing

count vector for the transporters, and Z(m) is a vector of zeros of length

m.

• 33 •

The relationship between the resulting marking M1 of the original

Petri net PN and that of its expanded equivalent is discussed next.

Mi Mo+Au

= Mo+(A-+A+)u

(Mo+ A-u) + (Z(m) + A+u) (3.5)

Equation 3.5 shows that every legal marking of PN that could be reached

as a result of firing a single transition can be decomposed into two compo­

nents namely, (Mo+ A-u) and (Z(m) + A+u). These two components

constitute the markings of the input and output places of the transi­

tions in the expanded net after firing the equivalent transition as given

by Equation 3.4, assuming that none of the transporters needs to be

fired (i.e., Uc = 0). The firing count vector for the transporters can be

determined by the number of tokens left in the input places after the

transitions have been fired, and it can be determined by,

(3.6)

Now the resultant marking of the expanded net can be determined as,

(
Mo+ A-ut - !(Mo+ A-ut))

1M1 =
Z(m) + A+ut +!(Mo+ A-ut)

(Mo+ (A~+ A+).,)
(3.7)

where the marking of the output places of the transitions are the same as

the markings of the places of the original net in marking M1. However,

not all the markings of the original net have an equivalent marking in the

one-stage expanded net. This following example would help illustrate

these ideas.

• 34 •

Figure 3.2: Reachability trees for the one-stage net expansion example

Example 3.1.2 Consider the Petri net shown in Figure 3.1(a) and its
one-stage expanded equivalent in Figure 3.1 (b}. Given an initial marking
of Mo = {1, 0, 1, O} for the original net, the equivalent initial marking
for the one-stage expanded net is 1Mo = {1, 0, 1, 0, 0, 0, 0, O} (see defi­
nition 3.1.1). For these initial markings, the corresponding reachability
trees are shown in Figure 3. 2. It can be verified from the marking legends
of the reachability tree that the marking 1M1 of the one-stage expanded
net is equivalent to the marking Mi of the original Petri net. However,
there exists no equivalent marking in the one-stage expanded net for the
other marking M2 of the original net.

Marking Legend
Original Petri net One-stage expanded net
Mo {1, 0, 1, O} 1Mo {1, 0, 1, 0, 0, 0, 0, O}
M1 {O, 1, 0, O} 1M1 {O, 0, 0, 0, 0, 1, 0, O}
M2 {0,0, 1, 1}

Table 3.1: Marking legend for the reachability trees in Figure 3.2

The markings of the original net that have no equivalent markings in

• 35 •

the one--stage expanded nets are the ones that can be reached by firing

two or more one transitions. A multi-stage expansion would capture

these relationships. For an N-stage expanded net, the state equation

can be rewritten as,

NMd Mo+NAu

A- 0 0 0 -I 0 0

A+ A- 0 0 I -I 0

0 A+ A- 0 0 I 0
Mo+

0 0 0 A- 0 0 I

0 0 0 A+ 0 0 0

(Ut(l) Ut(2) Ut(N) Uc(l) Uc(N - 1)

Mo+ A-ut(l) - uc(l)

Z(m) + A+ut(l) + A-ut(2) + uc(l) - uc(2)

Z(m) + A+ut(2) + A-ut(3) + uc(2) - uc(3)

Z(m) + A+ut(N - 1) + A-ut(N)+

Uc(N - 1) - Uc(N)

Z(m) + A+ut(N) + Uc(N)

0

0

0

-I

I

Uc(N))T

(3.8)

where the components of the firing count vector ut(i), 1 :::; i :::; N and

uc(i), 1 :::; i :::; N are the transition firing counts of transitions and trans­

porters at each stage, respectively. Each row of the above decomposition

represents the markings of places at each stage. The state equation of

• 36 •

the original net can be decomposed as,

Md=Mo+Au

=Mo+ (A-+ A+)(u1 + u2 + · · · + uN)

=Mo+ A-u1

+ A+u1 + A-u2

+ A+u(N-1) + A-uN

+ A+uN

=(Mo+ A-u1) + (Z(m) + A+u1 + A-u2)+

(Z(m) + A+u2 + A-u3) + · · · + (Z(m) + A+u(N-1)+

A-uN) + (Z(m) + A+uN)

= NMd(l : m) + NMd(m + l : 2m) + · · · +

NMd(Nm+l :Nm+m)

(3.9)

where X(x : y) refers to the elements of vector X from position x to

position y.

The above expansion of the state equations shows the relationship

between the reachability sets of a net and its generic expansion. The

firing count vector for the transporters for any stage i can be expressed

in terms for the firing counts of the transitions as,

(3.10)

Substituting the firing counts of the transporters in the state equation

• 37 •

of the expanded net (Equation 3.8),

Mo+ A-ut(l) - (Mo+ A-ut(l))

A+ut(l) + A-ut(2) +(Mo+ A-ut(l)) - (M1 + A-ut(2))

A+ut(2) + A-ut(3) + (M1 + A-ut(2)) - (M2 + A-ut(3))

A+ut(N -1) + A-ut(N) + (M(N-2) + A-ut(N - 1)) -

(M(N-l) + A-ut(N))

=

A+ut(N) + (M(N-l) + A-ut(N))

0

0

0

0

Mo+ A(ut(l) + ut(2) + · · · + ut(N))

(3.11)

To summarize, in the original net every marking that is reachable

from the initial marking by firing a sequence of N transitions has an

unique equivalent marking in the N-stage expanded net. Also, firing

sequences of the original Petri net are preserved in the expanded Petri

net. In fact, at each stage, by firing only one transition, the solution to

the state equation of the expanded Petri net delivers the transition firing

sequence also. At each stage, multiple transitions that are not in conflict

could be fired. Hence, the following Theorem 3.1.l.

• 38 •

Theorem 3.1.1 Consider a Petri net PN and its N-stage ex­
panded net NPN. For every reachable marking in the original
net,

1. there exists an N such that there is a unique equivalent marking
in the N -stage Petri net, i.e.,

2. the transitionfiring sequences that connect the equivalent mark­
ings in the original net and the expanded net are equivalent,
i.e.,

Proof: Refer to the above discussions.

The above theorem establishes the relationship between a given Petri

net, and its expan~ed version using the acyclic transformation.

3.2 Sufficient Condition for Reachability

The net expansion scheme developed in the previous sections converts a

general Petri net into an acyclic Petri net. Also, the previous sections

shown that all markings that could be reached in the original Petri net

by firing transitions at most N times have equivalent markings in the

N-stage expanded Petri net (Theorem 3.1.1). Hence, in a general Petri

net, a marking Md is reachable if there exists a positive integer N such

that the equivalent marking NMd is reachable in the expanded acyclic

Petri net NPN. Thus, the sufficient condition for reachability in a general

• 39 •

Petri net can be formalized as follows.

Theorem 3.2.1 In a general Petri net PN, a marking Md E

R(Mo), iff there exists a positive integer N such that the state
equation of the N -stage expanded Petri net NMd = NMo + NAu
has a non-negative integer solution.

Proof: Refer to the above discussions.

If the required number of stages for a reachability problem can be

determined exactly or at least bounded, then the above Theorem 3.2.1

can be used to determine reachability in a general Petri net. This is the

subject of the discussions in the next chapter.

• 40 •

Chapter 4

Reachability Analysis Using Net

Expansion
• • • • • • • • • • • • • • • • •

Suminary

The acyclic transformation expands any given Petri net into an
acyclic net with a specified number of stages. In order to utilize the
expansion procedure for reachability analysis, the number of stages
for expansion needs to be determined. In this chapter, issues related
to the determinination of the number of stages are discussed, and
ways of reducing the complexity in computing the same are explored.

4.1 Introduction

The acyclic transformation in conjunction with Theorem 2.2.2 can be

used for the reachability analysis of a general Petri net if the number

of stages of net expansion could be bounded. In certain situations, the

problem context could provide an upper bound for net expansion. For

example, in Petri net models used for machine scheduling, the number

of jobs would dictate the required number of stages. In the absence of

such a direct insight from the problem context, the model is expected to

provide that insight. However, gaining such an insight on bounding the

net expansion is not easy. In the following sections, the issues involved

41

in determining the number of net expansion stages are discussed. Also,

ways of reducing the computational complexity are developed.

4.2 Reachability Analysis Using Net Expansion

In the previous chapter, the relationship between the reachable markings

of the original Petri net and its expansion was discussed. However, one

parameter that still needs to be determined is the number of stages

of net expansion. Knowledge of the required number of stages of net

expansion, or an upper bound on the same is essential to transform the

reachability problem of any given Petri net into a reachability problem

for the expanded Petri net. The reachability problem (Definition 2.1.1)

can be restated in terms of the expanded net as,

Definition 4.2.1 Given a Petri net PN and a marking Md, the reacha­
bility problem determines if for some positive integer N, NMd E 'R(NMo),
where NMo and NMd are the equivalent initial and final markings for
the expanded net NPN.

Definition 4.2.1 redefines the reachability problem of any given Petri

net into an equivalent problem for an acyclic net. Theorem 2.2.2 provides

the sufficient condition for reachability in an acyclic net. Simply restated,

the_ existence of a non-negative integer solution for the state equation is a

necessary and sufficient condition for reachability in an acyclic net. The

acyclic transformation presented earlier has reformulated the reachability

problem of a general Petri net such that the results available for the

acyclic net could be used for deciding the reachability. The one open

question is the determination of the number of stages of net expansion.

• 42 •

For a given reachability problem, if the firing count vector1 is known,

then the number of stages can be bounded by the sum of the firing

counts of the transitions, i.e., N :::; ~j=l Uj. This is an upper bound

because, at any given stage, the conflict-free transitions could be fired

simultaneously. Thus, for a given firing count vector the reachability in a

general Petri net could be decided without developing/searching the en­

tire reachability tree. Theorem 3.1.1 in conjunction with Theorem 2.2.2

ensures that if there exists no non-negative integer solution to the state

equation of the N-stage expanded acyclic net, then the marking is not

reachable with the given firing count vector or any firing count vector

that adds to N. This is true because the firing count vector is used only

for bounding the number of stages of net expansion.

Example 4.2.1 Consider the Petri net shown in Figure 3.J(a). The
state equation of this net has a solution of the form (a, a, a - 1) for
both (Md,Mo) = ({0,0,0,1},{1,0,0,0}) and (Md,Mo) = ({0,0,1,1},
{ 1, 0, 1, 0}). For all integer values of a ~ 1, the transition firing count
vector is non-negative and integer, satisfying the necessary condition
for reachability stated in Theorem 2. 2.1. However, reachability can be
ascertained only by searching the reachability tree.

A two-stage expansion of the net would show that the state equation
is inconsistent2 for (Md,Mo) = ({0,0,0,1},{1,0,0,0}). In the case of
(Md,Mo) = ({0,0,1,1},{1,0,1,0}), the solution to the state equation
consists of firing the transition ti once in the first stage and transition
t2 once in the second stage, and none of the transporters need to be fired.

However, in some situations the transition firing count vector can­

not be determined exactly by solving the state equation (Equation 2.2).

The structure of the state equation introduces certain issues related to

uniqueness of the solution that need to be addressed while using it for

1a non-negative integer vector that is as long as the. number of transitions, with
each entry representing the number of times a transition needs to be fired

2there exists no non-negative firing count vector that satisfies the state equation

• 43 •

determining the number of stages of net expansion. In the following

sections of this chapter, the use of the solution to the state equation as

a means of bounding the net expansion is discussed. Finally, the algo­

rithmic structure for reachability analysis using net expansion is docu­

mented.

4.3 Spurious Solutions and Reachability

The system state equation is a linear transformation of u E In into

~M E Im. The range of this transformation is the subspace gener­

ated by ~M, and is the subspace of Im spanned by the columns of A.

Thus, the dimension of the range is the maximum number of linearly

independent columns of A, also called the rank of the incidence matrix

A.

In Section 2.2.2, the necessary condition for reachability based on

the rank of the incidence matrix was discussed which can be restated

as ~ [A] = ~[AI ~M]. This condition checks for the existence of a

solution to the system state equation. However, .depending on the size

of the incidence matrix and its rank, the solution to the system state

equation can be either unique or infinite in number. The system state

equation can be classified into one of the six categories shown in Table

4.2.

When ~(A) = m = n (§1) and ~(A) = n < m (§3), the system

state equation has a unique solution. In all the other cases, the system

state equation has a infinite number of numerical solutions [51]. If the

state equation has an unique solution, then there is no ambiguity in the

number of stages for net expansion. However, if the state equation does

• 44 •

Exactly determined system §1. IR(A) = m = n
§2. IR(A) < m = n

Over determined system §3. IR(A) = n < m
§4. IR(A) < n < m

Under determined system §5. IR(A) = m < n
§6. IR(A) < m < n

Table 4.2: State equation classification

not have a unique solution, then the number of stages for net expansion

cannot be determined definitely just by solving the state equation. This

ambiguity is because the solution to the state equation would have one

or more free variables. Different numerical values for the free variables

would result in different firing count vectors, and hence, different values

for the required number of stages. The following example illustrates

these issues.

Example 4.3.1 Consider the Petri net shown in Figure 4.1, with an
initial marking of Mo = {1, 0, 0, 0, 0, 0, O}. The problem is to determine
if the desired final marking of Md = {O, 0, 0, 0, 0, 1, 1} is reachable from
the given initial marking. If the acyclic transformation is to be used for
deciding reachability, then the number of stages of expansion has to be
determined first. The state equation for this net can be classified as a
rank deficient exactly determined system (§2). The incidence matrix has
a rank of five, two less than the maximum possible. Hence, the general
solution to the state equation u = { a1, a2, a1, a1, a2, a2, a1 + a2 - 1} has
two free variables. Different numerical values would give different firing
count vectors, and hence different net expansion stages.

The issue to be addressed is the determination of appropriate numer­

ical values for the free variables. Then the reachability problem could be

decided using the acyclic transformation with the number of stages equal

to the sum of the transition firing counts determined using those numer­

ical values for the free variables. The next few sections contain ways of

• 45 •

Figure 4.1: Petri net example to demonstrate spurious solutions to state
equation

reducing the number of free variables and consequently, the complexity

in determining the appropriate number of net expansions. In order to ad­

dress this issue, 8: more detailed examination of the source of degeneracy

in the state equation is carried out. This is followed by the development

of some potential ways to reduce the degeneracy under certain situations.

4.3.1 Source of system degeneracy

The linear dependence among the vectors of the incidence matrix re­

duces its rank such that it is less than the maximum permissible rank,

resulting in the introduction of free variables in the solution to the state

• 46 •

equation. This increases the complexity of searching the state space.

The discussions in the following sections are directed towards eliminat­

ing these linear dependencies, if possible, and analyzing the impact of

such a modification.

The linear dependency among the places (transitions) is called place

(transition) invariant in Petri net terminology. As previously mentioned

in Section 1.2.2, the weighted sum of all the tokens in a place invariant

set remains the same in all possible markings, while firing the transitions

in the transition invariant set returns the net to the original marking.

The presence of invariant sets are crucial for the correctness of a model

(system) due to its influence on system properties such as boundedness

and reversibility. Ironically, with regard to the solution of the system

state equation, the presence of invariant sets is detrimental. A formal

definition of place and transition invariant sets is presented in Defini­

tions 4.3.1 and 4.3.2.

Definition 4.3.1 An m x 1 non-negative integer vector x E snm is
called a place invariant or ?-invariant if,

(4.1)

Definition 4.3.2 An n x 1 non-negative integer vector y E snn is
called a transition invariant or T-invariant if,

Ay = o (4.2)

A P-invariant set is denoted by 1r, and the set of all place invariant

sets of a Petri net is denoted by II.

It is often mentioned in literature that there are (m-JR(A)) minimal

P-invariant sets in a Petri net PN with m places [11]. However, investi­

gations into the reasons for rank deficiency revealed a discrepancy in this

• 47 •

statement. The reason for this discrepancy is due to the non-negativity

requirement on the place invariant set as specified in Definition 4.3.1.

The following example elucidates the issues involved.

Example 4.3.2 Consider the Petri net shown in Figure 4- 2. This net
has 8 places and 8 transitions. In this net there are no P-invariant sets,
i.e.,

~x:ATx = 0, Xi~o, i={l,2, ... ,m}

But the rank of the incidence matrix for the Petri net is IR(A) = 7. For
xT = [O, -1, 0, 1, 1, 0, 1, OJ, AT x = 0, and hence the !III -# m - IR(A).
Thus the number of P-invariant sets of a Petri net is not always the
difference between the number of places and the rank of the incidence
matrix.

Figure 4.2: An illustration for place invariant analysis

As the example illustrates, the reason for the discrepancy in the

relationship connecting the number of P-"invariants and the rank of the

• 48 •

incidence matrix is the non-negativity restriction in the definition of the

P-invariant sets (Definition 4.3.1). Hence, the concept of extended place

and transition invariant sets is introduced [47].

Definition 4.3.3 An m x 1 integer vector x E :rm is called the extended
place invariant or ExP-invariant if,

ATx = 0 (4.3)

Definition 4.3.4 Ann x 1 integer vector y E :rn is called the extended
transition invariant or Ex T-invariant if,

Ay = o (4.4)

The extended place and transition invariant. sets are nothing but the

null spaces along the row and column spaces, respectively. These null

spaces introduce degeneracy, and hence free variables in the solution to

the state equation. When ~(A) = m < n, the solution to system state

equation would have free variables, in spite of having a full rank incidence

matrix. However, when the rank is less than the maximum permissible
I

(§2, §4, & §6) due to the nullity along the row or column space, the

null space introduces additional free variables. If the null space can be

eliminated, then there will be no introduction of free variables in the

solution to the state equation. If the null space could be eliminated or

partially reduced, the impact of it on the system dynamics needs to be

understood. In the next section, methods for breaking the nullity are

explored for the purposes of solving the state equation.

4.4 Invariant Free Petri Net

The null space in the sub-space spanned by the rows of the incidence

matrix (ExP-invariant) has the special property that the weighted sum

• 49 •

of the tokens remains a constant in all the reachable markings of the

Petri net. If this token balan~e could be broken or destabilized, then the

place invariant would become void implying that the null space would

reduce along one of the dimensions. The token balance could be broken

by increasing the arc weights of one of the arcs incident into one of the

places in the place invariant set. However, this would leave additional

tokens in the place, and thus altering the state space of the system. This

necessitates that these additional tokens be removed by some means.

Adding sink transitions to the destabilized places is an option. These

transitions that are used to remove the additional tokens are termed

as stabilizers. Though this approach would reduce the null space, the

effective number of free variables would remain unchanged due to the

addition of the sink transition. Hence, in order for the approach of

destabilizing the place invariant set to be effective, the null space should

reduce faster than the introduction of any additional dimension. The

following example would help illustrate these issues.

Example 4.4.1 Consider the following Petri net with 7 places and 6
transitions defined as follows:

Directed arcs: F ~ (P x T) U (T x P), expressed in terms of the pre
and post sets of the places are,.

Place pre-sets: •p1 = {t3}, •p2 = {t1}, •p3 = {t2}, •p4 = {t2},
•q1 = {t1,t2,r2}, •q2 = {ri}, •q3 = {r3}

Place post-sets: Pi = {ti}, p2 = {t2}, P3 = {t3}, P4 = {ti},
qi= {ri}, q2 = {t1,t2,r3}, q3 = {r2}

Arc weights: w(p, t) = w(t,p) = 1, 'v'(p x t) I\ (t x p) E F

• 50 •

The ExP-invariant sets are,

1r1 {1, 0, 1, -1, 0, 0, O}

1r2 {O, 1, 0, 1, 0, 0, O}

'lr3 {0,0,0,0,1,1,1}

The place invariant set 1r1 could be destabilized by changing w(t3,p1) = 2.
This would increase the mnk of the incidence matrix by one. However,
if a sink transition on place Pl is introduced to remove any additional
tokens, the maximum permissible mnk changes from 6 to 7. Hence, the
number of free variables in the state equation would remain the same.

As the example illustrates, independent introduction of sink transi­

tions to stabilize the places in the ExP-invariant that was destabilized

(by changing the arc weights leading into the places) does not help in re­

ducing the number of free variables in the solution to the state equation.

The introduction of additional dimensions, and hence the number of free

variables could be slowed if the accumulated tokens in multiple .desta­

bilized places could be removed simultaneously. Hence, the objective

should be to have a common stabilizer for multiple. destabilized places.

Two possible ways of achieving this objective are,

Utilizing the base transitions: In this approach, instead of introduc­

ing additional sink transitions to remove additional tokens, the

possibility of using the transitions that are part of the actual Petri

net themselves is explored. The column space is maintained a con­

stant while reducing the null space along the row space. However,

note that this introduces additional conditions to be satisfied for

the transitions affected to be enabled.

Multi purpose sink transitions: In this approach, multiple destabi­

lized places are to be stabilized by a single sink transition, which

• 51 •

ensures that the drop in the row null space is faster than the in­

crease in the column space.

Both these procedures depend on the knowledge of the firing count

relationship among the transitions. It is not the knowledge of exact

firing count vector that is essential, rather relationship in terms of the

free variables. Because these procedures rely on the firing count vectors,

they are very specific to a reachability problem. The conditions to be

satisfied for each of the above two approaches to be effective are discussed

next.

4.4.1 Utilizing Base Transitions

As the name suggests, the transitions that are already part of the Petri

net are evaluated for use as transitions that remove the additional tokens

accumulated. If a transition has to qualify for this purpose, then the

firing count of that transition has to be equal to or a multiple of the

firing count of the transition that destabilizes the place. Suppose in

a Petri net place Pi is destabilized by increasing the weight of the arc

incident from transition tj to place Pi, for a transition tj, to qualify

as a stabilizer for place Pi, the firing count of transition tjl should be

equal to or a multiple of transition tj. If this condition is satisfied,

then any additional tokens left behind by transition t j could be removed

by transition tjl. Additionally for the transition tj, to be acceptable,

transitions tj and tj, should not be part of the same ExT-invariant. If

this condition is violated, then the destabilization of the place does not

help in increasing the rank of the incidence matrix.

Note that by using transition lj, as the stabilizer for the destabilized

• 52 •

place Pi, the enabling condition for the transition tjl has been changed.

This additional condition on the transition will be satisfied if the transi­

tion tj, is fired only after the transition tj has fired. The characterization

of these transitions is one of the problems that needs to be investigated

further.

The following example should help illustrate this technique.

Example 4.4.2 Consider the Petri net defined in Example 4.4.1. For
this Petri net, ·consider the reachability problem which seeks to determine
if Md= {0,0,10,1,0,0,1} is reachable from Mo= {10,0,0,1,0,0,1}.
The maximum permissible rank is 6 for this Petri net, and it has a rank of
4. Since there are 6 transitions, and the incidence matrix has a rank of 4,
the solution to the state equation will have 2 free variables. The general
solution to the state equation for the set of markings specified above is
u = { a, a, a-10, ,6, ,6, 2a+ ,6}. This Petri net has 3 ExP-invariant sets,
given by II= {ai,a2,ai,a2 - ai,a3,a3,a3}; and 2 ExT-invariant sets,
given by I' = {bi, bi, bi, 2bi + b2, b2, b2}. Place P2 could be destabilized
by setting w(ti,P2) = 2. This would mean that every time transition
ti is executed, two tokens would be added to place P2 instead of one.
This additional token has to be removed in order to maintain the system
dynamics. The candidate transition for acting as stabilizer for place P2
would be transition t2 since both ti and t2 have the same firing counts.
However, it is not valid because, both the transitions ti and t2 are part
of the same ExT-invariant set.

4.4.2 Multi-purpose Sink Transitions

In this technique, additional sink transitions are added to the Petri net

to act as stabilizers. While adding these additional sink transitions, they

are linked to multiple destabilized places that are part of different ExP­

invariant sets. This requires that the destabilized places have exactly the

same number of additional tokens or even multiples of additional tokens.

In order to reduce the number of free variables in the solution to state

• 53 •

equation, a newly added sink transition should act as a stabilizer for at

least two destabilized places.

Note that the destabilization of places and the addition of stabilizers

changes the set of all reachable markings in the Petri net. However, all

reachable markings of the original Petri net will be part of the reacha­

bility set of the modified Petri net. This can be verified by imposing the

condition that the additional tokens that destabilize the places would

be moved from those places only through the stabilizers. Hence, all

the markings in the original Petri net have equivalent markings in the

modified net.

The following example should help illustra~e this technique.

Example 4.4.3 Continuing the Example 4.4.2, places P2 and p3 could be
destabilized by setting w(t1,P2) = 2 and w(t2,p3) = 2. Places P2 and p3
are part of different ExP-invariant sets. Note the choice of transitions
that destabilize the places. In the solution to the state equation, both
have the same firing count, and hence would leave the same number of
additional tokens. These places could now be stabilized by a common
stabilizer.

4.4.2.1 Summary

Both methods provide ways to reduce the number of free variables in the

solution to the state equation. Though it is desirable to remove all the

free variables from the solution, it may not be possible. However, the

reduction in the free variables count does reduce the uncertainty in the

solution. For a specific reachability problem analysis, the free variables

are to be assigned various numerical values iteratively to determine the

number of stages of net expansion. The following section formalizes these

• 54 •

ideas into an algorithm for reachability analysis.

4.5 Reachability Analysis Using Net Expansion

Revisited

At this stage, approaches discussed in this chapter and the previous chap­

ter are combined to determine reachability in a general Petri net, and

presented in an algorithmic form (Algorithm 5). In the algorithm, the

solution to the state equation of the original Petri net and the invariant­

free version of the same are used to determine the number of stages of

net expansion by acyclic transformation. Once the number of stages is

determined, the expanded version of the net is developed and checked for

reachability using the necessary and sufficient condition for reachability

in acyclic Petri nets.

Since the required number of stages for conclusively determining

reachability may not be known or bounded due to the existence of free

variables in the solution to state equation, Algorithm 5 may terminate

without a conclusion. Hence, further research is required to bound the

required number of stages for a reachability problem.

• 55 •

Require: In a Petri net determine if Md E R(Mo)
1: Find the general solution to the state equation Md - Mo= Au
2: Reduce the number of free variables in the solution by converting it

into invariant-free Petri net
3: if The invariant-free net has a unique solution to state equation

then
4: Add the elements of the unique solution to determine the required

number of stages of net expansion
5: Using acyclic transformation build the expanded acyclic Petri net
6: if state equation of the acyclic expanded Petri net has non-

negative integer solution then
7: marking Md is reachable from Mo
8: else
9: marking Md is not reachable from Mo

10: end if
11: else
12: repeat
12: Set free variables in the general solution to state equation to in­

creasing non-negative integer values and determine a candidate
number of stages for net expansion

13: if state equation of the acyclic expanded Petri net has non-
. negative integer solution then

14: marking Md is reachable from Mo
15: else·
16: marking Md is not reachable from Mo
17: end if
18: until Marking is determined to be reachable or time allocated has

expired
19: end if

Algorithm 5: Reachability Using Acyclic Transformation

• 56 •

Chapter 5

Some Related Problems
• • • • • • • • • • • • • • • • •

Summary

In this chapter, two problems that are closely related to the reach­
ability problem are studied. First, in the submarking reachability
problem, the desired final marking is specified for only a subset of
the places. The relationship between the submarking reachability
problem and the regular reachability problem is established. Next,
the implications of the new reachability results in tackling the dead­
lock avoidance problem are discussed.

5.1 Submarking Reachability

Whereas, in the reachability problem studied thus far, a complete speci­

fication of the final marking is available, in the submarking reachability

problem the fina:l marking is specified for only a subset of the places.

There has been published work related to submarking reachability of

marked graphs starting with the article by Kumagai et al. [30]. For a

marked graph, Kumagai et al. provide an approach for constructing a

marking with the specified submarking that may or may not be reachable

from the given initial marking. This work was later expanded to study

the relationship of the sub-marking reachability problem with network

programming problems [7]. The results presented in this section build

57

on these ideas and extend the theory of submarking reachability to a

general Petri net.

Definition 5.1.1 The Submarking Reachability Problem. Given a Petri
net PN, and marking for a subset of the places Md(Pc) : pc E pc C P,
the submarking reachability problem determines if there exists a marking
M E 'R.(Mo) with the specified token distribution Md(Pc) for the places
pc E pc_

The places for which a final token distribution is specified are called

controlled places (Pc), while the rest are called free places (Pf). Similarly,

the transitions that are incident on any of the controlled places are called

controlled transitions (Tc), while the rest are called free transitions (Tf).

These notions are formally defined below [7].

Definition 5.1.2 Controlled and Free Places. A place pc is said to be
controlled in a given final marking Md if Md(Pc) is defined. A place pf
is said to be free in a given final marking Md if Md(Pc) is not defined.

Definition 5.1.3 Controlled and Free Transitions. A transition tc is
said to be controlled in a given final marking Md if at least one of the
places incident on the transition is in the set of cdntrolled places, i.e., if
{•tcutc•}nPc-=/- {0}, then tc is said to be controlled. If {•tcutc•}nPc =
{0}, then tc is said to be a free transition.

Using these basic categorization of places and transitions, the rela­

tionship between the sub-marking and full-marking reachability prob­

lems is established.

5.1.1 SubM Petri Net

Let there be me controlled places (me =I pc I) and nc controlled tran­

sitions (nc =I Tc I), and mf free places (mf =I pf I) and nf free

• 58 •

transitions (nf =I Tf I). Note that m = mc+mf and n = nc+nf. This

classification of places and transitions partitions the incidence matrix as

follows:

A (
Ace O) controlled

Afc Alf free
(5.1)

where Ace is an me x nc matrix corresponding to the relationship between

places and transitions that are controlled, while Afc and Alf are ml x nc

and ml x nf dimensioned matrices corresponding to the relationship of

free places as influenced by controlled and free transitions, respectively.

With these partitions of the incidence matrix, the state equation can be

rewritten as

(5.2)

where uc and uf are the firing counts of controlled and free transitions,

respectively. The above state equation can be rearranged as follows:

where If is an identity matrix of dimension ml x ml.

By observing the rearranged state equation (Equation 5.3), it can be

seen that the new incidence matrix corresponds to a Petri net with m

places and n + ml transitions, where the additional ml transitions are

sink transitions on the free places of the original Petri net. This net is

called as the SubM Petri net, and is formally defined as follows.

• 59 •

Definition 5.1.4 SubM Petri Net. Given a Petri net PN and desired
token distribution in a subset of the places of the Petri net, the incidence
matrix of its SubM Petri Net sPN of dimension m x (n + ml) is,

As = (0 Ace O)
-Jf Afc Alf (5.4)

The reachability set of the SubM Petri net is denoted by 'R:5 (Mo).

Next, the submarking reachability criteria are defined in terms of its

SubM Petri net.

5.1.2 Submarking Reachability Criteria

In a SubM Petri net, the sink transitions on the free places could be used

to remove any tokens that might be accumulated in them. Assuming that

in the reachability set of the original Petri net there exists a marking

with the desired token distribution on the controlled places, the tokens

in the free places if any could be removed with the sink transitions.

Except for the sink transitions on the free places the net structure of

both the original Petri net and its SubM derivative are identical. Other

than removing any tokens in the free places, the sink transitions cannot

affect the system dynamics in any way. In fact, if the sink transitions

are never executed, the reachability set of the original Petri net and its

SubM derivative would be identical. Hence the following Lemma.

Lemma 5.1.1 Given a Petri net PN, every marking in the
reachability set of the Petri net has an equivalent marking in its
SubM Petri net's sPN reachability set with the same token distri­
bution, i.e., 'v'M E 'R.(Mo), :3M5 E 'R.5 (Mo) : 'v'p E P, M 5 (p) =
M(p)

• 60 •

However, the converse may not be true. In other words every reach­

able marking of SubM Petri net may not have an equivalent marking in

the reachability set of its parent net. For the purposes of submarking

reachability, the converse is not relevant.

Utilizing the functionality of the sink transitions, the submarking

reachability problem of the original Petri net can be posed as a reacha­

bility problem in its SubM Petri net. When the tokens in the free places

are removed by the sink transitions leaving the free places empty, the

submarking reachability problem of the original Petri net is equivalent

to reachability of a marking with zero tokens in the free places and iden­

tical token distribution in the controlled places of the SubM Petri net. If

a given submarking is reachable, then the associated token distribution

of the free places in the original Petri net would be the firing counts

of the sink transitions on the free places in the SubM Petri net. This

equivalence of the reachability problem is formalized next.

Theorem 5.1.1 A specified submarking Md is reachable in a
Petri net PN if in the associated SubM Petri net sPN the mark­
ing M;j E 'R.5 (Mo), where \/pc E pc,Md(Pc) = M;j(pc) and
\;/pf E pf, M;j(pf) = O.

Theorem 5.1.1 provides a means for deciding submarking reachability

by posing it differently. Discussion in the previous chapters shows that

deciding reachability is not straightforward for all situations, and hence,

a transformation procedure is introduced to utilize known reachability

results. More specifically, much emphasis is laid on a class of Petri nets

called the acyclic Petri nets. It is of interest to note here that if the

original Petri net is acyclic, introduction of the sink transitions for the

• 61 •

free places does not alter the acyclic nature. The sink transitions do not

introduce any loops and an acyclic Petri net retains this property with

the addition of the sink transitions.

Property 5.1.1 Preservation of the acyclic net structure. If a
Petri, net PN is acyclic, then any of the associated SubM Petri, net is
also acyclic.

The above property of the SubM Petri net, allows the use of known

necessary and sufficient condition of reachability for acyclic nets (Theo­

rem 2.2.2).

5.2 Deadlock Avoidance Problem

Deadlock avoidance is concerned with avoiding deadlock states of the

system, and initiating automatic recovery procedures when a deadlock

cannot be avoided. The deadlock avoidance problem is known to be

NP-complete [21]. It has been shown to be recursively equivalent to the

reachability problem [9].

Deadlock prevention problem is closely associated with the deadlock

avoidance problem. Deadlock prevention is concerned with falsifying

one or more of the necessary conditions for deadlock. It is a static policy

and it generally results in poor resource utilization. The deadlock avoid­

ance techniques counter the poor resource utilization by using dynamic

resource allocation policies.

The deadlock avoidance policies try to determine if by allocating a

resource to a requesting proces the system would get into deadlock sit­

uations. More often, the deadlock states might be deeply embedded in

the state space, and may not be readily apparent if we were to only look

• 62 •

for deadlock states as a result of allocating a resource. An approach

to/ deadlock avoidance is to restrict the number of processes that can

simultaneously request a resource [3]. Though this approach guarantees

to avoid all deadlocks, it is very conservative, meaning, it could unnec­

essarily restrict safe resource allocations. Another approach to deadlock

avoidance is the n-step look ahead logic proposed by Viswanadham et

al. [53]. Theoretically, if the number of look ahead steps are not bounded,

then it would be possible to avoid all deadlocks. However, this is practi­

cally infeasible. When n is limited, this algorithm cannot guarantee the

avoidance of all deadlock states.

This restriction on the number of look-ahead steps can be elimi­

nated if it is possible to perform reachability analysis. The basic idea

here is to determine if after allocating the resource to a process, the

system can reclaim the resource. If this can be established, then the

impact of allocating the resource is none with regards to deadlock. For

a Petri net model, this can be formulated as a submarking reachability

problem, which as the discussions in the previous section show, in turn

can be formulated as a full-marking reachability problem. The acyclic

transformation and related techniques provide a promising avenue for

reachability analysis in general Petri nets, and hence could have an im­

pact on the deadlock avoidance problem also. A detailed investigation

is required for practical application of this approach.

Example 5.2.1 Consider a simple production system (See Figure 5.1)
consisting a load-unload station, a single-machine work station, and an
AGV for transporting parts between them /53, 19}. Further, there are no
buffers in the system, the raw parts are always available, and the AGV
can carry only one part at a time. There are two deadlock states in this
system:

• 63 •

Deadlock state 1: The AGV with a raw part is waiting to load it on
the machine that has a finished part.

Deadlock state 2: The AGV has been assigned to carry a finished part
from the machine, while the machine which is empty is waiting for
a raw part.

A szmplified Petri net model of this system is shown in Figure 5.2,
with the explanation for the nodes in Table 5.1 {19}. The reachability
graph of this reduced Petri net is given in Figure 5.3. The marking
legends are given in Table 5.2. The marking Ms corresponds to the
above defined deadlock state 1, while the marking M 7 corresponds to the
above defined deadlock state 2.

Prom the reachability graph, it can be seen that the system enters a
deadlock state if the AG V is assigned to pick up a raw part from the load­
unload station, when a part is already being processed by the mdchine.
Also, if the AGV is assigned to pick up a finished part from the machine
when the machine is empty, the system enters a deadlock state.

The key resource allocation decision is taken when the place A3 is
marked. The place A3 is marked in the markings M2 and M4. In both
these markings, the transitions t3 or t4 can be fired. In order to avoid
deadlock, when the system is in the marking M2, transition t3 needs to
be fired, and in marking M4, the transition t4 needs to be fired. This
information was obtained by analyzing the reachability graph. However,
such an analysis may not be always possible.

Assuming that the reachability graph is unavailable, when the system
is in marking M2, the two possible resource allocation decisions corre­
sponding to transitions t3 and t4 need to be evaluated. By firing the
transition t3 the system enters marking M3. From this marking a sub­
marking reachability problem is solved in which the final desired marking
has the place A3 marked again. This problem is solved by using the
acyclic transformation technique and the SubM Petri net modification.
Using these two transformations, it can be verified that there exists a
marking in which the resource allocation decision can be made again.
However, if the transition t4 is fired, the place corresponding to resource
allocation decision will not be marked again. Hence, in state M 2, the
transition t4 should not be fired.

• 64 •

Figure 5.1: Deadlock avoidance: An illustration

Figure 5.2: Reduced Petri net model for the system in Figure 5.1

• 65 •

Figure 5.3: Reachability graph for the Petri net model in Figure 5.1

W1 Machine waiting for AGV to load raw part
W2 Machine waiting for AGV to unload finished part
A1 AGV waiting for raw part
A2 AGV waiting at machine to load raw part
A3 AGV waiting for resource allocation decision
A4 AGV waiting to unload finished part from machine
t1 Load raw part on the AGV and move the AGV to the machine
t2 Load raw part on the machine from the AGV
t3 Decision: AGV to wait for finished part at the machine
t4 Decision: AGV to wait for raw part at the load-unload station
t5 Unload finished part from the machine on to the AGV

Table 5.1: Explanation for the places and transitions in the Petri net in
Figure 5.2

• 66 •

Marking/Place Wi W2 Ai A2 A3 A4
Mo 1 0 1 0 0 0

Mi 1 0 0 1 0 0

M2 0 1 0 0 1 0

M3 0 1 0 0 0 1
M4 1 0 0 0 1 0

Ms 0 1 1 0 0 0
M6 0 1 0 1 0 0
M1 1 0 0 0 0 1

Table 5.2: Marking legend for the reachability graph in Figure 5.3

• 67 •

Chapter 6

An Application of Reachability Analysis

in Discrete Manufacturing
• • • • • • • • • • • • • • • • •

Summary

The reachability problem lends itself very well for decision problems
involving discrete optimization. This relationship is utilized to for­
mulate the due date quotation problem in a discrete manufacturing
environment as a reachability problem. To facilitate this, Petri net
constructs for modeling a production system are developed. The
advantage of following the Petri net reachability approach for this
problem is that the analysis also provides an operational road map
for the system.

6.1 Introduction

The increasing availability of system wide inventory information with the

implementation of supply chain integration software is enabling manu­

facturing enterprises to respond quickly with due date and price quotes.

These advanced order processing methodologies are being necessitated

for online buy and sell systems also. The Web interface makes the pro­

cess of buying and selling easier for the consumers by enabling them to

easily check among the competitors. Hence, decision support systems

that quote realistic due dates and prices are needed. There is a growing

68

interest in real-time decision making based on the current state of the

system to deal with custom orders of small sizes. Hence, a real-time

decision support system would have to coordinate the lead time quota­

tion decisions with scheduling and inventory management systems. The

decisions would have to take into account the uncertainties in the in­

ventory and the production system and the current state of the system.

The importance of accounting for the current system status and uncer­

tainties was first noted by Conway [8]. This was much before the advent

of technology that makes it possible. The approach developed in this

chapter addresses the due date quotation problem that accounts for the

current state of the production system.

Typically, due dates are determined by adding a certain multiple

of the flow time's standard deviation to the steady state expected flow

time [23]. The steady state approach works well for stable environments

with large lot sizes. However, this approach falls short in a dynamic en­

vironment with increasing product variety and small lot sizes. There are -

a number of order due date quoting algorithms in the job-shop schedul­

ing literature based on a number of assignment rules and control meth­

ods [5, 24, 13]. These typically do not consider the current state of the

system. The performance improvements to be gained by considering the

system status are well documented in literature [14, 4, 31]. This leads

to the classification of order due date assignment policies as those that

consider current system status and those that do not consider the current

system status [5, 40]. The research described in this chapter, belongs to

the category that considers the current system status.

A mathematical programming model is the underlying structure of

most due date assignment models in the literature. Recently, models

• 69 ii

that dynamically allocate and reallocate resources have been developed.

However, in the operational phase, materials are released to the shop

floor based on a production plan, with very little or no guidance to

achieve operational objectives as decided by the model. To overcome

this shortcoming, an integrated approach to the due date assignment

problem is proposed. This approach, in addition to supporting due date

decisions, provides an operational road map to achieve those objectives.

Traditionally, the application of Petri nets to manufacturing systems

has been in the area of supervisory control to prevent the system from

entering deadlock states [19, 6, 53], and scheduling in flexible manufac­

turing systems [32, 49]. In general, reachability analysis forms the basis

of such applications. It is shown here that the reachability analysis lends

itself well for due date quotation decision support systems also. The cur­

rent state of the production system is mapped to the initial state of its

Petri net model. Any new order is transformed into an appropriate de­

sired state definition, and reachability analysis is used to determine if

there exists a sequence of events that makes the order completion pos­

sible. In addition to addressing the decision problem, the analysis also

provides an operational road map.

The rest of the chapter is organized as follows. A description of the

Petri net constructs suitable for a due date quoting model is presented in

Section 6.2. The use of these constructs for due date analysis is discussed

in Section 6.3. The modeling approach and the research issues ahead

are discussed in Section 6.3.

• 70 •

6.2 Due Date Quoting Petri Net Model

A Petri net modeling approach is described in this section, which can be

used to determine what orders to accept and to recommended order com­

pletion times to facilitate due date negotiations. The models developed

are for a given plant configuration, the set of currently accepted orders

and their quoted due dates, and penalty for violating those quoted due

dates. The model balances the resource requirements for the currently

accepted orders with that of the new orders and forms the basis of an

approach to determine the optimal way of processing those orders. The

approach presented here does not consider the future demand to come.

However, it is to be noted that consideration of future demand would

make the resulting solution more robust. This is due to the evaluation

of the trade-offs not only with the currently accepted orders, but also

with demand to come. This restriction has been placed since the thrust

of this chapter is to explore a new comprehensive approach to the due

date quoting system.

For the purposes of this analysis, it is assumed that the order process­

ing time at a resource is known. It has been widely acknowledged that

for decisions over a relatively short time horizon, the processes though

stochastic by nature can be deemed to be deterministic [20].

6.2.1 Notation and Problem Description

The due-date problem is analyzed here in a myopic setting. The model

develops and delivers a production plan based on the current system sta­

tus. The granularity of the production plan is directly a function of the

granularity of the model. Let{()) and(()) represent the set of newly arrived

• 71 •

orders and the previously accepted orders in the system, respectively.

The set of resources in the production system is given by lit Let the

processing time of the k th processing step of order i be specified by the

parameter µf k. The mapping function Mi (k) E ~ specifies the resource

to be used in the kth processing stage of order i; N(j) <;;; {OU O} spec­

ifies the set of all orders to be processed by resource j; and R(i) <;;; ~

specifies the set of all resources required for processing order i. Let

m =I {OU O} I, nj =I N(j) I, o =I~ I, and Si =I R(i) I-
Each order i E ((]) has a committed due date of Ti. The penalty of

not satisfying the committed due date is given by the unit cost function

Pi (penalty for each time the order i is delayed beyond the promised due

date). The revenue gain from an order i E { ([)) U ((])} is given by h

6.2.2 Modeling Constructs

In this section, two modeling constructs that can be used to build the

model of a system for the purpose of due date quotation analysis are

introduced. The first construct models a resource, while the second con­

struct is used to track the performance of the system. These constructs

use the notion of a stage. Whenever a resource completes processing an

order, the resource is said to have passed from one stage on to the next.

Alternatively, a resource processes only one order at any of its "stages".

Hence, in the model, a resource has as many stages as the number of or~

ders that need processing at that resource. Using this notion of a stage,

the two Petri net modeling constructs are defined next.

• 72 •

6.2.2.1 Resource Construct

The Petri net model of a resource has as many stages as there are orders

that need processing at that resource. At each stage, the construct is

so designed that only one order could be processed. However, at each

stage, any of the orders ready to be processed by the resource can be

selected for processing. This gives rise to five types of places and three

types of transitions:

Places:

• Places to indicate that an order is available to be processed

by a resource at each of i.ts stages.

• Places to indicate the availability of the resource to process

an order.

• Places to indicate that an order is being processed by the

resource at each of the stages.

• Places to indicate that an order has arrived at the resource,

but is yet to complete its required processing.

• Places to indicate that an order has completed its required

processing at the resource.

Transitions:

• Transitions that indicate the start of processing of an order by

a resource in a stage. If an order to be processed along with

the resource is available, this transition would be enabled, and

the firing of this transition would indicate the start .of order

processing by the resource.

• 73 •

• Transitions that indicate the completion of processing of an

order by a resource in a stage. When the place corresponding

to order processing by the resource is populated, this transi­

tion would be enabled, and the firing of this transition would

indicate the completion of the order processing.

• Transitions that move an unprocessed order from one stage

to another. This transition is essential because, at any given

stage of a resource, only one order can be processed. It might

be better to process order A ahead of B when both are com­

peting for the resource, and these transitions would be used

to move B to the next stage of the resource.

The combination of these places and transitions gives rise to the

following sub-constructs, which are then assembled to form the resource

construct.

Start Processing Sub-construct: In this sub-construct (see Figure

6.1), a waiting order and available resource enables the transition

that indicates the start of order processing by the resource. By

executing the transition, the order and resource are matched, and

the place indicating the progress of order processing is populated.

End Processing Sub-construct: Here, when an order is being pro­

cessed by a resource, the transition corresponding to the comple­

tion of order processing is enabled (see Figure 6.2). When fired,

the places corresponding to processed orders and availability of the

resource are populated.

• 74 •

Figure 6.1: Start processing sub-construct

Figure 6.2: End processing sub-construct

• 75 •

Figure 6.3: Order movement sub-construct

Order Movement Sub-construct: This sub-construct contains tran­

sitions that would be used to move the processed and unprocessed

orders through to the next stage (see Figure 6.3). This makes an

unprocessed order available for processing by the resource at one

of its following stages.

Definition 6.2.1 The Petri net construct of a resource j E R is a 3-
tuple, RPNj = (Pj, Tj, Fj), where

1. Pj = {Plj,P2j,P3j,P41,P4j} is a collection of place sets, where

(a) Plj = {pl11;j,Pl21,j, ... ,Plm1,j,Pl12,j, ... ,Plmni,i'
pll{nj+l),j, · · · ,Plm(nj+l),j}

is a set of m(nj + 1) places, with plil,j indicating order i's
availability to be processed by resource j at resources 's l th
stage, and the (nj + l)th stage corresponds to a finished order
at resource j

(b) P2j == {p21,j, p22,j, ... , p2ni ,j} is a set of nj places, with p21,j
indicating the availability of resource j at stage l

{c) P3j = {p3n,j,P321,j, ... ,P3ml,i,P312,j, · · · ,P3m(nj-1),j,
p31nj,j,P32nj,j, · · · ,P3mnj,j}

is a set of mnj places, with p3il,j indicating order i being
processed by resource j at its l th stage

• 76 •

(d) P4j = {p4~,j,p4;,j, · · · ,p4:n,j} is a set of m places, with p4~,j
indicating the presence of unprocessed order i in resource j

(e) P4j = {p41,j,P42,j, · · · ,P4m,j} is a set of m places, with p4i,j
indicating the completion of processing of order i in resource
j

2. Tj = {Tlj, T2j, T3j} is a collection of transition sets, where

(a) Tlj = {tln,j, tl21,j, ... , tlm1,j, tl12,j, ... , tlm(nrl),j,
tllnj,)' tl2nj,j, · · ·, tlmnj,J}

is a set of mnj transitions, with tlil,j indicating the start of
processing of order i by resource j at its lth stage

(b) T2j = {t211,j, t221,j, ... , t2ml,j, t212,j, ... , t2m(nj-1),j,
t2lnj ,j, t22nj ,j, ... , t2mnj ,j}

is a set of mnj transitions, with t2il,j indicating the comple­
tion of processing of order i by resource j at its lth stage

(c) T3j = {t3n,j, t321,j, ... , t3ml,j, t312,j, · · · , t3mni,j} is a set of
mnj transitions, with t3il,j indicating the movement of order
i in stage l of resource j to stage (l + l) of resource j

3. Fj ~ (Pj x Tj) U (Tj x Pj) is a set of directed arcs connecting the
places and transitions, expressed in terms of the pre and post sets
of the places p E P are as follows.

(a) pl:z,j = {tlil,j, t3il,j}; pl:nj,J = {tlinj,j}; p2l,j = Tlj; p3:l,j =
{ t2il,j};

(b) •plil,j = t3i(l-l),j; •plil,j = { t2il,j', t2i2,j', · · · , t2inJ ,j'}, where

j' = Mi(k - 1), nj, =J N(j') J and j = Mi(k); •p21,j
{0}; •p2z,j = {t21(l-l),j, t22(Z-l),j, · · · , t2m(l-1),j}; •p3il,j
{tlil,j};9p4i,j = {t2il,j, t2i2,j, · · · , t2inj,j};
p4~7j = { tlil,j, tli2,j, · · · , tlinj ,j}

6.2.2.2 Performance Tracking Construct

The resource construct is designed to capture the operational states of

a resource. However, the decisions related to the operational plan need

• 77 •

to be taken by considering the system performance implications of the

sequence. For this purpose, the performance tracking construct that con­

siders the relative trade-offs between the different orders to be processed

is developed.

System performance is determined by tracking the time spent by the

orders in the system. In the resource construct, the place p4i,i E P4j

would be marked if the order i has finished its processing in resource

j. If an order is waiting to be processed by the resource j, then one

of the places in plil,j E Plj and the place p4~,j E P4'.i will be marked.

This observation is used in accounting for the order waiting times in a

resource.

Places:

• Places to track the time spent by an order at a resource.

• Places to track the processing time of an order in a resource

as waiting time for the other orders in line to be processed by

the resource.

Transitions:

• Transitions that evaluate the tardiness of an order by applying

the cost function that,

- If the order has been already accepted, it compares the

committed completion time with its new estimated com­

pletion time under the new plan being developed.

In Petri net terminology, this construct is defined as follows.

• 78 •

Definition 6.2.2 The performance tracking construct of all the orders
is a 4-tuple, PPN = (P,T,Fp, Wp), where

1. P = {P5, P6, P7, P8, P9} is a collection of places where

(a) P5 = {p51,p52, · · · ,P5m,p5*} is a set of m + 1 places, where
p5i keeps track of the time spent by order i before its comple­
tion and p5* is a place that tracks the overall system perfor­
mance

(b) P6 = {P61, P62, · · · , P6n} is a collection of sets of places,
where P6j = {p612,j,p613,j, · · · ,p61ni,J} is a set of nj places,
where the place p6ii' ,j, i =I- i' in conjunction with the place p4~,j
is used to determine the contribution of the processing time of
order i' towards the waiting time of order i

(c) P7 = {p71,p72, · · · ,P7m} is a set of m places, where p7i is
used to represent the current promised due date of order i

{ d) P8 = {p81, p82, · · · , p8m} is a set of m places used for deter­
mining the cost of any delays for order i

{e) P9 = {p91,P92, · · · ,P9m} is a set of m places, where p9i is
used to represent the revenue from order i

2. T = {T5, T6, T7, T8, T9, TlO} is a collection of transitions where

(a) T5 = {T51,T52,··· ,T5n} is a colletion of sets of transitions,
where T5J = {t512,J, t51a,J, · · · , t51n1 ,J, t521,J, t523,J, · · · , t5nj(nrl),J}
is a set of nj (nj - 1) transitions where t5ii' ,j used to evaluate
the waiting time contribution of order i' for order i at resource
j

(b) T6 = { t61, t62, · · · , t6m} is a set of m transitions which is used
to determine the difference between the current order due date
and the promised order due date, if any

{c) T7 = {t71,t72, ... ,t7m} is a set ofm transitions which will
be used, when for order i, the promised order due date is later
than the current due date of the order

(d) T8 = { t81, t82, .. · , t8m} is a set of m transitions which will
be used, when for order i, the current due date is later than
the promised due date

• 79 •

(e) T9 = {t91,t92,··· ,t9m} is a set ofm tmnsitions which will
be used for determining the cost for any delays for order i

(f) TIO= {tI01,tI02,··· ,tIOm} is a set ofm tmnsitions which
will be used for determining the net revenue from order i

3. Fp ~ (P5 x T) U (T x P5) is a set of directed arcs connecting the
places and tmnsitions expressed in terms of the pre and post sets
of the places p E P5 as

(a) p4'i,j• = {T5r5 .,t6i}; p7i = {t6i,t7i}; p5i = {t6i,t8i}; p8i =
{t9i};p9! = {t9:, tIOi}

{b} •p6ii',j = {t2i'l,j,t2i'2,j,""" ,t2i'nj,j}; •p4'i,j = {T5r8 i,t6i}
•psi = {T5ri, T5r2 , • • • , T5rs.}; •psi = { t8i}; p5* = {TIO}

'
where rk = Mi(k)

4. WP : Fp ---+ {l, 2, 3, ... } is a weight function that assigns a positive
integer to all directed arcs in Fp, and is defined as follows

WP (t5ii' ,j, p5i)

Wp(t8i, p8i)

µf,k, where Mi,(k) = j
pi

Note that without any loss of generality, µfk and Pi can be assumed

to be integer valued.

6.2.3 Construct Properties

The resource and performance tracking constructs have some important

structural properties that are exploited for "optimizing'' due date deci­

sions in the next section.

Property 6.2.1 The resource and performance tmcking constructs are
acyclic.

This is a very important property that the constructs possess, be­

cause acyclic Petri nets are one among the classes of nets for which both

necessary and sufficient conditions for reachability are known. As discus­

sions in an earlier chapter (Chapter 2) indicate, for an acyclic Petri net,

• 80 •

the existence of a non-negative firing count vector for the state equation

is sufficient for reachability. Hence, the acyclic nature of the constructs

enable the use of known reachability results.

Property 6.2.2 The set of places (Plj(i) U P3j(i)) where PXj(i) ~
PXj: Vpxi'l,j E PXj(i),i = i', forms a place invariant set.

The implication of this property is that, whenever an order enters

the confines of a resource, its presence will be indicated at either one of

the waiting areas of a stage Plj(i) or processing areas P2j(i). If one

of these places is marked, then it indicates the fact that the order has

already arrived at the resource. When the order is processed, the places

in the set P4j would be marked. Hence, when places in both the sets

have been marked, it indicates that the order has already arrived at the

resource and has been processed by it.

6.2.4 Modeling Illustration

Next, the process of modeling of a due date quotation problem using the

Petri net constructs defined above is illustrated.

Example 6.2.1 Consider a production system with two orders (Q)
{01} and O = {02}. The orders 01 require processing by resources
R1 and R2 in that order, while 02 needs to be processed by resource R2
and R1 in that order. The resource construct for resource R1 is as shown
in Figure 6.4. The construct has two stages because both the orders re­
quire processing by resource R1. A portion of the performance tracking
construct is as shown in Figure 6.5. Specifically, the portion depicted in
this figure represents the performance tracking mechanism for order 01.

From the graphical model of resource construct of resource R1 in Fig­
ure 6.4 it can be seen that at each stage there is a set of places to hold
orders as input for that stage {plil,1). Also, there is a set of places to hold
the orders after being processed by the resource. If the order is processed
by the resource at its lth stage, then the transitions tlil,1 and t2il,1 are
executed. If an order is not processed by the resource at stage l, then the

• 81 •

order can be moved to the next stage using transition t3il,l · The places
p4i,l are used to count the number of times an order is processed by the
resource. This is essential to ensure that a processing step of an order
is executed only once. The utility of this would be more apparent in the
next section while discussing the optimization using reachability analysis.

In the performance tracking constructs depicted in Figures 6. 5, 6. 6,
and 6. 7, the place p51 is used to keep track of the time spent by order
01 in the system before completion. The places p4~,j is used to deter­
mine if an order has reached resource after passing through the previous
processing step. The place p4i,J tracks an order that has completed its
processing requirements in resource j. The first two parts of the per­
formance tracking constructs shown in Figures 6. 5, and 6. 6 together
track the total waiting time for an order in a ~source. When the order
has been processed completely, the place p51 would represent the total
time spent by the order in the system. Using this information, the per­
formance tracking construct in Figure 6. 7 computes the overall system
performance using the revenue from the order and penalty based on the
promised due date, if any.

6.3 Problem Formulation

The resource construct and the performance tracking construct defined

in Section 6.2.2 provide the capability to model the process as well

as the performance trade off among the different orders in the system.

For a given collection of orders, the different resource orders are con­

structed and are merged such that for a given order, the output from

the last stage of eh processing step becomes the input to the first stage

of the k + l th processing step of the order. With the Petri net model

thus constructed, the due date assignment problem can be translated

into a reachability problem such that all the orders are completed with

the maximum number of accumulated tokens in the system-wide perfor­

mance tracking place p5*. In the mathematical programming world this

• 82 •

Figure 6.4: Example - Resource construct

• 83 •

Figure 6.5: Example - Performance tracking construct 1

Figure 6. 6: Example - Performance tracking construct 2

• 84 •

Figure 6. 7: Example - Performance tracking construct 3

is equivalent to the maximization of the objective function. Next, the

due date quotation problem is formulated in terms of the reachability

terminology.

6.3.1 Due Date assignment as a reachability problem

The current state of the system is represented by marking the appropri­

ate places of the Petri net model. From this given state, the problem

is to determine the sequence of processing steps that would change the

system state to one in which all the orders have been processed with max­

imum number of tokens in place p5*. The due date quotation problem

formulated as a reachability problem is defined as follows.

• 85 •

Definition 6.3.1 Given a Petri net model of a due date assignment
problem defined by a collection of resource constructs and performance
tracking constructs, determine a transition firing sequence u E .C(Mo)
that maximizes Md(p5*) such that Mo[a >- Md where,

1. Initial Marking:
Mo(pli1,j) = 1, Vi E {OU O}, where j = Mi(l);
Mo(p21J) = 1, Vj E IR;
AU other places are empty .

. 2. Final Marking:
Md(Plini,j) = 1, Vi E {OU O}, where j = Mi(si);
Md(p5*) = M*, where M* is the total cost of the processing plan
specified by u

Md(p4.:,j) = 1, Md(P71) = Ti, Md(P9i) = Ii All other places are
empty.

Note that in the case of partially completed orders that are currently

in the system, the processing times are adjusted for the remaining pro­

cessing times.

A suitable process plan for a given set of orders has to be determined

iteratively so that the net revenue of executing the process plan given

by the marking Md(p5*) is maximized. The m~king in place p5* is

indicative of the net revenue from processing the orders (revenue minus

cost associated with the processing plan, which in turn is a function

of the order completion times). Hence, a process plan that leads to the

maximum number of markings in the place p5* is desirable. The iterative

process of identifying the best process plan would be aided if the number

of tokens in the place p5* could be bounded. If none of the orders incurs

any cost in the process plan, then the number of tokens in p5* would be

sum of all the revenues from processing the orders. Hence the iterative

process could be set up to begin with Md(p5*) = Z:::i Ji, and decrease

• 86 •

Md(p5*) by one for each iteration if a valid firing sequence is not found.

The reader is referred to the discussions in the earlier chapters that deal

with the actual mechanics of reachability analysis (see Chapters 3 & 4).

• 87 •

Chapter 7

Summary and Research Contributions
• • • • • • • • • • • • • • • • •

Summary

This chapter summarizes the major research findings and the re­
search problems that were brought to the forefront by this disserta­
tion research. The areas that need to be explored in future research
activities are also discussed.

7.1 Summary

The main research goal of this dissertation is to explore approaches for

deciding reachability in general Petri nets. A formal introduction of the

reachability problem is provided in Chapter 2. Also, Chapter 2 reviews

the various approaches for deciding reachability that are available in

published literature. In Chapter 3, a new acyclic transformation tech­

nique is developed that enables the application of the known sufficient

condition for reachability in acyclic Petri nets to general Petri nets under

certain conditions. Specifically, the application of the suffi.dent condi­

tion of reachability in acyclic Petri nets to any general Petri net with

known firing count vector is discussed. Further, the issues involved in

using this approach for Petri nets with unknown firing count vectors are

presented. Chapter 4 discusses the challenges in obtaining a firing count

88

vector for a general Petri net reachability problem. More specifically,

the presence of the free variables in the solution to state equation is the

source of uncertainty in determining the firing count vector. Chapter 4

also explores ways to reduce the number of free variables in the solution

to the state equation.

Chapter 5 presents some of the extensions of the reachability results

to related problems. First, the sub-marking reachability problem is dis­

cussed. The notion of a SubM Petri net for the purpose of sub-marking

reachability analysis is introduced. The relationship of the sub-marking

reachability problem to a full-marking reachability problems in its SubM

Petri net is established. The preservation of the acyclic nature of a net

in its SubM format is shown. Chapter 5 also includes discussions on the

impact of the reachability results on deadlock avoidance problems.

Finally, an application of the reachability analysis in the discrete

part manufacturing environment is presented in Chapter 6. Petri net

modeling constructs for the du~ate quotation problem are developed,

and these lay the foundations for a new approach to this important

problem. It is especially valuable because, the reachability analysis based

approach provides an operational road map for the production system

in addition to recommending due dates for the orders.

7.2 Research Contributions

The major contribution of this research is the development of a new

acyclic transformation technique using net expansion that enables the

use of the sufficient condition for reachability in acyclic Petri nets in

the context of a general Petri net under certain conditions. This acyclic

• 89 •

transformation approach converts any general Petri net into an acyclic

Petri net of a given number of stages. The net result is that for a general

Petri net reachability problem, if the number of events that changes

the current state to the desired state is known, the sufficienct condition

for the reachability problem can be stated in terms of a related acyclic

Petri net. In addition, the acyclic transformation based net expansion

technique has the added advantage of directly delivering the transition

firing sequence.

Another significant contribution of this research is in showing the

relationship between the sub-marking reachability problem and a full

marking reachability problem. Specifically, a SubM Petri net is defined

that can be used to formulate the sub-marking reachability problem of

the original Petri net as a reachability problem of the SubM Petri net.

Further, the SubM Petri net retains the acyclic property of the original

Petri net.

The various research contributions are summarized below:

• The known sufficient condition for reachability for acyclic Petri

nets. (a sub-class) is made applicable to all Petri nets under cer­

tain conditions with the introduction of an acyclic transformation

approach.

• Introduced some experimental approaches to reduce the uncer­

tainty in determining the transition firing count vectors for a reach­

ability problem.

• Established a relationship between the sub-marking reachability

problem and a full-marking reachability problem. In fact, it is es­

tablished that the sub-marking reachability problem of a Petri net

• 90 •

could be reformulated directly as full marking reachability problem

of its SubM Petri net.

• Modeling constructs are developed for formulating the due-date

quotation problem in a discrete part manufacturing environment

as a Petri net reachability problem. This lays the foundation for a

new, comprehensive approach to the due date quotation problem.

7 .3 Future Research Directions

Practical application of the acyclic transformation approach depends on

our ability to exactly determine or bound the required number of stages

of net expansion. The work on invariant-free Petri nets in Chapter 4 is a

step in that direction. Specifically, two approaches for reducing the null

space of the incidence matrix are presented. This has a direct implication

on the number of free variables in the solution to the state equation, and

hence, on bounding the required number of stages of net expansion. The

application of these two approaches, namely (1) use of base transitions

as stabilizers, and (2) multi-purpose sink transitions as stabilizers need

to be explored further. This research characterized their use based on

the general solution to the state equation. Another approach could be

categorize their usage for specific classes of Petri nets.

On the application of reachability analysis, a novel application to the

due date quotation problem in a manufacturing system is explored. In

addition to recommending order due dates, this approach has the added

advantage of directly providing the operational road map for the sys­

tem. The power of Petri nets provides the capability to model different

business situations as well. An example of such a business situation is

• 91 •

when order A needs to be given priority over order B. Research has been

initiated in this direction by defining Petri net modeling constructs for

this problem.

The directions for future research can be summarized thus:

• Exploration of invariant free Petri nets for bounding the required

number of stages of expansion for a reachability problem, and any

new approaches intended for this purpose.

• Testing the Petri net modeling constructs developed herein for the

order due date quotation problem in practical situations.

- The modeling constructs assume that the order processing

times are deterministic. Modifications to the constructs to

handle stochastic processing times would be a valuable future

research effort.

- Computational studies using these modeling constructs would

increase their potential applicability in factory decision sup­

port systems.

• 92 •

Bibliography

[1] J. L. BAER AND C. A. ELLIS, Model design and evaluation of a
compiler for a parallel processing environment, IEEE Transactions
on Software Engineering, SE-3 (1977), pp. 394-405.

[2] H. G. BAKER, Rabin's proof of the undecidability of the reachability
set inclusion problem of vector addition systems, tech. report, MIT
Project MAC, CSGM 79, Cambridge, MA, 1973.

[3] Z. A. BANASZAK AND B. H. KROGH, Deadlock avoidance inflexible
manufacturing systems with concurrently competing process flows,
IEEE Transactions on Robotics and Automation, 6 (1990), pp. 724-
734.

[4] J. W. M. BERTRAND, The effect of workload dependent due dates
on job shop performance, Management Science, 29 (1983), pp. 799-
816.

[5] T. C. E. CHENG AND M. C. GUPTA, Survey of scheduling research
involving due date determination decisions, European Journal of
Operational Research, 38 (1989), pp. 156-166.

[6] F. CHU AND X.-L. XIE, Deadlock analysis of Petri nets us­
ing siphons and mathematical programming, IEEE Transactions on
Robotics and Automation, 13 (1997), pp. 793-804.

[7] M.A. COMEAU AND K. THULASIRAMAN, Structure of the submark­
ing reachability problem and network programming, IEEE Transac­
tions on Circuits and Systems, 35 (1988), pp. 89-100.

[8] R. W. CONWAY, Priority dispatching and job lateness in ajob shop,
Journal of Industrial Engineering, 16 (1965), pp. 228-237.

[9] R. DAVID AND H. ALLA, Petri nets for modeling dynamic systems­
A survey, Automatica, 30 (1994), pp. 175-202.

93

[10] J. DESEL AND J. ESPARZA, Reachability in cyclic extended free
choice systems, Theoretical Computer Science, 114 (1993), pp. 93-
118.

[11] A. A. DESROCHERS AND R. Y. AL-JAAR, Applications of Petri
Nets in Manufacturing Systems, IEEE Control System Society:
NY., 1994.

[12] M. DIAZ, Modeling and analysis of communication and co-operation
protocols using Petri net based models, Computer Networks, 6
(1982), pp. 419-441.

[13] I. DUENYAS AND W. J. HOPP, Quoting customer lead times, Man­
agement Science, 41 (1995), pp. 43-57.

[14] S. E. EILON AND I. G. CHOWDHURY, Due dates in job shop
scheduling, International Journal of Production Research, 14 (1976),
pp. 223-237.

[15] J. ENGELFRIET, Branching processes of Petri nets, Acta Informat­
ica, 28 (1991), pp. 575-591.

[16] J. ESPARZA, Reachability in live and safe free choice Petri nets is
NP-complete, Theoretical Computer Science, 198 (1998), pp. 211-
224.

[17] J. ESPARZA, S. ROMER, AND W. VOGLER, An improvement
of McMillans's unfolding algorithm, in Proceedings of TACAS'96,
LNCS 1055, Springer Verlag, 1996, pp. 87-106.

[18] J. ESPARZA AND C. SCHROTER, Unfoldings based algorithms for the
reachability problem, Fundamenta Informaticae, 46 (2001), pp. 1-17.

[19] R. A. FERNANDES, Deadlock avoidance in automated manufactur­
ing systems, master's thesis, School of Industrial Engineering and
Management, Oklahoma State University, December 1995.

[20] S. GERSHWIN, Manufacturing Systems Engineering, Prentice Hall,
1994.

[21] M. E. GOLD, Deadlock prediction: Easy and difficult cases, SIAM
Journal of Computing, 7 (1978), pp. 320-336.

[22] M. HACK, Decidability questions for Petri nets, Tech. Report 161,
MIT, LCS, Cambridge, MA, 1976.

• 94 •

[23] W. J. HOPP AND M. L. SPEARMAN, Factory Physics: Foundations
of Manufacturing Management, Irwin: Burr Ridge, IL, 1996.

[24] · W. J. HOPP AND M. L. STURGIS, Quoting manufacturing due dates
subject to a service level constraint, IIE Transactions, 32 (2000),
pp. 771-784.

[25] A. ICHIKAWA AND K. HIRAISHI, A class of Petri nets for which nec­
essary and sufficient condition for reachability is obtainable, Trans­
actions of the Society of Instruments and Control Engineers (In
Japanese), 24 (1988).

[26] K. JENSEN, Coloured Petri nets and the invariant method, Theo­
retical Computer Science, 14 (1981), pp. 317-336.

[27] M. KAMATH AND N. VISWANADHAM, Applications of Petri net
based models in the modeling and analysis of flexible manufacturing
systems, in Modeling and Control of Automated Manufacturing Sys­
tems, A. A. Desrochers, ed., IEEE Computer Society Press, 1990,
pp. 262-267.

[28] R. M. KARP AND R. E. MILLER, Parallel program schemata, Jour­
nal of Computational Systems Sciences, 3 (1969), pp. 147-195.

[29] S. R. KOSARAJU, Decidability of reachability in vector addition sys­
tems, in Proceedings of the 14th Annual ACM Symposium on the
Theory of Computing, San Francisco, CA, 1982, pp. 267-281.

[30] S. KUMAGAI, S. KODAMA, AND M. KITAGAWA, Submarking reach­
ability of marked graphs, IEEE Transactions on Circuits and Sys­
tems, 31 (1984), pp. 159-164.

[31] S. R. LAWRENCE, Estimating flow times and setting due dates in
complex production systems, IIE Transactions, 27 (1995), pp. 657-
668.

[32] D. Y. LEE AND F. DICESARE, Scheduling flexible manufacturing
systems using Petri nets and heuristic search, IEEE Transactions
on Robotics and Autom.ation, 10 (1994), pp. 123-132.

[33] R. J. LIPTON, The reachability problem requires exponential space,
Research Report 62, Department of Computer Science, Yale Uni­
versity, New Haven: CT, 1976.

• 95 •

[34] K. F. MAN, K. S. TANG, AND S. KWONG, Genetic algorithms:
Concepts and applications, IEEE Transactions on Industrial Elec­
tronics, 43 (1996), pp. 519-534.

[35] D. MANDRIOLI, A note on Petri net languages, Information and
Control, 34 (1977), pp. 169-171.

[36] E. W. MAYR, An algorithm for the general Petri net reachability
problem, SIAM Journal of Computing, 13 (1984), pp. 441-460.

[37] K. L. McMILLAN, A technique of state space search based on un­
folding, Formal Methods in System Design, 6 (1995), pp. 45-65.

[38] S. MELZER AND S. ROMER, Deadlock checking using net unfold­
ings, in Proceedings of CAV;97, LNCS 1254, Springer Verlag, 1997,
pp. 352-363.

[39] T. MIYAMOTO AND S. KUMAGAI, A graph theoretic approach to
reachability problem with Petri net unfoldings, IEICE Transactions
on Fundamentals of Electronics, Communications, and Computer
Sciences, E79-A (1996), pp. 1809-1816.

[40] S. A. MOSES, Due date assignment using feedback control with re­
inforcement learning, IIE Transactions, 31 (1999), pp. 989-999.

[41] T. MURATA, Petri nets: Properties, analysis and applications, Pro­
ceedings of the IEEE, 77 (1989), pp. 541-580.

[42] T. MURATA AND D. ZHANG, A predicate-transition net model for
parallel interpretation of logic programs, IEEE Transactions on Soft­
ware Engineering, 14 (1988), pp. 481-497.

[43] N. NIELSEN, G. PLOTKIN, AND G. WINSKEL, Petri nets, event
structures and domains, Theoretical Computer Science, 23 (1980),
pp. 85-108.

[44] N. NILSSON, Principles of Artificial Intelligence, Palo Alto, CA:
Tioga, 1980.

[45] J. PEARL, Intelligent Search Strategies for Computer Problem Solv­
ing, Reading, MA: Addison-Wesley, 1984.

[46] J. L. PETERSON, Petri nets, Computing Surveys, 9 (1977), pp. 223-
252.

• 96 •

[47] P. RAMACHANDRAN AND M. KAMATH, On the place invariant sets
and the rank of incidence matrix of ordinary Petri nets, in Pro­
ceedings of IEEE International Conference on Systems, Man and
Cybernetics, IEEE, 1998, pp. 160-165.

[48] C. RAMCHANDANI, Analysis of Asynchronous Concurrent Systems
by Timed Petri Nets, PhD thesis, Massachusetts Institute of Tech­
nology, Cambridge, MA, 1973.

[49] T.-H. SUN, C.-W. CHENG, AND L.-C. Fu, A Petri net based ap­
proach to modeling and scheduling for an FMS and a case study,
IEEE Transactions on Industrial Electronics, 41 (1994), pp. 593-
601.

[50] K. TAKAHASHI, M. YAMAMURA, AND S. KOBAYASHI, A GA ap­
proach to solving reachability problems for Petri nets, IEICE Trans­
actions on Fundamentals of Electronics, Communications and Com­
puter Sciences, E79 (1996), pp. 1774-1780.

[51] L. N. TREFETHEN AND D. BAU, Numerical Linear Algebra, SIAM,
1997.

[52] N. VISWANADHAM AND Y. NARAHARI, Performance Modeling of
Automated Manufacturing Systems, Prentice Hall of India, 1994.

[53] N. VISWANADHAM, Y. NARAHARI, AND T. L. JOHNSON, Deadlock
prevention and deadlock avoidance in flexible manufacturing sys­
tems using Petri net models, IEEE Transac~ions on Robotics and
Automation, 6 (1990), pp. 713-723.

[54] K. Voss, Using predicate/transition nets to model and analyze dis­
tributed database systems, IEEE Transactions on Software Engineer­
ing, SE-6 (1980), pp. 539-544.

[55] S. S. YAU AND M. U. CAGLAYAN, Distributed software system
design representation using modified Petri nets, IEEE Transactions
on Software Engineering, SE-9 (1983), pp. 733-745.

• 97 •

VITA2

Parthasarathy Ramachandran
Candidate for the Degree of

Doctor of Philosophy

THESIS: An Acyclic Transformation Technique for the Reachability Anal­
ysis of Petri Nets

MAJOR FIELD: Industrial Engineering & Management

BIOGRAPHICAL:

Personal Data : Born in Madras, India, May 11, 1972, son of Smt. R.
Gomathy and Sri. A. Ramachandran

Education : Graduated from Madras Christian College Higher Sec­
ondary School, Madras, India in May 1989; received the Bachelor
of Engineering degree in Mechanical Engineering from The Univer­
sity of Madras, India in May 1994; received the Master of Science
degree in Mechanical Engineering from Oklahoma State University
in December 1995; completed requirements for the Doctor of Phi­
losophy degree at Oklahoma State University in December 2002.

Experience : Graduate Research Assistant, Advanced Control Lab­
oratory, Oklahoma State University, January 1995 - December
1995; Graduate Research Associate, Center for Computer Inte­
grated Manufacturing, Oklahoma State University, September 1996
- June 2000; Instructor, School oflndustrial Engineering and Man­
agement, Oklahoma State University, Spring 1999, Fall 1999, and
Spring 2000; Research Scientist, PROS Revenue Management, Hous­
ton, TX, July 2000 - present.

Professional Membership : INFORMS, IEEE, and SIAM

