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INTRODUCTION 
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Intercellular communication in plants 

Plants are multi-cellular organisms and intercellular communication is important for 

growth and development. Plant cells possess two different kinds of systems for 

intercellular communication, either apoplastically or symplastically. The apoplastic 

communication has been studied in detail on auxin transport (Muday and Delong, 2001) 

and CLAVATA signaling pathway (Clark, 2001). Small molecl;lles or proteins are 

produced in a cell and secreted to the apoplast through the cell walls and the plasma 

membrane. The signal molecules, the ligands, move through the apoplast and bind 

receptors on the plasma membrane of target cells. Upon binding, the signal will be 

transmitted to the nuclei of the target cells to regulate gene expression. 

The other way of communication is symplasmic communication, which occurs 

through cytoplasmic connections called plasmodesmata (PD) (Ding 1998; Citovsky and 

Zambryski, 2000). PD transport various molecules for growth, differentiation and 

development. These molecules include H20, amino acids, sugars, and hormones 

(Anderson, 1976; Goodwin, 1976; Gunning, 1976; Robards and Clarkson, 1976; van 

Steveninck, 1976; Drake and Carr, 1979; Sauter and Kloth, 1986; Kwiatkowska, 1991). 

Studies in the past decade have provided evidence that selected proteins and RNAs may 

also traffic intercellularly through PD to play roles in regulating development and plant

pathogen interactions (Reviewed in Ding 1998, Citovsky and Zambryski, 2000). This 

dissertation is aimed at understanding the regulation of macromolecular traffic through 

PD in plants. 
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Formation of plasmodesmata 

Microscopic analysis provided insights about how PD are formed between plant cells. 

Basically, PD can be formed during cytokinesis and after cytokinesis. PD formed 

cytokinetically or post-cytokinetically are called primary PD and secondary PD, 

respectively. 

During cytokinesis, at the newly developing cell plate, endoplasmic reticulum 

(ER) are entrapped and transformed into an appressed ER, which leads to the formation 

of primary PD (Hepler, 1982). The primary PD consists of the appressed ER in the center 

and spoke-like extensions that connect the appressed ER and plasma membrane to create 

microchannels (Ding et al., 1992). The primary PD are single-stranded and linear shape 

in appearance. 

Secondary PD form post-cytokinetically across the established cell walls and can 

be simple or highly branched (Ding, 1998; Ehlers and Kollmann, 2001). Secondary PD 

can form from simple primary PD by changing into branched forms as a tissue matures 

(Ding and Lucas, 1996). 

Regulation of PD transport 

The size of microchannels in the primary PD is about 2.5 nm in diameter in tobacco 

(Ding et al., 1992). It is possible that certain transported materials with a diameter 

smaller than 2.5 nm pass through the microchannels by simple diffusion. The capacity of 

PD for intercellular trafficking as passive diffusion is referred to as the size exclusion 

limit (SEL). Utilizing microinjection of fluorescent probes of a range of sizes, the SEL of 

PD in several plant species is estimated to be about 0.8-1 kDa (Tucker, 1982; Barclay 
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and Peterson, 1982; Goodwin, 1983; Terry and Robards, 1987; Wolf et al., 1989), which 

may have a calculated diameter of 3 nm (Terry and Robards, 1987). The 27 kDa green 

fluorescent protein (GFP), which has a diameter of 2.4 nm and 4.2 nm in length (Ormo et 

al., 1996), can diffuse intercellularly in immature leaves and also in mature leaves of 

some plant species (Imlau et al., 1999; Oparka et al., 1999; Itaya et al., 2000, Crawford 

and Zambryski, 2000, 2001), indicating that SEL is higher in younger leaves and is also 

different among plant species. It should be noted that some lipids may pass through the 

appressed ER membranes instead of passing through the microchannels (Grabski et al., 

1993). 

Intercellular transport through PD, however, does not always occur by simple 

diffusion. Up-regulation/down-regulation of SEL of PD is often observed during 

physiological and developmental changes (Ding, 1998; Zambryski and Crawford, 2000). 

The traffic of macromolecules through PD is also regulated, which is discussed later. 

Symplasmic domains 

Dye-coupling experiment showed that a young plant body is a symplast, which means 

that all cells are connected by PD that allow free diffusion of small molecules (Lucas et 

al., 1993, McLean et al., 1997). Changes in the frequencies and structures of PD can lead 

to formation of symplasmic domains (Tucker, 1982; Erwee and Goodwin, 1983; Palevitz 

and Hepler, 1985). Small molecules can move within a symplasmic domain, but not 

between the domains. The shoot apical meristems in Birch (Betula pubescence) (Rinne 

and van der Schoot, 1998), shoot apex (Gisel et al., 1999) and root hair cells in 

Arabidopsis (Duckett et al., 1994), stomatal guard cells in onion (Allium cepa) (Palevitz 
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and Hepler, 1985), cotton fiber cells (Ruan et al., 2001) and developing floral meristems 

(Bergmans et al., 1993) are examples of symplasmic domains in plants. Sieve element 

(SE)-companion cell (CC) complex in the phloem is also a well-documented symplasmic 

domain, which was investigated in this dissertation. 

The symplasmic domains are likely to play important roles in intercellular 

communication by changing the flow of signal molecules and nutrient transport (Lucas et 

al., 1993; Pflunger and Zambryski, 2001). Therefore, physiology and development of a 

plant are under the influence of symplasmic domains. Although formation of symplasmic 

domains is important, communication between the domains is also important for 

coordinated growth and/or development. How symplasmic domains communicate with 

each other is not known. 

Transport of macromolecules 

Studies on viral protein and nucleic acid transport initially opened the field of 

intercellular macromolecular traffic through PD in plants (Fujiwara et al., 1993; Noueiry 

et al., 1994; Ding et al., 1995). Recently, endogenous proteins including transcription 

factors have been reported to have the ability to move intercellularly and may possess 

important functions for development (Jackson et al., 1994; Lucas et al., 1995; Carpenter 

and Coen, 1995; Perbal et al., 1996; Sessions et al., 2000; Hake, 2001; Nakajima et al., 

2001; Kim et al., 2002). 
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Viral movement proteins 

Most plant viruses encode movement proteins (MPs) that facilitate intercellular 

movement of the viral genomes or viral particles. The 30 kDa MP of Tobacco mosaic 

virus (TMV) has been shown to increase the SEL of PD from 1 kDa to 10 kDa in 

mesophyll cells (MCs) of transgenic tobacco expressing the MP (Wolf et al., 1989) and 

was shown to be localized to PD (Tomenius et al., 1987; Moore et al., 1992; Ding et al., 

1992). Microinjection of fluorescently labeled 35 kDa MP of Red clover necrotic mosaic 

virus (RCNMV) into a cowpea MC showed that the protein moved cell-to-cell within 3 

minutes, which was the first direct evidence of intercellular protein traffic through PD 

(Fujiwara et al., 1993). The.MP itself not only moved intercellularly but also helped the 

genomic RNA of the virus traffic through PD (Fujiwara et al., 1993). MPs of Bean dwarf 

mosaic virus (BDMV; Noueiry et al., 1994), Cucumber mosaic virus (CMV; Ding et al., 

1995), and TMV (Waigmann et al., 1994; Waigmann and Zambryski, 1995; Nguyen et 

al., 1996) also traffic intercellularly. Because of the unique features of MPs with the 

ability of intercellular movement, viral MPs have been useful to study protein traffic in 

plants as will be described in this dissertation. 

Plant transcription factors 

Studies on intercellular trafficking of viral MPs have led to the discovery that 

endogenous plant proteins also traffic intercellularly. The first plant protein that was 

shown to traffic intercellularly was the 45 kDa homeobox protein called KNOTTED! 

(KNl) from maize. Studies with in situ hybridization and immunocytochemistry suggest 

that KNl traffics from inner layers to the outmost layer in the shoot apical meristem 
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(SAM; Jackson et al., 1994). Microinjection of KNl into tobacco MCs directly 

demonstrated its ability to move intercellularly (Lucas et al., 1995). Transcription factor 

FLORICAULA (FLO) functions non-cell-autonomously for flower development in 

Antirrhinum majas (Carpenter and Coen, 1995). PISTILLATA (Pl) has been shown to 

function similarly in Arabidopsis (Bouhidel and Irish, 1996). DEFICIENS (DEF) and 

GLOBOSA (GLO) are transcription. factors that control petal and stamen organ identity, 

and they also function non-cell-autonomously in A majas (Schwarz-Sommer et al., 1992; 

Sommer et al., 1990; Trobner et al., 1992). Furthermore, DEF moves unidirectionally 

from inner layers to the outmost layer in the floral meristem, suggesting that PD between 

these layers facilitate polar protein traffic (Perbal et al., 1996). Transcription factor 

LEAFY (LFY) from Arabidopsis traffics cell-to-cell and rescues the lfy mutants 

(Sessions et al., 2000). Because this trasncroption factor is expressed in all cell layers in a 

wild type plant, the function of its traffic is not clear. 

Recent report on the traffic of SHORT-ROOT (SHR), a putative transcription 

factor, by Nakajima et al. (2001) is of great significance as it is the first demonstration 

that regulated traffic of a specific protein is essential for proper development for normal 

plants. SHR is expressed in the stele and moves from the stele to a single layer of 

adjacent cells to specify formation of the endodermis (Nakajima et al., 2001). Ectopic 

expression of SHR causes supernumerary cell division and abnormal cell specification 

(Benfey et al., 1993; Nakajima et al., 2001). 
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Mechanism and regulation of macromolecular traffic 

It has been shown that mutation in viral MPs (Fujiwara et al., 1993; Ding et al., 1995) or 

plant transcription factors (Lucas et al., 1995) abolishes the intercellular traffic function 

of these proteins. Therefore, specific interactions between the trafficking molecule and 

cellular factor(s) are required for traffic of these proteins. However, neither the motif(s) 

in the trafficking protein nor cellular factors that are involved in such interaction are well 

understood. 

Plant development regulates traffic of proteins. CMV 3a MP:green fluorescent 

protein (GFP) fusion is able to target to and traffic through PD in tobacco source leaves, 

but not in sink leaves (Itaya et al., 1998, 2000). A source leaf is defined as the one that is 

photosynthetically active, and a sink leaf is the one that is not photosynthetically active 

and imports photoassimilates from source leaves (Turgeon, 1989). A similar pattern of 

PD targeting is reported for TMV MP:GFP (Ding et al., 1992; Roberts et al., 2001). 

CMV 3a MP:GFP expressed in companion cells of tobacco can traffic out of vascular 

tissues in mature stems and petioles, but not in young stems and petioles (Itaya et al., 

2002). 

Cellular boundaries also regulate traffic of macromolecules as revealed by studies 

on viral systemic movement. Cellular boundaries such as the interface between bundle 

sheath and phloem parenchyma (Goodrick et al., 1991; Ding et al., 1995; Wintermantel et 

al., 1997; Thompson and Garcia-Arenal, 1998) and that between phloem parenchyma and 

the SE-CC complex (Ding et al., 1998; Wang et al., 1998) restrict the movement of 

viruses. MP of TMV cannot increase SEL of PD between bundle sheath and phloem 

parenchyma cells in tobacco leaves while it does so between MCs (Ding et al., 1992). 
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The molecular mechanisms of developmental and cellular regulation of protein 

traffic is not known. Structures and/or biochemical compositions of PD, and/or different 

cellular factors, either negative or positive factors, are likely to be involved in such 

regulation and are subject to further studies. 

Research projects in this dissertation 

Upon organogenesis, cells undergo coordinated division and differentiation to develop 

into distinct tissues. Communication between cells is critical for the coordinated division 

and differentiation. Research on viral MPs shed light on intercellular protein movement 

in plants. Studies on plant transcription factors revealed that some of the transcription 

factors can act non-cell-autonomously to regulate development of a plant. We propose 

that PD at different tissue boundaries at different developmental stages regulate protein 

traffic based on molecular interacdons. A systematic and detailed analysis of protein 

traffic in plants is a prerequisite for understanding such regulation and for setting the 

basis for further biochemical or genetic analysis to dissect the mechanisms. This 

dissertation addresses the following issues: 1) Can an MP move between symplasmic 

domains? 2) Can an MP move across tissue boundaries such as phloem-mesophyll and 

mesophyll-epidermis interfaces? 3) Is the movement of MP regulated by plant 

development? 4) Is the movement of MP regulated in the same or different ways in 

different organs? 

Microinjection of MPs or transcription factors has provided direct evidence of 

intercellular protein traffic. However, the method has some limitations. Most importantly, 
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microinjection is limited to MCs or EPs. Therefore, it is useful mainly to study traffic 

between the same cell types but not to study traffic between different tissues. 

As an alternative to microinjection, biolistic bombardment was developed by 

Itaya et al. (1997) to study protein traffic. A gene construct encoding CMV 3a MP:GFP 

fusion protein is delivered biolistically to leaf epidermal cells. The fusion protein 

produced in single cells is targeted to PD and traffics into adjacent cells (Itaya et al., 

1997). This method is also limited because proteins can be expressed usually only in EPs. 

Recently, transgenic approaches have been used to express GFP and GFP fusions 

under the control of tissue-specific promoters (Oparka et al, 1999; Imlau et al., 1999; 

Kim et al., 2002; Nakajima et al., 2001; Itaya et al., 2002). With this method, the protein 

of interest can be produced in specific tissues. Using a combination of the transgenic 

approach and confocal laser scanning microscopy (CLSM), protein traffic between 

tissues can be studied. 

This dissertation is devoted to studies on how CMV 3a MP mediates traffic 

between the phloem and mesophyll, and between the mesophyll and epidermis in tobacco 

and Arabidopsis. In chapter II, we describe transgenic tobacco and Arabidopsis 

expressing ~-glucuronidase (GUS) under four different tissue-specific promoters and 

their tissue-specificity. In chapter III, we describe traffic of 3a MP fusion protein 

produced in CCs under the control of CC-specific promoters in transgenic tobacco and 

Arabidospsis. In chapter IV, we describe traffic of 3a MP fusion protein produced in 

MCs under the control of MC-specific promoters in transgenic tobacco. The results are 

presented and discussed. Future prospects are discussed in chapter V. 
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CHAPTER II 

IDENTIFICATION OF COMPANION CELL- AND MESOPHYLL CELL

SPECIFIC PROMOTERS1 

1 Data presented here will be published as: Matsuda Y., Liang G., Zhu Y., Ma F., Nelson, R., and Ding, B. 
(2002) The Commelina yellow mottle virus promoter drives companion cell-specific gene in multiple 
organs of transgenic tobacco. (Protoplasma, in press). The data are presented here with modifications with 
permission from Springer-Verlag Wien) 
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INTRODUCTION 

The question of how plasmodesmata (PD) mediate protein traffic across different tissue 

boundaries is of great importance to understanding how intercellular communication 

controls plant growth and development and how plants and pathogens interact with each 

other. Microinjection and biolistic bombardment methods have provided important 

insights about protein traffic. These methods, however, have limitations in studying 

protein traffic between differentiated tissues. Basically, they are often limited to studying 

protein traffic between same cell types. Microinjection is useful for studying protein 

traffic between mesophyll cells (MCs) or epidermis (EPs). Biolistic bombardment is 

useful but limited to EPs. 

To study protein traffic across different tissue boundaries, transgenic expression 

of a protein in specific cells/tissues will be an ideal approach. For such experiments 

tissue-specific promoters are necessary. We are interested in understanding how a protein 

traffics between the phloem and neighboring cells and between mesophyll and epidermis. 

Within the phloem, we are specifically interested in traffic between the companion cells 

(CCs) and surrounding cells. 

Several CC-specific promoters have been reported. AtSUC2 promoter is active in 

CCs of mature and photosynthetically active leaves, which are called source leaves of 

photoassimilates (Truernit and Sauer, 1995; Stadler and Sauer, 1996). It is not active in 

immature and photoassimilate sink leaves. We verified the CC-specificity of this 

promoter in this study. The Commelina Yellow Mottle Virus (CoYMV) promoter w,as 

reported to be strong and predominantly active in phloem tissues of different organs such 
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as stem, sink and source leaves, and flowers in tobacco (Medberry et al., 1992). However, 

the specific cells in which the CoYMV promoter is active were not clear. In this study, 

we determined that the Co YMV promoter is active specifically in CCs of all organs. The 

CoYMV promoter and the AtSUC2 promoter are used to study protein traffic between 

CCs and neighboring cells as reported in chapter III. 

The tomato ribulose bisphosphate carboxylase/oxygenase (RuBisco) small 

subunit 3C (RBCS3C) promoter has shown to be active in MCs in apple (Gittins et al., 

2000). RBCS2 promoter is one of five different RECS promoters in tomato (Sugita and 

Gruissem, 1987) and a candidate for MC-specific promoter. In this study, we determined 

that they are active in MCs. We use the RBCS2 promoter to study protein traffic between 

MCs and EPs, as reported in chapter IV . 

. MATERIALS AND METHODS 

Plant material and growth conditions 

Tobacco (Nicotiana tabacum cv. Samsun NN and Xanthi NN) was grown in a growth 

chamber controlled at 14 hours light (28°C)/10 hours dark (22°C) cycles. Arabidopsis 

thaliana (Columbia, Col-0) was grown at 23°C under 40 W cool white fluorescent light 

kept on a 16 hours light/8 hour dark cycle. 

Construction of binary vectors 

To test tissue specificity of promoters, they were inserted upstream of a GUS reporter 

gene in binary vectors. Binary vector construction for each promoter is described below. 

13 



A plasmid named pCOI, a pGPTV-kan-based binary vector containing the 

Co YMV promoter (Medberry et al., 1992) between Sarr site and Sstl site, was kindly 

provided by Dr. Neil Olszewski at University of Minnesota. The pCOI was digested with 

Smal and EcoRI. The DNA fragment containing GUS:NOS-terminator excised from 

pBI221 (Clontech) with Smal and EcoRI was inserted into the SmaI-EcoRI digested 

pCOI. The resulting plasmid was named pCOI-GUS. 

AtSUC2 promoter was kindly provided by Dr. Norbert Sauer at Universitat 

Erlangen-Nilrberg, Germany. AtSUC2 promoter was amplified by polymerase chain 

reaction (PCR) using a plasmid named pAF (transcriptional fusion of AtSUC2 promoter 

and GFP in pUC19) as a template, forward primer HindIII-SphI-AtSUC2pro (5'

TGCCCAAGCTT GCATGCAAAATAGC-3'; Hindlll-Sphl sites underlined) and reverse 

primer AtSUC2pro-XbaI (5'-TGCTCTAGATTTGACAAACCAAGAAAG-3'; Xbal site 

underlined). The PCR product was double-digested with HindIII and Xbal and inserted 

into appropriate sites of pGPTV -Kan. The resulting plasmid was named pGPTV

AtSUC2:GUS. 

A binary vector named pCVl.6RBCS3CP, which contains ribulose-1,5-

biphosphate carboxylase small subunit 3C (RBCS3C) promoter upstream of a GUS 

sequence, was kindly provided by Dr. David J. James from Horticulture Research 

International, Kent, UK. 

A plasmid named RBCS2-LUC was kindly provided by Dr. Iris Meier from The 

Ohio State University, Columbus, OH. Ribulose-1,5-biphosphate carboxylase small 

subunit 2 (RBCS2) promoter was PCR amplified with Pfu polymerase using primers 

HindIII-RBCS2 (5'-CCCAAGCTTGATCCGACACAAACAAT-3'; HindIII site 
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underlined), and RBCS2-Xbal (5'-GCTCTAGAATTGCTTCTTCTCTC-3'; Xbal site 

underlined), and RBCS2-LUC as a template. The PCR product was digested with HindIII 

and Xbal. The double-digested fragment was inserted into pGPTV-Kan. The resulting 

plasmid was named pGPTV-RBCS2:GUS. 

Transformation of Agrobacterium tumefaciens 

Binary vectors pCOI-GUS and pCVl.6RBCS3CP (Fig. 1) were used to transform 

Agrobacterium tumefaciens GV3101. Binary vectors pGPTV-AtSUC2:GUS and pGPTV

RBCS2:GUS (Fig. 1) were used to transform A. tumefaciens LBA4404. 

Transformation of tobacco and Arabidopsis 

A standard Agrobacterium-mediated leaf-disc transformation method (Horsch et al., 

1985) was performed to transform tobacco plants with binary vectors above. A standard 

floral dip method (Clough and Bent, 1998) was conducted to transform Arabidopsis 

plants for pCOI-GUS. Transformants were selected by kanamycin resistance (100 

µg/mL). 

Histochemical GUS Assay 

Seeds from transgenic plants were sterilized with 70% ethanol for 2 min and 5% bleach-

1 % SDS solution for 15 min, followed by washing with sterilized H20 several times. The 

sterilized seeds were plated on selection media (MS media +1 % sucrose) with 100 µg/mL 

kanamycin. Three-day-old seedlings were processed for GUS assay as described below. 
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Whole seedlings or freshly detached leaf, petiole, flower and stem samples from 

soil grown adult plants were submerged in a fixation mixture ( 100 mM sodium 

phosphate/2% paraformaldehyde/lmM EDTA, pH 7.0) for 30 min on ice. Following 

washes with 100 mM sodium phosphate buffer/1 mM EDTA (pH 7 .0), the samples were 

vacuum-infiltrated for 30 min in the histochemical reaction mixture (100 mM sodium 

phosphate buffer of pH 7.0, 2 mM X-glucuronide, 5 mM potassium ferricyanide, 5 mM 

potassium ferrocyanide, 1 mM EDTA and 0.5 % Triton X-100). After 12-18 hours of 

incubation, the reaction was stopped by rinsing with H20 and samples were cleared with 

70% ethanol for 2 hours and with 95% ethanol overnight to remove chlorophyll. Samples 

were put in 70% ethanol for 2 hours then sections were prepared by hand sectioning. 

For leaf samples of RBCS3C:GUS- and RBCS2:GUS-trangenic tobacco, and 

stem samples of CoYMV:GUS-transgenic Arabidopsis, samples were embedded into 

O.C.T. compound after GUS reaction and removing chlorophyll. The cryosectioning to 

obtain thin sections was conducted. The procedure of cryosectioning is detailed below. 

Microscopy 

· Histochemical blue staining of freehand sections and cryosections as well as whole 

samples were examined under bright-field conditions with a Nikon Eclipse-600 light 

microscope (Nikon Corp., Tokyo, Japan). In some cases, Nomarski optics were used to 

enhance contrast image of sections. All images were captured via an RT SPOT 2 Slider 

CCD camera and associated software (Diagnostics Instruments Inc., Sterling Heights, 

Michigan, USA). 
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In situ hybridization 

For riboprobe production, GUS-Nos terminator was excised from pBI221 with XbaI and 

EcoRI and inserted in the appropriate sites of pGEM-4Z resulting in pGEM-GUS. The 

pGEM-GUS was linearized with HindJJ.I or EcoRI to be used as templates for in vitro 

transcription to produce antisense and sense probes, respectively. Digoxygenin (DIG) 

-labeled antisense proQe was generated with SP6 RNA polymerase and sense probe was 

generated with T7 RNA polymerase respectively, using the Ambion MEGAScript kit 

(Ambion Inc., Austin Texas, USA) according to the manufacturer's instructions. 

For in situ hybridization, cryosections were prepared. Leaves and stems of 

transgenic plants expressing GUS were dissected into 2 x 2 mm segments and fixed in a 

mixture of 3.7% paraformaldehyde, 0.1 % glutaraldehyde, 0.2% picric acid, 50 mM 

potassium phosphate, and 5 mM EGTA for 2 hours. After rinsing with 50 mM potassium 

phosphate/5 mM EGTA, fixed samples were infiltrated sequentially with 3:7 (v/v), 5:5 

(v:v), and 7:3 (v/v), embedding mixture (2 parts of 20% sucrose and one part of O.C.T. 

compound):potassium phosphate-EGTA buffer at room temperature for 2 hours, 

respectively. Finally, the fixed samples were infiltrated with absolute O.C.T. compound 

for 2 hours and frozen at -20 °C. The frozen samples were sectioned to 12 µm thickness 

using a Microm HM500 cryostat (Walldorf, Germany). Sections were collected onto 

microscope slides coated with 1 % gelatin and 0.1 % chromium alum. The slides with 

sections were placed on a warming plate at 42 °C overnight to enhance section 

attachment and kept at 4 °C before further processing. In situ hybridization was 

performed as described in Zhu et al. (2001). 
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RESULTS 

Co YMV promoter is active specifically in companion cells of transgenic tobacco 

To test cell-specificity of the Co YMV promoter in tobacco, transgenic plants expressing 

GUS under the promoter were generated. A total of seven different transgenic tobacco 

lines expressing GUS were obtained. Since two of them showed stronger GUS activity in 

the phloem, these two plants were studied extensively for the promoter specificity. 

The GUS expression pattern in young seedlings showed that the Co YMV 

promoter was active in vascular systems (Fig. 2A). In the stems of mature plants, internal 

(InP) and external phloem (ExP) showed GUS expression (Fig. 2B). High resolution 

microscopy revealed GUS activity in CCs but not in other cell types such as sieve 

elements (SEs) or phloem parenchyma cells (PPs) (Fig. 2C). Outside the phloem, xylem 

(Xy) and cortex (Cx) did not show any GUS activity. Further evidence was obtained by 

longitudinal sections. Only CCs showed the blue color while SEs and PPs remained clear 

(Fig. 2D). The cell types can be easily distinguished in the longitudinal view by the size 

and the morphology. SEs have sieve plates and P-protein whereas CCs do not. Phloem 

parenchyma cells are relatively shorter and wider than SEs and CCs. To verify the CC

specificity of the promoter activity, in situ hybridization to detect mRNA of GUS was 

performed. With anti-sense probe, only CCs were labeled intensively (Fig. 3A). 

Leaves have a complex vein network and we followed the vein classification 

scheme of Ding et al. (1988). Briefly, class I are the primary (midrib) veins. Class II are 

mostly secondary branches. Class III consists of tertiary branches and terminal ends of 

secondary branches. Class IV and V veins (minor veins) consist of subsequent branches 
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from Class III veins. In all classes of veins, the Co YMV promoter drives GUS expression 

in CCs in source leaves (Fig. 4A-E). In sink leaves, GUS activity was also detected only 

in CCs (Fig. 4F). GUS activity was not detected in bundle sheath, mesophyll, or 

epidermis. In petioles, GUS activity was also detected only in CCs (data not shown). In 

situ hybridization showed localization of GUS mRNA only in CCs in leaves, confirming 

the CC-specificity of the Co YMV promoter (Fig. 3B-C). 

In roots, GUS activity was detected only in the vascular cylinder above the 

meristematic region (Fig. 5A). The transverse section showed that most probably GUS is 

active in CCs (Fig. 5B). 

In flowers, the vein network in sepals showed GUS activity (Fig. SC). A weak 

GUS signal was detected in veins of petals, anthers and carpels ( data not shown). 

Co YMV promoter is specifically active in companion cells of transgenic Ar~bidopsis 

In order to examine the CoYMV promoter activity in Arabidopsis, eight CoYMV:GUS

transgenic plants were obtained and examined for GUS activity. In young and mature 

leaves, GUS activity was detected in the vasculature (Fig 6A-B). In inflorescence stems, 

GUS activity was detected in the phloem (Fig. 6C). High magnification image showed 

that GUS expression was observed in CCs and not in other cells (Fig. 60). 

Interestingly, the root cap of three-day-old seedlings also showed GUS expression 

(Fig. 7 A). GUS activity was also detected in the vascular system in roots (Fig. 7B). 

The vein network of sepals showed GUS signal (Fig. 7C). A weak GUS signal 

was detected in veins in petals, anthers and carpels (data not shown). 
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AtSUC2 promoter is active in companion cells of transgenic tobacco 

To confirm CC-specificity of the AtSUC2 promoter in tobacco, a total of 4 lines of 

transgenic plants expressing GUS under the promoter were generated. GUS activity was 

detected in the CCs in the petioles (Fig. 8) and all veins in source leaves ( data not 

shown). However, in sink leaves, GUS activity was not detected (data not shown), as 

reported previously in Arabidopsis (Truernit and Sauer, 1995; Stadler and Sauer, 1996). 

Tomato RBCS3C and RBCS2 promoters are active in mesophyll and phloem of 

transgenic tobacco 

To examine cell-specificity of the RBCS3C and RBCS2 promoters, transgenic tobacco 

expressing GUS under RBCS3C and RBCS2 promoters, respectively, were generated. A 

total of four RBCS3C:GUS-transgenic tobacco and six RBCS2:GUS-transgenic tobacco 

were obtained. The RBCS3C promoter was active in palisade (PMCs) and spongy 

mesophyll cells (SMCs) in mature leaves (Fig. 9A). The vascular cells showed stronger 

activity than MCs (Fig. 9A). Epidermis (EPs) remained clear, which indicated no GUS 

activity in EPs (Fig. 9B). 

In RBCS2:GUS-transgenic plants, GUS activity was detected in PMCs and 

SMCs, indicating that the RBCS2 promoter was active in these cells (Fig. 9C). The 

phloem also showed GUS activity (Fig. 9C). It is notable that EPs did not show any GUS 

activity (Fig. 90). 

Neither RBCS2:GUS- nor RBCS3C:GUS-transgenic plants showed GUS activity 

in sink leaves (data not shown). 
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(A) ATG TGA 

l CoYMVpro ~nosT~ 

San Smal EcoRI 

(B) ATG TGA 

l AtSUC2pro ~~nosT~ 

Hinc:1111 Xbal EcoRI 

(C) ATG TGA 

l RBCS3Cpro ~nosT~ 

Eco RI Eco RI 

(D) ATG TGA 

l RBCS2pro ~nosT~ 

Hinc:1111 Xbal Eco RI 

1000 bp 

Figure 1. Transcriptional fusions used for transformation 
via Agrobacterium tumefaciens. 

(A) Co YMV promoter:GUS fusion 
(B) AtSUC2 promoter:GUS fusion 
(C) RBCS3C promoter:GUS fusion 
(D) RBCS2 promoter:GUS fusion 
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Fig. 2 
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Figure 2. CoYMV promoter-driven GUS expression in companion cells of 
transgenic tobacco cotyledons (A) and stems (B-D). 
(A) A 3-day-old seedling of transgenic tobacco, showing GUS staining (blue) in 
the vasculature. 
(B) Transverse sectional view of part of a stem. GUS activity is detected only in 
the internal phloem (InP) and external phloem (ExP), but not in the epidermis (BP), 
cortex (Cx), pith (Pt) or xylem (Xy). Bar:150 µ,m. 
(C) High magnification view of internal phloem showing GUS staining exclusively 
in companion cells (CC). PP, phloem parenchyma cell; SE, sieve element. Bar: 10 
µ,m. 
(D) Longitudinal view of stem internal phloem, showing further confirmation of 
phloem cell types. Sieve element (SE) is identified by the presence of sieve plate 
(SP) and accumulation of phloem protein (P-protein; P). Companion cell, which 
contains GUS staining and is indicated by arrowheads, has one transverse wall 
coterminal with the sieve plate. Both the sieve elements and phloem parenchyma 
cells (PP) contain no GUS activity. Bar:5 µ,m. 
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Fig. 3 
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Figure 3. In situ localization of GUS mRNA in transgenic tobacco. 
(A) Transverse section of stem probed with antisense GUS riboprobe. GUS 
mRNA is localized only in the companion cells (CC). The hybridization signal 
(purple stain) is only evident in companion cells (CC). Bar: 10 µ. m. 
(B) Transverse section of a class I vein probed with antisense GUS riboprobe. 
At the subcellular level, the hybridization signal is predominantly detected in 
the cytoplasm (Cyt), but not in the vacuole (Vac), demonstrating the high 
precision of mRNA localization on cryosections. SE, sieve element. Bar: 10 
µ.m. 
(C) Transverse section of a class I vein probed with sense GUS riboprobe. 
There is no hybridization signal in any cells. CC, companion cell; SE, sieve 
element. Bar:10 µ.m. 
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Figure 4. Co YMV promoter-driven GUS expression in companion cells of 
transgenic tobacco leaves. 
(A-E) are from mature source leaves and (F) is from an immature sink leaf. 

(A) Bright field image of a class I vein. Bar:30 µ, m. 
(B) High magnification Nomarski image of a class I vein. Bar:30 µ, m. 

(C) Class II vein. Bar:30 µ, m. 
(D) Class III vein. Bar:30 µ,m. 
(E) Minor vein. Bar: 10 µ, m. 
(F) Class I vein of a sink leaf. The arrow points to a sieve element (SE) that is 

immature based on its thin walls and rectangular shape. Bar:10 µ,m. BSC, bundle 
sheath; CC, companion cell; Cx, cortex; PP, phloem parenchyma; SE, sieve 
element; Xy, xylem. 
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A 

Figure 5. CoYMV promoter-driven GUS expression in roots (A-B) and 
flowers (C) of transgenic tobacco. 
(A) Longitudinal view of a root showing GUS staining only in the vascular 
cylinder (arrow). 
(B) Transverse view of a root, showing GUS activity in the phloem (blue 
stain). The specific cell type containing GUS cannot be resolved but it is 
most likely companion cell. Xy, xylem. Bar:50 µ,m. 
(C) Surface view of sepal of transgenic tobacco. The vascular system in 
sepal shows GUS activity. 
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Figure 6. CoYMV promoter-driven GUS expression in leaves and stems of 
transgenic Arabidopsis. 
(A) Young leaf of transgenic Arabidopsis showing GUS staining (blue) 
in the vasculature. 

(B) Mature leaves of CoYMV:GUS-transgenic Arabidopsis showing GUS 
staining in the vascular system. 
(C) Transverse section of stem of CoYMV:GUS-transgenic Arabidopsis. The 
GUS activity is detected only in the phloem (Ph), but not in the epidermis 
(EP), cortex (Cx), pith (Pt) or xylem (Xy). Bar:50 µ, m. 
(D) High magnification view of transverse section of stem of CoYMV:GUS
transgenic Arabidopsis showing localization of GUS activity in companion 
cells (CCs). SE, sieve element. Bar: 10 µ, m. 
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Figure 7. CoYMV promoter-driven GUS expression in roots and flowers of 
transgenic Arabidospsis. 
(A) Longitudinal view around root tip of CoYMV:GUS-transgenic 
Arabidopsis. The GUS activity is detected in root cap (arrow). Bar:50 µ, m. 
(B) Longitudinal view of mature region of root showing GUS staining only in 
vascular cylinder (arrow). 
(C) Flowers of CoYMV:GUS-transgenic Arabidopsis showing GUS staining 
in vasculature. 
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Figure 8. AtSUC2 promoter-driven GUS expression in transgenic 
tobacco. 
The petiole in source leaf showing GUS signal in CCs. CC, 
companion cell. SE, sieve element. Bar:50 µ, m. 
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Figure 9. RBCS3C and RBCS2 promoter-driven GUS expression in mature leaves 
of transgenic tobacco. 
(A) Transverse section of RBCS3C:GUS-transgenic tobacco. GUS activity is 
detected in palisade mesophyll cell (PMC), spongy mesophyll cell (SMC) and also 
in phloem (Ph) cells. Xy,xylem. Bar:20 µ,m. 
(B) High magnification view of transverse section of RBCS3C:GUS-transgenic 
tobacco. GUS activity is not detected in epidermis (EP). Bar:20 µ, m. 
(C) Transverse section of RBCS2:GUS-transgenic tobacco. GUS activity is 
detected in palisade mesophyll cell (PMC), spongy mesophyll cell (SMC) and also 
in phloem (Ph) cells. Bar:20 µ, m. 
(D) High magnification view of transverse section of RBCS2:GUS-transgenic 
tobacco. GUS activity is absent from epidermis (EP). Bar:20 µ, m. 
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DISCUSSION 

In general, we confirmed the vascular specificity of Co YMV promoter reported 

previously (Medberry et al. 1992). However, the results in this chapter showed that the 

Co YMV promoter is active specifically in CCs of all organs examined in tobacco and 

Arabidopsis (i.e., stem, root, leaf, sepal and petal). The data came from both GUS 

staining and in situ localization of GUS mRNA experiments. The reason for Medberry et 

al. (1992) to show general vascular specificity, but not to the CC level, of the CoYMV 

promoter could be due to the histochemical GUS protocol used in that study. They did 

not include oxidative agents, potassium ferri- and ferrocyanide in the reaction mixture. 

Therefore, GUS reaction products likely diffused out of CCs, making it difficult to 

determine the cell-specificity. It was reported that 5 mM potassium ferri-and ferrocyanide 

in the reaction mixture prevented the diffusion of color substance produced by GUS 

(Stomp 1992; De Block and Debrouwer, 1992). Thus, the inclusion of these chemicals in 

our GUS histochemical staining allowed us to achieve highly precise cellular localization 

of promoter activity. 

The CC-specificity in multiple organs distinguishes the Co YMV promoter from 

other CC-specific promoters reported. AtSUC2 promoter is active in CCs of stem, root 

and mature leaves in Arabidopsis (Truemit and Sauer, 1995; Stadler and Sauer, 1996) 

and in tobacco (lmlau et al., 1999; Oparka et al., 1999). However, in sink leaves AtSUC2 

promoter does not show the promoter activity. The Cucumis melo galactinal synthase 

(CmGASJ) promoter is only active in the minor veins of mature leaves in Arabidopsis 

and tobacco (Haritatos et al., 2000). Thus, among CC-specific promoters the Co YMV 
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promoter has a unique activity and can be a good tool to express genes of interest in CCs 

in different organ types. This may be due to its viral origin. The viral promoter may have 

evolved to utilize endogenous gene expression systems that are present in all organs 

throughout development, and/or escape developmental regulation so that the virus can 

invade a plant effectively. 

We have provided the first demonstration of mesophyll-specificity of the RBCS2 

promoter, and showed that the RBCS3C promoter is also specific to mesophyll in 

tobacco. Clear absence of the activity of these promoters in EPs indicates that the 

promoters can be useful in expressing a GFP fusion protein in the mesophyll to study its 

traffic into epidermis. 
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CHAPTER III 

TRAFFIC OF VIRAL MOVEMENT PROTEIN :GREEN FLUORESCENT 

PROTEIN FUSION OUT OF SYMPLASMICALLY-ISOLATED 

SIEVE ELEMENT-COMP ANION CELL COMPLEX 

35 



INTRODUCTION 

In a young plant embryo, all cells are connected by plasmodesmata (PD) as demonstrated 

by structural (Schultz and Jensen, 1968; Mansfield and Briarty, 1991) and dye-coupling 

studies (McLean et al., 1997; Pfluger and Zambryski, 2001; Kim et al., 2002). During 

organogenesis, the differentiation of cells leads to the formation of specialized tissues 

with distinct functions. Dramatic changes of PD connections in structure and functions 

result in the formation of symplasmic domains (Erwee and Goodwin, 1983; van der 

Schoot and van Bel, 1990). Symplasmic isolation may allow groups of cells to follow 

distinct developmental pathways (McLean et al., 1997, Ding et al., 1999; Lucas et al., 

1993). On the other hand, coordinated differentiation of cells is essential for a plant body 

to function properly. How symplasmically-isolated cells communicate with their 

neighboring cells is virtually unknown. 

The sieve element (SE)-companion cell (CC) complex in the phloem is one of the 

most important symplasmic domains. The SE-CC complex plays a pivotal role in long 

distance phloem transport of photoassimilates (Patrick, 1997; Oparka and Turgeon, 1999; 

Oparka and Santa Cruz, 2000). In addition, macromolecules such as proteins including 

CmPP16 (Xoconostle-Cazares et al., 1999; Ruiz-Medrano et al., 1999) and RNAs 

including mRNA of LeT6, a tomato KNOTTEDl-like homeobox gene (Kim et al., 2001) 

and viroids, circular single-stranded RNA plant pathogens (Palukaitis, 1987; Zhu et al., 

2001), move through the SE-CC complex. The flowering signals (Bernier et al., 1993) 

and defense signals such as systemin, an 18-amino acid peptide wound signal (Pearce et 

al., 1991; Narvaez-Vasquez, 1995), also move through the SE-CC complex to organs 
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located distantly from sites where the signals are generated. While these molecules move 

through the SE-CC complex, the complex does not work as a simple conduit for any 

transport. Phloem entry and exit of transported materials must be regulated to control for 

transport. 

PD frequencies between the SE-CC complex and adjacent cells in minor veins 

decrease dramatically upon leaf development in many plants (Gamalei 1989; Grusak et 

al., 1996; Turgeon et al., 2001). The remaining PD at the interface do not appear to be 

functional for photoassimilate transport. Instead of symplasmic transport, the membrane

associated sugar transporters in the SE-CC complex take up photoassimilates 

apoplastically to maintain flow of photoassimilates from mesophyll cells (MCs) to the 

SE-CC complex (Grusak et al., 1996; Bush, 1993; von Schaewen et al., 1990). Dye

coupling studies showed symplasmic isolation of the SE-CC complex in the transport 

phloem of stems, petioles, hypocotyls and roots in many species (van der Schoot and van 

Bel, 1989, 1990; van Bel and Kempers, 1991; Knoblauch and van Bel, 1998), which 

could explain why the high turgor pressure is maintained in the SE-CC complex for long

distance transport in plants (Oparka and Turgeon, 1999). 

The symplasmic isolation of the SE-CC complex raises questions of how the 

complex communicates with its neighboring cells and also how viruses can enter and exit 

the complex to spread systemically. Viruses utilize their movement proteins (MPs) to 

traffic intercellularly. Many MPs move themselves and viral genomes through PD (Ding 

1998, Oparka and Santa Cruz, 2000; Carrington et al., 1996; Ghoshroy et al., 1997; 

Lazarowitz and Beachy, 1999). Thus, viral MP traffic into and out of the SE-CC complex 

may be a key factor for viral systemic movement (Oparka and Turgeon, 1999). However, 
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there was no experimental evidence that an MP can traffic between the SE-CC complex 

and neighboring cells through the PD. 

To test protein traffic between the SE-CC complex and neighboring cells, we 

generated transgenic tobacco and Arabidopsis plants that express Cucumber Mosaic 

Virus (CMV) 3a MP fused to green fluorescent protein (GFP) in CCs under the control of 

CC-specific CoYMV and AtSUC2 promoters, respectively. Confocal microscopic 

examination of samples from these plants demonstrated traffic of the fusion protein out of 

the SE-CC complex. 3a MP:GFP traffic in CoYMV:3a MP:GFP-transgenic tobacco was 

primarily the work of Dr. Asuka ltaya and others, which will be published in The Plant 

Cell in September, 2002 (ltaya et al., 2002). Data from the CoYMV:3a MP:GFP

transgenic tobacco will be presented briefly in this chapter for comparison purposes with 

permission from Dr. A. Itaya. 

I have made substantial contributions to fully establish that protein traffic occurs 

between the SE-CC complex and its neighboring cells. Dr. A. Itaya generated 

Co YMV :3a MP:GFP-transgenic Arabidospsis. I performed most of the microscopic work 

to examine the traffic pattern of 3a MP:GFP in these plants. The data are presented in this 

chapter. In addition, I generated CoYMV:GFP-transgenic Arabidopsis, and 

AtSUC2:3a MP:GFP- and AtSUC2:GFP-transgenic tobacco. Data from these plants are 

also presented in this chapter. 
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MATERIALS AND METHODS 

Plant material and growth conditions 

The procedures were as described in chapter IL 

Construction ofbinary vectors 

To test protein traffic between tissue boundaries, CC-specific Co YMV and AtSUC2 

promoters were inserted upstream of 3a MP:GFP and GFP in binary vectors. Binary 

vector construction for each promoter is described below. 

The construction of plasmids named pRTL2-3a MP:GFP and pRTL2-GFP which 

contain 3a MP:GFP and GFP sequence, respectively, was previously described by Itaya 

et al. (1997). The fusion of Tobacco Etch Virus (TEV) leader sequence and 3a MP:GFP, 

TEV:3a MP:GFP was amplified by Pfu polymerase with primers, Aval-TEV leader and 

GFP-Sacl and pRTL2-3a MP:GFP as a template. The fusion of TEV leader sequence and 

GFP, TEV:GFP, was amplified by Pfu polymerase with primers Aval-TEV leader (5'

CCCCCGGGCTCAACACAACATATA-3'; Aval site underlined) and GFP-Sacl (5'

TCCGAGCTCTTACTTGTACAGCTCGTCCA-3'; Sacl site underlined), and pRTL2-

GFP as a template. Each PCR product was double-digested with Smal and Sad, and 

inserted into binary vector pGPTV-Kan at the appropriate sites to replace GUS, resulting 

in pGPTV-3a MP:GFP and pGPTV-GFP, respectively. 

TEV:GFP was inserted at the Smal site of pCOI (chapter II) by conventional blunt 

end ligation. The resulting binary vector was named pCOI-GFP. 
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AtSUC2 promoter described in chapter II was inserted at the appropriate sites of 

pGPTV-3a MP:GFP and pGPTV-GFP. The resulting binary vectors were named pGPTV

AtSUC2:3a MP:GFP and pGPTV-AtSUC2:GFP, respectively. 

Transformation of Agrobacterium tumefaciens 

Binary vectors pCOI-GFP, pGPTV-AtSUC2:3a MP:GFP and pGPTV-AtSUC2:GFP 

(Fig. 1) were used to transform A. tumefaciens LBA4404. 

Transformation of tobacco and Arabiilopsis 

The procedures for transformation of Arabidopsis with pCOI-GFP and for transformation 

of tobacco with pGPTV-AtSUC2:3a MP:GFP and pGPTV-AtSUC2:GFP were as 

described in chapter II. Transgenic Arabidopsis plants expressing 3a MP:GFP under the 

Co YMV promoter were provided by Dr. Asuka Itaya. 

Confocal laser scanning microscopy 

Free-hand sections of transgenic leaves and stems were examined for the presence of 

fluorescent signals from 3a MP:GFP or GFP under a PCM-2000 confocal laser scanning 

microscope (CLSM) equipped with Argon and green HeNe Lasers (Nikon Corp., Tokyo, 

Japan). 
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RESULTS 

3a MP:GFP traffics out of symplasmically isolated SE-CC complex in transgenic 

tobacco 

Two CC-specific promoters, the Co YMV promoter and the AtSUC2 promoter, were used 

to drive expression of 3a MP:GFP in the CCs of transgenic tobacco. Results from the 

CoYMV:3a MP:GFP-transgenic tobacco have been described in detail by Itaya et al. 

(2002). The highlights of results will be presented here for comparison. Briefly, 

3a MP:GFP was found to traffic from SE-CC complex into neighboring cells in all leaf 

and stem samples examined by CLSM. Its traffic was most extensive in mature stems, 

reaching all pith cells (Fig. 2A-B). In leaves, traffic of3a MP:GFP to xylem parenchyma 

was extensive, but to nonvascular tissues such as bundle sheath cells or MCs it was 

limited (Fig. 2C-F). Traffic of 3a MP:GFP out of the SE-CC complex through PD was 

confirmed by in situ localization of 3a MP:GFP mRNA in CCs, immunolocalization of 

3a MP:GFP protein to PD at the interfaces between CCs and other cells, and movement 

of the fusion protein from a transgenic stock to a non-transgenic scion and further out of 

the phloem in the scion (Itaya et al., 2002). 

To provide independent verification of the ability ·of 3a MP:GFP to traffic out of 

the SE-CC complex, I generated transgenic tobacco expressing 3a MP:GFP and GFP, 

respectively, under the control of the AtSUC2 promoter. Although GFP was confined to 

CCs (Fig. 3A), 3a MP:GFP was present in CCs and neighboring cells in veins (Fig. 3B

C). Thus, 3a MP:GFP trafficked out of the SE-CC complex in veins. However, 
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3a MP:GFP was detected only in the SE-CC complex of the petioles in source leaves 

(Fig. 3D) after approximately 500 sections were examined. This is presumably due to the 

weak activity of the AtSUC2 promoter in the petioles (chapter II). 

3a MP:GFP traffics out of SE-CC complex in transgenic Arabidopsis 

To test whether traffic of 3a MP:GFP out of the symplasmically-isolated SE-CC complex 

is a general phenomenon, and to develop materials for future genetic studies on the 

regulation of this traffic, we investigated the ability of 3a MP:GFP to traffic out of the 

SE-CC complex in Co YMV 3a MP:GFP-trnnsgenic Arabidopsis. A total of four lines of 

transgenic Arabidopsis plants expressing 3a MP:GFP were obtained. Vein classification 

of Arabidopsis leaves is summarized in Fig 4A. 

3a MP:GFP trafficked out of the SE-CC complex and into xylem parenchyma in 

young (data not shown) and mature inflorescence stems (Fig. 5A-C, See Fig. 4B for 

sample location). In both young and mature stems, 3a MP:GFP was not detected in pith, 

which is different from the situation in transgenic tobacco plants. In order to test whether 

traffic of 3a MP:GFP out of the SE-CC complex is due to the diffusion, transgenic 

Arabidopsis plants expressing only GFP under the Co YMV promoter were generated. In 

all of the 10 independent lines of transgenic plants, GFP was confined to the SE-CC 

complex in the stem (Fig. 5D). Thus, 3a MP mediates specific traffic of the fusion 

protein. 

In leaves, 3a MP:GFP trafficked out of the SE-CC complex in all veins examined 

(Fig. 6A-D) whereas GFP remained in the SE-CC complex (Fig. 6E). The traffic of 
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3a MP:GFP was more extensive as an organ matured but not as significant as observed in 

tobacco (Fig. 2D-F). 

In the mature part of Arabidopsis roots (see Fig. 4B for the sample location), 

3a MP:GFP trafficked out of the SE-CC complex (Fig. 7 A) whereas GFP remained in the 

SE-CC complex in transgenic plants expressing only GFP (Fig. 7B). In the immature part 

of roots where the root apical meristem is located, 3a MP:GFP was almost undetectable 

and only a few fluorescent dots were observed in the SE-CC complex (Fig. 8A). 

3a MP:GFP fusion produced in the root cap was also localized to PD as fluorescent dots 

(Fig. 8A). The fusion protein did not traffic into other cells (Fig. 8A). Significantly, 

3a MP:GFP expression was transient, first visible at 3 days post germination (dpg). It 

became undetectable after 5 dpg. In contrast, GFP diffused out of the SE-CC complex 

into surrounding cells in the region (Fig. 8B-D). GFP diffusion in the immature part of 

roots is consistent with previous findings with AtSUC2:GFP-transgenic Arabidopsis 

(Imlau et al., 1999) and is reminiscent of fluorescent dye unloading into the root tip 

(Oparka et al., 1994). 
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Figure 1. Chimeric constructs used for transformation 
via Agrobacterium tumefaciens 

(A) Co YMV promoter:3a MP:GFP fusion 
(B) Co YMV promoter:GFP fusion 
(C) AtSUC2 promoter:3a MP:GFP fusion 
(D ) AtSUC2 promoter:GFP fusion 
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Figure 2. Traffic of 3a MP:GFP out of symplasmically-isolated sieve element 
(SE)-companion cell (CC) complex in stems and leaves of Co YMV :3a MP:GFP
transgenic tobacco. Bright-field images were taken in grayscale and 
pseudocolored in red for better cell identification and signal recognition for green 
fluorescence. All pictures are kindly provided by A. Itaya. 
(A-B) Confocal images of stem sections from CoYMV:3a MP:GFP-transgenic 
tobacco. The punctate green dots in the cell walls (arrowheads) represent the 
presence of 3a MP:GFP in PD. 
(A) Low magnification transverse view. 3a MP:GFP produced in internal (InP) 
and external phloem (ExP) traffics into neighboring cells such as xylem 
parenchyma (XP) and pith. Cx, cortex; V, vessel. Bar:50µ,m. 
(B) High magnification transverse view. 3a MP:GFP is detected in the cell walls 
of pith. Bar:50 µ, m. 
(C-F) Confocal images of leaf sections from CoYMV:3a MP:GFP-transgenic 
tobacco. 
(C) Longitudinal view of minor vein. 3a MP:GFP traffics out of SE-CC complex 
and into bundle sheath cells (BSC). V, vessel; CC, companion cell; PP, phloem 
parenchyma. Bar:20 µ, m. 
(D) Transverse view of class I vein. XP, xylem parenchyma; InP, internal phloem; 
ExP, external phloem. Bar:50 µ,m. 
(E) Tranverse view of class II vein. V, vessel; SE, sieve element; CC, companion 
cell; XP, xylem parenchyma; AdP, adaxial phloem; AbP, abaxial phloem 

Bar:50µ,m. 
(F) Transverse view of class III vein. 3a MP:GFP trafficked out of SE-CC 
complex and into bundle sheath cells (BSC). V, vessel; SE, sieve element; CC, 
companion cell; XP, xylem parenchyma. Bar:20µ,m. 
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Figure 3. Traffic of 3a MP:GFP out of symplasmically-isolated sieve element 
(SE)-companion cell (CC) complex in leaves of AtSUC2:3a MP:GFP
transgenic tobacco. Bright-field images were taken in grayscale and 
pseudocolored in red for better cell identification and signal recognition for 
green fluorescence. 
(A) Confocal image of longitudinal view of minor vein of AtSUC2:GFP
transgenic tobacco. GFP is confined to companion cells (CC). V, vessel. 
Bar:20µ,m. 
(B-D) Confocal images of leaf sections from AtSUC2:3a MP:GFP-transgenic 
tobacco. The punctate green dots in the cell walls (arrowheads) represent the 
presence of 3a MP:GFP in PD. 
(B) Longitudinal view of minor vein. 3a MP:GFP traffics out of SE-CC 
complex and into bundle sheath cells (BSC). V, vessel. Bar:20 µ, m. 
(C) Transverse view of class III vein. 3a MP:GFP traffics out of SE-CC 
complex and into xylem parenchyma (XP). V, vessel; BSC, bundle sheath 
cell. Bar:20 µ, m. 
(D) Transverse view of petioles. 3a MP:GFP is detected only in the cell walls 
of SE-CC complex. BSC, bundle sheath cell. Bar:20 µ, m. 
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A B 

Class III vein 

Cauline leaves 

Mature part of stem 

Rosette leaves 

Class I vein 

Mature part of root 

Root tip 
(Immature part of root) 

Figure 4. Vein classification and diagramic representation of Arabidopsis. 
(A) Vein classification of a mature leaf. The class I vein (midrib) gives rise at 
regular intervals to class II veins. Class III comes from class II. Minor veins are 
from class III vein. 
(B) An adult Arabidopsis plant. The arrows indicate the locations where 
samples were used for microscopic analysis. 
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Figure 5. Traffic of 3a MP:GFP out of symplasmically-isolated sieve element ( SE)
companion cell (CC) complex in CoYMV:3a MP:GFP-transgenic Arabidopsis. 
Bright-field images were taken in grayscale and pseudocolored in red for better cell 
identification and signal recognition for green fluorescence. 
(A-C) Stem sections from CoYMV:3a MP:GFP-transgenic Arabidopsis. 
(A) Low magnification transverse view. The punctate green dots in the cell walls 
(arrowheads) represent the presence of 3a MP:GFP in PD. 3a MP:GFP produced in 
the phloem (Ph) traffics into neighboring cells such as xylem parenchyma (XP) and 
cortex (Cx). Xy, xylem; V, vessel. Bar: 50 µ. m. 
(B) High magnification transverse view of Fig. SA including phloem. Bar: 10 µ. m. 
(C) High magnification transverse view of xylem. 3a MP:GFP appears in the cell 
walls of xylem parenchyma (XP). Bar: 10 µ. m. 
(D) Transverse view of stem section of Co YMV :GFP-transgenic Arabidopsis. GFP 
is confined to companion cell s (CC) of the phloem (Ph). Xy, xylem. Bar: 50 µ. m. 
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Fig. 6 
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Figure 6. Traffic of 3a MP:GFP out of symplasmically-isolated sieve element 
(SE)-companion cell (CC) complex in leaves of Co YMV :3a MP:GFP
transgenic Arabidopsis. Bright-field images were taken in grayscale and 
pseudocolored in red for better cell identification and signal recognition for 
green fluorescence. 
(A-D) Confocal images of leaf sections from Co YMV:3a MP:GFP-transgenic 
Arabidopsis. The punctate green dots in the cell walls (arrowheads) represent 
the presence of 3a MP:GFP in PD. 
(A) Longitudinal view of class III vein. 3a MP:GFP traffics out of SE-CC 
complex into bundle sheath cells (BSC). V, vessel. Bar:10 µ,m. 
(B) Transverse view of class I vein. 3a MP:GFP traffics from SE-CC complex 
to xylem parenchyma (XP). V, vessel. Bar:10 µ,m. 
(C) Transverse view of class II vein. 3a MP:GFP traffics from SE-CC complex 
to xylem parenchyma (XP). V, vessel. Bar: 10 JL m. 
(D) Transverse view of class III vein. 3a MP:GFP traffics out of SE-CC 
complex and into xylem parenchyma (XP). V, vessel. Bar:10µ,m. 
(E) Longitudinal view of minor vein of Co YMV :GFP-transgenic Arabidopsis. 
GFP is confined to companion cells (CC). V, vessel. Bar: 10 µ, m. 
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Fig. 7 
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Figure 7. Traffic of 3a MP:GFP out of symplasmically-isolated sieve 
element (SE)-companion cell (CC) complex in roots of 
CoYMV:3a MP:GFP-transgenic Arabidopsis. Bright-field images were 
taken in grayscale and pseudocolored in red for better cell identification and 
signal recognition for green fluorescence. 
(A) Confocal image of longitudinal view of mature part of a root from 
Co YMV:3a MP:GFP- transgenic Arabidopsis. The punctate green dots in 
the cell walls (arrowheads) represent the presence of 3a MP:GFP in PD. 
3a MP:GFP traffics out of SE-CC complex. V, vessel. PP, phloem 
parenchyma. Bar: 10 µ, m. 
(B) Conforcal image of longitudinal view of the mature part of a root from 
CoYMV:GFP-transgenic Arabidopsis. GFP is confined to SE-CC complex. 
PP, phloem parenchyma. Bar:10µ,m. 
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Figure 8. Diffusion of GFP out of sieve element (SE)-companion cell (CC) 
complex in young part of roots of Co YMV :GFP-transgenic Arabidopsis. Bright
field images were taken in grayscale and pseudocolored in red for better eel I 
identification and signal recognition for green fluorescence. 
(A) Confocal image of longitudinal view around root tip from 
Co YMV :3a MP:GFP-transgenic Arabidopsis. The punctate green dots in the 
cell walls (arrowheads) represent the presence of 3a MP:GFP in PD. 3a MP:GFP 
appears in root cap. 3a MP:GFP is almost undetected in immature part of a root. 
Bar:50µ,m. 
(B-D) Confocal image of longitudinal view around root tip from Co YMV :GFP
transgenic Arabidopsis. Bar:50 µ, m. 
(B) Longitudinal view around root tip. GFP diffuses in the immature part of root 
but is confined to SE-CC complex in mature part of a root. Bar:50 µ, m. 
(C) High magnification view of root tip. GFP appears in root cap. Bar:50 µ, m. 
(D) High magnification view of the immature region of a root of Fig. 8B. 
Bar:50µ,m. 
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DISCUSSION 

We have demonstrated that CMV 3a MP mediates traffic of a fusion protein out of the 

SE-CC complex via PD in transgenic tobacco and Arabidopsis. In general, 3a MP:GFP 

showed more extensive traffic in Co YMV:3a MP:GFP-transgenic tobacco (Itaya et al., 

2002; Fig. 2A-F) than Co YMV:3a MP:GFP-transgenic Arabidopsis (Fig. 5A-C and 6A

D). The observed traffic of 3a MP:GFP out of the SE-CC complex is in contrast to the 

restriction of small molecules such as fluorescent dyes in the SE-CC complex revealed by 

dye-coupling experiments (van der Schoot and van Bel, 1989, 1990; van Bel and 

Kempers, 1991; Knoblauch and van Bel, 1998). The 3a MP:GFP traffic is also in contrast 

to the restriction of some plant proteins within SE-CC complex. These plant proteins 

include RTMl and RTM2 (Chisholm et al., 2001), phloem protein PPl and PP2 

(Dannenhoffer et al., 1997; Galecki et al., 1999), sucrose transporter SUTl (Ktihn et al., 

1997), thioredoxin h (Ishiwatari et al., 1998), and CmPP16 (Xoconostle-Cazares et al., 

1999). Thus, PD at the interface between the SE-CC complex and neighboring cells seem 

to possess the ability to restrict diffusion of small molecules and traffic of some proteins 

out of the SE-CC complex, while allowing traffic of selected proteins out of the complex. 

The extent of movement of 3a MP:GFP depends on the developmental stages and 

organ types. In the mature stems of CoYMV:3a MP:GFP-transgenic tobacco plants, 

3a MP:GFP trafficked more extensively to the pith than in immature stems (Itaya et al., 

2002). In mature Arabidopsis stems, 3a MP:GFP trafficked to cortex and xylem 

parenchyma cells. However, it rarely traffics to the pith (Fig. 5A), in contrast to the 

situation in tobacco (Itaya et al., 2002; Fig. 2A-B). These differences may be due to a 
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different combination of endogenous factors involved in 3a MP:GFP traffic in different 

species. Investigation into the endogenous factors that are involved in the regulation of 

traffic between tissue boundaries and in different species should shed light on the 

mechanisms and functions of selective transport in plants. 

Viruses can spread systemically by entering and exiting the SE-CC complex 

despite that the complex is symplasmically isolated from surrounding cells in terms of 

restriction of small molecule diffusion. MPs or other viral proteins are likely to be key 

players to establish systemic movement of viruses through the SE-CC complex 

(Carrington et al., 1996; Oparka and Turgeon, 1999). Our results showing 3a MP:GFP 

traffic supports the hypothesis. Upon infection of CMV, 3a MP enters SEs from CCs 

through PD (Blackman et al., 1998). This suggests the importance of 3a MP for CMV to 

move into the SE for long-distance transport. However, how a virus exits the SE-CC 

complex is not known. Our results suggest that CMV also utilizes 3a MP to traffic out of 

the SE-CC complex. Some viruses are known to be restricted to the phloem (Sanger et 

al., 1994; van der Heuvel et al, 1995). It is worth examining the ability of their MPs for 

traffic out between the SE-CC complex and surrounding cells. 

It is significant that in the young region of the Arabidopsis roots, GFP can diffuse 

out of the SE-CC complex and enter all surrounding cells. On the contrary, 3a MP:GFP 

produced in the SE-CC traffics into other cells in the mature part of the roots, however, 

3a MP:GFP produced in root cap remained in this tissue. SHR produced in the stele 

traffics only one cell layer to specify formation of endodermis (Nakajima et al., 2001). 

These data, collectively, support the hypothesis that the signal-directed protein traffic, 

presumably also the case for the SHR, is highly regulated by cell- or tissue-specific 
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factors. Elucidating the mechanisms of such regulation should provide significant 

insights into the role of intercellular protein traffic in plant' development. 
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CHAPTER IV 

TRAFFIC OF VIRAL MOVEMENT PROTEIN:GREEN FLUORESCENT 

PROTEIN FUSION FROM MESOPHYLL TO EPIDERMIS 
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INTRODUCTION 

Organogenesis during plant development is accomplished through division, growth and 

differentiation of groups of cells in the shoot apical meristem (SAM). In most 

angiosperms, the SAM consists of three cell layers of different genetic lineages (Satina et 

al., 1940; Sussex, 1989). In the outermost layer called layer 1 (L1), the cells undergo 

anticlinal cell divisions and give rise to the epidermis (EPs). The inner L2 cells divide 

anticlininally within the SAM and in all planes during organogenesis. The innermost L3 

cells divide in all planes. The L2 produces the bulk of leaf tissues including mesophyll 

cells (MCs) and floral organs and L3 mostly contributes to the stem (Satina et al., 1940; 

Stewart, 1978; Tilney-Bassett, 1986). 

Intercellular communication between layers is important for coordinated 

differentiation of cells. Such intercellular communication may be accomplished by non

cell-autonomous function of certain transcription factors. In wild-type maize, the 45 k:Da 

homeobox protein KNOTTEDl(KNl) appears to function to maintain cells in a 

meristematic state. KNl is normally expressed in the SAM and determines the meristem 

cell fate (Hake and Freeling, 1986). Ectopic expression of KNl in MCs can cause 

abnormal cell division of epidermis (EPs), which is derived from L1 of SAM (Hake and 

Freeling, 1986). In wild-type maize, immunolabeling showed that KNl is localized in all 

the layers of nuclei in the SAM. However, in situ hybridization localized the KN 1 mRNA 

in L2 and L3, but not in L1 (Jackson et al., 1994). These findings suggest that KNl could 

move from inner layers to L1• Direct evidence of intercellular movement of KNl was 

provided by microinjection of KNl in MCs, which revealed that the KNl not only 
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traffics intercellularly through PD but also increases the SEL of PD and facilitates traffic 

of its own sense mRNA (Lucas et al., 1995). Recently, Kim et al. (2002) showed that 

GFP:KNl fusion can move from L1 to inner layers when it is expressed under the control 

of the Li-specific AtMLJ promoter in Arabidopsis. 

A transcription factor called FLORICAULA (FLO) functions non-cell

autonomously during transition of inflorescence stem to floral meristem in Antirrhinum 

majas (Carpenter and Coen, 1995; Hantke et al., 1995). The flo mutants have 

inflorescence branches instead of flowers. Periclinal chimeras in which the L1 was wild 

type and L2 and L3 were mutant alleles showed normal phenotype, suggesting that FLO 

moves from L1 to L2 and L3 to restore the wild-type phenotype (Carpenter and Coen, 

1995). Microinjection of FLO into MCs showed that FLO moves intercellularly (Mezitt 

and Lucas, 1996). In Arabidopsis, a similar transcription factor, PISTILLATA (PI), was 

found to possess same functions for flower development. The normal flower formation 

was observed when PI is expressed in L1 of pi mutant (Bouhidel and Irish, 1996). 

DEFICIENS (DEF) and GLOBOSA (GLO) are MADS-box transcription factors · 

(Schwarz-Sommer et al., 1990) in A majas that control petal and stamen organ identity 

(Schwarz-Sommer et al., 1992; Sommer et al., 1990; Trobner et al., 1992). DEF and GLO 

function non-cell-autonomously between the layers, but not within the layer in the floral 

meristem (Perbal et al., 1996). DEF appears to move from L2 or inner layers to L1, but not 

from L1 to inner layers. Therefore, expression of DEF and GLO in L1 do not restore the 

mutant phenotype. Thus, PD between L1 and L2 layers seem to facilitate unidirectional 

traffic of some proteins. 
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Transcription factor LEAFY (LFY) from Arabidopsis traffics cell-to-cell and 

rescues the lfy mutants (Sessions et al., 2000). The chimeric plants expressing LFY in lfy 

mutant background, created by FLP recombinase, showed the normal flower phenotype. 

When LFY is specifically expressed in L1 using a Li-specific promoter, AtMLJ, the 

transcription factor is detected in L1 and other layers even though in situ hybridization 

revealed that the mRNA is located only in L1• These results suggest that LFY traffics 

from L1 to inner layers and is biologically functional in the inner layers. APETALAl 

(APl), however, acts cell-autonomously and does not traffic cell-to-cell (Sessions et al., 

2000). These results suggest that protein traffic is selective presumably based on the 

function of the proteins. Furthermore, traffic of some proteins across tissue interfaces is 

important for plant development. However, the mechanisms that regulate protein traffic 

between specific tissues are not understood. 

Non-specific intercellular traffic of GFP has been shown to be developmentally 

regulated and organ-specific. Biolistic bombardment experiments showed that GFP can 

diffuse between EPs in sink leaves but not in source leaves of tobacco (Itaya et al., 2000). 

In addition, Oparka et al. (1999) reported that GFP produced in EPs of tobacco by 

biolistic bombardment diffused from EPs to MCs in sink leaves. When GFP was 

expressed under the control of companion cell (CC)-specific AtSUC2 promoter in 

transgenic tobacco, GFP was transported from source leaves into sink leaves and 

unloaded to all cell types including EPs in the sink leaves (Oparka et al., 1999). The 

question of whether GFP would diffuse between BP and MC in source leaves has not 

been studied. 
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To investigate the regulation of protein traffic between MCs to ECs, I generated 

transgenic tobacco plants that express GFP or CMV 3a MP:GFP, respectively, in MCs 

under the control of the MC-specific RBCS3C, RBCS2 (see chapter II), -1.2AldP (Kagaya 

et al., 1995), ppcA-L-Ft (Stockhaus et al., 1994) and CAB2 (Anderson et al., 1994) 

promoters. Confocal microscopic examination of samples was conducted to determine 

whether traffic of GFP or CMV 3a MP:GFP from MCs to EPs occurs in source leaves of 

transgenic tobacco. 

MATERIALS AND METHODS 

Plant material and growth conditions 

Tobacco (Nicotiana tabacum cv. Samsun NN) was grown in a growth chamber controlled 

at 14 hours light (28°C)/10 hours dark (22°C) cycles.· 

Construction of binary vectors 

To test protein traffic between MC and EP, MC-specific RBCS2, RBCS3C, -1.2AldP, 

ppcA-L-Ft and CAB2 promoters were inserted upstream of 3a MP:GFP and GFP in 

binary vectors. Binary vector construction for each promoter is described below. 

The binary vector pCV1.6RBCS3CP containing the RBCS3C promoter (chapter 

II) was double-digested with EcoRI and SnaBI. The DNA fragment containing the 

RBCS3C promoter and 385 bp of GUS sequence was ligated into EcoRI-Smal double

digested pBKII(+). The resulting plasmid was named pBK-RBCS3C:GUS385. The 385 

bp GUS sequence was removed by sequential digestion with MejI and Spel. The 
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linearized plasmid without the 385 bp of GUS sequence was treated with Pfu polymerase 

to make the conhesive ends blunt. The fragment was self-ligated resulting in pBK

RBCS3C. The RBCS3C promoter was excised out from the pBK-RBCS3C with HindIII 

and Xbal and inserted into pGPTV-3a MP:GFP and pGPTV-GFP at the appropriate sites, 

respectively. The resulting plasmids were named pGPTV-RBCS3C:3a MP:GFP and 

pGPTV-RBCS3C:GFP, respectively. 

The PCR-amplified RBCS2 promoter (chapter II) was double-digested with 

HindIII and Xbal, and inserted into pGPTV-3a MP:GFP and pGPTV-GFP at the 

appropriate sites, respectively. The resulting plasmids were named pGPTV

RBCS2:3a MP:GFP and pGPTV-RBCS2:GFP, respectively. 

Binary vector -1.2AldP-GUS containing -1.2AldP promoter, 1.2 kb of 5' 

upstream of chroloplastic Aldolase from rice (Kagaya et al, 1995), was kindly provided 

by Dr. Tsutsumi in Iwate University, Japan. The -1.2AldP promoter was double-digested 

with HindIII and Xbal, and inserted into pGPTV-3a MP:GFP and pGPTV-GFP at the 

appropriate sites, respectively. The resulting plasmids were named pGPTV-

1.2AldP:3a MP:GFP and pGPTV-l.2AldP:GFP, respectively. 

Plasmid ppcA-L-Ft (pBS) was kindly provided by Dr. Peter Westhoff at Heinrich

Heine-Universitat, Germany. The ppcA-L-Ft promoter, 5' upstream sequence between 

position -2118 to +66 of phosphoenolpyruvate carboxylase from Flaveria trierva 

(Stockhaus et al., 1994), was excised from the plasmid with HindlII and Smal, and 

inserted into appropriate sites of pGPTV-3a MP:GFP and pGPTV-GFP, resulting in 

pGPTV-ppcA-L-Ft:3a MP:GFP and pGPTV-ppcA-L-Ft:GFP, respectively. 
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Plasmid pBK-CAB2 was kindly provided by Dr. Steve Kay at Scripps Institute. 

CAB2 promoter, 5' upstream sequence between position -198 to +1 of chlorophyll alb 

binding protein from Arabidopsis (Anderson et al., 1994), was PCR-amplified with 

primers Hindlll-CAB2 (5'-CCCAAGCTTAACTTGTGGTCACAA-3'; Hindlll site 

underlined) and CAB2-Xbal (5'-TGCTCTAGAGATTAAAACTGGTTC-3'; Xbal site 

underlined), and pBK-CAB2 as a template. The PCR product was double-digested with 

Hindlll and Xbal and was inserted into pGPTV-3a MP:GFP and pGPTV-GFP at the 

appropriate sites. The resulting plasmids were named pGPTV-CAB2:3a MP:GFP 

pGPTV-CAB2:GFP, respectively. 

Transformation of Agrobacterium tumefaciens 

Binary vectors pGPTV-RBCS2:3a MP:GFP and pGPTV-RBCS2:GFP (Fig. 1) were used 

to transform A. tumefaciens LBA4404. Other binary vectors were also used to transform 

A. tumefaciens LBA4404. 

Transformation of tobacco and Arabidopsis 

The procedures were as described in chapter II. 

Confocal laser scanning microscopy 

Free-hand sections of transgenic leaves were examined under the Nikon PCM-2000 

CLSM as described in chapter Ill. 
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RESULTS 

Several MC-specific promoters were used to drive 3a MP:GFP expression in transgenic 

tobacco. These promoters include RBCS3C (chapter II), RBCS2 (chapter II), -l.2AldP 

(Kagaya et al., 1995), ppcA-L-Ft (Stockhaus et al., 1994) and CAB2 (Anderson et al., 

1994). Initial analyses showed that in transgenic plants expressing 3a MP:GFP under the 

RBCS3C, -l.2AldP, ppcA-L-Ft , and CAB2 promoters, the signal of the fusion protein 

was very weak or absent. Presumably, these promoters were not strong enough. 

Alternatively, other factors such as gene silencing might have contributed to the poor 

expression of 3a MP:GFP. These plants were not used for further analysis. 

However, good expression of GFP and 3a MP:GFP fusion protein was achieved 

from the RBCS2 promoter. The results from RBCS2:GFP- and RBCS2:3a MP:GFP

transgenic tobacco, respectively, are presented in this chapter. 

GFP produced in MCs of source leaves moves into sink leaves 

A total of six transgenic tobacco plants expressing GFP under the control of the RBCS2 

promoter were examined for the presence of GFP in source and sink leaves. As shown in 

Fig. 2A, GFP was detected in all MCs but not in the EPs, consistent with MC-specific 

activity of the RBCS2 promoter. However, in sink leaves where the RBCS2 promoter is 

not active, GFP was detected in the EPs as well as MCs (Fig. 2B). GFP was even 

detected in the trichomes. In all cells, GFP was concentrated in the nuclei. Therefore, 

GFP produced in MCs of source leaves was apparently translocated to sink leaves 

through the phloem. In the sink leaves, GFP was unloaded into all cell types. 
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Importantly, while GFP did not move from MCs into EPs in source leaves, it did 

move from MCs into EPs in sink leaves. Therefore, PD between MCs and EPs have a 

large SEL in sink leaves, which is down-regulated when the leaves become mature. 

3a MP:GFP traffics from mesophyll cells to epidermis in source leaves 

To test signal-directed protein traffic from MCs to EPs, 3a MP:GFP fusion protein was 

expressed in MCs of source leaves in tobacco under the control of the RBCS2 promoter. 

A total of six transgenic lines expressing 3a MP:GFP were obtained. 3a MP:GFP was 

targeted to PD at the MC-EP tissue boundary (Fig. 2C) and also accumulated in PD 

between EPs (Fig. 2C and Fig. 3), indicating that the 3a MP:GFP trafficked from the 

MCs to EPs in the source leaves. This is in contrast to the non-movement of GFP from 

MCs to EPs in source leaves (Fig. 2A). 

In sink leaves, there was no 3a MP:GFP signal (Fig. 2D). This is consistent with 

the observation that RBCS2 promoter is not active in sink leaves. The data also indicate 

that translocation of 3a MP:GFP from source to sink leaves was very limited. During leaf 

maturation, 3a MP:GFP was first detected in the tip region of the leaf (Fig. 4 ), 

corresponding to maturation of the leaf from tip to base. 
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(A) 

Hine/Ill 

1000 bp 

Figure 1. Chimeric constructs used for transformation 
via Agrobacterium tumefaciens 

(A) RBCS2 promoter:Ja MP:GFP fusion 
(B) RBCS2 promoter:GFP fusion 
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Figure 2. Traffic of 3a MP:GFP from mesophyll to epidermis in source leaves 
of RBCS2:3a MP:GFP-transgenic tobacco. 
Bright-field images were taken in grayscale and pseudocolored in red for better 
cell identification and signal recognition for green fluorescence. 
(A-B) Confocal images of leaf sections from RBCS2:GFP-transgenic tobacco. 
(A) Transverse view of source leaf. GFP is confined to palisade mesophyll 
(PMC) and spongy mesophyll (SMC). Bar:20 µ, m. 
(B) Transverse section of sink leaf. GFP is present in all cell types. MC, 
mesophyll; EP, epidermis. Bar: 10 µ, m. 
(C-D) Confocal images of leaf sections from RBCS2:3a MP:GFP-transgenic 
tobacco. The punctate green dots in the cell walls (arrowheads) represent the 
presence of 3a MP:GFP in PD. 
(C) Transverse view of source leaf. 3a MP:GFP traffics from PMC to epidermis 
(EP). 3a MP: GFP is detected in the cells walls between EP and MC and 
between EP (arrowheads). Bar: 20µ,m. 
(D) Transverse section of sink leaf. There is no 3a MP: GFP siganal. MC, 
mesophyll. EP, epidermis . Bar: 10 µ, m. 
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Figure 3. 3a MP:GFP traffics from 
mesophyll to epidermis and 
accumulates in PD between epidermal 
cells in RBCS2:3a MP:GFP
transgenic tobacco. 
Bright-field image was taken in 
grayscale and pseudocolored in red 
for better cell identification and signal 
recognition for green fluorescence. 
Confocal image of the surface of a 
source leaf from RBCS2:3a MP:GFP
transgenic tobacco. The punctate 
green dots in the cell walls 
(arrowheads) represent the presence 
of 3a MP:GFP in PD. Bar: 20µ,m. 

Figure 4. 3a MP:GFP traffic in the 
tip of a sink-to-source transition leaf 
in RBCS2:3a MP:GFP-transgenic 
tobacco. Bright-field image was 
taken in grayscale and 
pseudocolored in red for better cell 
identification and signal recognition 
for green fluorescence. The punctate 
green dots in the cell walls 
(arrowheads) represent the presence 
of 3a MP:GFP in PD. 3a MP:GFP 
appears in the cell walls between 
the trichomes and epidermal cells 
(EP). 



DISCUSSION 

Results from the present study have important implications in understanding the 

mechanisms of regulation of protein traffic and viral movement. Previous work showed 

that between epidermal cells in tobacco, the PD SEL in sink leaves is rather large to 

allow diffusion of GFP (Oparka et al., 1999; Itaya et al., 2000). During leaf development, 

the SEL is down-regulated so that GFP no longer diffuses intercellularly in source leaves 

(Oparka et al., 1999, Itaya et al, 2000). Significantly, this down-regulation of PD SEL is 

correlated with the onset of CMV 3a MP:GFP traffic in source leaves (Itaya et al., 1998, 

2000). Here, we demonstrated that PD traffic is similarly regulated between mesophyll 

and epidermis. Non-traffic of GFP and traffic of 3a MP:GFP between mesophyll and 

epidermis in source leaves of transgenic tobacco provide the first evidence for the 

existence of a cellular mechanism that regulates specific protein traffic between 

mesophyll and epidermis. We suggest that such a mechanism may have evolved to permit 

selective traffic of endogenous plant proteins across this cellular interface to regulate leaf 

development or physiology. 

Models have been proposed that, for many viruses, including CMV, their MPs 

bind the viral genomes (RNA and DNA) to form ribonucleoprotein complexes to move 

intercellularly (Gilbertson and Lucas, 1996; Carrington et al., 1996; Ghoshroy et al., 

1997; Ding, 1998; Lazarowitz and Beachy, 1999). All of these models imply that the 

MPs move across all cellular interfaces. However, MP traffic has only been demonstrated 

between mesophyll cells or between trichome cells by microinjection (see review by 

Ding, 1998), between epidermal cells by biolistic bombardment (Itaya et al., 1997, 1998, 
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2000; Crawford and Zambryski, 2000, 2001), and between CCs and surrounding cells by 

transgenic methods (Itaya et al., 2002). Our demonstration of MP traffic from the 

mesophyll to epidermis fills an important knowledge gap in MP traffic between various 

cellular interfaces. Thus, movement of a ribonucleoprotein, as mediated by an MP, 

between the mesophyll and epidermis is feasible. Our data also demonstrate that testing 

the ability of a viral MP to traffic across all cellular boundaries is necessary to understand 

how a virus moves across these boundaries during systemic infection. 

Since RBCS2 promoter is not active in sink leaves, we were not able to test the 

ability of 3a MP:GFP to traffic between mesophyll and epidermis in such leaves. Viruses 

infect young leaves efficiently. Therefore, a future challenge is to develop methods to 

study protein traffic between various cellular interfaces in sink leaves. 

Our success in expressing 3a MP:GFP in the mesophyll of transgenic tobacco 

suggests that expression of a GFP fusion protein in the mesophyll of Arabidopsis should 

make it possible to study genetically the mechanisms of protein traffic between the 

mesophyll and epidermis. 
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CHAPTERV 

SUMMARY AND FUTURE PROSPECTS 
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Cytoplasmic network for intercellular communication established via plasmodesmata 

(PD) is essential for plant biology. My Ph. D. dissertation project was focused on 

investigating the regulation of protein traffic through PD between "symplasmically 

isolated" SE-CC complex and surrounding cells, and between mesophyll (MC) and 

epidermis (EP). We identified CC-specific and MC-specific promoters. These promoters 

were used to express CMV 3a MP:GFP fusion in specific cells. We found that the fusion 

protein trafficked out of the "symplasmically-isolated" SE-CC complex to surrounding 

cells, and from MC to EP. 

It has been shown that small molecules do not diffuse between symplasmic 

domains (Lucas et al, 1993; Pfluger and Zambryski, 2001). However, how symplasmic 

domains communicate with each other for coordinated development, physiology or 

defense is not understood. Traffic of 3a MP:GFP out of "symplasmically-isolated" SE

CC complex suggests that symplasmic domains may communicate with each other 

through protein traffic. The deduced transport functions of PD between the SE-CC 

complex and surrounding cells as demonstrated by dye-coupling experiments (Lucas et 

al, 1993; Pfluger and Zambryski, 2001) and PD frequencies (Gamalei, 1989; Botha and 

van Bel, 1992) may need to be re-evaluated by using biologically relevant molecules. 

The mechanisms and functions of protein traffic in plants are still poorly 

understood. In general, endogenous cellular factors involved in protein traffic are little 

known. To understand the mechanisms of protein traffic through PD, identification of the 

cellular factors is most needed. Fortunately, we have CoYMV:3a MP:GFP-transgenic 

Arabidopsis. Mutant screening using Co YMV :3a MP:GFP-transgenic Arabidopsis could 

lead to identification of genes involved in the protein traffic between the SE-CC complex 
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and surrounding cells. Studying the functions of the gene products would give new 

insights of how the SE-CC complex communicates with surrounding cells. 

Similarly, mutant screening using RBCS2:3a MP:GFP-transgenic Arabidopsis 

could lead to isolation of genes involved in the protein traffic between MC and EP. 

Comparison of the genes products isolated from this system with those from mutant 

screening with CoYMV:3a MP:GFP-transgenic Arabidopsis would shed light on tissue

specific protein transport systems at different tissue boundaries. 

We have studied protein traffic in plants using a viral movement protein, 3a MP, 

as a probe. Recent discoveries of plant transcription factors with the ability of cell-to-cell 

movement (Lucas et al., 1995; Mezitt and Lucas, 1996; Perbal et al., 1996; Sessions et 

al., 2000; Hake, 2001; Nakajima et al., 2001) imply that plants have endogenous 

movement proteins. To identify more endogenous proteins with distinct functions could 

help understanding the mechanism of protein traffic in plants in detail. 

While CMV infects a wide range of plants and invades plants systemically, there 

are viruses that infect only the phloem and not other cells (Sanger et al., 1994; van der 

Heuvel et al., 1995). Mechanisms for the phloem-limitation of such viruses are not 

known. Functions of viral MPs may play important roles for viral exit from the phloem. 

Testing traffic of MPs from the phloem-limited viruses out of the SE-CC complex to 

surrounding cells and beyond the phloem could provide clues whether the functions of 

MPs is involved in the exit of viruses out of the phloem. Similarly, investigating the 

ability of MPs to move out of the SE-CC complex and its relationship with viral systemic 

infection in different plant species may help understand the role of MPs in host 

specificity. 
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CMV utilizes 3a MP to move cell-to-cell. In addition, coat protein (CP) (Suzuki et 

al., 1991; Canto et al., 1997; Kaplan et al., 1998; Schmitz and Rao, 1998; Nagano et al., 

2001) and 2b protein (Ding et al., 1995) have been shown to be involved in the 

movement of CMV. Studying how 3a MP, CP, and 2b interact with each other to promote 

CMV to move cell-to-cell and long-distance should be a major focus of CMV research. 

My thesis work provides the basis for some possible future studies discussed 

above to advance the field. I hope my research in the past and the future can contribute to 

plant biology and virus research. 
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