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CHAPTER I 

INTRODUCTION 

Over the past two decades, the control of material dimensions at the micrometer 

and nanometer size scale has been a major point of interest in the materials research area. 

This interest originated from the fact that the properties of nanomaterials ( optical, 

electrical, mechanical, chemical, etc.) are a function of their size, composition, and 

structural order. Therefore, the ability to prepare nanomaterials with predicted properties 

and to arrange them in macrosized materials is required in order to meet the ever

increasing demands of nanotechnology. 

This thesis focuses on the preparation of advanced organic/inorganic.· composite 

thin films from aqueous solutions of nanosized materials, utilizing the method of layer

by-layer (LBL) assembly. LBL assembly has been proven to be a simple and versatile 

method of multilayer preparation· and is widely used for the composition of various 

complex materials. Since the process occurs in a layer-by-layer mode the control over the 

structure of the growing film is possible on each deposition step, which allows for the 

obtaining of films with a high degree of structural organization. This is not achievable by 

traditional thin film deposition methods, such as sputtering, Langmuir-Blodgett, or spin

coating. 
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Nanosized inorganic materials 

Small particles and colloids with diameters exceeding several micrometers have 

been studied and used for at least the past several hundred years. However, the science 

and engineering of nanometer sized particles has developed only in the last two decades. 

These particles are referred to by many names in the literature. When one refers to 

particles as a collection of atoms and their non-bulk nature the term "nanoclusters" is 

used. Single-crystal nanoparticles are often referred to as "nanocrystals". The term 

"quantum dots" is mostly used for semiconductor particles that exhibit quantum 

confinement effects. The term "nanoparticles" (NP) will be used in this thesis as a 

generic term for particles of the nanometer size without connoting a particular structure 

or property. 

Historically, small particles have been important in heterogeneous catalysis where 

reactants interact at specific sites on the catalyst surface. Their enhanced catalytic activity 

is achieved through high surface-to-volume ratios and their selectivity through controlled 

surface features. NP with a significant number of surface atoms continue to receive 

attention for their catalytic properties. 

Magnetic nanoparticle arrays are at the heart of magnetic storage media, such as 

embedded particles in magnetic tape and segregated grains in magnetic discs [1]. 

Particles with a 0.1 - 1 µm diameter have been the mainstay of magnetic storage media. 

In particles with diameters of about 10 - 20 nm the spontaneous flip of the magnetization 

can occur by thermal activation at room temperature (superparamagnetic limit). On the 

other hand, an increase of magnetic storage density requires the use of smaller particles in 

magnetic storage devices. Regular well packed arrays of particles are desirable for 
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achieving the ultimate goal of single-particle-per-bit recording. This is accomplished by 

producing single domain particles close to the superparamagnetic limit with uniform 

switching properties [1-5]. 

Much of the recent interest in nanoparticles has been driven by the quantum 

confinement effects observed and predicted in small sized particles. Such nanoparticles 

exhibit spectroscopic features that result from an incomplete band structure caused by the 

limited number of atoms. Semiconducting nanoparticles have electronic structures 

between that of the individual atoms and bulk materials. The effect of an incomplete band 

structure on exciton interactions is an object of particular interest. An exciton is an 

electron-hole pair that behaves as one particle due to Columbic attractions. It is 

characterized by a Bohr exciton size. When the size of nanoparticles becomes smaller 

than the Bohr exciton the spacing between energy levels increases and the band gap 

widens. Quantum confinement results in a blue-shift of the adsorption edge and a 

corresponding shift in the photo- and electroluminescence. Therefore, the optical 

absorption and emission characteristics of semiconducting nanoparticle can be tuned by 

changing its size. That makes it possible to use them as light-emitting diodes, where one 

type of semiconductor can be used to produce a whole spectrum of visible light [ 6-13]. 

Since a significant number of atoms in a nanoparticle is located at the surface, 

their surface structure and surface modification have to be considered. Through 

controlled modification of the surface structure, the desirable properties of nanoparticles 

can be obtained. One important modification of the nanoparticle surface involves the 

controlled electronic passivation of the surface. This can be accomplished by the 

formation core-shell nanoparticles, where a material with a much larger band gap is 
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chemisorbed on the surface. Either another semiconductor material [14-16] or an organic 

molecule [17,18] can serve as the shell material. 

The surfaces of nanoparticles often need to be modified for compatibility with a 

host. The preparation of stable aqueous colloidal solutions of NP and the surface 

interactions between NP and polyelectrolytes (PE) are particularly important in the 

formation of NP/PE composite materials. One of the possible ways to modify the surfaces 

on nanoparticles is to attach a charged organic group. The hydrocarbon chain will result 

in efficient attraction to similar organic groups in the PE through hydrophobic 

interactions [19], while the surface charge will prevent irreversible coagulation of the 

nanoparticle colloid. These organic molecules, so called "stabilizers", can be attached to 

the particles both during synthesis as well as through surface modification of already 

synthesized NP. The organic molecules form a charged shell around the nanoparticle and 

prevent their coagulation (Figure 1 ). 

One of the most interesting novel materials discovered in the last decade is the 

carbon nanotubes, which can be regarded as rolled graphite sheets with as many as a 

million or more carbon atoms. Due to their similarity to buckyballs, these cylindrical 

shells of carbon atoms, discovered by Iijima [20], are often called 'buckytubes'[21]. The 

carbon atoms are arranged in a hexagonal pattern while the closed ends of the nanotube 

resemble half of a buckyball. The typical diameters for single-wall carbon nanotubes 

(SWNT) are on the order of 1 - 2 nm [22,23]. Multi-wall carbon nanotubes consisting of 

concentric shells of increasing diameter can be much larger in diameter [24,25]. The 

average length of the SWNT can be up to several microns or more. 
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A B 

rigure 1. Schematic view of (A) "naked" nanoparticle and (B) particle with the shell of 

riodificator around it. 
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SWNT self-organize into bundles or 'ropes' consisting of 100 or more tubes in a 

regular lattice [26-30]. They have the potential to be used as miniature molecular wires 

[31 ], and are under development for use in nanoscale electronic devices. The preparation 

of field-effect transistors consisting of a carbon nanotube deposited over gold contacts 

have already been developed [32,33]. Besides their intriguing electronic properties, 

carbon nanotubes also appear to be amongst the strongest fibres known [25] and will be 

of great potential use in reinforcing other materials. 

One drawback of SWNT is their inherently poor solubilization in solvents and 

polymeric matrices, leading to the phase segregation of SWNT composites. Severe 

structural inhomogeneities result in the physical separation of the carbon nanotubes when 

mechanical stress is applied, and hence premature failure of the composite. Uniform 

distribution of SWNT within the matrix and strong interactions between the matrix and 

SWNT are believed to be essential requirements for strong SWNT composites. Recent 

advances in the chemical modification of the surface of SWNT [34-38] afford new 

approaches to improving the mechanical properties of SWNT composites and to 

mitigating the solubility problem. Wrapping the SWNT with polymers has also provided 

a supramolecular approach to the solubilization of them [39]. 

Layer-by-layer assembly 

In 1966, Iler presented a technique for building films of controlled uniform 

thickness by the alternate adsorption of positively and negatively charged colloidal 

particles [40]. Afterwards several other singular attempts have been reported [41,42]. 

However, only after the work of Decher and coworkers with polymer pairs [43-47] LBL 
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assembly technique has been demonstrated to be a simple and universal method of thin 

film preparation. This method is based on the consecutive absorption of oppositely 

charged single molecular layers onto a surface by electrostatic attraction. Besides 

polymers, this method has been successfully applied to many other systems. These 

include multilayered films prepared from proteins [48], DNA [49], dyes [50-53], metal 

and semiconductor nanoparticles [54-63]. The simplicity and universality of LBL method 

has made it an attractive alternative to many thin film deposition methods, such as 

Langmuir-Blodget deposition, spin-coating and sputtering. 

A schematic representation of a typical LBL deposition cycle is shown in 

Figure 2. In the initial step (Figure 2 A, step 1) a substrate is immersed in an aqueous 

colloidal solution of a charged species. Usually a charged polyelectrolyte is used on this 

first step since it can cover a large area of substrate and can form a uniform distribution 

of charges on the surface. Upon finishing the deposition, the substrate is rinsed with de

ionized (DI) water to remove all unattached molecules (Figure 2 A, step 2) and 

transferred into an aqueous dispersion of an oppositely charged species to that used in the 

initial step (Figure 2 A, step 3). Finally, the substrate is rinsed with DI water (Figure 2 A, 

step 4). This cycle can be repeated until a film of desired thickness or structure is 

obtained. The sketch on Figure 2 B shows layer-by-layer growth of the 

polyelectrolyte/nanoparticle composite film during first two dipping cycles. Some 

common polyelectrolytes, in particular those of interest to this current work, are shown in 

Figure 3. Polymers such as PDDA and PSS are referred to as strong polyelectrolytes 

because the degree of their ionization is high in a wide range of pH. The others, such as 
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A 1 2 3 4 
~~~ 

5 

B 
1 st cycle: 

~~~ 
2nd cycle: 

l?igure 2. (A) Schematic representation of the LBL deposition cycle: 1 and 3 - deposition 

:>f oppositely charged species from their aqueous colloidal solutions, 2 and 4 - washing 

with DI water, 5 - repetition of dipping cycle. (B) Sketch of the ideal layer-by-layer 

growth of polyelectrolyte/nanoparticle composite during first two dipping cycles. The 

interpenetration of the layers into each other is observed in the reality. 
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poly(acrylic acid), PAA 

S03- Na+ 

poly(styrenesulfonate) sodium salt, PSS 

poly( dimethyldiallylammonium chloride), PDDA 

Branched poly(ethyleneimine), PEl-b 

Figure 3. Common polyelectrolytes used in LBL assembly. In aqueous dispersions PAA 

and PSS are polyanions, PDDA and PEI-b are polycations. PAA and PEI-b are weak, 

while PSS and PDDA are strong. 
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PAA and PEI-b, are referred to as weak polyelectrolytes since the degree of their 

ionization is pH dependent. 

The growth of a multilayer stack is achieved due to the electrostatic attraction and 

Van-der-Waals interactions between the oppositely charged components. For a successful 

LBL process two major requirements have to be fulfilled: (1) colloidal solutions of 

oppositely charged species have to be used and (2) complete recharge of the surface must 

be obtained on each deposition step. The latter means that after adsorption of a new layer 

during LBL deposition the surface charge has to change sign. When both of these 

demands are satisfied, formation of films with thicknesses from nanometers to 

micrometers with uniform structures is possible through the layer-by-layer assembly 

procedure. There seems to be no limitation to the maximum number of layers that. can be 

deposited, and films with up to 1000 layers have been made [ 64-66]. The coverage area is 

limited only by the substrate size and polyelectrolyte solution volume. When dried, the 

obtained films are stable and mechanically strong. The alternations in the dipping 

sequence allow for the preparation of many different variations on the LBL films. Three

dimensional heterostructures may be created with photolithography, soft-lithography, and 

inkjet printing techniques [67-73]. 

LBL assembled polyelectrolyte multilayers 

Multilayered films composed of organic compounds on solid substrates have been 

studied since the mid 20th century for their potential in the preparation of tailored 

multicomposite materials. Classical methods used for this task, such as Langmuir-
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Blodgett and chemisorption, do not provide a diversity in starting materials, since they 

require certain classes of molecules. It is not surprising, that the initial works on LBL 

assembly have been done with PE/PE systems [43-47,74] 

Polyelectrolyte multilayers can be obtained on many different supports. The 

roughness of the initially deposited layers will be close to that of the substrate. 

Nevertheless, continuation in the dipping procedure under carefully chosen conditions 

will result in the production of a smoother film substrate [75]. The roughness of the 

obtained PE films also depends on the ionic strength of the solution. The addition of 

NaCl into an aqueous dispersion of fully ionized strong polyelectrolyte results in the 

screening of its charges, which leads to coiling and entangling and, consequently, 

absorption of a thicker PE layer of greater roughness [76, 77]. On the other hand, when an 

already prepared film is immersed in a salt solution it results in its swelling. The degree 

of swelling is a strong function of the LBL assembly composition and can be explained 

by the interpenetration of Na+ and er ions inside of the film structure. When the ionic 

strength of the solution is high enough, a smoothing of the film surface is observed 

[78,79]. 

When a weak PE is used for LBL stack preparation, the pH of its dispersion 

becomes the factor affecting the growth process and structure of the obtained film. At a 

pH range where the polyelectrolyte is fully ionized, formation of smooth thin layers is 

observed. A shift in the pH value away from its optimum range results in PE molecule 

entangling. This leads to the formation of a thick film with greater degree of roughness. 

Figure 4 shows preliminary data obtained by our group that shows the dependence of the 

surface structures of the (PDDA/P AA)5 multilayer stack assembled in a PDDA dispersion 
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Figure 4. AFM (A, B) and SEM (C) images of (PDDNP AA)5 multilayer stacks 

assembled with pH of PDDA solution equal 6.5 in all samples and pH of PAA equal 3.5 

(A, C) and 7.0 (B). (D) Dependence of roughness of(PDDNPAA)5 multilayer stacks on 

pH of the PAA dispersion. 



with pH value 6.0 and PAA dispersion with pH values 3.5 (Figure 4 A and C) and 7.0 

(Figure 4 B). Note that thin uniform layers are obtained when the pH value of the weak 

polyelectrolyte PAA adjusted to the range where it is ionized (Figure 4 D). Similar 

images of the surface structure of a PAA film have been observed by Schlenoff and 

coworkers [78,79]. The surface properties of PE/PE multilayers have been shown to be 

determined by the outermost controlled layer. For example, ellipsometry data for 

P AH/PAA LBL films the advancing shows that the contact angle alternates between 10° 

and 40° when the outermost layer alternates between PAA and P AH respectively [80]. 

Even when polyelectrolytes are assembled sequentially onto a surface during an 

LBL deposition, it has been reported that the structure of the assembled multilayers can 

be highly interpenetrated [81-85]. PAH/PSS multilayers deposited from salt-containing 

solutions displayed an interpenetration between the polymer layers on the same order as 

the individual layer thicknesses [81,82]. These multilayers formed from one pair of PE 

have been described as "fussy' [47]. However, in multilayers consisting of different pairs 

of polyelectrolytes, separate layers have a stratified structure [85]. This stratification is 

consistent with the evidence of interpenetration on the order of an individual layer 

thickness but not more. 

Interactions other than electrostatic between oppositely charged molecules could 

be used in LBL assembly. The successful growth of films, made of polyaniline (PAn) 

alternated with nonionic water-soluble polymers, has been demonstrated [86]. The 

authors presumed that the LBL growth of the films occurred because of hydrogen 

bonding between P An and a non-ionic polymer such as poly(vinyl pyrrolidone) (PVP), 

poly(vinyl alcohol) (PVA), poly(acryl amide) (PAAm), and poly(ethylene oxide) (PEO), 
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which were used in that study. Films have also been prepared with PVP and PAA 

[87,88]. The formation of hydrogen bonding interactions was identified using infrared 

(IR) spectroscopy. It is also possible to utilize polymers having respectively electron

donating and electron-accepting perdant groups for layer-by-layer assembly [89]. 

One more interesting example of multilayered LBL films, formed by interactions 

other than electrostatic, is in protein multicomponent films. Interactions between the 

biological molecules or between the biomolecules and the polyelectrolytes are employed 

in formation of these multilayers. It has been reported that immunoglobulin G can be 

assembled with anionic PSS at pH values above and below its isoelectric point. This fact 

reflects the non-electrostatic nature of the LBL process [90]. In addition, the LBL 

deposition of avidin and biotin-labeled polyamines creates a multilayered structure 

through avidin-biotin complexation [48,91-93] even in the presence of electrostatic 

repulsion arising from the net positive charges of the avidin (isoelectric point at pH 9.0-

10.0) and polyamines [91,92]. 

Polyelectrolyte/inorganic multilayers: synthesis within PE/PE film 

Utilization of the LBL method gives the opportunity to produce a large variety of 

PE/PE films with fine control over their structure by modulating the adsorption 

conditions and by choosing polyelectrolytes with desired properties. The availability of 

non-ionized groups of PE inside of the prepared assemblies as well as the possibility of 

swelling in the resulting films gives an opportunity to use them as nanoreactors for the in 

situ synthesis of inorganic nanoparticles. 
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The synthesis of cobalt hydroxide (Co(OH)2), iron oxyhydroxide (~- and y

FeOOH) and lead sulfide (PbS) nanoparticles has been accomplished by Stroeve and 

coworkers utilizing strong PDDA/PSS multilayers [94,95]. When an LBL stack was 

• immersed in a solution of precursor nitrate or chloride salts, the metal cations bound to 

the sulfonate groups. Upon oxidation or sulfidation of films saturated with precursor 

salts, the formation of nanoparticles was observed. Repetition of the binding and reaction 

steps resulted in enlargement of the nanoparticles. However, even though the possibility 

of forming various inorganic materials has been shown, use of multilayers formed by 

strong PE is limited by the relative lack of free binding groups. By utilizing weak 

polyelectrolytes such as P AH or PAA for multilayer preparation, it becomes possible to 

form non-ionized groups inside of the stack. This is achieved by assembling a weak 

polycation from a basic solutionrwith a weak polyanion from an acidic solution [8]. 

Polyelectrolyte/inorganic multilayers: 

LBL assembly of'PE/inorganic multilayers 

The in situ synthesis of inorganic nanomaterials provides a simple way of 

preparing composite organic/inorganic materials. However, utilization of this method 

does not provide total control over the structure of the resulting material. When a film in 

which the inorganic content changes from one side to another is desired another 

technique should be considered. 

The LBL assembly method has been extended to the preparation of hybrid 

organic/inorganic films. Exfoliated clay materials, metal oxide, semiconductor and 

metallic nanoparticles have been utilized for this task [15,55,63,76,96-103]. The common 
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requirement for a successful assembly of these materials is the presence of charge bearing 

groups on the inorganic surface. If the surface is uncharged, additional surface treatment 

is required. 

The first investigations of the assembly of negatively charged exfoliated minerals, 

such as hectorite, a-zirconium phosphate or montmorillonite, have shown that they can 

be assembled using positively charged polyelectrolytes, such as PDDA or 

poly(allylamine hydrochloride) [76,96'-99]. It is also important that the sheets were found 

to adsorb parallel to the surface covering large areas of the previously adsorbed layer. 

The LBL growth of the film built from metal oxide nanoparticles, proceeds in a 

linear fashion. The thickness of the adsorbed layer increases with a higher ionic strength 

of the solution. Nanoparticles with negatively charged surfaces, like silica or titania at 

high pH, could be assembled with a positively charged polyelectrolyte, such as PDDA 

and PEI. It was also demonstrated in the same work that the surface charge of pure silica 

colloids can controlled by wrapping them in PDDA before the LBL assembly process 

[104]. Positively charged metal oxide nanoparticles such as ceria and titania can be 

assembled with negatively charged polyelectrolytes, like PAA and PSS in acidic media 

[55,65,105]. 

Contrary to metal oxide nanoparticles, which generally have surface charge, 

metallic and semiconductor NP synthesized in solution, are not charged. In such a case, 

the choice of the stabilizing agent is important for the formation of charged 

nanostructures. Several reports on the LBL assembly of acid-stabilized metallic and 

semiconductor nanoparticles have been published [55,106]. Furthermore, alternating 
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PE/NP bilayers with PE/PE spacers allows for the preparation of distinctly layered 

composite structures. 

As in case of PE/PE multilayers, the growth of the inorganic nanomaterial 

containing films can be obtained through non-electrostatic interactions [lo7]. Hydrogen

bonding, protein-antibody interactions etc. are possible, when the surface of the inorganic 

component is modified with a corresponding stabilizing or coordinating agent. 

Substrates for layer-by-layer assembly 

A layer-by-layer assembly process can be performed on a wide variety of 

substrates. Most LBL multilayers have been build on glass, silicon, quartz , and indium

tin-oxide (ITO), since these substrates are particularly well suited for a number of 

experimental techniques. Another advantage of their use is that their surface physico

chemistry has been well studied, and convenient procedures for cleaning and charging the 

surface can be found in the literature. When hydroxyl groups are present, the correct 

choice of pH is needed to generate a surface charge. Another way to increase surface 

charge, which is often referred to in this current work, is to adsorb a pair of 

polyelectrolytes to form a precursor bilayer for further multilayer assembly [60]. 

Obviously, LBL. assembly is not limited to the substrates mentioned above. A 

number of other substrates have been used for multilayer films preparation. Among the 

metals, gold has been widely used. Successful growth of LBL films on bare gold surfaces 

as well as surfaces charged with chemisorption of alkanethiols have been reported 

[90,108]. Examples of other metals that have been successfully used are platinum [109], 

silver [110], and aluminum [76]. For the latter, the surface must be assumed to consist of 
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aluminum oxide. Multilayers have been successfully assembled on polymer substrates 

[111-113]. Successful assembly on this type of substrate is obtained either by chemical 

modification of the polymer surface or by functionalization of the substrate. Two of these 

substrates, namely poly( ethyleneterephthalate) (PET) and cellulose acetate (CA) have 

been used in the work, presented here. 

The LBL process is not limited to flat substrates. For almost a decade this method 

have been successfully applied to the preparation of core-shell colloidal particles, in 

which the surface of the colloidal particle is modified by the adsorption of uniform 

single- and multilayers of PE, or PE/NP [114-124]. Furthermore, the core particle can be 

removed by controlled destruction which yields a hollow capsule [118,122,123,125-131]. 

Such capsules have a multitude of possible applications ranging from drug delivery to 

advanced catalytic materials [123,129,132-134]. 

Purpose and thesis outline 

The previous discussion provided a brief account of state-of-the-art of LBL 

deposition method. The possibility of control of the growing film at each adsorption step 

has been emphasized. Large variety of organic and inorganic nanomaterials opens the 

doors for the preparation of films with wide spectra of possible applications ranging from 

advanced catalytic materials to artificial biological membranes. Although LBL deposition 

method has been declared to be a simple and versatile, there are no universal conditions 

for film preparation. Each of the colloidal dispersions used in this process requires 

individual approach when high quality films are needed. There is a continual interest and 
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need in tuning the properties and structure of the LBL multilayers as well as m 

understanding of actual interactions and arrangements of the separate interlayers. 

This work focuses on the preparation and characterization of thin films from 

nanocolloids utilizing layer-by-layer assembly method. The goals of this work are (1) to 

understand the growth conditions for multilayers of various nanocolloids; (2) to prepare 

complex films and estimate the influence of their internal structure on their properties; 

and (3) to develop a methods of free-standing film preparation Successful fulfillment of 

these goals demonstrates the capabilities of the LBL assembly method in thin film 

preparation and realizes its advantages for the preparation of the complex structures 

based on inorganic nanomaterials and organic polyelectrolytes. 

The research, presented in this work is subdivided into the following parts: 

Chapter II describes the LBL growth mechanism of magnetic Fe30 4 (magnetite) and 

yttrium iron garnet (YIG) nanoparticles. Magnetic measurements of the obtained 

multilayers of magnetite are also presented in this Chapter. Chapter III explores the 

features in the preparation of graded films of semiconductor thiol stabilized CdTe 

nanoparticles. The conditions for the successful growth of single wall carbon nanotube 

multilayers and the alignment of SWNT inside of the monolayer are discussed in Chapter 

IV. Preparation of free-standing films from materials by LBL assembly method and the 

study of the mechanical properties of obtained films are presented in Chapter V. The final 

Chapter concludes this work and suggests some future research directions. 
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CHAPTER II 

LAYER-BY-LAYER ASSEMBLED FILMS OF MAGNETIC NANOPARTICLESi 

Introduction 

Nanocomposite materials, prepared from inorganic nanoparticles embedded 

within a polymer matrix, have attracted much interest over the past decade for their broad 

range of potential applications as catalysts, optical devices, sensors, and drug delivery 

systems. As it was discussed in Chapter 1, nanometer-sized inorganic particles have 

unique properties due to the quantum size effect and their large surface area to volume 

ratio. Utilization of layer-by-layer (LBL) assembly for the preparation of hybrid 

organic/inorganic thin films has been demonstrated to be a simple, but versatile method 

[1-8]. 

The study described in . this chapter devoted to the preparation and 

characterization of polyelectrolyte (PE)/magnetic nanoparticles (NP) hybrid materials. 

Inorganic magnetic components NP of magnetite (Fe304) and yttrium iron garnet 

YIG) have been employed. The positively charged 

poly( dimethyldiallylammonium chloride) (PDDA) and negatively charged 

i Portions of this chapter have been previously reported in (a) Mamedov, A.; Ostrander, J.; Aliev, F.; 
Kotov, N. A. Langmuir 2000, 16(8), 3941-3949 and (b) Ostrander, J. W.; Mamedov, A. A.; Kotov, N. A. 
J.Am.Chem.Soc. 2001, 123(6), 1101-1110. 
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poly(styrenesulfonate) sodium salt (PSS) or poly(acrylic acid) (PAA) were utilized as the 

organic components of the composites. 

Magnetic nanoparticles are used for the assembly of thin films because the 

preparation of homogeneous functional magnetic materials would yield a high possibility 

of the discovery of novel magnetic, magnetooptical, and magnetoresistive phenomena in 

these systems. Besides, LBL method, unlike other methods, can be used to control 

magnetic interactions in the films. 

The LBL approach allows for the design and simple realization of complex 

structures of hybrid PE/NP myltilayers. However, in the case of the NP assemblies, the 

possibility is compromised by the high roughness of the films caused by the NP 

aggregation on polyelectrolyte chains. This problem can be minimized by introducing 

into the system a second inorganic component, such as natural alumosilicate 

montmorillonite. This layered clay material in aqueous dispersions can be exfoliated into 

separate sheets with an approximate diameter of 100-200 nm and a thickness of 1.0 - 2.0 

nm [9-15]. These sheets, when introduced into LBL assembly process, can cover large 

areas of the surface and "heal" some of the defects of the underlying surface. In 

combination with layers of magnetic NP, the introduction of the interlayers of 

montmorillonite can vary the strength of magnetic interactions between magnetic layers 

as a nonmagnetic spacer and insulator. 

According to the basic LBL growth mechanism, each adsorption step results in 

the formation of a continuous monolayer of material. The continuous repetition of 

deposition cycles yields a film with thickness proportional to number of deposited layers. 

However, when non-modified or "naked" YIG nanoparticles were assembled, a different 
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growth mechanism was observed. The buildup of YIG films can proceed as the 

enlargement of isolated 2D particle domains expand laterally and vertically. The surface 

modification ofYIG particles enables the normal LBL growth mechanism to occur. 

Experimental Procedures 

Materials 

PDDA (Mw = 200,000- 350,000; 20 % wt. in water), PAA (Mw = 450,000), and 

PSS (Mw = 70,000), used as organic components of LBL assembly, as well as 

ammonium hydroxide (NHiOH) and tetramethylammonium hydroxide ( (CH3)4W Oir) 

were bought from Aldrich (Milwaukee, WI). Crystallic ferrous sulfate (FeS04·7H20) was 

purchased from Fisher (Fair Lawn, NJ). Ferric chloride (FeCh) and sulfuric acid (H2S04) 

were obtained from EM Science (Gibbstown, NJ). Hydrochloric acid (HCl) was obtained 

from VWR Scientific Products (West Chester, PA). Powdered yttrium iron garnet (YIG) 

was purchased from the Nanomaterials Research Corporation (Logmont, CO). The 

surface of YIG nanoparticles was modified with (3-aminopropyl)trimethoxysilane 

(H2N(CH2)3Si(OCH3)3), which was bought from Fluka Chemie, AG. (Buchs, Germany). 

Sodium montmorillonite (alumosilicate clay material - clay, C), utilized in the LBL 

assembly process, was received from the Source Clay Minerals Repository, at the 

University of Missouri-Columbia, Columbia, MO. Poly(ethyleneterephthalate) (PET) 

film was obtained from Dupont. LR-white embedding resin, used for TEM sample 

embedding, was obtained from London Resin Company Ltd. (Berkshire, England). All 

chemicals were used without further purification. De-ionized water (> 18.0 MQ-cm, 
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Barnstead, E-pure system), with an unadjusted pH of approximately 5.5, was used 

exclusively in all solutions and rinsing procedures. 

Synthesis of magnetite nanoparticles 

Magnetite (Fe30 4) nanoparticles were prepared according to the procedure, 

described elsewhere [16]. Briefly, an aqueous mixture of ferric sulfate (40 mL, 1 M) and 

ferrous chloride (10 mL, 2 M, in 2 M HCl) was added to an ammonia solution (500 mL, 

0.7 M) under rapid stirring. The mixture was aged for 30 minutes. After magnetic 

decantation over magnetic stirrer, a gelatinous precipitate was obtained and isolated from 

the solution without washing with water. The precipitate was redispersed in 100 mL of 

deionized (DI) water and peptized with aqueous 1 M tetramethylammonium hydroxide 

under rapid stirring. To finish the process, water was added to make a total solution 

volume of 500 mL. The magnetic ferrofluid obtained was stable in alkaline medium 

(pH > 9). The particles produced ranged in size between 8-10 nm in diameter with a size 

distribution of approximately 15% and a cubic lattice structure, as determined by 

transmission electron microscopy [17] (Figure 5). 

Layer-by-layer assembly of magnetite nanoparticles 

Rigid silicon wafers and glass slides, as well as flexible 25 µm thick PET film 

have been used as substrates for layer-by-layer assembly of magnetic nanoparticles. 

Silicon and glass surfaces were cleaned with a solution of hot Nochromix followed by 

thorough rinsing with DI water. To improve the uniformity of the coating, the surface of 

the PET film was partially hydrolyzed by treatment with 0.1 M NaOH according to the 
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Figure 5. Transmission electron micrographs of uncoated Fe304 nanoparticles. The 

lattice planes observed on the TEM images correspond to cubic magnetite, i.e., 4.8 A for 

(111) and 2.9 A for (220) planes, respectively. (Adopted from ref. [17]) 
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procedure described in [18]. This provided additional charges and roughness to the PET 

surface enhancing adsorption. After washing with DI water and drying, PET pieces were 

left in 0.5% of PDDA overnight, followed by rinsing with DI water and depositing of 

magnetite nanoparticles. The deposition cycle for magnetite nanoparticles consisted of 

the following steps: (1) adsorption of PDDA from a 0.5% solution for 2 minutes, (2) 

three one minute rinses with DI water, (3) adsorption of nanoparticles for 6 min, and, 

finally, ( 4) two one minute rinses with DI water. The time period for adsorption of the 

nanoparticles was chosen on the basis of previous observations of the formation of 

monolayers of Fe30 4 reported elsewhere [17]. The rate of adsorption varies depending on 

the material to be deposited. For efficient LBL assembly, the exposure times 

corresponding to adsorption saturation are suggested. The repetition of this cycle for N 

times results in the deposition of N PDDAINP bilayers. LBL multilayers composed solely 

of magnetite nanoparticles and polyelectrolyte are denoted as [PDDA/M]N, where N is 

the number ofrepeating units. 

The composite layers combining both clay and magnetite were assembled 

following several different patterns with one or more PDDA/clay (C), layers inserted 

between the layers of magnetite nanoparticles. The adsorption time for clay layers was 10 

minutes. As with M stacks, they are denoted as [PDDA/C/PDDA/M]N, 

[(PDDAIC)2PDDAIM]N, etc. 

The assembly of Fe304 nanoparticles was found to be highly sensitive to pH of 

the solution, containing the magnetite dispersion. Unlike montmorillonite, the window 

for a successful LBL procedure is narrow: at pH < 9 the dispersion irreversibly 

coagulates, while a pH greater than 11.5 results in a very low particle density due to their 
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high surface charge [17,19] and a darkening of PDDA. The assembly of magnetite was 

carried out with freshly prepared solutions after adjusting the pH to 11.2 using a 0.03 M 

solution of HCI. 

Preparation of the yttrium iron garnet colloid solution 

According to the specifications of N anomaterials Research Corporation, the 

average diameter of purchased YIG particles was 50 nm. Approximately 0.5 grams of the 

nanopowder was suspended in 250 mL of DI water with the pH adjusted to 11.23 using 

NH40H. The dispersion was ultrasonically agitated in a Whatman Sonicor SC-50T 

ultrasound bath for not less than 2 hours. After sedimentation of the heaviest particles by 

centrifugation at 3800 rpm for 10 minutes, the supernatant containing dispersed YIG 

particles was decanted and stored for subsequent use in the LBL deposition. The average 

size of suspended YIG particles was 30 nm in diameter as determined by Transmission 

Electron Microscopy (TEM). 

Modification of YIG colloid 

The surface of YIG nanoparticles has been modified according the following 

procedure. About 2 grams of YIG powder was thoroughly dried in a vacuum decicator 

for 24 hours to remove any traces of water. Then, the sample was transferred into a 

50 mL solution of 0.5% (3-aminopropyl)trimethoxysilane in hexane and the mixture was 

stirred in an airtight flask for 24 hours. After modification, the solution was decanted and 

the solid precipitate was washed with a large amount of dry hexane, followed by acetone, 

and finally ethanol. The modified NP were dispersed in water at an acidic pH < 4 in an 
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analogous way to the non-modified or "naked" NP, as described previously. Dispersions 

of equal optical density, which corresponds to close concentrations of nanoparticles, were 

used in the layer-by-layer assembly procedure in each case. 

Layer-by-layer assembly of YIG nanoparticles · 

The glass slides and silicon wafers used as film substrates were cleaned according 

procedure, described earlier in this Chapter. An appropriate substrate was immersed in a 

1% aqueous solution of high molecular weight PDDA for 10 minutes at pH 3.5 and 

rinsed 3 times with DI water for 1 minute each. After rinsing the slide was immersed into 

a beaker containing the YIG suspension for 1 hour. Upon completion of the nanoparticle 

adsorption, the substrate was removed, rinsed twice with of fresh DI water for 1 minute, 

and then dried with stream of compressed air. To form multilayers, the entire cycle of 

PDDA and YIG adsorption was repeated as many times as necessary to obtain a film of 

the desired thickness. The LBL assembly of YIG nanoparticles was also performed after 

the deposition of several PE/PE LBL layers as precursor layers. The first layer of PDDA 

was prepared as described above at pH 3.5. Next, a layer of PAA or PSS was deposited 

by immersion of the substrate in a 1 % aqueous solution of the polyelectrolyte at pH 3.5 

for 10 minutes. The substrates were then rinsed three times for 1 minute in three separate 

beakers. To achieve a better adsorption rate on the precursor layers, five (PDDA/PAA) 

bilayers topped with a layer of PDDA were made. After that, the substrate was exposed 

to the YIG dispersion and YIG/PDDA alternations continued as previously described. 
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UV-visible spectroscopy 

The progress of the nanoparticle assembly onto the glass substrates was 

monitored by UV-visible spectroscopy of the growing film using a HP8453A Hewlett

Packard spectrophotometer. The UV-vis readings were taken after each (PDDA/M) 

bilayer was added. The dependence of the adsorption increment on the number of layers 

was observed at 350 nm. The 450 nm wavelength was used to check this dependence 

when adsorption density of growing film was too high for measuring with 

spectrophotometer. 

Atomic force microscopy 

Atomic Force Microscopy (AFM) images were taken using a Nanoscope Illa 

Multimode instrument operating in the tapping regime with TESP tips. The surface was 

scanned at 2 Hz with 256 lines per image resolution and a 1.2-4.0 V setpoint. No filter 

technique was applied to the images presented. AFM specimens on PET were attached to 

steel stubs with a layer of adhesive and positioned on the scanning stage of AFM, as it is 

customarily done for rigid substrates. Virtually, no effect on scanning parameters and 

performance of the instrument was observed with imaging films on PET as compared to 

the traditional AFM supports. 

Magnetic measurements 

Magnetic measurements were performed by using a QUANTUM Design PPMS 

6000 magnetometer. The magnetic field H was created by a superconducting solenoid in 

the persistent mode parallel to the film's surface. For the magnetic hysteresis loops, the 
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correct demagnetization values corresponding to the sample signals were obtained by 

subtracting the diamagnetic signal of the substrate from the total registered signal. The 

linear magnetic response of PET substrates was intrapolated to the -10 kOe < H < 10 kOe 

region from the high field wings of magnetization curves. The total magnetization signal 

from each specimen was scaled to the mass of the sample and UV absorption intensity at 

350 nm. The saturation magnetization (Ms) of different batches of magnetite dispersions 

was observed to vary within a 20% interval, which was attributed to the different 

structure of the magnetite/solution interface affecting the average magnetic moment of 

nanoparticles. Multilayer systems were made from an identical magnetite dispersion 

within a period of a few days. Low field magnetization data have been scaled to Ms. 

Coercivities (He), and were calculated as half-widths of corresponding magnetization 

loops at M = 0. 

Transmission and Scanning Electron Microscopy 

TEM images were taken on a JEOL-2000 FX instrument operating at 100 kV. 

Samples for TEM were prepared in a way that a layer of magnetic nanoparticles was 

deposited only on one side of the carbon-coated TEM grid. A 200 mesh copper grid was 

carefully brought into contact with the surface of aqueous solutions and was allowed to 

float at the air-water interface for the period · of time equivalent to the duration of 

adsorption in a regular deposition cycle. Then, the grid was carefully removed from the 

solution, avoiding the contact of its backside with the subphase, and was transferred onto 

the surface of the next solution. 
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Scanning electron microscopy (SEM) images were taken on a JEOL JXM 6400 

scanning electron microscope with an Oxford X-ray system and cryostage operating at an 

accelerating voltage of 15-20 kV and a field depth of 8. The samples were coated with 

gold in a Denton Vacuum Desk II magnetron sputterer/etcher. 

Ellipsometry 

Ellipsometric measurements were made with an AutoEL MS ellipsometer from 

Rudolph Research Corporation. The measurements were performed with use of a 

632.8 nm line of He/Ne laser incident upon the sample at 70°. The DaflBM program 

supplied by Rudolph Technologies was employed to determine the thickness values of 

the films. 

~-potential measurements 

The /;-potential measurements were performed by using Malvern Zetasizer 2000 

HS operating with an internal 10 mW, 633 nm He-Ne laser in the right angle geometry. 

The standard lxl cm cuvette was used in these measurements. /;-potentials of PDDA, 

PAA, and PSS layers were determined by adsorbing the polyelectrolytes onto 200 nm 

latex particles [20]. The latex dispersion was added to the corresponding polyelectrolyte 

with a pH adjusted to the required value and allowed to sit for 30 min. After gentle· 

centrifugation and rinsing with water, the particles were redispersed in water with 

appropriate pH and the /;-potential of latex particles was measured in the regular fashion. 
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Results and Discussion 

LBL deposition of magnetite nanoparticles 

The LBL assembly of PDDA/Fe304 multilayers can be performed on variety of 

substrates. Upon deposition on glass and other transparent substrates, the growth of the 

film can be monitored by an increase of UV-vis optical density (O.D.) (Figure 6), which 

in the region> 320 nm originates primarily from the absorption and scattering oflight by 

magnetic particles and their aggregates. It is clearly seen that the assembly rate slowly 

increases and reaches a maximum after depositing approximately 10-12 PDDA/Fe30 4 

bilayers. This can be attributed to the fact that deposition of the initial layer of PE to the 

surface of the glass slide was not complete. Each additionally adsorbed layer of PDDA 

increased the area of substrate surface covered with growing film. Once complete 

coverage of surface is achieved, the increment of optical density remains virtually 

constant on each deposition cycle, which indicates that the same amount of material is 

being deposited. The dependence of O.D. on the number of deposited layers was found to 

be virtually linear for 50 deposition cycles and likely would remain constant. To 

eliminate the initial period of slow growth, the surface of the substrate can be pretreated 

with an aim of adding additional hydrophilicity and surface charges. The pretreatment 

procedure depends on the type of substrate used. For example, the surface of PET film 

can be partially hydrolyzed with NaOH solution, while the surface of the silicon wafer 

requires deposition of precursor polymer/polymer bilayers as pretreatment. 
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Figure 6. (A) UV-vis absorption spectra of [PDDAIM]N multilayers with glass as a 

substrate. (B) Dependence of the optical density of [PDDAIM]N (N = 1 - 30) multilayers 

at350 nm. 
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Optical characterization of magnetite films on PET 

Multilayers of magnetite can be assembled on a variety of substrates. The 

necessity in varying the substrate for preparing films arises from the requirements of 

different analytical techniques. In addition to glass slides, films have been deposited on 

silicon wafers and mica sheets for AFM study, carbon coated copper grids for TEM 

imaging, and thin PET films for magnetic measurements. 

A PET film is the least conventional substrate for the assembly of nanoparticles 

due to its flexibility. On the other hand, its utilization is essential for magnetic 

measurements since PET is also employed as a base for magnetic recording tapes with a 

memory layer made from metal oxide particles [21]. The monitoring of the multilayer 

buildup on a PET support by UV-visible spectroscopy reveals qualitatively similar 

spectra to ones formed on a glass substrate (Figure 7). As with glass, the linear 

dependence of optical density on the number of the layers at fixed (350 nm) wavelength 

was observed (Figure 7 B). The difference in curve slopes for PET (above) and glass 

(below) reflects the difference in quality of the underlying substrate. Atomic force 

microscopy study of PET films before and after hydrolysis (Figure 8) shows, that the 

latter substrates had greater roughness. This provides higher adsorption area for PDDA 

and for inorganic components subsequently, which yields a greater optical density 

increment. 

The UV-vis absorption spectra for magnetite films assembled on PET revealed 

unusual oscillations in the near IR-part (Figure 7 A), which have not been seen for LBL 

assemblies on glass slides (Figure 6 A). The origin of these oscillations stems from the 
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Figure 7. (A) Absorption spectra of [PDDA/M]Nmultilayers withN= 1, 2, 3, ... 10 (from 

bottom to top) with hydrophilic PET as a substrate. (B) The dependence of optical 

density at 350 nm for magnetite nanoparticle multilayers of different architecture: 

[PDDA/M]i0 on glass ( o ), [PDDA/Mho on PET ( • ), (C) Optical scheme for the 

formation of diffraction ripples in absorption spectra in (A). The angle of incidence is 

altered for clarity. 
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Figure 8. AFM images of PET film (A) before and (B) after surface hydrolysis. PET 

with the surface topography similar to the one in image B was used as a substrate for the 

preparation of multilayers of nanoparticles. 
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interference of transmitted beams 1 and 2 (Figure 7 C) with the path and phase difference 

caused by the reflection from both surfaces on the thin substrate. 

An expression for the period of these oscillations can be written in terms of wave 

optics. The conditions for the constructive interference of beams 1 and 2 in Figure 7 are 

shown in equation 1 : 

mJc = 2dn (1) 

where mis an integer, l is the average wavelength of the period in the UV-vis spectrum, 

d is the total thickness of the film, and n is the refractive index of the substrate. The 

period of oscillations is calculated by finding the difference between two neighboring 

maxima of constructive interference corresponding to m and m - 1 ( equations 2 and 3): 

m1A1 = 2dn 

(m1 - l)A2 = 2dn 

Therefore, the period of oscillations, p can be expressed as 

(2) 

(3) 

p = Jc2-A1 = 2dnl(m1 -1)-2dnlm1 = 2dnl(m1 - l)m1::::; 2dnlm/ 

m1>> 1 (4) 

In this equation, the total number m1 of wavelengths 11 fitting the path difference 

between the two diffracting beams is equal to 

(5) 

Since 11 and 12 are close to each other, the average between 11 and 12, can be 

substituted for l. Then the substitution of equation 5 into equation 4 yields equation 6: 

p = Jc2/2dn (6) 

which describes the observed oscillations in the UV-vis spectrum. 
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The effect of the layer thickness on the position of the oscillation maximum can 

be described in the same way. When equation 1 is applied to two films with thicknesses 

of d1 and d2, respectively, the difference in construction interference· maxima A.l 

. corresponding to the same m can be expressed as 

iU = 2d1nlm - 2d2nlm = 2n(d1- d2)/m 

A simple rearrangement of this equation gives 

Ad =(d1-d2) = Aldoll 

where do is the thickness of the PET skin (25 µm) with no films on it. 

(7) 

(8) 

An application of equation (6) to the bare PET film (Figure 9 A, curve 1) in the 

715 - 749 nm range (taking .l = 732 nm d = 25 000 nm, and n = 1.55 [22]) yields p = 

6.91 nm. This theoretical period coincides very well to the experimentally observed p = 

6.8 nm (Figure 9 B). For glass slides and other thick substrates, such oscillations are not 

observed because of substantially larger d, which results in very small period p = 0.2 nm 

for a 1 mm glass plate), and a much lower intensity of the reflected beam. 

With the assumption that the mechanism of interference does not change with the 

assembly of additional layers of magnetite, it is possible to calculate the thickness of 

deposited films from the shift of the oscillation pattern. However, when magnetite layers 

with a expected thickness of 10 nm each were deposited, the observed change in 

oscillation pattern corresponded to a much greater shift than theoretically calculated 

( 4 nm vs.' 0.6 nm for [PDDA/Mh assembly) (Figure 9 B). This indicates that additional 

interference of the beams takes place at the interface of the PET and magnetite films due 

to a high refractive. index of the magnetite nanoparticles. The increase in the amplitude of 
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Figure 9. Details of the diffraction ripples. (A) Dependence of the amplitude of 

oscillations on the thickness of the [PDDA/M]N magnetite overlayer for N = 0, 1, 3, 7, 10 

(plots 1-5 respectively) on the PET substrate. The plots are shifted along the vertical axis 

for clarity. (B) Details of the diffraction ripples: the horizontal shift of the diffraction 

wave for a sequence of [PDDAIM]N films on PET substrate; plots 1, 2, 3, and 4 

correspond to N = 0, 1, 2, and 3. 
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oscillations after absorption of the [PDDA/Mh layer can also be attributed to interactions 

at the PET/multilayer interface. The decrease in amplitude after deposition of additional 

layers of magnetite can be attributed to the adsorption and scattering of the reflected 

beam by the magnetite coating. 

Magnetite/montmorillonite composite layers: LBL assembly 

It was previously mentioned that the LBL method allows for the design of 

structurally complex assemblies. In such complex films, the functional properties of one 

inorganic material can be complemented by the properties of other inorganic materials. 

Most importantly, the characteristics of the whole structure can be controlled by the 

sequence of the layers, which is determined by the dipping procedure. 

The magnetite layers in [PDDA/M]N multilayers can be interlaced with layers of 

montmorillonite clay (C), which are known to be used in the layer-by-layer assembly 

process [9-15]. . Both montmorillonite and magnetite are negatively charged and, 

therefore, the preparation of M and C composites can be accomplished by simple 

adsorption of the corresponding species on a layer of positively charged PDDk The 

sequence of M and C layers will be determined by the dipping order in corresponding 

solutions. 

When layers of nanoparticles are interlaced with layers of clay, the absorption

increment plots register the difference in the quality of the substrate (Figure 10). The total 

number of magnetite clusters deposited in each cycle increases as compared to the simple 

[PDDAIM]N sequence. The absorption rate remams virtually constant for 

[PDDA/C/PDDA/M]N, [(PDDA/C)2PDDA/M]N, and [(PDDA/C)3PDDA/M]N 
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Figure 10. The dependence of optical density at 350 nm for magnetite nanoparticle 

multilayers of different architecture on PET substrate: [PDDA/MJ10 ( • ), 

[PDDA/C/PDDA/M]io on PET ( • ), [ (PDDA/C)2PDDA/Mho on PET ( • ), 
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architectures. The increase of the rate with respect to [PDDAIM]N is attributed to the high 

negative charge of the montmorillonite surface that promotes adsorption of the positively 

charged polyelectrolyte. Consequently, thicker PDDA layers retain a greater number of 

Fe304 nanoparticles. 

The different structure organization for multilayers with variations in deposition 

sequence can be observed with TEM imaging of magnetite layers. Since the 

formvar/carbon coating of TEM grids provides a hydrophobic surface for adsorption of 

the highly charged PDDA molecules, a non-uniform distribution of magnetite 

nanoparticles, which is seen on TEM micrograph (Figure 11 ), may not represent the 

actual particle distribution inside of the films assembled on hydrophilic glass or PET 

surfaces. The increase in nanoparticle density is clearly visible when a layer of clay is 

introduced between the TEM grid and magnetite (Figure 11 B). Additionally, the clay 

underlayer makes the distribution of nanoparticles more uniform. The difference in 

particle density can be attributed to differences in the density of the polyelectrolyte 

chains adsorbed in the preceding cycle. Large clay platelets bridging the gaps in the 

polyelectrolyte layer reduce the inhomogeneity of charge distribution, providing a more 

uniform surface for the second polyelectrolyte layer. A better packed polyelectrolyte 

layer results in a more efficient adsorption of nanoparticles, which leads to the formation 

of multilayers. 

For the magnetic measurements of the obtained films, a reduction in the 

diamagnetic contribution from the solid support was essential because of very small mass 

of the deposited nanoparticles. For this reason a thin PET film was preferred for these 

types of measurements over silicon, glass, or other types of "thick" substrates. Due to the 
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Figure 11. Transmission electron microscopy images of magnetic nanoparticles on a 

standard TEM copper grid bearing (A) an [PDDA/M] 1 film and (B) a 

[PDDA/C/PDDA/M]i film. Dark fields represent areas covered by nanoparticles. The 

average particle density on the TEM grids is expected to be lower than that on silicon 

wafers or PET because of hydrophobic formvar/graphite foundation coating. Contrast of 

the images was increased intentionally to visualize nanoparticle areas. 
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intrinsic roughness of the hydrolyzed PET, the topography features -of the nanoparticle 

and clay layers are masked on the topography scans (Figure 12). All the images closely 

resemble that of PET in Figure 8 B. However, it can be noted that the fine grain texture 

characteristic of nanoparticle surfaces is again more pronounced for films with the top 

magnetite layer (Figure 12 B). A topography independent characterization of the surface 

can be done by using the phase shift registration mode of the AFM instrument. The phase 

images are sensitive to the strength of interactions between the tip of AFM probe and the 

topmost layer in the stack regardless of the relative height of it. The phase scans clearly 

show the alteration of the surface quality when montmorillonite sheets are deposited on a 

layer of magnetite nanoparticles (Figure 12, right images). Since the clay platelets formed 

a continuous closely packed layer, they can, despite the roughness, separate the magnetite 

layers from each other. 

Magnetite/Montmorillonite composite layers: magnetic propertiesii 

Besides the sheet-like morphology, alumosilicate clays have other useful qualities and, 

for instance, they can be excellent insulators. Mica sheets, which are often used as 

electrode spacers, are one of the members of the same alumosilicate family. The 

insulating properties of LBL layers of clay and similar materials can be utilized in many 

electrical devices such as sensors, light-emitters [14], and on-chip capacitors. Magnetic 

phenomena in NP in the nanoscale are dependent on the electronic communication 

between the NP and insulating coating can strongly affect the magnetic behavior of the 

ii This part of work has been done in collaboration with Dr. Farkhad G. Aliev, Departamento de Fisica de la 
Materia Condensada Universidad Autonoma de Madrid, Cantonlanco, 28049 Madrid, Spain. 
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Figure 12. AFM topography (left) and phase (right) images of (A) [PDDA/C]1, (B) 

[PDDA/C/PDDA/M]1, and (C) [PDDA/C/PDDAIM/PDDA/C]i films on PET. 
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NP solids. Therefore, as a part of the investigation of the other effects, it would be 

interesting to see how magnetic properties of the LBL films respond to the changing the 

stack architecture, which can provide the information about nature of magnetic 

interactions ofNP. 

Magnetization curves of the films with a [PDDA/M] 10, [PDDA/C/PDDA/M] 10, 

and [(PDDA/C)2PDDA/M]io structure (Figure 13) display typical superparamagnetic 

behavior. Normalization of the curves to the surface density of the particles and to the 

mass of the sample makes the saturation magnetization of the specimen independent of 

the multilayer structure, which levels the high-field plateaus for all of the assemblies. 

The effect of the structure of the film on the magnetic behavior becomes visible 

when magnetic measurements are performed at low-field amplitudes (Figure 14). For 

[PDDA/C/PDDA/M]10, and [(PDDA/C)2PDDAIM]io structures, all points on 

magnetization loops fall on one another within a 5% deviation at temperatures of 10, 100 

and 300 °C. However, the magnetization properties of the [PDDA/M]i0 stack differs from 

those of other stacks used in this study at 10 and 100 K. At liquid helium temperatures, 

the thermally-activated magnetization flipping characteristic for the superparamagnetic 

nanoparticles becomes strained. The magnetization curves acquire the shape of a loop 

(Figure 14 A) with a distinct separation in the two sweeping directions typically observed 

for ferromagnets. The [PDDA/M] 10 assembly displayed a slightly lower hysteresis with 

He = 140 G, whereas the clay-containing multilayers displayed He = 190 G. For T = 

100 °K, (Figure 14 B) superparamagnetism dominates the magnetic properties of the 

nanoparticles, nevertheless, the S-shaped magnetization curve for [M] 10 is different as 
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Figure 14. Low-field magnetization loops taken at (A) 10 K, (B) 100 K, and (C) 300 K 
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compared to the coinciding ones for [CM]10 and [CCM] 10. At T = 300 °C (Figure 14 C), 

the magnetization of [Mho is always the same as for the two other assemblies. 

Such a difference in the magnetic behavior can be explained by considering the 

effect of the magnetite and clay layer sequence on the magnetization switching. The 

reversal of the magnetization direction occurs mostly as the concerted spin flipping of 

adjacent magnetic domains, as represented by the Stoner-Wolfarth model [23,24l 

According to this model the magnetization reversal can be pictured as the concerted spin 

flipping of adjacent magnetic domains coupled to each other by exchange and dipole

dipole interactions. Typically, the range of exchange interactions is 2 nm [25,26] and 

does not exceed 4 nm in the exceptional cases [27,28], while the magnetostatic 

interaction of magnetic dipoles can span the range of a few tens of nanometers [29]. 

Therefore, they can be successfully interrupted by isolation with clay layers whose 

thickness is 2.5-3.0 nm [30]. Since there is little difference in the magnetization curves 

observed between multilayers of different architecture, the coupling between layers 

should be mostly attributed to the dipole-dipole interactions with significantly longer 

characteristic distance. 

Preparation of YIG colloid 

LBL deposition requires aqueous dispersions of the assembling materials. 

Therefore, the initial start of the deposition process of YIG particles is the preparation of 

a stable aqueous colloid of them. To achieve this, the attractive forces between the 

particles through the high surface potential must be overcome. This is accomplished by 

varying the pH of the dispersion. The isoelectric point for YIG is located at pH 6-7 
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[31,32]. That means, both basic and acidic media should result in charging of the YIG 

surface. For "naked" i.e. non-modified particles, the most stable dispersions were 

obtained at pH 11.2, where YIG particles are negatively charged (~-potential is equal -

17 m V). Such solutions were stable for months without any sign of precipitation. In 

comparison with silica or titania particles of similar size, which form stable dispersions in 

mild basic or acidic solutions, the pH of the YIG dispersions was somewhat higher. This 

fact can be attributed to additional, relatively ·. weak magnetic forces between YIG 

particles. TEM study revealed that the dispersions obtained are fairly polydispersed with 

particles ranging in size from 15 to 50 nm in diameter (Figure 15). The average diameter 

of the particles was 32 nm. 

Layer-by-Layer assembly of "naked" YIG 

As in the case of magnetite .nanoparticles, the layer-by-layer deposition of YIG NP on 

glass substrates was monitored by the increase in the UV-vis absorbance (Figure 16 A). 

A stable linear growth of the LBL assembly was obtained when the deposition time of 

YIG nanoparticles was increased from a few minutes to 1 hour (Figure 16 B). Elongation 

of the exposure time for YI G to 12 hours did not significantly affect dependence of O .D. 

on number of deposited layers. 

Ellipsometric measurements of the thickness of the growing film showed that the 

average film thickness increases linearly with an increasing number of adsorbed layers 

(Figure 16 C). The average thickness increment, added by a single PDDA/YIG bilayer, is 
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100 nm 

Figure 15. Transmission electron microscopy image of YIG nanoparticles in aqueous 

dispersion used for LBL assembly. 
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Figure 16. (A) UV-vis absorption spectra of (PDDA/YIG)N, N = 1-20, films sequentially 

adsorbed on a glass slide. (B) Dependence of the optical density of (PDDA/YIG)N, N = 

1-50, films at 350 nm assembled with 1 hour of the YIG adsorption step. (C) 

Ellipsometric thickness of (PDDA/YIG)N, N = 1-11, sequentially deposited on a glass 

slide and registered at 632.8 nm. 
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3.5 run. Since the average nanoparticle diameter is 32 run, it is assumed that this 

corresponds to an average surface density of one YIG nanoparticle per 30 000 run2. In 

view of the requirement of the surface charge switching, which is vital for the successful 

LBL process, the consistent multilayer growth seen in Figures 16 A and C raises the 

question about the actual mechanism of the layer-by-layer growth in this case. 

The SEM study of the surface topography allowed for resolution of this problem. 

It is clearly seen from the SEM micrographs (Figure 17) that with an increase in 

deposition cycles number, the formation and growth of fairly isolated YIG domains was 

observed. This observation is somewhat contradictory to the classical LBL growth 

mechanism, where formation of sandwich-like organic/inorganic layers is proposed. The 

size of the domains increased with adsorption of additional layers of YIG from 0.5 -

1.5 µm in layer 1 to 3-4 µm in layer 3 (Figure 17 A - C). At higher magnification the 

YIG domains are 3D agglomerates ofYIG nanoparticles (Figure 17 D). 

The domain expansion growth pattern was initially regarded as the result of poor 

quality substrate carrying hydrophobic patches. However, for glass slides and silicon 

wafers, thoroughly cleaned with hot piranha solution for 30 minutes as well as the 

treatment of the glass slides with a promoter of polyelectrolyte adsorption (3-

aminopropylsiloxane ), the identical deposition patterns were observed. Furthermore, 

coating of the glass substrate with a highly hydrophilic precursor film, consisting of 

(PDDA/P AA)5 assembly, resulted in the same growth pattern (Figure 18). 

62 



Figure 17. Scanning electron microscopy images of (PDDA/YIG)N films with (A) N = 1, 

(B and D) 2, and (C) 3. 
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Figure 18. Scanning electron microscopy images of (PDDA/YIG)N films with (A) N = 2, 

and (B) 3 assembled on precursor layer (PDDA/P AA)5PDDA. 
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The domain expansion mechanism of growth is not specific to YIG nanoparticles. 

Similar growth mechanism has been shown for 40 nm barium ferrite nanoparticles and 

200 nm polystyrene latexiii. 

Switching the growth modes: modification and 

layer-by-layer assembly of YIG 

For designing and preparing various thin film materials and devices utilizing the 

LBL method, it is always better to have conditions that form a complete, densely packed 

adsorption layer on every deposition step. The domain expansion mode of growth of the 

film does not give complete control over the structure of the obtained film. Therefore, it 

is necessary to have some methods to switch the growth mechanism. One of the possible 

ways to do such a switching is to elevate ionic strength of a solution by adding NaCl to 

the colloids of adsorbing materials [30,33]. However, even though the addition of NaCl 

reduces the repulsion between the nanoparticles by shielding their surface charges, it also 

reduces the attraction between YIG and PDDA. Therefore, the increase in ionic strength 

results in both positive and negative effects with respect to increasing the surface density 

of nanoparticles. 

Another way to overcome the problem of switching the mode of the growth 

mechanism is to modify to a surface of "naked" YIG nanoparticles. The surface of 

unmodified "naked" YIG is very hydrophilic. To retain the stability of the colloid in 

water and at the same time increase its ability to interact with the polyelectrolyte though 

hydrogen bonding and hydrophobic interactions, the surface of YIG was modified with a 

iii The LBL assembly of barium ferrite and latex particles has been done in collaboration with John W. 
Ostrander, Oklahoma State University, Stillwater, OK, USA and reported in Ostrander, J. W.; Mamedov, 
A. A.; Kotov, N. A. J.Am.Chem.Soc. 2001, 123(6), 1101-1110. 
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3-aminopropyl hydrocarbon chain through a siloxane bridge to the surface of the 

nanoparticles (Figure 19). The hydrocarbon chain resulted in efficient attraction to similar 

organic groups in the polyelectrolyte, while the surface charge prevented irreversible 

coagulation of the colloid. This procedure yielded a colloid solution stable in acidic 

media with a positive surface charge (~-potential at pH 3 .5 is + 1.2 m V). 

Since the surface of the modified YIG nanoparticles is positively charged, the 

LBL assembly was carried out utilizing negatively-charged polyelectrolytes, such as PSS 

and PAA. For both polymers, the linear increment of optical density with adsorption of 

each additional layer was obtained. Furthermore, the 80.DJ8N is significantly higher 

than that for "naked" YIG. In particular, for assembly with 0.5% PAA at pH 3.5 and a 

deposition time 1 hour, the 80.D./8N increases 5 times in comparison with non-modified 

YIG (Figure 20). SEM study also reveals improvement in film structure: the 

nanoparticles are densely packed after only one deposition cycle (Figure 21 A). The size 

of the aggregates visible in the image is much smaller than that for non-modified YIG 

and does not exceed 0.5 µmin diameter. As the number of deposition cycles increases, 

the topography of the film shows little change with the exception of greater density of the 

particles and their aggregates (Figure 21 B). The AFM image of (PAA/modified YIG) 

bilayer confirms the SEM data (Figure 22). 

The increase in the surface density of the nanoparticles of modified YIG should 

be attributed to the attractive interactions between hydrocarbon groups of the organic 

modifier and the polyelectrolyte chains adsorbed to the substrate. Some additional 

contribution from the formation of hydrogen bonds should be considered. The difference 
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Figure 19. (A) Structural formula of (3-aminopropyl)trimethoxysilane. (B) Formation of 

the positively charged shell of organic compound on the surface of nanoparticle. 
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Figure 20. Dependence of optical density at 450 nm for the LBL assembly of the 

modified YIG (linel) and non-modified YIG (line 2) on the number of deposition cycles. 
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Figure 21. Scanning electron microscopy images of (PSS/modified YIG)N films with (A) 

N = 1 and (B) 2 assembled on a PDDA/P AA precursor bilayer. 
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Figure 22. AFM image of (P ANmodified YIG) bilayer, assembled on precursor 

PDDNPAA bilayer. 
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m adsorption behavior of "naked" and modified YIG cannot be attributed to the 

difference in electrostatic attraction between nanoparticles and matching polyelectrolytes. 

The ~-potentials of PSS at pH 3.5 is +15 mV and for PDDA at pH 11 is -12 mV. 

Considering the fact that at corresponding pH values the ~-potentials for modified and 

"naked" YIG are + 12 m V and - 17 m V respectively, one can see that the magnitudes of 

the potentials are virtually the same for both LBL pairs. Therefore, the long-distance 

Coulomb interaction between the nanoparticles and the polyelectrolyte-coated substrate is 

nearly the same for both pairs. 

Conclusion 

Thin films of Fe304 nanoparticles were produced on a variety of substrates 

utilizing the LBL assembly technique. A distinctive sandwich-like structure of the film 

was obtained by introducing layers of montmorillonite clay between the layers of 

magnetite · nanoparticles. The introduction of alumosilicate sheets, which cover large 

areas of the substrate surface, inhibited interpenetration of the multilayers and facilitates 

complete separation of the magnetite layers from each other. It has been demonstrated 

that the magnetic properties of the assemblies are affected by the multilayer 

architechture. For [CM]io and [CCM]io sequences, the coercivity at 10 K increases as 

compared to [Mho films due to the interruption of electron exchange coupling between 

the magnetite layers. 

The growth of YIG nanoparticle LBL assemblies takes place through two modes 

of deposition, which are difficult to distinguish by following the standard optical density 

vs. number of layers plots. One of the modes allows for the preparation of the multilayer 
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stacks and control of the structure of the obtained films on every deposition step (normal 

growth mode), while the other one does not ( domain expansion mode). Film growth via 

the domain expansion mode can be switched to the sandwich mode by organic 

modification of nanoparticles, which supplements the electrostatic interactions between 

nanoparticles and polymers with hydrophobic interactions. 

72 



References 

1. Lvov, Y.; Ariga, K.; Kunitake, T. Chem. Lett. 1994, (12), 2323-2326. 

2. Decher, G.; Lvov, Y.; Schmitt, J. Thin.Solid.Films. 1994, 244 772-777. 

3. Kotov, N. A.; Dekany, I.; Fendler, J. H. Adv.Mater. 1996, 8(8), 637-641. 

4. Fendler, J. H.; Kotov, N. A.; Dekany, I. NATO AS! Ser., Ser.3 1996, 12(Fine 

Particles Science and Technology), 557-577. 

5. Kotov, N. A. Stratification and lateral ordering in layer-by-layer assembled films 

of nano particles; 2002. 

6. Wang, S.; Mamedova, N.; Chen, W.; Kotov, N. A. Layer-by-layer assembled films 

from nanoparticle-labeled antibodies and antigens; 2002. 

7. Wang, T. C.; Cohen, R. E.; Rubner, M. F. Polyelectrolyte multilayer-based 

photonic bandgap structures; 2002. 

8. Rubner, M. Tuning Optical Properties at the Molecular and Supramolecular Level; 

2002. 

9. Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T. Thin Solid Films 1996, 285 797-801. 

10. Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T. Langmuir 1996, 12 3038-3044. 

11. Fang, M. M.; Kaschak, D. M.; Sutorik, A. C.; Mallouk, T. E. J Amer. Chem. Soc. 

1997, 119 12184-12191. 

12. Lvov, Y. M.; Sukhorukov, G. B. Biol. Membrany 1997, 14 229-250. 

13. Kotov, N. A.; Magonov, S.; Tropsha, E. Chem. Mater. 1998, 10(3), 886-895. 

14. Eckle, M.; Decher, G. Nano Letters 2001, 1(1), 45-49. 

15. Struth, B.; Eckle, M.; Decher, G.; Oeser, R.; Simon, P.; Schubert, D. W.; Schmitt, J. 

European Physical Journal E: Soft Matter 2001, 6(5), 351-358. 

73 



16. Massart, R. IEEE Trans.Magn. 1981, MAG-17(2), 1247-1248. 

17. Correa-Duarte, M.A.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M. Langmuir 

1998, 14(22), 6430-6435. 

18. Chen, W.; McCarthy, T. J. Macromolecules 1998, 31(11), 3648-3655. 

19. Kotov, N. A. Nanostructured Materials 1999, 12 789-796. 

20. Caruso, F.; Donath, E.; Moehwald, H. J Phys. Chem. B 1998, 102(1 l), 2011-2016. 

21. Himpsel, F. J.; Ortega, J.E.; Mankey, G. J.; Willis, R. F. Advances in Physics 1998, 

47(4), 511-597. 

22. Grigoriev, I. S.; Melichov, E. Z. Handbook of Physical Quantities, CRC Press, 

Boka Raton, FL 1995. 

23. Stoner, E. C.; Wohlfarth, E. P. Trans.Roy.Soc.(London) 1948,A240 599-644. 

24. Stoner, E. C.; Wohlfarth, E. P. IEEE Trans.Magn. 1991, 27(4), 3475-3518. 

25. Celinski, Z.; Heinrich, B. J Magn. Magn. Mater. 1991, 99(1-3), L25-L30. 

26. Ness, H.; Gautier, F. Journal of Physics: Condensed Matter 1995, 7(33), 6641-

6661. 

27. Van Langenberg, K.; Hockless, D. C.R.; Moubaraki, B.; Murray, K. S. Synthetic 

Metals 2001, 122(3), 573-580. 

28. Van Langenberg, K.; Batten, S. R.; Berry, K. J.; Hockless, D. C.R.; Moubaraki, B.; 

Murray, K. S. Inorganic Chemistry 1997, 36(22), 5006-5015. 

29. Nakamura, K.; Hasegawa, H.; Oguchi, T.; Sueoka, K.; Hayakawa, K.; Mukasa, K. 

Development of exchange force microscopy; 2001. 

30. Kotov, N. A.; Haraszti, T.; Turi, L.; Zavala, G.; Geer, R. E.; Dekany, I.; Fendler, J. 

H. JAmer. Chem. Soc. 1997, 119 6821-6832. 

74 



31. Tombacz, E.; Dobos, A.; Szekeres, M.; Narres, H. D.; Klumpp, E.; Dekany, I. 

Colloid and Polymer Science 2000, 278(4), 337-345. 

32. Ebner, A. D.; Ritter, J. A.; Ploehn, RI.Separation and Purification Technology 

1997, 11(3), 199-210. 

33. Shiratori, S.S.; Rubner, M. F. Macromolecules 2000, 33(1 l), 4213-4219. 

75 



CHAPTER III 

LA YER-BY-LA YER ASSEMBLED 

FILMS OF SEMICONDUCTOR NANOPARTICLESi 

Introduction 

In the previous chapter thin films of magnetic nanoparticles (NP) were· used as a 

model to study the regularities of the layer-by-layer (LBL) assembly method. It was 

proven that this method is an effective way for preparing thin films from such NP. These 

regularities of the LBL assembly, such as linear increase of the UV-vis optical density 

(O.D.) and close packing of NP inside of the layer upon optimized conditions of the LBL 

deposition and possibility to manipulate the structure of obtaining films by alternating the 

dipping sequence, remain the same for the LBL assembly of semiconductor NP [1-3]. 

Nanometer sized particles of II-VI semiconductors and their size-dependent 

physical and chemical properties are currently an object of interest in various areas of 

chemistry and physics [4-11]. The high luminescence (quantum yield 15 -20 %) of CdTe 

nanoparticles, stabilized with thioglycolic acid (TGA), along with their size dependent 

optical properties, make them a promising material for the engineering of nanoelectronic 

devices. CdTe nanoparticles have already been found to be useful as components of X-

ray and y-detectors [12], photodiodes [13], and solar cells [14-16]. 

i Portions of this chapter have been previously reported in Mamedov, A. A.; Belov, A.; Giersig, M.; 
Mamedova, N. N.; Kotov, N. A. JAm.Chem.Soc. 2001, 123(31), 7738-7739. 
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For any possible use of such particles in thin films, especially for LED devices, it 

is necessary to obtain a high density of particles to facilitate charge transfer between them 

[1,3]. In addition, no quenching of fluorescence should occur due to nanoparticle -

polym~r interactions. 

As it was shown .in Chapter I, at the optimized conditions of the LBL deposition 

the packing and thickness of NP is reproduced from layer to layer, and there is little (if 

any) restructuring of the NP layer during the polyelectrolyte deposition. These conditions 

should change a little or not change at all when NP of different sizes are used. This makes 

formation of thin films with an asymmetric internal structure by varying the LBL 

deposition sequence. The order of the layers can be used as a powerful tool for 

optimizing the diverse functional properties of the layered nariostructured materials from 

biological to electronic.· However, the interpenetration of layers and relatively small size 

of most semiconductor NP (2 - 6 nm) may not give the possibility to distinguish separate 

layers inside of the film. To visualize them, it makes sense to form strata by assembling 

of several bilayers of the same type of particles before assembling next type of particles. 

The preparation of graded semiconductors with the methods commonly used for 

this task, such as molecular beam epitaxy and plasma-enhanced chemical vapor 

deposition [17, 18], is difficult, expensive, complex, and sometimes hazardous. The 

simple and universal LBL deposition method makes it possible to build graded 

semiconducting materials from a stable aqueous dispersion of semiconductor NP. 

The work described in this chapter, deals ·with the applying of the regularities of 

the successful LBL assembly of magnetic NP to the optimization of the conditions for the 

LBL deposition of thiol - stabilized CdTe nanoparticles. Because of their size-dependent 
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luminescence and, supposedly, size-independent assembly conditions, they are one of the 

best choices for the preparation and characterization of one-dimensionally graded films. 

Graded films, prepared by consequent assembly of thiol-caped CdTe nanoparticles will 

also be discussed in this Chapter. Such films demonstrate possible use as photodetectors, 

bipolar transistors, waveguides, light-emitters, and nonlinear optical, magnetooptical, and 

high-speed devices [18]. These types ofmaterials also reveal new phenomena in charge 

injection, charge carrier dynamics, and light-trapping [17] . 

. Experimental Procedures 

Materials 

Poly( dimethyldiallylammonium chloride) (PDDA, Mw = 200,000 - 350,000; 

20 % wt. in water) and poly(acrylic acid) (PAA, Mw = 450,000) used as orgamc 

components in the LBL assembly as well as cadmium perchlorate hydrate 

(Cd(Cl04)2·2H20), sodium hydroxide (NaOH), and thioglycolic acid (TGA), needed for 

CdTe nanoparticles synthesis, were bought from Aldrich (Milwaukee, WI). Aluminum 

telluride (Ah Te3), used in the same synthesis was purchased from Gerao Inc. 

(Milwaukee, WI). Sulfuric acid (H2S04) was obtained from EM Science (Gibbstown, 

NJ). N2 gas was obtained from Airgas (Stillwater, OK). LR-white embedding resin, used 

for TEM sample preparation was obtained from London Resin Company Ltd. (Berkshire, 

England). All chemicals were used without further purification. De-ionized water(> 18.0 

MQ-cm, Barnstead, E-pure system), with an unadjusted pH of approximately 5.5, was 

exclusively used in all solutions and rinsing procedures. 
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Synthesis of CdTe nanoparticles 

Cadmium telluride (CdTe) NP, stabilized with TGA were prepared according to 

the procedure described elsewhere [7,8]. Briefly, they where prepared by adding a 

NaHTe solution to a Cd(Cl04)2·2H20 aqueous solution in the presence of TGA as the 

stabilizing agent. The molar ratio of Cd2+ : Te2- : TGA was 1 :0.47:2.43. The 0.05 M 

solution of NaHTe was prepared by titration of a 0.05 M NaOH solution with an excess 

amount of hydrogen telluride (H2Te) at 0°C under an inert atmosphere. H2Te gas, needed 

for this reaction, was generated by the direct reaction of AlzTe3 with a 0.5 M H2S04 

solution. After the titration was complete, the excess amount of hydrogen telluride was 

removed by bubbling the reaction mixture with N2 gas for 30 minutes. All initial 

components of the reaction mixture were. saturated with N2 to obtain an oxygen-free 

media. 

After the reaction was complete, the resulting solution was heated at 96°C. Such a 

treatment allows for the tuning of the size of the obtained CdTe nanoparticles by varying 

the heating time. For example, heating the reaction mixture for 30 minutes yielded 

nanocrystals with a luminescent maxima at 485-505 nm with an average particle size of 

2.0 - 3.0 nm, while extension of the heating time to several hours produced a 5.0 - 6.0 nm 

nanoparticles with a luminescent maxima at 605 - 620 nm. CdTe nanocrystals with 

emission peaks at 485 - 505 nm, 530 - 545 nm, 570 - 585 nm, and 605 - 630 nm display 

green, yellow, orange, and red luminescence respectively and will be denoted so 

accordingly. 
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Layer-by-layer assembly of CdTe nanoparticles 

As substrates for CdTe nanoparticles LBL assembly, glass slides, silicon wafers, 

and cellulose acetate (CA) films were used. Transparent substrates were needed for UV

visible spectroscopy and luminescence measurements. Since glass does not absorb light 

at wavelengths higher than 320 nm, it was suitable as a substrate for such types of 

measurements. Silicon wafer substrates were used for the AFM study of the LBL 

assembled films .. Both the silicon wafers and glass slides were cleaned with a hot 

Nochromix solution in concentrated H2S04 followed by a rinsing with DI water. Th~ 

surface of a flexible cellulose acetate film, needed for the TEM study of the graded film, 

was partially hydrolyzed with 0.1 M NaOH for 5 minutes to facilitate the LBL assembly, 

and then thoroughly rinsed with DI water. 

As an organic CO)llponents of LBL assembly system, positively charged PDDA 

and negatively charged PAA were used. A typical deposition step consisted of: 

(1) deposition of the PDDA from its 1 % aqueous solution (pH = 9) for 10 minutes; 

(2) two rinses with DI water for 1 minute each; (3) deposition for 20 minutes of CdTe 

nanoparticles from as:..synthesized dispersion (pH = 9 ~ 1 O); and ( 4) two rinses with DI 

water for 1 minute each. To enhance the LBL assembly of the CdTe NP, the precursor 

layer of the PDDA/P AA was deposited on a clean substrate surface in the same fashion 

that was used for LBL assembly of magnetic NP. This layer formed a uniform surface 

coating, providing better adsorption for subsequent NP layers. PAA was assembled from 

its 1 % aqueous solution (pH = 3 .5) 

The graded LBL assembled films were prepared .on glass slides and cellulose 

acetate substrates from "green", "yellow", "orange", and "red" nanoparticles to produce a 
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model of NP rainbow. Typically 5-10 PDDA/NP bilayers of each of four luminescent 

colors were deposited. The precursor layer of PDDA/PAA was assembled before carrying 

out preparation of the graded film. The surface of the cellulose acetate film was partially 

hydrolyzed with NaOH to add additional charges to it. 

Luminescence spectroscopy 

The progress of nanoparticle growth in the reaction media as well as the progress 

of their LBL assembly was monitored with Fluorolog 3 and Fluoromax 2 from JY SPEX 

by registering the luminescence spectra of the particles. During the nanocrystal growth 

step, the spectra were taken every 15-20 minutes. To check the growth of the graded 

CdTe film, fluorospectra were taken after the deposition of PDDA/CdTe bilayers of each 

color. The right angle registration mode with no intermediate filters was utilized in these 

measurements. 

Transmission electron microscopy 

Transmission electron microscopy (TEM) and high resolution transmission 

electron microscopy (HRTEM) images were taken on a Philips CM 12 instrument, 

equipped with super twin high resolution lenses and Zeiss digital camera. The instrument 

was operated at 120 kV. A graded CdTe film was embedded in a LR-white embedding 

resin according to the specifications recommended by the manufacturer. The embedded 

film was cross-sectioned utilizing a Reichert Ultracut E ultramicrotome (Leica) with 

"Diatome" diamond knife. The obtained 25-30 nm sections were placed on a 200 mesh 

copper grid coated with formvar, and then dried in a decicator for 30 minutes before 

being placed in the microscope. 
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Confocal laser scanning microscopy 

The graded CdTe film was checked with a confocal laser scanning microscopy. 

The micrographs were taken with a Leica TCS SP microscope, equipped with 63x Plan 

APO 1.2 NA water immersion and 1 OOx Plan APO 1.4 NA oil immersion objectives. The 

CdTe nanoparticles of the film were excited with an Ar - UV laser. The images were 

processed with Leica TCS NT software. · 

Results and Discussion 

Synthesis of CdTe nanoparticles 

The aqueous solutions of nanoparticles obtained according to the procedure 

described in the experimental part of this chapter, have narrow and symmetric peaks 

ranging from 495 nm for "green" CdTe to 620 nm for "red" CdTe NP (Figure 23). The 

set of vessels, shown on Figure 23 A, contain solutions of TGA stabilized CdTe excited 

with a UV lamp (lex = 368 nm). The average particle size gradually increases from 2.0 -

3.0 nm for "green" NP to 5.0 - 6.0 nm for "red" NP as it was determined by HRTEM. 

The arrows indicate the solutions of which the luminescence spectra (Figure 23 B) were 

taken. A wider peak for the "yellow" CdTe solution can be attributed to the higher 

polydispercity of CdTe nanoparticles compared to "green", "orange", and "red" 

solutions. 

LBL deposition of CdTe nanoparticles 

The LBL deposition of CdTe nanoparticles was performed on glass slides and 

silicon wafers. The progress of the assembly was monitored by UV-vis spectroscopy and 
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Figure 23. (A) Optical image of vessels, containing aqueous dispersions of CdTe 

nanoparticles excited with UV lamp. The average particle size changes gradually from 

2.0 - 3.0 nm for solution, exhibit green luminescence, to 5.0 - 6.0 nm for solution exhibit 

red luminescence. Arrows indicate solutions, luminescence spectra of which (B) were 

taken. 
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AFM. Figure 24 shows the UV-vis spectra of a growmg film of "green" CdTe 

nanoparticles. The "bumps" on the spectra correlate to the UV-vis adsorption peaks for 

the CdTe nanoparticles in the film. As in the case of the assembly of the magnetic 

nanoparticles the linear dependence of the increment of optical density with the number 

of adsorption cycles was observed {Figure 24 B). The linear dependence correlates with 

data, published elsewhere for the LBL assembly of the semiconductor NP [2,3,9]. 

Observation of the growing film with AFM revealed a completely covered surface with a 

dense packing of CdTe nanoparticles after the deposition of one PDDA/CdTe bilayer, 

adsorbed on a precursor PDDA/P AA bilayer (Figure 25 A, B). When a layer of PDDA 

was adsorbed on top of the CdTe NP (Figure 25 C), the roughness of the growing film 

was reduced. This can be attributed to a greater number of the negative charges in the 

spaces between the closely packed nanoparticles, which leads to the preferential polymer 

adsorption (Figure 25 D). 

Graded films from CdTe nanoparticles: preparation 

The assembly of a graded CdTe film started with a deposition of a precursor 

PDDAIP AA layer on a substrate. This procedure resulted in a uniform coating which 

resulted in a successful LBL growth of the film. The assembly of the NP started with an 

adsorption of 5 bilayers of PDDA/"green" CdTe NP, followed by 5 bilayers of 

PDDA/"yellow", "orange", and "red" CdTe NP respectively. A sketch of the structure of 

the obtained film, along with the corresponding band - gap progression of the CdTe NP 

inside of film, is shown in Figure 26. With the complete addition of new layers of bigger 

nanoparticles, a luminescence spectrum of the LBL stack was taken (Figure 27). When 
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Figure 24 (A) UV-vis adsorption spectra of "green" nanoparticles with glass slide as a 

substrate. (B) Dependence of O.D. at 4 75 run of growing film on the number of absorbed 

PDDA/CdTe bilayers. Only NP absorb light at this wavelength. 
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gure 25. AFM phase (A) and topography (B, C) images of PDDA/CdTe (A, B) and 

)DA/CdTe/PDDA (C), adsorbed on precursor PDDA/P AA bilayer. 
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Figure 26. Schematic view of (A) a gradient film and (B) corresponding band-gap 

progression. 
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Figure 27. Luminescence spectra of thin films obtained after the sequential deposition of 

five bilayers of (1) "green", (2) "yellow" (3) "orange", and (4) "red" CdTe nanoparticles. 
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CdTe nanoparticles of a bigger size were added to the film, the luminescence of the 

assembly broadened and shifted toward the red part of the electromagnetic spectra. 

Finally, after the addition of NP of each of four colors, the luminescence spectra of the 

film had a plateau appearance with an almost equal emission intensity in a wide range of 

wavelengths. The red shift of the fluorescence in comparison to the original spectra of 

CdTe nanoparticles (Figure 23) can be attributed to the excitation energy transfer from 

smaller NP to larger ones [ 19 ,20]. 

Graded films from CdTe nanoparticles: 

evaluation of the internal structure 

To evaluate the internal structure of a gradient CdTe film, it was assembled on a 

flexible CA substrate. Then the LBL stack along with substrate was embedded into epoxy 

resin and then cross-sectioned. The choice of a CA substrate can be rationalized by the 

fact that it does not require a complicated slicing procedure. This makes a thin and 

flexible CA film preferable to· those of traditional glass or silicon wafers. The surface of 

the CA was pretreated by partial hydrolysis with 0.1 M NaOH. Such pretreatment 

resulted in the greater adsorption rate during LBL assembly process [21]. A graded film 

consisting of 5 bilayers of each "green", "yellow" and "red" CdTe nanoparticles was 

assembled in the manner described above. Embedding and cross-sectioning of the LBL 

stack resulted in 25 nm thick slices, which were analyzed with TEM. 

The asymmetry of the obtained film is visualized as the difference in 

image density on the "red" and "green" sides of the LBL stack. The side of the film 

containing bigger "red" CdTe nanoparticles appears to be darker. This is explained by a 

greater percentage of heavier elements (Cd and Te) on this side of the assembly, leading 
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to the stronger electron beam scattering (Figure 28 A). HRTEM images of the "green", 

"yellow", and "red" parts of the film (Figures 28 B - D) show the presence of CdTe 

nanoparticles inside of a polyelectrolyte matrix with an average diameter of 2 - 4 nm for 

the "green" and "yellow" and 5 - 6 nm for the "red" sides of the assembly. This 

correlates with the emission wavelength of the particles. The low contrast of HRTEM 

micrographs, as well as the impossibility of distinguishing the differences in sizes of the 

"green" and "yellow" Cd Te nanoparticles inside of the LBL stack, should be attributed to 

a stacking of at least 3 - 4 "red" and 6 - 10 "green" and "yellow" nanoparticles on top of 

each other inside of the slice. 

The gradient nature of the resulting CdTe film was confirmed using confocal laser 

scanning microscopy. The sample consisting of 10 bilayers of "green", "yellow", 

"orange", and "red" nanoparticles, was assembled on a CA film. The stacks of 

multilayers, made from NP of the same color, were separated from each other by 

additional interlayers of PDDA/P AA. A series of luminescence images were obtained at 

different focus depths inside the assembly when the CdTe nanoparticles in the film were 

excited with a UV laser. The images were processed with standard Leica TCS NT 

software and a cross-sectional image was obtained without physical sectioning of the film 

(Figure 29 A). The gradual change of luminescence color from green on one side to red 

on the other side of the film, as the corresponding size of the NP inside of the film 

increases, can be clearly seen. The absence of well separated color layers inside of the 

obtained "nanorainbow" results mainly from the low resolution of technique used. There 

is a certain degree of interpenetration of the separate nanoparticle layers which may also 

influence the cross-sectional image. 
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Figure 28. (A) TEM image of cross-sections of a graded CdTe film made from five 

bilayers of "green", "yellow", and "red" nanoparticles. (B - C) HRTEM images of 

"green" (B), "yellow" (C), and "red" (D) parts of LBL assembly. 
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igure 29. (A) Cross-sectional confocal microscopy image of the graded film, made from 

bilayers of "green", "yellow", "orange", and "red" CdTe nanoparticles. Additional 

fterlayers of PDDA/P AA separate stacks made of nanoparticles of the same size. (B) 

ependence of green (1) and red (2) luminescence signals intensity on focus depth during 

·oss-sectional analysis. 
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By the difference in the positions of the maxima for the red and green channels of 

intensity vs. the Z-position (focus depth) plot (Figure 29 B) the thickness of the obtained 

CdTe assembly was estimated to be 220 ± 20 nm. This correlates quite well with the 

expected thickness of the film. One dipping cycle during an assembly results in the 

formation of a 3 - 7 nm thick PDDA/CdTe bilayer depending on the size of the particles 

used. The average thickness of a PDDA/CdTe bilayer can be estimated to be 5 nm. PAA, 

assembled on top of PDDA, forms a 5 nm thick bilayer as determined by ellipsometry. 

The thickness of graded film can be estimated by adding up these numbers: 5 x 40 + 3 x 5 

= 215 nm, which matches surprisingly well the thickness estimate from the confocal 

study. It is important to mention, that since the maximum possible magnification of the 

confocal microscope was lOOX with an oil immersion objective, the correct thickness 

estimation for the CdTe graded film can be done for relatively thick samples. 

Conclusion 

Layer-by-layer assembled multilayers of luminescent CdTe nanoparticles have 

been prepared on a number of substrates. UV-vis monitoring of the assembly process 

shows a linear dependence of the optical density on the number of deposited bilayers. NP 

completely covered the substrate surface and formed uniform closely packed layers as 

was demonstrated by AFM. Sequential assembly of the CdTe nanoparticles of different 

sizes, ranging from 2 - 3 nm to 5 - 6 nm, opens the possibility of preparing films with the 

gradient structures utilizing the LBL assembly method. The combination of quantum-size 

effects with the gradient nature of the obtained Cd Te films gives the opportunity to study 

new physical and optical effects, as well the optimization of existing applications using 
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nanoparticle thin films based on charge transfer. At the same time it should be mentioned 

that the characteristic distance for CdTe LBL films, at which a change in properties can 

be programmed, should exceed 100 nm. This number is significantly greater than the 

average thickness of one bilayer or the diameter of nanoparticles. However, this 

observation does not prevent the organization of the NP on a much smaller scale. It is 

possible to tune some parameters, such as polarizability and the refractive index, on the 

molecular level in such asymmetric assemblies, which may lead to the discovery of 

unique photonic and electronic devices. 
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CHAPTER IV 

LAYER-BY-LAYER ASSEMBLED FILMS OF 

SINGLE WALL CARBON NANOTUBES 

Introduction 

The work described in this chapter was devoted to applying the regularities for 

successful layer-by-layer (LBL) deposition of nanoparticles (NP) studied in previous 

chapters to the preparation of multilayered composites based on asymmetric inorganic 

nanomaterials such as single wall carbon nanotubes (SWNT). 

Intensive studies of composite materials based on SWNT have been prompted 

because of their exceptional mechanical properties in combination with their electrical 

and thermal conductivity. However, on the background of the spectacular achievements 

in manufacturing SWNT-based electronic devices [1-4], the mechanical and electrical 

characteristics of SWNT-doped polymers have shown only modest strength and 

conductivity improvement with respect to other hybrid materials [5-7]. Although 

substantial advances have been made [8], the mechanical characteristics of SWNT-doped 

polymers have been proven to be noticeably less than their highly anticipated potential. 

SWNT are known for poor solubilization in solvents and polymeric matrixes, which 

results in the phase segregation of SWNT composites. Severe structural inhomogeneities 

result in the physical separation of SWNT when mechanical stress is applied, leading to 
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the premature failure of the material. The connectivity with the uniform distribution of 

SWNT within the matrix is believed to be the essential requirements for obtaining strong 

SWNT composites [9]. 

Recent advances in the chemical modification of SWNT afford new approaches to 

improving the mechanical properties of SWNT composites and to mitigating the 

solubility problem. Once a stable colloid solution of the charged SWNT was obtained, it 

became possible to utilize them in the LBL assembly. Since the SWNT used in this study 

were up to 2 micrometers long and only 1.5-2 nm thick, it would be intriguing to 

determine the modes of alignment of nanotubes inside of the layer during deposition. Of 

course, the alignment step would only possible upon success of LBL deposition of non

aligned SWNT. The influence of the flow rate on arrangement of the SWNT inside of the 

deposited layer was an object of interest besides LBL deposition and characterization of 

multilayers of non-aligned nanotubes. 

Experimental Procedures 

Materials 

Branched poly(ethyleneimine) (PEI-b, Mw = 70,000) and poly(acrylic acid) 

(PAA, Mw = 450,000) used as the organic components for LBL assembly of SWNT, 

hydrogen peroxide (H20 2) for piranha solution preparation, and sodium hydroxide 

(NaOH) for pH adjustments were purchased from Sigma-Aldrich (Milwaukee, WI). 

Sulfuric acid (H2S04), used for the preparation of piranha solution, was obtained from 

EM Science (Gibbstown, NJ). Ar and N2 gases were obtained from Airgas (Stillwater, 

OK). All chemicals were used without further purification. De-ionized (DI) water (> 18.0 
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MO-cm, Barnstead, E-pure system), was exclusively used in all solutions and rinsing 

procedures. Unless stated otherwise, DI water with an unadjusted pH of approximately 

5. 5 has been used. 

Synthesis and modification of single wall carbon nanotubesi 

Single-wall nanotubes (SWNT) were manufactured by laser vaporization of 

carbon rods doped with Co, Ni and FeS in an atmosphere of Ar:H2. A suspension of 

SWNT raw material was refluxed in 65% aqueous HN03 and subsequently purified by 

centrifugation. Supplemented with sonication, this treatment results in the partial 

oxidation of the caps and side-walls to the extent of approximately 5 % of the total 

number of carbon atoms [10]. The presence of carboxylic acid groups makes possible the 

preparation of aqueous dispersions of SWNT. Relatively stable colloidal solutions were 

obtained after 1 minute sonication of solid SWNT in deionized (DI) water. 

Layer-by-layer assembly of SWNT 

The negatively charged SWNT were layer-by-layer assembled with a positively 

charged polyelectrolyte, such as branched PEI-b. Glass slides and silicon wafers were 

used as substrates for LBL assembly. The surfaces of the substrates were thoroughly 

cleaned in the following manner: (1) treatment with piranha solution (mixture of 30% 

H20 2 and concentrated H2S04 in 1 :3 ratios), (2) DI water rinsing to remove traces of 

sulfuric acid, (3) sonication for 15 minutes, and (4) final rinse with DI water. To insure 

successful growth of the SWNT film from first deposition cycle, precursor PEI-b/P AA 

i This part of work has been done in collaboration with Dr. Dirk M. Guldi, Radiation Laboratory, 
University of Notre Dame, Notre Dame, IN, USA and Dr. Maurizio Prato, Departaminto di Scienze 
Farmaceutiche, Universita di Trieste, Trieste, Italy 
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bilayer was assembled, with deposition times of 20 and 10 minutes respectively. A 1 % 

aqueous dispersion of both polymers has been used. The pH value of the PAA solution 

used for the fabrication of the precursor layer was not adjusted and remained at 

approximately 3.0. 

The typical deposition cycle for the LBL assembly of the SWNT multilayers 

consisted of the four following steps: (1) adsorption of PEI-b for 10 minutes from its 1 % 

aqueous solution, (2) rinsing with DI water two times for 1 minute each, (3) adsorption of 

SWNT for 1 hour, and (4) rinsing with DI water two times for 1 minute each. The pH 

values of the rinsing water and PEI-b were adjusted to 8.5 using 0.1 M NaOH. The 

aqueous solution of the SWNT had pH value 6.8 and did not require any further 

adjustments. 

Since the overall negative charge of the SWNT used was fairly small, after every 

5th deposition cycle, a layer of SWNT was replaced with a layer of PAA, which improves 

the deposition process and provides a convenient chemical anchor for subsequent 

chemical modification. PAA was adsorbed from a 1 % aqueous solution with pH = 6.5 for 

10 minutes. 

The ionic and other conditions of the LBL assembly made repetition of the 

dipping cycles as many times as needed possible with linear growth of the multilayers, 

which enables the preparation of films with any desirable thickness and architecture. 

Weight load calculations 

The weight load calculations were done based on a carbon to nitrogen ratio, 

calculated from the carbon and nitrogen EDAX peak integrals, obtained on the SEM, 
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which was equipped with an EDAX system. The molecular formula of PEI-b repeating 

units (Figure 3 in Chapter 1) shows, that the atomic ratio of N to C atoms is 1 :2. EDAX 

determines the elemental composition of the sample surface with the penetration of the 

electrons into the sample no more than 10 nm. Assuming that in the surface area of the 

film N atoms were present only in PEI-b and C atoms were present in both PEI-b and 

SWNT, the estimate weight of SWNT in measured area (WswNT) can be calculated as: 

WsWNT = MwsWNT (Ne - 2NN) (1) 

where: MwswNT is the molecular weight of a SWNT repeating unit and equal atomic 

weight of carbon (i.e. 12) (the presence of some oxygen atoms on surface of modified 

nanotubes is neglected, due to their low content), Ne and NN represent the number of 

carbon and nitrogen atoms respectively. These numbers were chosen so that Ne I 2NN 

gives the carbon to nitrogen ratio, measured with the EDAX system. 

The weight of PEI-bin the same area (WrEI-h) can be estimated as: 

WPEI-b = MWPEI-b (NN I 3) (2) 

where: MwrEI-b equals the molecular weight of a PEI-b repeating unit and 3 is the 

number of nitrogen atoms per one PEI-b repeating unit. 

Finally, the weight load of SWNT in a film can be estimated as; 

[WsWNT/ (WsWNT + WPm-b)]*100% (3) 

Raman spectroscopy 

Raman measurements were performed using an ISA U-1000 micro-macro Raman 

spectrometer in a backscattering configuration with a 1 OOX objective lens. Unpolarized 

Raman spectra were taken at a scan rate 0.83 cm-1/s. A 514.5 nm laser beam of 50-mW 
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power was directed into the sample which was placed on a horizontal adjustable holder 

with the backscattered light collected at right angles to the incident beam. 

Resistivity measurements 

The measurements of the influence of humidity o~ resistivity of the obtained 

SWNT films was carried out in a sealed box though which nitrogen gas, saturated with 

water vapor, was passed. The humidity value inside the box was controlled using a 

HANNA Instruments hydrometer, model HI8064. Before carrying out the measurements, 

the films were dried in a desiccator overnight. At each measuring point, the sample was 

allowed to saturate with water for at least 30 minutes before any measurements were 

taken. 

The electrical resistivity (in Om) of the obtained SWNT films was calculated 

according the formula: 

R = RexpdW 
l 

(4) 

Where: Rexp- experimental reading of resistivity between two points (in Q) 

l - distance between contacts of resistometer 

d - thickness of the tested film 

w - width of the tested film 

Alignment of carbon nanotubes 

The parallel alignment of the nanotubes during the layer-by-layer assembly was 

obtained by using a closed loop laminar flow cell (Figure 30 A) equipped with a mini-

pump. The edge of a 1 x 1 cm silicon wafer, which faced the SWNT dispersion flow, was 

103 



A 

SWNT dispersion 
outlet 

Figure 30. (A) Sketch of laminar flow cell, used for alignment of carbon nanotubes. (B) 

Schematic view of polished silicon wafer edge, which faced SWNT dispersion flow. 

Arrow indicates the position of silicon substrate inside of cell. 
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shaped as shown on Figure 30 B in order to avoid turbulence during the LBL deposition. 

The cleaning procedure, deposition of both the precursor bilayer and the monolayer of 

PEI-b were performed according to the procedure described above. Subsequently the 

substrate was transferred into the flow cell. A stream of SWNT dispersion with 0-

11 mL/min variable flow rate regulated by a mini-pump, was directed along the substrate 

surface for 2 hours. Upon finishing the alignment in a flow procedure, the substrate with 

nanotube assembly was washed with DI water two times for 1 minute each and air dried. 

Results and discussion 

Layer-by-layer assembly 

PEI-b was utilized as the organic component of the SWNT LBL assembled films. 

The glass slides and silicon wafers, used as the substrates for LBL deposition, were 

cleaned according the procedure described in the experimental section. 

The layer-by-layer assembly process of SWNT has been monitored by means of 

Atomic Force Microscopy (AFM) and UV-visible spectroscopy. The AFM study reveals 

that at each LBL deposition step, a submonolayer of SWNT was deposited, similar to that 

displayed in other PE/NP systems. In contrast to the LBL deposition of magnetic and 

semiconductor NP, when monolayer of particles was formed, the final morphology of the 

(PEI-b/PAA)(PEI-b/SWNT)5 multilayer unit can be described as a dense layer of 

intricately intertwined individual carbon nanotubes in bundles which are 4-9 nm in 

diameter (Figure 31 A). It was observed that the nanotubes uniformly cover the entire 

surface of the substrate without any evidence of phase separation. Also, unlike the 

previous examples of surface-modified SWNT/polymer composites [8], the presence of 
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igure 31. (A) AFM image of a Si wafer, bearing (PEI-b/PAA)(PEI-b/SWNT)5 unit. (B) 

equential UV-vis spectra of a glass substrate in the course of the LBL deposition of 

WNT. The spectra were taken for a total number of (PEI-b/SWNT) bilayers indicated 

ri the graph. (C) Dependence of O.D. at 350 run of growing film on number of absorbed 

WNT bilayers. 
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oxidized flat graphite sheets and other forms of carbon colloids was very small. Both 

these factors contributed to the mechanical properties of the final composites. UV-vis 

spectra (Figure 31 B ), as in the case of NP, show that the optimized assembly conditions, 

used for SWNT, allow for the repeating of the dipping cycles as many times as needed 

with linear growth of the multilayers. The linear dependence of increment of O.D. with 

the adsorption of additional SWNT layers was observed at 350 nm (Figure 31 C). 

Assemblies with a structure of ((PEI-b/PAA)(PEI-b/SWNT)5)6 and ((PEl-b/PAA)(PEI

b/SWNT)5)s,which were used in this study, displayed an SWNT content of 50 +/-5 wt% 

as calculated from carbon and nitrogen EDAX peak integrals. Previously reported 

composites made with modified SWNT revealed strong inhomogeneities even with 

SWNT loadings as Iowas 6-8% [6]. 

The quality of the nanotube material can also be confirmed by Raman 

spectroscopy. The characteristic peaks for SWNT (Figure 32), e.g. the radial breathing 

mode at -182 cm-1 and the tangential C-C stretching modes located at -1560 cm-1 and 

-1583 cm-1, are very sharp and narrow indicating a high uniformity in the SWNT and a 

low level of impurities present in the films. A barely visible peak at -1340 cm-1 reveals 

the traces of disordered carbon structures. From the correlation between the frequency of 

the radial breathing mode, v, and SWNT diameter, d, expressed as d = 223.75/v [11], 

gives an estimate of d = 1.2 nm, which agrees well with the SWNT diameter, which was 

obtained from the AFM images of many individual nanotubes (Figure 33). The length of 

the nanotubes was measured to be 2-7 micrometers. 

In rarified films with reduced intertwining, obtained by short SWNT adsorption 

times, the geometry of the individual SWNT in the LBL assemblies can be examined. 
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Figure 32. Raman scattering spectra of(l) SWNT dispersion and (2) LBL assembled 

film on a glass substrate. 
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The presence of virtually perfect SWNT circles with diameters between 100-500 nm can 

be seen in the AFM images (Figure 34). Previously, such circles were observed for 

SWNT with chemical linked ends [12]. In combination with polyelectrolytes, the rings 

should be attributed to SWNT with PEI-b chains helically wrapped around them, which 

causes the gradual bending of the nanotube into a circle. The perfect shape of the SWNT 

circles also indicates the low number of structural defects in the carbon nanotube walls. 

Extensive wall etching would have introduced some structural disorder which would 

yield buckling rather than curving of the nanotubes into circles. 

Resistivity of SWNT film 

The resistively of the obtained SWNT films which have not been cross-linked possess a 

dependence on the humidity. Preliminary experiments show that at constant humidity the 

level of the resistivity. of the film stabilizes after approximately 12-27 minutes 

(Figure 35). Considering this factor, samples were allowed to stabilize for 30 minutes 

before measuring the resistivity value at each humidity point. 

The dependence of the resistivity on the humidity displayed strong hysteresis 

(Figure 36). The reading of the maximum resistivity at 100% humidity decreases during 

r. th th l the first five cycles (110 Kn for first cycle and 43 KQ 1or 5 one). After the 5 eye e, the 

value of the resistivity at 100% humidity no longer changes. Since they are prepared from 

hydrophilic materials, these films Can easily absorb water. Absorption of water from air, 

along with a loose internal structure, results in a swelling of the SWNT film. 

Consequently the frequency of electrical contact between the nanotubes is reduced. The 
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Figure 34. SWNT rings observed on height (A) and phase (B, C) AFM images of PEI

b/SWNT bilayer. Magnification factor is the same for all images. 
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Figure 35. Dependence of resistivity of SWNT film on time. LBL assembly contained 

totally 30 PEl-b/SWNT bilayers. Film was dried in decicator overnight before taking any 
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decrease of the maximum resistivity at 100% humidity during the first 5 cycles and 

hysteresis can be attributed to the reorganization of the SWNT in the film. 

The electrical resistivity of the obtained SWNT film was calculated according to 

formula: 

R = Rexpdw 
l 

It found to be equal to l.04*10-2 Om at a humidity level equal to 35%. The values 

of electrical resistivity for selected materials. are present in Table 1 [13]. Since the 

nanotubes inside of the film was not orient during deposition, the resistivity value of the 

resulting multilayers is somewhere in between resistivity values for diamond and 

graphite. 

Alignment of SWNT during LBL deposition 

The effect of the deposition conditions on the final morphology of the films was 

examined through alignment of the deposited SWNT. The alignment procedure was 

performed by utilizing a closed loop flow cell equipped with mini-pump, regulating the 

flow rate of the SWNT solution. The influence of the flow rate on the surface structure of 

the PEI-b/SWNT bilayer, which was assembled on precursor PEI-b/PAA bilayer, was our 

primary interest in this part of the study. Figure 37 shows AFM images of SWNT 

monolayers, prepared with the flow rates of SWNT dispersion equal O mL/min, 

5 mL/min, and 9 mL/min. SWNT ring formation was not seen in the samples, prepared at 

conditions where the current of nanotube dispersion was present (Figure 37 B, C). This 

was attributed to the opening of the rings under sheer force of the liquid. In addition, it 
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Table 1. Electrical resistivity of selected materials 

Material Electrical resistivity, !!m 

SWNT LBL assembled film 1.04* 10-2 

Carbon: 

Diamond 2.7 

Graphite 13.75* 10-6 

Magnetite 52*10-6 

Poly (methyl metacrylate) >1012 

Poly (vinyl chloride) 1012 _1014 

Cellulose acetate sheets 108-1011 

Nylon 6 1010 
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igure 37. AFM images of SWNT films assembled in a flow cell: flow rate is equal to 

mL/min (A), 5 mL/min (B), and 9 mL/min (C). Arrows indicate the flow direction. 

fagnification factor is the same for all images. 
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was found that the alignment of tubes is also accompanied by their lateral assembly in 

ribbons (Figure 37 C). Such a morphology maximizes both the attraction to the 

oppositely charged substrate plane and Van-der-Waals forces between: the SWNT and is 

similar to the macroscopic ribbon self-assembly in the liquid flow observed by Vigolo et 

al. [8]. 

Conclusion 

Multilayers of SWNT can be prepared utilizing the LBL assembly method. As the 

organic component, PEl-b can be used. UV-vis monitoring of the process reveals a linear 

dependence of the optical density of the growing film on the number of deposited 

bilayers. The final morphology of the multilayers can be described as a dense layer of 

intricately intertwined individual carbon nanotubes and their bundles approximately 4-

9 nm in diameter. LBL assembly minimizes the structural defects originating from phase 

segregation and opens the possibility for the molecular design of layered hybrid structural 

materials from different polymers and other nap_oscale building blocks. 

LBL assembled films of SWNT possess a linear dependence in their resistivity on 

the humidity level. This was attributed to a certain degree of flexibility inside the film. 

This makes it possible to utilize them as humidity detectors or some other similar devises, 

which require sensitivity to the moisture content in the surrounding media. 

The parallel alignment of nanotubes inside of the growing film is possible upon 

utilizing a closed loop flow cell. The surface morphology of the aligned monolayer 

strongly depends on the flow rate of the SWNT dispersion. Increasing the flow rate 
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induces formation of nanotube ribbons along with "normal" SWNT assembly. Such 

morphology maximizes both the attraction to the oppositely charged substrate plane and 

Van-der-Waals forces between SWNT. Preparation of the multilayer stack of aligned 

SWNT may result in a new material with mechanical and electrical properties which 

differ along all 3 dimensions. 
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CHAPTERV 

FREE-STANDING FILMS OF 

LAYER-BY-LAYER ASSEMBLED NANOCOLLOIDSi 

Introduction 

It was shown in the previous chapters, that layer-by-layer (LBL) assembly method 

can be applied to the variety of inorganic compounds including nanoparticles (NP) and 

single wall carbon nanotubes (SWNT). After successful deposition of such compounds 

into multilayers onto the substrate it was logical to make step further and prepare free-

standing membranes. Films without a substrate allow for the direct experimental 

determination of many physical properties of the LBL films such as ion permeation and 

chain packing, which are being actively discussed in the literature with little or no 

quantitative data [1-5]. In addition to that, they will open the door for the preparation of a 

variety of membranes with the possible applications of which range from the advanced 

catalytic materials to the artificial biological membranes. The large number of materials 

which can be utilized in LBL method will lead to the rich palette of mechanical, 

chemical, optical, magnetic etc. properties in such membranes. Most important, the layer-

i Portions of this chapter have been previously reported in: Mamedov, A. A.; Kotov, N. A.; Prato, M.; 
Guldi, D. M.; Wicksted, J.P.; Hirsch, A. Nature Materials 2002, 1, 190-194. Mamedov, A. A.; Kotov, N. 
A. Langmuir 2000, 16(13), 5530-5533 .. 
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by-layer method of formation of these membranes affords the degree of the structural 

organization, which hard to achieve by traditional methods of membrane preparation. 

When one tries to prepare free-standing films, the choice of substrate for the LBL 

assembly becomes challenging. Even though the LBL assembly process can be carried 

under the correct conditions almost endlessly, most of the LBL assemblies do not exceed 

a thickness of 1 micron. Such films can not be removed mechanically from the substrate 

without physical damage due to a strong linkage between the LBL stack and the 

substrate. On the other hand, for successful LBL growth strong interactions between 

substrate and first assembled layer are needed. This problem can be overcome when a 

way to disrupt the interactions between the substrate and the LBL assembled multilayers 

is found. 

The study described in this chapter presents methods for the preparation of free

standing LBL assembled films. Films of magnetic .and semiconductor NP, sodium 

montmorillonite, and SWNT, the assembly conditions of which were discussed in the 

previous chapters, were chosen to test these methods. The introduction of alumosilicate 

clay (C) sheets, which cover large areas of the substrate surface, helps to obtain 

separation between the separate bilayers of the membrane as it was shown in Chapter II. 

In addition, C layers reduce the roughness of the film and improve the linearity of the 

LBL process by covering large areas of the growing surface. These interlayers of C or 

other materials may serve as a molecular armor, increasing the mechanical strength of the 

free-standing films. Variation of internal structure was accomplished by introduction of 

interlayers of C and poly(acrylic acid) (PAA). The effect of this variation on the structure 

and additional cross-linking of the resulting free-standing films on their mechanical 
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properties will be demonstrated. The possibility of the utilization of several different 

substrates and the conditions for their practical use will also be discussed. 

Experimental Procedures 

Materials 

Poly(dimethyldiallylammonium chloride) (PDDA, Mw = 200,000 - 350,000; 

20 % wt. in water), PAA (Mw = 450,000) usedin LBL assembly, metallic Ga (99.99%), 

and acetone (99.5+ %) were bought from Aldrich (Milwaukee, WI). Cellulose acetate 

(CA) sheets (25 µm thick), sulfuric acid (H2S04), and hydrofluoric acid (HF) were 

obtained from EM Science (Gibbstown, NJ). Sodium montmorillonite (alumosilicate clay 

material - clay, C), utilized in LBL assembly process, has been received from Source 

Clay Minerals Repository, University of Missouri-Columbia (Columbia, MO). LR-white 

embedding resin, used for TEM sample preparation was obtained from the London Resin 

Company Ltd. (Berkshire, England). All chemicals were used without further 

purification. De-ionized water (> 18.0 MQ-cin, Barnstead, E-pure system), with an 

unadjusted pH of approximately 5.5, was used exclusively in all solutions and rinsing 

procedures. 

Preparation of free-standing films 

The principle of making free-standing LBL assembled films is shown in 

Figure 38. Initially, the LBL deposition process is carried out on a solid substrate. When 

a degree of structural sophistication and/or a desirable thickness is achieved, the prepared 
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ture 38. Idea of free-standing films preparation. (1) LBL assembly of film on solid 

strate. (2) Removal of obtained film of desirable thickness and/or degree of structural 

anization. 
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LBL assembly is lifted off by either destroying the substrate by dissolving it a suitable 

organic solvent or by breaking the bonds between the substrate and the film. To some 

extent, the idea of the preparation of free-standing films resembles the preparation of 

polyelectrolyte microcapsules by burning or dissolving the micrometer scale colloids 

[1,2]. 

Substrates for free-standing films preparation 

The assemble-and-destroy principle imposes two major · requirements on the 

substrate: (1) the organic solvents used in the lift-off step must not damage the film and 

(2) the substrate must be hydrophilic with a positively or negatively charged surface. The 

latter will promote an electrostatic attraction between the substrate and the first layer of 

polyelectrolyte, serving as the film foundation. These requirements are satisfied by 

cellulose acetate (CA) films, metallic gallium films (Ga-film), and silicon wafers or glass 

slides. Based on the substrate used for LBL deposition of the films, three methods has 

been used. 

Method 1. Cellulose acetate is insoluble in water, but it can easily be dissolved in 

acetone at room temperature. The surface of CA is fairly hydrophilic with contact angles 

of 50-55°. This substrate can be used for the preparation of a wide range of films. 

However, it also has some limitations. Acetone is not biocompatible with a number of 

biological materials, which makes the possibility of preparation of free-standing films of 

proteins problematic. In addition, when a porous film is prepared utiliz1ng this method, 

dissolved CA penetrates into the pores and it becomes difficult and time consuming to 

completely wash it out of the film. 
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Method 2. Gallium is a fairly inert metal, which does not react with inorganic 

nanomaterials or polymers. It has a melting point of 29.78°C. The roughness and some 

hydrophobicity of the surface can easily be mediated by adsorbing of 1 - 5 multilayers of 

PDDA/PAA (precursor layers). A free-standing film can be prepared by heating the 

substrate bearing the LBL assembled film over 30°C. Such moderate heating conditions 

allow utilization of this substrate for free-standing films based on biological materials. 

Method 3. Silicon wafers and glass slides are the most common substrates used for 

the LBL process. They have some negative surface charge in aqueous solutions which 

comes about from the ionization of the Si-OH surface groups. The assembly of the first 

polymer monolayer can be enhanced by the deposition of it from a solution with a basic 

pH. The LBL multilayers of desired thickness and structural organization can be removed 

by a short treatment with a 0.5% aqueous solution of HF. This dissolves the thin oxide 

film of silica between the LBL assembly and the substrate, releasing a freely floating 

self-supporting membrane. 

Preparation of free-standing magnetite and CdTe films 

The layer-by-layer deposition of magnetite (M) or CdTe nanoparticles was carried 

out on a cellulose acetate substrate according to the procedures described in Chapters II 

and III. To facilitate the lift-off of the LBL assembly and the realization of the dipping 

cycle, the CA was supported by a. glass slide. After depositing an appropriate number of 

PE/NP bilayers followed by thorough drying, the thin CA-coating with the LBL film was 

peeled off of the glass support and immersed in acetone for 24 hours. The CA substrate 

was dissolved away leaving brown colored films freely suspended in the solution, which 
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were transferred into a new portion of acetone to completely wash away any remaining 

CA. 

In addition to "plain" PE/NP films, samples with every other nanoparticle layer 

replaced by a layer of clay platelets have been prepared. Figure 39 represents a model of 

the structures of the obtained "plain" and clay substituted films. The repeating unit of 

each film is denoted as (PE/NP) and (PE/C/PE/NP) respectively. N is the number of 

repeating units deposited before the desired thickness and structural organization of the 

films were obtained. 

Preparation of free-standing clay films 

Sodium montmorillonite (clay) platelets were LBL assembled with PDDA on 

glass slides, silicon wafers and metallic Ga substrates. The glass slides and silicon wafers 

were cleaned with a piranha solution (a mixture of 30% H202 and concentrated H2S04 in 

a 1 :3 ratio), followed by a rinsing with DI water, then sonicated for 15 minutes and 

finally rinsed again with DI water. Ga substrates were prepared by solidifying the melted 

metal in the shape of a 2 cm X 2 cm square with 0.5 cm thickness. A saturated clay 

solution was prepared by the sonication of a C dispersion in DI water for 30 minutes 

followed by centrifugation for 10 minutes. The supernatant, containing exfoliated clay 

platelets was used for the LBL assembly. A precursor PDDA/P AA bilayer was deposited 

before the assembling of the C multilayers. An 1 % aqueous solutions of both polymers 

were used. The pH of the PDDA solution was adjusted to 9.0 using 0.1 M NaOH. A 

solution of PAA was used as received with a pH approximately 3 .1. The deposition times 

for the PDDA and PAA monolayers were 15 and 10 minutes respectively. 
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A 

Figure 39. Model structures of (A) "plain" · (PE/NP)N and (B) clay substituted 

(PE/C/PE/NP)N multilayers. N is the number of repeating units deposited before desirable 

thickness and structural organization of films was obtained. Drawn not to scale. 
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A typical deposition cycle for a multilayer stack consis~ed of the following steps: 

(1) adsorption of PDDA from a 1 % aqueous solution for 10 minutes, (2) 3 rinses with DI 

water, (3) adsorption of a C layer from a saturated solution for 10 minutes, and (4) 3 

rinses with DI water. Upon finishing the LBL assembly process, the obtained clay 

multilayers were air dried. 

To remove the PDDA/C film from the glass or silicon substrate, it was immersed 

into a 0.5% aqueous solution of HF for 30 seconds. The LBL assembly was immediately 

removed from the substrate and rinsed with DI water followed by air-drying. 

The film assembled on a Ga-substrate was removed by placing it into beaker 

containing DI water and heated in a water bath up to 35°C. After the melting of the 

substrate, a free-standing film was obtained and transferred into fresh warm DI water to 

remove any remaining Ga. Upon finishing the washing procedure, the film was air-dried. 

Preparation of free-standing SWNT films 

LBL deposition of SWNT film was carried out on a glass slide according to the 

technique described in Chapter IV. PEI-b chains, used as an organic component in the 

LBL assembly process, can be cross-linked (1) with each other and (2) with carboxyl 

groups on SWNT and PAA. Both types of cross-linking have been used for the 

preparation of SWNT free-standing films. 

The covalent SWNT-PEI-PAA cross-linking was easily achieved by heating the 

films to 100°C after the deposition of each layer. This resulted in amidation of the amino 

groups of PEI-b by carboxyls of SWNT [6]. After the preparation of a complete 

multilayer stack, the film was cross-linked with gluteraldehyde (GA) [7] forming 
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covalent bonds with the amino groups of PEI-b. This was carried out in a 0.5% aqueous 

solution (pH 7.4) of GA for 1 hour at room temperature. To remove any unreacted GA, 

the film was rinsed with DI water 3 times for 10 minutes each. 

Upon the finishing cross-linking procedure, a glass substrate with a LBL 

assembled SWNT film was immersed into a 0.5% aqueous HF solution for 3 minutes. 

The obtained free-standing film was rinsed with DI water and then air-dried. 

X-ray photoelectron sp~ctroscopy 

X-ray photoelectron spectra (XPS) were recorded at a takeoff angle of 0° using a 

system EscaLab 220-IXL. The Kr X-ray line of Al at the spectrometer pass energy of 

1486.92eVand step resolution ofO.l eV was used as the source. 

Tensile stress measurements 

The mechanical properties of the free-standing SWNT films were tested on a 

custom-made thin film tensile strength tester (McAllister Inc.) which recorded at the 

displacement and applied force by using pieces cut from ((PEI-b/PAA)(PEI-b/SWNT)5) 6 

and ((PEI-b/PAA)(PEI-b/SWNT)s)s films. The tester was calibrated on similar pieces 

made from cellulose acetate membranes and Nylon threads. The average thickness of the 

((PEI-b/PAA)(PEI/SWNT)s)6 and ((PEI-b/PAA)(PEI-b/SWNT)s)s samples was 

determined by TEM and was estimated to be 0.75 and 1.0 microns respectively. 
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Results and Discussion 

Free-standing magnetite films 

Cellulose acetate was chosen as the substrate for magnetite free-standing films 

preparation. One dipping sequence in LBL assembly resulted in the addition of a 

PDDA/M bilayer with an average thickness of 8 ± 0.5 nm as it was determined by 

ellipsometry. AFM investigation of one (PDDA/M) bilayer revealed that such a film was 

made of densely packed nanoparticles (Figure 40 A). When an appropriate number of 

PDDA/magnetite (M) bilayers were deposited, the CA substrate was dissolved and all 

traces of it were washed out according to the procedure described in the experimental 

section. This procedure yielded a dark colored film freely suspended in the solution 

(Figure 41). As expected, the obtained thin film retained the magnetic properties of 

nanoparticles: it moved through the solution toward a permanent magnet placed near the 

side of the beaker. From the suspended state, the films could be transferred onto any solid 

or porous substrate. However, they were quite fragile, which was not surprising 

considering that the thickness of the films, such as (PDDA/M)1s and (PDDA/M)3o, was in 

the range of a few hundred nanometers. The magnetization curve of the obtained 

magnetite film (Figure 42) had a characteristic sigmoidal shape with a very small 

hysteresis loop in the low field region. 

It was demonstrated in previous chapters that LBL assembly allows for 

manipulation in the order of the deposited layers. To strengthen the magnetite films every 

other layer of magnetite was replaced with a layer of exfoliated clay platelets, producing 

an assembly with a (PDDA/C/PDDA/M)n sequence (Figure 39 B). C platelets have a 

131 



45 
nm 

0 

0 5µ 

25 
nm 

0 

re 40. AFM images of one bilayer of magnetite (A) and clay (B) on silicon wafers. 

-grain texture of the left image is characteristic for the magnetite film. Each light dot 

rsents a 2D cluster of 8-10 nm F e304 nanoparticles. The montmorillonite adsorption 

in image B was shortened from 1 minute, which was typically used for making the 

, to 25 s to better reveal the shape and size of the platelets. 

132 



1igure 41. Optical image of (PDDNM)30 free-standing film, freely floating in DI water. 
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thickness of about 1.0 nm, while extending 150-300 nm in the other dimensions. On 

polyelectrolytes, they formed a layer of overlapping alumosilicate sheets (Figure 40 B) 

with an average thickness of 3.8 ± 0.3 nm [5,8]. Being adsorbed virtually parallel to the 

surface of the substrate, their large size allows them to cover approximately 400 

nanoparticles at once, which adds additional strength to the assembly. A free-standing 

film, consisting of 30 (PDDA/C/PDDA/M) units could easily be picked up with tweezers, 

transferred, cut, moved around the solid surface, and handled in any other way. Taking an 

advantage of this architecture, it was possible to make a free-standing film with as few as 

eight repeating (PDDA/C/PDDA/M) units, which could not be possible without an 

alumosilicate framework. 

In characterization of the free-standing films it was important to establish the 

identity of both surfaces of the film and to ensure complete CA removal, which may have 

contributed to strength of LBL free-standing stack. The SEM and XPS data taken on the 

sides that were facing the solution (top) and CA (bottom) during the deposition revealed 

complete identity of their surfaces (Figure 43). In particular, observation of the Fe 2pl 

and Fe 3p3 peaks (at 1211 and 1198 eV, respectively) would have been impossible on the 

CA part of the film if a CA film of even a few nanometers in thickness was present. The 

identical ratio of the intensity of the iron peaks to the intensity of carbon 1 s peak clearly 

indicates the completeness of CA removal, which proves that a self-supporting nature of 

the film was obtained. 

To estimate the thickness of the prepared :free-standing films, they were 

embedded and cross sectioned according the procedure, described in Chapter III. The 

resulting 50-200 nm thick cross-sections were investigated by optical and transmission 
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Figure 43. (A and B) XPS spectra of top (A) and bottom (B) surfaces of 

(PDDA/C/PDDA/M)30 film. In the inserts, the enlarged portions of the spectrum with 2pl 

and 3p3 peaks of surface Fe atoms are given. (C and D) SEM images of top (C) and 

bottom (D) surfaces of the same film. 

136 



electron microscopy. Two continuous black bands of uniform thickness of the 

(PDDA/C/PDDA/M)30 film can clearly be seen in the optical microscope image (Figure 

44 A). Due to folding of magnetite free-standing film in horse-shoe shape, two cross-

sections of the same film present in one section. Because of light aberrations on the 

objects comparable to the wavelength of light, the actual thickness was determined from 

an electron microscopy image (Figure 44 B, C) and was found to be 350 ± 30 nm. This 

parameter was also estimated by adding up the thicknesses of the PDDA/M and PDDA/C 

bilayers. For the (PDDA/C/PDDA/M)30 film, this gives (3.8 + 8.0) x 30 = 354 nm, which 

coincides well with the TEM measurements. 

The analyzed films were very homogeneous with no apparent phase boundaries 
' 

between the components. Their particulate nature can be seen especially in the 25 nm 

thick cross sections, shown in Figure 44 C. In addition, formation of longitudinal cracks, 

originating from the cross sectioning procedure, was observed (Figures 44 B). TEM study 

of the cross-sections of the "plain" (PDDA/M)30 film did not reveal any anisotropy in 

their physical damage caused by the diamond knife (Figure 45). Such anisotropy for clay 

containing free-standing films can be attributed to the existence of montmorillonite stacks 

with sheets oriented in a parallel fashion to each other. 

Free-standing CdTe films 

To confirm the universality of the cellulose acetate method, CdTe free-standing 

films were prepared. CdTe nanoparticles, stabilized with thioglycolic acid, show a strong 

size-dependent exitonic luminescence (up to 20% quantum efficiency at room 

temperature). Additionally, the luminescence of CdTe can be damaged by acidic media 
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Figure 44. (A) Optical micrograph of the (PDDA/C/PDDA/M)30 cross section. Two 

strands of the film can be seen; because some parts of the film were folded during 

imbedding in epoxy resin. (B and C) TEM micrographs, respectively) of 

(PDDA/C/PDDA/M)30 cross sections. 
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Figure 45. TEM micrographs of (PDDA/M)30 cross sections. No anisotropy in physical 

damage, caused by diamond knife during cross-sectioning can bee seen. Marked area 

shows hole from fallen piece of magnetite film. 
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when HF used for this purpose (see Method 3). Multilayers of "green" (2-3 run m 

diameter) and "red" (5-6 run diameter) CdTe have been assembled on a cellulose acetate 

substrate. After removal of the substrate and thorough washing, free-standing films of 

CdTe nanoparticles have been prepared (Figure 46 A~ B). Both films appeared to be 

yellow in color under daylight. However, upon illumination with a mercury UV lamp, 

they emitted green or red light depending on the size of the NP. This points out that, as in 

case of magnetic nanoparticles, the CdTe free-standing films retained the properties of 

the NP used for LBL assembly. Complete removal of CA substrate was confirmed by the 

identity of the intensity of the cadmium peaks referenced to the intensity of the carbon 1 s 

peak (Figure 46 C, D). 

The internal structure of "plain" (PDDA/CdTe )N vas varied by adsorption of 

PDDA/C interlayers after each PDDA/CdTe bilayer. In addition to that, it was also varied 

by absorption of a PDDA/P AA interlayer after depositing each (PDDA/CdTe )5 unit 

during the LBL growth. Samples assembled on a precursor layer of PDDA/P AA with an 

internal structure of (PDDA1PAA)(PDDA/CdTe)2o and [(PDDA1PAA)(PDDA/CdTe)5] 4, 

contained 20 PDDA/CdTe bilayers each, and (PDDA/PAA)(PDDA/C/PDDA/CdTe)10, 

contained 10 PDDA/CdTe bilayers, have been embedded into an epoxy resin and cross

sectioned. TEM study (Figure 47) of -25 run cross-sections revealed the alternating 

structure of the film containing extra interlayers of PDDA/P AA (Figure 4 7 B). It can be 

noted that 4 additional bilayers PDDA/P AA increase the thickness of the film by a factor 

of 1.5 -2. This is probably due to the fact that the assembly of PAA was performed from 
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Figure 47. TEM images of cross-sections of CdTe free-standing films, bearing structures 

of (A) (PDDA/PAA)(PDDA/CdTe)20, (B) [(PDDA/PAA)(PDDA/CdTe)5] 4, and (C) 

(PDDA/P AA)(PDDA/C/PDDA/CdTe )10• Arrows indicate direction of sectioning. 
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a 1 % aqueous solution (pH = 2.5) of very high molecular weight (750,000). Such 

conditions of assembly result in the formation of a thick PAA monolayer (Chapter I, 

Figure 4 D). The formation of cracks perpendicular to the film surface for the "plain" 

PDDA/CdTe film (Figure 47 A) is probably due to curling of thin slice during cross

sectioning. The presence of PDDA/P AA interlayers straightens the structure and results 

in the formation of angular cracks inside of each (PDDA/CdTe )5 unit (Figure 4 7 B). Free

standing films in which every other CdTe layer was substituted with a layer of clay 

possess higher strength against physical damage from diamond knife and shows no 

pattern in the formation of the cracks during cross-sectioning procedure (Figure 47 C). 

Influence of the substrate on structure of free-standing film 

The utilization of cellulose acetate as a substrate allows for the preparation of a 

wide variety of free-standing films from different materials. However, there are a number 

of cases when a CA substrate is not suitable. The most obvious one is in the case of 

biological materials. For example, treatment with acetone results in a dehydration of 

protein based LBL assembled multilayers. As it was already mentioned, the CA method 

of preparation of free-standing films becomes difficult and time consuming when highly 

porous membranes are prepared. 

As an alternative to the CA method, two other substrates have been tested: 

metallic gallium and glass slides or silica wafers. Free-standing films prepared on 

metallic Ga substrate, which has a low melting point (29.78°C), were obtained by simply 

heating the sample to a temperature above 30°C. When glass slides or silicon wafers were 
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used, treatment with a 0.5% solution of HF for 30 seconds was enough to destroy the thin 

Si02 layer between substrate and assembled film resulting in a free-standing material. 

(PDDA/C)100 free-standing films, prepared by both methods, have been embedded 

into epoxy resin and cross-sectioned. TEM micrographs of these cross-sections are 

presented in Figure 48. Complete removal of Ga substrate is clearly seen on the 

micrograph (Figure 48 A). Even though both films are porous, the film, prepared on the 

glass slide, possess a much higher porosity level (Figure 48 B). Such a difference cannot 

be attributed to a variation in the preparation procedure. It can be noted that the average 

thicknesses of both films are close (- 1 µm). Furthermore, most of the pores in the films 

are filled with the embedding resin, which indicates that pores were formed prior 

embedding procedure and do not originate from the cross-sectional damage. 

To understand the reasons behind the difference in the porosity of the films, AFM 

images of one bilayer (PDDA/C) were taken before and after the treatment with HF 

(Figure 49 A, B). The sample was treated with the exact conditions required for free

standing film preparation. It was found that such treatment does not introduce additional 

pores into the bilayer. From section analysis data (Figure 49 C, D) it can be clearly seen 

that the thickness of clay platelets decreases from 7 nm to 5 nm and their linear 

dimensions decrease from 193 nm to 152 nm. This means that treatment with a 0.5 % 

aqueous solution of HF does not introduce additional pores into the obtained film but 

rather enlarges the size of the already existing ones. 
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Figure 48. TEM micrographs of (PDDA/C)100 free-standing films, prepared on (A) 

gallium substrate and (B) glass slide. 
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Free-standing films of single wall carbon nanotubes 

A free-standing carbon nanotube film has been prepared on a glass slide, followed 

by cross-linking and delamination after treatment with HF. The delaminated thin films of 

SWNT (Figure 50, insert) can easily be handled in a variety of ways and transported onto 

different substrates. They can be made of any desirable size or shape which is determined 

only by the dimensions of the substrate. The Raman scattering spectra of the separated 

film (Figure 50, line 3) is identical to that of the supported film and original nanotubes 

(Figure 50, lines 1 and 2), demonstrating that the structure of the nanotubes remain 

unaltered during the cross-linking and delamination. The breathing mode frequency shifts 

from 181 cm-1 in the assembled film to 183 cm-1 in the cross-linked free-standing film 

indicating a small expansion in the tube diameters. 

The cross-sectional image of the free-standing film (Figure 51) clearly 

demonstrates the absence of micron-scale inhomogeneities although a occasional 

inclusion of round 30-60 nm particles can be seen. The slight variations in the gray scale 

contrast between the different strata shows the actual variations in the SWNT distribution 

within the sample. They originate from small deviations in the SWNT adsorption 

conditions, such as dispersion concentration and pH, during the build-up procedure. It 

can be noted that the top and bottom sides of the film are slightly different in roughness: 

the one that was adjusted to the flat surface of substrate is somewhat smoother than the 

"growing" side of the film. SEM microscopy images (Figure 52) show smooth and 

continuous surface of the sample. 
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Figure 51. Survey (A) and close-up (B) TEM images of SWNT film cross-sections. The 

top and bottom sides of the film are slightly different in roughness: the one that was 

adjusted to the flat surface of substrate is somewhat smoother that the "growing" side of 

the film. 
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Figure 52. SEM images of the (A) surface and (B) broken edges of the SWNT free

standing LBL film. 
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Typically, the separation of single/multiwall carbon nanotubes and their bundles 

in mixed polymer composites can be observed as whiskers visible in TEM and SEM 

images [9,10]. Examination of the broken parts by SEM (Figure 52 B) and TEM 

(Figure 53) showed no evidence of a separation of the SWNT bundles from the matrix 

(whiskers). This can be contrasted with extensive nanotube pullout reported before by 

several groups [9,10]. Of all the TEM images obtained in different areas of the free-

. standing films, only one SWNT bundle bridging the break region was observed 

(Figure 53 B). The same image also shows two broken carbon fiber stubs imbedded in the 

walls of the crack (marked by arrows). In total, the microscopy results indicate the 

efficient load transfer in the LBL composite. 

Tensile strength of SWNT free-standing films 

. The mechanical properties of the layered composites of SWNT were tested by 

recording the displacement and applied force by using pieces cut from ( (PEI

b/P AA )(PEI-b/SWNT)s)6 and ((PEI-b/PAA)(PEI-b/SWNT)s)s free-standing films. The 

obtained stress (cr) versus strain (a) curves (Figure 54 A) differed quite markedly from the 

stretching curves seen previously for SWNT composites [11] and for LBL films made 

solely from polyelectrolytes, (PEI-b/PAA)40, obtained by the same assembly procedure 

(Figure 54 B). They displayed a characteristic wave-like pattern with a gradual increase 

of the dcr/ds derivative which indicates the reorganization of the layered composite under 

stress. In addition, the stretching curve of the SWNT free-standing film shows a complete 
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Figure 53. TEM images of ruptured areas of free-standing SWNT films. The arrows 

indicate the stubs of the broken nanotube bundles. 
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absence of the plateau region for high strains corresponding to plastic deformations. This 

correlates well with the enhanced connectivity of the nanotubes· with the polymer matrix 

shown by TEM and SEM measurements. 

A comparison with the stretching curves for polyelectrolytes (Figure 54 B) clearly shows 

that the incorporation of nanotubes in the LBL structure resulted in the transfer of SWNT 

strength to the entire assembly. The stretching curves of the SWNT multilayers display a 

clear break point. The ultimate tensile strength, T, was found to be 220 +/-40 MPa with 

some readings being as high as 325 MPa. Table 2 shows the T values for some industrial 

plastics, ceramics, and recently reported composites, based on carbon fibre or SWNT. It 

can be noted that the T for the LBL assembled SWNT film is several times greater than 

the tensile strength of some strong industrial plastics. It is also substantially stronger in 

tensile strength than some carbon fibre composites made of 50 v.% polypropylene and 

50 v.% carbon fibres. A recent study on SWNT/poly(vinylalcohol) ribbons with axially 

aligned nanotubes reported a tensile strength of 150 MPa [11]. The T values obtained for 

SWNT LBL films are, in fact, close to those of ultrahard ceramics and cermets such as 

tungsten monocarbide, silicon monocarbide, and tantalum monocarbide [12]. 

The tensile strength of single carbon nanotubes was experimentally determined to 

be in a range of 13 to 50 GPa [9,14]. The lower values obtained for the SWNT 

multilayers should be attributed mainly to· the contribution of polyelectrolytes and some 

uncertainly in the actual cross-section area at the break point and the degree of cross

linking. Taking in account that the density of SWNT is 1.14 g/cm3, and that the densities 
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Table 2. Ultimate tensile stress values (T) of selected materials [11-13] 

Substance T, 
MP a 

Cellulose Acetate 51.70 

Polycarbonate 65.48 

Acrylic Resin (General Purpose, type II) 68.93 

Chromium Diboride (CrBr2) 730.64 

Titanium Diboride (TiB2) 126.83 

Zirconium Diboride (ZrB2) 197.82 

Boron Carbide (B4C) - 980C 155.09 

Silicon Carbide (SiC) 25°C 137.86 

Silicon Carbide (SiC) hot pressed 20°C 199.89 

Tantalum Monocarbide (TaC) max 289.50 

Titanium Monocarbide (TiC) 1000°C 118.56 

Tungsten Monocarbide (WC) 344.64 

Zirconium Monocarbide (ZrC) room 110.29 

SWNT/poly(vinylalcohol) ribbons with axially aligned 

nanotubes ( 11) 150 

Polypropylene filled with 50 v% carbon fibres (13) 53 
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of the polyelectrolytes used in multilater assembly, .such as PDDA (1.04 g/cm3) and PAA 

(1.14 g/cm3) are almost the same, the volume fraction of the SWNT in the composite can 

be considered to be equal to the mass fraction. The mixing law predicts that a 

polyelectrolyte matrix with T = 9 MPa makes a negligible contribution to the strength of 

the composite while taking up about 50% of its volume fraction. 

Additionally, the decrease in the mechanical strength of the nanotubes in the 

process of ionic functionalization (estimate 15 %) [15] should also be considered as a 

factor affecting the strength of these composites. The tuning of the molecular structure 

and composition of the SWNT mriltilayers should lead to a vast improvement in the 

mechanical properties approaching those of pristine carbon nanotubes. 

It is also interesting to compare the T values for the SWNT composite films to 

those obtained for other LBL films made with inorganic components such as clay 

platelets and NP. The free-standing films of approximately the same thickness made of 

"red" CdTe nanoparticles with · an internal structure of (PDDA/NP)40 and 

(PDDA/C/PDDA/NP)30 displayed a T equal to 40 MPa and 72 MPa respectively. This 

fact led to the conclusion that inorganic or SWNT components act as "molecular armor" 

in the layered composites by significantly reinforcing them. 

Conclusion 

The layer-by-layer assembly technique allows for the preparation of free-standing 

composite structures, the architecture of which can be controlled on the nanometer scale. 

This method of preparation can be extended to a variety of other compounds utilized in 

LBL research, such as polymers, proteins, dyes, metal and semiconductor nanoparticles, 
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vesicles, viruses, DNA, and others. Different colloids will lead to a palette of thin film 

materials and membranes whose functional properties can be tuned by varying the layer 

sequence. Such free-standing membranes can be a unique component of a variety of long

life-time devices ranging from automobile engines to advanced prosthesis. 

LBL assembled free-standing films of various architectures made from 

nanoparticles of magnetite and CdTe, as well as from carbon nanotubes, have been 

prepared. The introduction of clay interlayers into the nanoparticle film leads to an 

overall increase in its mechanical properties. Anisotropy in physical damage, caused by 

diamond knife during the cross-section procedure, was observed for clay and PAA 

substituted materials. 

It was shown that several different substrates, such as cellulose acetate, glass 

slides or silicon wafers, and metallic Ga, can be used in free-standing films preparation. 

The choice of substrate is determined by the compounds used in LBL process and the 

desired structure or resulting multilayer stack. The porosity of the free-standing 

membrane can be tuned during the substrate removal step. 

The high structural homogeneity and interconnectivity m the structural 

components of the LBL films combined with high SWNT loading leads to a significant 

improvement · in mechanical properties of the SWNT composites. Additional cross

linking of resulting film during and after the LBL growth step makes it possible to obtain 

a free-standing film with an ultimate stress value close to that of some industrial ultrahard 

ceramics and cermets. 
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CHAPTER VI 

CONCLUSIONS AND FUTlJRE RESEARCH DIRECTIONS 

The research, presented in this work, has shown that layer-by-layer (LBL) 

assembly provides an extremely versatile method for the preparation of thin films. The 

structure of the growing LBL stack and its physical and chemical properties are tunable 

and customizable through the choice of materials, assembly conditions, and dipping 

order. This method can be easily applied to a wide range of organic and inorganic 

materials, which gives the possibility of preparing composite films with wide spectra of 

possible applications. 

Chapter II introduced the conditions and mechanism of LBL growth of magnetic 

nanoparticle films. While the magnetite films displayed a "normal" sandwich-like growth 

mechanism, where complete coverage of the substrate surface of the previously deposited 

layer occurs at each deposition step, yttrium iron garnet (YIG) nanoparticles (NP) films 

grow in a domain expansion mode. To switch the growth mechanism for YIG it was 

necessary to modify the nanoparticle surface with 3-aminopropyltrimetoxysilane to form 

a positively charged shell around each particle. The hydrocarbon chain attached to the NP 

resulted in the interaction of similar groups of the polymer while the surface charge 

prevented coagulation of the colloidal solution. 

The possibility of controlling the structure of the growing LBL multilayers was 

demonstrated in Chapter III. For this task, thiol-capped semiconductor CdTe 
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nanoparticles have been used. Their size-dependent luminescent properties make it 

possible to prepare asymmetric films without significant adjustment of the assembly 

conditions when a new type of NP is introduced. The LBL films, consisting of 5-10 

layers of each "green", "yellow", "orange", and "red" CdTe nanoparticles with average 

sizes ranging from 2-3 nm for "green" and 5-6 nm for "red" nanoparticles, have been 

analyzed by TEM and confocal microscopy. A graded structure in the obtained films was 

clearly demonstrated. 

Nanomaterials with aspect ratios (width to length ratio) different from 1, such as 

single wall carbon nanotubes (SWNT), can be assembled in multilayers. In Chapter IV 

conditions for such assembly and alignment of SWNT inside of a monolayer were 

demonstrated. It was shown, that it is possible to obtain composite materials with a 

weight load of SWNT up to 50% utilizing the LBL assembly method. In addition, the 

reversible dependence of the resistivity of the SWNT multilayers on the humidity of the 

surrounding media was demonstrated. 

Chapter V introduced the possibility of preparing free-standing LBL assembled 

films. The universality of this method, the possibility of its use on several different 

substrates, and the conditions for their complete removal, have been shown. It also was 

demonstrated in Chapter V that the introduction of clay interlayers into the structure leads 

to an overall increase in its mechanical properties. Anisotropy in physical damage, caused 

by a diamond knife during a cross-section procedure, was observed for clay and P Ak 

substituted materials. Tensile stress measurements have been performed for SWNT free

standing films. It was shown that the ultimate stress value for such assembles is close to 

some industrial ultrahard ceramics and cermets. 
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In summary, the versatility of the LBL method for thin films of nanocolloids was 

demonstrated. A variety of inorganic nanomaterials, including nanoparticles, nanosheets, 

and nanotubes, can be assembled into films utilizing this method. The possibility of free

standing films preparation was demonstrated. The internal structure of the growing films 

and subsequently their physical properties can be controlled at each deposition step 

through the assembly conditions and materials used. 

For future research three major directions can be highlighted. (1) Further study 

and preparation of asymmetric assemblies with some finely-tuned parameters, such as the 

polarizability and the refractive index on the molecular level in asymmetric assemblies. 

This most possibly will lead to the discovery of unique photonic and electronic devices. 

(2) The preparation of SWNT LBL films, in which all the nanotubes are aligned in one 

direction. Exploitation of such assembles may show their unique properties as 

semiconducting materials. Free-standing films from aligned SWNT will possibly exhibit 

mechanical properties exceeding ones reported in this work. Finally, (3) utilization of 

biological materials in LBL deposition will give the possibility of preparing a wide 

number of artificial films and membranes, ranging from artificial skin to cell walls and 

blood vessels. 
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