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CHAPTER I 

INTRODUCTION 

World population has been growing at substantial rates during this last century 

increasing the demand for food. This increment in food demand has spur agricultural 

food production by doubling it in the last 35 years but associated with an increment of 

6.87 fold increase in nitrogen fertilization, a 3.48 fold increase in phosphorus 

fertilization, a 1.68 fold increase in cropland irrigated and a 1.1 fold increase in land 

cultivation (Tilman, 1999). At the same time, there has been an increasing concern of the 

public for environmental and water quality issues that has led to more regulations, codes 

or laws. Each of these regulations that affect cattle producers have resulted in alterations 

in management practices (Morse, 1996). 

It is clear that sustainable practices are needed in order to increase food 

production without detrimental consequences for the environment. The need for studies 

that involve agrosystems can give us a clue for pointing out more efficient and 

environmental friendly production systems. Since nutrient management involves the 

integration of several aspects of farm agrosystems it has been visualized as an important 

tool to identify not only the more efficient management practices but also the type of 

practices that contribute to non-point pollution. 

One of the key factors that can reduce the environmental impact from animal 

operations is to optimize the level at which nutrients are added to diets and minimize 

excesses. Feeding strategies that can reduce labor and nutrient loads to the environment 

can have an important impact. With the help of more accurate models to predict 
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requirements, producers can maintain performance while reducing environmental impacts 

(NRC, 1996). One model when applied in a dairy reduced nitrogen excretion by 25% 

while also reducing feed costs (Fox et al., 1995). 

A challenge for animal nutritionists is to curtail adverse environmental impact by 

reducing nutrient losses and increasing nutrient recovery in edible products from the 

animal, while maintaining or enhancing productivity and/or economical benefits. 

The objective of this research was 1) to quantify mass nutrient balances of five 

dairy agrosystems of Uruguay, and 2) to test the impact of the feeding frequency of 

cracked com on intake, digestibility, ruminal parameters, average daily gain and as a tool 

for decreasing labor. 
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CHAPTER II 

REVIEW OF LITERATURE 

In the last decades farms have been going through structural and technological 

changes. There has been an increase in the number of animals per farm, specialization of 

the farms and a larger number of confined animals. These factors have increased the 

amount of manure produced within the farm and the potential of polluting the 

environment. An increase in public concern for the environment has resulted in greater 

pressure for regulating manure management and minimizing possible contamination 

resulting in a series of changes in production practices. During the last 35 years 

agricultural food production has been doubled but it was associated with a 6.87 fold 

increase in nitrogen fertilizer utilization and a 3.48 fold increase phosphorus fertilizer 

utilization (Tilman, 1999). 

In addition nutritionists usually recommend higher mineral concentrations relative 

to requirements due, among various possible reasons, to the fact that they feel NRC 

recommendations are not meet under practical conditions, that some minerals 

requirements are poorly described, and to provide a safety margin to prevent any 

likelihood of deficiencies (Spears, 1996). In diets analyzed by North Carolina feed testing 

laboratory the median concentration used in dairy diets for many minerals were several 

times higher (calcium 1.77; phosphorus 1.32; sodium 1.78; iron 9.76; zinc 2.70 for the 

ratio median:requirement) than the NRC requirements for lactating dairy cows and even 
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greater values for pigs (Spears, 1996). All these factors have increased pollution potential 

from farms into the environment. 

Nutrient management has been seen as a possible tool for balancing the amounts 

of nutrients within a farm and reducing the possibility of polluting the environment. fu 

this review, nutrient management, metabolism of nitrogen, phosphorus and potassium in 

the ruminant and effects of some feeding and supplementation strategies will be 

discussed. 

1. What is nutrient management? 

Nutrient management involves the integration of several aspects of the farm 

operation (Klausner, 1995b ). Nutrient management is a mass balance that begins with an 

accurate quantification of nutrients entering the livestock production system and nutrients 

leaving the system (Tyrell, 2001). Within the farm boundary there are inputs of nutrients 

(feed, fertilizer, legume N and rainfall), outputs (animal products and crops) and losses to 

the environment (ammonia volatilization, leaching, denitrification, runoff, and erosion) 

(Klausner, 1995a). 

Farm fields are potentially non-point sources of pollution in which discharges of 

nitrates by leaching through the plant root zone, actually may be invisible to the normal 

observer (Lanyon, 1994). Nutrient management is the internationally accepted strategy 

for addressing non-point farm pollution (Beegle et al., 2000). The consequences of non 

point pollution may be seen far from the original discharged area, and the benefit of 

reducing this type of pollution may only partially accrue to the polluter (Lanyon, 1994). 

Also the problems with nutrient pollution are not generally the result of mismanagement 
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by farmers but the result of evolving agricultural systems with no direct costs associated 

with environmental quality (Beegle et al., 2000). 

Nutrient management implies different components in the farm daily activities 

such as feed, manure management (collection, storage and application), fertilizer and 

crop selection, close records of the nutrients and the use of each paddock on the farm. 

This will be discussed in more detail within each system ( dairy or beef). 

The nutrients most implicated in pollution of the environment are nitrogen (N) 

and phosphorus (P) (Pell, 1992). In farms where excessive manure is used potassium (K) 

can be up to 4% of the haylage and can create nutritional problems when balancing a 

dairy ration for transition cows (Pell, 1992). 

1.1. Nitrogen, Phosphorus and Potassium flux and cycle within a farm. 

There are several general reviews for nitrogen (Cowling and Galloway, 2001; 

Galloway, 1998; Lin et al., 2000; van der Hoek, 1998) and phosphorus (Higgs et al., 

2000; Smil, 2000) cycles that the reader can referred if interested in these subjects. This 

section will refer to the flux of these nutrients (N, P) and K within the farm boundaries. 

Although all nutrient cycles are complex, the N cycle is particularly complex 

because N suffers changes in valency and state (usually mitigated by microbial 

transformation and action) and can form water soluble and gaseous compounds with 

considerable potential to escape from agricultural control (Jarvis et al., 1995). Nitrogen 

may enter the farm mainly as purchased feed, animals, and fertilizer or by legume 

fixation. The big concern with N is its high potential to move through soils and possible 

contamination of water threatening human and animal health from excess of nitrates · 
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(N03) in water. Infants are sensitive to N03 that may cause blue baby syndrome (Hart et 

al., 1997). 

There are several processes regarding N in the soil being the majors, 

mineralization, nitrification, denitrification, immobilization and ammonia volatilization 

(Klausner, 1995b). During mineralization organic nitrogen decomposes first to ammonia 

and afterwards ammonium is produced. In the process of nitrification ammonium is 

converted into nitrite and afterwards into nitrate being more rapidly if soil conditions are 

warm, moist and well aerated. During denitrification nitrate is converted into nitrite, 

which can be converted either to nitric oxide or through intermediates to nitrous oxide 

and released to the atmosphere. This last process occurs more rapidly if the soil is poorly 

aerated and or waterlogged. In the process of immobilization available, N in the soil is 

bound to the microbial biomass. Volatilization of ammonia can occur also when urea 

fertilizers or manure is applied onto the soil surface and not incorporated. Gaseous N 

losses, either through ammonia volatilization or through denitrification losses (N2 and N 

oxides) are very difficult to quantify because of their dependence on environmental 

. conditions and microbial activity (Sharpley et al., 1998). 

Nitrogen in plants is absorbed mainly in two forms as nitrate or as ammonium. 

Nitrate, an anion, is not absorbed by the clay or organic matter in the soil, and is readily 

absorbed by plants or susceptible to leaching or denitrification since it is in the soil 

solution (Whitehead, 1995). Ammonium is a cation, is retained by cation exchange on the 

clay and organic matter and is less accessible to roots and to potentially pollute 

groundwater (Whitehead, 1995). The physiological control over the absorption of N may 

be disturbed by defoliation (grazing, cutting, harvesting) and return to previous 
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absorption rates does not occur for several days after defoliation (Jarvis and Macduff, 

1989). Nitrogen is under many circumstances the second limiting nutrient to grass sward 

potential while water is first limiting (Jarvis et al., 1995). Under conditions of no limiting 

nutrient, herbage yield is controlled by the amount and timing of nitrogen fertilizer 

applications (Hemingway, 1999). Grass fertilization with N has different effects while 

dry matter production per unit of surface is increased in a curvilinear manner, crude 

protein in increased linearly (Kemp et al., 1979). The fertilization policy and the type of 

forage are also important in the losses of nitrogen to the environment. A study comparing 

the ratio of NH3 losses in swards grazed by cattle one from ryegrass fertilized with 420 

kg fertilizer N/ha and the other from a mixed ryegrass/white clover sward with no N 

fertilizer was 7:1 (Ryden et al., 1987). Results from several investigations suggest that 

fertilizer N, even when applied to grassland regularly has no effect on soil N unless the 

soil is extremely low in organic matter (Whitehead, 1995). 

In productive grass clover swards legumes may be able to fix between 100-300 kg 

ofN ha-1 year-1 depending in the vigor of the clover (Whitehead, 2000). In ungrazed 

grasslands up to 100 kg N ha~1 year-1 can be transferred to grasses meanwhile in heavily 

grazed the same amount can be added by th~ excreta (Whitehead, 2000). 

Forage quality can be manipulated by management, time of harvest and 

fertilization as the more important factors (Tamminga, 1996). Quality usually associated 

with higher digestibility is very important in order to reduce animal excretion of nutrients 

since a higher digestibility is synonym for fewer nutrients excreted. 

The two primary forms of N in manure are ammonia and organic N being urine 

the major source of ammonia (Van Hom et al., 1994). About 50 % of the Nin fresh 
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manure is present as urea that converts rapidly into ammonia and may be lost rapidly 

through volatilization (Klausner, 1995a). Urine is the major excretion pathway for rapidly 

available fertilizer-N (Powers and Van Hom, 2001). In an experiment in which ryegrass 

swards received either 420 or 210 kg N/ha per year where compared to a mixed 

ryegrass/white clover sward receiving no mineral N there were little differences in fecal 

N but there were differences in urine N ofFriesian steers (74, 60 and 56 % of excreted 

returns, respectively) (Jarvis et al., 1989). The ammonia losses were equivalent to the 

urine losses and these authors found that there were little differences between the effects 

with the 210 N treatments and the grass/clover treatment. High N fertilization may reduce 

N efficiency by animals. The actual efficiency ofN utilization by dairy cows in 

intensively managed pastures with high N fertilization is 16% when theoretically a 600 

kg cow producing 25 kg of milk can have a maximum efficiency of 40-45 % (Van 

Vuuren and Meijs, 1987). On the other hand a decrease in N fertilization decreased 

organic matter digestibility (.02 units) but did not affect the site of digestion when 

comparing grass species harvested at the same age of regrowth (Peyraud and Astigarraga, 

· 1998). Also dry matter production can be decreased with lower N fertilization having the 

farmer to reduce stocking rate and perhaps reducing its total farm income. 

Phosphorus is less mobile in the soil than N. Phosphorus in water is not 

considered to be toxic to animals and humans. However, it has become of greater concern 

because of the possibility of producing eutrophication in surface waters (Sharpley et al., 

1998). Even small amounts of P can increase the concentration above the critical value of 

eutrophication (Higgs et al., 2000). Although carbon (C) and N are with P the three 

elements to be concerned in eutrophication, fresh air water exchange, fixation of nitrogen 
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by blue green algae and photosynthesis make P the limiting element (Sharpley et al., 

1998) and responsible of triggering the cycling of C and N (Smil, 2000). Aquatic nutrient 

_ eutrophication can lead to the loss of biodiversity, outbreak of nuisances' species and 

impaired of fisheries among others (Tilman, 1999). 

Although variations between organic and inorganic forms of Pin the soil can 

range from 10 to 90 % in most of the soils, including grasslands more than 50 % is 

inorganic (Whitehead, 2000). The inorganic forms of phosphate in the soil can be (i.) 

Phosphate present in the soil solution (H2P04" and HPo/·) (ii.) insoluble calcium 

phosphates (iii.) Phosphate adsorbed and possibly occluded by hydrous oxides (iv.) 

Phosphate adsorbed by clays, and (v.) phosphate in various unweathered minerals 

(Whitehead, 2000). 

There are three main routes by which P can be lost from land these are in eroded 

soil, by surface runoff and leachate (Higgs et al., 2000). The adsorption of P by soil 

material usually increases the probability of surface runoff rather than leaching (Sharpley 

et al., 1998). However, the P adsorption capacity of soils is not unlimited and can leach if 

-it is-present in high concentrations in soils. 

Plant take Pas either H2P04" or HPo/· and the relative form depends of the pH 

usually the former is in higher concentration but as soil pH increases the proportion of the 

latter increases (Whitehead, 2000). According to this author the rate of absorption 

depends partly on the concentration in the soil solution near the root surface and partly by 

the rate of movement of the ions towards root surface. 

A significant amount of P (almost 85%) in forages is present as phytic acid that in 

ruminants is completed hydrolyzed having a true availability of .65 to 1.0 (Minson, 
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1990). Usually about 95 % of the Pis excreted in the feces (Tamminga, 1992). An 

increase in the urine excretion occurs when the concentration in the plasma increases 

exceeds the renal threshold of 60 to 90 mg P/L (Challa et al., 1989). At dietary 

concentrations of 0.24 % P, almost 75 % of Pin feces is in the form of inorganic P 

(Barrow, 1987). 

During the storage of slurry some mineralization of organic P occurs increases the 

amount of the inorganic form that can reach 80 % of total P (Whitehead, 2000). Plants 

equally absorb inorganic P from slurry as inorganic P fertilizer (Tamminga, 1992). 

Potassium is more mobile than P in soils, however, it does not represent a threat 

to ground and surface water (Hart et al., 1997; Klausner, 1995b) or at least that we are 

aware (Paul, 1999). There is a maximum value for drinking water of 12 mg KIL but 

harmful effects are not well-documented and other foods such as milk may have values 

up to 1,500 mg KIL (Tamminga, 1996). 

Most of the soils have an abundant supply ofK, but only a very small part ofit is 

readily ayailalJle to plants (Cherney et aL, 1998). Soil K is in various forms such as (i.) K 

in soil solution (ii.) ready exchangeable K (iii.) K changeable with difficult and (iv.) 

mineral K (Cherney et al., 1998). Clay soils have greater potassium firstly due to negative 

charge of the clay (Paul, 1999) and secondly because it is present in igneous rocks such 

as biotite micas (Whitehead, 1995). 

Forage grasses are luxury consumers of potassium, the greater the availability the . 

greater the K concentration (Cherney et al., 1998; Paul, 1999). Absorption ofK depends 

on its concentration in the soil solution near the root zone (Whitehead, 2000). If this 

concentration is low (less lmM), uptake across the plasma membrane is thought to be 
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mediated by a carrier protein across the plasma membrane releasing the K inside the cell 

but at higher K concentrations is transported increasingly by a relatively passive 

.mechanism (Whitehead, 2000). The content ofK and Pin forage depends on herbage 

maturity within the growth cycle and the content of both decreases with declining crude 

protein concentrations (Hemingway, 1999). In an experiment carried out in New Zealand 

(Carran and Theobald, 2000) were they compared a system that had been 23 years with 

and without excreta, exchangeable K (available) was higher for the system with excreta 

than the one without. 

If potassium levels in forages increase and exceed 3 % it may bring problems in 

dry cow nutrition such as milk fever, hypocalcemia, downer cow syndrome and in severe 

cases death (Hart et al., 1997; Horst and Goff, 1997). 

Potassium in the diet of the animal is usually returned mainly through urine. 

Potassium in manure is mainly in a soluble form that is almost all readily available to 

plants and can be substituted for fertilizer Kin a one to one basis (Klausner, 1995b ). 

1.2. Sustainability 

Sustainability definitions have been address in many reviews and related to many 

different topics related to agriculture (George, 1999; Gibon et al., 1999; Hansen, 1996; 

Mebratu, 1998). 

The World Conservation Union, United Nations Environment Program, and the 

World Wide Fund defined sustainable development for Nature in their report caring for 

nature (IUCN/UNEP/WWF, 1991) as" improving the quality of human life while living 

within the carrying capacity of supporting ecosystems". 
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Sustainability may become the first limiting factor according to the new USDA­

EPA requirements for comprehensive nutrient management planning to protect water 

quality mainly in dairy farms (Fox et al., 2000). 

It is important to start taking into account this issue in all the agricultural systems 

and within the definition above stated nutrient management appears as an important tool 

to achieve it. 

1.3. Nutrient Management in Dairy Farms 

Conditions change through different countries and states, however, there are 

several concepts that can be applied for every situationin what nutrient management 

concerns and really what changes are the parameters to be used in each particular 

situation (Bouldin and Klausner, 1998). 

One of the more important components of nutrient management is how much feed 

and fertilizer are introduced to the farm and this is a function of the herd requirement, 

production targeted ( crops and animals), and diet balance. Dairy production in most parts 

· · · ofthe world has become strongly dependent of inputs to the farm mainly fertilizer and 

purchased feeds adding nutrients (Goh and Williams, 1999). In grassland systems that 

include legumes, fixation ofN is an important source of input ofN, most of the time as 

the most important as in many farms in New Zealand, Argentina, and Uruguay. 

Nutrition has a big impact in the amount of nutrients we will have latter to 

dispose. Several reviews have addressed this topic (Powers and Van Hom, 2001; 

Tamminga, 1992; Tamminga, 1996; Tamminga and Verstegen, 1996; Van Hom et al., 
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1996). In general the more balanced are requirements and feed and the higher its 

digestibility the lower the load of nutrients and the volume of the manure. 

Nutrient management includes an important component that is called best 

management practices (BMP) of animal wastes. Best managemen(practices are proper 

procedures and farming methods that look after a correct utilization of manure for an 

optimal plant growth and to minimize problems to the environment (Hammond et al., 

1994; Lilly, 1991; Moore Jr, 1998). BMP's practices include proper nutrient management 

using agronomic rates ofN and/or P (Eghball and Power, 1994; Klausner, 1995b; Moore 

Jr et al., 1995). Since N:P ideal relation for most of the crops is 8:1 (Moore Jr et al., 

1995), generally we are adding more P than needed and soil accumulation will occur 

(Moore Jr et al., 1995; Van Hom et al., 1996). This occurs because manures are richer in 

P relative to N due to volatilized NH3, denitrification under wet conditions and ability of 

many crops to luxury consume N (Van Hom et al., 1996). 

Kohn et al (1997) made a sensitivity analysis of nitrogen losses from dairy farms 

and they concluded that improvements in animal diets would increase total farm N 

efficie11cy by 48 % through herd nutrition and crop management while targeting only 

manure management would be about one fourth as effective. 

Due to the difficulty in measuring N losses to the environment in farms usually 

simulations of different scenarios are run through Monte Carlo techniques. St Pierre and 

Thraen (1999) simulated animal grouping strategies and economic factors and found that 

a 25 % increase in milk production reduced N excretion per kilogram of milk produced 

by 8%. Furthermore, understanding and controlling the effect of feed composition in the 

metabolism of the animal may reduce by an additional 8 % of the N excreted. Using the 

13 



same techniques Velthof and Oenema (1997) compared three farms with different 

nutrient management. The farm that included not only manure management but also in 

addition N nutrition care in the diet of cattle showed the lower emission of nitrous oxide 

(N20), less than half that the farm that included only manure management. 

Validating a N planner in two farms, Dou et al., (1998) found that a good overall 

management practice integration for one of the farms could not be enough without an 

animal ration balancing. The other farm in the study not only needed to improve feeding 

strategy but also crop selection and manure management. It is clear that when trying to 

minimize N pollution without affecting crop and animal production all components of a 

farm system should be considered. 

Klausner (1995a) formulated a nutrient mass balance for Nin several New York 

dairies of different sizes (45-1300 cows) and found the percentage N remaining on the 

farm expressed as N % varied from 61 to 76 percent. 

Most of the N that is introduced in the farm stays on it or it is lost to the 

environment but it is not incorporated into animal or crop products (Aarts et al., 1992; 

Aarts et al., 2000a). Dairy cows on average use 25 to 30 % of the N that they consume 

(Chandler, 1996). As milk production increases, the excretion ofN in urine and feces 

decreases per unit of milk produced (Chandler, 1996; St-Pierre and Thraen, 1999). 

The percentage of protein in the diet has been studied by several authors 

(Cunningham et al., 1996) (Komaragiri and Erdman, 1997; Wu and Satter, 2000b) from a 

point of view of reducing nitrogen excretion in diets with com silage, alfalfa and com 

grain. Increments over 17 % of crude protein show little increment in milk production. 

Analyzing several experiments, Satter et al (2001) concluded that in a practical approach 
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is it possible to reduce from 17.5-18.5% to 16% through more precise ration balancing in 

high producing cows with the result of a 10-15 % reduction in dietary N and 13 to 20% 

reduction in excreted N. 

Dietary N usually not only affects N excreted but also affects relative amounts in 

urine and feces as was discussed in a previous section. Usually a decrease in total Nin 

the diet decreases N in the urine, which is more unstable than the N excreted in feces. 

Satter et al., (2001) suggest three strategies to reduce nitrogen excretion and these 

are an increase in the amount of microbial protein synthesized in the rumen, a balance 

between rumen undegradable protein (RUP) and rumen degradable protein (RDP), and 

balance of the amino acids mainly the essentials in the feed. 

For the case of phosphorus we can control the entrance ofit to the farm, usually 

may come in the feed or fertilizer, and under most of farm conditions is less probable to 

be lost to the environment. Usually the big concern is the buildup of Pin soils heavily 

manured or that have not been used taking into account the requirements of crop and 

pastures producing a nutrient imbalance in the farm. Low mobility phosphorus also 

niakes P depletion a gradual process being underestimated the cost of nutrient depletion 

and the benefits of fertilization with one season experiments (van Noordwijk, 1999). 

In the Netherlands, dairy farms occupy 64 % of the land, it is calculated that 67 % 

of purchased P in feed or fertilizer doesn't leave the farm in the form of milk or meat 

(Aarts et al., 2000b ). In this country farmers need to take close notes of inputs and 

outputs of nutrients (bookkeeping) with special emphasis to P and N in manure 

(Breembroek et al., 1996). 
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The possibility ofreducing the amount of Pin the feed to meet requirements and 

better crop-pasture management are the keys for a successful reduction of P to be loss to 

the environment. Reducing Pin the diet by 33 % (.32% vs . .48%) resulted in P 

concentrations of feces and runoff from manure application of 52% and 10 times less 

(Satter et al., 2001). 

Dairy cows usually excrete less than lg P/d in urine but when fed 20 to 30 % 

more P than requirements they may excrete 3-5 g of P/d (Wu and Satter, 2000a). So 

overfeeding P may convert excreted P in more soluble compounds, which latter can be 

more suitable to be lost to the environment. According to Satter et al (2001) in U.S. dairy 

it is possible to reduce dietary P from .45-.50 to .36-.40%, which represents a 20% 

reduction in dietary P. 

Usually in systems that rely more on concentrates the most important of P input is 

the feed (concentrate) while systems in New Zealand where pastures are a higher 

percentage of the diet, fertilizer is the main P input (Goh and Williams, 1999). 

T.4. Nutrient Management in Beef Systems (range and feedlot) 

In extensive rangelands cattle may usually graze underdeveloped and unfertilized 

swards. Usually the level of nutrient extraction is low (3 kg N/ha) as the annual inputs 

mainly coming from atmospheric deposition (2-lOkg N/ha); (Goh and Williams, 1999). 

Losses by volatilization are relatively high but still low when compared with more 

intensive beef systems and may be affected by the presence or not of dung beetles. 

Usually the greater concern in these systems is the possibility of overgrazing which may 

lead to soil erosion and surface water contamination (Goh and Williams, 1999). 
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In improved grasslands the level of intensity increases, and there are more inputs 

such as fertilizer and fixation of N by legumes. While in extensive rangelands grass 

utilization may be 30 % (Coleman et al., 1977). In improved pasture systems utilization 

can reach 80 % and a cycling of almost 400 kg N ha -I (Goh and Williams, 1999). If the 

improved grasslands include legumes usually for a high dry matter yield, high levels of P 

in the soil are required (20 ppm) although the amount will depend of the type oflegume. 

There is not much information published on nutrient management in this type of system. 

Goh and Williams (1994) summarize 4 systems from the literature, rangeland, 

unfertilized ryegrass pasture, ryegrass white clover and fertilized rye grass pasture being 

their inputs of 9, 25, 175 and 435; outputs of 10, 19, 60 and 309 which imply total budget 

-1, 6, 115 and 126 (kg N ha-1) respectively. 

More concerns and more research have been done for feedlots due to the high 

level of intensification. In the U.S. 33 % of the beef production comes from feedlot 

(Eghball and Power, 1994). 

Galyean (1999) reviewed aspects of nutrition either levels or forms of feeding 

with special concern to the environment. Feeding programs such as restricted feeding and 

phase feeding may decrease manure loads and the ability to accurately forecast nutrient 

input:output when the feed intake is fix (Galyean, 1999). In a survey of consultant 

nutritionists, reported by Galyean (1996), there was an increase of crude protein levels 

used by the consultants with respect to the factorial system of the 1984 NRC for beef 

cattle. However, this does not necessarily mean more nitrogen should be excreted. 

According to Galyean (2000), in the cases were dry matter intake (DMI) is less with a 

deficiency in degradable intake protein (DIP) an increase of DIP will increase DMI and 
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energy yield from the rumen will increase, increasing average daily gain (ADG) and 

increasing N retention. Therefore, as for dairy it is not only the levels of a nutrient that 

are given but also how balance with respect to other nutrients needed for efficient feedlot 

operations. 

Analyzing 33 livestock operations in Nebraska (pigs and feedlots), Koelsch and 

Lesoing (1999) found that most of the farms had a substantial greater N inputs that 

managed outputs. Although there was great variability among farms these authors 

observed that formulation of diets and exporting manure nutrients to off-:farm users had a 

great impact on reducing the nutrient imbalance. 

Through nutrition it is possible to shift nitrogen losses to urine or feces. This may 

have a great impact on the amount of N that is volatilized from the pen. Using com 

byproducts may shift fecal N to 50 % in urine and 50 % in feces (Bierman et al., 1999) 

while typical grain diets (85% grain) Nin urine may account for 75 % (Satter et al., 

2001). Erickson et al. (2000) through phase feeding were able to reduce N excretion and 

reduce volatilization. 

:: _== .: DietjiH~ofurine and feces may affect N volatilization (Tucker and Watts, 1993). 

Lower pH enhances less volatilization since ammonia stays as ammonium. 

Erickson et al. (1999) worked with yearling steers and observed that P 

requirements were not more than 0.14% of diet DM. The implications of this data is that 

P requirements for these animals seem to be below what is supplied by the grains in the 

diet (Satter et al., 2001). However, calves may need some P supplementation. Few 

experiments are reported in the literature with respect P requirements in the feedlots and 

further research is needed. 
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Manure and wastewater management in feedlots is important in order to control 

air (dust an odor), water (surface and ground) pollution, to improve environmental 

. conditions, to recover nutrients and to comply with legislation (Sweeten, 1998). 

2. Nitrogen Physiology of the Ruminant 

The normal sources of nitrogen (N) for ruminants are dietary protein and non­

protein nitrogen (NPN). These dietary sources include a large variety of nitrogen forms 

such as nucleic acids, amino acids, proteins, peptides, nitrates, nitrites, urea, ammonia, 

amines and amides (Huntington and Archibeque, 1999). The fate of these nitrogen 

sources in the animal will be discussed in the following sections. 

2.1. Nitrogen metabolism in the rumen environment 

The first step in nitrogen metabolism in ruminants usually occurs in the rumen. 

Bacteria are the principal rumen microorganism that are involved in protein metabolism 

(Broderick et al., 1991) while protozoa, and anaerobic fungus also carry out proteolysis, 

peptidolysis and deamination but to a lesser extent. More than 99 % of the rumen bacteria 

are strict anaerobes (Hungate, 1966). The microbial population of the rumen has a 

moderate proteolytic activity when compared with other proteolytic microbes (Wallace, 

1996), but the length of time that particles are retained in the rumen allow a substantial 

breakdown of the dietary proteins (Broderick et al., 1991). 
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2.1.1. Protein, peptides and amino acids catabolism 

Many of the predominant bacteria are proteolytic, but none of them are dependent 

on protein as its only energy source (Yokohama and Johnson, 1993). However, under 

most production conditions, the rumen bacteria are under energy limiting environments 

and may use the amino acids products of protein breakdown for energetic purposes 

(Wallace, 1994). Bacteria are the most important organism in breakdown of soluble 

protein in the rumen (Kopecny and Wallace, 1982). The principal proteolytic bacteria are 

Bacteroides amylophilus, Prevotella ruminicola, Butyrivibrio fibrisolvens and 

Streptococcus bovis (Russell et al., 1981; Wallace and Cotta, 1997). These bacteria act 

on the proteins through proteases that are mainly associated with the wall of the bacteria 

(Kopecny and Wallace, 1982). Protein breakdown begins either by adsorption of soluble 

protein to the bacterial surface, by adsorption of bacteria to insoluble protein (Wallace, 

1985; Wallace, 1994), or by the ingestion of a particulate substrate by protozoa (Wallace, 

1994). The final products of proteolysis are usually polypeptides, oligopeptides, 

dipeptides, amino acids and ammonia (Broderick et al., 1991). 

Although microbial species are very dependent of the type of diet (Hazlewood et 

al., 1983), different animals under the same diet and housed together may have 

completely different patterns of proteolytic enzymes (Wallace and Cotta, 1997) adding 

therefore an individual differentiation. Oligopeptides are degraded mainly by the 

peptidase activity of bacteria (Wallace, 1994) while protozoa! peptidases are more active 

over dipeptides (Wallace et al., 1990). 

Peptides breakdown differ according to the type of peptide. The structure of the 

N-terminus is crucial in determining degradation (Wallace, 1997). If this N-terminus is 
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mainly near glycine or pro line or if the peptide has a negative charge it will be slowly 

degraded (Wallace, 1997). The predominant mechanism of peptide hydrolysis by the 

rumen microorganisms is dipeptidyl peptidase (Wallace, 1996) being Prevotella 

ruminicola the most important. These bacteria may account for more than 60 % of the 

total flora of sheep, eating silage (Van Gylswyk, 1990) while Selenomonas ruminatium 

can constitute 22-51 % of the ruminal bacteria of animals fed cereal grains (Stewart and 

Bryant, 1997). 

Most of the proteolytic microbes are capable of carrying out deamination 

(Morrison and Mackie, 1996). The ammonia production from deamination of amino acids 

is carried out mainly by Megasphaera elsdenii, Selomonas ruminatium and a few 

Butyrivibfio spp (Yokohama and Johnson, 1993). Amino acids are the most important 

source of ammonia in the rumen (Chalupa, 1976). Proteolytic activity increases in the 

rumen by increasing diet fermentability probably due to increased microbial biomass in 

the rumen (Broderick et al., 1991). Wallace (1996) distinguished two types of ammonia 

producing bacteria the high number low activity (Butyrivibrio fibriosolvens, 

Megasphaera elsdenii, P. ruminicoia, Selenomonas ruminatium and Streptococcus bovis) 

that are monensin resistant with an activity of 10-20 nmol NH3 min-1 (mg proteinr1 and 

the low numbers with high activity bacteria ( Clostridium aminophilum, Clostridium 

sticklandii, and Peptostreptococcus anareobius) that are monensin sensitive with an 

activity of 300 nmol NH3 min-1 (mg proteinr1• Although is of greater importance the 

high number with low activity bacteria, both type of populations can have a major impact 

on the nitrogen (N) retained by the animal. 
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The ruminal protozoa! population is composed of flagellates and ciliates being the 

latter the more numerous (Jouany, 1996). The total mass of protozoa in the rumen is 

almost the same as that ofbacteria being 2% of the weight of rumen contents (Yokohama 

and Johnson, 1993). Protozoa uses bacterial and feed protein that are available in the 

rumen, according to Jouany et al (1988) this is the reason why feed protein degraded in 

the rumen generally decreases when animals are defaunated. The engulfment of bacteria 

by protozoa may be selective or nonselective depending of protozoa and bacteria 

(Coleman, 1986; Jouany et al., 1988; Jouany and Martin, 1997). Unlike bacteria, protozoa 

have no ureases and cannot use urea or ammonia to synthesize amino acids (Onodera et 

al., 1977). Protozoa have a greater ability to ingest particulate matter and therefore being 

more active in degrading insoluble rather than soluble protein (Jouany, 1996). Protozoa! 

consumption of bacteria probably accounts for a significant part of protein turnover and 

ammonia production in the rumen (Morrison and Mackie, 1996). It is estimated that up to 

74 % ofprotozoal biomass is recycled within the rumen (Ffoulkes and Leng, 1989). 

Anaerobic fungi are more abundant when the diet has a greater percentage of fiber 

and maycontribute up to 8 % ofthemicrobial mass (Fonty and Joblin, 1991). Although it 

is not clear if the function of fungi in the rumen is important (Yokohama and Johnson, 

1993), it has been found that they posses certain metalloproteases (Morrison and Mackie, 

1996). In general terms, according to these last authors, mettalloproteases are present in 

fungi and bacteria, while cysteine- and serine-type proteases predominate in bacteria and 

protozoa and asparticproteases are present in protozoa. 
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2.1.2. Nucleic acids catabolism 

Nucleic acids can be 5 to 9.5 % of the total Nin grasses and hay (Smith and 

McAllan, 1970). These same authors observed that the additions of DNA and RNA pure 

or as plant material are rapidly hydrolyzed in the rumen. McAllan and Smith (1973) 

observed in ruminal fluid in vitro that purine nucleotides formed hypoxantine and xantine 

while pyrimidine nucleotides formed uracil and thymine. Some protozoa are able to take 

intact nucleic acids from the medium (Coleman, 1980). However, the microbial ecology 

of nucleic acid metabolism is poorly understood (Wallace and Cotta, 1997). 

2.1.3. Urea and other nitrogenous compounds catabolism 

Urea is broken down rapidly in the rumen yielding ammonia and when urea is fed 

may result in an overproduction of ammonia and an inefficient N retention (Morrison and 

Mackie, 1996; Wallace and Cotta, 1997). Urease, an enzyme with nickel content is 

mainly associated with the bacteria population allows the animal to break down urea 

either in the feed or from endogenous sources ( diffusion and saliva) (Wallace and Cotta, 

1997) . .However, when the concentration of urea is the same as blood or there is not a 

microbial population urea won't be hydrolyzed (Cheng and Wallace, 1979). All other 

aspects of urea metabolism are discussed in the section on whole body urea metabolism. 

2.1.4. The rumen ammonia pool 

There is an optimal ammonia concentration that is necessary for adequate 

microbial synthesis. However, this value will depend of the type of diet and the animal 
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requirements for a certain level of performance. Values reported have ranged from 5 to 

23 mg/lOOml (Febel and Fekete, 1996). 

According to Leng and Nolan (1984) the ammonia pool is formed from many 

sources as follows: 

Protein, peptides and amino acids 

Miscellaneous soluble N compounds such as urea, uric acid, nitrates etc. Urea 

can be either recycled or in the feed 

Ammonia excreted from protozoa 

Gaseous N. Some atmospheric N2 can be fixed by Methanobacterium 

ruminatum (.7g N per day in sheep, Li Pun and Satter, 1975). 

The routes of ammonia losses can be by uptake by bacteria, outflow from the 

rumen, and ammonia absorption (Leng and Nolan, 1984). Ammonia absorption through 

the ruminal wall will be discussed in whole body N metabolism. 

2.1.5. Microbial Protein and Amino Acid Synthesis 

Not all the protein in the rumen is degraded totally to ammonia. When the diet 

contains true protein isotope studies have shown that 40-60% of the bacterial N can be 

incorporated without mixing with the ruminal ammonia pool, indicating that the 

microorganism have the ability to take up amino acids and peptides and/or deamination 

occurs within the organism (0rskov and Miller, 1988). The amino acids are taken up as 

simple amino acids or as dipeptides. Wright (1967) found that peptide carbon is more 

efficiently converted into microbial protein than amino acid carbon and larger peptides 

were more likely to be incorporated than small peptides. Argyle and Baldwin (1989) 
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found that saturation of microbial growth occurred at 10 mg/L of added peptides and 

resulted in a higher growth than the corresponding amount of amino acids. These same 

authors found that the number of amino acids in a given mixture were more important for 

microbial growth stimulation rather than a sole amino acid being limiting. 

Nitrogen assimilation by bacteria is also influenced by the ruminal ammonia level 

(Leng and Nolan, 1984). Bacteria assimilate at a high level of ammonia through the 

enzyme NAD-glutamate dehydrogenase or at a low level by NADP-glutamate 

dehydrogenase and these two are the most common mechanisms. There are two more 

mechanisms that bacteria can use when they are out of this range. Wallace (1995) and 

Wallace and Cotta (1997) summarized ammonia assimilation as follows: 

At levels of ammonia Km ammonia (mM) = 20 to 33 the principal mechanism 

is through NAD-glutamate dehydrogenase and it is the usual mechanism 

under normal circumstances 

a-oxoglutarate + NADH + NH3 ~ Glutamate + NAD 

At high ammonia concentrations Km = 70 the enzyme acting fs NAD-alanine 

dehydrogenase .. -

Pyruvate + NADH + NH3 ~ Alanine+ NAD 

At lower ammonia concentration Km= 1.8 to 3.1 the principal mechanism is 

through NADP glutamate dehydrogenase 

a-oxoglutarate + NADPH + NH3 ~ Glutamate+ NADP 

At Km concentrations of 1.8 there is also another mechanism through the 

action of glutamine synthetase- glutamate synthase 

Glutamate+ ATP+ NH3 ~ Glutamine + ADP and then 
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Glutamine + NAD[P]H + a.-glutarate ~ 2 Glutamate + NAD[P] 

The assimilation of ammonia via NAO-glutamate dehydrogenase is the principal 

means of ammonia assimilation (Wallace, 1994). However, if ammonia concentration is 

low, efficiency of microbial growth is reduced because ATP is diverted from growth to 

the process of uptake of ammonia (Owens and Zinn, 1993). 

The amino acid biosynthesis in bacteria also needs carbons to assimilate 

ammonia. Usually a.-oxoglutarate is a central compound in aerobic organisms but in 

anaerobic organisms is obtained by partial Krebs cycle either forward or in a reverse 

direction depending of the bacteria (Wallace and Cotta, 1997). It is important for 

ammonia absorption both, the extra and intracellular pools, since for N fixation the 

extracellular N concentration should be high enough to maintain minimal intracellular 

concentration (Owens and Zinn, 1993). The ruminal ammonia concentration can be 

influenced by the diet, while carbohydrates degradation reduce it any dietary nitrogen 

usually increase it (Sauvant and van Milgen, 1995). 

There are some special needs for certain bacteria that require certain type of 

amino acids. This is the case of cellulolytic bacteria that need branch chain volatile fatty 

acids in order to synthesize valine, isoleucine and leucine by reductive carboxylations 

and transaminations (0rskov and Miller, 1988). However, little is currently known about 

the regulation of the enzymes of ammonia in this type of bacteria (Morrison and Mackie, 

1996). 

In protozoa there is also evidence of some de novo synthesis of amino acids but 

since protozoa usually utilize bacterial protein this mechanisms is of minor importance 

(Wallace and Cotta, 1997). 
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The biological value of the microbial protein leaving the rumen is approximately 

66 to 87 compared with a value of 100 (Owens and Zinn, 1993). There are differences 

among bacteria nitrogen composition and these can be large. Although many of these 

differences may be explained by the different techniques used, still using the same 

techniques there are differences (Clark et al., 1992). Usually it has been observed that the 

nitrogen composition ratio nitrogen to diaminopimelic acid (OAP A) and N to purines are 

greater for the particulate associate bacteria than for the fluid associate bacteria (Clark et 

al., 1992). 

Leaving the rumen we can have protein from the feed, microbial protein, amino 

acids, peptides, other non-ammonia compounds (NAN), and also ammonia. In addition to 

ammonia absorbed through the ruminal and omasal wall there has been demonstrated 

some peptide absorption in sheep such as Met-Gly and carnosine (Matthews and Webb, 

1995). It is believed that some amino acid absorption occurs through the ruminal wall but 

the magnitude of this process was evaluated as insignificant (Webb and Matthews, 1994). 

However, the structure of the keratinized squamous epithelia makes this type of study 

difficult (Matthews, 2000). 

In the abomasum, HCl and pepsin (an enzyme secreted here), which are part of 

the gastric juice, help to solubilize the protein and pepsin, starts cleaving some peptide 

bonds. 

2.2. Nitrogen digestion and absorption in the small intestine 

The small intestine is the major site of amino acid absorption. Once protein and 

amino acids reach the small intestine, the enzymes trypsin and chymotrypsin, 
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carboxypetidases A and B and elastases act on the proteins and yield oligopeptides, 

peptides and amino acids. These enzymes are secreted by the pancreas as proenzymes 

and are activated mainly by an enterokinase that is secreted in the wall by the mucosal 

epithelial (Breazile and Houghton, 2001). Although ruminants possess well developed 

protease activity at birth, in a review Harmon (1993) suggest that the young calf is more 

sensitive to nutritional modification of digestive enzymes (mainly pancreatic proteases) 

than are fully developed ruminants. 

Once protein is digested to amino acids they are absorbed through a system of 

transporters. Usually these transport system have low affinities for substrates that have 

large capacities for transport, whereas those that display high affinities have low 

capacities for transport (Matthews, 2000). These transporters have been identified in 

selected tissues, cells and apical and basolateral membranes (Matthews, 2000). In the 

small intestine, there are at least five Na+ dependent cotransports systems and two 

independent Na+ coports in the microvillous (luminal) membrane of the intestinal 

absorptive epithelial cell (Breazile and Houghton, 2001). According to these authors 

there also has been identified two Na+ dependent cotransport systems and three 

independent Na+ coport transporters for amino acids in the basilateral membranes of 

absorptive epithelial cells. Reviews describing amino acid transporters in more detail can 

be found in Deves and Boyd, (1998), Palancin et al., (1998) and Mathews, (2000). 

In sheep it is believed that it occurs also in cattle the major site for amino acid 

absorption seems to be the ileum (Webb and Matthews, 1994). This absorption at the 

most distal part of the small intestine may have a physiological explanation and it is that 

the pH of the first two thirds of it usually do not increase to 7, pH at which the proteases 
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enzymes start to be more efficient in the small intestine (Ben- Ghedalia et al., 1974). 

According to Webb and Mathews (1994) there are many factors that may influence 

amino acid absorption in the small intestine: 

influence of the digestion process may have on the site of absorption 

varying affinities of the collective complement of transporters 

capacity of transporter for individual amino acid 

distribution of transporters along the small intestine (Deves and Boyd, 1998; 

Palacin et al., 1998). 

Not all amino acids are absorbed at the same rate. Generally, the dietary essential 

amino acids tend to be absorbed in greater amounts when considered on a percentage 

basis (Webb and Matthews, 1994). In most of the experiments studying amino acid 

absorption, methionine was the amino acid removed in larger quantities (Christiansen and 

Webb Jr, 1990b; Christiansen and Webb Jr, 1990a; Mac Rae and Ulyatt, 1974). There are 

also interactions between amino acids that affect their final absorption of them. Infusion 

of leucine to the sheep abomasum suppresses the appearance of lysine to the portal blood 

(Hume et al., 1972). Methionine was observed to diminish and limited absorption of 

valine, leucine, alanine, glycine, lysine and phenylalanine by the brush border cells (Moe 

et al., 1987; Phillips et al., 1979). However, not all relations are antagonist. The infusion 

of leucine increased the appearance of methionine in the portal blood of sheep (Hume et 

al., 1972) and methionine increased absorption of threonine when the last was in small 

concentrations (Phillips et al., 1979). 
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In some cases di and tripeptides are absorbed and are finally converted into amino 

acids by the brush border cells (Harmon, 1993; Webb et al., 1993; Breazile and 

Houghton, 2001). Results showed that peptide absorption may be largely by non 

mediated processes, but mediated processes are also present (Webb, 2000). The 

absorption of peptides may have an energy advantage when compared to amino acid 

alone. The absorption of peptides independent of carriers may occur by the envelopment 

by membrane vesicles (endocytosis) or by diffusion through existing membrane spanning 

channel proteins or paracellular pathways (Webb and Matthews, 1994). According to 

Webb and Mathews (1994), this type of peptide absorption is effected by extra and intra 

cellular peptide concentrations, by the signals affecting membrane endocytosis, by 

structural protein function, peptide size and charge relatively to channel protein size and 

charge and by the energy inside the cell. 

_ -~- In ruminants the effect of nitrogen intake show that the relation between net portal 

flux ofamino acids and nitrogen intake is not as strong when compared to the ammonia 

N flux and nitrogen intake (Seal and Reynolds, 1993) mainly if these forms of nitrogen 

are highly digestible (Reynolds et al., 1991). It appears that the intake of metabolizable 

energy will predict in a better way the portal amino acid flux rather than nitrogen intake 

(Reynolds et al., 1994). This could be associated mainly with an increase of microbial 

protein that reaches the duodenum (Hoover and Stokes, 1991). 

Tagari and Bergman (1978) found that there is a quantitative imbalance between 

amino acids disappearing from the gut and amino acids appearing in the portal blood in 

sheep. This observation has also been confirmed in cattle. Most of the glutamine and 
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almost all the glutamate and aspartate in the diet are catabolized by the small intestine 

intestinal mucosa and CO2 accounts for 56-64% of the metabolized carbons in non 

ruminants (Wu, 1998). Glutamine is readily used for energy in the gut, supply of amide 

nitrogen for purine and pyrimidine synthesis (Seal and Parker, 2000). The use of a 

glutamine isotope for intestinal protein accounted for 73 % of the gross flux of amino 

acids across the small intestine of lambs (Gate et al., 1997). 

The portal drained viscera (PDV) uses more glutamate and glutamine than it is 

available from dietary sources (Reynolds and Huntington, 1988). These amino acids are 

oxidized and their amino groups are transmitted to form alanine, serine and glycine 

(Bergman and Pell, 1984). 

2.3. Whole Animal Nitrogen Metabolism 

The liver controls the fate of the nutrients absorbed to the peripheral tissue 

through its central position and has an important function in detoxifying the organism of 

useless and/or substances that appear in large quantities. This role in nutrient partitioning 

(homeorhesis) of the liver is very important by the involvement in regulating insulin, 

producing growth factors (IGF-1), and removing from the blood of hormones (Lobley et 

al., 2000). In order to discuss nitrogen metabolism I will separate in ammonia and urea; 

protein and amino acids; and nucleic acid and hormonal control. 
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2.3 .1. Metabolism of Urea and Ammonia 

The metabolism of ammonia and urea in ruminants has been reviewed by 

Milligan and Kennedy (1980), Visek (1984), Parker et al., (1995) and Huntington and 

Archibeque (1999). 

Physiologically ammonia in the rumen is as ammonium (NH4) but it is absorbed 

as NH3 so as ruminal pH increases absorption of NH3 does as well. The amount of 

ammonia in the rumen reflects the solubility and fennentability of the dietary and 

endogenous sources of N (Huntington and Archibeque, 1999). Most forages have larger 

amounts of soluble nitrogen although it can range from 60 to 100 %. This increases the 

amount of ammonia in the portal blood depending of the liver to detoxify it. Also grains 

have a wide range of soluble nitrogen that may be affected by the processing. In growing 

beef cattle fed diets high in rumen soluble nitrogen, increase ammonia absorption by the 

portal blood viscera has been associated with net removal of amino acids by liver 

(Reynolds et al., 1991). Although the mechanism for this amino acid removal is unclear, 

it has been suggested that it may be due to an increase need for amino acid N requirement 

in transamination reactions to generate glutamate and aspartate which cannot be met by 

mithocondrial capture of ammonia as glutamate (Reynolds, 1992). Under conditions of 

high urea flux, the mitocondrial supply of NH3 may not be sufficient inducing the 

obligatory use of amino acid nitrogen to maintain urea synthesis (Seal and Parker, 2000). 

It seems that under excess of ammonia and an increase of urea synthesis, the liver will be 

competing for amino acids with the rest of the organs and tissues for amino acids. In beef 

steers fed either an alfalfa based diet containing 1 7 % CP or a concentrate based diet with 

12% CP at equal levels of metabolizable energy, net PDV absorption of a-amino 
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nitrogen was similar to both diets but net PDV absorption and liver removal of ammonia 

was more than doubled when steers were fed the alfalfa diet compared to the concentrate 

diet (Huntington, 1990). This increase in ammonia removal by the liver resulted in a 

doubling of urea removal by the liver, and resulted in a threefold increase in a-amino 

acid nitrogen removal which markedly reduced splachnic release of these amino acids for 

the other body tissues (Reynolds, 1992). A similar response was observed in beef heifers 

fed isonitrogenous diets with different concentrate to forage diets ratios (Reynolds et al., 

1991). Continuing this line of thinking animals fed low quality forages diets with urea 

could the ammonia absorbed and removed by the liver be competing or reducing amino 

acids to the rest of the tissues and partly explain low responses when given urea to cattle 

with low quality forages diets? 

Ammonia in the ruminant as in other mammals does not come only from what is 

absorbed in the diet. There is a net production of ammonia N by the PDV that can range 

from 16-95% of N intake and it is directly related to N intake (Huntington, 1990). 

Extrahepatic tissues such as muscle may produce free ammonia (Van Der Walt, 1993) . 

. . . The blood arriving to the liver comes from the hepatic portal vein and the hepatic 

artery, although this last one is believed to make only a small contribution (Reynolds, 

1995). The blood flow throughout the PDV is highly and positive correlated with their 

metabolic energy intake (ME) (Huntington, 1990). In the liver, periportal and perivenous 

cells have the enzymes of the omithine cycle to form urea and to use glutamine synthesis 

for detoxifying the organism of ammonia (Meijer et al., 1990). The capacity of the 

hepatocyte to detoxify NH3 directly to urea appears to be well adapted to large changes in 

portal NH3 concentration being efficient in the removal at normal values usually found in 
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common diets (Meijer et al., 1999; Symonds et al., 1981). These cells contain also 

amino-acid degrading enzymes. A glutamine synthase system probably functions as a 

pericentral scavenger in order to eliminate any ammonia that might have escaped the urea 

cycle (Meijer et al., 1999). This system is a high affinity, low capacity mechanism while 

the urea cycle may be described as a low affinity, high capacity mechanism 01 an Der 

Walt, 1993). It has been suggested that the major factors affecting the rate ofureagenesis 

in the liver are the intramitocondrial concentration of ammonia and the concentration of 

N- acetylglutamate (Yan Der Walt, 1993). It has been hypothesized that pH is the major 

factor that determines the balance in the glutamine cycle, where glutamine production 

predominates at low pH and urea production predominates at highvalues (Van Der Walt, 

1993). 

The urea formed in the liver goes into blood and may be removed by the kidney 

or may be recycled to the rumen through saliva or the blood as well as other regions of 

the digestive tracts (Huntington and Archibeque, 1999). Urea may recycle to the rumen 

tllrough t\Vo ways by saliva or by blood across the rumen wall. It is calculated that up to 

70 % ofthe.N_secretion of the parotid gland maybe urea recycling (Breazile and 

Houghton, 2001). This N recycling back to the rumen allows the ruminant to be able.to 

live with lower amounts of nitrogen in the diet. The lower the nitrogen in the diet the 

higher percentage ofN is recycled (Owens and Zinn, 1993). The principal factors 

affecting the rate of endogenous urea transfer from the blood to the lumen of the 

gastrointestinal tract are the organic matter digestibility, plasma concentration of urea, 

and ruminal ammonia concentration being the first two positive and the last one negative 

related (Kennedy and Milligan, 1980). Huntington and Archibeque (1999) stated that 
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some other factors may also be involved in urea transfer such as capillary blood flow and 

CO2 tension. 

The diet composition affected the site of urea N flux across the PDV of steers, 

when fed hay urea was transformed mainly to the post stomach, when fed concentrates 

these same steers urea flux shifted to the rumen (Huntington, 1990). Urea recycled to the 

gut, production and excretion is linked to diet composition, intake and productive 

priorities of the animal and from 19 to 96% of endogenous production may be recycled to 

the rumen (Huntington and Archibeque, 1999). 

Seal and Parker (1996) demonstrated that the volatile fatty acid pattern in the 

rumen influences the N metabolism and the amino acid flux to the portal vein. Additional 

energy also reduces the proportion ofurea-N in urine when the N supply increased 

(Huntington and Archibeque, 1999; Parker et al., 1995). 

2.3.2. Amino acid, Protein and Nucleic acid metabolism 

The absorbed amino acids absorbed are carried by the portal vein to the liver. The 

PDV uses amino acids from dietary and endogenous sources (Tagari and Bergman, 1978) 

using more glutamine and glutamate than are available in the diet (Harmon and A very, 

1987). These two amino acids are oxidized and the amino groups are transformed to form 

alanine, serine and glycine (Bergman and Pell, 1984). However, in the liver there is a net 

uptake of glutamine and an output of glutamate (Bergman and Pell, 1984; Reynolds, 

1992). In experiments where urea was added to ruminant diet, an increased hepatic NH3 

uptake was seen, but glutamine uptake was either unchanged or slightly increased 

(Maltby et al., 1991). Glutamine and glutamate are interconvertible and the amount of 
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glutamate transported depends on the quantity of the first (Bergman, 1986). In most 

species, glutamines appears to be the more abundant amino acid in tissues (Lobley et al., 

2001). The amino group of glutamine is important in ammonia detoxification and in acid 

base balance and being the more common free amino acid ensures that this is the 

probable amine donor (Lobley et al., 2001). Glutamine appears to act as a nitrogen carrier 

between the kidneys, muscles, liver and PDV and it is also used to neutralize acids 

produced during the acidosis resulting from fasting (Bergman and Pell, 1984). This 

shuttle of glutamate and glutamine between liver and peripheral tissues provides a 

mechanism for transporting ammonia in a safe way to be detoxified by the liver via 

ureagenesis (Reynolds, 1992). 

Gluconeogenic amino acids such as glycine and alanine are absorbed in the 

greatest amount by the PDV but even larger amounts are removed from the liver 

(Bergman, 1986). This is important since free amino acids are major players in the 

interorgan exchange of carbon and nitrogen in ruminants mainly between peripheral 

tissues and the liver (Reynolds, 1992). Alanine has been found to be removed also by the 

kidneys apparently for gluconeogenesis, but in the hindquarters alanine was consistently 

released in sheep (Brockman and Bergman, 1975). Also glutamine, glycine and arginine 

are important in the transport of amino groups derived from deaminated amino acids in 

muscle (Bergman, 1986). 

The liver removes arginine and it is released as citrulline and ornithine, but in 

contrast the kidney and hindquarters released arginine and removed citrulline and 

ornithine (Bergman, 1986). 
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Most of the amino acids are removed in a net basis by the liver with exception of 

glutamate as previously explained and the branched chain amino acids (BCAA) that are 

usually released by the liver (Bergman, 1986; Seal and Reynolds, 1993). The BCAA have 

the lowest rates of fractional removal, under a wide range of physiological and nutritional 

conditions, in both cattle and sheep (Lobley et al., 2000). The capacity of the liver to 

remove BCAA is limited and extrahepatic tissues must carry out the further removal 

(Lobley, 1992). 

The removal of amino acids by the liver is important since this organ is a major 

site of glucose, protein or urea synthesis and the peripheral tissues are major sites of 

glucose and protein turnover (Seal and Reynolds, 1993). According to Wray-Cahen et al. 

(1997) there are four possible fates of the absorbed amino acids in the liver and these are 

(i.) retention in the free form, (ii.) conversion to specific metabolites, (iii.) oxidation and 

(iv.) incorporation into hepatic and export proteins. 

Generally the nonessential amino acids are removed in excess to essential amino 

acids and results in a total splachnic release for glutamate, lysine and BCAA (Reynolds et 

al., 1994). In the fasted ruminant the BCAA leucine that is released from muscle turnover 

is used by the liver contributing towards protein synthesis rather than acting as an 

oxidative substrate (Pell et al., 1986). 

All the tissues have common energy dependent maintenance processes that are 

protein turnover, substrate cycling, and ion transport (Harris and Lobley, 1991). The POV 

and liver have a high protein turnover by themselves. In general, amino acids use by the 

POV are related to the high rate of protein synthesis in the POV (Lobley et al., 1980). 

The liver has a large metabolic oxygen consumption accounting for 18-26% of whole 
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body oxygen consumption of beef heifers (Reynolds et al., 1990). The liver increases the 

consumption of oxygen as intake increases at a greater rate than the PDV and it is not 

reduced during fasting as markedly as the PDV (Reynolds, 1995). 

Many metabolic processes are carried out by the liver, among them protein 

synthesis. In sheep and cattle the liver can account for 9 to 13% of body protein synthesis 

(Davis et al., 1981; Eisemann et al., 1989). The hepatic protein content is determined by 

the relative rates of protein synthesis and degradation and the export of protein to 

extracelluar fluid (Meijer et al., 1999). According to these authors turnover ofliver 

proteins rapidly responds to the increase in amino acid supply during and after meals by 

an increase in protein synthesis and a decrease in the rate of protein degradation while in 

fasted animals the opposite occurs. 

Whole body protein turnover per unit of body weight in the adult mammal is 

inversely related to metabolic body size (Buttery, 1984). In well-fed animals protein 

degradation in muscle and other tissues is similar in magnitude to that of protein 

synthesis (Harris and Lobley, 1991). 

--- -~: - -- Nitrogen arising from the catabolism of peripheral tissues is carried to the liver as 

alanine, glycine or glutamine for urea synthesis avoiding excessive release of ammonia 

(Seal and Reynolds, 1993). Amino acid flux through the body is very important and this 

flow from protein turnover exceeds that of intake by two to threefold while N at 

maintenance, amino acid catabolism is 6 to 10% of flux but still is equal to net absorption 

(Harris and Lobley, 1991). 

The skin utilizes as much glucose as muscle and a lower amount of acetate per 

unit of weight compared with muscle, however, both tissues have different requirements 
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for oxygen since a significant proportion of glucose is degraded anaerobically as part of 

the lipogenic demand (Harris and Lobley, 1991). Due to anaerobic metabolism of 

epidermis lactate is produced (Breazile and Houghton, 2001). The gut and skin represent 

almost 50 % of total protein synthesis on a daily basis but only contribute to 10 % of total 

body accretion, meanwhile muscle values are approximately 17 % for protein synthesis 

and 36% for protein accretion (Seal and Parker, 2000). 

2.4. Hormonal Control of Nitrogen Metabolism 

The nitrogen metabolism in the body is controlled in part by hormones, which 

respond to different signals and regulate the flow of nutrients among tissues. In ruminants 

not all the tissues respond to all the hormones. The ability of tissues to respond to 

hormones may vary with physiological age, nutritional, and pathological state and there 

can be changes in responsiveness due to sensitivity (Kahn, 1978). 

Generally it is considered that there are two types of control in the body for the 

regulation of nutrient partitioning, homeostasis and homeorhesis. The homeostatic 

control acts so thatdespite challenges from the external environment the internal 

environment remains relatively unchanged. In the short term after a meal the homeostatic 

control exerted by insulin and glucagon results in a relatively constant supply of nutrients 

to the peripheral tissues by promoting the storage of nutrients and the mobilization of 

these in the postabsorptive period (Bauman and Currie, 1980). 

Homeorhesis is the integrated changes for the priorities of physiological state that 

occur in nutrient partitioning for processes such as growth, pregnancy and lactation 

(Bauman et al., 1982; Bauman, 2000; Bauman and Currie, 1980). Homeorhetic 
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adaptations, therefore, allow for chronic alterations or even redirection of physiological 

processes while still allowing homeostatic systems to preserve constant conditions 

constant (Bauman, 2000). Homeorhetic controls have been cited in processes such as 

puberty, ageing, chronic undemutrition, chronic illness, hibernation, premigration and 

migration, egg laying, incubation anorexia, seasonal cycles and exercise (Bauman, 2000). 

During the increase demand for lactation and growth, feed intake increases and 

changes are seeing in the liver and intestinal epithelial size increases. The supply of 

nutrients to such tissues is dictated in tum by the availability of nutrients, nutrient uptake 

by the tissues, activity by the tissue enzymes and blood flow (Bickerstaffe, 1993). 

The principal hormones that interact in nitrogen metabolism are discussed briefly. 

2.4.1. Insulin and nitrogen metabolism 

Insulin acts on a variety of tissues and alters a variety of processes as enzyme 

activity and enzyme amount (Vernon and Sasaki, 1991). It also stimulates the transport of 

glucose into the muscle, and protein and amino acid sequestration in all target issues 

(Berne and Stanton, 1998). In cattJe ap.d ~heep a raise in insulin concentration increased 

the glucose arteriovenous difference across the hind limbs, which could be to increase 

glucose uptake by skeletal muscle (Vernon and Sasaki, 1991). If it is administered in a 

basal state, insulin lowers the plasma of all amino acids and after a protein meal insulin 

secretion rises and limits the essential BCAA in blood (Berne and Stanton, 1998). 

In the liver, insulin rapidly inhibits glycogenolysis and therefore glucose output 

and also inhibits gluconeogenesis. This last inhibition is accomplished by decreasing the . 
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hepatic uptake of precursor amino acids and their availability from muscle (Berne and 

Stanton, 1998). 

Both protein anabolism and glycogen storage of glucose require at cellular level 

that insulin exerts an effect on the transport of glucose, phosphate, monovalent cations 

and amino acids transport into cells (Messina, 1998). This hormone even in those cells in 

which it has no direct effect on DNA synthesis can also induce protein synthesis and it 

also inhibits protein degradation (Messina, 1998). According to this author insulin can 

also regulate a number of genes whose products are associated with cell differentiation or 

cell proliferation. 

The response to insulin varies with the physiological state (growth, pregnancy, 

lactation), diet and type of tissue. This different responsiveness to insulin in the ruminant 

is part of the orchestrated changes that occur in the body in response to the above 

physiological states and diet and is called homeorhesis. During late pregnancy there is 

insulin resistance with respect to glucose utilization in the whole animal (Hay et al., 

1988). In the onset of lactation there are some responses to insulin that are attenuated 

such as gluconeogenesis inhibition (liver), fat synthesis (adipose tissue), glucose uptake 

(muscle), and glucose oxidation (whole body) (Bauman, 1984; Bauman, 2000; Vernon 

and Sasaki, 1991). During early lactation, there is almost no response to insulin for 

glucose and acetate uptake by the adipose tissue, and also by the hindlimb where the 

responsiveness to insulin is substantially reduced but not the sensitivity to insulin 

reducing glucose uptake (Bauman, 2000). However, the complexity of endocrine control 

of nutrient partition is likely to be complex with overlapping systems involving many 

synergisms (Bauman and Currie, 1980). Homeorhesis is also believed to occur during 
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growth were nutrients are first channeled to the central nervous system, bone, muscle and 

fat, respectively, at different ages from conception to maturity (Bauman, 1984). In older 

animals there is almost no response to insulin in muscle protein synthesis, showing a 

chronological attenuation (Nieto and Lobley, 1999). 

Nutrition affects hormone release and their receptors acting the body different 

according to the signal received. Fasted animals have a greater response to insulin that 

animals well fed (Nieto and Lobley, 1999). There is some evidence that the insulin to 

glucagon ratio may be determining the amino acid partitioning between the liver and the 

peripheral tissues in the transition from fasted to fed (Lobley, 1994). According to Lobley 

(1994) insulin will be more sensible to be the one to change the ratio insulin to glucagon 

since the latter is much less sensitive to intake. Feeding rations with high amounts of 

concentrates can change the partitioning of energy in ruminants away from milk 

production towards body gain in a mechanism believed to be related to an insulin peak 

after a meal (Hart, 1983). 

Insulin action may also be influenced by the BCAA, mainly leucine which may 

--act as a possible sigrial-of nutrient availability to peripheral tissues (Lobley, 1998). In 

conditions of supramaintenance protein metabolism may be more influenced by the 

growth factor- insulin like growth factor I axis (Nieto and Lobley, 1999) 

2.4.2. Growth hormone (GH) and nitrogen metabolism 

There are several reviews of growth hormone action in tissues (Bauman and 

Vernon, 1993; Berne and Stanton, 1998; Breier and Sauerwein, 1995; Burton et al., 1994; 

Etherton and Bauman, 1998; Muller et al., 1999; Pell and Bates, 1990) 
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Growth hormone is an anabolic hormone, stimulates cell division, skeletal growth 

and protein synthesis and it is also lypolitic (McDowell and Annison, 1991). Growth 

hormone increases bone growth and decreases protein degradation (Breier, 1999) and it is 

also diabetogenic (Hart, 1983). Growth hormone increases nitrogen retention in animals 

given this hormone and there was seen a decreased excretion of urine nitrogen and a­

amino acids in cattle (Eisemann et al., 1989; Etherton and Bauman, 1998). Eisemann and 

coworkers (1989) also reported an increase in whole body protein synthesis and a 

reduction of leucine oxidation. In dairy cows there has been reports of increasing milk 

protein with exogenous GH (Etherton and Bauman, 1998). 

Nutritional status has a major role in determining circulating GH concentrations 

and is elevated as a result ofundemutrition (Breier, 1999). According to Breier (1999) 

high concentrations are the reflection of the influence of factors such as hypoglycemia, 

stress, and low serum free fatty acids on the pituitary secretion of GH. However, also 

GH blood levels increase after a high protein meal or the infusion of a mixture of amino 

acids, being arginine the most consistent amino acid stimulator (Berne and Stanton, 

1998). 

Many of GH actions are carried out by the peripherally generated somatomedins 

and the insulin like growth like factors IGF I and IGF II either locally or systemic (Nieto 

and Lobley, 1999; Owens et al., 1993). 

2.4.3. Insulin Like Growth Factor (IGF-1 and IGF-11) 

Various tissues synthesize insulin like growth factors, which are a family of 

polypeptide hormones related to insulin, and it is believed they act through autocrine, 
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paracrine, and endocrine mechanisms (McMurtry et al., 1997). The IGF's are released 

after the GH target certain tissues such as liver and muscle and stimulate among other 

function protein synthesis. The GH receptor (GHR) is present in high concentrations in 

liver and in lower concentrations in muscle, growth plate, fat, heart, kidney, brain and 

placenta (Breier and Sauerwein, 1995). The interaction between GH and the GHR 

initiate the secretion oflGF, which in tum promotes proliferation and differentiation 

(Breier and Sauerwein, 1995). 

In a series of experiments it has been found that the plasma concentration oflGF-I 

correlates well with the growth rate of young animals given diets with proteins of various 

nutritional values and with the rate of whole body protein synthesis (Dawson et al., 1998; 

Noguchi, 2000). Growing steers kept at maintenance showed a marked reduction in GH 

binding to hepatic membranes, elevated GH secretion and a fall in IGF-I levels and no 

changes of this level even through intravenous GH administration (Breier and Sauerwein, 

1995). 

Apparently, the current data shows that the IGF action on muscle is via an 

endocrine rather than an autocrine or paracrine mechanism (Lobley, 1998). Most of the 

growth responses oflGF-1 is by the receptor (IGF-lR) which shows a close relation to 

the insulin receptor with a similar subunit structure and some immunological 

determinants in common (Breier and Sauerwein, 1995). 

Insulin like growth factors are carried in blood by binding proteins (IGFBP) and 

are recognized till now six different types of IGFBP which apparently may have other 

biological functions than carrying IGF such as cell growth, modification of cell bone 

proliferation, and growth arrest of breast and prostate cancer cells (Hwa et al., 1999). As 
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said above reduced nutrition reduce affinity of GHR and a reduction oflGF-I 

concentrations, however, relative changes in IGFBPs concentrations and tissue specific 

alterations in IGF-I receptor concentrations may sustain the availability of IGF-I for those 

tissues that are critical (Breier, 1999). 

The relations among GH, IGF-I and insulin suggests that in the fasted animal, 

where both insulin and IGF-I are low, muscle protein degradation will be elevated and 

synthesis will be suppressed but as intake increases over maintenance with adequate 

protein levels insulin will cease to exert any major additional effect on protein 

metabolism and GH/IGF-I will stimulate synthesis and degradation but the latter at a 

lesser extent (Lobley, 1994). 

2.4.4 .. Other Hormones 

There are other hormones that may act by themselves or by facilitating the action 

of insulin, GH and IGF-I either by acting on tissues and/or nutrient availability. 

_ _ Prolactin is very important during the onset of lactation by altering the nutrient 

partitioning, synthesis of milk, and maintenance of milk secretion (Freeman et al., 2000). 

Prolactin has been reported to increase nitrogen retention in several species (Bauman et 

al., 1982). It increases mammary tissue growth (Knight, 2000), and as a result of binding 

to its receptor induces transcription of genes for the milk proteins casein, lactoalburnin 

and J3-lactoglobulin and also stabilizes their rnRNAs (Berne and Stanton, 1998). 

Glucagon has mainly the opposite action of insulin, however, it doesn't act over 

the mammary gland. It increases glucose free fatty acids and ketone bodies in the blood. 

Its ratio with insulin is more important than its concentration by itself. If a protein meal 
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is fed, insulin secretion increases, preventing unneeded proteolysis and facilitating amino 

acid intake but at the same time glucagon secretion increases preventing the decrease in 

hepatic glucose output (Berne and Stanton, 1998). 

Epinephrine and norepinephrine increase lipogenesis, glucose concentration in 

blood, and the use of glycogen by the muscle. 

Glucocorticoids indirectly facilitate the action of other hormones (V emon and 

Sasaki, 1991). Cortisol also maintains glucose production from protein, facilitates fat· 

metabolism, modulates central nervous system and profoundly affects the immune 

system (Berne and Stanton, 1998). 

3. Phosphorus physiology in the ruminant 

Phosphorus is the major anion of intracellular fluids and the second most 

abundant mineral found in the animal body. About 80 % of the body phosphorus (P) is in 

the skeleton (bone and teeth) with the remaining 20 % in nucleotides such as ATP, 

nucleic acids, phospholipids and other phosphorylated compounds involved with 

metabolism and in maintaining the acid-base balance of body fluids (NRC, 2001; Soares 

Jr, 1995). 

3.1. Ruminal metabolism of phosphorus 

Ruminal microorganisms require P for their growth and cellular metabolism 

(NRC, 1996; Temouth et al., 1985). Microorganisms also required P for the digestion of 

cellulose and for the synthesis of microbial protein and volatile fatty acid production 

(Breves and Schroder, 1991; Burroughs et al., 1951). The recommended available 
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phosphorus in order to optimize degradation of cell walls by the microbes from dietary 

sources and salivary recycling in the rumen should be at least of 5 g/kg of organic matter 

digested (Durand and Komizarczuk, 1988). The optimal concentration in the rumen for 

having undisturbed microbial metabolism can range from 0.7 to 2.6 rnM (Breves and 

Schroder, 1991). 

Much of the phosphorus in grains is in the form of phytic acid, which is a problem 

for non-ruminants but not for ruminants and is only produced and stored during seed 

production by the plant (Marschner, 1995). Most of the data published suggest a 

complete hydrolysis of phytate by rumen microbes and almost the same bioavailability 

than inorganic P (Pi) for ruminants (Soares Jr, 1995). 

There is some controversy if P and Pi are absorbed from regions of the digestive 

tract cranial to the duodenum. The results of these studies differ greatly; some workers 

didn't find either absorption or secretion, while some others found net absorption or net 

secretion. Injection of the tracer 32P into the rumen or intravenously showed that the 

rumenepithelium was permeable to Pi in both directions, but only in insignificant 

amounts (Temouth et al., 1985; Temouth,1997; Yano et al., 1991). 

3.2. Digestion and absorption of P in the small intestine 

The absorption of P takes place, as with Ca, in the duodenum by both active and 

passive absorption (Braithwaite, 1984; Kincaid, 1993; Wasserman, 1981). No matter how 

P is ingested its absorption will depend on its solubility at the point of contact with the 

absorbing membranes (Braithwaite, 1984; Maynard et al., 1979). Phosphorus absorption 

also is influenced by intestinal pH, animal age, and intake of calcium (Ca), iron, 
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aluminum, potassium (K) and magnesium (Mg) (Braithwaite, 1984; Hays and Swenson, 

1993; Mc Dowell, 1992; McDowell, 1992). The low digesta pH in the abomasum results 

in P to be found in a soluble form in the duodenum and the jejunum which facilitates the 

absorption (Temouth, 1997). Phosphorus is absorbed in the ortho phosphate form 

(Kincaid, 1993). Absorption of Pis further stimulated by a pH gradient across the brush 

border membrane (Breves and Schroder, 1991; Care, 1994; Yano et al., 1991). When the 

supply of P exceeds requirement the efficiency of absorption is reduced (Care, 1994). 

Phosphate absorption is increased by vitamin D3 which may change membrane 

permeability, alter configuration of a phosphate carrier, stimulate pump sites, or by Ca 

absorption, indirectly increasing P absorption by decreasing the degree to which P is 

insolubilized by Ca (Kincaid, 1993). 

3.3. Whole body metabolism and hormonal control of phosphorus 

The levels of inorganic P in plasma are not under strict homeostatic control as 

with respect to Ca (Kincaid, 1993). Plasma Pi concentration is normally between 1.3 and 

2.6 mmol/Lor.4 to_8 mg/dL (Goff, 2000). Unlike non ruminants in which the kidney 

plays a fundamental role in P homeostasis, in ruminants the kidney's role is not as 

important because saliva and endogenous fecal loss help to keep P levels in place. Saliva 

is an additional source of P for the rumen with concentrations ranging from 370-720 

mg/liter in mixed saliva, much higher concentrations than that found in plasma ( 60 

mg/liter) (Yano et al., 1991). In dairy cows between 30 and 90 g/d of phosphorus is 

secreted daily into saliva (NRC, 2001). 
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The factors that affect P secretion of saliva are the time spent ruminating 

(chewing activity) and the parathyroid hormone (PTH) status of the animal (Goff, 2000). 

There was also found a relationship between physical form and absorptive efficiency of 

P, with higher efficiencies for unchopped hay compared with chopped hay (Yano et al., 

1991 ). This is probably explained by the higher volume of saliva produced by the animal 

eating unchopped hay, and this has also been seen in dairy cows on diets containing more 

neutral detergent fiber (NDF) (Khorasani et al., 1997) which resulted in both cases in 

more salivary P and more P available in the duodenum (Yano et al., 1991). 

The action of PTH is to regulate mainly calcium metabolism, maintaining its level 

in blood through its actions in bone (increases resorption) and on the kidney (increases 

reabsorption) being its secretion is inversely related to calcium blood levels but 

independent of plasma phosphate levels (Scott, 1986). Parathyroid hormone increases 

renal and salivary excretion of P and this can be a reason why hypocalcemic animals may 

tend to become hypophosphatemic (Goff, 2000). In ruminants P depletion does not 

induce significant changes of plasma 1,25(0H)2D3 and didn't affect Vmax ofNa+-linked 

· __ Pi uptake across jejunal brush border of growing goats (Breves et al., 1995). However, 

the V max of the H+ /Pi cotransport mechanism increase to P depletion in sheep proximal 

small intestine (Breves et al., 1995). For Goff (2000) the secretion of 1,25-

dihydroxyvitamin D can be secreted in response to low plasma P levels, but this must be 

very low (less than 1 or 2 mg/dL). More research is needed in order to understand the 

effects of P depletion at the cellular level in ruminant species. 
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Parathyroid hormone stimulates 1,25-dihydroxyvitamin D secretion by the kidney 

increasing phosphate absorption in the small intestine, however, PTH is secreted in 

response to hypocalcemia and not hypophosphatemia (Goff, 2000). 

Phosphate absorption is increased by vitamin D3 which may change membrane 

permeability, alter configuration of a phosphate carrier, stimulate pump sites, or by Ca 

absorption, indirectly increase P absorption by decreasing the degree to which P is 

insolubilized by Ca (Kincaid, 1993). 

Calcitonin, a hormone secreted by the thyroid glands exerts hypocalcemic 

influence by inhibiting osteoblastic bone resorption and urinary P reabsorption at the 

renal tubule in monogastric animals (Yano et al., 1991). However, its function in 

ruminants its not totally clear. 

In ruminants, Pis excreted mainly in the feces. When plasma P level is high, 2.0 

to 2.5 mmol/liter, the kidney will excrete P (Challa and Braithwaite, 1988). When high 

concentrate diets are fed, more P is excreted in the urine of cattle (Mc Dowell, 1992) or 

when diets contain no long fibrous materials requiring rumination {Temouth, 1997). 

4. Potassium physiology in the ruminant. 

The major cation in intracellular fluid, potassium is involved in the regulation of 

osmotic pressure, water balance, muscle contraction, acid-base balance, nerve impulse 

transmission, and certain enzymatic reactions (Miller, 1995). Potassium also is important 

in the transport of oxygen and carbon dioxide through blood, being responsible for at 

least half of the carbon dioxide capacity of the blood (Mc Dowell, 1992). Potassium helps 

to maintain the electrical neutrality before buffering of hydrogen ions by hemoglobin in 
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blood, by keeping an ion balance with the carboxyl groups (Reece, 1993). After 

ionization of carboxyl groups is suppressed by hydrogen ions, electrical neutrality of K 

ions is maintained by bicarbonate and chloride ions (Reece, 1993) 

Potassium, as well as sodium, is a component of the ATP-Na-K pump, which 

maintains a concentration gradient important for the transport of substrates through the 

cell membrane, and for the regulation of the osmotic pressure (Mc Dowell, 1992). 

Potassium is mainly absorbed from the rumen, omasum and the lower 

gastrointestinal tract (Mc Dowell, 1992). Absorption from the intestine is by simple 

diffusion (Ammerman and Goodrich, 1983). A large proportion ofK in the rumen is 

derived from the saliva, which is continuously secreted and is rich in K (Mc Dowell, 

1992). 

Potassium balance depends mainly on the excretion by the kidneys, which adjusts 

K excretion rapidly and precisely to a wide variation of intake (Berne and Stanton, 1998). 

High Na intake may increase K urinary excretion (Ammerman and Goodrich, 1983). 

Adrenal hormones including aldosterone increase potassium secretion by the renal 

.. tubules (Mc Dowell, 1992) while increasing Na absorption (Ammerman and Goodrich, 

1983). Extracellular fluid potassium concentration is regulated precisely at about 4.2 ± 

0.3 mEq/liter (Berne and Stanton, 1998). According to these authors, precise control is 

necessary because many cellular functions are dependent on extracellular potassium 

concentration. 
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5. Supplementation of high quality forages 

Supplementation of forages has been reviewed by several authors (Hom and 

McCollum III, 1987; McCollum Ill and Hom, 1991; Moore et al., 1999; Paterson et al., 

1994) and several aspects included in these reviews will not be discussed here. 

High quality forages are usually referred to some cool season grasses (CSG), 

legumes and/or the mixture of them. These high quality forages include grasses that have 

a photosynthetic cycle C3 and legumes which are also C3 plants (Nelson and Moser, 

1994). Although legumes are C3 they can be separated into cool and warm season types 

based on their adaptation to temperature (Nelson and Moser, 1994). 

Usually CSG are of higher digestibility than warm season grasses (WSG) not only 

because of the chemical composition but also because of the proportion and the physical 

arrangement of forage tissues (Goetsch and Owens, 1987). Also warm season C4 species 

have higher concentrations of structural polysaccharides (Buxton and Fales, 1994). 

Within the same plant specie the most important factor affecting forage quality is 

herbage maturity (Buxton, 1996). However, the environment also affects forage quality 

such as soil fertility, season, geographical location, temperatures, water stress and 

management (Buxton, 1996; Minson, 1990; Nelson and Moser, 1994). 

Usually C3 species in most of the cases are richer in protein with respect to energy 

creating an inefficient use of N by the ruminant. Several authors have hypothesized 

relatively utilizing different ratios of energy (total digestible nutrients or digestible 

energy and protein) or relating energy (concentrates) consumption as a percentage of 

body weight in order to assess proper supplementation to ruminants. 
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Moore et al. (1999) reviewed 66 publications on 126 forages to estimate the effect 

of non-lactating cattle consuming forages. These authors reported that generally 

supplements decreased intake with improved forages but these types of forages had the 

greater response when supplemental total digestible nutrients (TDN) was > 60% and 

when supplemental CP intake was > .05% of body weight (BW). These authors also 

reported a decrease voluntary forage intake when supplemental TDN intake was > . 7% 

BW, when forage TDN:CP was <.7% or when voluntary forage intake was> 1.75% BW. 

Hom and McCollum (1987) reviewed the effect of energy supplementation of 

forages in ruminants and concluded in general that substitution effects (units change in 

forage intake per unit increase in concentrate intake) were more pronounced with 

increasing forage digestibility. However, these authors were more inclined to the concept 

that than rather a single curve for substitution, a family of curves existdepending on the 

nutrient requirement of the animal. They included other possible factors affecting 

substitution such as activity, physiological state, forage quality and availability. Hom and 

McC()lllJ!ll (1987) concluded that concentrates could be fed up to .5% ofBW without 

ca.oui:;_ing large_ de_creases in forage intake. Bowman and Sanson (1996) in a review of 

literature concluded that grain supplements up to .25% BW had minimal effect on forage 

utilization but over that negative effects become larger. 

Several factors have been identified affecting substitution between forage intake 

when concentrates are fed such as reduction of cellulolysis, ruminal pH, microbial 

interactions, rumen micro flora composition, rate of passage, lipid supplementation and 

potential metabolic effects (Hom and McCollum Ill, 1987; Mould, 1988; Palmquist, 

1988). 
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However, it's not only the relation of concentrate to protein but also the chemical 

composition of these elements and where and how they will be degraded in the rumen. 

The BeefNRC (1996) shows that degradable intake protein (DIP) for most of the 

legumes and CSG is around 60 to 90 % of the crude protein (CP). In order to avoid this a 

ratio protein truly digested in the duodenum to energy ( digestible energy MJ) was 

calculated by Egan (1977) with sheep and proposed if this ratio was greater than 7.5 

supplementation would be better with readily available carbohydrates. Also TDN values 

may be misleading when calculating a ratio of these type. While soybean meal, barley 

and com have TDN values of 84-87, 84 and 90%, respectively, total carbohydrates and 

nonsoluble carbohydrates of barley and com approximately duplicate and triplicate the 

values of soybean meal (Sniffen et al., 1992). 

These differences in what are protein and energy supplements may be chemically 

composed and the possible interactions between them and the animal affects forage 

utilization should be taken into consideration when designing supplementation (Bowman 

and Sanson, 1996). A better understanding not only of the chemical interactions in 

ruminants of different diet components but also of how they relate to the different 

physiological states of the animal is needed. 

6. Feeding Frequency 

Feeding frequency has been studied mainly as a form of synchronizing N and 

energy (protein and carbohydrates) for optimizing rumen microbial yield. As previously 

stated, before most of the CSG and legumes have a high DIP which imbalance the rumen 

having more availability of N than other nutrients at a given time. In one study with 
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grazed forages containing over 17% of CP more than 40 % of N consumed disappeared 

from the rumen reaching a suboptimal relation ofN-organic matter (OM) to the 

duodenum (Owens and Zinn, 1993). Energy supplementation increases the capture of 

released N and increase microbial N flow from the rumen (Owens and Zinn, 1993). 

The feed potential of roughages depends on the size and metabolism of two 

fractions, the soluble fraction and the insoluble but fermentable fraction, at the rate the 

latter is fermented and how quickly the unfermentable residues can be passed from the 

rumen (0rskov, 1998). 

In high quality forages the N is usually rapidly released in the rumen where 

microbes usually do not have enough energy to capture that N that is afterwards excreted 

by the animal reducing its nutrient utilization efficiency. Varying the source and 

degradability of nonstructural carbohydrates and UIP we can vary the amount of amino 

acids reaching the duodenum. Greater dietary concentrations of NSC have increased the 

utilization ofruminal ammonia (Hoover and Stokes, 1991). The result should be more 

microbial protein reaching the small intestine and more nearly meeting the requirements 

of high producing cattle. 

Two types of what in the literature appears as feeding frequency will be 

discussed; the meal served with different frequency in a day (FF) and animals having a 

basal diet but the supplement fed in different frequencies (SFF). 

In a review by Owen (1978) the increase of FF of totally mixed diets improved 

dry matter and N digestibility, mainly with poorer quality feedstuffs and decrease the 

diurnal variation in the rumen variation of ammonia and volatile fatty acids. 
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Ulyatt et al. (1984) fed chaffed alfalfa to wether sheep once a day or once every 

hour. An increase in the FF had a major effect on reticulo rumen pool sizes but did not 

affect apparent digestibilities nor partition of digestion of non nitrogenous constituents. 

Daily feeding increased N reaching the duodenum; however, N retention was 

significantly greater with FF, suggesting to the authors the possibility of more efficient 

tissue utilization by the animal. 

Feeding frequency did not affect ruminal or total tract OM or cell wall digestion 

either of lambs fed fescue hay 2, 4, 6, 8 or 16 times daily (Bunting et al., 1987) or of rams 

using a FF of alfalfa silage with or without soybean meal of 1 or 4 times daily (Ruiz et 

at, 1989). Ruiz et al. (1989) found that diurnal variation of all the ruminal parameters 

were reduced. 

Dairy cows fed from 2 to 8 times a day resulted in an increase in the molar 

percentage of acetate and a decrease in the_ concentration of lactate in ruminal fluid 

(Bragg et al., 1986). An increase in acetate should produce an increase in milk fat. In this 

same direction dairy cows being fed more frequently (2 vs. 6 times a day), milk 

production was not increased but percentage of milk fat was increased by A-.5% in two 

experiments (Kaufmann et al., 1980). 

Increasing FF more than one time a day didn't affect intake of dairy cows (Burt 

and Dunton, 1967; Robinson and McQueen, 1994; Robinson and Sniffen, 1985). 

However, intake and nitrogen retention was increased when 5 kg medium quality hay was 

offered more than once a day (2 or 3 times) to zebu bulls (lkhatua et al., 1987). 

Altering the frequency of supplement (SFF) has been studied mostly under range 

conditions with low quality forages and protein supplements. Early works from Mcilvain 
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and Shoop (1962) with cottonseed meal showed no difference in variation of 

performance within groups of steers supplemented once, every three days and every 

week. Also using as supplement cottonseed meal, Hunt et al (1989) studied the effect of 

SFF of 12, 24 and 48 hr and an unsupplemented control in a metabolism trial and with 

lighter growing cattle. Supplementation increase dry matter intake and VF A, NDF and 

ADF disappearance in situ and concentration of volatile fatty acids were greater for 

supplemented than for unsupplemented control (P<.05), however, there were no 

statistical differences due to SFF. In the performance trial these same authors only found 

differences when compare supplemented steers vs control in average daily gain but SFF 

did not show any differences among the hours fed. 

Beaty et al. (1994) in a series of two experiments were they tested a daily 

supplementation vs a 3 times a week supplementation using pregnant beef cows grazing 

dormant tallgrass prairie. They found that reducing the SFF to 3 times instead of daily 

increased (P<.02) winter weight loss through calving. In a metabolism trial these same 

authors observed a slight improvement by daily supplementation, however, as a final 

consideration they thought that SFF of three times a week was a viable practice to reduce 

cost labor and with minimal consequences in terms of cow overall performance. 

Farmer et al. (2001) fed a high protein supplement ( 43% CP) 2, 3, 5 and 7 days a 

week. Increasing frequency of supplementation increased linearly forage OM intake, OM 

and NDF digestion and they concluded that forage utilization was improved by more 

frequent supplementation but there was not expected a large impact in animal 

performance due to SFF. 
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Similar conclusions with protein supplements were obtained with wethers 

(Bohnert et al., 2001a; Bohnert et al., 2001b) and with cows during the last third gestation 

(Bohnert et al., 2001b) in which the authors concluded that supplements of 20 to 60 % 

UIP can be used by ruminants consuming low quality forages without adversely affecting 

N efficiency and animal performance by supplementing it once every 6 days. Similar 

results obtained Wallace et al (1988) with yearling heifers grazing dormant rangeland 

forage supplemented with a cottonseed cake 1 or 3 times a week finding not difference in 

the growth rate nor breeding performance due to SFF. 

Krehbiel et al. (1998) determined the effects of feeding :frequency of a protein 

supplement (soybean meal) on bromegrass intake and net portal and hepatic flux of 

nutrients in Dorset ewes. They found that SFF of soybean meal supplementation may 

affect the pattern of nutrient absorption without affecting their net absorption. 

Chase and Hibberd (1989) fed chopped low quality hay free choice and fed two 

levels of com (1.4 or 2.0 kg day-1) on a daily or in an every other day basis. 

Supplementation :frequency did not alter hay OM intake but tended to decrease total and 

hay OM digestibility. Digestibility and DM intake were lower for the animals in the high 

com supplementation. These authors concluded that maize supplements should be fed on 

a daily basis in small quantities. These results are in agreement with the results reported 

by Wallace et al (1988) when they fed heifers with a grain cube daily or twice a week that 

resulted in weight lost and pregnancy rate decreased. 

Hart (1987) studied the effect of two forms of grain (whole vs ground) :frequency 

of feeding ( daily or alternate) at 3 different levels (13, 26 and 39% of diet DM) on the 

intake and digestibility of sorghum silage. Feeding grain on alternate days decreased 
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NDF digestibility for the 13 and 39 % grain diet. The digestibility ofNDF was depressed 

more by feeding ground com on alternate day. Feeding com on alternate days decreased 

dry matter intake for animals fed the 26 and 39% diets. 

Altering the frequency of feeding, up to once a week, of a high protein 

supplement mainly in beef cows fed a low quality forage does not appear to affect overall 

performance. Feeding grain infrequently in low quality forages may affect digestibility 

and therefore overall performance. 
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CHAPTER III 

EFFECT OF THE FREQUENCY OF SUPPLEMENTING CRACKED CORN ON 

ALF ALF A HAY INTAKE, UTILIZATION, AND PERFORMANCE BY 

GROWING CATTLE 

Abstract 

Two trials were conducted to study the effect of frequency of cracked com 

supplementation on intake, utilization and performance of alfalfa hay by growing cattle. 

In Trial I, eight ruminally cannulated crossbred steers (501.9 ± 29.6) in a replicated 4 x 4 

Latin square were given ad libitum access to chopped alfalfa hay with no supplement 

(CONT) or with a cracked com supplement fed at one of three frequencies: 0.5 % of 

body weight (BW) every day (24); 1.0% ofBW every other day (48) or 1.5% ofBW 

every third day (72) (all animal eat the same on a 6d basis).Total organic matter intake 

was not different due to supplementing com but it increased linearly (P<0.01) as com 

frequency increased. Total digestible organic inatter intake (P<0.05) and total tract 

digestibility (P<0.01) was increased by supplementing com. Frequency of 

supplementation decreased linearly (P<0.01) total organic matter and increased linearly 

(P<0.01) total tract digestibility as feeding interval decreased. Feeding cracked com 

increased total tract apparent digestibility of ADF (P<0.01) and ofNDF (P=0.07). 

Ruminal concentration of butyrate (P<0.01) and the acetate to propionate ratio (P<0.05) 

of ruminal fluid was decreased by com supplementation. In Trial 2, 60 Holstein heifers 

(198 kg) were stratified by weight and assigned to the same four treatments with the 
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exception that hay was not chopped. After 90 d on trial, feeding supplemental com 

increased average daily gain and final weight (P<0.01), and both decreased linearly 

(P<0.01) as time interval between supplement feedings increased for the com treatments. 

These data suggest that supplementing alfalfa hay with com grain increased intake of 

digestible OM and increased ADG but supplementing at less frequent intervals (2d; 3d) 

increased hay digestibility slightly, but reduced intake of hay OM markedly and thereby 

reduced intake of digestible OM, and ADG. 

Introduction 

Supplementation of high quality forages with grain usually increases daily gains 

(Hom and McCollum III, 1987), total organic matter intake (Elizalde et al., 1999a) and 

digestibility of organic matter (Norton et al., 1982). Feeding frequency with supplements 

have been studied for protein supplements (Beaty et al., 1994; Farmer et al., 2001; 

Krehbiel et al., 1998) and grain (Chase and Hibberd, 1989; Wallace et al., 1988) on low 

quality forages. Feeding frequency has also been studied with oscillating protein for grain 

diets with lambs (Cole, 1999) or as a tool for trying to synchronize carbohydrate and 

nitrogen requirements in the rumen within the same day (Michalowski, 2001; Robinson 

and McQueen, 1994). However,·almost no reports on the effect of the frequency of grain 

supplementation on high quality forages are reported in the literature. 

The objective of this study was to examine the effect of frequency (every 24, 48 

or 72h) of feeding the same amount of cracked com ( on a 6d basis) on intake, 

digestibility, ruminal parameters, and performance of cattle fed alfalfa hay ad libitum. 
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Materials and Methods 

Experiment 1: Metabolism Trial 

Animal and Diets 

Eight ruminally cannulated crossbreed steers (Hereford x Angus, 501.9 ± 29.6 kg) 

were assigned randomly to two 4 x 4 Latin squares at the nutrition physiology barn 

(Oklahoma State University). Steers were weighed at initiation and completion of each 

18-d period. Steers were housed in individual indoor 3 x 4-m pens for 9 d each period. 

On d 10, they were moved to individual metabolism stalls for a 3-d adaptation and a 6-d 

collection period. The treatments included: chopped alfalfa hay ad libitum and a mineral 

vitamin premix (CONT), chopped alfalfa hay plus 0.5% of body weight (BW) cracked 

corn every day (24), chopped alfalfa hay plus 1.0% BW cracked corn every second day 

( 48), or chopped alfalfa hay plus 1.5% BW as cracked corn every third day (72). Animals 

were fed each morning at 0800 and had continuous access to chopped alfalfa hay and 

water. Supplemental corn was administered as shown in table 2. 

Sample Collection and Preparation. 

Intakes of hay and corn were recorded daily and refused hay was weighed back. 

Corn and hay samples were composited across days and animals within periods. All feeds 

either hay or corn were from a single source were composited across periods at trial 

completion and ground to pass a 2-mm screen in a Wiley mill for determination ofDM, 

OM, NDF, ADF and CP. Total urine and feces were collected daily during the sampling 

period. Feces were weighed and a subsample was dried at 65 °C and stored for latter 

analysis of dry matter (DM), organic matter (OM), acid detergent fiber (ADF), neutral 
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detergent fiber (NDF), and fecal nitrogen. Urine was acidified with HCl to stop . 

volatilization, was weighed every 12 hours and a subsample was frozen (-10°C) for later 

N analyses and another one for density that was measured immediately. At Oh of d 16, 

17 and 18, before being fed, CoEDTA (200 mL; 1.2 g of Co; Uden et al., 1980) was 

dosed via ruminal cannula for determination liquid passage rate (Kpf). During this 3-d 

period, at 0, 3, 6, 9, 15 and 24 h after feeding of each day, ruminal fluid and solid 

samples were collected each day to determine marker concentrations from three locations 

in the rumen ( caudal-ventral, medial-ventral, and c.ranial ventral) of each steer and 

strained through eight layers of cheesecloth. A portable combination electrode pH meter 

(Corning 314i pH/mV/temperature portable pH meter with an ion selective field effect 

transistor electrode, Coming, NY) was used to determine pH. Following pH 

measurement, strained ruminal fluid samples were acidified with 1 ml of7.2 N H2S04 

and store frozen (-10°C). A 30 ml blood sample was also collected on days 16, 17 and 18 

at 6 and 24 hours after feeding via tail venipuncture, using vacuum containers for serum 

collection with no additives. Samples were immediately placed in a refrigerator, and were 

centrifuged and frozen within twelve hours. All samples according they were 6d 

collection or 3d collection were composited for laboratory analysis according to the 

scheme shown in Table 2. 

Laboratory Analyses 

Dry matter was determined by oven drying at 105 °C for 24 h. Ash content of 

fecal, com and alfalfa hay was determined by ashing at 500 °C for 6 h in a muffle 

furn.ace. Nitrogen content of the alfalfa hay, com, feces and urine was determined by 
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Kjeldahl N (AOAC, 1996). Com, alfalfa hay and fecal sample NDF (procedure A, 

without sodium sulfite), ADF and ADIA concentrations were determined as described by 

Van Soest (1991)using Ankom 200 (Ankom Technology, Fairport, NY) .. 

Ruminal fluid samples were thawed, centrifuged (10,000 x g; 10 min) and 

subsampled for Co-EDTA, NH3-N, and VFA determination. Subsamples for VFA 

analysis were composited across time and days within steer and period. Concentration of 

Co was determined by atomic absorption spectroscopy (Model 4000, Perkin Elmer, 

Norwalk, CT) with an air plus acetylene flame (Hart and Polan, 1984). Ruminal NH3-N 

concentration was determined colorimetrically by enzymatic procedure (Sigma, 1995). 

Concentrations of VF A were determined after desproteinizing 5-ml samples ofruminal 

fluid with 1 ml of25% metaphosphoric acid (Erwin et al., 1961) and centrifuging at 

20,000 x g for 15 min. Individual VF A were separated by gas chromatography (Perkin 

Elmer Autosystem, 9000 series) using 8 ml/min flow rate of ultra high-purity helium as a 

carrier gas with 2-ethylbutyric acid as an internal standard. 

Calculations 

Fluid dilution rate was the slope of the natural logarithm of Co concentration 

regressed against time (Galyean, 1997). Ruminal pH area below a line of 6.2 and pH 

curve and the time that pH remained below 6.2 was calculated by using spline curves 

(piece wise polynomial functions) with MATLAB (Math Works Inc.). Area and time were 

calculated for 6 days by using the 3d curves of CONT, 24 and 72 and multiplying by 2 

and for treatment 48 as shown in table 2 and multiply by 3. Apparent total tract hay OM 
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digestibility was calculated assuming a constant indigestibility of com using 100 minus 

the tabular value of com from the NRC (1996) . 

Experiment 2. Performance Trial 

Animals and Diets. 

Sixty Holstein heifers (199 kg; 14 mo old) and eight cannulated heifers were stratified by 

weight and assigned to the same four treatments with the exception that hay was not 

chopped. Animals were fed in a drylot at INIA La Estanzuela Experiment Station (lat 34 ° 

20° S, long 57° 41 ° W), Colonia, Uruguay for 110 d (20 d for adaptation and 90 d for 

measurements). Round alfalfa bales (330 kg) were offered ad libitum with a salt premix 

also ad lib. Due to a drought in the spring and summer alfalfa bales were of a quality 

lower than expected. Animals were sorted each morning at 0800 and those receiving 

supplemental com were fed individually. Animals were weighed every 14 d with intake 

-- of ccrmDM beingadjm,tedat this time: -

Sample Collection Preparation and analysis. 

Starting on d 60, animals were fed chromic oxide for 9 d with fecal samples being 

collected the final 3 d. A subsample was taken for latter analysis and composited 

according to Table 2. Subsamples were analyzed for NDF, ADF and Cr. Samples were 

analyzed with the same procedure of Trial 1. Calculations of intake were done as 

explained for trial 1. 

Statistical Analysis 

Trial 1. The two Latin squares were analyzed for intake, digestion, fecal output, mean 

ruminal value, mean VF A values, mean Kpf value. Period, animal, and treatment were 
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included as source of variation and the statistical analyses were performed using the 

GLM procedure of SAS (1999). Linear and quadratic effects of frequency of feeding 

were tested using contrast statements. Contrast comparison com treatments versus control 

were also done. Analysis of the repeated measures was done using the SAS/MIXED 

procedure (version 8, 1999); For each response variable covariance structures of the 

repeated measures were selected based on model fit criteria. 

Trial 2. The heifers were stratified by weight in a complete randomized block design. It 

was analyzed using the GLM of SAS. Contrast statements were used for the same 

comparisons as explained for trial 1. 

Results and Discussion 

Trial 1. Intake and total tract digestibility. Intake as% ofBW was not affected by 

cracked com supplementation but decreasing frequency of supplementation tended 

(P<0.01) to reduce intake (Table 3). Total organic matter intake was not affected by com 

supplementation, but it was decreased linearly (P<0.01) by decreasing feeding frequency 

(Table 3). Supplementation lowered hay organic matter intake (P<0.01) and hay as 

percentage of intake (P<0.01) when compared to the control and decreased linearly 

(P<0.01) as feeding frequency decreased. However, DOMI was increased by 

supplementation (P<0.05) and decreased linearly (P<0.05) as feeding frequency 

decreased. It has been documented in a review by Hom and McCollum (1987) that 

supplementation of high quality forages may reduce forage intake with a more 

pronounced substitution for lower quality forages. In this trial the decrease in feeding 

frequency increased the rate of substitution and decreased not only intake of steers but 

also the proportion of hay in the diet producing a greater substitution of forage by the 

85 



supplement. In treatments 48 and 72 there was a decrease in the immediate day after 

feeding com on total OM intake. The days heifers were fed com the proportion of grain 

in the diet was higher than 20-30% which according to 0rskov (1986), higher than this 

proportion may depress intake to a larger extent. However, in treatment 24 although there 

was substitution, supplementation with com increased total organic matter intake, and as 

reviewed by Minson (1990) a combination of moderate amounts of supplement added to 

forage increased total voluntary intake but this increment is less than the quantity of 

supplement that is included in the diet. A reduction in DM intake was also observed by 

Hart (1987) feeding sorghum silage and soybean meal supplemented with 26 or 39% of 

com in alternate days than when it was supplemented every day. 

NDF and ADF. Intake of ADF and NDF was greater by the CONT treatment (P<0.01; 

Table 4) mainly because the composition of the diet was only hay, while for the other 

treatments com was between 18-22% of the total diet (Table 3) and there were no 

differences in total organic matter intake due to com supplementation. Fecal output of 

NDF and ADF was decreased (P<0.01) by com supplementation. Total tract ADF and 

NDF apparent digestibility was increased by com supplementation (P<.01, P=0.07; · 

respectively). Increasing feeding frequency decreased linearly (P<0.01) ADF intake, 

fecal output and digestibility and also linearly decreased (P<0.01) NDF intake and fecal 

output and decreased apparent total tract digestibility (P<0.01). Depressions in fiber 

digestibility are not severe until supplemented grain reaches either 20 to 30 % or 300 g 

kt1 of intake whereas smaller inclusions may increase fiber digestion (Galyean and 

Goetsch, 1993). The proportion proposed by these authors for affecting fiber digestion is 

higher than the average of supplemented com for the treatments in this trial, although the 
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same day's com was supplemented in the treatments 48 and 72 that proportion was 

higher. Elizalde et al. (1999) found that fiber digestibility of fresh alfalfa was not 

depressed by increasing the level of com from O to 1.2% of BW. 

Nitrogen. Intake of nitrogen was greater by CONT (P<0.05) than for com-supplemented 

treatments and it was decreased as feeding interval decreased (P<0.01). As total organic 

matter of CONT didn't differ from supplemented treatments this difference is expected 

since alfalfa hay has a larger concentration of nitrogen. Fecal output of nitrogen was not 

affected by com supplementation but it was increased as the frequency of feeding 

increased (P<0.02). Heifers of all supplemented treatments ate all the same amount of 

com (Table 3), but total OM intake was linearly decreased as feeding frequency 

decreased due to a decrease in hay intake. Therefore the reduction in nitrogen intake is 

mainly explained by this reduction in hay intake. Apparent total tract digestibility of 

nitrogen was not affected by com supplementation but show a trend to increase (P=0.10) 

as supplementation interval increased. A linear decrease in totaltract apparent 

digestibility and a linear decrease in nitrogen intake was observed by Elizalde et 

. al.,(1999b) when increasing the amount of cracked com with fresh alfalfa. 

Ruminal parameters 

Volatile fatty acids (VFA). Total VF As were not affected either by com supplementation 

or feeding frequency (Table 5). Neither acetate, propionate, isobutyrate, valerate or 

isovalerate was affected by com supplementation or by feeding frequency. The acetate 

propionate relation (A/P) was affected by com supplementation (P<0.05) as also butyrate 

concentration (P<0.01). 
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Ruminal pH was analyzed by two different approaches. First all the pH was aligned with 

the com feeding time (Figure 1 ). Analyzed as repeated measurements, the CONT 

treatment was different from 24 (P=0.09) and 48 and 72 (P<0.01) and 24, 48 and 72 were 

different among them (P<0.01) for the first 24 hours. The second approach through 

polynomial functions calculated for each individual animal (Table 5) showed that the area 

below a line of 6.2 and the individual curve of pH and the time in hours under 6.2 was 

different (P<0.01) for supplemented treatments. This is in accordance with most of the 

literature published that show that the inclusion of grains to forage reduces ruminal pH. 

Increasing feeding frequency decreased in a quadratic form (P<0.05) the area below 6.2 

and pH curve and decreased linearly (P<0.01) the time in hours that pH is below 6.2 

(Figure 2, Table 5). A rumen pH below 6.2 will affect cellulolytic bacteria growth 

(0rskov, 1986) and may affect fiber digestion in the rumen. Although the hours under 6.2 

and the area below was greater for supplemented treatments and was increased by 

decreasing feeding frequency, NDF and ADF digestion was improved by decreasing the 

feeding frequency. 

Dilution rate (%/h) or Kpfwas not different between supplemented treatments and the 

control. However, there was a linear (P<0.01) decrease in Kpf as feeding frequency 

increased. Ruminal fluid is very important since it is the biological active and soluble 

fraction (Owens and Goetsch, 1993). A higher retention time in the rumen may have 

increased fiber digestibility explaining the results observed. Also a higher retention time 

will reduce feed intake as this reduction was observed as frequency decreased was 

observed in this trial. Stensig and Robinson (1997) found that by increasing the amount 
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of concentrate in the diets of dairy cows fed alfalfa silage ruminal retention time of fiber 

was increased, however it didn't affect intake. 

Ruminal ammonia was decreased immediately after feeding time being more severe when 

com was fed (P<0.05) and as feeding frequency increased (Figure 3). Ammonia in the 

rumen is available from three major sources that are the forage, the supplement and 

through recycle through the wall either by diffusion through the ruminal wall or via saliva 

(Owens et al., 1991). For these same authors with forages with more than 10 % CP, 

ammonia supply from the forage alone will be enough unless rumen degradable protein 

falls below 55% which is not the case in this trial. The amount of ammonia in the rumen 

reflects solubility and fermentability of the dietary and endogenous sources ofN 

(Huntington and Archibeque, 1999). The optimum levels varies according to diet, 

however, values between 5 and 8.5 NH3 mg/dl are considered in most cases enough for a 

normal rumen function (Roffler and Satter, 1975; Satter and Slyter, 1974). In our trial the 

level ofruminal ammonia was above 5 so we didn't find a biological value to study the 

area under the curve. Ruminal nitrogen was also decreased when increasing levels of 

cracked com were supplemented (Elizalde et al., 1999b). 

Blood parameters 

Serum urea nitrogen show the same trends as ruminal ammonia and ruminal pH (Figure 

4). There was a greater decrease in serum urea nitrogen in supplemented than in non 

supplemented cattle and this decrement was larger as feeding frequency increased. The 

principal factors affecting the rate of endogenous urea transfer from the blood to the 

lumen of the gastrointestinal tract are the organic matter digestibility, plasma 

concentration of urea, and ruminal ammonia concentration (Kennedy and Milligan, 1980) 
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and capillary flow and CO2 tension (Huntington and Archibeque, 1999). Although 

recycling was not measured in this trial, lower pH and ruminal ammonia observed as 

feeding frequency decreased may be indicative of a higher fermentability the day com 

was fed and a decrease in these parameters will to some extend increase the removal of 

urea nitrogen from blood explaining the differences observed in this trial. 

Trial 2. 

There were differences (P<0.01) in ADG and final weight in the Holstein heifers fed com 

(Table 6). Supplementation of medium to high-quality forages with an energy supplement 

usually increases ADG (Hom and McCollum III, 1987). ADG increased (P<0.01) as 

feeding frequency increased. There are no reports that we are aware that have examined 

the effect of supplement feeding frequency in medium to high quality hay. These results 

are in agreement with what was measured in Experiment 1. Differences may be given 

mainly by the intake of DOMI. 

These two trials suggest that supplementing alfalfa hay with com grain increased 

intake of digestible OM and increased ADG. However, supplementing at less :frequent 

mtervals (48h; 72h) increased hay digestibility slightly, but reduced intake of hay OM 

markedly and thereby reduced intake of digestible OM and ADG 

Implications 

By supplementing com it is possible to increased ADG, however, the frequency 

of supplementation will be a balance between the price of alfalfa, com and labor. 

Supplementing every 48 h may be a reasonable option where labor and alfalfa costs are 

high although some ADG will be sacrifice. 
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Table 1. Chemical composition of the diet (DM basis) 

Trial 1 Trial 2 
ITEM Alfalfa Com Alfalfa Com 

DM 89.01 88.30 88.23 89.27 
Ash 8.22 1.35 12.28 3.67 
Nitrogen 3.36 1.40 2.53 1.42 
NDF 52.30 24.93 64.91 17.04 
ADF 36.03 5.23 41.22 5.78 
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Table 2. Scheme of feeding cracked com supplement and how samples were composited 
for analysis the treatments during collection period 

Day of collection period 

1 2 3 4 5 6 

Comas%BW 
CONT 

24 0.5 0.5 0.5 0.5 0.5 0.5 

48 0 1.0 0 1.0 0 1.0 

72 1.5 0 0 1.5 0 0 

6-d collection 

CONT 1 1 1 1 1 1 

24 1 1 1 1 1 1 

48 1 2 1 2 1 2 

72 1 2 3 1 2 3 

3-d collection 

CONT 1 1 1 

24 1 1 1 

48 1 2 1 

72 1 2 3 

Same number within row was composited for lab analysis and final statistics 
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Table 3. Intake, digestibility and digestible intake of organic matter (DOMI) by steers fed 
alfalfa hay ad libitum and three different feeding frequencies of cracked com 

Treatment Contrastsb 

Feeding Freg,uency (hours} CONT 
VS 

CONT 24 48 72 SEMC Corn L Q 
p 

Intake as % BW 2.57 2.80 2.50 2.34 0.09 0.81 <0.01 0.79 

Intake OM kg/d 

Hay 12.64 11.49 10.09 9.47 0.48 <0.01 <0.01 0.58 

Corn 2.48 2.48 2.46 

Total 12.64 13.95 12.58 11.99 0.48 0.70 <0.01 0.55 

Hay as % intake 100.00 82.21 80.04 78.51 0.73 <0.01 <0.01 0.86 

Digestibility OM 68.89 71.66 73.90 75.04 1.06 <0.01 <0.01 0.64 

DOMikg/d 8.72 10.01 9.27 8.97 0.33 <0.05 0.02 0.65 

aCONT = Control alfalfa ad libitum; 24, 48 and 72 = alfalfa ad libitum and cracked corn 
supplementation every day, every other day or every third day at .5, 1 and 1.5% ofBW respectively. 

bPreplanned contrasts with P-values control vs corn supplemented steers; L = linear Q = quadratic for 
corn supplemented steers only. 

cstandard error of the mean. 
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Table 4. Total intake, fecal output and total tract apparent digestibility of ADF ash free 
and NDF ash free and nitrogen by steers fed alfalfa hay ad libitum and three different 
feeding frequencies of cracked com 

Treatment" Contrastsb 

Feeding Fre9.uenc1 CONT 
VS 

CONT 24 48 72 SEMC Com L Q 
p 

ADF 

Intake kg/d 4.55 4.25 3.75 3.52 0.17 <0.01 <0.01 0.57 

Fecal Output kg/d 2.16 1.99 1.57 1.40 0.10 <0.01 <0.01 0.39 

Digestibility % 52.55 53.16 58.26 60.70 1.41 <0.01 <0.01 0.45 

NDF 

Intake kg/d 6.65 6.32 5.59 5.26 0.25 <0.01 <0.01 0.57 

Fecal Output kg/d 2.45 2.35 1.87 1.69 0.12 <0.01 <0.01 0.36 

Digestibility % 63.15 62.79 66.61 67.90 1.30 0.07 <0.01 0.45 

Nitrogen 

Intake g/d 445.83 443.21 394.39 372.89 16.85 0.03 <0.01 0.56 

Fecal Output g/d 110.12 116.77 103.02 92.17 6.33 0.37 0.01 0.98 

Digestibility % 75.28 73.62 74.02 75.41 0.77 0.27 0.10 0.61 

aCONT = Control alfalfa ad libitum; 24, 48 and 72 = alfalfa ad libitum and cracked com 
supplementation every day, every other day or every third day at .5, 1 and 1.5% ofBW respectively. 

bpreplanned contrasts with P-values control vs com supplemented steers; L = linear Q = quadratic for 
com supplemented steers only. 

cStandard error of the mean. 
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Table 5. Ruminal VFA concentration, acetate to propionate ratio, dilution rate, pH area 
below a 6.2 line and the pH curve in 6 d and time in hours that pH was under 6.2 for 6 d 
of steers fed alfalfa hay ad libitum and three different feeding frequencies of cracked com 

Treatment" Contrastsb 

Feeding Freguency CONT 
Vs 

CONT 24 48 72 SEMC Com L Q 
p 

VFA,mmol/L 

Acetate 84.67 81.78 82.26 80.01 2.49 0.22 0.60 0.63 

Propionate 18.59 19.16 19.62 19.59 0.82 0.33 0.75 0.83 

Butyrate 7.63 8.97 9.15 10.64 0.61 <0.01 0.06 0.17 

Isobutyrate 1.87 1.88 1.83 1.85 0.06 0.77 0.71 0.67 

Valerate 2.20 2.06 2.03 2.20 0.92 0.31 0.32 0.37 

Isovalerate 1.91 2.04 2.04 2.14 0.11 0.18 0.51 0.69 

Total 118.87 115.18 116.93 116.41 3.26 0.89 0.90 0.83 

Acetate/Propionate 4.54 4.37 4.24 4.11 0.13 0.04 0.31 0.98 

Dilution rate %/h 8.45 8.97 7.39 6.92 0.52 0.22 <0.01 0.36 

Area pH (6d) 1.05 2.88 6.55 17.63 1.14 <0.01 <0.01 0.03 

Time h (6d) 13.77 27.54 40.86 50.63 5.10 <0.01 <0.01 0.74 

"CONT = Control alfalfa ad libitum; 24, 48 and 72 = alfalfa ad libitum and cracked com 
supplementation every day, every other day or every third day at .5, 1 and 1.5% ofBW respectively. 

bPreplanned contrasts with P-values control vs com supplemented steers; L = linear Q = quadratic for 
com supplemented steers only. 

cstandard error of the mean. 
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Table 6. Initial, final weight and average daily gain (ADG) of steers fed alfalfa hay ad 
libitum and three different feeding frequencies of cracked com after 90d (Trial 2) 

Treatment Contrastsb 

Feeding Freguenc1 {hours) CONT 
vs 

CONT 24 48 72 SEMC Com L Q 
p 

Weight (kg) 

Initial 199.9 198.4 194.1 198.9 2.2 0.26 0.88 0.23 

Final 243.9 267.9 261.3 254.6 3.9 <0.01 <0.01 0.98 

ADG(kg) 0.48 0.77 0.75 0.62 0.03 <0.01 <0.01 0.21 

"CONT = Control alfalfa ad libitum; 24, 48 and 72 = alfalfa ad libitum and cracked com 
supplementation every day, every other day or every third day at .5, 1 and 1.5% ofBW respectively. 

bPreplanned contrasts with ?-values control vs com supplemented steers; L = linear Q = quadratic for 
com supplemented steers only. 

cstandard error of the mean. 
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Figure 1. Ruminal pH in steers fed alfalfa hay ad libitum and three different feeding 
frequencies of cracked com 
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CONT = Control alfalfa ad libitum; 24, 48 and 72 = alfalfa ad libitum and cracked com supplementation 
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Figure 2. Example of the spline curves for the same steer in each period and treatment. 
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Figure 3. Ruminal ammonia in steers fed alfalfa hay ad libitum and three different 
feeding frequencies of cracked com. 
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Figure 4. Serum urea nitrogen in steers fed alfalfa hay ad libitum and three different 
feeding frequencies of cracked com. 
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CHAPTERN 

ENVIRONMENTAL IMPACT OF FNE DIFFERENT DAIRY SYSTEMS OF 

URUGUAY 

Abstract 

Budgets of inputs, outputs and losses of five different technological systems of 

Uruguay are analyzed, compared and discussed. The systems include five different 

models that were identified according to type of crop pasture rotation, production and use 

of hay and/or silage, use of concentrates, stocking rate (milking and dry cows per ha) and 

how much.of the milking potential of the cow is really used (Duran, 2000). Model I is 

based on natural range, annual species (oat, wheat), but no use of hay or silage. Model II 

incorporates improved pastures with legumes (no crop pasture rotation), phosphate 

fertilizers, and decreased use of concentrates per cow. Stocking rate is increased by a 

40% with respect to Model I. Model III farmers use farm planning for animal nutrition, 

crop-pasture rotation and reproductive performance. Model N increases the stocking rate 

of Model III by 40% by doubling the use of concentrates. Model V tries to increase 

production relative to the genetic potential of the cows, requires more concentrate and 

balanced diets are used to produce more milk with an increase in the stocking rate of 

system N. The first three models were identified through surveys from farmers and 

partial modeling while models N and V were modeled and then validated three year each 

for milk production, use of silage and concentrates. 
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Nitrogen balance for model I was not sustainable in the long term. However, for the other 

models, N was in excess from 24 to 73 kg"1 ha"1 increase as stocking rate and use of 

concentrate increase. However, efficiency of utilization ofN (output/input) increased 

with the intensity of producion. Phosphorus accumulates in the farm at a rate from 0.6 to 

8.8 kg ha"1 yr·1• Efficiency of use of P varied from 28 to 40% having the low-input low­

output models the same efficiency as the more intense model (V). The potassium balance 

was negative for all the systems considered. The lack ofK fertilizer use and the rich K 

soils have hidden this loss. Eventually potassium will become a limiting nutrient in the 

sustainability of dairy farms in Uruguay. 

Introduction 

In the last 35 years world food production has doubled but that increase has 

occurred in association with a 6.87 fold increase in nitrogen fertilizer use, a 3.48 fold 

increase in phosphorus fertilizer use, a 1.68-fold increase in the amount of irrigated 

cropland, and a 1.1-fold increase in land in cultivation (Tilman, 1999). The increased use 

of :fertil1zer, increased stocking rates and the increased use of concentrates has also led to 

an increase in potential environmental problems. However, the problems with nutrient 

pollution are not generally the result of mismanagement by farmers, but the result of 

evolving agricultural systems with no direct costs or penalties associated with 

environmental quality (Beegle et al., 2000). 

Dairy farming is an important part of Uruguayan agriculture occupying over one 

million hectares and generating 229 million dollars as gross product value in 1999. In the 

last 20 years the Dairy Sector in Uruguay has adopted better technology due to the need 
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to maintain income because national and international prices had declined. During this 

process Uruguay changed from being a milk importer to be a net milk exporter while 

domestic consumption increased from 270 to 470 liters per capita. Between 50 and 60 % 

of the total milk that is industrialized of Uruguay's is exported (Duran, 2000). 

Intensification and specialization with increased stocking rates, use of the soil, 

and use of concentrates have been the main processes of dairy farms in Uruguay. High 

use of inputs may cause farm fields to be non-point sources of pollution. Nutrient 

management is the internationally accepted strategy for addressing non-point farm 

pollution (Beegle et al., 2000). Nutrient management is a mass balance that begins with 

an accurate quantification of nutrients entering the livestock production system and 

nutrients leaving the system {Tyrell, 2001). 

The objective of this study is to quantify through a nutrient mass balance for 

nitrogen, phosphorus and potassium the environmental impact of five dairy systems in 
I 

Uruguay. 

Materials and Methods 

Description of the models 

Taking into account five production factors, Duran (2000) identified five 

technological models that farmers are going through in order to intensify its production. 

These factors are: 

1. Type of crop pasture rotation 

2. Production and use of hay and/or silage 

3. Use of concentrates 
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4. Stocking rate (Milking and dry cows per ha) 

5. How much of the milking potential of the cow is really used. 

These models were called: 

1. Extensive Grazing. (Model I). This system has been used for decades and is based 

on natural range, annual species (oat, wheat), but no use of hay or silage. 

2. Improved Grazing. (Model II) Incorporates improved pastures with legumes, 

phosphate fertilizers, and decreased use of concentrates per cow. Stocking rate is 

increased by 40% with respect to Model I. Although improved pastures are 

incorporated there are not crop pasture rotations implemented. The species that are 

mainly used are white clover (Trifolium repens), birdsfoot trefoil (Lotus 

corniculatus), red clover (Trifolium pratense) alfalfa (Medicago sativa) and tall 

fescue (Festuca arundinacea). 

3. Organized. (Model III) In this model farmers use farm planning for animal nutrition, 

crop-pasture rotation·and reproductive performance. The preplanned crop-pasture 

rotation tries to maximize the use of the soil, and includes not only legumes and the 

species mentioned above but also annual crops for forage (maize, sorghum, oat etc.) 

4. Controlled. (Model IV) This model increases the stocking rate of Model III by 40% 

by doubling the use of concentrates. 

5. Advanced. (Model V) Currently only 60 % of the genetic potential of the cows is 

used. In this model more concentrate and balanced diets are used to produce more 

milk. 

The characteristics of each model are summarized in Table 1 .. 
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The crop pasture rotation used for models IV and V was as follow (starting the 

year in fall) 

Year 1 

Year2 

Year 3 

Year4 

Year5 

Year6 

Improved pasture with legumes associated with wheat 

Second year old improved pasture 

Third year old improved pasture 

Fourth year old improved pasture/ sorghum with chicory and red clover 

Chicory and red clover / com and oat 

Oat / com for silage 

A 10 % percent of the area is range. 

A summary of each system is presented in Table 1. Models I through III have 

been developed from farms, partial modeling and by surveys. Models IV and V were 

developed and implemented (prototyping) in practice three years (92-94 and 95-97 

respectively) at La Estanzuela Experiment Station (lat 34° 20° S long 57° 41 ° W) 

Colonia, Uruguay. Because the prototypes cannot be analyzed statistically in 

conventional ways monitoring and disciplinary research are used to analyze the systems 

in detail. 

The approach was to use one compartment model analysis were the inputs, 

outputs, and losses were as follows: 
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Inputs 

Imported feeds 

Imported fertilizer 

Legume fixation 

Outputs 

Milk 

Animals 

The system is represented mathematically for each nutrient as 

dN/dt = Inputs - Output - Losses 

dP/dt = Inputs- Output- Losses 

dK/dt = Inputs - Output - Losses 

Losses 

Leaching 

Runoff 

Volatilization 

Denitrification 

Where the change in nitrogen (dN/dt), phosphorus (dP/dt) and potassium (dK/dt) 

balances are a function of the inputs, outputs and losses. 

Inputs 

(1) 

(2) 

(3) 

Dry matter production for each pasture was taken from Leborgne (1980); Duran (1992) 

and from the data collected monitoring pasture yields at the Research Station. 

Percentages of clover and legumes in the pastures were taken from the paddocks for the 

different years and type of pastures average. For models IV and V possible yield and dry 

matter production of crops and pastures, composition of the pastures, use of fertilizer, 

feed introduced and used in the farm, slurry composition and soil chemical properties 

were monitored. 

Nitrogen (N) fixation from legumes was assumed to be 1 kg of N for every 30 kg 

of dry matter produced by the legume as it was calculated through a method with isotopic 

nitrogen 15N for Uruguayan conditions and different legumes (Garcia et al., 1994). 
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Fertilizer inputs were based on the recommendations usually used for models I 

through III. Fertilizer inputs for models N and V are the average of the rates of fertilizer 

used during the trial period. 

Feed inputs from outside the farm are mainly grains and feed by products. The 

total amounts were described by Duran (2000). For models I and II wheat bran was used 

as the main feed concentrate. For models III and IV wheat bran and grains as com and 

sorghum were used in a proportion of 2:1. In model Va complete ration with at least 1.8 

Meal. of net energy oflactation (Meal NEJkg DM) and 16.5 % crude protein and wheat 

bran was used in a proportion 82: 18. Wheat bran in model V was mainly used for dry 

cows or cows in late lactation. For heifers and calves wheat bran is the main concentrate 

used although the amounts differ among the models according to the stocking rate and 

. how intensively managed it is (Mieres, com pers). No roughage is considered to come 

from outside the farm . 

. Outputs. 

Milk production per hectare is reported by Duran (2000) (Table 1 ). A 3 .1 % of 

crude protein in milk is used for every model, which corresponds to the average value 

monitored. Phosphorus values in milk data from the literature vary from 0.085 % (Wu 

and Satter, 2000) to 0.1 % (Flynn and Powers, 1985; NRAES, 1995). For this study 0.1 % 

of phosphorus in milk will be used since its near partial values that have been quantified 

in some mineral monitoring in milk in Uruguay (unpublished data). The percentage for 

potassium in milk is quite constant for several different environments (Sasser et al., 1966) 

and 0.15 % ofK in milk is used. 
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Cows and calves that are sold are also the nutrient outputs of each of the systems. 

Replacement was calculated the same for all the models and is 25 % of the adult stock. 

Because each system has a different calving rate and stock composition (Table 1) animals 

sold per hectare are shown in Table 2. 

The composition of N, P and K as percentage of empty body weight for the culled 

cows were 2.53, 0.72 and 0.19 respectively (ARC, 1980; NRAES, 1995). For young 

stock the body composition in percentage ofN, P and K used was 2.88, 0.83 and 0.22 % 

respectively (ARC, 1980). The weights at which animals are sold were 500 kg for model 

I and II and 570 kg for models III, IV and V. All male calves and females in excess of 

those needed for replacement were calculated as sold 10 days after birth at an average 

weight of 40 kg. No hay, silage or grain is considered to be sold from the farm. 

Losses 

Under Uruguayan conditions animals spend most of their time grazing so most of 

the urine and the manure are left in the paddocks. Although it is not considered here there 

. are expected differences among paddocks in the different models. It is considered that the 

more intensive models (III to V) had a better distribution since the management is tighter 

and animals spend less time in each paddock and grazing strips are more controlled. 

To quantify the type fecal and urinary excretion, each model was simulated and 

calculated using the Cornell Net Carbohydrate and Protein System (CNCPS 

4.0.0.31 ;Cornell University, NY), with the tabulated values that appear in the Uruguayan 

nutritional guide for ruminants (Cozzolino et al., 1994) and when available, feed analysis 

done in the nutrition laboratory at La Estanzuela Experiment Station. The CNCPS 
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software was selected since it has been validated for type of pastures and situations 

similar to that of Uruguay (Kolver et al., 1996). For each model a different simulation 

was done for each type of animal (milking cow, dry, heifers and calves) and for three 

different seasons (fall-winter, spring and summer) and afterwards the annual excretion 

was calculated by addition. Results of N, P and K major routes of excretions and total 

amounts are shown in Table 3, 4 and 5 respectively. 

Ammonia N losses by volatilization from urine may vary from 15 to 25% 

(Haynes and Williams, 1993). We used the value of 22%, which is the value that Ryden 

et al (1987) measured at a mean air temperature of 16 °C. For N losses in dung through 

ammonia volatilization the same authors measured almost 1 % and it is the value used. 

Some measurements by Malcuori et al. (1999) show that 8 to 12 % of the total 

manure is collected in the milking parlor. However, management in the milking parlor is 

very important and animal excretions may vary according to the treatment animals 

receive. Animal nervousness, failure to keep the daily routine, and management may vary 

manure and urine outputs in the milking parlor. For this study we will use 12%. In 

models-I and II no recycling to paddocks is done and usually dairy waste from the 

milking parlor is lost to the field, therefore, it will be taken into account as nutrient loss. 

The reason for this is during the time these models were developed there was no legal 

concern and the investment in manure recovery systems was too high for the farmer. The 

use of dairy waste with a high carbon (C) to nitrogen ratio (30:1) which was incorporated 

into the soil just before a winter crop (oat, barley or wheat) has decreased dry matter 

yields significantly (La Manna et al., 2001) and therefore for models III, IV and V it is 

calculated that excretions from the milking parlor are stored in a lagoon for later 
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application during spring, summer and early fall. The estimated N losses by volatilization 

from lagoons range from 40 to 70 % so we used a value of 60%. No losses ofK and P 

are assumed by storage for models III, IV and V. However, since animals are moved 

from and back to the paddocks to the milking parlor 2 times a day each usually through a 

cattle trail that is not used for other purposes it was assumed the cattle spent 1 hour per 

day there. Assuming a fecal and urinary distribution through out the day is possible to 

estimate this loss in 4 % of the excretions of the dairy cows. 

Application of manure to the soil without immediate incorporation can lead to 

losses ofup to 40% of the N applied. This is the amount we assume to be lost in 

application to the field. 

Losses from the field in Uruguay have not been divided between leaching, and 

denitrification, however, it is estimated that a typical N loss under normal annual grazing 

crops is 60 kg N ha per crop (Sawchik, personal communication). In the case of crop 

pasture rotations with a 50% of the time under pasture Diaz Rosello (1992) measured an 

average loss of 20.5 to 23.6 kg N ha-1 yr-1 with a N fertilization of 16.7 kg N ha-1 yr-1 in 

36-yr trial. For P losses_byerosion inJhe same crop pasture production systems Moron 

and Kiehl (1992) measured losses of7.5 kg and of 11.46 Pkg ha-1 yr-1 for crops alone 

with fertilization (case of model I). However, the losses measured by Diaz Rosello (1992) 

and Moron and Kiehl (1992) where under conditions of soil tillage and maximum 

erosion. For this study 70% of the values proposed above for the type of pastures will be 

used. These losses are reported as soil and tillage since proper identification of what type 

of loss is not possible. 
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Losses of potassium beyond the root zone in soils from urine can range from O to 

46% of the total urine depending more on physical conditions of the soil rather than the 

soil chemical, mineral characteristics and moisture content (Williams et al., 1990). This 

type ofloss called preferential loss is assumed in this work to be a 5% of the potassium in 

the urine according to the type of soils ( clay with an impermeable B horizon) where the 

trial was carried out. 

Efficiency of nutrient use was calculated as amount of nutrients in the output 

divided by input of the same nutrient multiplied by 100. Surplus was calculated by the 

subtraction of inputs minus outputs for each nutrient. 

Results and Discussion 

Nitrogen. Inputs increased in all the farms according to the intensity of production (Table 

6). Except for model I, which does not use legumes as do the other models, legume N, is 

an important percentage of the total inputs (74.5, 77.9, 67 and 60 for models II, III, IV 

and V). This is logical in grasslands systems that rely in legumes like the ones found in 

. Argentina, New Zealand and Uruguay. In other systems where the prices of feed and 

fertilizer are lower, feed is the most important input ofN to the farm (Klausner, 1995). 

Under Uruguayan economic conditions legume N is of great importance achieving at low 

cost production and therefore have a competitive product for export. As stocking rate 

increases, the concentrates that are used for cows increase in importance. In model V, 

feed for the cows is the second major input while for the other models fertilizer is the 

second major input. The more important N output is milk for all the models since there is 
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not grain, hay or silage. Milk output is the major N output in most of the NY dairies also 

(Bouldin and Klausner, 1998). 

All the models except model I show a low utilization of nitrogen of between 16.9 

to 22.2 % (Table 6). Model I is a low input-output system and is not profitable under the 

actual economic conditions of Uruguay. Also from a nitrogen stand point model I is not 

'sustainable. For this model to be sustainable improved pastures with legumes should be 

included since only N fertilizer doesn't improve soil Nin the long run (Whitehead, 1995), 

while improved pastures increases soil OM and therefore increases soil total N (Diaz, 

1992). There is an increment in nitrogen efficiency of utilization from Model II through 

V mainly explained for a higher milk production and a higher number of animals that are 

culled. These two factors, milk produced and animals culled, are the result of better 

management and a more balanced feeding for dairy cows which increases efficiency per 

hectare (Table 6). The increase in stocking rate allows a better utilization of the grass and 

an even distribution of urine and feces. In this modeling the assumption is that the 

increase in DM per hectare is not so much because of yield increment but rather for better 

forage utilization and more hectares under improved pastures. This has been shown in 

several trials and our monitoring of the prototype systems in the Dairy Unit. The 

monitoring results of models IV and V resulted in an estimated 75 and 82% of forage 

utilization, respectively, which is high for Uruguay. 

Typical farms in the United Kingdom show total N inputs between 300-400 kg N 

ha-1 with offtakes of 60-80 kg N ha-1 (Jarvis et al., 1996; Peel et al., 1997) which is to a 

similar efficiency as the models showed above but with a greater surplus per ha. Not all 

the excess is lost to the environment, N may accumulate between 30 tolOO kg ha-1 yr-1 in 
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the N soil pool (Aarts et al., 1992; Berentsen and Giesen, 1995). However, in the long run 

this accumulation may led to more leaching losses ofN into groundwater (Goh and 

Williams, 1999). 

Phosphorus. The first two models I and II are low inputs low outputs. The efficiency of 

utilization of P inputs is 40 and 33 % respectively (Table 7). Analyzing Models III to V 

there is an increase in P efficiency mainly due to high stocking rate, which allows better 

grass utilization and higher milk production. Reproductive performance also explains in 

part this improvement in efficiency since more animals are sold for outside the farm. 

Despite the fact that Model V has a greater stocking rate per ha, the use of a more 

balanced feed intake increases the efficiency of P utilization and at the same time, the net 

income per ha in more than doubled. 

Similar models for dairy farms in New Zealand, England and the Netherlands 

resulted in a P efficiency of 17.8, 38.2 and 33.3 % respectively and the total P that stayed 

in the farm was 49, 26.7 and 32 kg P ha-1 yr-1 (Goh and Williams, 1999). The net gain of 

. P in the soils of all the models eventually will increase until the possibility of runoff and 

soil erosion increases and therefore, the possibility of eutrophication of waterways 

increases. In Uruguay levels of Pin soils are from 3 to 20 ppm. Most of the soils have a 

low P fertility so its not a problem. 

Potassium. Potassium shows a deficiency for all the models considered'. Although 

nutrient efficiency for models I and IV are 45 and 64% which is given by a low input­

output for model I and a high use of wheat bran per ha as imported feed for model IV, 
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final balance is stillnegative. Farmers in Uruguay are not used to utilize K as a fertilizer 

i 

and the soils have high levels ofK that dissimulate the losses. Eventually potassium in 

the long run will become a key component for sustainability. The cost of being 

sustainable in the future for all the models will depend on close monitored of soil status, 

even distribution of the waste in the different paddocks and the use of potassium 

fertilizer. 

In Dutch farms there is imported around 108 kg ofK ha-1 yf1 and 30 kg ofK ha-1 

yr-1 of feed with a utilization from 10 to 30% (Aarts et al., 1992). Similar utilizations ofk 

were observed in dairy farms of New York (Bouldin and Klausner, 1998). 

Implications 

The five models studied show the big trends of nitrogen, phosphorus and 

potassium in the farm for five models that differ in intensity of stocking rate, 

supplementation, and soil and forage utilization in Uruguay. For N and P there is a 

surplus that increases as intensity increases. However, the efficiency of use also increases 

with intensity. Potassium on the other hand is deficient and may be a key nutrient for 

future sustainability. 
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Table 1. Principal technical parameters for the 5 models 

Models: 

ROTATION 
Improved Pastures with legumes 
(% of total area) 

Dry Matter /ha 
UseofHay 

Concentrate(kg/cow} 
(kg/ha) 

Stocking rate ( animals /ha) 
Cows 
Heifers 2-3 
Heifers 1-2 
Calves 

Mille (liters/cow) 
" (liters/ha) 

I 

no 

0 

very low 
very low 

660 
231 

0.3 
0.075 
0.075 
0.075 

2200 
760 

II 

no 

50 

medium 
high 

420 
252 

0.5 
0.125 
0.125 
0.125 

3800 
2000 

m 

yes 

65 

high 
low 

670 
469 

0.7 

0.175 
0.175 

4500 
3100 

IV 

yes 

60 

max 
very low 

1200 
1200 

1.0 

0.25 
0.25 

4700 
4700 

V 

yes 

60 

max 
none 

1600 
1712 

1.07 

0.268 
0.268 

6315 
6700 

Calving Season 

Mating 

continuous variable fall 50% fall 50 % fall 100% 

Calving interval(months) 
First mating (age) 

COST (U$S/ lt) 
Net Income U$S/Ha (Liter at 0.18 U$S) 
" " " (liter at 0.14 U$S) 

bull 
18 
36 

Al: artificial insemination; lt: liters; ha: hectares 

bull 
16 

18-24 

0.130 
100 
20 

121 

bull / A.I A.I. 
14 13 

18-24 18 

0.126 
167 
43 

0.121 
277 
89 

A.I 
13 
15 

0.110 
469 
201 

Adapted from Duran 2000 



Table 2. Annual sale of animals per hectare for the different models 

Model 

Cows ( culled)/ha 

Calves/ha 

I 

0.08 

0.12 

II 

0.13 

0.25 

122 

III 

0.18 

0.43 

IV 

0.25 

0.67 

V 

0.27 

0.72 



Table 3. Total excretion of Nitrogen and route of excretion for all the animals in the five 
models 

Models I II III IV V 

N Excretion kg ha-1yr-1 

Dairy Cows 

Urine 5.76 10.07 15.91 31.47 33.54 

Feces 7.90 15.39 24.97 48.32 43.51 

Total 13.66 25.46 40.87 79.77 77.02 

Dry Cows 

Urine 1.98 2.78 3.45 3.50 3.90 

Fe<;:es 5.69 6.60 9.67 9.73 10.10 

Total 7.67 9.38 13.13 13.23 14.00 

Heifers and Calves 

Urine 2.56 3.44 4.11 8.16 8.32 

Feces 5.91 8.09 9.07 14.96 14.57 

Total 8.48 11.52 13.18 23.11 22.90 

Total N excretion kg ha-1yr-1 

Urine 10.30 16.29 23.47 43.13 45.76 

Feces 19.50 30.08 43.71 73.01 68.18 

Total 29.80 46.36 67.18 116.14 113.94 
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Table 4. Total excretion of phosphorus and route of excretion for all the animals in the 
five models 

Models I II III IV V 

P Excretion kg ha·1yr·1 

Dairy Cows 

Urine 0.06 0.12 0.19 0.32 0.32 

Feces 1.74 4.03 6.21 12.91 11.44 

Total 1.80 4.14 6.39 13.23 11.77 

Dry Cows 

Urine 0.05 0.05 0.09 0.10 0.10 

Feces 0.92 0.90 1.52 2.61 2.24· 

Total 0.97 0.94 1.61 2.71 2.34 

Heifers and Calves 

Urine 0.04 0.05 0.06 0.11 0.11 

Feces 0.59 0.99 1.13 2.95 3.54 

Total 0.63 1.06 1.19 3.06 3.66 

Total P excretion kg ha·1yr·1 

Urine 0.15 0.22 0.34 0.53 0.53 

Feces 3.25 5.92 8.86 18.47 17.22 

Total 3.40 6.14 9.20 19.00 17.75 
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Table 5. Total excretion of potassium and route of excretion for all the animals in the five 
models 

Models I II III IV V 

K Excretion kg ha-1yr-1 

Dairy Cows 

Urine 10.34 21.85 31.51 60.60 40.10 

Feces 4.16 8.41 12.74 23.73 19.77 

Total 14.50 30.26 44.25 84.32 59.88 

Dry Cows 

Urine 6.49 8.21 11.74 10.47 10.86. 

Feces 2.66 3.12 4.93 4.64 4.91 

Total 9.15 11.33 16.68 15.11 15.84 

Heifers and Calves 

Urine 7.23 9.43 7.65 19.40 20.08 

Feces 2.73 3.69 2.79 7.09 3.56 

Total 9.95 13.12 10.44 26.49 27.43 

Total K excretion kg ha-1 yr-1 

Urine 24.06 39.49 50.90 90.47 71.04 

Feces 9.55 15.22 20.46 35.46 28.24 

Total 33.61 54.71 71.36 125.93 99.28 
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Table 6. Mass balance for N for the five models (kg N ha-1 yr-1) 

I II III IV V 

Inputs kg N ha"1 yr·1 

Feed Cows 4.88 5.32 8.72 22.53 38.58 

Feed Heifers 0.04 0.14 0.39 1.28 1.81 

Fertilizer 2.75 11.55 14.38 25.71 25.71 

Legume Fixed 0.00 49.74 82.68 101.91 101.91 

Total Inputs 7.67 66.75 106.16 151.43 168.02 

Outputs kg N ha·1 yr·1 

Mille 3.69 9.40 15.06 22.84 32.55 

Culled Cows 0.95 1.58 2.52 3.61 3.86 

Culled Calves 0.14 0.29 0.49 0.77 0.83 

Total outputs 4.78 11.27 18.08 27.21 37.24 

Inputs - Outputs 2.89 55.48 88.08 124.21 130.78 

Outputs/Inputs 0.623 0.169 0.170 0.180 0.222 

Losses kg N ha-1 yr-1 

Storage and parlor 1.64 3.06 2.94 5.74 5.55 

Volatilization (excreta) 2.30 3.60 5.15 9.33 9.81 

Cows trail 0.55 1.02 0.26 0.53 0.47 

Tillage and soil 5.40 23.26 33.24 36.91 36.91 

Total Losses 9.89 30.93 43.85 56.61 57.06 

Input-outputs-losses -6.99 24.54 44.23 67.60 73.72 

126 



" 

Table 7. Mass balance for P for the five models (kg P ha-I yr-I) 

I II III IV V 

Inputs kg P ha-1 yr-1 

Feed Cows 2.40 2.62 3.64 9.54 10.74 

Feed Heifers 0.02 0.07 0.19 0.63 0.89 

Fertilizer 0.87 5.06 10.05 10.15 10.15 

Total Inputs 2.69 7.74 13.88 20.32 21.78 

Outputs kg P ha-1 yr·1 

Milk 0;76 2.00 3.10 4.70 6.70 

Culled Cows 0.27 0.45 0.72 1.03 1.10 

Culled Calves 0.04 0.08 0.14 0.22 0.24 

Total outputs 1.07 2.53 3.96 5.95 8.04 

Inputs - Outputs 1.62 5.21 9.92 14.37 13.75 

Outputs/Inputs 0.398 0.330 0.285 0.293 0.369 

Losses kg P ha·1 yr·1 

Storage and parlor 0.22 0.50 0.00 0.00 0.00 

Tillage and soil 0.72 3.48 5.01 5.01 5.01 

Cows trails 0.07 0.17 0.26 0.53 0.47 
-- -··------------ ---------- -- -·--- ---~------~--~--

Total losses 1.01 4.15 5.27 5.54 5.49 

Inputs-outputs-losses 0.61 1.07 4.65 8.83 8.26 

Table 8 Mass balance for K for the five models (kg K ha·I yr-I) 
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Models I II III IV V 

Inputs kg K ha-1 yr-1 

Feed Cows 2.68 2.93 4.15 10.88 9.84 

Feed Heifers 0.02 0.07 0.19 0.70 1.00 

Fertilizer 0.00 0.00 0.00 0.00 0.00 

Total Inputs 2.71 3.00 4.37 11.58 10.84 

Outputs kg K ha-1 yr-1 

Milk 1.14 3.00 4.65 7.05 10.05 

Culled Cows 0.07 0.12 0.19 0.27 0.29 

Culled Calves 0.01 0.02 0.04 0.06 0.06 

Total outputs 1.22 3.14 4.88 7.38 10.40 

Inputs - Outputs 1.48 -0.14 -0.51 4.20 -0.16 

Outputs/Inputs - 0.45 -1.05 -1.15 0.64 -1.02 

Losses K kg ha-1 yr-1 

Storage and parlor 1.74 3.63 0.00 0.00 0.00 

Cows trail 0.58 1.21 1.77 3.37 2.40 

Preferential flow' 1.11 1.78 2.27 3.99 3.19 

Total losses kg ha-1 yr-1 3.43 6.62 4.04 7.36 5.59 

Inputs-outputs-losses -1.95 -6.76 -4.55 -3.17 -5.74 

1 Preferential flow amount of K in urine below the root zone 
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